Science.gov

Sample records for active radiation techniques

  1. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  2. Radiation techniques for acromegaly

    PubMed Central

    2011-01-01

    Radiotherapy (RT) remains an effective treatment in patients with acromegaly refractory to medical and/or surgical interventions, with durable tumor control and biochemical remission; however, there are still concerns about delayed biochemical effect and potential late toxicity of radiation treatment, especially high rates of hypopituitarism. Stereotactic radiotherapy has been developed as a more accurate technique of irradiation with more precise tumour localization and consequently a reduction in the volume of normal tissue, particularly the brain, irradiated to high radiation doses. Radiation can be delivered in a single fraction by stereotactic radiosurgery (SRS) or as fractionated stereotactic radiotherapy (FSRT) in which smaller doses are delivered over 5-6 weeks in 25-30 treatments. A review of the recent literature suggests that pituitary irradiation is an effective treatment for acromegaly. Stereotactic techniques for GH-secreting pituitary tumors are discussed with the aim to define the efficacy and potential adverse effects of each of these techniques. PMID:22136376

  3. Stereology techniques in radiation biology

    NASA Technical Reports Server (NTRS)

    Kubinova, Lucie; Mao, XiaoWen; Janacek, Jiri; Archambeau, John O.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Clinicians involved in conventional radiation therapy are very concerned about the dose-response relationships of normal tissues. Before proceeding to new clinical protocols, radiation biologists involved with conformal proton therapy believe it is necessary to quantify the dose response and tolerance of the organs and tissues that will be irradiated. An important focus is on the vasculature. This presentation reviews the methodology and format of using confocal microscopy and stereological methods to quantify tissue parameters, cell number, tissue volume and surface area, and vessel length using the microvasculature as a model tissue. Stereological methods and their concepts are illustrated using an ongoing study of the dose response of the microvessels in proton-irradiated hemibrain. Methods for estimating the volume of the brain and the brain cortex, the total number of endothelial cells in cortical microvessels, the length of cortical microvessels, and the total surface area of cortical microvessel walls are presented step by step in a way understandable for readers with little mathematical background. It is shown that stereological techniques, based on a sound theoretical basis, are powerful and reliable and have been used successfully.

  4. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  5. Techniques for controlling radiation exposure

    SciTech Connect

    Ocken, H.; Wood, C.J.

    1993-02-01

    The US nuclear power industry has been remarkably successful in reducing worker radiation exposure over the past 10 years. There has been more than a fourfold reduction in person-rem per MW-year of electric power generated: from 1.8 person-rems in 1980 to only 0.4 person-rems in 1991. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in the 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, and there will be more requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the 1995 industry goals for unit median collective exposure. No one method will suffice, but implementing suitable combinations from this compendium will help utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: Outages are shorter, staffing requirements are reduced, and work quality is improved. Despite up-front costs, the benefits over the following one to three years typically outweigh the expenses.

  6. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  7. Use of the afterloading technique for intraoral radiation carriers

    SciTech Connect

    Minsley, G.E.; Rothenberg, S.

    1985-05-01

    A method for fabrication of a radiation carrier with an adaptation of the afterloading technique has been described. The use of the afterloading technique allows for quick and easy placement of multiple radioactive sources; thus, time and exposure to the radiotherapist and the patient are minimized during the period of placement and activation of the prosthesis at the time of therapy.

  8. New radiation techniques in gynecological cancer.

    PubMed

    Ahamad, A; Jhingran, A

    2004-01-01

    Radiation therapy has been a major therapeutic modality for eradicating malignant tumors over the past century. In fact, it was not long after the discovery of radium that the first woman with cervical cancer underwent intracavitary brachytherapy. Progress in the way that this cytotoxic agent is manipulated and delivered has seen an explosive growth over the past two decades with technological developments in physics, computing capabilities, and imaging. Although radiation oncologists are educated in and familiar with the wealth of new revolutionary techniques, it is not easy for other key members of the team to keep up with the rapid progress and its significance. However, to fully exploit these enormous gains and to communicate effectively, medical and gynecological oncologists are expected to be aware of state-of-the-art radiation oncology. Here, we elucidate and illustrate contemporary techniques in radiation oncology, with particular attention paid to the external beam radiotherapy used for adjuvant and primary definitive management of malignancies of the female pelvis.

  9. Novel radiation techniques for rectal cancer

    PubMed Central

    2014-01-01

    The concepts for management of rectal cancer have changed drastically over the past few years. Through national bowel cancer screening programmes in the Western countries and the increasing use of endoscopic procedures as diagnostic tool, there is increase in detection of rectal cancer in early stages. There is increase in ageing population worldwide but more so in Western countries. In addition, there is realisation of harm from extirpative surgical procedures which are directed towards managing advanced rectal cancer in the past. Increase in cost of health care burden has also led the investigators to seek alternative treatment options which are effective, safe and cost effective. There are several modern radiation techniques which fits this bill and we need to be aware of newer novel radiation techniques to fulfil this gap. PMID:24982769

  10. Exploring actinide materials through synchrotron radiation techniques.

    PubMed

    Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang

    2014-12-10

    Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well.

  11. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  12. Techniques for active passivation

    SciTech Connect

    Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.

    2016-12-20

    In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.

  13. New radiosonde techniques to measure radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Levrat, Gilbert

    2013-04-01

    Solar and thermal radiation fluxes are usually measured at Earth's surface and at the top of the atmosphere. Here we show radiosonde techniques that allow measuring radiation flux profiles and the radiation budget from the Earth's surface to above 30 km in the stratosphere. During two-hour flights solar shortwave and thermal longwave irradiance, downward and upward, is measured with four individual sensors at one-second resolution, along with standard PTU radiosonde profiles. Daytime and nighttime shortwave and longwave radiation measurements, and 24 hours surface measurements, allow determining radiation budget- and total net radiation profiles through the atmosphere. We use a double balloon technique to prevent pendulum motion during the ascent and to keep the sonde as horizontal as possible. New techniques using auto controlled airplanes are now investigated to retrieve the sonde after release at a certain altitude and to land it if possible at the launch station.

  14. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  15. Microcurrent therapeutic technique for treatment of radiation toxicity

    DOEpatents

    Lennox, Arlene; Funder, Sandra

    2000-01-01

    The present technique provides a method of remediating the toxicities associated with radiation therapy. A conductive gel is applied to the affected bodily area. A sinusoidally pulsed biphasic DC current is then applied to the affected bodily area using at least one electrode. The electrode is manipulated using active tactile manipulation by for a predetermined time and the frequency of the sinusoidally pulsed biphasic DC current is decreased during the course of the treatment. The method also includes applying a spiked pulsed biphasic DC current to the affected bodily area using at least one electrode. This electrode is also manipulated using active tactile manipulation by for a predetermined time and the frequency of the spiked pulsed biphasic DC current is also decreased during the course of the treatment.

  16. Comment on "New probing techniques of radiative shocks"

    NASA Astrophysics Data System (ADS)

    Busquet, Michel

    2014-05-01

    In this comment, we discuss the possibility of imaging the radiative precursor of a strong shock with a 21.2 nm soft x-ray laser probe and we analyze the data presented in C.Stehlé et al "New probing techniques of radiative shocks", (Optics Communications 285, 64, 2012) in order to derive some estimation of the achieved resolution. We show that the presented results are inconclusive for the existence of a radiative precursor. Furthermore, our best estimation of cold and warm Xenon VUV opacities tells that 21.2 nm backlighting would not be able to probe this radiative precursor.

  17. Hybrid hydrogels produced by ionizing radiation technique

    NASA Astrophysics Data System (ADS)

    Oliveira, M. J. A.; Amato, V. S.; Lugão, A. B.; Parra, D. F.

    2012-09-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling.

  18. High accuracy radiation efficiency measurement techniques

    NASA Technical Reports Server (NTRS)

    Kozakoff, D. J.; Schuchardt, J. M.

    1981-01-01

    The relatively large antenna subarrays (tens of meters) to be used in the Solar Power Satellite, and the desire to accurately quantify antenna performance, dictate the requirement for specialized measurement techniques. The error contributors associated with both far-field and near-field antenna measurement concepts were quantified. As a result, instrumentation configurations with measurement accuracy potential were identified. In every case, advances in the state of the art of associated electronics were found to be required. Relative cost trade-offs between a candidate far-field elevated antenna range and near-field facility were also performed.

  19. New techniques of low level environmental radiation monitoring at JLab

    SciTech Connect

    P. Degtiarenko, V. Popov

    2010-07-01

    We present the first long-term environmental radiation monitoring results obtained using the technique of pulse mode readout for the industry-standard Reuter-Stokes RSS-1013 argon-filled high pressure ionization chambers (HPIC). With novel designs for the front-end electronics readout and customized signal processing algorithms, we are capable of detecting individual events of gas ionization in the HPIC, caused by interactions of gammas and charged particles in the gas. The technique provides enough spectroscopic information to distinguish between several different types of environmental and man-made radiation. The technique also achieves a high degree of sensitivity and stability of the data, allowing long-term environmental radiation monitoring with unprecedented precision.

  20. Fundamentals - state of the art of radiation techniques

    SciTech Connect

    Wogman, N.A.

    1982-01-01

    In minerals exploration and extraction, nuclear techniques have several advantages. The techniques are elementally specific and their exploration range varies from a few millimeters in average rock formations to more than a meter. Because of the heterogeneous disposition of minerals and difficult environments in which measurements are required (in boreholes, on conveyor belts, in bunkers), interrogating techniques are required which exhibit both elemental specificity and range. It is for these fundamental reasons that nuclear techniques are the only possible techniques which satisfy all requirements. A variety of techniques have been developed and used. These are based on energy dispersive x-ray fluorescence (EDXRF), measurement of natural gamma-ray radiation, gamma-ray attenuation and scattering, and on neutron interactions. This paper discusses the fundamentals of these four techniques and their applications. A table is also provided listing some existing selected applications of nuclear techniques in mineral exploration, mining and processing.

  1. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  2. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  3. Kinetic activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  4. Measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1973-01-01

    A cosmic radiation dose to the Apollo 16 crew of 180 + or - 100 mR was calculated from the specific activities of Na-22 and Na-24 in pre and postflight urine specimens. The specific activities of Cr-51 and Co-60 are higher in postflight specimens than in preflight specimens, presumably due to a postflight injection of radiochromium. The Fe-59 and Cs-137 specific activities are also reported and appear to be normal. The radiation doses received by a pilot and a navigator flying a high altitude mission during the solar flare of August 4 to 9, 1972 were calculated from the specific activity of Na-24 in their urine. These values are compared with the expected radiation dose calculated form the known shape and intensity of the proton spectrum. They demonstrate the magnitude of atmospheric shielding.

  5. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  6. The Stonehenge technique. A method for aligning coherent bremsstrahlung radiators

    NASA Astrophysics Data System (ADS)

    Livingston, Ken

    2009-05-01

    This paper describes a technique for the alignment of crystal radiators used to produce high energy, linearly polarized photons via coherent bremsstrahlung scattering at electron beam facilities. In these experiments the crystal is mounted on a goniometer which is used to adjust its orientation relative to the electron beam. The angles and equations which relate the crystal lattice, goniometer and electron beam direction are presented here, and the method of alignment is illustrated with data taken at MAMI (the Mainz microtron). A practical guide to setting up a coherent bremsstrahlung facility and installing new crystals using this technique is also included.

  7. X-Ray microanalytical techniques based on synchrotron radiation.

    PubMed

    Snigireva, Irina; Snigirev, Anatoly

    2006-01-01

    The development of 3rd generation synchrotron radiation sources like European Synchrotron Radiation Facility (ESRF) in parallel with recent advances in the technology of X-ray microfocusing elements like Kirkpatrick-Baez (KB) mirrors, diffractive (Fresnel zone plates, FZP) and refractive (compound refractive lenses, CRL) optics, makes it possible to use X-ray microscopy techniques with high energy X-rays (energy superior to 4 keV). Spectroscopy, imaging, tomography and diffraction studies of samples with hard X-rays at micrometre and sub-micrometre spatial resolutions are now possible. The concept of combining these techniques as a high-energy microscopy has been proposed and successfully realized at the ESRF beamlines. Therefore a short summary of X-ray microscopy techniques is presented first. The main emphasis will be put on those methods which aim to produce sub-micron and nanometre resolution. These methods fall into three broad categories: reflective, refractive and diffractive optics. The basic principles and recent achievements will be discussed for all optical devices. Recent applications of synchrotron based microanalytical techniques to characterise radioactive fuel particles (UO(2)) released from the Chernobyl reactor are reported.

  8. Technique to Predict Ultraviolet Radiation Embrittlement of Polymers in Space

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the low-Earth-orbit environment, solar ultraviolet (UV) radiation embrittles polymer materials through bond breaking and crosslinking. This UV embrittlement increases the surface hardness of the polymer. Before the durability of polymer materials in the low- Earth-orbit environment can be predicted, the extent of UV embrittlement needs to be determined. However, traditional techniques for measuring the microhardness of materials cannot be employed to measure changes in the hardness of UV-embrittled surfaces because traditional techniques measure bulk hardness and are not sensitive enough to surface changes. A unique technique was used at the NASA Lewis Research Center to quantify polymer surface damage that had been induced by UV radiation. The technique uses an atomic force microscope (AFM) to measure surface microhardness. An atomic force microscope measures the repulsive forces between the atoms in a microscopic cantilevered tip and the atoms on the surface of a sample. Typically, an atomic force microscope produces a topographic image of a surface by monitoring the movement of the tip over features of the surface. The force applied to the cantilevered tip, and the indention of the tip into the surface, can be measured. The relationship between force and distance of indentation, the quantity force/distance (newtons/meter), provides a measure of the surface hardness. Under identical operating conditions, direct comparisons of surface hardness values can be made.

  9. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  10. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    Cosmic radiation doses to the crews of the Apollo 14, 15, and 16 missions of 142 + or - 80, 340 + or - 80, and 210 + or - 130 mR respectively were calculated from the specific activities of Na-22 and Na-24 in the postflight urine specimens of the astronauts. The specific activity of Fe-59 was higher in the urine than in the feces of the Apollo 14 and 15 astronauts, and a possible explanation is given. The concentrations of K-40, K-42, Cr-51, Co-60, and Cs-137 in the urine are also reported for these astronauts. The radiation doses received by pilots and navigators flying high altitude missions during the solar flare of March 27 to 30, 1972 were calculated from the specific activity of Na-24 in their urine. These values are compared with the expected radiation dose calculated from the known shape and intensity of the proton spectrum and demonstrate the magnitude of atmospheric shielding. The concentrations of Na, K, Rb, Cs, Fe, Co, Ag, Zn, Hg, As, Sb, Se, and Br were measured in the urine specimens from the Apollo 14 and 15 astronauts by neutron activation analysis. The mercury and arsenic levels were much higher than expected.

  11. Radiation-Based Medical Imaging Techniques: An Overview

    NASA Astrophysics Data System (ADS)

    Prior, John O.; Lecoq, Paul

    This chapter will present an overview of two radiation-based medical imaging techniques using radiopharmaceuticals used in nuclear medicine/molecular imaging, namely, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The relative merits in terms of radiation sensitivity and image resolution of SPECT and PET will be compared to the main conventional radiologic modalities that are computed tomography (CT) and magnetic resonance (MR) imaging. Differences in terms of temporal resolution will also be outlined, as well as the other similarities and dissimilarities of these two techniques, including their latest and upcoming multimodality combination. The main clinical applications are briefly described and examples of specific SPECT and PET radiopharmaceuticals are listed. SPECT and PET imaging will be then further detailed in the two subsequent chapters describing in greater depth the basics and future trends of each technique (see Chaps. 37, "SPECT Imaging: Basics and New Trends" 10.1007/978-3-642-13271-1_37 and 38, "PET Imaging: Basics and New Trends" 10.1007/978-3-642-13271-1_38.

  12. Image Guidance in Radiation Therapy: Techniques and Applications

    PubMed Central

    Kataria, Tejinder

    2014-01-01

    In modern day radiotherapy, the emphasis on reduction on volume exposed to high radiotherapy doses, improving treatment precision as well as reducing radiation-related normal tissue toxicity has increased, and thus there is greater importance given to accurate position verification and correction before delivering radiotherapy. At present, several techniques that accomplish these goals impeccably have been developed, though all of them have their limitations. There is no single method available that eliminates treatment-related uncertainties without considerably adding to the cost. However, delivering “high precision radiotherapy” without periodic image guidance would do more harm than treating large volumes to compensate for setup errors. In the present review, we discuss the concept of image guidance in radiotherapy, the current techniques available, and their expected benefits and pitfalls. PMID:25587445

  13. Implementation of Image-Guidance Techniques in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Thomas, Michael; Clark, Brenda; MacPherson, Miller; Montgomery, Lynn; Gerig, Lee

    2008-06-01

    For more than 100 years, physicists have been a vital part of the medical team required to deliver radiation therapy. Their role encompasses the verification of dose accuracy to the development and implementation of new techniques, the most recent of which is the incorporation of daily image guidance to account for inter- and intra-fraction target changes. For example, computed tomography (CT) integrated into radiotherapy treatment units allows the image-guided treatment of the prostate where the target location depends on the degree of rectal filling--a parameter that changes on timescales from minutes to weeks. Different technology is required for the adequate treatment of small lung tumours since respiration occurs on timescales of seconds. This presentation will review current image-guided techniques.

  14. Radiation Education Activities | RadTown USA | | US EPA

    EPA Pesticide Factsheets

    2017-03-28

    EPA's Radiation Education Activities are designed to help increase awareness and understanding of radiation concepts among middle and high school students. The activities introduce basic concepts of radiation, non-ionizing and ionizing radiation, radiation protection, radioactive atoms and radioactive decay.

  15. High pressure x-ray diffraction techniques with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  16. Measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1973-01-01

    A cosmic radiation dose to the Apollo 17 crew of 1.3 R was calculated from the specific activities of Na-24 in their postflight urine specimens. The specific activities of K-42, Cr-51, Co60, and Sb-124, introduced by injection into the astronauts, are extremely high in these specimens. The Fe-59 and Cs-137 levels are also reported and appear to be normal. The concentrations of Na, K, Rb, Cs, Ca, Sr, Ba, Cr, Fe, Co, Ag, Au, Zn, Cd, Hg, Sn, As, Sb, Se, Br, Sc, La, Sm, Eu, Tb, Hf, Ta, and Th were measured in urine specimens from the Apollo 17 astronauts by neutron activation analysis. Strontium, barium, gold, cadmium, lanthanum, samarium, europium, terbium, thorium, and tin are reported for the first time. The concentrations or excretion rates of bromine and the alkali metals exhibit singificantly reduced postflight levels and are generally lower than values observed for previous missions. Chromium concentrations reflect radiochromium injections.

  17. Active-edge planar radiation sensors

    PubMed Central

    Kenney, C.J.; Segal, J.D.; Westbrook, E.; Parker, Sherwood; Hasi, J.; Da Via, C.; Watts, S.; Morse, J.

    2007-01-01

    Many systems in medicine, biology, high-energy physics, and astrophysics require large area radiation sensors. In most of these applications, minimizing the amount of dead area or dead material is crucial. We have developed a new type of silicon radiation sensor in which the device is active to within a few microns of the mechanical edge. Their perimeter is made by a plasma etcher rather than a diamond saw. Their edges can be defined and also passivated by growing, in an intermediate step, a field oxide on the side surfaces. In this paper, the basic architecture and results from a synchrotron beam test are presented. PMID:18185839

  18. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  19. Performance of radiation hardening techniques under voltage and temperature variations

    NASA Astrophysics Data System (ADS)

    Veeravalli, Varadan Savulimedu; Steininger, Andreas

    The effectiveness of the techniques to mitigate radiation particle hits in digital CMOS circuits has been mainly studied under a given set of environmental conditions. This paper will explicitly analyze, how the performance of two selected radiation hardening techniques, namely transistor sizing and stack separation, varies with temperature and supply voltage. Our target is an inverter circuit in UMC90 bulk CMOS technology, instances of which have been hardened against charges of 300fC and 450fC using either of the two techniques under investigation. In a Spice simulation we apply particle hits to these circuits through double-exponential current pulses of the respective charge. We study the effect of these pulses in a temperature range from - 55 C to +175 C and a supply voltage of 0.65 to 1.2V (nominal 1V) at the output of a (unhardened) buffer that has been connected as a load. For the hardening by sizing we observe proper operation in the range from 1.2V to 900mV, while for lower supply we observe full swing pulses of increasing magnitude when the respective maximum charge is applied. The influence of temperature turns out to be minor. For the stack separation approach the observation is similar, however, the circuit starts glitching only at 750mV. Our study allows the following conclusions: (i) The effectiveness of the hardening approaches strongly depends on the supply voltage, and moderately on temperature. (ii) As expected, low voltage and high temperature represent the worst case for rad-hard sizing. Stack separation, on the other hand, unexpectedly shows a stronger and more complicated temperature dependence. (ii) For voltages below approx. 90% of nominal the hardening by sizing fails, when designed for nominal voltage and room temperature. The approach can be enhanced to survive this worst case by increasing the sizing factor further by more than 3 times. (iv) The stack separation only fails for voltages below approx. 75% of nominal, but there is n

  20. Control of sound radiation with active/adaptive structures

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  1. Radiation treatment planning techniques for lymphoma of the stomach

    SciTech Connect

    Della Biancia, Cesar; Hunt, Margie; Furhang, Eli; Wu, Elisa; Yahalom, Joachim . E-mail: yahalomj@mskcc.org

    2005-07-01

    Purpose: Involved-field radiation therapy of the stomach is often used in the curative treatment of gastric lymphoma. Yet, the optimal technique to irradiate the stomach with minimal morbidity has not been well established. This study was designed to evaluate treatment planning alternatives for stomach irradiation, including intensity-modulated radiation therapy (IMRT), to determine which approach resulted in improved dose distribution and to identify patient-specific anatomic factors that might influence a treatment planning choice. Methods and Materials: Fifteen patients with lymphoma of the stomach (14 mucosa-associated lymphoid tissue lymphomas and 1 diffuse large B-cell lymphoma) were categorized into 3 types, depending on the geometric relationship between the planning target volume (PTV) and kidneys. AP/PA and 3D conformal radiation therapy (3DCRT) plans were generated for each patient. IMRT was planned for 4 patients with challenging geometric relationship between the PTV and the kidneys to determine whether it was advantageous to use IMRT. Results: For type I patients (no overlap between PTV and kidneys), there was essentially no benefit from using 3DCRT over AP/PA. However, for patients with PTVs in close proximity to the kidneys (type II) or with high degree of overlap (type III), the 4-field 3DCRT plans were superior, reducing the kidney V {sub 15Gy} by approximately 90% for type II and 50% for type III patients. For type III, the use of a 3DCRT plan rather than an AP/PA plan decreased the V {sub 15Gy} by approximately 65% for the right kidney and 45% for the left kidney. In the selected cases, IMRT led to a further decrease in left kidney dose as well as in mean liver dose. Conclusions: The geometric relationship between the target and kidneys has a significant impact on the selection of the optimum beam arrangement. Using 4-field 3DCRT markedly decreases the kidney dose. The addition of IMRT led to further incremental improvements in the left kidney

  2. Radiation From Solar Activity | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2016-05-18

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  3. Measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    Only two of the fecal specimens collected inflight during the Apollo 15 mission were returned for analysis. Difficulty in obtaining reasonably accurate radiation dose estimates based on the cosmogenic radionuclide content of the specimens was encountered due to the limited sampling. The concentrations of Na-22, K-40, Cr-51, Fe-59, and Cs-137 are reported. The concentrations of 24 major, minor, and trace elements in these two specimens were determined. Most concentrations are typical of those observed previously. Major exceptions are extremely low values for selenium and extraordinarily high values for rare earth elements. The net Po-210 activities in the Apollo 11 and 12 Solar Wind Composition foils and in the Apollo 8 and 12 spacecraft reflective coatings due to lunar exposure have been determined. Equilibrium concentrations of 0.082 + or - 0.012 disintegrations /sq cm sec of Rn-222 in the lunar atmosphere and 0.0238 + or - 0.0035 disintegrations /sq cm sec of Po-210 on the lunar surface have been calculated for Oceanus Procellarum.

  4. Photocatalytic Active Radiation Measurements and Use

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Underwood, Lauren W.

    2011-01-01

    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated

  5. Review of active radiation shielding developments

    NASA Astrophysics Data System (ADS)

    Battiston, Roberto

    The radiation risk due to ionizing particles is a critical issue for long duration manned space missions. The ionization losses in the materials of the spacecraft provide passive shielding effectively stopping low energy particles. However, the estimates of the material required to obtain an acceptable level of radiation result in a prohibitive mass. Active electromagnetic shields, which deflect the charged particles, have been considered as an alternative solution. During the last 10 years the interest in this area has grown. A study of active magnetic shielding based on high-temperature superconductors (HTS) was initiated in an ESA study in 2010, continued in the context of the NASA Innovative Advanced Concepts (NIAC) programs (2011-2014) as well as within a dedicated FP7 EU program, SR2S (2013-2015). The aim of these effort was to provide a realistic evaluation of the possibilities based on current technology levels as well extrapolating to reasonable technology advances expected during the next decade. The different configurations considered were assessed in terms of their technical feasibility and shielding efficiency. We present here a status report of the ongoing work and some preliminary results.

  6. Broadband radiation modes: estimation and active control.

    PubMed

    Berkhoff, Arthur P

    2002-03-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Because these particular radiation modes are optimum in a broadband sense, they are termed broadband radiation modes. Methods are given to obtain these modes from measured data. The broadband radiation modes are used for the design of an actuator array in a feedback control system to reduce the sound power radiated from a plate. Three methods for the design of the actuator are compared, taking into account the reduction of radiated sound power in the controlled frequency range, but also the possible increase of radiated sound power in the uncontrolled frequency range.

  7. Dosimetry and techniques for simultaneous hyperthermia and external beam radiation therapy.

    PubMed

    Straube, W L; Klein, E E; Moros, E G; Low, D A; Myerson, R J

    2001-01-01

    An increased biological effect is realized when hyperthermia and radiation therapy are combined simultaneously. To take advantage of this effect, techniques have been developed that combine existing hyperthermia devices with a linear accelerator. This allows concomitant delivery of either ultrasound or microwave hyperthermia with photon radiation therapy. Two techniques have been used clinically: the orthogonal technique, in which the microwave or ultrasound beam and the radiation beam are orthogonal to one another, and the en face technique, in which the ultrasound or microwave beam and the radiation beam travel into the tumour through the same treatment window. The en face technique has necessitated the development of special attachments so that the hyperthermia device can be mounted to the linear accelerator and so that non-uniform portions of the hyperthermia device can be removed from the radiation beam. For microwave therapy, applicators are mounted onto the linear accelerator using the compensating filter tray holder. For ultrasound, special reflector devices are mounted to a frame that is mounted onto the compensating filter tray holder of the linear accelerator. Because the linear accelerator is an isocentric device, the height of the radiation source is fixed, and this has necessitated specially designed devices so that the ultrasound support system is compatible with the linear accelerator. The treatment setups for both the en face technique and the orthogonal technique require the interaction of both hyperthermia and radiation therapy personnel and equipment. The dosimetry and day-to-day operations for each technique are unique. The simulation for the en face technique is much different from the simulation of a normal radiation treatment and requires the presence of a hyperthermia physicist. Also, for the en face technique, the attenuation of the microwave applicator and the thickness and attenuation of the ultrasound reflector system are taken into

  8. Muscle Activation Patterns During Different Squat Techniques.

    PubMed

    Slater, Lindsay V; Hart, Joseph M

    2017-03-01

    Slater, LV, and Hart, JM. Muscle activation patterns during different squat techniques. J Strength Cond Res 31(3): 667-676, 2017-Bilateral squats are frequently used exercises in sport performance programs. Lower extremity muscle activation may change based on knee alignment during the performance of the exercise. The purpose of this study was to compare lower extremity muscle activation patterns during different squat techniques. Twenty-eight healthy, uninjured subjects (19 women, 9 men, 21.5 ± 3 years, 170 ± 8.4 cm, 65.7 ± 11.8 kg) volunteered. Electromyography (EMG) electrodes were placed on the vastus lateralis, vastus medialis, rectus femoris, biceps femoris, and the gastrocnemius of the dominant leg. Participants completed 5 squats while purposefully displacing the knee anteriorly (AP malaligned), 5 squats while purposefully displacing the knee medially (ML malaligned) and 5 squats with control alignment (control). Normalized EMG data (MVIC) were reduced to 100 points and represented as percentage of squat cycle with 50% representing peak knee flexion and 0 and 99% representing fully extended. Vastus lateralis, medialis, and rectus femoris activity decreased in the medio-lateral (ML) malaligned squat compared with the control squat. In the antero-posterior (AP) malaligned squat, the vastus lateralis, medialis, and rectus femoris activity decreased during initial descent and final ascent; however, vastus lateralis and rectus femoris activation increased during initial ascent compared with the control squat. The biceps femoris and gastrocnemius displayed increased activation during both malaligned squats compared with the control squat. In conclusion, participants had altered muscle activation patterns during squats with intentional frontal and sagittal malalignment as demonstrated by changes in quadriceps, biceps femoris, and gastrocnemius activation during the squat cycle.

  9. A diagnostic technique used to obtain cross range radiation centers from antenna patterns

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; Burnside, W. D.

    1988-01-01

    A diagnostic technique to obtain cross range radiation centers based on antenna radiation patterns is presented. This method is similar to the synthetic aperture processing of scattered fields in the radar application. Coherent processing of the radiated fields is used to determine the various radiation centers associated with the far-zone pattern of an antenna for a given radiation direction. This technique can be used to identify an unexpected radiation center that creates an undesired effect in a pattern; on the other hand, it can improve a numerical simulation of the pattern by identifying other significant mechanisms. Cross range results for two 8' reflector antennas are presented to illustrate as well as validate that technique.

  10. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  11. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  12. Design Techniques for Radiation Hardened Phase-Locked Loops

    DTIC Science & Technology

    2005-08-23

    Nemmani, M. Vandepas , K. Okk, K. Mayaram, and U. Moon, “Radiation hard PLL design tolerant to noise and process variations,” in CDADIC report, July...2004. [8] M. Vandepas , K. Ok, A. N. Nemmani, M. Brownlee, K. Mayaram, and U.-K. Moon, “Characterization of 1.2GHz phase locked loops and voltage...controlled oscillators in a total dose radiation environment,” in Proceedings of 2005 MAPLD International Conference, Sept. 2005. [9] M. Vandepas , “Design of

  13. Risk communication, radiation, and radiological emergencies: strategies, tools, and techniques.

    PubMed

    Covello, Vincent T

    2011-11-01

    Risk communication is the two-way exchange of information about risks, including risks associated with radiation and radiological events. The risk communication literature contains a broad range of strategies for overcoming the psychological, sociological, and cultural factors that create public misperceptions and misunderstandings about risks. These strategies help radiation risk communicators overcome the challenges posed by three basic observations about people under stress: (1) people under stress typically want to know that you care before they care about what you know; (2) people under stress typically have difficulty hearing, understanding, and remembering information; (3) people under stress typically focus more on negative information than positive information.

  14. Location of Sources of Radiation Using a Weighted Hyperbolic Technique

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.

    1995-01-01

    The specific problem objective was to locate the sources of radiated electric field from lightning using an overdetermined set of measurements of time-of-arrival. A similar problem exists for epicentral sources in earthquake location, acoustic sources of thunder, and terrestrial navigation using LORAN and GPS.

  15. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. The measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    The principal gamma-ray emitting radioisotopes, produced in the body of astronauts by cosmic-ray bombardment, which have half-lives long enough to be useful for radiation dose evaluation, are Be-7, Na-22, and Na-24. The sodium isotopes were measured in the preflight and postflight urine and feces, and those feces specimens collected during the manned Apollo missions, by analysis of the urine salts and the raw feces in large crystal multidimensional gamma-ray spectrometers. The Be-7 was chemically separated, and its concentration measured in an all NaI (TL), anticoincidence shielded, scintillation well crystal. The astronaut radiation dose in millirads, as determined for the Apollo 7, 8, 9, 10, 11, 12, and 13 missions, was 330, 160, smaller than 315, 870 plus or minus 550, 31, 110, and smaller than 250, respectively.

  17. Industrial radiation and radioisotope gauging techniques and applications

    SciTech Connect

    Gardner, R.P.

    1997-12-01

    The radiation and radioisotope gauging industry in the United States has primarily followed a path of development solely by the private sector. It has remained highly proprietary in nature, which is opposite to the path taken by many other countries. In other countries radiation gauge development has been controlled in large part by government-sponsored research and development, which has spawned many more publications in the open literature. Historically, some of the leaders have been Great Britain, Poland, France, Russia, and Australia. This has possibly led to the misconception that the development of this technology is being dominated by countries outside the United States. This is not a healthy situation-it would be good to see our industry begin to publish more in the open literature and to sponsor more research at universities. In efforts to promote more open-literature publication, the American Nuclear Society (ANS) sponsored a topical meeting on Industrial Radiation and Radioisotope Measurement Applications (IRRMA) in 1988 that was held again in 1992.

  18. Application of thermoluminescence technique to identify radiation processed foods

    NASA Astrophysics Data System (ADS)

    Kiyak, N.

    1995-02-01

    Research studies reported by various authors have shown that a few methods one of which is thermoluminescence technique- may be suitable for identification of some certain irradiated spicies and food containing bones. This study is an application of the thermoluminescence technique for identifying the irradiated samples. The investigation was carried out on different types of foodstuffs such as onions, potatoes and kiwi. Measurements show that the technique can be applied as a reliable method to distinguish the irradiated food products from non-irradiated ones. The results demonstrate also that it is possible to use this method for determining the absorbed dose of irradiated samples from the established dose-effect curve.

  19. Investigating Coincidence Techniques in Biomedical Applications of Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Gramer, R.; Tandel, S. K.; Reinhardt, C. J.

    2004-05-01

    While neutron activation analysis has been widely used in biomedical applications for some time, the use of non-radioactive tracer techniques, to monitor, for example, organ blood flow, is more recent. In these studies, pre-clinical animal models are injected with micro-spheres labeled with stable isotopes of elements that have a high neutron absorption cross-section. Subsequently, samples of blood and/or tissue from different locations in the body are subjected to neutron activation analysis to measure the propagation of the labeled micro-spheres through the body. Following irradiation, the counting (with high-resolution Ge detectors) is typically delayed by a few days to dissipate short-lived activity in the samples and improve signal-to-noise for the peaks of interest in the activation spectrum. The aim of the present study was to investigate whether coincidence techniques (for isotopes which decay via two-photon cascades) could improve signal-to-noise and turn-around times. The samples were irradiated at the 1 MW research reactor at the UMass Lowell Radiation Laboratory. The analysis of the multi-parameter coincidence data recorded in event-mode will be presented and compared with the standard method of recording singles spectra.

  20. [Partial breast irradiation technique with external beam radiation therapy and brachytherapy].

    PubMed

    Chand-Fouché, M-E; Lam Cham Kee, D; Gautier, M; Hannoun-Levi, J-M

    2016-10-01

    Accelerated Partial Breast Irradiation (APBI) appears to be an efficient therapeutic modality provided that it uses strict selection criteria and a reliable and well-managed technique. The techniques that enable to deliver postoperative APBI are interstitial brachytherapy, endocavitary brachytherapy and external beam radiation therapy. Once an appropriate selection of the candidates is made, each radiation technique needs an exact target volume definition and a strict compliance with its own dosimetric constraints. Results of ongoing randomized trials should increase our knowledge of all these parameters, and give us responses about the comparison of the different techniques.

  1. Measurement of soil moisture using remote sensing multisensor radiation techniques

    NASA Technical Reports Server (NTRS)

    Waite, W. P. (Principal Investigator)

    1982-01-01

    Theoretical modeling as well as laboratory and field measurement were coupled with analysis of aircraft data obtained from controlled sites in an effort to enhance understanding of the microwave response due to soil moisture so as to specify sensor parameters and develop inversion algorithms. Models to predict the complex dielectric constant were produced which led to the interpretation of the results in terms of a matrix potential rather than simply moisture content. Similar advances were made in the development of coherent and incoherent radiative transfer models and rough surface scattering models.

  2. RST (Robust Satellite Techniques) analysis for monitoring earth emitted radiation in seismically active area of California (US): a long term (2006-2011) analysis of GOES-W/IMAGER thermal data

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Armandi, B.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N.

    2014-12-01

    More than ten years of applications of the RST (Robust Satellite Techniques) methodology for monitoring earthquake prone area by using satellite TIR(Thermal InfraRed) data, have shown the ability of this approach to discern anomalous TIR signals possibly associated to seismic activity from normal fluctuations of Earth's thermal emission related to other causes independent on the earthquake occurrence. The RST approach was already tested in the case of tens of earthquakes occurred in different continents (Europe, Asia, America and Africa), in various geo-tectonic settings (compressive, extensional and transcurrent) and with a wide range of magnitudes (from 4.0 to 7.9), by analyzing time series of TIR images acquired by sensors on board of polar (like NOAA/AVHRR, EOS/MODIS) and geostationary satellites (like MFG/MVIRI, MSG/SEVIRI, GOES/IMAGER). In addition RST method has been independently tested by several researchers around the world as well as in the framework of several projects funded by different national space agencies (like the Italian ASI, the U.S. NASA and the German DLR) and recently during the EC-FP7 projectPRE-EARTHQUAKES (www.pre-earthquakes.org),which was devoted to study the earthquake precursors using satellite techniques. This paper will show the results of RST analysis on 6 years (2006-2011)of TIR satellite record collected by GOES-W/IMAGER over Southern part United State (California).Results will be discussed particularly in the prospective of an integrated approach devoted to systematically collectand analyze in real-time, independent observations for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  3. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    SciTech Connect

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  4. Novel Techniques for Exploring the Physics of the Radiation Belts

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Konstantinos

    2012-10-01

    The plasma physics of the Radiation Belts (RB) is a premier scientific topic with important technological implications. A new mission the Radiation Belt Storm Probes (RBSP) will be launched in August, 2012, fully instrumented to explore the RB Physics with emphasis on particle interactions with low frequency plasma waves that control the rates of energetic particle precipitation, acceleration and transport. An important difficulty with passive observation, such as the RBSP, is the ``chicken & egg'' problem. Namely particles drive waves while waves precipitate, accelerate and transport particles. It is a complex, non-linear interaction with multiple feedbacks. The two-satellite coverage provided by RBSP and similar missions does not allow for uniquely identifying cause and effect. A new technology recently developed using ionospheric heaters -- powerful HF transmitters or phased arrays - that allow controlled heating of the ionosphere provides us with means for injecting low frequency waves in the ULF/ELF/VLF range into the RB and using the satellites overflying the heater magnetic flux tubes to diagnose the wave particle interactions. The paper will provide a comprehensive planning of experiments that use the HAARP, Arecibo and SURA heaters in conjunction with RBSP and other satellite missions, such as the Air Force DSX and the Russian RESONANCE, to provide new inroads into the RB physics.

  5. A novel technique for active fibre production

    NASA Astrophysics Data System (ADS)

    Renner-Erny, Ruth; Di Labio, Loredana; Lüthy, Willy

    2007-04-01

    Active fibre devices are conventionally manufactured using MCVD technique. Recently it has been shown that nearly equivalent results can also be obtained with sol-gel technology. Now we present a novel technique allowing simplification of the manufacturing process even more. The required constituents are mixed in the form of dry micro- and nano-sized particles. A silica glass tube forming the future core region of a fibre preform is filled with a powder mix of SiO 2, 1% Nd (as Nd 2O 3) and 10% Al (as Al 2O 3). This tube is mounted in the centre of a larger tube forming the future cladding. The empty space between the two tubes is filled with SiO 2 powder. After preheating, the evacuated preform is drawn to a fibre. A length of 45 cm, cladding-pumped with a diode laser at 808 nm as well as a core-pumped fibre of 5.1 cm length showed laser action between 1.05 and 1.1 μm.

  6. Comparison of data inversion techniques for remotely sensed wide-angle observations of Earth emitted radiation

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The shape factor, parameter estimation, and deconvolution data analysis techniques were applied to the same set of Earth emitted radiation measurements to determine the effects of different techniques on the estimated radiation field. All three techniques are defined and their assumptions, advantages, and disadvantages are discussed. Their results are compared globally, zonally, regionally, and on a spatial spectrum basis. The standard deviations of the regional differences in the derived radiant exitance varied from 7.4 W-m/2 to 13.5 W-m/2.

  7. High-energy radiation from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek

    1994-01-01

    Two recent findings concerning high-energy radiation properties of active galactic nuclei -- discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars -- seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.

  8. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques.

    PubMed

    Accardo, Angelo; Di Fabrizio, Enzo; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

    2014-07-01

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data.

  9. Intelligent type controlled release systems by radiation techniques

    NASA Astrophysics Data System (ADS)

    Kaetsu, Isao; Uchida, Kumao; Shindo, Hironori; Gomi, Seiji; Sutani, Kouichi

    1999-06-01

    Intelligent controlled release systems have been designed and constructed. The systems have a sensor-actuator gate consisting of polyelectrolyte hydrogel layer with immobilized enzymes inside fine holes of polyethylene terephthalate (PET) film and silicon wafer as base materials. Excimer-laser or ion-beam irradiation was used for the etching of holes in PET film and photo-lithography was used for the etching of silicon wafer. U.V. and γ-ray irradiations were used for the polymerization and immobilization of electrolyte layers in the holes. Various kinds of signal responsive release systems such as pH responsive, substrate responsive, Ca 2+ responsive, photo-responsive and electric field responsive systems have been developed using those techniques. Some integrated systems have been designed and constructed by combination of unit systems in series and in parallel and proved the selective signal transfer and the successive signal responsive release functions.

  10. [Past, present and near future of techniques in radiation oncology].

    PubMed

    Gérard, J-P; Thariat, J; Giraud, P; Cosset, J-M

    2010-07-01

    Since the discovery of X-rays, the goal of radiotherapy has been to deliver an optimal dose in the target volume and the lowest possible dose in the normal tissues. The history of radiotherapy can be divided in three periods. The Kilovoltage era (1900-1939) where only superficial and radiosensitive tumours could be controlled, the Megavoltage era (1950-1995) where Telecobalt and linear accelerators could deliver high doses in all parts of the body. Radiotherapy has since been playing an important curative and conservative role for most cancers. The Computer-Assisted Radiotherapy era (1995-2010) now provides the capacity to optimise the dose distribution in three dimensions. Dose is better conformed to the target volume and organ at risk are better preserved. intensity modulated radio-therapy (IMRT) allows to "shape" concave isodoses and to spare the parotids when irradiating oropharyngeal tumours. Moving targets (lung, liver etc.) are efficiently irradiated using "on-line tracking" and "image-guided radiotherapy". Stereotactic irradiation, first initiated for brain lesions, is now performed for extra-cranial tumours and due to its millimetric precision opens the way back to hypo-fractionated treatments. The next period, already ongoing, is Hadrontherapy with protons and soon helium or carbon ions techniques. In a multidisciplinary strategy, progress in radiotherapy is based on a global approach of the patient and tailored/personalized well targeted treatment of the tumour.

  11. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming.

    PubMed

    Li, Heng-Hong; Wang, Yi-Wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D; Fornace, Albert J

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures.

  12. Measuring the activity of a 51Cr neutrino source based on the gamma-radiation spectrum

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-01

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of 51Cr is presented.

  13. Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John; Blattnig, Steve R.; Mertens, Christopher J.

    2010-01-01

    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being developed

  14. Utilization of radiation technique on the saccharification and fermentation of biomass

    NASA Astrophysics Data System (ADS)

    Kaetsu, I.; Kumakura, M.; Fujimura, T.; Yoshii, F.; Kojima, T.; Tamada, M.

    The application of irradiation technique to the process of saccharification and subsequent fermentation of cellulosic wastes such as chaff and rice straw to obtain ethanol, was investigated. It was found that when waste raw materials were irradiated by ?-ray or electron beam, they became accessible to the subsequent enzymatic saccharification reaction. Irradiation of 10 7-10 8 Rad was enough for this effect. Some kind of additives reduced necessary dosage for this pretreatment. Cellulase, Trichoderma reesei which produce cellulase, and yeast were immobilized as biocatalysts for biomass conversion by radiation-induced polymerization of glass-forming monomer at low temperature. The immobilized cellulase showed almost same activity of glucose production as the native cellulase. Continuous saccharification reaction was carried out by using the immobilized cellulase. The immobilized Trichoderma reesei and the immobilized yeast showed almost same activity as the intact biocatalysts. It was concluded that the continuous saccharification and subsequent fermentation could be carried out effectively by using the immobilized biocatalysts. Spinach chloroplasts were immobilized by the same method as the first step for the conversion of water into hydrogen gas using solar energy. The immobilized chloroplasts kept the O 2 evolution activity in storage more than 30 days at 4°C. Thermostatility of chloroplasts was also improved greatly by the immobilization.

  15. New techniques to apply an optical fiber image guide to harsh radiation environments in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Kimura, Atsushi; Takada, Eiji; Hosono, Yoneichi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Hayami, Hiroyuki

    1999-01-01

    To apply optical fiber image guide (IG) to harsh radiation environments, we have developed two new techniques. One technique is a visible type IG with a color correcting system and the other technique is an IR type IG. We irradiated the IGs utilizing a 60Co gamma source. Measured Images with the visible type IG became dark and yellowish because of radiation induced loss. By using a color correction system, the original color of the images can be obtained. In the case of IR type IG, because of low radiation induced loss in the IR region, the degree of darkening was less than half of that for the visible type of IG. For a fixed irradiated length of 2.5m, the dose limit for using IG was estimated to be 4.6 X 108 with the visible type IG and 1.2 X 109 with the IR type IG. These radiation resistivities were more than 103 times of that for usual CCD cameras. With these techniques, IG can be applied to harsh radiation environment.

  16. Effects of Microwave Radiation on Neuronal Activity

    DTIC Science & Technology

    1991-10-01

    oligodendrocytes, ependymal cells , microglia) do not survive under our culture conditions. The pyramidal cells are positively stained with antibody to...at 16 Hz. Continuous exposure to radio- frequency radiation for 4 consecutive days led to the development of a cell number density gradient. The...greater number of cells occurred in the center of the culture plate which was directly in the field as opposed to the more peripheral areas of the plate

  17. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  18. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  19. A direct technique to fabricate an intraoral shield for unilateral head and neck radiation.

    PubMed

    Khan, Zafrulla; Abdel-Azim, Tamer

    2014-09-01

    A radiation oncologist may ask the prosthodontist to fabricate an intraoral shield when ipsilateral fields are used for patients with head and neck cancer. A technique for its fabrication is described that can be accomplished with materials and equipment that are readily available in the dental office. Baseplate wax is used intraorally to fabricate a pattern, which is duplicated with irreversible hydrocolloid material. Autopolymerizing acrylic resin is then used to make the shield. This simple technique can be completed in a single visit.

  20. Radiation protection in radiologic technology: Apathy versus active involvement

    SciTech Connect

    Franz, K.H.

    1982-11-01

    The lack of active participation in radiation protection is a serious problem in Radiologic Technology today. Underlying the problem is professional apathy. An overview of the historical changes, as well as various recent developments in radiology, accentuate the importance of necessary changes in technologists' attitudes and activities. 22 references.

  1. A novel technique of unilateral percutaneous kyphoplasty achieves effective biomechanical strength and reduces radiation exposure

    PubMed Central

    Zhuang, Yan; Yang, Lei; Li, Haijun; Ren, Yajun; Cao, Xiaojian

    2016-01-01

    Purpose: To develop a novel technique of percutaneous kyphoplasty (PKP) with effective biomechanical strength and lower radiation exposure. Methods: Thirty fresh lumbar vertebrae isolated from six hogs were decalcified and compressed to induce osteoporotic vertebral compression fractures. Kyphoplasty was performed using three different techniques (ten for each group): conventional unilateral approach (group A), conventional bilateral approach (group B) and novel unilateral approach (group C). Biomechanical indexes including Yield load and stiffness were tested before and after kyphoplasty. The anterior height of each vertebral body (AHVB) was measured before compression, after compression and after kyphoplasty. Frequency of C-arm use and volume of bone cement were also recorded in the process. Results: Compared with group A, our novel technique in group C can significantly improve the recovery of AHVB after compression fractures. However, there was no statistical difference between group B and group C. Values of Yield load in both group B and group C were statistically higher than that in group A, however, no significant difference was found between group B and C. Statistical results of stiffness were similar to Yield load. Regarding volume of bone cement and radiation exposure, the novel technique in group C needed more bone cement and fluoroscopy use than in group A but less than in group B. Conclusions: This novel device makes unilateral kyphoplasty feasible, safe and effective. In the premise of guaranteed biomechanical strength, the new technique significantly reduces risk of radiation exposure in kyphoplasty. PMID:27158403

  2. Aerospace Education Workshop Techniques and Activities

    ERIC Educational Resources Information Center

    Frizzell, Helen J.

    1977-01-01

    Outlines procedures and lists hints for planning successful workshops in aerospace education; included are possible locations, resources, orientation activities, brochures, speakers, and follow-up activities for various combinations of participants (parents, elementary school and secondary school teachers, vocational-technical oriented students,…

  3. Applications Of Monte Carlo Radiation Transport Simulation Techniques For Predicting Single Event Effects In Microelectronics

    SciTech Connect

    Warren, Kevin; Reed, Robert; Weller, Robert; Mendenhall, Marcus; Sierawski, Brian; Schrimpf, Ronald

    2011-06-01

    MRED (Monte Carlo Radiative Energy Deposition) is Vanderbilt University's Geant4 application for simulating radiation events in semiconductors. Geant4 is comprised of the best available computational physics models for the transport of radiation through matter. In addition to basic radiation transport physics contained in the Geant4 core, MRED has the capability to track energy loss in tetrahedral geometric objects, includes a cross section biasing and track weighting technique for variance reduction, and additional features relevant to semiconductor device applications. The crucial element of predicting Single Event Upset (SEU) parameters using radiation transport software is the creation of a dosimetry model that accurately approximates the net collected charge at transistor contacts as a function of deposited energy. The dosimetry technique described here is the multiple sensitive volume (MSV) model. It is shown to be a reasonable approximation of the charge collection process and its parameters can be calibrated to experimental measurements of SEU cross sections. The MSV model, within the framework of MRED, is examined for heavy ion and high-energy proton SEU measurements of a static random access memory.

  4. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  5. A Colloquial Approach: An Active Learning Technique.

    ERIC Educational Resources Information Center

    Arce, Pedro

    1994-01-01

    Addresses the problem of the effectiveness of teaching methodologies on fundamental engineering courses such as transport phenomena. Recommends the colloquial approach, an active learning strategy, to increase student involvement in the learning process. (ZWH)

  6. Body radiation exposure in breast cancer radiotherapy: Impact of breast IMRT and virtual wedge compensation techniques

    SciTech Connect

    Woo, Tony; Pignol, Jean-Philippe . E-mail: Jean-Philippe.Pignol@sw.ca; Rakovitch, Eileen; Vu, Toni; Hicks, Deanna; O'Brien, Peter; Pritchard, Kathleen

    2006-05-01

    Purpose: Recent reports demonstrate a dramatically increased rate of secondary leukemia for breast cancer patients receiving adjuvant high-dose anthracycline and radiotherapy, and that radiation is an independent factor for the development of leukemia. This study aimed to evaluate the radiation body exposure during breast radiotherapy and to characterize the factors associated with an increased exposure. Patients and Methods: In a prospective cohort of 120 women, radiation measurements were taken from four sites on the body at the time of adjuvant breast radiotherapy. Multiple regression analysis was performed to analyze patient and treatment factors associated with the amount of scattered radiation. Results: For standard 50 Gy breast radiotherapy, the minimal dose received by abdominal organs is on average 0.45 Gy, ranging from 0.06 to 1.55 Gy. The use of physical wedges as a compensation technique was the most significant factor associated with increased scattered dose (p < 0.001), resulting in approximately three times more exposure compared with breast intensity-modulated radiation therapy (IMRT) and dynamic wedge. Conclusions: The amount of radiation that is scattered to a patient's body is consistent with exposure reported to be associated with excess of leukemia. In accordance with the As Low As Reasonably Achievable (ALARA) principle, we recommend using breast IMRT or virtual wedging for the radiotherapy of breast cancer receiving high-dose anthracycline chemotherapy.

  7. High speed radiation scanning technique for simultaneously determining the pitch and eccentricity of an encased oil

    DOEpatents

    Foster, Billy E.

    1976-01-01

    A method of determining the pitch and eccentricity of the winding of a coil unit is provided. It specifically relates to nondestructively examining completely encased heating coils used to simulate the heat generated from fuel rods in reactor studies. The method comprises (1) the use of an x-ray transmission technique through the axial centerline of the coil unit after the winding of the coil unit has been completely encased, (2) the use of a radiation detection instrument to monitor the transmitted radiation, and (3) the use of recording instrumentation calibrated as a function of the distance between windings. A change in the pitch of the winding is detected by a general increase or decrease in the distance between recorded peaks of the transmitted radiation. Eccentricity is detected by a consistent variation in distance between peaks occuring in alternate pairs.

  8. GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.

    PubMed

    Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T

    2016-09-01

    A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed.

  9. Opportunities to Create Active Learning Techniques in the Classroom

    ERIC Educational Resources Information Center

    Camacho, Danielle J.; Legare, Jill M.

    2015-01-01

    The purpose of this article is to contribute to the growing body of research that focuses on active learning techniques. Active learning techniques require students to consider a given set of information, analyze, process, and prepare to restate what has been learned--all strategies are confirmed to improve higher order thinking skills. Active…

  10. Flow cytometric allergy diagnosis: basophil activation techniques.

    PubMed

    Bridts, Chris H; Sabato, Vito; Mertens, Christel; Hagendorens, Margo M; De Clerck, Luc S; Ebo, Didier G

    2014-01-01

    The basis of flow cytometric allergy diagnosis is quantification of changes in expression of basophilic surface membrane markers (Ebo et al., Clin Exp Allergy 34: 332-339, 2004). Upon encountering specific allergens recognized by surface receptor FcεRI-bound IgE, basophils not only secrete and generate quantifiable bioactive mediators but also up-regulate the expression of different markers (e.g., CD63, CD203c) which can be detected by multicolor flow cytometry using specific monoclonal antibodies (Ebo et al., Cytometry B Clin Cytom 74: 201-210, 2008). Here, we describe two flow cytometry-based protocols which allow detection of surface marker activation (Method 1) and changes in intragranular histamine (Method 2), both reflecting different facets of basophil activation.

  11. Technique for surface oxidation of activated carbon

    SciTech Connect

    Sircar, S.; Golden, T.C.

    1987-10-27

    A method of activating a carbon adsorbent is described, which comprises oxidizing the surface of the carbon adsorbent with a mild oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidizing carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent. In a process for the removal of water or carbon dioxide from a gas stream containing water or carbon dioxide of the type wherein the gas stream containing water or carbon dioxide is contacted with a solid phase adsorbent under pressure-swing adsorption or thermal-swing adsorption processing conditions, the improvement is described comprising utilizing an adsorbent produced by the activation of a carbon adsorbent. The activation comprises oxidizing the surface of the carbon adsorbent with a mold oxidizing acid in the presence of a metal oxidation catalyst at an elevated temperature and boiling the mixture of the carbon adsorbent, mild oxidizing acid and metal oxidation catalyst to dryness. Then rinse the surface oxidized carbon adsorbent with water; and dry the rinsed surface oxidized carbon adsorbent.

  12. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0

  13. A simple technique for intubating the mouth during OGD in patients with previous neck radiation

    PubMed Central

    Buckley, Christina E; Achakzai, Akbar Amin; O'Hanlon, Deirdre

    2014-01-01

    Trismus and microstomia are commonly associated complications of neck irradiation. In recent years we are seeing an increase in the number of patients with various head and neck cancers being treated with radiotherapy. This can pose a significant challenge in performing oesophagogastroduodenoscopy (OGD) in this cohort of patients. We describe a novel technique for intubating the mouth during OGD in patients with previous neck radiation. Instead of placing a standard mouthpiece, we place the barrel of a 5 mm syringe, which is cut in half, into the patient's mouth. This method allows easy passage of the gastroscope, where the mouth opening is limited by trismus from prior radiation. It also serves to protect the patient's teeth during OGD. Successful intubation with a gastroscope is possible in patients with severe trismus using our novel technique. PMID:24849645

  14. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  15. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates.

    PubMed

    Siegel, J A; Thomas, S R; Stubbs, J B; Stabin, M G; Hays, M T; Koral, K F; Robertson, J S; Howell, R W; Wessels, B W; Fisher, D R; Weber, D A; Brill, A B

    1999-02-01

    This report describes recommended techniques for radiopharmaceutical biodistribution data acquisition and analysis in human subjects to estimate radiation absorbed dose using the Medical Internal Radiation Dose (MIRD) schema. The document has been prepared in a format to address two audiences: individuals with a primary interest in designing clinical trials who are not experts in dosimetry and individuals with extensive experience with dosimetry-based protocols and calculational methodology. For the first group, the general concepts involved in biodistribution data acquisition are presented, with guidance provided for the number of measurements (data points) required. For those with expertise in dosimetry, highlighted sections, examples and appendices have been included to provide calculational details, as well as references, for the techniques involved. This document is intended also to serve as a guide for the investigator in choosing the appropriate methodologies when acquiring and preparing product data for review by national regulatory agencies. The emphasis is on planar imaging techniques commonly available in most nuclear medicine departments and laboratories. The measurement of the biodistribution of radiopharmaceuticals is an important aspect in calculating absorbed dose from internally deposited radionuclides. Three phases are presented: data collection, data analysis and data processing. In the first phase, data collection, the identification of source regions, the determination of their appropriate temporal sampling and the acquisition of data are discussed. In the second phase, quantitative measurement techniques involving imaging by planar scintillation camera, SPECT and PET for the calculation of activity in source regions as a function of time are discussed. In addition, nonimaging measurement techniques, including external radiation monitoring, tissue-sample counting (blood and biopsy) and excreta counting are also considered. The third phase, data

  16. Postoperative vaginal radiation in endometrial cancer using a remote afterloading technique

    SciTech Connect

    Mandell, L.; Nori, D.; Anderson, L.; Hilaris, B.

    1985-03-01

    Carcinoma of the endometrium is the most common malignancy of the female genital tract. In early stage endometrial cancer, surgery remains the primary mode of treatment while radiation therapy plays an adjuvant role. Prophylactic vaginal radiation has been shown to reduce significantly the incidence of vaginal recurrences. Between the years 1969-1976, 330 patients with FIGO Stages I and II endometrial cancer were treated according to a standard departmental policy in which 40 Gy of external radiation was given to high risk Stage I and II patients in combination with surgery and intravaginal radiation. With this regimen, the mucosal surface received a total equivalent dose of 40 Gy. These treatments were given on an outpatient basis without the need for any sedation or analgesics. The minimum follow-up was 5 years, with a median follow-up of 8.5 years. The overall pelvic and/or vaginal recurrence rate was 2.7%. The incidence of vaginal complications was 3.7%. The advantages of a remote after loading technique in delivering vaginal vault radiation in endometrial cancer are discussed.

  17. Neutron and y-Ray Radiation Killing of Bacillus Species Spores: Dosimetry, Quantitation, and Validation Techniques

    DTIC Science & Technology

    1996-04-01

    ml of sterile 4.0% BBL soybean casein digest agar medium (Trypticase Soybean Agar ( TSA ) 11043) were added to each plate . Multiple lots of TSA obtained...from Becton Dickinson Microbiology Systems, Cockeysville, MD, were used throughout this study. The autoclaved TSA was cooled to 45-50’ C in a water...exposure fields available in the AFRRI reactor (14). The quantitative microbiologic and radiation dosimetric techniques in this report may be used to

  18. Spectral radiative heat transfer in coal furnaces using a hybrid technique

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1994-03-01

    A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.

  19. Collisional-radiative switching - A powerful technique for converging non-LTE calculations

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Voels, S. A.

    1988-01-01

    A very simple technique has been developed to converge statistical equilibrium and model atmospheric calculations in extreme non-LTE conditions when the usual iterative methods fail to converge from an LTE starting model. The proposed technique is based on a smooth transition from a collision-dominated LTE situation to the desired non-LTE conditions in which radiation dominates, at least in the most important transitions. The proposed approach was used to successfully compute stellar models with He abundances of 0.20, 0.30, and 0.50; Teff = 30,000 K, and log g = 2.9.

  20. Discrete ordinates-Monte Carlo coupling: A comparison of techniques in NERVA radiation analysis

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. G.; Normand, E.; Wilcox, A. D.

    1972-01-01

    In the radiation analysis of the NERVA nuclear rocket system, two-dimensional discrete ordinates calculations are sufficient to provide detail in the pressure vessel and reactor assembly. Other parts of the system, however, require three-dimensional Monte Carlo analyses. To use these two methods in a single analysis, a means of coupling was developed whereby the results of a discrete ordinates calculation can be used to produce source data for a Monte Carlo calculation. Several techniques for producing source detail were investigated. Results of calculations on the NERVA system are compared and limitations and advantages of the coupling techniques discussed.

  1. Application of the TLD albedo technique for monitoring and interpretation of neutron stray radiation fields

    NASA Astrophysics Data System (ADS)

    Piesch, E.; Burgkhardt, B.

    1980-09-01

    A single sphere albedo technique with TLD 600/TLD 700 detectors has been applied in neutron monitoring to calibrate albedo dosimeters and to interpret neutron stray radiation fields in terms of neutron dose equivalent separated for the energy groups below 0.4 eV, 0.4-10 keV and 10 keV-10 MeV, and Eeff for fast neutrons. The paper describes the technique for field and personnel monitoring under the aspect of an on-line computer program for data recording and processing.

  2. Radiative-neutron-capture gamma-ray analysis by a linear combination technique

    USGS Publications Warehouse

    Tanner, A.B.; Bhargava, R.C.; Senftle, F.E.; Brinkerhoff, J.M.

    1972-01-01

    The linear combination technique, when applied to a gamma-ray spectrum, gives a single number indicative of the extent to which the spectral lines of a sought element are present in a complex spectrum. Spectra are taken of the sought element and of various other substances whose spectra interfere with that of the sought element. A weighting function is then computed for application to spectra of unknown materials. The technique was used to determine calcium by radiative-neutron-capture gamma-ray analysis in the presence of interfering elements, notably titanium, and the results were compared with those for two popular methods of peak area integration. Although linearity of response was similar for the methods, the linear combination technique was much better at rejecting interferences. For analyses involving mixtures of unknown composition the technique consequently offers improved sensitivity. ?? 1972.

  3. Determination of activity of 51Cr on gamma radiation measurements

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2017-01-01

    A method of determining the activity of intensive distributed -sources on the measurement of the continuous spectrum of radiation, for example the internal bremsstrahlung, is developed. The recurrent formula for reconstructing of a continuous spectrum, registered in a Ge detector, at distorting it in the detector. The method of precise measurements of the spectrum of 51Cr internal bremsstrahlung using two point sources of low activity is described.

  4. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  5. Reconstruction techniques of erythemal UV-radiation and future UV predictions

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Rieder, H. E.; Simic, S.; Weihs, P.

    2009-04-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV-B radiation and started to monitor UV-radiation. However, difficulties involved in the routine operation and maintenance of the instruments have limited the length of reliable data records to about two decades. Further the number of places where they were measured, resulting in a set of observations too short and too sparse for a good understanding of past UV changes. Moreover state of the art climate models do not calculate future scenarios of UV-doses. Therefore detailed information about past and future UV-trends are lacking. Reconstruction techniques are indispensable to derive long-term time series of UV-radiation and fill this gap. Apart from the astronomical parameters, like solar zenith angle and sun-earth-distance, UV radiation is strongly influenced by clouds, ozone and surface albedo. We developed and evaluated a reconstruction technique for UV-doses that first calculates the UV-doses under clear-sky condition and afterwards applies corrections in order to take cloud effects into account. Since the input parameters cloud cover, total ozone column and surface albedo are available from the Regional Climate Model (REMO), we applied our reconstruction technique also for future scenarios using REMO data as input. Hence we are able to derive a seamless UV long-term time series from the past to the future. Our method was applied for the high alpine station Hoher Sonnblick (3108m) situated in Austrian Alps.

  6. Active control of radiated pressure of a submarine hull

    NASA Astrophysics Data System (ADS)

    Pan, Xia; Tso, Yan; Juniper, Ross

    2008-03-01

    A theoretical analysis of the active control of low-frequency radiated pressure from submarine hulls is presented. Two typical hull models are examined in this paper. Each model consists of a water-loaded cylindrical shell with a hemispherical shell at one end and conical shell at the other end, which forms a simple model of a submarine hull. The conical end is excited by an axial force to simulate propeller excitations while the other end is free. The control action is implemented through a Tee-sectioned circumferential stiffener driven by pairs of PZT stack actuators. These actuators are located under the flange of the stiffener and driven out of phase to produce a control moment. A number of cost functions for minimizing the radiated pressure are examined. In general, it was found that the control system was capable of reducing more than half of the total radiated pressure from each of the submarine hull for the first three axial modes.

  7. A New Quantum Sensor for Measuring Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Thomas, T.; Heinicke, D.; Peterson, R.; Morgan, P.; McDermitt, D. K.; Burba, G. G.

    2015-12-01

    A quantum sensor measures photosynthetically active radiation (PAR, in μmol of photons m-2 s-1) in the 400 nm to 700 nm waveband. Plants utilize this radiation to drive photosynthesis, though individual plant responses to incident radiation may vary within this range. The new quantum sensor (model LI-190R, LI-COR Biosciences, Lincoln, NE), with an optical filter and silicon photodiode detector housed in a cosine-corrected head, is designed to provide a better response to incident radiation across the 400-700 nm range. The new design is expected to significantly improve spectral response due to uniformity across the PAR waveband, but particularly in the wavebands from 520 nm to 600 nm and 665 nm to 680 nm, and sharp cutoffs in the regions below and above the PAR waveband. Special care was taken to make sure that PAR sensor would not substantially respond to incident radiation above the 700 nm threshold because this can lead to errors when performing measurements in environments with a large proportion of near-infrared radiation, such as canopy understory. The physical housing of the sensor is designed to be weather-resistant, to effectively shed precipitation, provide protection at high temperature and high humidity conditions, and has a cosine-corrected response to 82° zenith angle. The latter is particularly important when measuring incident radiation at low elevation angles, diffuse light, or low light conditions. This presentation describes the principles of the new design, and shows the performance results from field experiments and laboratory tests.

  8. Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model.

    PubMed

    Kong, Bo; Vigil, R Dennis

    2014-04-01

    A numerical method for simulating the spectral light distribution in algal photobioreactors is developed by adapting the discrete ordinate method for solving the radiative transport equation. The technique, which was developed for two and three spatial dimensions, provides a detailed accounting for light absorption and scattering by algae in the culture medium. In particular, the optical properties of the algal cells and the radiative properties of the turbid culture medium were calculated using a method based on Mie theory and that makes use of information concerning algal pigmentation, shape, and size distribution. The model was validated using a small cylindrical bioreactor, and subsequently simulations were carried out for an annular photobioreactor configuration. It is shown that even in this relatively simple geometry, nontrivial photon flux distributions arise that cannot be predicted by one-dimensional models.

  9. Persistence of endometrial activity after radiation therapy for cervical carcinoma

    SciTech Connect

    Barnhill, D.; Heller, P.; Dames, J.; Hoskins, W.; Gallup, D.; Park, R.

    1985-12-01

    Radiation therapy is a proved treatment for cervical carcinoma; however, it destroys ovarian function and has been thought to ablate the endometrium. Estrogen replacement therapy is often prescribed for patients with cervical carcinoma after radiation therapy. A review of records of six teaching hospitals revealed 16 patients who had endometrial sampling for uterine bleeding after standard radiation therapy for cervical carcinoma. Fifteen patients underwent dilatation and curettage, and one patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy when a dilatation and curettage was unsuccessful. Six patients had fibrosis and inflammation of the endometrial cavity, seven had proliferative endometrium, one had cystic hyperplasia, one had atypical adenomatous hyperplasia, and one had adenocarcinoma. Although the number of patients who have an active endometrium after radiation therapy for cervical carcinoma is not known, this report demonstrates that proliferative endometrium may persist, and these patients may develop endometrial hyperplasia or adenocarcinoma. Studies have indicated that patients with normal endometrial glands have an increased risk of developing endometrial adenocarcinoma if they are treated with unopposed estrogen. Patients who have had radiation therapy for cervical carcinoma should be treated with estrogen and a progestational agent to avoid endometrial stimulation from unopposed estrogen therapy.

  10. A simulation technique for 3D MR-guided acoustic radiation force imaging

    PubMed Central

    Payne, Allison; de Bever, Josh; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  11. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  12. Nanosatellites in LEO and beyond: Advanced Radiation protection techniques for COTS-based spacecraft

    NASA Astrophysics Data System (ADS)

    Selčan, David; Kirbiš, Gregor; Kramberger, Iztok

    2017-02-01

    This paper presents an approach for implementing radiation protection FDIR (Fault Detection, Isolation and Recovery) techniques designed especially for nanosatellites, capable of ensuring reliable operation in harsh orbits using COTS (Commercial off the Shelf) components. The radiation environment, as encountered by nanosatellites utilizing Flash-based FPGAs in orbits higher than Low Earth Orbit, is analyzed, primarily focusing on SEE (Single Event Effects). In order to assure reliable operation, the FDIR policy is split into two levels: the Low Level FDIR which ensures that no permanent damage occurs to the satellite's electronics, which then allows the use of a High Level FDIR tasked with maintaining high availability. A hierarchical approach, consisting of three types of current limiters in combination with watchdog timers and fault tolerant logic implemented inside a flash-based FPGA is proposed for the Low Level FDIR. The impacts of various radiation-induced faults are analyzed with respect to how the FDIR techniques mitigate them. The proposed current limiters and watchdog timers have been implemented and evaluated for suitability of use with the hierarchical FDIR policy. In order to decrease the impacts on the size and weight footprints, the current limiters were implemented as stacked 3D modules.

  13. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  14. Strong Correlation among Three Biodosimetry Techniques Following Exposures to Ionizing Radiation

    PubMed Central

    Kang, Chang-Mo; Yun, Hyun Jin; Kim, Hanna; Kim, Cha Soon

    2016-01-01

    Three in vitro dose calibration curves for biodosimetry such as dicentric chromosome assay, fluorescence in situ hybridization (FISH) assay for translocation, and micronuclei (MNs) in binucleated cell assay were established after exposure to ionizing radiation. Peripheral blood lymphocyte samples obtained from healthy donors were irradiated with 60Co source at a dose rate of 0.5 Gy/min to doses of 0.1–6 Gy. The results from three in vitro dose calibration curves for biodosimetry were analyzed to understand the relationship among biodosimetry assay techniques. Our comparison demonstrates that there is a very strong positive correlation among the dicentric assay, FISH, and MNs analysis, and these three biodosimetry assays strongly support the in vitro dose reconstruction and the emergency preparedness of public or occupational radiation overexposure. PMID:28217287

  15. Radiation-thermometric study of isolated hot molten metal spheres by containerless and contactless measurement techniques

    NASA Astrophysics Data System (ADS)

    Lee, G. W.; Jeon, S.; Park, C.; Kang, D. H.; Choi, B. I.; Park, S. N.

    2013-09-01

    An electrostatic levitation (ESL) device is developed to study the radiation-properties of liquid metals at high temperature. The technique provides good advantage, such as fast response of temperature change on a sample, clear features of recalescence and plateau during freezing, no contamination or no reaction with environment, easy control of supercooling deducing hypercooling limit, and relatively simple analysis of thermodynamic quantities because of only radiative cooling process under vacuum. In this study, we could obtain a hypercooling limit (i.e., maximum supercooling) of liquid Ti, 341 K using the ESL. An accurate ratio of the specific heat to total hemispherical emissivity of liquid Ti was obtained by Stefan-Boltzmann law. Then, the specific heat and total hemispherical emissivity of Ti liquid metal can be estimated with the hypercooling limit and known fusion enthalpy values of Ti, which has been rarely reported.

  16. Comparison of Various Radiation Therapy Techniques in Breast Cancer Where Target Volume Includes Mammaria Interna Region

    SciTech Connect

    Dogan, Mehmet Hakan; Zincircioglu, Seyit Burhanedtin Zorlu, Faruk

    2009-04-01

    In breast cancer radiotherapy, the internal mammary lymphatic chain is treated in the target volume in a group of patients with high-risk criteria. Because of the variability of the anatomic region and structures in the irradiation field, there are a number of different techniques in breast radiotherapy. While irradiating the target volume, we also consider minimizing the dose to critical structures such as heart, lung, and contralateral breast tissue. In this study, we evaluated the dose distribution of different radiotherapy techniques in patients with left-sided breast cancer who had breast-conserving surgery. A three-dimensional computerized planning system (3DCPS) was used for each patient to compare wide-field, oblique photon-electron, and perpendicular photon-electron techniques in terms of dose homogeneities in the target volume; the doses received by the contralateral breast, heart, and lung; and the coverage of the internal mammary chain. Data from 3DCPS were controlled by the Rando-phantom and thermoluminescence dosimetry. Critical structures were irradiated with acceptable dose percentages in addition to the internal mammary chain with both wide-field and photon-electron techniques. We detected more frequent hot spots in the oblique photon-electron technique than in the other techniques, and this situation necessitated changing the junctions. The wide-field technique was easy to perform and exposed less radiation dose to the heart than photon-electron techniques. In conclusion, we suggest the use of the wide-field technique in breast irradiation when the internal mammary area is in the target volume.

  17. The use of an active controlled enclosure to attenuate sound radiation from a heavy radiator

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Yang, Tiejun; Zhu, Minggang; Pan, Jie

    2017-03-01

    Active structural acoustical control usually experiences difficulty in the control of heavy sources or sources where direct applications of control forces are not practical. To overcome this difficulty, an active controlled enclosure, which forms a cavity with both flexible and open boundary, is employed. This configuration permits indirect implementation of active control in which the control inputs can be applied to subsidiary structures other than the sources. To determine the control effectiveness of the configuration, the vibro-acoustic behavior of the system, which consists of a top plate with an open, a sound cavity and a source panel, is investigated in this paper. A complete mathematical model of the system is formulated involving modified Fourier series formulations and the governing equations are solved using the Rayleigh-Ritz method. The coupling mechanisms of a partly opened cavity and a plate are analysed in terms of modal responses and directivity patterns. Furthermore, to attenuate sound power radiated from both the top panel and the open, two strategies are studied: minimizing the total radiated power and the cancellation of volume velocity. Moreover, three control configurations are compared, using a point force on the control panel (structural control), using a sound source in the cavity (acoustical control) and applying hybrid structural-acoustical control. In addition, the effects of boundary condition of the control panel on the sound radiation and control performance are discussed.

  18. An efficient and accurate technique to compute the absorption, emission, and transmission of radiation by the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee; Ackerman, Thomas P.; Pollack, James B.

    1990-01-01

    CO2 comprises 95 pct. of the composition of the Martian atmosphere. However, the Martian atmosphere also has a high aerosol content. Dust particles vary from less than 0.2 to greater than 3.0. CO2 is an active absorber and emitter in near IR and IR wavelengths; the near IR absorption bands of CO2 provide significant heating of the atmosphere, and the 15 micron band provides rapid cooling. Including both CO2 and aerosol radiative transfer simultaneously in a model is difficult. Aerosol radiative transfer requires a multiple scattering code, while CO2 radiative transfer must deal with complex wavelength structure. As an alternative to the pure atmosphere treatment in most models which causes inaccuracies, a treatment was developed called the exponential sum or k distribution approximation. The chief advantage of the exponential sum approach is that the integration over k space of f(k) can be computed more quickly than the integration of k sub upsilon over frequency. The exponential sum approach is superior to the photon path distribution and emissivity techniques for dusty conditions. This study was the first application of the exponential sum approach to Martian conditions.

  19. Comparison of 2 Common Radiation Therapy Techniques for Definitive Treatment of Small Cell Lung Cancer

    SciTech Connect

    Shirvani, Shervin M.; Juloori, Aditya; Allen, Pamela K.; Komaki, Ritsuko; Liao, Zhongxing; Gomez, Daniel; O'Reilly, Michael; Welsh, James; Papadimitrakopoulou, Vassiliki; Cox, James D.; Chang, Joe Y.

    2013-09-01

    Purpose: Two choices are widely used for radiation delivery, 3-dimensional conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT). No randomized comparisons have been conducted in the setting of lung cancer, but theoretical concerns suggest that IMRT may negatively impact disease control. We analyzed a large cohort of limited-stage small-cell lung cancer (LS-SCLC) patients treated before and after institutional conversion from 3DCRT to IMRT to compare outcomes. Methods and Materials: Patients with LS-SCLC treated with definitive radiation at our institution between 2000 and 2009 were retrospectively reviewed. Both multivariable Cox regression and propensity score matching were used to compare oncologic outcomes of 3DCRT and IMRT in the context of other clinically relevant covariables. Acute and chronic toxicities associated with the 2 techniques were compared using Fisher exact and log–rank tests, respectively. Results: A total of 223 patients were treated during the study period, with 119 receiving 3DCRT and 104 receiving IMRT. Their median age was 64 years (range, 39-90 years). Median follow-up times for 3DCRT and IMRT were 27 months (range, 2-147 months) and 22 months (range, 4-83 months), respectively. Radiation modality was not associated with differences in overall survival or disease-free survival in either multivariable or propensity score-matched analyses. IMRT patients required significantly fewer percutaneous feeding tube placements (5% vs 17%, respectively, P=.005). Conclusions: IMRT was not associated with worse oncologic outcomes than those of 3DCRT. IMRT was associated with a lower rate of esophagitis-related percutaneous feeding tube placements.

  20. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited.

  1. Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results

    NASA Technical Reports Server (NTRS)

    Schmidt, Andrew G.; Flatley, Thomas

    2017-01-01

    We present our work on implementing Radiation Hardening by Software (RHBSW) techniques on the Xilinx Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0 platform. The techniques have been matured and tested through simulation modeling, fault emulation, laser fault injection and now in a flight experiment, as part of the Space Test Program- Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). This work leverages concepts such as heartbeat monitoring, control flow assertions, and checkpointing, commonly used in the High Performance Computing industry, and adapts them for use in remote sensing embedded systems. These techniques are extremely low overhead (typically <1.3%), enabling a 3.3x gain in processing performance as compared to the equivalent traditionally radiation hardened processor. The recently concluded STP-H4 flight experiment was an opportunity to upgrade the RHBSW techniques for the Virtex5 FPGA and demonstrate them on-board the ISS to achieve TRL 7. This work details the implementation of the RHBSW techniques, that were previously developed for the Virtex4-based SpaceCube 1.0 platform, on the Virtex5-based SpaceCube 2.0 flight platform. The evaluation spans the development and integration with flight software, remotely uploading the new experiment to the ISS SpaceCube 2.0 platform, and conducting the experiment continuously for 16 days before the platform was decommissioned. The experiment was conducted on two PowerPCs embedded within the Virtex5 FPGA devices and the experiment collected 19,400 checkpoints, processed 253,482 status messages, and incurred 0 faults. These results are highly encouraging and future work is looking into longer duration testing as part of the STP-H5 flight experiment.

  2. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    Quantifying the vegetative surface's reflectance anisotropy was an important part of the First ISLSCP Field Experiment, as its major objectives focused on retrieval of surface parameters from satellite-derived reflectances. The explicit remote measurements for approximating the bidirectional reflectance distribution function (BRDF) of photosynthetically active radiation had not been previously undertaken. In this paper the proper expression of reflectance for BRDFs for retrieval of canopy parameters is assessed.

  3. Comparative research on activation technique for GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui

    2012-03-01

    The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.

  4. Incorporating Active Learning Techniques into a Genetics Class

    ERIC Educational Resources Information Center

    Lee, W. Theodore; Jabot, Michael E.

    2011-01-01

    We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…

  5. Thermal radiation characteristics of nonisothermal cylindrical enclosures using a numerical ray tracing technique

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1990-01-01

    Analysis of energy emitted from simple or complex cavity designs can lead to intricate solutions due to nonuniform radiosity and irradiation within a cavity. A numerical ray tracing technique was applied to simulate radiation propagating within and from various cavity designs. To obtain the energy balance relationships between isothermal and nonisothermal cavity surfaces and space, the computer code NEVADA was utilized for its statistical technique applied to numerical ray tracing. The analysis method was validated by comparing results with known theoretical and limiting solutions, and the electrical resistance network method. In general, for nonisothermal cavities the performance (apparent emissivity) is a function of cylinder length-to-diameter ratio, surface emissivity, and cylinder surface temperatures. The extent of nonisothermal conditions in a cylindrical cavity significantly affects the overall cavity performance. Results are presented over a wide range of parametric variables for use as a possible design reference.

  6. Numerical analysis of radiation propagation in innovative volumetric receivers based on selective laser melting techniques

    NASA Astrophysics Data System (ADS)

    Alberti, Fabrizio; Santiago, Sergio; Roccabruna, Mattia; Luque, Salvador; Gonzalez-Aguilar, Jose; Crema, Luigi; Romero, Manuel

    2016-05-01

    Volumetric absorbers constitute one of the key elements in order to achieve high thermal conversion efficiencies in concentrating solar power plants. Regardless of the working fluid or thermodynamic cycle employed, design trends towards higher absorber output temperatures are widespread, which lead to the general need of components of high solar absorptance, high conduction within the receiver material, high internal convection, low radiative and convective heat losses and high mechanical durability. In this context, the use of advanced manufacturing techniques, such as selective laser melting, has allowed for the fabrication of intricate geometries that are capable of fulfilling the previous requirements. This paper presents a parametric design and analysis of the optical performance of volumetric absorbers of variable porosity conducted by means of detailed numerical ray tracing simulations. Sections of variable macroscopic porosity along the absorber depth were constructed by the fractal growth of single-cell structures. Measures of performance analyzed include optical reflection losses from the absorber front and rear faces, penetration of radiation inside the absorber volume, and radiation absorption as a function of absorber depth. The effects of engineering design parameters such as absorber length and wall thickness, material reflectance and porosity distribution on the optical performance of absorbers are discussed, and general design guidelines are given.

  7. International perspectives on quality assurance and new techniques in radiation medicine: outcomes of an IAEA conference.

    PubMed

    Shortt, Ken; Davidsson, Lena; Hendry, Jolyon; Dondi, Maurizio; Andreo, Pedro

    2008-01-01

    The International Atomic Energy Agency organized an international conference called, "Quality Assurance and New Techniques in Radiation Medicine" (QANTRM). It dealt with quality assurance (QA) in all aspects of radiation medicine (diagnostic radiology, nuclear medicine, and radiotherapy) at the international level. Participants discussed QA issues pertaining to the implementation of new technologies and the need for education and staff training. The advantage of developing a comprehensive and harmonized approach to QA covering both the technical and the managerial issues was emphasized to ensure the optimization of benefits to patient safety and effectiveness. The necessary coupling between medical radiation imaging and radiotherapy was stressed, particularly for advanced technologies. However, the need for a more systematic approach to the adoption of advanced technologies was underscored by a report on failures in intensity-modulated radiotherapy dosimetry auditing tests in the United States, which could imply inadequate implementation of QA for these new technologies. A plenary session addressed the socioeconomic impact of introducing advanced technologies in resource-limited settings. How shall the dual gaps, one in access to basic medical services and the other in access to high-quality modern technology, be addressed?

  8. Involved-Node Radiotherapy and Modern Radiation Treatment Techniques in Patients With Hodgkin Lymphoma

    SciTech Connect

    Paumier, Amaury; Ghalibafian, Mithra; Beaudre, Anne; Ferreira, Ivaldo; Pichenot, Charlotte; Messai, Taha; Lessard, Nathalie Athalie; Lefkopoulos, Dimitri; Girinsky, Theodore

    2011-05-01

    Purpose: To assess the clinical outcome of the involved-node radiotherapy (INRT) concept using modern radiation treatments (intensity-modulated radiotherapy [IMRT]or deep-inspiration breath-hold radiotherapy [DIBH) in patients with localized supradiaphragmatic Hodgkin lymphoma. Methods and Materials: All but 2 patients had early-stage Hodgkin lymphoma, and they were treated with chemotherapy prior to irradiation. Radiation treatments were delivered using the INRT concept according to European Organization for Research and Treatment of Cancer guidelines. IMRT was performed with the patient free-breathing. For the adapted breath-hold technique, a spirometer dedicated to DIBH radiotherapy was used. Three-dimensional conformal radiotherapy was performed with those patients. Results: Fifty patients with Hodgkin lymphoma (48 patients with primary Hodgkin lymphoma, 1 patient with recurrent disease, and 1 patient with refractory disease) entered the study from January 2003 to August 2008. Thirty-two patients were treated with IMRT, and 18 patients were treated with the DIBH technique. The median age was 28 years (range, 17-62 years). Thirty-four (68%) patients had stage I - (I-IIA) IIA disease, and 16 (32%) patients had stage I - (I-IIB) IIB disease. All but 3 patients received three to six cycles of adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD). The median radiation doses to patients treated with IMRT and DIBH were, respectively, 40 Gy (range, 21.6-40 Gy) and 30.6 Gy (range, 19.8-40 Gy). Protection of various organs at risk was satisfactory. Median follow-up was 53.4 months (range, 19.1-93 months). The 5-year progression-free and overall survival rates for the whole population were 92% (95% confidence interval [CI], 80%-97%) and 94% (95% CI, 75%-98%), respectively. Recurrences occurred in 4 patients: 2 patients had in-field relapses, and 2 patients had visceral recurrences. Grade 3 acute lung toxicity (transient pneumonitis) occurred in 1 case. Conclusions

  9. Radiation treatment for the right naris in a pediatric anesthesia patient using an adaptive oral airway technique

    SciTech Connect

    Sponseller, Patricia Pelly, Nicole; Trister, Andrew; Ford, Eric; Ermoian, Ralph

    2015-10-01

    Radiation therapy for pediatric patients often includes the use of intravenous anesthesia with supplemental oxygen delivered via the nasal cannula. Here, we describe the use of an adaptive anesthesia technique for electron irradiation of the right naris in a preschool-aged patient treated under anesthesia. The need for an intranasal bolus plug precluded the use of standard oxygen supplementation. This novel technique required the multidisciplinary expertise of anesthesiologists, radiation therapists, medical dosimetrists, medical physicists, and radiation oncologists to ensure a safe and reproducible treatment course.

  10. Synchrotron radiation measurement of multiphase fluid saturations in porous media: Experimental technique and error analysis

    NASA Astrophysics Data System (ADS)

    Tuck, David M.; Bierck, Barnes R.; Jaffé, Peter R.

    1998-06-01

    Multiphase flow in porous media is an important research topic. In situ, nondestructive experimental methods for studying multiphase flow are important for improving our understanding and the theory. Rapid changes in fluid saturation, characteristic of immiscible displacement, are difficult to measure accurately using gamma rays due to practical restrictions on source strength. Our objective is to describe a synchrotron radiation technique for rapid, nondestructive saturation measurements of multiple fluids in porous media, and to present a precision and accuracy analysis of the technique. Synchrotron radiation provides a high intensity, inherently collimated photon beam of tunable energy which can yield accurate measurements of fluid saturation in just one second. Measurements were obtained with precision of ±0.01 or better for tetrachloroethylene (PCE) in a 2.5 cm thick glass-bead porous medium using a counting time of 1 s. The normal distribution was shown to provide acceptable confidence limits for PCE saturation changes. Sources of error include heat load on the monochromator, periodic movement of the source beam, and errors in stepping-motor positioning system. Hypodermic needles pushed into the medium to inject PCE changed porosity in a region approximately ±1 mm of the injection point. Improved mass balance between the known and measured PCE injection volumes was obtained when appropriate corrections were applied to calibration values near the injection point.

  11. Synchrotron radiation-based x-ray reflection and scattering techniques for dimensional nanometrology

    NASA Astrophysics Data System (ADS)

    Krumrey, Michael; Gleber, Gudrun; Scholze, Frank; Wernecke, Jan

    2011-09-01

    Nanoobjects have at least one dimension in the range from 1 to 100 nm. Thus, if radiation is used for dimensional metrology, it should preferably have a wavelength in or below this range. For example, x-ray reflectometry (XRR) using x-ray tubes with Cu Kα radiation is widely used for layer thickness measurements with relative uncertainties of about 1%. By using different monochromator beamlines in the laboratory of PTB at the synchrotron radiation facility BESSY II, any x-ray wavelength from several nanometers down to about 0.1 nm can be selected for dimensional measurements in the nanometer range. Here, XRR is performed at wavelengths in the vicinity of an absorption edge of the chemical elements involved in order to enhance the contrast for layer systems like SiO2/Si which are difficult to resolve with Cu Kα radiation. By using longer wavelengths of around 2 nm, even an oxide layer and a thin carbonaceous contamination layer on a strongly curved spherical surface were separated, as required for measurements at 95 mm diameter silicon spheres within the international Avogadro project for the new definition of the kilogram. For nanoparticles in suspension, small angle x-ray scattering (SAXS) is the method of choice for dimensional metrology. This ensemble technique requires intense, monochromatic x-rays of low divergence. From the scattering pattern, the particle diameter and the size distribution are obtained. Moreover, the dimensional properties of nanostructured surfaces and nanoparticles on surfaces have been studied by grazing incidence SAXS (GISAXS), combining small angle scattering with the reflection geometry known from XRR. The diameters of gold nanoparticles obtained by SAXS and GISAXS are in very good agreement.

  12. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    SciTech Connect

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; Zhang, Fuxiang; Severin, Daniel; Bender, Markus; Trautmann, Christina; Park, Changyong; Prakapenka, Vitali B.; Skuratov, Vladimir A.; Ewing, Rodney C.

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along their trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2TixZr2–xO7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.

  13. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2TixZr2–xO7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  14. Experimental comparison between speckle and grating-based imaging technique using synchrotron radiation X-rays.

    PubMed

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-08-08

    X-ray phase contrast and dark-field imaging techniques provide important and complementary information that is inaccessible to the conventional absorption contrast imaging. Both grating-based imaging (GBI) and speckle-based imaging (SBI) are able to retrieve multi-modal images using synchrotron as well as lab-based sources. However, no systematic comparison has been made between the two techniques so far. We present an experimental comparison between GBI and SBI techniques with synchrotron radiation X-ray source. Apart from the simple experimental setup, we find SBI does not suffer from the issue of phase unwrapping, which can often be problematic for GBI. In addition, SBI is also superior to GBI since two orthogonal differential phase gradients can be simultaneously extracted by one dimensional scan. The GBI has less stringent requirements for detector pixel size and transverse coherence length when a second or third grating can be used. This study provides the reference for choosing the most suitable technique for diverse imaging applications at synchrotron facility.

  15. Development of the laser absorption radiation thermometry technique to measure thermal diffusivity in addition to temperature

    NASA Astrophysics Data System (ADS)

    Levick, Andrew; Lobato, Killian; Edwards, Gordon

    2003-01-01

    A comparative technique based on photothermal radiometry has been developed to measure thermal diffusivity of semi-infinite targets with arbitrary geometry. The technique exploits the principle that the frequency response of the temperature modulation induced by a periodic modulated heating source (in this case a laser spot) scales with thermal diffusivity. To demonstrate this technique, a photothermal radiometer has been developed, which detects modulated thermal radiance at a wavelength of 2 μm due to a small temperature modulation induced on the target surface by a modulated erbium fiber laser of power 1 W. Two frequency responses were measured for platinum and oxidized Inconel 600 targets (the frequency response is a scan of the amplitude of the modulated thermal radiance over laser modulation frequency). Scaling the two responses with respect to frequency gives a ratio of thermal diffusivities Dplatinum/DInconel of 4.45(33) which compares with a literature value of 4.46(50). The aim is to combine this technique with laser absorption radiation thermometry to produce multithermal property instrument for measuring "industrial" targets.

  16. The conservative treatment of Trigger Thumb using Graston Techniques and Active Release Techniques®

    PubMed Central

    Howitt, Scott; Wong, Jerome; Zabukovec, Sonja

    2006-01-01

    Objective To detail the progress of a patient with unresolved symptoms of Trigger thumb who underwent a treatment plan featuring Active Release Technique (ART) and Graston Technique. Clinical Features The most important feature is painful snapping or restriction of movement, most notably in actively extending or flexing the digit. The cause of this flexor tendinopathy is believed to be multi-factorial including anatomical variations of the pulley system and biomechanical etiologies such as exposure to shear forces and unaccustomed activity. Conventional treatment aims at decreasing inflammation through corticosteroid injection or surgically removing imposing tissue. Intervention and Outcome The conservative treatment approach utilized in this case involved Active Release Technique (ART®) and Graston Technique (GT). An activity specific rehabilitation protocol was employed to re-establish thumb extensor strength and ice was used to control pain and any residual inflammation. Outcome measures included subjective pain ratings with range of motion and motion palpation of the first right phalangeal joint. Objective measures were made by assessing range of motion. Conclusion A patient with trigger thumb appeared to be relieved of his pain and disability after a treatment plan of GT and ART. PMID:17549185

  17. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

    SciTech Connect

    Gorbachev, V. V. Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-15

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

  18. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    NASA Astrophysics Data System (ADS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-02-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  19. The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer

    SciTech Connect

    Wu, Q. Jackie; Thongphiew, Danthai; Wang Zhiheng; Chankong, Vira; Yin Fangfang

    2008-04-15

    Stereotactic body radiation therapy (SBRT), which delivers a much higher fractional dose than conventional treatment in only a few fractions, is an effective treatment for liver metastases. For patients who are treated under free-breathing conditions, however, respiration-induced tumor motion in the liver is a concern. Limited clinical information is available related to the impact of tumor motion and treatment technique on the dosimetric consequences. This study evaluated the dosimetric deviations between planned and delivered SBRT dose in the presence of tumor motion for three delivery techniques: three-dimensional conformal static beams (3DCRT), dynamic conformal arc (DARC), and intensity-modulated radiation therapy (IMRT). Five cases treated with SBRT for liver metastases were included in the study, with tumor motions ranging from 0.5 to 1.75 cm. For each case, three different treatment plans were developed using 3DCRT, DARC, and IMRT. The gantry/multileaf collimator (MLC) motion in the DARC plans and the MLC motion in the IMRT plans were synchronized to the patient's respiratory motion. Retrospectively sorted four-dimensional computed tomography image sets were used to determine patient-organ motion and to calculate the dose delivered during each respiratory phase. Deformable registration, using thin-plate-spline models, was performed to encode the tumor motion and deformation and to register the dose-per-phase to the reference phase images. The different dose distributions resulting from the different delivery techniques and motion ranges were compared to assess the effect of organ motion on dose delivery. Voxel dose variations occurred mostly in the high gradient regions, typically between the target volume and normal tissues, with a maximum variation up to 20%. The greatest CTV variation of all the plans was seen in the IMRT technique with the largest motion range (D99: -8.9%, D95: -8.3%, and D90: -6.3%). The greatest variation for all 3DCRT plans was less

  20. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer

    SciTech Connect

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R.; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  1. Larynx-sparing techniques using intensity-modulated radiation therapy for oropharyngeal cancer.

    PubMed

    Bar Ad, Voichita; Lin, Haibo; Hwang, Wei-Ting; Deville, Curtiland; Dutta, Pinaki R; Tochner, Zelig; Both, Stefan

    2012-01-01

    The purpose of the current study was to explore whether the laryngeal dose can be reduced by using 2 intensity-modulated radiation therapy (IMRT) techniques: whole-neck field IMRT technique (WF-IMRT) vs. junctioned IMRT (J-IMRT). The effect on planning target volumes (PTVs) coverage and laryngeal sparing was evaluated. WF-IMRT technique consisted of a single IMRT plan, including the primary tumor and the superior and inferior neck to the level of the clavicular heads. The larynx was defined as an organ at risk extending superiorly to cover the arytenoid cartilages and inferiorly to include the cricoid cartilage. The J-IMRT technique consisted of an IMRT plan for the primary tumor and the superior neck, matched to conventional antero-posterior opposing lower neck fields at the level of the thyroid notch. A central block was used for the anterior lower neck field at the level of the larynx to restrict the dose to the larynx. Ten oropharyngeal cancer cases were analyzed. Both the primary site and bilateral regional lymphatics were included in the radiotherapy targets. The averaged V95 for the PTV57.6 was 99.2% for the WF-IMRT technique compared with 97.4% (p = 0.02) for J-IMRT. The averaged V95 for the PTV64 was 99.9% for the WF-IMRT technique compared with 98.9% (p = 0.02) for J-IMRT and the averaged V95 for the PT70 was 100.0% for WF-IMRT technique compared with 99.5% (p = 0.04) for J-IMRT. The averaged mean laryngeal dose was 18 Gy with both techniques. The averaged mean doses within the matchline volumes were 69.3 Gy for WF-MRT and 66.2 Gy for J-IMRT (p = 0.03). The WF-IMRT technique appears to offer an optimal coverage of the target volumes and a mean dose to the larynx similar with J-IMRT and should be further evaluated in clinical trials.

  2. Active control of spectral detail radiated by an air-loaded impacted membrane

    NASA Astrophysics Data System (ADS)

    Rollow, J. Douglas, IV

    An active control system is developed to independently operate on the vibration of individual modes of an air-loaded drum head, resulting in changes in the acoustic field radiated from the structure. The timbre of the system is investigated, and techniques for changing the characteristic frequencies by means of the control system are proposed. A feedforward control system is constructed for empirical investigation of this approach, creating a musical instrument which can produce a variety of sounds not available with strictly mechanical systems. The work is motivated by applications for actively controlled structures, active control of sound quality, and musical acoustics. The instrument consists of a Mylar timpano head stretched over an enclosure which has been outfitted with electroacoustic drivers. Sensors are arranged on the surface of the drum head and combined to measure modal vibration, and the array of drivers allows independent control of these modes. A signal processor is used to form modal control filters which can modify the loading of each mode, changing the time-dependent and spectral characteristics, and therefore the timbre, of the radiated sound. A theoretical formulation of active control of structural vibration by means of fluid-coupled actuators is expressed, and computational solutions show the effects of fluid loading and the radiated field. Experimental results with the new instrument are shown, with implementations of the control system providing a demonstrated degree of control, and illustrating several limitations of such systems.

  3. p38 mitogen-activated protein kinase activation by ultraviolet A radiation in human dermal fibroblasts.

    PubMed

    Le Panse, Rozen; Dubertret, Louis; Coulomb, Bernard

    2003-08-01

    UVA radiation penetrates deeply into the skin reaching both the epidermis and the dermis. We thus investigated the effects of naturally occurring doses of UVA radiation on mitogen-activated protein kinase (MAPK) activities in human dermal fibroblasts. We demonstrated that UVA selectively activates p38 MAPK with no effect on extracellular-regulated kinases (ERK1-ERK2) or JNK-SAPK (cJun NH2-terminal kinase-stress-activated protein kinase) activities. We then investigated the signaling pathway used by UVA to activate p38 MAPK. L-Histidine and sodium azide had an inhibitory effect on UVA activation of p38 MAPK, pointing to a role of singlet oxygen in transduction of the UVA effect. Afterward, using prolonged cell treatments with growth factors to desensitize their signaling pathways or suramin to block growth factor receptors, we demonstrated that UVA signaling pathways shared elements with growth factor signaling pathways. In addition, using emetine (a translation inhibitor altering ribosome functioning) we detected the involvement of ribotoxic stress in p38 MAPK activation by UVA. Our observations suggest that p38 activation by UVA in dermal fibroblasts involves singlet oxygen-dependent activation of ligand-receptor signaling pathways or ribotoxic stress mechanism (or both). Despite the activation of these two distinct signaling mechanisms, the selective activation of p38 MAPK suggests a critical role of this kinase in the effects of UVA radiation.

  4. Stanford Synchrotron Radiation Laboratory activity report for 1987

    SciTech Connect

    Robinson, S.; Cantwell, K.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  5. Adjuvant radiation therapy for bladder cancer: A dosimetric comparison of techniques

    SciTech Connect

    Baumann, Brian C.; Noa, Kate; Wileyto, E. Paul; Bekelman, Justin E.; Deville, Curtiland; Vapiwala, Neha; Kirk, Maura; Both, Stefan; Dolney, Derek; Kassaee, Ali; Christodouleas, John P.

    2015-01-01

    Trials of adjuvant radiation after cystectomy are under development. There are no studies comparing radiation techniques to inform trial design. This study assesses the effect on bowel and rectal dose of 3 different modalities treating 2 proposed alternative clinical target volumes (CTVs). Contours of the bowel, rectum, CTV-pelvic sidewall (common/internal/external iliac and obturator nodes), and CTV-comprehensive (CTV-pelvic sidewall plus cystectomy bed and presacral regions) were drawn on simulation images of 7 post-cystectomy patients. We optimized 3-dimensional conformal radiation (3-D), intensity-modulated radiation (IMRT), and single-field uniform dose (SFUD) scanning proton plans for each CTV. Mixed models regression was used to compare plans for bowel and rectal volumes exposed to 35% (V{sub 35%}), 65% (V{sub 65%}), and 95% (V{sub 95%}) of the prescribed dose. For any given treatment modality, treating the larger CTV-comprehensive volume compared with treating only the CTV-pelvic sidewall nodes significantly increased rectal dose (V{sub 35%} {sub rectum}, V{sub 65%} {sub rectum}, and V{sub 95%} {sub rectum}; p < 0.001 for all comparisons), but it did not produce significant differences in bowel dose (V{sub 95%} {sub bowel}, V{sub 65%} {sub bowel}, or V{sub 35%} {sub bowel}). The 3-D plans, compared with both the IMRT and the SFUD plans, had a significantly greater V{sub 65%} {sub bowel} and V{sub 95%} {sub bowel} for each proposed CTV (p < 0.001 for all comparisons). The effect of treatment modality on rectal dosimetry differed by CTV, but it generally favored the IMRT and the SFUD plans over the 3-D plans. Comparison of the IMRT plan vs the SFUD plan yielded mixed results with no consistent advantage for the SFUD plan over the IMRT plan. Targeting a CTV that spares the cystectomy bed and presacral region may marginally improve rectal toxicity but would not be expected to improve the bowel toxicity associated with any given modality of adjuvant radiation

  6. Adjuvant radiation therapy for bladder cancer: a dosimetric comparison of techniques.

    PubMed

    Baumann, Brian C; Noa, Kate; Wileyto, E Paul; Bekelman, Justin E; Deville, Curtiland; Vapiwala, Neha; Kirk, Maura; Both, Stefan; Dolney, Derek; Kassaee, Ali; Christodouleas, John P

    2015-01-01

    Trials of adjuvant radiation after cystectomy are under development. There are no studies comparing radiation techniques to inform trial design. This study assesses the effect on bowel and rectal dose of 3 different modalities treating 2 proposed alternative clinical target volumes (CTVs). Contours of the bowel, rectum, CTV-pelvic sidewall (common/internal/external iliac and obturator nodes), and CTV-comprehensive (CTV-pelvic sidewall plus cystectomy bed and presacral regions) were drawn on simulation images of 7 post-cystectomy patients. We optimized 3-dimensional conformal radiation (3-D), intensity-modulated radiation (IMRT), and single-field uniform dose (SFUD) scanning proton plans for each CTV. Mixed models regression was used to compare plans for bowel and rectal volumes exposed to 35% (V35%), 65% (V65%), and 95% (V95%) of the prescribed dose. For any given treatment modality, treating the larger CTV-comprehensive volume compared with treating only the CTV-pelvic sidewall nodes significantly increased rectal dose (V35% rectum, V65% rectum, and V95% rectum; p < 0.001 for all comparisons), but it did not produce significant differences in bowel dose (V95% bowel, V65% bowel, or V35% bowel). The 3-D plans, compared with both the IMRT and the SFUD plans, had a significantly greater V65% bowel and V95% bowel for each proposed CTV (p < 0.001 for all comparisons). The effect of treatment modality on rectal dosimetry differed by CTV, but it generally favored the IMRT and the SFUD plans over the 3-D plans. Comparison of the IMRT plan vs the SFUD plan yielded mixed results with no consistent advantage for the SFUD plan over the IMRT plan. Targeting a CTV that spares the cystectomy bed and presacral region may marginally improve rectal toxicity but would not be expected to improve the bowel toxicity associated with any given modality of adjuvant radiation. Using the IMRT or the SFUD plans instead of the 3-D conformal plan may improve both bowel and rectal toxicity.

  7. Inflammatory bowel diseases activity in patients undergoing pelvic radiation therapy

    PubMed Central

    Seisen, Thomas; Klotz, Caroline; Mazeron, Renaud; Maroun, Pierre; Petit, Claire; Deutsch, Eric; Bossi, Alberto; Haie-Meder, Christine; Chargari, Cyrus; Blanchard, Pierre

    2017-01-01

    Background Few studies with contradictory results have been published on the safety of pelvic radiation therapy (RT) in patients with inflammatory bowel disease (IBD). Methods From 1989 to 2015, a single center retrospective analysis was performed including all IBD patients who received pelvic external beam radiation therapy (EBRT) or brachytherapy (BT) for a pelvic malignancy. Treatment characteristics, IBD activity and gastrointestinal (GI) toxicity were examined. Results Overall, 28 patients with Crohn’s disease (CD) (n=13) or ulcerative colitis (n=15) were included in the present study. Median follow-up time after irradiation was 5.9 years. Regarding IBD activity, only one and two patients experienced a severe episode within and after 6 months of follow-up, respectively. Grade 3/4 acute GI toxicity occurred in 3 (11%) patients, whereas one (3.6%) patient experienced late grade 3/4 GI toxicity. Only patients with rectal IBD location (P=0.016) or low body mass index (BMI) (P=0.012) experienced more severe IBD activity within or after 6 months following RT, respectively. Conclusions We report an acceptable tolerance of RT in IBD patients with pelvic malignancies. Specifically, a low risk of uncontrolled flare-up was observed. PMID:28280621

  8. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  9. First fusion proton measurements in TEXTOR plasmas using activation technique

    SciTech Connect

    Bonheure, G.; Wassenhove, G. Van; Mlynar, J.; Hult, M.; Gonzalez de Orduna, R.; Lutter, G.; Vermaercke, P.; Huber, A.; Schweer, B.; Esser, G.; Biel, W.

    2012-10-15

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R and D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -{approx}6 times more - compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  10. First fusion proton measurements in TEXTOR plasmas using activation technique.

    PubMed

    Bonheure, G; Mlynar, J; Van Wassenhove, G; Hult, M; González de Orduña, R; Lutter, G; Vermaercke, P; Huber, A; Schweer, B; Esser, G; Biel, W

    2012-10-01

    MeV particle loss measurements from fusion plasmas, in particular alpha particles, remain difficult in large fusion devices and further R&D is needed for ITER. This paper describes the first attempt to measure 3 MeV escaping fusion protons emitted from TEXTOR tokamak plasmas using activation technique. This technique was successfully demonstrated, initially, in 2006 on the JET tokamak. An ion camera equipped with a collimator and several types of activation detectors was installed inside the TEXTOR vacuum vessel to perform these measurements. After irradiation, the detectors were analyzed using ultra low level gamma-ray spectrometry at the HADES underground laboratory. 3 MeV escaping fusion protons were detected in larger number -~6 times more--compared to earlier measurements using this technique on JET. Another major progress was the reduction of the cooling time by a factor of 50, which made possible to detect radionuclides with half-life of less than 90 min.

  11. Innovative Perceptual Motor Activities: Programing Techniques That Work.

    ERIC Educational Resources Information Center

    Sorrell, Howard M.

    1978-01-01

    A circuit approach and station techniques are used to depict perceptual motor games for handicapped and nonhandicapped children. Twenty activities are described in terms of objectives, materials, and procedures, and their focus on visual tracking, visual discrimination and copying of forms, spatial body perception, fine motor coordination, tactile…

  12. Preparation of Poly Acrylic Acid-Poly Acrylamide Composite Nanogels by Radiation Technique

    PubMed Central

    Ghorbaniazar, Parisa; Sepehrianazar, Amir; Eskandani, Morteza; Nabi-Meibodi, Mohsen; Kouhsoltani, Maryam; Hamishehkar, Hamed

    2015-01-01

    Purpose: Nanogel, a nanoparticle prepared from a cross-linked hydrophilic polymer network, has many biomedical applications. A radiation technique has recently been introduced as one of the appropriate methods for the preparation of polymeric nanogels due to its additive-free initiation and easy control procedure. Methods: We have investigated the formation of nano-sized polymeric gels, based on the radiation-induced inter- and intra-molecular cross-linking of the inter-polymer complex (IPC) of polyacrylamide (PAAm) and polyacrylic acide (PAAc). Results: The results indicated that the prepared polymeric complex composed of PAAm and PAAc was converted into nanogel by irradiation under different doses (1, 3, 5 and 7 kGy). This was due to inter- and intra-molecular cross-linking at the range of 446-930 nm as characterized by the photon correlation spectroscopy method. Increasing the irradiation dose reduced the size of nanoparticles to 3 kGy; however, the higher doses increased the size and size distribution. Scanning electron microscopy images indicated the nanogel formation in the reported size by particle size and showed the microcapsule structure of the prepared nanogels. Biocompatibility of nanogels were assessed and proved by MTT assay. Conclusion: It was concluded that low dose irradiation can be successfully applied for nanometre-ranged hydrogel. PMID:26236667

  13. Emittance and Energy Measurements of Low-Energy Electron Beam Using Optical Transition Radiation Techniques

    NASA Astrophysics Data System (ADS)

    Sakamoto, Fumito; Iijima, Hokuto; Dobashi, Katsuhiro; Imai, Takayuki; Ueda, Toru; Watanabe, Takahiro; Uesaka, Mitsuru

    2005-03-01

    Emittance and energy of an electron beam in the range of 8 to 22 MeV were measured via optical transition radiation (OTR) techniques. The beam divergence effect on observations of the far-field OTR image at low energies was studied by means of numerical analysis. The numerical analysis indicates that if the beam divergence is under 1.5 mrad, a simultaneous single-shot measurement of emittance and energy is possible. The results of the single-shot experiment agree with independent measurements conducted using the quadrupole scan method and an electron spectrometer. The experiments were performed with an S-band linac at the Nuclear Engineering Research Laboratory, The University of Tokyo (UTNL).

  14. COMPARISON OF THE PERIPHERAL DOSES FROM DIFFERENT IMRT TECHNIQUES FOR PEDIATRIC HEAD AND NECK RADIATION THERAPY.

    PubMed

    Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori

    2017-02-25

    Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region.

  15. Jitter reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection

    PubMed Central

    Kang, Bong Jin; Yoon, Changhan; Man Park, Jin; Hwang, Jae Youn; Shung, K. Kirk

    2015-01-01

    We demonstrate a jitter noise reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), which promises to be capable of measuring cell mechanics. To reduce the jitter noise induced by Q-switched pulsed laser operated at high repetition frequency, photoacoustic signals from the surface of an ultrasound transducer are aligned by cross-correlation and peak-to-peak detection, respectively. Each method is then employed to measure the displacements of a target sample in an agar phantom and a breast cancer cell due to ARFI application, followed by the quantitative comparison between their performances. The suggested methods for PA-ARFI significantly reduce jitter noises, thus allowing us to measure displacements of a target cell due to ARFI application by less than 3 μm. PMID:26367579

  16. Radiation-based techniques for use in the border protection context

    NASA Astrophysics Data System (ADS)

    Creagh, Dudley

    2014-02-01

    Most airline travelers will be familiar with the current overt passenger examination procedures: metal detectors and small tunnel X-ray examination systems. The mix of overt and covert systems used to prevent dangerous goods and contraband from passing through the portal is constantly changing, dictated by policy decisions made by governments. The United States of America and the European Union are the largest regulatory bodies, and their procedures are adopted by smaller countries: Australia, for example.This paper discusses a wide variety of techniques used by Border Protection Agencies. Most of these examination systems involve the use of the emission, absorption, and scattering of electromagnetic radiation and descriptions of these systems will comprise the bulk of this paper.However, a brief discussion of the use of neutron scattering will be given to demonstrate how systems for the examination of large objects may develop in the future.

  17. A snapshot of radiation therapy techniques and technology in Queensland: An aid to mapping undergraduate curriculum

    SciTech Connect

    Bridge, Pete; Carmichael, Mary-Ann; Brady, Carole; Dry, Allison

    2013-03-15

    Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories. This information was combined into aggregate anonymized data. All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. The Snapshot method proved to be a feasible and efficient method of gathering useful data to inform curriculum matching. Frequency of IMRT use in Queensland matches or possibly exceeds that indicated in the literature. It is recommended that future repetition of the study be undertaken in order to monitor trends in referral patterns and new technology implementation.

  18. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-03-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  19. Survey of computed tomography technique and radiation dose in Sudanese hospitals.

    PubMed

    Suliman, I I; Abdalla, S E; Ahmed, Nada A; Galal, M A; Salih, Isam

    2011-12-01

    The purpose of this study was to survey technique and radiation absorbed dose in CT examinations of adult in Sudan and to compare the results with the reference dose levels. Questionnaire forms were completed in nine hospitals and a sample of 445 CT examinations in patients. Information on patient, procedure, scanner, and technique for common CT examinations were collected. For each facility, the radiation absorbed dose was measured on CT dose phantom measuring 16 cm (head) and 32 cm (body) in diameter and was used to calculate the normalized CT air kerma index. Volume CT air kerma index (CVOL), CT air kerma-length product (PKL,CT) values were calculated using the measured normalized CT air kerma index and questionnaire information. The effective dose, E estimates was determined by using PKL,CT measurements and appropriate normalized coefficients. Assuming the sample to offer a fair representative picture of CT practice patterns in Sudan, the mean CVOL and PKL,CT values were comparable or below the reference doses: 65 mGy and 758 mGy cm, respectively at head CT; 11.5 mGy and 327 mGy cm, respectively at chest CT; 11.6 mGy and 437 mGy cm, respectively at abdominal CT; and 11.0 mGy and 264 mGy cm, respectively at pelvis CT. Estimated effective doses were 1.6, 4.6, 6.6 and 4.0 mSv, respectively. The study offered a first national dose survey and provided a mean for quality control and optimization of CT practice within the country.

  20. Aperiodic arrays of active nanopillars for radiation engineering

    NASA Astrophysics Data System (ADS)

    Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca

    2012-06-01

    We engineer aperiodic nanostructures for enhanced omnidirectional light extraction and coupling of 1.55 μm radiation to distinctive optical resonances carrying of orbital angular momentum (OAM) using light emitting Si-based materials. By systematically studying nanopillar arrays with varying pillar separations and increasing degree of rotational symmetry in Fourier space, we show that omnidirectional extraction is achieved with circularly symmetric Fourier space, leading to best light emission enhancement from planar devices such as LEDs or lasers. To demonstrate the potential of active aperiodic structures with azimuthally isotropic k-space, we fabricate nanopillar arrays of erbium doped silicon-rich nitride using electron beam lithography and reactive ion etching. Experimental results obtained using leaky-mode photoluminescence spectroscopy prove over 10 times extraction enhancement at 1.55 μm from aperiodic golden angle spirals (GA spirals), in good agreement with design based on analytical Bragg scattering and finite difference time domain calculations. In addition, by imaging Er radiation in direct and reciprocal space, we demonstrate that GA spiral arrays support angularly isotropic emission patterns and distinctive optical resonances with a well-defined azimuthal structure carrying OAM. These findings offer unique opportunities for the engineering of novel active structures that leverage isotropic emission patterns and structured light for secure optical communication, sensing, imaging, and light sources on a Si platform.

  1. Assessing voluntary muscle activation with the twitch interpolation technique.

    PubMed

    Shield, Anthony; Zhou, Shi

    2004-01-01

    The twitch interpolation technique is commonly employed to assess the completeness of skeletal muscle activation during voluntary contractions. Early applications of twitch interpolation suggested that healthy human subjects could fully activate most of the skeletal muscles to which the technique had been applied. More recently, however, highly sensitive twitch interpolation has revealed that even healthy adults routinely fail to fully activate a number of skeletal muscles despite apparently maximal effort. Unfortunately, some disagreement exists as to how the results of twitch interpolation should be employed to quantify voluntary activation. The negative linear relationship between evoked twitch force and voluntary force that has been observed by some researchers implies that voluntary activation can be quantified by scaling a single interpolated twitch to a control twitch evoked in relaxed muscle. Observations of non-linear evoked-voluntary force relationships have lead to the suggestion that the single interpolated twitch ratio can not accurately estimate voluntary activation. Instead, it has been proposed that muscle activation is better determined by extrapolating the relationship between evoked and voluntary force to provide an estimate of true maximum force. However, criticism of the single interpolated twitch ratio typically fails to take into account the reasons for the non-linearity of the evoked-voluntary force relationship. When these reasons are examined, it appears that most are even more challenging to the validity of extrapolation than they are to the linear equation. Furthermore, several factors that contribute to the observed non-linearity can be minimised or even eliminated with appropriate experimental technique. The detection of small activation deficits requires high resolution measurement of force and careful consideration of numerous experimental details such as the site of stimulation, stimulation intensity and the number of interpolated

  2. Lab-Based Measurement of Remediation Techniques for Radiation Portal Monitors (Initial Report)

    SciTech Connect

    Livesay, Jake; Guzzardo, Tyler; Lousteau, Angela L

    2012-02-01

    Radiation Portal Monitors (RPM) deployed by the Second Line of Defense (SLD) are known to be sensitive to the natural environmental radioactive background. There are several techniques used to mitigate the effects of background on the monitors, but since the installation environments can vary significantly from one another the need for a standardized, systematic, study of remediation techniques was proposed and carried out. This study is not meant to serve as the absolute last word on the subject. The data collected are, however, intelligible and useful. Some compromises were made, each of which will be described in detail. The hope of this initial report is to familiarize the SLD science teams with ORNL's effort to model the effect of various remediation techniques on simple, static backgrounds. This study provides a good start toward benchmarking the model, and each additional increment of data will serve to make the model more robust. The scope of this initial study is limited to a few basic cases. Its purpose is to prove the utility of lab-based study of remediation techniques and serve as a standard data set for future use. This importance of this first step of standardization will become obvious when science teams are working in parallel on issues of remediation; having a common starting point will do away with one category of difference, thereby making easier the task of determining the sources of disagreement. Further measurements will augment this data set, allowing for further constraint of the universe of possible situations. As will be discussed in the 'Going Forward' section, more data will be included in the final report of this work. Of particular interest will be the data taken with the official TSA lead collimators, which will provide more direct results for comparison with installation data.

  3. Novel Technique for Hepatic Fiducial Marker Placement for Stereotactic Body Radiation Therapy

    SciTech Connect

    Jarraya, Hajer; Chalayer, Chloé; Tresch, Emmanuelle; Bonodeau, Francois; Lacornerie, Thomas; Mirabel, Xavier; Boulanger, Thomas; Taieb, Sophie; Kramar, Andrew; Lartigau, Eric; Ceugnart, Luc

    2014-09-01

    Purpose: To report experience with fiducial marker insertion and describe an advantageous, novel technique for fiducial placement in the liver for stereotactic body radiation therapy with respiratory tracking. Methods and Materials: We implanted 1444 fiducials (single: 834; linked: 610) in 328 patients with 424 hepatic lesions. Two methods of implantation were compared: the standard method (631 single fiducials) performed on 153 patients from May 2007 to May 2010, and the cube method (813 fiducials: 610 linked/203 single) applied to 175 patients from April 2010 to March 2013. The standard method involved implanting a single marker at a time. The novel technique entailed implanting 2 pairs of linked markers when possible in a way to occupy the perpendicular edges of a cube containing the tumor inside. Results: Mean duration of the cube method was shorter than the standard method (46 vs 61 minutes; P<.0001). Median numbers of skin and subcapsular entries were significantly smaller with the cube method (2 vs 4, P<.0001, and 2 vs 4, P<.0001, respectively). The rate of overall complications (total, major, and minor) was significantly lower in the cube method group compared with the standard method group (5.7% vs 13.7%; P=.013). Major complications occurred while using single markers only. The success rate was 98.9% for the cube method and 99.3% for the standard method. Conclusions: We propose a new technique of hepatic fiducial implantation that makes use of linked fiducials and involves fewer skin entries and shorter time of implantation. The technique is less complication-prone and is migration-resistant.

  4. Photosynthetically active radiation and its relationship with global solar radiation in Central China.

    PubMed

    Wang, Lunche; Gong, Wei; Ma, Yingying; Hu, Bo; Zhang, Miao

    2014-08-01

    Photosynthetically active radiation (PAR) and other solar components were observed for a period of 3 years at Wuhan, China to determine for the first time the temporal variability of PAR fraction [PAR/G (G here stands for global solar radiation)] and its dependence on different sky conditions in Central China. PAR, G and PAR/G showed similar seasonal features that peaked in summer and reached their lowest values in winter. The seasonal PAR/G ranged from 1.70 E MJ(-1) (winter) to 2.01 E MJ(-1) (summer) with an annual mean value of 1.89 E MJ(-1). Hourly values of PAR/G increased from 1.78 to 2.11 E MJ(-1) on average as sky conditions changed from clear to cloudy. Monthly mean hourly PAR/G revealed a diurnal variation, with highest values observed around sunrise and sunset, slightly higher PAR fractions were also found around noon for most months. The effect of daylength on PAR/G was also studied and no significant impact was found. Three models were developed to estimate PAR from G. These models consisted of atmospheric parameters that were found to cause substantial changes of PAR/G, such as sky clearness, brightness, path length and the sky clearness index. The estimations obtained from different models were very close to the measured values with maximum relative errors below 8 % (hourly values) in Wuhan. The models were not only tested at seven radiation stations in Central China, but also verified in six stations with different climates in China. The models were found to estimate PAR accurately from commonly available G data in Central China; however, the results also implied that the models need to be modified to account for local climatic conditions when applied to the whole country.

  5. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  6. Practical applications of activation analysis and other nuclear techniques

    SciTech Connect

    Lyon, W S

    1982-01-01

    Neeutron activation analysis (NAA) is a versatile, sensitive multielement, usually nondestructive analytical technique used to determine elemental concentrations in a variety of materials. Samples are irradiated with neutrons in a nuclear reactor, removed, and for the nondestructive technique, the induced radioactivity measured. This measurement of ..gamma.. rays emitted from specific radionuclides makes possible the quantitative determination of elements present. The method is described, advantages and disadvantages listed and a number of examples of its use given. Two other nuclear methods, particle induced x-ray emission and synchrotron produced x-ray fluorescence are also briefly discussed.

  7. Double side read-out technique for mitigation of radiation damage effects in PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Lucchini, M. T.; Auffray, E.; Benaglia, A.; Cavallari, F.; Cockerill, D.; Dolgopolov, A.; Faure, J. L.; Golubev, N.; Hobson, P. R.; Jain, S.; Korjik, M.; Mechinski, V.; Singovski, A.; Tabarelli de Fatis, T.; Tarasov, I.; Zahid, S.

    2016-04-01

    Test beam results of a calorimetric module based on 3×3×22 cm3 PbWO4 crystals, identical to those used in the CMS ECAL Endcaps, read out by a pair of photodetectors coupled to the two opposite sides (front and rear) of each crystal are presented. Nine crystals with different level of induced absorption, from 0 to 20 m-1, have been tested using electrons in the 50-200 GeV energy range. Photomultiplier tubes have been chosen as photodetectors to allow for a precise measurement of highly damaged crystals. The information provided by this double side read-out configuration allows to correct for event-by-event fluctuations of the longitudinal development of electromagnetic showers. By strongly mitigating the effect of non-uniform light collection efficiency induced by radiation damage, the double side read-out technique significantly improves the energy resolution with respect to a single side read-out configuration. The non-linearity of the response arising in damaged crystals is also corrected by a double side read-out configuration and the response linearity of irradiated crystals is restored. In high radiation environments at future colliders, as it will be the case for detectors operating during the High Luminosity phase of the Large Hadron Collider, defects can be created inside the scintillator volume leading to a non-uniform response of the calorimetric cell. The double side read-out technique presented in this study provides a valuable way to improve the performance of calorimeters based on scintillators whose active volumes are characterized by high aspect ratio cells similar to those used in this study.

  8. Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses.

    PubMed

    Huda, Walter; Lieberman, Kristin A; Chang, Jack; Roskopf, Marsha L

    2004-03-01

    We investigated how patient age, size and composition, together with the choice of x-ray technique factors, affect radiation doses in head computed tomography (CT) examinations. Head size dimensions, cross-sectional areas, and mean Hounsfield unit (HU) values were obtained from head CT images of 127 patients. For radiation dosimetry purposes patients were modeled as uniform cylinders of water. Dose computations were performed for 18 x 7 mm sections, scanned at a constant 340 mAs, for x-ray tube voltages ranging from 80 to 140 kV. Values of mean section dose, energy imparted, and effective dose were computed for patients ranging from the newborn to adults. There was a rapid growth of head size over the first two years, followed by a more modest increase of head size until the age of 18 or so. Newborns have a mean HU value of about 50 that monotonically increases with age over the first two decades of life. Average adult A-P and lateral dimensions were 186+/-8 mm and 147+/-8 mm, respectively, with an average HU value of 209+/-40. An infant head was found to be equivalent to a water cylinder with a radius of approximately 60 mm, whereas an adult head had an equivalent radius 50% greater. Adult males head dimensions are about 5% larger than for females, and their average x-ray attenuation is approximately 20 HU greater. For adult examinations performed at 120 kV, typical values were 32 mGy for the mean section dose, 105 mJ for the total energy imparted, and 0.64 mSv for the effective dose. Increasing the x-ray tube voltage from 80 to 140 kV increases patient doses by about a factor of 5. For the same technique factors, mean section doses in infants are 35% higher than in adults. Energy imparted for adults is 50% higher than for infants, but infant effective doses are four times higher than for adults. CT doses need to take into account patient age, head size, and composition as well as the selected x-ray technique factors.

  9. Functional magnetic resonance imaging techniques and their development for radiation therapy planning and monitoring in the head and neck cancers

    PubMed Central

    Lo, Gladys; King, Ann D.

    2016-01-01

    Radiation therapy (RT), in particular intensity-modulated radiation therapy (IMRT), is becoming a more important nonsurgical treatment strategy in head and neck cancer (HNC). The further development of IMRT imposes more critical requirements on clinical imaging, and these requirements cannot be fully fulfilled by the existing radiotherapeutic imaging workhorse of X-ray based imaging methods. Magnetic resonance imaging (MRI) has increasingly gained more interests from radiation oncology community and holds great potential for RT applications, mainly due to its non-ionizing radiation nature and superior soft tissue image contrast. Beyond anatomical imaging, MRI provides a variety of functional imaging techniques to investigate the functionality and metabolism of living tissue. The major purpose of this paper is to give a concise and timely review of some advanced functional MRI techniques that may potentially benefit conformal, tailored and adaptive RT in the HNC. The basic principle of each functional MRI technique is briefly introduced and their use in RT of HNC is described. Limitation and future development of these functional MRI techniques for HNC radiotherapeutic applications are discussed. More rigorous studies are warranted to translate the hypotheses into credible evidences in order to establish the role of functional MRI in the clinical practice of head and neck radiation oncology. PMID:27709079

  10. Application of Active Learning Techniques to an Advanced Course

    NASA Astrophysics Data System (ADS)

    Knop, R. A.

    2004-05-01

    The New Faculty Workshop provided a wealth of techniques as well as an overriding philosophy for the teaching of undergraduate Physics and Astronomy courses. The focus of the workshop was active learning, summarized in ``Learner-Centered Astronomy Teaching" by Slater & Adams: it's not what you do in class that matters, it's what the students do. Much of the specific focus of the New Faculty Workshop is on teaching the large, introductory Physics classes that many of the faculty present are sure to teach, both algebra-based and calculus-based. Many of these techniques apply directly and with little modification to introductory Astronomy courses. However, little direct attention is given to upper-division undergraduate, or even graduate, courses. In this presentation, I will share my experience in attempting to apply some of the techniques discussed at the New Faculty Workshop to an upper-division course in Galactic Astrophysics at Vanderbilt University during the Spring semester of 2004.

  11. Treatment Techniques to Reduce Cardiac Irradiation for Breast Cancer Patients Treated with Breast-Conserving Surgery and Radiation Therapy: A Review

    PubMed Central

    Beck, Robert E.; Kim, Leonard; Yue, Ning J.; Haffty, Bruce G.; Khan, Atif J.; Goyal, Sharad

    2014-01-01

    Thousands of women diagnosed with breast cancer each year receive breast-conserving surgery followed by adjuvant radiation therapy. For women with left-sided breast cancer, there is risk of potential cardiotoxicity from the radiation therapy. As data have become available to quantify the risk of cardiotoxicity from radiation, strategies have also developed to reduce the dose of radiation to the heart without compromising radiation dose to the breast. Several broad categories of techniques to reduce cardiac radiation doses include breath hold techniques, prone positioning, intensity-modulated radiation therapy, and accelerated partial breast irradiation, as well as many small techniques to improve traditional three-dimensional conformal radiation therapy. This review summarizes the published scientific literature on the various techniques to decrease cardiac irradiation in women treated to the left breast for breast cancer after breast-conserving surgery. PMID:25452938

  12. Spectral and Non Radiative Decay Studies of Lead Di Bromide Single Crystals by Mode Matched Thermal Lens Technique.

    PubMed

    Rejeena, I; Lillibai, B; Thomas, V; Nampoori, V P N; Radhakrishnan, P

    2016-07-01

    In the present paper, the investigations on the non radiative decay mechanism, optical band gap determination from absorption spectroscopic studies and fluorescence emission by photo luminescence techniques using different excitation wavelengths on gel derived lead di bromide single crystals are reported. Non radiative decay of the sample is studied using high sensitive dual beam mode matched thermal lens technique. For the thermal lensing experiment the crystal in solution phase is incorporated with rhodamine 6G dye for enhancing the absorption of the crystal sample. The thermal diffusivity of lead di bromide is determined using the probe beam intensity v/s time measurements.

  13. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  14. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  15. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  16. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  17. Biological activities caused by far-infrared radiation

    NASA Astrophysics Data System (ADS)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  18. A new polarimetric active radar calibrator and calibration technique

    NASA Astrophysics Data System (ADS)

    Tang, Jianguo; Xu, Xiaojian

    2015-10-01

    Polarimetric active radar calibrator (PARC) is one of the most important calibrators with high radar cross section (RCS) for polarimetry measurement. In this paper, a new double-antenna polarimetric active radar calibrator (DPARC) is proposed, which consists of two rotatable antennas with wideband electromagnetic polarization filters (EMPF) to achieve lower cross-polarization for transmission and reception. With two antennas which are rotatable around the radar line of sight (LOS), the DPARC provides a variety of standard polarimetric scattering matrices (PSM) through the rotation combination of receiving and transmitting polarization, which are useful for polarimatric calibration in different applications. In addition, a technique based on Fourier analysis is proposed for calibration processing. Numerical simulation results are presented to demonstrate the superior performance of the proposed DPARC and processing technique.

  19. Simplified techniques to study components of solar radiation under haze and clouds

    SciTech Connect

    Wesely, M.L.

    1982-03-01

    Estimates of the global (G), diffuse (D) and direct-beam (I) irradiances at the surface of the earth can be obtained with a single instrument, ''dial'' radiometer. The dial assembly intermittently shades a solid-state sensor on a continual automatic basis. This is a very simple instrument that does not require mechanical adjustments of the shade. When corrections for imperfect cosine response and excessive shading of sky radiation are performed, measurements averaged over 1 h should be accurate well within +- 5%. Estimates of atmospheric turbidity or haziness can be expressed as an extinction coefficient, computed for I in reference to that obtained under cloudless clean skies for the same solar zenith angle. The uneven spectral response of silicon-cell and PAR (photosynthetically active radiation) sensors should be considered when comparing estimates of G, D or I to measurments of these components by a wide-band sensor. Linear relationships seem adequate for a variety of cloud conditions. This allows the use of single dial silicon-cell radiometer, for example, to estimate quite accurately the values of G, D and I that would be seen by wide-band or PAR radiometers. An alternative, but less exact, means of obtaining estimates of hourly averages of D and I is to measure only G and use the ratio of G to that which would be obtained under clean, cloudless conditions as the sole determining factors.

  20. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  1. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    SciTech Connect

    Cavan, Alicia; Meyer, Juergen

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  2. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  3. Radiation damage/activity calculation for CSNS target station

    NASA Astrophysics Data System (ADS)

    Yin, W.; Liang, T. J.; Yu, Q. Z.; Jia, X. J.

    2010-03-01

    The radiation damages have been performed for Chinese spallation neutron source (CSNS) target center components that relies on Monte Carlo simulation code MCNPX. During the calculation, Bertini intranuclear cascade model, three level-density formulation GCCI, and multistage pre-equilibrium model MPM on which are provided within MCNPX are employed. We calculate the displacement per atom (DPA) and afterheat of the tungsten target, the stainless steel target vessel window and the aluminum alloy moderator vessel. As a hundred kW-level source, these spallation center components have the lifetime more than 5 year. We also give the activity for the T0 chopper of the beam line HIPD to get the primary data for making out a maintenance scenario.

  4. Fast and accurate techniques of treating the radiative transfer problem under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry; Doicu, Adrian; Trautmann, Thomas; Loyola, Diego

    As a massive amount of spectral information is expected from the new generation of European atmospheric sensors Sentinel 5 Precursor, Sentinel 4 and Sentinel 5, a fast processing of the data in the UV-VIS spectral domain, is required. Trace gas retrievals from nadir sounding instruments are hindered by the presence of clouds. Our research is focused on the developing of a robust and accurate algorithm for treating clouds in the radiative transfer models (RTM). For this reason we have implemented an acceleration technique based on dimensionality reduction algorithms. We obtained the speed improvement of about 8 times. For operational reasons clouds can be considered as an optically homogeneous layer. In the independent pixel approximation, radiative transfer computations involving cloudy scenes require two separate calls to the RTM, one call for a clear sky scenario, the other for an atmosphere containing clouds. We present two novel methods for RTM performance enhancement with particular application to trace gas retrievals under cloudy conditions. Both methods are based on reusing results from clear-sky RTM calculations to speed up corresponding calculations for the cloud-filled scenario. Also, for satellite instruments with a high spatial resolution, it is important to account for the sub-pixel cloud inhomogeneities, or at least, to assess their effect on the radiances at the top of the atmosphere, and in particular, on the retrieval results. This assessment is probabilistic since the detailed structure of the clouds is unknown and only a small number of statistical properties are given. In this regard, we have designed a stochastic model for the solar radiation problem and a molecular atmosphere with its underlying surface. The model allows the computation of the mean radiance at the top of the atmosphere as it is intended to be used for trace gas retrievals. The efficiency of the stochastic model is lower, because we have to solve a two-dimensional problem

  5. Risk of Second Cancers According to Radiation Therapy Technique and Modality in Prostate Cancer Survivors

    SciTech Connect

    Berrington de Gonzalez, Amy; Wong, Jeannette; Kleinerman, Ruth; Kim, Clara; Morton, Lindsay; Bekelman, Justin E.

    2015-02-01

    Purpose: Radiation therapy (RT) techniques for prostate cancer are evolving rapidly, but the impact of these changes on risk of second cancers, which are an uncommon but serious consequence of RT, are uncertain. We conducted a comprehensive assessment of risks of second cancer according to RT technique (>10 MV vs ≤10 MV and 3-dimensional [3D] vs 2D RT) and modality (external beam RT, brachytherapy, and combined modes) in a large cohort of prostate cancer patients. Methods and Materials: The cohort was constructed using the Surveillance Epidemiology and End Results-Medicare database. We included cases of prostate cancer diagnosed in patients 66 to 84 years of age from 1992 to 2004 and followed through 2009. We used Poisson regression analysis to compare rates of second cancer across RT groups with adjustment for age, follow-up, chemotherapy, hormone therapy, and comorbidities. Analyses of second solid cancers were based on the number of 5-year survivors (n=38,733), and analyses of leukemia were based on number of 2-year survivors (n=52,515) to account for the minimum latency period for radiation-related cancer. Results: During an average of 4.4 years' follow-up among 5-year prostate cancer survivors (2DRT = 5.5 years; 3DRT = 3.9 years; and brachytherapy = 2.7 years), 2933 second solid cancers were diagnosed. There were no significant differences in second solid cancer rates overall between 3DRT and 2DRT patients (relative risk [RR] = 1.00, 95% confidence interval [CI]: 0.91-1.09), but second rectal cancer rates were significantly lower after 3DRT (RR = 0.59, 95% CI: 0.40-0.88). Rates of second solid cancers for higher- and lower-energy RT were similar overall (RR = 0.97, 95% CI: 0.89-1.06), as were rates for site-specific cancers. There were significant reductions in colon cancer and leukemia rates in the first decade after brachytherapy compared to those after external beam RT. Conclusions: Advanced treatment planning may have reduced rectal

  6. Interpenetrating polymer networks based on a thermoplastic elastomer, using radiation techniques

    NASA Astrophysics Data System (ADS)

    Shirodkar, Bhavna D.; Burford, Robert P.

    2001-07-01

    Styrene-butadiene-styrene thermoplastic elastomers can be transformed into Interpenetrating polymer networks using γ-radiation crosslinking. Trimethylol propanetriacrylate was used as the radiation crosslinker for styrene. The study shows that the hardness of the sample increased with radiation dose while the tensile strength remained constant.

  7. Image and Radiation Power Analysis Techniques for Determining Electron temperature, Liner Areal Density, and Radiated Energy in MagLIF Experiments

    NASA Astrophysics Data System (ADS)

    Evans, Matthew; Knapp, Patrick; Gomez, Matthew; Hansen, Stephanie; McBride, Ryan; MacPherson, L. Armon; Gourdain, Pierre

    2016-10-01

    We describe techniques developed to analyze filtered Time Integrated Pinhole Camera (TIPC) images to determine the axially resolved electron temperature and liner areal density at stagnation in MagLIF experiments conducted on the Z machine at Sandia National Laboratories. X-ray power detectors are analyzed to determine the absolute radiated energy. The TIPC images are co-registered using intensity based similarities. This technique is shown to provide accurate registration without the use of fiducial markings. A filtered 6-channel PCD array was used to record the radiated power at photon energies >1 keV. A model for the x-ray emission is used with the data set to perform Bayesian parameter estimation to simultaneously determine the electron temperature, liner areal density and x-ray yield with uncertainties via χ2 minimization.

  8. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Lawson, Gareth L.

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  9. Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.

    PubMed

    Benoit-Bird, Kelly J; Lawson, Gareth L

    2016-01-01

    Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

  10. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  11. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  12. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey

    PubMed Central

    Deshpande, Sudesh; Dhote, D. S.; Kumar, Rajesh; Naidu, Suresh; Sutar, A.; Kannan, V.

    2015-01-01

    A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements. PMID:26865758

  13. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose

    SciTech Connect

    Sparks, R.B.; Aydogan, B.

    1999-01-01

    In the development of new radiopharmaceuticals, animal studies are typically performed to get a first approximation of the expected radiation dose in humans. This study evaluates the performance of some commonly used data extrapolation techniques to predict residence times in humans using data collected from animals. Residence times were calculated using animal and human data, and distributions of ratios of the animal results to human results were constructed for each extrapolation method. Four methods using animal data to predict human residence times were examined: (1) using no extrapolation, (2) using relative organ mass extrapolation, (3) using physiological time extrapolation, and (4) using a combination of the mass and time methods. The residence time ratios were found to be log normally distributed for the nonextrapolated and extrapolated data sets. The use of relative organ mass extrapolation yielded no statistically significant change in the geometric mean or variance of the residence time ratios as compared to using no extrapolation. Physiologic time extrapolation yielded a statistically significant improvement (p < 0.01, paired t test) in the geometric mean of the residence time ratio from 0.5 to 0.8. Combining mass and time methods did not significantly improve the results of using time extrapolation alone. 63 refs., 4 figs., 3 tabs.

  14. A Simplified Supine Technique Expedites the Delivery of Effective Craniospinal Radiation to Medulloblastoma - Comparison with Other Techniques in the Literature.

    PubMed

    Tai, Patricia; Koul, Rashmi; Vu, Khanh; Edwards, Trent; Buwembo, Joseph; Teles, Alisson R; Salim, Muhammad

    2015-12-15

    A 28-year-old man presented to the emergency room with a severe headache of one day's duration. A computerized tomography scan showed a hemorrhagic tumor measuring 3.9 x 4.4 cm in the left cerebellar hemisphere. The resection specimen revealed medulloblastoma. He had two episodes of rebleeding and multiple postoperative issues preventing the use of prone craniospinal radiotherapy. We designed a supine technique for this tall man, which was not complicated to set up. The rapid safe implementation of this technique allowed us to avoid further rebleeding and successfully treat the residual tumor. This technique is the described technique in this case report and is compared to other techniques. At 7.5 years after surgery, he is alive without cancer and with only a mild residual deficit. This case is unusual since the majority of patients with the diagnosis of hemorrhagic medulloblastoma died.

  15. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    SciTech Connect

    Cantwell, K.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  16. Pulsed neutron generator for use with pulsed neutron activation techniques

    SciTech Connect

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10/sup 10/ 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10/sup 10/ neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output.

  17. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was

  18. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  19. Innovative techniques in radiation oncology. Clinical research programs to improve local and regional control in cancer

    SciTech Connect

    Brady, L.W.; Markoe, A.M.; Micaily, B.; Fisher, S.A.; Lamm, F.R. )

    1990-02-01

    There is a growing importance in failure analysis in cancer management. In these analyses locoregional failure as the cause of death emerges as a significant problem in many tumor sites, e.g., head and neck cancer, gynecologic cancer, genitourinary cancer. Because of these data, the radiation oncology community has attributed high priority to research efforts to improve locoregional control. These efforts include the following: (1) brachytherapy alone or with external beam radiation therapy or surgery; (2) intraoperative radiation therapy; (3) hyperthermia with radiation therapy; (4) particle irradiation (protons, neutrons, stripped nuclei, and pions); and (5) routes of administration of the treatment, including infusional (intravenous) chemotherapy with radiation therapy, intraarterial monoclonal antibodies with radionuclides, and intraarterial chemotherapy with radiation therapy. Each area of investigation is discussed.

  20. A simulation study investigating a radiation detector utilizing the prompt gamma range verification technique for proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Lau, Andrew David

    Proton therapy has shown to be a viable therapy for radiation oncology applications. The advantages of using protons as compared to photons in the treatments of diseases with radiation are numerous including the ability to deliver overall lower amounts of lethal radiation doses to the patient. This advantage is due to the fundamental interaction mechanism of the incident therapeutic protons with the patient, which produces a characteristic dose-distribution unique only to protons. Unlike photons, the entire proton beam is absorbed within the patent and the dose-distribution's maximum occurs near the end of the proton's path. Protons deliver less dose on the skin and intervening tissues, tighter dose conformality to the disease site, as well as no dose past the target volume, sparring healthy tissue distally in the patient. Current research in proton therapy is geared towards minimizing proton range uncertainty and monitoring in-vivo the location of the proton's path. Monitoring the beam's path serves also to verify which healthy structures/tissues were irradiated and whether the target volume has met the prescription dose. Among the many techniques used for in-vivo proton monitoring, the technique based on the emitted secondary particles, specifically the Prompt Gamma (PG) method, can be used for clinical implementation. This work focuses on developing a radiation detector system for using the PG method by investigating the characterizing the secondary particle field emitted from plastic and water phantoms as well as a radiation detector based on glass materials that exploits the Cherenkov phenomenon.

  1. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    PubMed

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.

  2. Optimization of Radiation Therapy Techniques for Prostate Cancer With Prostate-Rectum Spacers: A Systematic Review

    SciTech Connect

    Mok, Gary; Benz, Eileen; Vallee, Jean-Paul; Miralbell, Raymond; Zilli, Thomas

    2014-10-01

    Dose-escalated radiation therapy for localized prostate cancer improves disease control but is also associated with worse rectal toxicity. A spacer placed between the prostate and rectum can be used to displace the anterior rectal wall outside of the high-dose radiation regions and potentially minimize radiation-induced rectal toxicity. This systematic review focuses on the published data regarding the different types of commercially available prostate-rectum spacers. Dosimetric results and preliminary clinical data using prostate-rectum spacers in patients with localized prostate cancer treated by curative radiation therapy are compared and discussed.

  3. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Plaza-Rosado, Heriberto

    1991-09-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  4. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  5. High Energy Radiation Induced Activation of COX-2 and MMP-9 is Mediated by NF-kappaB

    NASA Astrophysics Data System (ADS)

    Rolle, G.; Munyu, S.; Jejelowo, O. A.; Sodipe, A.; Shishodia, S.

    2010-04-01

    Space radiation is a known carcinogen, and astronauts are exposed to high-energy radiation. In this study, we demonstrate that high-energy radiation activates cylooxygenase-2 and matrix metalloproteinase-9 through the NF-kB pathway.

  6. Indonesia: statistical sampling technique in validation of radiation sterilisation dose of biological tissue.

    PubMed

    Hilmy, N; Basril, A; Febrida, A

    2003-01-01

    The aim of the work is to find the best solution for statistical sampling technique in validation of radiation sterilization dose (RSD) for biological tissues, according to ISO standard. As a model for sampling are biological tissues retrieved from one cadaver donor which consist of frozen bone grafts (18 packets), lyophilized allografts (68 packets) and demineralized bone powder grafts (40 packets). The size and type of products vary from long bones, cancellous chips to bone powders, tendons and facia lata, that make the number of bioburden per product could not be treated equally. Frozen samples could not be considered as the same production batch with lyophilized samples, because of different processing and irradiation temperature. The minimum number of uniformed samples needed for validation per production batch size, according to ISO 13409, is from 20 to 79 and 20 of them will be used for the test sample size, i.e. 10 for bio-burden determination and the remaining 10 for verification dose. Based on the number of uniformed grafts, statistical sampling can be carried out on lyophilized and demineralized bone grafts, but not on frozen bone grafts. Bioburden determinations were carried out and validated according to ISO 11737-1. Results of average bioburden determination (cfu/per packet), using sample item portion (SIP) = 1, are 5 cfu/packet for lyophilized bone grafts and 4 cfu/packet for demineralized bone powder grafts. Verification doses obtained were 2.40 kGy for lyophilized grafts and 2.24 kGy for demineralized bone powder grafts. The results of verification dose were accepted and the RSD of 25 kGy is substantiated It can be concluded that a statistical sampling technique can be applied if all the grafts produced in the same process such as lyophilized, demineralized as well as frozen are assumed to be in one production batch regardless of sample uniformity such as size, type and weight; for this ISO 13409 can be applied for the validation of RSD.

  7. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and {gt} 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  8. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and [gt] 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  9. Estimation of photosynthetically active radiation absorbed at the surface

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Moreau, Louis; Cihlar, Josef

    1997-12-01

    This paper presents a validation and application of an algorithm by Li and Moreau [1996] for retrieving photosynthetically active radiation (PAR) absorbed at the surface (APARSFC). APARSFC is a key input to estimating PAR absorbed by the green canopy during photosynthesis. Extensive ground-based and space-borne observations collected during the BOREAS experiment in 1994 were processed, colocated, and analyzed. They include downwelling and upwelling PAR observed at three flux towers, aerosol optical depth from ground-based photometers, and satellite reflectance measurements at the top of the atmosphere. The effects of three-dimensional clouds, aerosols, and bidirectional dependence on the retrieval of APARSFC were examined. While the algorithm is simple and has only three input parameters, the comparison between observed and estimated APARSFC shows a small bias error (<10 W m-2) and moderate random error (36 W m-2 for clear, 61 W m-2 for cloudy). Temporal and/or spatial mismatch between satellite and surface observations is a major cause of the random error, especially when broken clouds are present. The algorithm was subsequently employed to map the distribution of monthly mean APARSFC over the 1000×1000 km2 BOREAS region. Considerable spatial variation is found due to variable cloudiness, forest fires, and nonuniform surface albedo.

  10. Effect of a fluid layer on the sound radiation of a plate and its active control

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Pan, Jie; Yang, Tiejun

    2015-11-01

    In this paper, a baffled plate facing a layer of fluid is used to investigate the effects of the radiating environment on the plate's sound radiation and its active control. By varying the thickness of the fluid layer, different radiation environments are presented to the plate, resulting in a variation in the efficiencies and shapes of the radiation modes of the plate. As the design of feed-forward control of the radiated sound power and of feedback control of the vibration velocity or volume velocity is limited by the properties of the secondary control path (an open-loop frequency response function), the performance of the control system may be deteriorated if a controller optimally designed for one radiation environment is used for a different environment. The effects of radiation environment on the properties of the secondary control path and performance of active control are investigated.

  11. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; VanSuetendael, N. J.; Snyder, S. J.; Clements, J. S.

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  12. Radiation, temperature, and vacuum effects on piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Postolache, Cristian; Tudose, Mihai

    2016-03-01

    The effect of radiation, temperature, and vacuum (RTV) on piezoelectric wafer active sensors (PWASs) is discussed. This study is relevant for extending structural health monitoring (SHM) methods to space vehicle applications that are likely to be subjected to harsh environmental conditions such as extreme temperatures (hot and cold), cosmic radiation, and interplanetary vacuums. This study contains both theoretical and experimental investigations with the use of electromechanical impedance spectroscopy (EMIS). In the theoretical part, analytical models of circular PWAS resonators were used to derive analytical expressions for the temperature sensitivities of EMIS resonance and antiresonance behavior. Closed-form expressions for frequency and peak values at resonance and antiresonance were derived as functions of the coefficients of thermal expansion, {α }1, {α }2, {α }3; the Poisson ratio, ν and its sensitivity, \\partial ν /\\partial T; the relative compliance gradient (\\partial {s}11E/\\partial T)/{s}11E; and the Bessel function root, z and its sensitivity, \\partial z/\\partial T. In the experimental part, tests were conducted to subject the PWAS transducers to RTV conditions. In one set of experiments, several RTV exposure, cycles were applied with EMIS signatures recorded at the beginning and after each of the repeated cycles. In another set of experiments, PWAS transducers were subjected to various temperatures and the EMIS signatures were recorded at each temperature after stabilization. The processing of measured EMIS data from the first set of experiments revealed that the resonance and antiresonance frequencies changed by less than 1% due to RTV exposure, whereas the resonance and antiresonance amplitudes changed by around 15%. After processing an individual set of EMIS data from the second set of experiments, it was determined that the relative temperature sensitivity of the antiresonance frequency ({f}{{AR}}/{f}{{AR}}) is approximately 63.1× {10

  13. Study of the magnetospheres of active regions on the sun by radio astronomy techniques

    NASA Astrophysics Data System (ADS)

    Bogod, V. M.; Kal'tman, T. I.; Peterova, N. G.; Yasnov, L. V.

    2017-01-01

    In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere-corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.

  14. Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report

    SciTech Connect

    1995-10-09

    Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

  15. Activation studies of NEG coatings by surface techniques

    SciTech Connect

    Sharma, R. K.; Jagannath,; Bhushan, K. G.; Gadkari, S. C.; Mukund, R.; Gupta, S. K.

    2013-02-05

    NEG (Non Evaporable Getters)materials in the form of ternary alloy coatings have many benefits compare to traditional bare surfaces such as Extreme high vacuum(XHV), lower secondary electron yield(SEY), low photon desorption cofficient. The extreme high vacuum (pressure > 10{sup -10} mbar) is very useful to the study of surfaces of the material, for high energy particle accelerators(LHC, Photon Factories), synchrotrons (ESRF, Ellectra) etc. Low secondary electron yield leads to better beam life time. In LHC the pressure in the interaction region of the two beams is something of the order of 10{sup -12} mbar. In this paper preparation of the coatings and their characterization to get the Activation temperature by using the surface techniques XPS, SEM and SIMS has been shown.

  16. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    NASA Astrophysics Data System (ADS)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  17. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  18. The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films [review article

    NASA Astrophysics Data System (ADS)

    Lamberti, C.

    2004-05-01

    In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques. Among them, a leading role has been certainly played by those exploiting synchrotron radiation (SR) sources. In fact synchrotron radiation has distinct advantages as a photon source, notably high brilliance and continuous energy spectrum; by using the latter characteristic atomic selectivity can be obtained and this is of fundamental help to investigate the structural environment of atoms present only in a few angstrom (Å) thick interface layers of heterostructures. The third generation synchrotron radiation sources have allowed to reach the limit of measuring a monolayer of material, corresponding to about 10 14 atoms/cm 2. Since, in the last decade, the use of intentionally strained heterostructures has greatly enhanced the performance of electrical and electro-optical semiconductor, a particular attention will be devoted to intentionally strained superlattices. First the effect of strain on the band lineups alignments in strained heterostructures will be discussed deeply. Then the attention will be focused on to review the most important results obtained by several groups in the characterization of semiconductor heterostructures using the following structural SR techniques: (i) X-ray absorption-based techniques such as EXAFS, polarization-dependent EXAFS, surface EXAFS and NEXAFS (or XANES); (ii) X-ray diffraction-based techniques such as high-resolution XRD, grazing incidence XRD, XRD reciprocal space maps, X-ray standing waves and diffraction anomalous fine structure (DAFS); (iii

  19. Radiation protection guidance for activities in low-Earth orbit.

    PubMed

    Townsend, L W; Fry, R J M

    2002-01-01

    Scientific Committee 75 (SC 75) of the National Council on Radiation Protection and Measurements (NCRP) was assembled for the purpose of providing guidance to NASA concerning radiation protection in low-Earth orbit. The report of SC 75 was published in December 2000 as NCRP Report No. 132. In this presentation an overview of the findings and recommendations of the committee report will be presented.

  20. A gamma-ray testing technique for spacecraft. [considering cosmic radiation effects

    NASA Technical Reports Server (NTRS)

    Gribov, B. S.; Repin, N. N.; Sakovich, V. A.; Sakharov, V. M.

    1977-01-01

    The simulated cosmic radiation effect on a spacecraft structure is evaluated by gamma ray testing in relation to structural thickness. A drawing of the test set-up is provided and measurement errors are discussed.

  1. The study of decreasing toxicity of cigarettes with the radiational technique

    NASA Astrophysics Data System (ADS)

    Chengkui, Tang; Yun, Zhang; Jinju, Xu

    This is a report of the decreasing toxicity of cigarettes. All results of different experimental methods used show that through Co 60-γ radiation treatment the amount of carcinogenic substance in the cigarette smoke condensate obviously decreased.

  2. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  3. An evaluation of planning techniques for stereotactic body radiation therapy in lung tumors

    PubMed Central

    Wu, Jianzhou; Li, Huiling; Shekhar, Raj; Suntharalingam, Mohan; D’Souza, Warren

    2009-01-01

    Purpose To evaluate four planning techniques for stereotactic body radiation therapy (SBRT) in lung tumors. Methods and Materials Four SBRT plans were performed for 12 patients with stage I/II non-small-cell lung cancer under the following conditions: (1) conventional margins on free-breathing CT (plan 1), (2) generation of an internal target volume (ITV) using 4DCT with beam delivery under free-breathing conditions (plan 2), (3) gating at end-exhale (plan 3), and (4) gating at end-inhale (plan 4). Planning was performed following the RTOG 0236 protocol with a prescription dose of 54Gy (3 fractions). For each plan 4D dose was calculated using deformable image registration. Results There was no significant difference in tumor dose delivered by the 4 plans. However, compared with plan 1, plans 2-4 reduced total lung BED by 1.9±1.2Gy, 3.1±1.6Gy and 3.5±2.1Gy, reduced mean lung dose by 0.8±0.5Gy, 1.5±0.8Gy, and 1.6±1.0Gy, reduced V20 by 1.5±1.0%, 2.7±1.4%, and 2.8±1.8% respectively with p<0.01. Compared with plan 2, plans 3-4 reduced lung BED by 1.2±1.0Gy and 1.6±1.5Gy, reduced mean lung dose by 0.6±0.5Gy and 0.8±0.7Gy, reduced V20 by 1.2±1.1% and 1.3±1.5% respectively with p<0.01. The differences in lung BED, mean dose and V20 of plan 4 compared with plan 3 are insignificant. Conclusions Tumor dose coverage was statistically insignificant between all plans. However, compared with plan 1, plans 2-4 significantly reduced lung doses. Compared with plan 2, plan 3-4 also reduced lung toxicity. The difference in lung doses between plan 3 and plan 4 was not significant. PMID:18359529

  4. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  5. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    NASA Astrophysics Data System (ADS)

    Hollstein, André; Fischer, Jürgen

    2012-05-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  6. Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts

    NASA Astrophysics Data System (ADS)

    Novak, G. S.; Ostriker, J. P.; Ciotti, L.

    2012-12-01

    To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.

  7. Systematic measurements of whole-body dose distributions for various treatment machines and delivery techniques in radiation therapy

    SciTech Connect

    Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe

    2012-12-15

    Purpose: Contemporary radiotherapy treatment techniques, such as intensity-modulated radiation therapy and volumetric modulated arc therapy, could increase the radiation-induced malignancies because of the increased beam-on time, i.e., number of monitor units needed to deliver the same dose to the target and the larger volume irradiated with low doses. In this study, whole-body dose distributions from typical radiotherapy patient plans using different treatment techniques and therapy machines were measured using the same measurement setup and irradiation intention. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from 6 MV beams were compared in terms of treatment technique (3D-conformal, intensity-modulated radiation therapy, volumetric modulated arc therapy, helical TomoTherapy, stereotactic radiotherapy, hard wedges, and flattening filter-free radiotherapy) and therapy machine (Elekta, Siemens and Varian linear accelerators, Accuray CyberKnife and TomoTherapy). Results: Close to the target, the doses from intensity-modulated treatments (including flattening filter-free) were below the dose from a static treatment plan, whereas the CyberKnife showed a larger dose by a factor of two. Far away from the treatment field, the dose from intensity-modulated treatments showed an increase in dose from stray radiation of about 50% compared to the 3D-conformal treatment. For the flattening filter-free photon beams, the dose from stray radiation far away from the target was slightly lower than the dose from a static treatment. The CyberKnife irradiation and the treatment using hard wedges increased the dose from stray radiation by nearly a factor of three compared to the 3D-conformal treatment. Conclusions: This study showed that the dose outside of the treated volume is influenced by several sources. Therefore, when comparing different treatment techniques

  8. Treatment of waste water by a combined technique of radiation and conventional method

    NASA Astrophysics Data System (ADS)

    Sakumoto, A.; Miyata, T.

    Treatment of waste water by radiation in combination with a conventional method such as biological oxidation, coagulation with Fe 2(SO 4) 3, and ozonation has been studied for reducing necessary dose. Ethylene glycol ethers, polyoxyethylene n-nonyl phenyl ether (NPE), polyvinyl alcohol (PVA), ethylene glycol, phenol, and oxalic acid were used as a model pollutant. The combined use of radiation and biological oxidation markedly improved the removal of TOC in aqueous oxygenated solution of ethylene glycol ethers. The combined use of radiation and coagulation has remarkable effects on the reduction of TOC in aqueous deoxygenated solution of NPE or PVA. The simultaneous use of radiation and ozone gave a synergistic effect on oxidative degradation of organic pollutants. The synergistic effect was suggested to arise from chain reactions having a powerful oxidizing agent (OH radical). The rate of TOC removal by the process depended on dose rate. Aqueous solution of 150 mg/l oxalic acid was treated by the combined use of electron beams and ozone using a new type of irradiation vessel to reduce TOC with G(-TOC) of 87 at 2.3 × 10 7 rad/h. The simultaneous use of radiation and ozone is superior to the removal of TOC by other combined methods and can be applied irrespective of the type of organic matter.

  9. Spectral radiative kernel technique and the spectrally-resolved longwave feedbacks in the CMIP3 and CMIP5 experiments

    NASA Astrophysics Data System (ADS)

    Huang, Xianglei; Chen, Xiuhong; Soden, Brian; Liu, Xu

    2015-04-01

    Radiative feedback is normally discussed in terms of Watts per square meter per K, i.e., the change of broadband flux due to the change of certain climate variable in response to 1K change in global-mean surface temperature. However, the radiative feedback has an intrinsic dimension of spectrum and spectral radiative feedback can be defined in terms of Watts per square meter per K per frequency (or per wavelength). A set of all-sky and clear-sky longwave (LW) spectral radiative kernels (SRK) are constructed using a recently developed spectral flux simulator based on the PCRTM (Principal-Component-based Radiative Transfer Model). The LW spectral radiative kernels are validated against the benchmark partial radiative perturbation method. The LW broadband feedbacks derived using this SRK method are consistent with the published results using the broadband radiative kernels. The SRK is then applied to 12 GCMs in CMIP3 archives and 12 GCMs in CMIP5 archives to derive the spectrally resolved Planck, lapse rate, and LW water vapor feedbacks. The inter-model spreads of the spectral lapse-rate feedbacks among the CMIP3 models are noticeably different than those among the CMIP5 models. In contrast, the inter-model spread of spectral LW water vapor feedbacks changes little from the CMIP3 to CMIP5 simulations, when the specific humidity is used as the state variable. Spatially the far-IR band is more responsible for the changes in lapse-rate feedbacks from the CMIP3 to CMIP5 than the window band. When relative humidity (RH) is used as state variable, virtually all GCMs have little broadband RH feedbacks as shown in Held & Shell (2012). However, the RH feedbacks can be significantly non-zero over different LW spectral regions and the spectral details of such RH feedbacks vary significantly from one GCM to the other. Finally an interpretation based on a one-layer atmospheric model is presented to illustrate under what statistical circumstances the linear technique can be applied

  10. On piecewise interpolation techniques for estimating solar radiation missing values in Kedah

    SciTech Connect

    Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu

    2014-12-04

    This paper discusses the use of piecewise interpolation method based on cubic Ball and Bézier curves representation to estimate the missing value of solar radiation in Kedah. An hourly solar radiation dataset is collected at Alor Setar Meteorology Station that is taken from Malaysian Meteorology Deparment. The piecewise cubic Ball and Bézier functions that interpolate the data points are defined on each hourly intervals of solar radiation measurement and is obtained by prescribing first order derivatives at the starts and ends of the intervals. We compare the performance of our proposed method with existing methods using Root Mean Squared Error (RMSE) and Coefficient of Detemination (CoD) which is based on missing values simulation datasets. The results show that our method is outperformed the other previous methods.

  11. The application of color display techniques for the analysis of Nimbus infrared radiation data

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Cherrix, G. T.; Ausfresser, H.

    1972-01-01

    A color enhancement system designed for the Applications Technology Satellite (ATS) spin scan experiment has been adapted for the analysis of Nimbus infrared radiation measurements. For a given scene recorded on magnetic tape by the Nimbus scanning radiometers, a virtually unlimited number of color images can be produced at the ATS Operations Control Center from a color selector paper tape input. Linear image interpolation has produced radiation analyses in which each brightness-color interval has a smooth boundary without any mosaic effects. An annotated latitude-longitude gridding program makes it possible to precisely locate geophysical parameters, which permits accurate interpretation of pertinent meteorological, geological, hydrological, and oceanographic features.

  12. Radiation tolerance of CMOS monolithic active pixel sensors with self-biased pixels

    NASA Astrophysics Data System (ADS)

    Deveaux, M.; Amar-Youcef, S.; Besson, A.; Claus, G.; Colledani, C.; Dorokhov, M.; Dritsa, C.; Dulinski, W.; Fröhlich, I.; Goffe, M.; Grandjean, D.; Heini, S.; Himmi, A.; Hu, C.; Jaaskelainen, K.; Müntz, C.; Shabetai, A.; Stroth, J.; Szelezniak, M.; Valin, I.; Winter, M.

    2010-12-01

    CMOS monolithic active pixel sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the dead time free, so-called self bias pixel. Moreover, we introduce radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad.

  13. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  14. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  15. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  16. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  17. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect

    Ueno, Ai; Suzuki, Yuji

    2014-03-03

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  18. Changes in biologically active ultraviolet radiation reaching the Earth's surface.

    PubMed

    McKenzie, Richard L; Björn, Lars Olof; Bais, Alkiviadis; Ilyasad, Mohammad

    2003-01-01

    Since publication of the 1998 UNEP Assessment, there has been continued rapid expansion of the literature on UV-B radiation. Many measurements have demonstrated the inverse relationship between column ozone amount and UV radiation, and in a few cases long-term increases due to ozone decreases have been identified. The quantity, quality and availability of ground-based UV measurements relevant to assessing the environmental impacts of ozone changes continue to improve. Recent studies have contributed to delineating regional and temporal differences due to aerosols, clouds, and ozone. Improvements in radiative transfer modelling capability now enable more accurate characterization of clouds, snow-cover, and topographical effects. A standardized scale for reporting UV to the public has gained wide acceptance. There has been increased use of satellite data to estimate geographic variability and trends in UV. Progress has been made in assessing the utility of satellite retrievals of UV radiation by comparison with measurements at the Earth's surface. Global climatologies of UV radiation are now available on the Internet. Anthropogenic aerosols play a more important role in attenuating UV irradiances than has been assumed previously, and this will have implications for the accuracy of UV retrievals from satellite data. Progress has been made inferring historical levels of UV radiation using measurements of ozone (from satellites or from ground-based networks) in conjunction with measurements of total solar radiation obtained from extensive meteorological networks. We cannot yet be sure whether global ozone has reached a minimum. Atmospheric chlorine concentrations are beginning to decrease. However, bromine concentrations are still increasing. While these halogen concentrations remain high, the ozone layer remains vulnerable to further depletion from events such as volcanic eruptions that inject material into the stratosphere. Interactions between global warming and

  19. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    NASA Astrophysics Data System (ADS)

    Popov, V.

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  20. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  1. Using luminescent materials as the active element for radiation sensors

    NASA Astrophysics Data System (ADS)

    Hollerman, William A.; Fontenot, Ross S.; Williams, Stephen; Miller, John

    2016-05-01

    Ionizing radiation poses a significant challenge for Earth-based defense applications as well as human and/or robotic space missions. Practical sensors based on luminescence will depend heavily upon research investigating the resistance of these materials to ionizing radiation and the ability to anneal or self-heal from damage caused by such radiation. In 1951, Birks and Black showed experimentally that the luminescent efficiency of anthracene bombarded by alphas varies with total fluence (N) as (I/I0) = 1/(1 + AN), where I is the luminescence yield, I0 is the initial yield, and A is a constant. The half brightness (N1/2) is defined as the fluence that reduce the emission light yield to half and is equal to is the inverse of A. Broser and Kallmann developed a similar relationship to the Birks and Black equation for inorganic phosphors irradiated using alpha particles. From 1990 to the present, we found that the Birks and Black relation describes the reduction in light emission yield for every tested luminescent material except lead phosphate glass due to proton irradiation. These results indicate that radiation produced quenching centers compete with emission for absorbed energy. The purpose of this paper is to present results from research completed in this area over the last few years. Particular emphasis will be placed on recent measurements made on new materials such as europium tetrakis dibenzoylmethide triethylammonium (EuD4TEA). Results have shown that EuD4TEA with its relatively small N1/2 might be a good candidate for use as a personal proton fluence sensor.

  2. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.

    PubMed

    Şahin, Serdar; Güneş Tanır, A; Meriç, Niyazi; Aydınkarahaliloğlu, Ercan

    2015-09-01

    The radiation dose delivered to the target by using different radiotherapy applications has been measured with the help of beryllium oxide (BeO) dosimeters to be placed inside the rando phantom. Three-Dimensional Conformal Radiotherapy (3DCRT), Intensity-Modulated Radiotherapy (IMRT) and Intensity-Modulated Arc Therapy (IMAT) have been used as radiotherapy application. Individual treatment plans have been made for the three radiotherapy applications of rando phantom. The section 4 on the phantom was selected as target and 200 cGy doses were delivered. After the dosimeters placed on section 4 (target) and the sections 2 and 6 (non-target) were irradiated, the result was read through the OSL technique on the Risø TL/OSL system. This procedure was repeated three times for each radiotherapy application. The doses delivered to the target and the non-target sections as a result of the 3DCRT, IMRT and IMAT plans were analyzed. The doses received by the target were measured as 204.71 cGy, 204.76 cGy and 205.65 cGy, respectively. The dose values obtained from treatment planning system (TPS) were compared to the dose values obtained using the OSL technique. It has been concluded that, the radiation dose can be measured with the OSL technique by using BeO dosimeters in medical practices.

  3. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.

    2014-07-01

    X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.

  4. Configuration studies for active electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Joshi, Ravindra P.; Qiu, Hao; Tripathi, Ram K.

    2013-07-01

    Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. Space crews traveling aboard interplanetary spacecraft will be exposed to a constant flux of galactic cosmic rays (GCR), as well as intense fluxes of charged particles during solar particle events (SPEs). A recent report (Tripathi et al., Adv. Space Res. 42 (2008) 1043-1049), had explored the feasibility of using electrostatic shielding in concert with the state-of-the-art materials shielding technologies. Here we continue to extend the electrostatic shielding strategy and quantitatively examine a different configuration based on multiple toroidal rings. Our results show that SPE radiation can almost be eliminated by these electrostatic configurations. Also, penetration probabilities for novel structures such as toroidal rings are shown to be substantially reduced as compared to the simpler all-sphere geometries. More interestingly, the dimensions and aspect ratio of the toroidal rings could be altered and optimized to achieve an even higher degree of radiation protection.

  5. Engineering of radiation of optically active molecules with chiral nano-meta-particles

    NASA Astrophysics Data System (ADS)

    Klimov, V. V.; Guzatov, D. V.; Ducloy, M.

    2012-02-01

    The radiation of an optically active (chiral) molecule placed near a chiral nanosphere is investigated. The optimal conditions for engineering of radiation of optically active (chiral) molecules with the help of chiral nanoparticles are derived. It is shown that for this purpose, the substance of the chiral particle must have both ɛ and μ negative (double negative material (DNG)) or negative μ and positive ɛ (μ negative material (MNG)). Our results pave the way to an effective engineering of radiation of "left" and "right" molecules and to creating pure optical devices for separation of drugs enantiomers.

  6. Interaction of Ionizing Radiation, Genetically Active Chemicals, and Radiofrequency Radiation in Human and Rodent Cells

    DTIC Science & Technology

    1990-12-01

    proflavin , a drug known to intercalate with DNA. Again, when cells were exposed simultaneously to RFR SAR = 40.8- + 13.4 (SD) W/kg or 40 W/kg at power...densities of 87 or 65 mW/cm ), no effect of the RFR on the proflavin induced mutagenicity was observed (Meltz et al., 1990). SCE Induction Previously...Meltz ML, Eagan P, and Erwin DN (1990). Proflavin and Microwave Radiation: Absence of a Mutagenic Interaction. Bioelectromagnetics 11:149-157. Ciaravino

  7. Two example applications of optimization techniques to US Department of Energy contractor radiation protection programs

    SciTech Connect

    Merwin, S.E.; Martin, J.B.; Selby, J.M.; Vallario, E.J.

    1986-01-01

    Six numerical examples of optimization of radiation protection are provided in the appendices of ICRP Publication 37. In each case, the calculations are based on fairly well defined parameters and assumptions that were well understood. In this paper, we have examined two numerical examples that are based on empirical data and less certain assumptions. These examples may represent typical applications of optimization principles to the evaluation of specific elements of a radiation protection program. In the first example, the optimum bioassay frequency for tritium workers was found to be once every 95 days, which compared well with ICRP Publication 10 recommendations. However, this result depended heavily on the assumption that the value of a potential undetected rem was US $1000. The second example showed that the optimum frequency for recalibrating Cutie Pie (CP) type ionization chamber survey instruments was once every 102 days, which compared well with the Hanford standard frequency of once every 90 days. This result depended largely on the assumption that an improperly operating CP instrument could lead to a serious overexposure. These examples have led us to conclude that optimization of radiation protection programs must be a very dynamic process. Examples must be recalculated as empirical data expand and improve and as the uncertainties surrounding assumptions are reduced.

  8. Analysis of space radiation effects in gallium arsenide and cadmium selenide semiconductor samples using luminescence spectroscopic techniques. Master's thesis

    SciTech Connect

    Shaffer, B.L.

    1990-12-01

    Analysis of space radiation effects in gallium arsenide and cadmium selenide semiconductor samples using luminescence spectroscopic techniques. The M0006 semiconductor samples were placed into a 28.5 degree inclination, 480 km altitude, near-circular orbit aboard the Long Duration Exposure Facility satellite and exposed to direct space environment for a period of 11 months, and were shielded by 0.313 inches of aluminum for another 58 months. The samples were examined for changes using cathodoluminescence and photoluminescence in various wavelength regions from 0.5 to 1.8 micrometers. Samples were cooled to approximately 10 degrees Kelvin in a vacuum of 10-8. (JS)

  9. Effects of natural radiation, photosynthetically active radiation and artificial ultraviolet radiation-B on the chloroplast organization and metabolism of Porphyra acanthophora var. brasiliensis (Rhodophyta, Bangiales).

    PubMed

    Bouzon, Zenilda L; Chow, Fungyi; Zitta, Carmen S; dos Santos, Rodrigo W; Ouriques, Luciane C; Felix, Marthiellen R de L; Osorio, Luz K P; Gouveia, Claudiane; Martins, Roberta de Paula; Latini, Alexandra; Ramlov, Fernanda; Maraschin, Marcelo; Schmidt, Eder C

    2012-12-01

    We undertook a study of Porphyra acanthophora var. brasiliensis to determine its responses under ambient conditions, photosynthetically active radiation (PAR), and PAR+UVBR (ultraviolet radiation-B) treatment, focusing on changes in ultrastructure, and cytochemistry. Accordingly, control ambient samples were collected in the field, and two different treatments were performed in the laboratory. Plants were exposed to PAR at 60 μmol photons m-2 s-1 and PAR + UVBR at 0.35 W m-2 for 3 h per day during 21 days of in vitro cultivation. Confocal laser scanning microscopy analysis of the vegetative cells showed single stellate chloroplast in ambient and PAR samples, but in PAR+UVBR-exposed plants, the chloroplast showed alterations in the number and form of arms. Under PAR+UVBR treatment, the thylakoids of the chloroplasts were disrupted, and an increase in the number of plastoglobuli was observed, in addition to mitochondria, which appeared with irregular, disrupted morphology compared to ambient and PAR samples. After UVBR exposure, the formation of carpospores was also observed. Plants under ambient conditions, as well as those treated with PAR and PAR+UVBR, all showed different concentrations of enzymatic response, including glutathione peroxidase and reductase activity. In summary, the present study demonstrates that P. acanthophora var. brasiliensis shows the activation of distinct mechanisms against natural radiation, PAR and PAR+UVBR.

  10. [Influence of ionizing radiation on activity of enzymes of antioxidant defense of Paecilomyces lilaclvus (Thom) Samson].

    PubMed

    Tuhaĭ, T I

    2011-01-01

    The level of activity of antioxidant protection enzymes (superoxide dismutase, catalase and peroxidase) under exposure to ionizing radiation and without it in strain Paecilomyces lilacinus, showing radioadaptive properties, and in control one has been investigated. It has been established that the researched strains are characterized by the high level activity of superoxide dismutase (200-800 AU/mg protein), extracellular and intracellular catalase (0.02-40 mmol min(-1) mg(-1) protein) and peroxidase (0.2-4 mmol min(-1) mg(-1) protein). Ionizing radiation was the inducer of significant changes in antioxidant enzyme activity of the control strain (from the lack of influence to the change of activity by an order) and showed considerably less influence on their activity in the strain, showing radioadaptive properties (the activity changes by 40-50%). The complex response of antioxidant enzymes in investigated strains under the exposure to ionizing radiation has been revealed.

  11. Radiation processing techniques in remediation of pollutants, and the role of the IAEA in supporting capacity building in developing countries

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, S. Mohammad.; Sampa, M. H.; Safrany, A.; Sabharwal, S.; Ramamoorthy, N.

    2012-08-01

    Radiation treatment, or a combination of radiation with conventional biological-chemical-physical processes, can help in the remediation of contaminated surfaces and in combating industrial chemical effluents and air pollution. The use of ionizing radiation as a powerful tool for inactivation of microbes is a valuable option to address likely threats from biohazard contamination that could be introduced either deliberately or inadvertently into areas where the public are exposed to, as well as for treatment of volatile organic compounds and similar hazardous chemical agents is an emerging development in tackling harmful pollutants. The role of the IAEA has been crucial both in supporting the development of local capabilities as well as in fostering international cooperation due to the multidisciplinary expertise required for achieving sustainable benefits. The IAEA is implementing Coordinated Research Projects, (CRP) thematic topical reviews of issues and challenges involved, and Technical Cooperation (TC) assistance in establishing and maintaining infrastructure in the MS. This paper will give an insight into the above mentioned IAEA activities, with examples of successes achieved through CRPs, as well as challenges on the road for broader dissemination of radiation processing technology for environmental remediation.

  12. Active and passive techniques for tiltrotor aeroelastic stability augmentation

    NASA Astrophysics Data System (ADS)

    Hathaway, Eric L.

    Tiltrotors are susceptible to whirl flutter, an aeroelastic instability characterized by a coupling of rotor-generated aerodynamic forces and elastic wing modes in high speed airplane-mode flight. The conventional approach to ensuring adequate whirl flutter stability will not scale easily to larger tiltrotor designs. This study constitutes an investigation of several alternatives for improving tiltrotor aerolastic stability. A whirl flutter stability analysis is developed that does not rely on more complex models to determine the variations in crucial input parameters with flight condition. Variation of blade flap and lag frequency, and pitch-flap, pitch-lag, and flap-lag couplings, are calculated from physical parameters, such as blade structural flap and lag stiffness distribution (inboard or outboard of pitch bearing), collective pitch, and precone. The analysis is used to perform a study of the influence of various design parameters on whirl flutter stability. While previous studies have investigated the individual influence of various design parameters, the present investigation uses formal optimization techniques to determine a unique combination of parameters that maximizes whirl flutter stability. The optimal designs require only modest changes in the key rotor and wing design parameters to significantly increase flutter speed. When constraints on design parameters are relaxed, optimized configurations are obtained that allow large values of kinematic pitch-flap (delta3) coupling without degrading aeroelastic stability. Larger values of delta3 may be desirable for advanced tiltrotor configurations. An investigation of active control of wing flaperons for stability augmentation is also conducted. Both stiff- and soft-inplane tiltrotor configurations are examined. Control systems that increase flutter speed and wing mode sub-critical damping are designed while observing realistic limits on flaperon deflection. The flaperon is shown to be particularly

  13. Degradation of Biochemical Activity in Soil Sterilized by Dry Heat and Gamma Radiation

    NASA Technical Reports Server (NTRS)

    Shih, K. L.; Souza, K. A.

    1978-01-01

    The effect of soil sterilization by dry heat (0.08% relative humidity), gamma radiation, or both on soil phosphatase, urease, and decarboxylase activity was studied. Soil sterilized by a long exposure to dry heat at relatively low temperatures (eight weeks at 100.5 C) retained higher activities than did soil exposed to a higher temperature (two weeks at 124.5 C), while all activity was destroyed by four days at 148.5 C. Sterilization with 7.5 Mrads destroyed less activity than did heat sterilization. The effect of several individually nonsterizing doses of heat radiation is described.

  14. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

    PubMed Central

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation. PMID:26697408

  15. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration.

    PubMed

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.

  16. Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers

    NASA Astrophysics Data System (ADS)

    Yoshii, Fumio; Suhartini, Meri; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu

    2003-08-01

    Poly(ɛ-caprolactone) (PCL) and poly(butylene succinate-co-adipate) (PBSA) were electron beam-irradiated in the presence of five different polyfunctional monomers at ambient temperature. Trimethallyl isocyanurate (TMAIC) has been found to greatly enhance the radiation crosslinking of PCL and PBSA. It was pointed out that the optimum yield of gel fraction can be achieved when the polymers were irradiated at a dose of 50 kGy in the presence of 1% TMAIC. High gel fraction largely improves heat stability of PBSA, while biodegradability evaluated by soil burial test of the crosslinked polymers is slightly retarded, however they are effectively destroyed with a slightly smaller rate.

  17. Reverse Monte Carlo studies of CeO2 using neutron and synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Clark, Adam H.; Marchbank, Huw R.; Hyde, Timothy I.; Playford, Helen Y.; Tucker, Matthew G.; Sankar, Gopinathan

    2017-03-01

    A reverse Monte Carlo analysis method was employed to extract the structure of CeO2 from Neutron total scattering (comprising both neutron diffraction (ND) and pair-distribution functions (PDF) and Ce L3- and K-edge EXAFS data. Here it is shown that there is a noticeable difference between using short ranged x-ray absorption spectroscopy data and using medium-long range PDF and ND data in regards to the disorder of the cerium atoms. This illustrates the importance of considering multiple length scales and radiation sources.

  18. Numerical technique for solving the radiative transfer equation for a spherical shell atmosphere.

    PubMed

    Herman, B M; Ben-David, A; Thome, K J

    1994-03-20

    A method for numerically solving the equation of radiative transfer in a spherical shell atmosphere is presented. The method uses a conical boundary and a Gauss-Seidel iteration scheme to solve for all orders of scattering along a single radial line in the atmosphere. Tests of the model indicate an accuracy better than 1% for most Earth-atmosphere situations. Results from this model are compared with flat-atmosphere model results for a scattering-only atmosphere. These comparisons indicate that excluding spherical effects for solar zenith angles greater than 85° leads to errors larger than 5% at optical depths as small as 0.10.

  19. Investigation of microscopic radiation damage in waste forms using ODNMR and AEM techniques. (EMSP Project Final Report)

    SciTech Connect

    Liu, G.; Luo, J.; Beitz, J.; Li, S.; Williams, C.; Zhorin, V.

    2000-04-21

    This project seeks to understand the microscopic effects of radiation damage in nuclear waste forms. The authors' approach to this challenge encompasses studies of ceramics and glasses containing short-lived alpha- and beta-emitting actinides with electron microscopy, laser and X-ray spectroscopic techniques, and computational modeling and simulations. In order to obtain information on long-term radiation effects on waste forms, much of the effort is to investigate {alpha}-decay induced microscopic damage in 18-year old samples of crystalline yttrium and lutetium orthophosphates that initially contained {approximately} 1(wt)% of the alpha-emitting isotope {sup 244}Cm (18.1 y half life). Studies also are conducted on borosilicate glasses that contain {sup 244}Cm, {sup 241}Am, or {sup 249}Bk, respectively. The authors attempt to gain clear insights into the properties of radiation-induced structure defects and the consequences of collective defect-environment interactions, which are critical factors in assessing the long-term performance of high-level nuclear waste forms.

  20. Choosing an Intensity-Modulated Radiation Therapy Technique in the Treatment of Head-and-Neck Cancer

    SciTech Connect

    Lee, Nancy . E-mail: leen2@mskcc.org; Mechalakos, James; Puri, Dev R.; Hunt, Margie

    2007-08-01

    Purpose: With the emerging use of intensity-modulated radiation therapy (IMRT) in the treatment of head-and-neck cancer, selection of technique becomes a critical issue. The purpose of this article is to establish IMRT guidelines for head-and-neck cancer at a given institution. Methods and Materials: Six common head-and-neck cancer cases were chosen to illustrate the points that must be considered when choosing between split-field (SF) IMRT, in which the low anterior neck (LAN) is treated with an anterior field, and the extended whole-field (EWF) IMRT in which the LAN is included with the IMRT fields. For each case, the gross tumor, clinical target, and planning target volumes and the surrounding critical normal tissues were delineated. Subsequently, the SF and EWF IMRT plans were compared using dosimetric parameters from dose-volume histograms. Results: Target coverage and doses delivered to the critical normal structures were similar between the two different techniques. Cancer involving the nasopharynx and oropharynx are best treated with the SF IMRT technique to minimize the glottic larynx dose. The EWF IMRT technique is preferred in situations in which the glottic larynx is considered as a target, i.e., cancer of the larynx, hypopharynx, and unknown head-and-neck primary. When the gross disease extends inferiorly and close to the glottic larynx, EWF IMRT technique is also preferred. Conclusion: Depending on the clinical scenario, different IMRT techniques and guidelines are suggested to determine a preferred IMRT technique. We found that having this treatment guideline when treating these tumors ensures a smoother flow for the busy clinic.

  1. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques

    NASA Astrophysics Data System (ADS)

    Kaetsu, Isao; Kumakura, Minoru; Fujimura, Takashi; Kasai, Noboru; Tamada, Masao

    The recent results of immobilization of cellulase-producing cells and ethanol-fermentation yeast by radiation were reported. The enzyme of cellulase produced by immobilized cells was used for saccharification of lignocellulosic wastes and immobilized yeast cells were used for fermentation reaction from glucose to ethanol. The wastes such as chaff and bagasse were treated by γ-ray or electron-beam irradiation in the presence of alkali and subsequent mechanical crushing, to form a fine powder less than 50 μm in diameter. On the other hand, Trichoderma reesei as a cellulase-producing microbial cell was immobilized on a fibrous carrier having a specific porous structure and cultured to produce cellulase. The enzymatic saccharification of the pretreated waste was carried out using the produced cellulase. The enhanced fermentation process to produce ethanol from glucose with the immobilized yeast by radiation was also studied. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.

  2. Long-Term Outcomes of Patients With Spinal Cord Gliomas Treated by Modern Conformal Radiation Techniques

    SciTech Connect

    Kahn, Jenna; Loeffler, Jay Steven; Niemierko, Andrzej

    2011-09-01

    Purpose: This study retrospectively examines the long-term therapeutic outcomes of 32 patients with primary spinal cord gliomas at Massachusetts General Hospital between 1991 and 2005 treated by either photon intensity-modulated radiotherapy or conformal proton radiotherapy. Methods and Materials: Individual patient tumor types included 14 ependymomas, 17 astrocytomas, and one oligodendroglioma. Twenty-two patients were treated with photon beam radiation therapy, and 10 patients were treated with proton beam therapy. The overall survival and time to progression were analyzed. Average radiation dose for patients was 51 Gy in 1.8 median daily fractions over 29 treatments. Results: For all 32 patients, the overall 5-year survival was 65% and the progression-free survival was 61%, respectively. Overall survival was significantly worse for patients more than 55 years of age (p = 0.02). Ependymoma patients had significantly longer survival times than astrocytoma patients (p = 0.05). Patients who had undergone a biopsy developed worse outcomes then those with a resection (p = 0.05). With the caveat of a limited number of patients, the multivariate model seems to suggest improved overall survival for younger patients (<54 years of age), ependymoma histology, and photon vs. proton treatment. Conclusion: For patients with spinal cord gliomas, significant factors associated with patient outcome include tumor pathology, age, extent of surgery, and treatment.

  3. A radiation-hardened two transistor memory cell for monolithic active pixel sensors in STAR experiment

    NASA Astrophysics Data System (ADS)

    Wei, X.; Gao, D.; Dorokhov, A.; Hu, Y.

    2011-01-01

    Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) is dramatically decreased when intellectual property (IP) memories are integrated for fast readout application. This paper presents a new solution to improve radiation hardness and avoid latch-up for memory cell design. The tradeoffs among radiation tolerance, area and speed are significantly considered and analyzed. The cell designed in 0.35 μm process satisfies the radiation tolerance requirements of STAR experiment. The cell size is 4.55 × 5.45 μm2. This cell is smaller than the IP memory cell based on the same process and is only 26% of a radiation tolerant 6T SRAM cell used in previous contribution. The write access time of the cell is less than 2 ns, while the read access time is 80 ns.

  4. Successful Application of Active Learning Techniques to Introductory Microbiology.

    ERIC Educational Resources Information Center

    Hoffman, Elizabeth A.

    2001-01-01

    Points out the low student achievement in microbiology courses and presents an active learning method applied in an introductory microbiology course which features daily quizzes, cooperative learning activities, and group projects. (Contains 30 references.) (YDS)

  5. Total-body irradiation on an isocentric linear accelerator: a radiation output compensation technique.

    PubMed

    Hugtenburg, R P; Turner, J R; Baggarley, S P; Pinchin, D A; Oien, N A; Atkinson, C H; Tremewan, R N

    1994-05-01

    A treatment technique for total-body irradiation (TBI) is proposed that combines arc therapy with dynamic output control to achieve high-grade dose uniformity. The patient lies on a low couch and receives exposure in the prone and supine positions from a modulated arcing beam. The technique has been validated using a personal computer to control the linear accelerator and we demonstrate that only minor alterations to current dynamic therapy systems would be required. We have examined the practical application of this treatment with emphasis on methods of conformal therapy where an optimized dose distribution is prepared from a matrix of caliper measurements taken from the patient. This technique provides a means for regular TBI treatment on a computer-controlled linear accelerator that is easy to set up, requires short exposure times and is comfortable for the patient.

  6. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed.

  7. A Population-Based Comparative Effectiveness Study of Radiation Therapy Techniques in Stage III Non-Small Cell Lung Cancer

    SciTech Connect

    Harris, Jeremy P.; Murphy, James D.; Hanlon, Alexandra L.; Le, Quynh-Thu; Loo, Billy W.; Diehn, Maximilian

    2014-03-15

    Purpose: Concerns have been raised about the potential for worse treatment outcomes because of dosimetric inaccuracies related to tumor motion and increased toxicity caused by the spread of low-dose radiation to normal tissues in patients with locally advanced non-small cell lung cancer (NSCLC) treated with intensity modulated radiation therapy (IMRT). We therefore performed a population-based comparative effectiveness analysis of IMRT, conventional 3-dimensional conformal radiation therapy (3D-CRT), and 2-dimensional radiation therapy (2D-RT) in stage III NSCLC. Methods and Materials: We used the Surveillance, Epidemiology, and End Results (SEER)-Medicare database to identify a cohort of patients diagnosed with stage III NSCLC from 2002 to 2009 treated with IMRT, 3D-CRT, or 2D-RT. Using Cox regression and propensity score matching, we compared survival and toxicities of these treatments. Results: The proportion of patients treated with IMRT increased from 2% in 2002 to 25% in 2009, and the use of 2D-RT decreased from 32% to 3%. In univariate analysis, IMRT was associated with improved overall survival (OS) (hazard ratio [HR] 0.90, P=.02) and cancer-specific survival (CSS) (HR 0.89, P=.02). After controlling for confounders, IMRT was associated with similar OS (HR 0.94, P=.23) and CSS (HR 0.94, P=.28) compared with 3D-CRT. Both techniques had superior OS compared with 2D-RT. IMRT was associated with similar toxicity risks on multivariate analysis compared with 3D-CRT. Propensity score matched model results were similar to those from adjusted models. Conclusions: In this population-based analysis, IMRT for stage III NSCLC was associated with similar OS and CSS and maintained similar toxicity risks compared with 3D-CRT.

  8. Application of modified dynamic conformal arc (MDCA) technique on liver stereotactic body radiation therapy (SBRT) planning following RTOG 0438 guideline

    SciTech Connect

    Shi, Chengyu Chen, Yong; Fang, Deborah; Iannuzzi, Christopher

    2015-04-01

    Liver stereotactic body radiation therapy (SBRT) is a feasible treatment method for the nonoperable, patient with early-stage liver cancer. Treatment planning for the SBRT is very important and has to consider the simulation accuracy, planning time, treatment efficiency effects etc. The modified dynamic conformal arc (MDCA) technique is a 3-dimensional conformal arc planning method, which has been proposed for liver SBRT planning at our center. In this study, we compared the MDCA technique with the RapidArc technique in terms of planning target volume (PTV) coverage and sparing of organs at risk (OARs). The results show that the MDCA technique has comparable plan quality to RapidArc considering PTV coverage, hot spots, heterogeneity index, and effective liver volume. For the 5 PTVs studied among 4 patients, the MDCA plan, when compared with the RapidArc plan, showed 9% more hot spots, more heterogeneity effect, more sparing of OARs, and lower liver effective volume. The monitor unit (MU) number for the MDCA plan is much lower than for the RapidArc plans. The MDCA plan has the advantages of less planning time, no-collision treatment, and a lower MU number.

  9. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    SciTech Connect

    Johnsen, Amanda M.; Heidrich, Brenden; Durrant, Chad; Bascom, Andrew; Unlu, Kenan

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  10. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  11. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    SciTech Connect

    Wang, Junru; Kulkarni, Ashwini; Chintala, Madhu; Fink, Louis M.; Hauer-Jensen, Martin

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  12. Stanford Synchrotron Radiation Laboratory activity report for 1986

    SciTech Connect

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  13. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    SciTech Connect

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

  14. Comparison of adaptive radiotherapy techniques for external radiation therapy of canine bladder cancer.

    PubMed

    Nieset, Jessica R; Harmon, Joseph F; Johnson, Thomas E; Larue, Susan M

    2014-01-01

    Daily bladder variations make it difficult to utilize standard radiotherapy as a primary treatment option for muscle-invasive bladder cancer. Our purpose was to develop a model comparing dose distributions of image-guided and adaptive radiotherapy (ART) techniques for canine bladder cancer. Images were obtained retrospectively from cone-beam computed tomography (CBCT) scans used for daily positioning of four dogs undergoing fractionated image-guided radiotherapy (IGRT). Four different treatment plans were modeled for each dog, and dosimetric data were compared. Two plans were developed using planning target volumes based on planning computed tomography (CT) bladder volume. These plans then used bony anatomy or soft tissue anatomy for daily positioning and dosimetric modeling. The third plan type was a hybrid IGRT and ART technique utilizing a library of premade anisotropic planning target volumes using bladder wall motion data and selection of a "plan-of-the-day" determined from positioning CBCT bladder volumes. The fourth plan was an ART technique that constructed a new planning target volume each day based on daily bladder volume as determined by pretreatment CBCT. Dose volume histograms were generated for each plan type and dose distribution for the bladder and rectum were compared between plan types. Irradiated rectal volume decreased and irradiated bladder volume increased as plan conformality increased. ART provided the greatest rectal sparing, with lowest irradiated rectal volume (P < 0.001), and largest bladder volume receiving 95% of the prescription dose (P < 0.001). In our model, adaptive radiotherapy techniques for canine bladder cancer showed significant reduction in rectal volume irradiated when compared to nonadaptive techniques, while maintaining appropriate bladder coverage.

  15. Biologically weighted measurement of UV radiation in space and on Earth with the biofilm technique.

    PubMed

    Rettberg, P; Horneck, G

    2000-01-01

    Biological dosimetry has provided experimental proof of the high sensitivity of the biologically effective UVB doses to changes in atmospheric ozone and has thereby confirmed the predictions from model calculations. The biological UV dosimeter 'biofilm' whose sensitivity is based on dried spores of B. subtilis as UV target weights the incident UV radiation according to its DNA damaging potential. Biofilm dosimetry was applicated in space experiments as well as in use in remote areas on Earth. Examples are long-term UV measurements in Antarctica, measurements of diurnal UV profiles parallel in time at different locations in Europe, continuous UV measurements in the frame of the German UV measurement network and personal UV dosimetry. In space biofilms were used to determine the biological efficiency of the extraterrestrial solar UV, to simulate the effects of decreasing ozone concentrations and to determine the interaction of UVB and vitamin D production of cosmonauts in the MIR station.

  16. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  17. Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  18. Analytical-HZETRN model for rapid assessment of active magnetic radiation shielding

    NASA Astrophysics Data System (ADS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  19. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment

    NASA Astrophysics Data System (ADS)

    Quej, Victor H.; Almorox, Javier; Arnaldo, Javier A.; Saito, Laurel

    2017-03-01

    Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The performance assessment indicates that the SVM technique with requirements of daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better performance than the other techniques and may be a promising alternative to the usual approaches for predicting solar radiation.

  20. Introducing Social Stratification and Inequality: An Active Learning Technique.

    ERIC Educational Resources Information Center

    McCammon, Lucy

    1999-01-01

    Summarizes literature on techniques for teaching social stratification. Describes the three parts of an exercise that enables students to understand economic and political inequality: students are given a family scenario, create household budgets, and finally rework the national budget with their family scenario groups. Discusses student…

  1. Report on policy and activities concerning public awareness of health effects of low-level radiation

    SciTech Connect

    1986-11-01

    In the summer of 1986, the Executive Committee authorized a study limited to determining policy and practices relevant to dissemination of information to the public on radiation health effects in three federal agencies. This report summarizes findings on two broad questions related to the communication issue: What, if any, are the policies under which federal agencies operate in disseminating information on health effects of radiation and what are the current programs and activities designed to provide the public information on health effects of radiation.

  2. Technique for inferring sizes of stellar-active regions

    SciTech Connect

    Dobson-Hockey, A.K.; Radick, R.R.

    1986-01-01

    Inspection of spectroheliograms showing large, well-developed active regions generally show the sunspots to lead the associated plage, in the sense of the solar rotation. Measurements have been made from spectroheliograms of spot-plage offsets and compared with nearly contemporaneous integrated disk observations. Larger active regions generally show larger spot leads; however, information regarding active-region sizes and spot-plage offsets is not readily obtainable form stellar-type observations of the Sun.

  3. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress.

    PubMed

    Klem, Karel; Holub, Petr; Štroch, Michal; Nezval, Jakub; Špunda, Vladimír; Tříska, Jan; Jansen, Marcel A K; Robson, T Matthew; Urban, Otmar

    2015-08-01

    The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation stress (HRS; defined by high intensities of PAR - 1000 μmol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley.

  4. Solving radiative transfer problems in highly heterogeneous media via domain decomposition and convergence acceleration techniques.

    PubMed

    Previti, Alberto; Furfaro, Roberto; Picca, Paolo; Ganapol, Barry D; Mostacci, Domiziano

    2011-08-01

    This paper deals with finding accurate solutions for photon transport problems in highly heterogeneous media fastly, efficiently and with modest memory resources. We propose an extended version of the analytical discrete ordinates method, coupled with domain decomposition-derived algorithms and non-linear convergence acceleration techniques. Numerical performances are evaluated using a challenging case study available in the literature. A study of accuracy versus computational time and memory requirements is reported for transport calculations that are relevant for remote sensing applications.

  5. Comparison of conformal radiation therapy techniques within the dynamic radiotherapy project 'Dynarad'.

    PubMed

    Mavroidis, P; Lind, B K; Van Dijk, J; Koedooder, K; De Neve, W; De Wagter, C; Planskoy, B; Rosenwald, J C; Proimos, B; Kappas, C; Claudia, D; Benassi, M; Chierego, G; Brahme, A

    2000-09-01

    The objective of the dynamic radiotherapy project 'Dynarad' within the European Community has been to compare and grade treatment techniques that are currently applied or being developed at the participating institutions. Cervical cancer was selected as the tumour site on the grounds that the involved organs at risk, mainly the rectum and the bladder, are very close to the tumour and partly located inside the internal target volume. In this work, a solid phantom simulating the pelvic anatomy was used by institutions in Belgium, France, Greece, Holland, Italy, Sweden and the United Kingdom. The results were evaluated using both biological and physical criteria. The main purpose of this parallel evaluation is to test the value of biological and physical evaluations in comparing treatment techniques. It is demonstrated that the biological objective functions allow a much higher conformality and a more clinically relevant scoring of the outcome. Often external beam treatment techniques have to be combined with intracavitary therapy to give clinically acceptable results. However, recent developments can reduce or even eliminate this need by delivering more conformal dose distributions using intensity modulated external dose delivery. In these cases the reliability of the patient set-up procedure becomes critical for the effectiveness of the treatment.

  6. Effects of UVB radiation on Photosynthesis Activity of Wolffia arrhiza as Probed by Chlorophyll Fluorescence Transient

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Chen, Kun; Liu, Yongding

    UV radiation is one major environmental stress for growth of Wolffia arrhiza which is regarded as a good candidate producer for establishing CELSS during extraterrestrial colonization and spaceflight. In this study, we found that UVB radiation inhibited photosynthetic CO2 assimilation activity significantly, and the content of chlorophyll a, chlorophyll b and carotenoids decreased obviously when plants were exposed to UVB radiation for 6 h. High UVB radiation also declined the quantum yield of primary photochemistry (φPo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (ψo) in the cells of Wolffia arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction center per absorption (RC/ABS) had the same changes under UV-B radiation stress. These results indicated that the effects of UV- B radiation on photosynthesis of Wolffia arrhiza maybe functioned by inhibition the electron transport and inactivation of reaction centers, but the inhibition maybe happen in more than one site in photosynthetic apparatus which is different to that in salt adaptation.

  7. Evaluation of scheduling techniques for payload activity planning

    NASA Technical Reports Server (NTRS)

    Bullington, Stanley F.

    1991-01-01

    Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.

  8. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  9. The influence of curricular and extracurricular learning activities on students' choice of chiropractic technique

    PubMed Central

    Sikorski, David M.; KizhakkeVeettil, Anupama; Tobias, Gene S.

    2016-01-01

    Objective: Surveys for the National Board of Chiropractic Examiners indicate that diversified chiropractic technique is the most commonly used chiropractic manipulation method. The study objective was to investigate the influences of our diversified core technique curriculum, a technique survey course, and extracurricular technique activities on students' future practice technique preferences. Methods: We conducted an anonymous, voluntary survey of 1st, 2nd, and 3rd year chiropractic students at our institution. Surveys were pretested for face validity, and data were analyzed using descriptive and inferential statistics. Results: We had 164 students (78% response rate) participate in the survey. Diversified was the most preferred technique for future practice by students, and more than half who completed the chiropractic technique survey course reported changing their future practice technique choice as a result. The students surveyed agreed that the chiropractic technique curriculum and their experiences with chiropractic practitioners were the two greatest bases for their current practice technique preference, and that their participation in extracurricular technique clubs and seminars was less influential. Conclusions: Students appear to have the same practice technique preferences as practicing chiropractors. The chiropractic technique curriculum and the students' experience with chiropractic practitioners seem to have the greatest influence on their choice of chiropractic technique for future practice. Extracurricular activities, including technique clubs and seminars, although well attended, showed a lesser influence on students' practice technique preferences. PMID:26655282

  10. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    SciTech Connect

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10/sup 1/ g is sufficient to reduce photosynthesis to 10/sup -3/ of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated.

  11. Detector control system for the ATLAS Transition Radiation Tracker: architecture and development techniques

    NASA Astrophysics Data System (ADS)

    Banaś, ElŻbieta; Hajduk, Zbigniew; Olszowska, Jolanta

    2012-05-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three sub-systems of the ATLAS Inner Detector at the Large Hadron Collider at CERN. With ~300000 drift tube proportional counters (straws) filled with stable gas mixture and high voltage biased it provides precise quasi-continuous tracking and particles identification. Safe, coherent and efficient operation of the TRT is fulfilled with the help of the Detector Control System (DCS) running on 11 computers as PVSS (industrial SCADA) projects. Standard industrial and custom developed server applications and protocols are used for reading hardware parameters. Higher level control system layers based on the CERN JCOP framework allow for automatic control procedures, efficient error recognition and handling and provide a synchronization mechanism with the ATLAS data acquisition system. Different data bases are used to store the detector online parameters, the configuration parameters and replicate a subset of them used to flag data quality for physics reconstruction. The TRT DCS is fully integrated with the ATLAS Detector Control System.

  12. A framework for automated contour quality assurance in radiation therapy including adaptive techniques

    NASA Astrophysics Data System (ADS)

    Altman, M. B.; Kavanaugh, J. A.; Wooten, H. O.; Green, O. L.; DeWees, T. A.; Gay, H.; Thorstad, W. L.; Li, H.; Mutic, S.

    2015-07-01

    Contouring of targets and normal tissues is one of the largest sources of variability in radiation therapy treatment plans. Contours thus require a time intensive and error-prone quality assurance (QA) evaluation, limitations which also impair the facilitation of adaptive radiotherapy (ART). Here, an automated system for contour QA is developed using historical data (the ‘knowledge base’). A pilot study was performed with a knowledge base derived from 9 contours each from 29 head-and-neck treatment plans. Size, shape, relative position, and other clinically-relevant metrics and heuristically derived rules are determined. Metrics are extracted from input patient data and compared against rules determined from the knowledge base; a computer-learning component allows metrics to evolve with more input data, including patient specific data for ART. Nine additional plans containing 42 unique contouring errors were analyzed. 40/42 errors were detected as were 9 false positives. The results of this study imply knowledge-based contour QA could potentially enhance the safety and effectiveness of RT treatment plans as well as increase the efficiency of the treatment planning process, reducing labor and the cost of therapy for patients.

  13. Measuring exposure to solar ultraviolet radiation using a dosimetric technique: understanding participant compliance issues.

    PubMed

    Sun, Jiandong; Lucas, Robyn M; Harrison, Simone L; van der Mei, Ingrid; Whiteman, David C; Mason, Rebecca; Nowak, Madeleine; Brodie, Alison M; Kimlin, Michael G

    2014-01-01

    Personal ultraviolet dosimeters have been used in epidemiological studies to understand the risks and benefits of individuals' exposure to solar ultraviolet radiation (UVR). We investigated the types and determinants of noncompliance associated with a protocol for use of polysulphone UVR dosimeters. In the AusD Study, 1002 Australian adults (aged 18-75 years) were asked to wear a new dosimeter on their wrist each day for 10 consecutive days to quantify their daily exposure to solar UVR. Of the 10 020 dosimeters distributed, 296 (3%) were not returned or used (Type-I noncompliance) and other usage errors were reported for 763 (8%) returned dosimeters (Type-II noncompliance). Type-I errors were more common in participants with predominantly outdoor occupations. Type-II errors were reported more frequently on the first day of measurement; weekend days or rainy days; and among females; younger people; more educated participants or those with outdoor occupations. Half (50%) the participants reported a noncompliance error on at least 1 day during the 10-day period. However, 92% of participants had at least 7 days of usable data without any apparent noncompliance issues. The factors identified should be considered when designing future UVR dosimetry studies.

  14. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Fuglesang, Christer; Reiter, Thomas; Damann, Volker; Tognini, Michel

    2010-04-01

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei ("alpha particles") and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

  15. [Occupational radiation exposures during maintenance activities at nuclear power plants].

    PubMed

    Imahori, A

    1987-11-01

    Occupational exposures at nuclear power plants occur mostly during maintenance activities rather than during routine reactor operation. In this paper, statistical summaries of occupational exposures during routine maintenance activities for the years 1982-84 at nuclear power plants in Japan are presented, including comparison of the exposure levels by reactor type and by plant age. Average annual collective doses per reactor for BWRs and PWRs are 7.30 man-Sv and 2.84 man-Sv, respectively, and 78% and 89% of annual doses are incurred during maintenance activities. Average annual outage days of BWRs and PWRs for routine maintenance are 102 d and 97 d. Annual collective doses per reactor, most of which occur during maintenance activities, usually increase with plant age. Higher collective doses are observed for routine maintenance performed on older reactors as compared to newer reactors, especially in BWRs. Collective doses accrued during respective routine maintenance activities have a significant correlation with duration of maintenance and number of workers involved in maintenance.

  16. Biomagnetic Techniques for Assessing Gastric and Small Bowel Electrical Activity

    NASA Astrophysics Data System (ADS)

    Bradshaw, L. Alan

    2004-09-01

    Recent advances in electrophysiology of the gastrointestinal tract have emphasized the need for methods of noninvasive assessment of gastric and small intestinal electrical activity (GEA and IEA). While the cutaneous electrogastrogram (EGG) may reveal the frequency dynamics of gastric electrical activity, other parameters important for characterizing the propagating electrical activity are not available from EGG recordings. Recent studies on the electroenterogram (EENG) are promising, but low-conductivity abdominal layers have complicated the identification of small intestinal electrical rhythms in cutaneous recordings. The magnetogastrogram (MGG) and magnetoenterogram (MENG) are able to characterize gastric and intestinal electrical activity noninvasively in terms of its frequency, power and characteristics of its propagation. Superconducting QUantum Interference Device (SQUID) magnetometers are used to detect the minute magnetic fields associated with electrical activity of the gastrointestinal syncytium formed by interstitial cells of Cajal and smooth muscle networks. Changes in GEA and IEA that occur in response to disease or abnormal conditions are reflected in MGG and MENG signals. Magnetic methods for assessing the electrical activity of the stomach and small bowel thus show great clinical promise.

  17. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  18. Early active sun - Radiation history of distinct components in fines

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Taylor, G. J.; Walker, R. M.; Seitz, M. G.

    1974-01-01

    Plagioclase feldspars were separated from lunar soil samples and their compositions were determined by electron-microprobe analysis followed by etching and track counting in an effort to find effects of early solar activity. The feldspars were assigned on this basis to three major lithologies: mare basalts, anorthositic rocks, and KREEP rock. The results are in sharp contrast to Poupeau et al.'s (1973) observations on track densities in plagioclase crystals in the Luna 16 soil: no evidence is found for an early active sun, although the evidence does not preclude this possibility, either.

  19. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  20. Overview of active methods for shielding spacecraft from energetic space radiation.

    PubMed

    Townsend, L W

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  1. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  2. Multicenter long-term validation of a minicourse in radiation-reducing techniques in the catheterization laboratory.

    PubMed

    Kuon, Eberhard; Weitmann, Kerstin; Hoffmann, Wolfgang; Dörr, Marcus; Hummel, Astrid; Riad, Alexander; Busch, Mathias C; Felix, Stephan B; Empen, Klaus

    2015-02-01

    Patient radiation exposure in invasive cardiology is considerable. We aimed to investigate, in a multicenter field study, the long-term efficacy of an educational 90-minute workshop in cardiac invasive techniques with reduced irradiation. Before and at a median period of 2.5 months and 2.0 years after the minicourse (periods I, II, and III, respectively) at 5 German cardiac centers, 18 interventionalists documented various radiation parameters for 10 coronary angiographies. The median patient dose area product (DAP) for periods I, II, and III amounted to 26.6, 12.2, and 9.6 Gy × cm(2), respectively. The short-term and long-term effects were related to shorter median fluoroscopy times (180, 138, and 114 seconds), fewer radiographic frames (745, 553, and 417) because of fewer (11, 11, and 10) and shorter (64, 52, and 44 frames/run) runs, consistent collimation, and restriction to an adequate image quality; both radiographic DAP/frame (27.7, 17.3, and 18.4 mGy × cm(2)) and fluoroscopic DAP/second (26.6, 12.9, and 14.9 mGy × cm(2)) decreased significantly. Multivariate analysis over time indicated increasing efficacy of the minicourse itself (-55% and -64%) and minor influence of interventionist experience (-4% and -3% per 1,000 coronary angiographies, performed lifelong until the minicourse and until period III). In conclusion, autonomous self-surveillance of various dose parameters and feedback on individual radiation safety efforts supported the efficacy of a 90-minute course program toward long-lasting and ongoing patient dose reduction.

  3. Radiation-Induced Cancers From Modern Radiotherapy Techniques: Intensity-Modulated Radiotherapy Versus Proton Therapy

    SciTech Connect

    Yoon, Myonggeun; Ahn, Sung Hwan; Kim, Jinsung; Shin, Dong Ho; Park, Sung Yong; Lee, Se Byeong; Shin, Kyung Hwan; Cho, Kwan Ho

    2010-08-01

    Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4 mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.

  4. Assessment of platelet activation in myeloproliferative disorders with complementary techniques.

    PubMed

    Bermejo, Emilse; Alberto, Maria F; Meschengieser, Susana S; Lazzari, Maria A

    2004-04-01

    Bleeding and thrombosis in myeloproliferative disorders (MPD) are common events, sometimes both are present in the same patient during the course of the disease. Platelet activation in patients with MPD is often suggested. The present study analyses the presence of circulating activated platelets, using simultaneously flow cytometry and aggregometric studies in MPD. We studied 28 patients: 13 with polycythaemia vera, seven with essential thrombocythaemia, and eight chronic myeloid leukaemia. We performed functional tests, aggregation and adenosine triphosphate (ATP) release and flow cytometric assays (mepacrine staining and platelet activation markers CD62, CD63 and fibrinogen binding (B-FG)). Twenty-one MPD samples (75%) had reduced aggregation and ATP release. Acquired delta-SPD was detected in 11 of 28 MPD patients (39%), and we found no association between reduced mepacrine labelling and abnormal ATP release. High levels of activation markers were obtained: CD62 in 19 of 28 patients (68%), CD63 in 13 of 28 patients (46%) and B-FG in 19 of 28 patients (68%). The most prevalent abnormality was a reduced aggregation and ATP release. The lack of association between ATP release and mepacrine labelling suggests that other mechanisms, besides the deficit of intraplatelet ATP/adenosine diphosphate, might occur. High levels of activation markers were also observed. We conclude that both tests are complementary and necessary to understand the functional status of platelets in MPD.

  5. Radiation inactivation analysis of influenza virus reveals different target sizes for fusion, leakage, and neuraminidase activities

    SciTech Connect

    Gibson, S.; Jung, C.Y.; Takahashi, M.; Lenard, J.

    1986-10-07

    The size of the functional units responsible for several activities carried out by the influenza virus envelope glycoproteins was determined by radiation inactivation analysis. Neuraminidase activity, which resides in the glycoprotein NA, was inactivated exponentially with an increasing radiation dose, yielding a target size of 94 +/- 5 kilodaltons (kDa), in reasonable agreement with that of the disulfide-bonded dimer (120 kDa). All the other activities studied are properties of the HA glycoprotein and were normalized to the known molecular weight of the neuraminidase dimer. Virus-induced fusion activity was measured by two phospholipid dilution assays: relief of energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dipalmitoyl-L-alpha- phosphatidylethanolamine (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)-dioleoyl-L-alpha-phosphatidylethanolamine (N-Rh-PE) in target liposomes and relief of self-quenching of N-Rh-PE in target liposomes. Radiation inactivation of fusion activity proceeded exponentially with radiation dose, yielding normalized target sizes of 68 +/- 6 kDa by assay i and 70 +/- 4 kDa by assay ii. These values are close to the molecular weight of a single disulfide-bonded (HA1 + HA2) unit (75 kDa), the monomer of the HA trimer. A single monomer is thus inactivated by each radiation event, and each monomer (or some part of it) constitutes a minimal functional unit capable of mediating fusion. Virus-induced leakage of calcein from target liposomes and virus-induced leakage of hemoglobin from erythrocytes (hemolysis) both showed more complex inactivation behavior: a pronounced shoulder was present in both inactivation curves, followed by a steep drop in activity at higher radiation levels.

  6. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  7. Multilevel NLTE radiative transfer in isolated atmospheric structures: implementation of the MALI-technique.

    NASA Astrophysics Data System (ADS)

    Heinzel, P.

    1995-07-01

    We have developed and extensively tested a new multilevel NLTE transfer code for isolated solar atmospheric structures (loops, prominences, spicules etc.). The code is based on the MALI approach of Rybicki & Hummer (1991, 1992) to multilevel accelerated lambda iterations. It is demonstrated that this method is fully capable of treating a difficult problem of NLTE hydrogen excitation and ionization equilibrium, provided that we linearize the preconditioned statistical equilibrium equations with respect to atomic level populations and the electron density. With this generalization of the original MALI approach, the numerical code is robust and stable. As compared to the standard linearization method of Auer & Mihalas (1969), the new MALI code designed for 1D slabs is more than one order of magnitude faster and its accuracy is quite satisfactory. We discuss several details of our implementation of the MALI technique to isolated, externally irradiated, 1D structures and finally draw some future prospects.

  8. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    PubMed Central

    Accardo, Angelo; Di Fabrizio, Enzo; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

    2014-01-01

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. PMID:24971957

  9. Optimizing of the tangential technique and supraclavicular fields in 3 dimensional conformal radiation therapy for breast cancer.

    PubMed

    Jabbari, Keyvan; Azarmahd, Nazli; Babazade, Shadi; Amouheidari, Alireza

    2013-04-01

    Radiotherapy plays an essential role in the management of breast cancer. Three-dimensional conformal radiation therapy (3D-CRT) is applied based on 3D image information of anatomy of patients. In 3D-CRT for breast cancer one of the common techniques is tangential technique. In this project, various parameters of tangential and supraclavicular fields are optimized. This project has been done on computed tomography images of 100 patients in Isfahan Milad Hospital. All patients have been simulated and all the important organs have been contoured by radiation oncologist. Two techniques in supraclavicular region are evaluated including: 1-A single field (Anterior Posterior [AP]) with a dose of 200 cGy per fraction with 6 MV energy. This is a common technique. 2-Two parallel opposed fields (AP-Posterior Anterior [PA]). The dose of AP was 150 cGy with 6 MV energy and PA 50 cGy with 18 MV. In the second part of the project, the tangential fields has been optimized with change of normalization point in five points: (1) Isocenter (Confluence of rotation gantry axis and collimator axis) (2) Middle of thickest part of breast or middle of inter field distance (IFD) (3) Border between the lung and chest wall (4) Physician's choice (5) Between IFD and isocenter. Dose distributions have been compared for all patients in different methods of supraclavicular and tangential field. In parallel opposed fields average lung dose was 4% more than a single field and the maximum received heart dose was 21.5% less than a single field. The average dose of planning tumor volume (PTV) in method 2 is 2% more than method 1. In general AP-PA method because of a better coverage of PTV is suggested. In optimization of the tangential field all methods have similar coverage of PTV. Each method has spatial advantages and disadvantages. If it is important for the physician to reduce the dose received by the lung and heart, fifth method is suggested since in this method average and maximum received dose

  10. The Protest as a Teaching Technique for Promoting Feminist Activism.

    ERIC Educational Resources Information Center

    Rose, Suzanna

    An assignment about protesting was given to students in an upper-level undergraduate women's studies course to provide them with experience and skills in political protesting and to promote feminist activism. The students selected for their assignments: (1) a letter writing campaign against Robert Bork's Supreme Court nomination; (2) a picket…

  11. Application of activation techniques to biological analysis. [813 references

    SciTech Connect

    Bowen, H.J.M.

    1981-12-01

    Applications of activation analysis in the biological sciences are reviewed for the period of 1970 to 1979. The stages and characteristics of activation analysis are described, and its advantages and disadvantages enumerated. Most applications involve activation by thermal neutrons followed by either radiochemical or instrumental determination. Relatively little use has been made of activation by fast neutrons, photons, or charged particles. In vivo analyses are included, but those based on prompt gamma or x-ray emission are not. Major applications include studies of reference materials, and the elemental analysis of plants, marine biota, animal and human tissues, diets, and excreta. Relatively little use of it has been made in biochemistry, microbiology, and entomology, but it has become important in toxicology and environmental science. The elements most often determined are Ag, As, Au, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, Hg, I, K, Mn, Mo, Na, Rb, Sb, Sc, Se, and Zn, while few or no determinations of B, Be, Bi, Ga, Gd, Ge, H, In, Ir, Li, Nd, Os, Pd, Pr, Pt, Re, Rh, Ru, Te, Tl, or Y have been made in biological materials.

  12. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    PubMed Central

    Pradhan, A. S.; Lee, J. I.; Kim, J. L.

    2008-01-01

    During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al2O3:C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al2O3:C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF3:Eu2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al2O3:C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose

  13. Techniques for active embodiment of participants in virtual environments

    SciTech Connect

    Hightower, R.; Stansfield, S.

    1996-03-01

    This paper presents preliminary work in the development of an avatar driver. An avatar is the graphical embodiment of a user in a virtual world. In applications such as small team, close quarters training and mission planning and rehearsal, it is important that the user`s avatar reproduce his or her motions naturally and with high fidelity. This paper presents a set of special purpose algorithms for driving the motion of the avatar with minimal information about the posture and position of the user. These algorithms utilize information about natural human motion and posture to produce solutions quickly and accurately without the need for complex general-purpose kinematics algorithms. Several examples illustrating the successful applications of these techniques are included.

  14. The Effectiveness of Active and Traditional Teaching Techniques in the Orthopedic Assessment Laboratory

    ERIC Educational Resources Information Center

    Nottingham, Sara; Verscheure, Susan

    2010-01-01

    Active learning is a teaching methodology with a focus on student-centered learning that engages students in the educational process. This study implemented active learning techniques in an orthopedic assessment laboratory, and the effects of these teaching techniques. Mean scores from written exams, practical exams, and final course evaluations…

  15. Figure Analysis: A Teaching Technique to Promote Visual Literacy and Active Learning

    ERIC Educational Resources Information Center

    Wiles, Amy M.

    2016-01-01

    Learning often improves when active learning techniques are used in place of traditional lectures. For many of these techniques, however, students are expected to apply concepts that they have already grasped. A challenge, therefore, is how to incorporate active learning into the classroom of courses with heavy content, such as molecular-based…

  16. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation

    PubMed Central

    Wu, Juan; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected. PMID:28358824

  17. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    PubMed

    Wu, Juan; Xu, Yong; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  18. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2015-11-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts.

  19. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss

    PubMed Central

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2016-01-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts. PMID:26553637

  20. Successful Application of Active Learning Techniques to Introductory Microbiology

    PubMed Central

    HOFFMAN, ELIZABETH A.

    2001-01-01

    While the traditional lecture format may be a successful way to teach microbiology to both medical and nursing students, it was not an effective means of learning for many prenursing and preprofessional students enrolled in either of the introductory microbiology courses at Ashland Community College, an open enrollment institution. The structure of both Medical Microbiology and Principles of Microbiology was redesigned to allow students to address the material in an active manner. Daily quizzes, student group discussions, scrapbooks, lab project presentations and papers, and extra credit projects were all added in order to allow students maximum exposure to the course material in a manner compatible with various methods of learning. Student knowledge, course evaluations, and student success rates have all improved with the active learning format. PMID:23653538

  1. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  2. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  3. Development and Application of Differential Equation Numerical Techniques to Electromagnetic Scattering and Radiation Problems.

    NASA Astrophysics Data System (ADS)

    Simons, Neil Richard Samuel

    In this thesis the development and application of general purpose computer simulation techniques for macroscopic electromagnetic phenomena are investigated. These techniques are applicable to a wide variety of practical problems pertaining to: Electromagnetic Compatibility and Interference, Radar-Cross-Section, and the analysis and design of antennas. The goal of this research is to examine methods that are applicable to a wide variety of problems rather than specialized approaches that are only useful for specific problems. A brief review of the computational electromagnetics literature indicates two general types of methods are applicable. These are numerical approximation of integral-equation formulations and numerical approximation of differential-equation formulations. Because of their relative efficiency for inhomogeneous geometries, the direction of the thesis proceeds with numerical approximations to differential-equation based formulations. The differential-equation based numerical methods include various finite-difference, finite-element, finite -volume, and transmission line matrix methods. A literature review and overview of these numerical methods is provided. The goal of the overview is to provide the capability for the classification for existing and future differential equation based numerical methods to identify relative advantages and disadvantages. Extensions to the two-dimensional transmission line matrix method are presented. The extensions are intended to provide some of the flexibility traditionally associated with finite-difference and finite-element methods. Three new two-dimensional models are presented. Two of the new models utilize triangular rather than the usual rectangular spatial discretization. The third model introduces the capability of higher-order spatial accuracy. The efficiency and application of the new models are discussed. The development of two general-purpose electromagnetic simulation programs is presented. Both are

  4. New materials and new techniques for imaging of long wavelength IR radiation

    NASA Astrophysics Data System (ADS)

    Cross, L. E.

    1990-11-01

    Work on this program was directed towards the preliminary verification of the possibility of a completely new type of long wavelength infrared imaging system. This study proposed to explore the change in polarized reflectance from the pyro-optic surface, making use of the exceptional sensitivity of the newer ellipsometric techniques for reflectance studies. Cardinal advantages for the pyro-optic reflectance method are the following: (1) thermally sensitive film need only be thick enough to support the evanescent wave on reflection, so that pixel volume (mass) can be exceedingly small; (2) films can be mounted upon a critically dehydrated gel substrate which is transparent to visible light but affords near perfect thermal isolation; (3) there is no need for contacts to individual pixel elements as in the pyroelectric imagers; and (4) calculations show that for a film 0.1 micron meter thick, mounted on a silica gel substrate, the thermal efficiency is such that if the thermometric sensitivity of the film is sufficient to detect a temperature change of 1mK then for a system with f(1) optics this could correspond to a temperature difference in the object plane of 0.1K. The studies on this program were in two parts. The first objective was to verify the high values of temperature derivative of refractive index which has been reported in bismuth vanadate BiVO4, molybdenum MoS2, and antimony sulphur iodide SbSI. The second objective was to design and build a compact thermoelectric heater cooler which could be used to impart a known small AC temperature change to explore the detectivity limit for a pyro-optic application.

  5. Characterization of Deep Tunneling Activity through Remote-Sensing Techniques

    SciTech Connect

    R. G. Best, P. J. Etzler, and J. D. Bloom

    1997-10-01

    This work is a case study demonstrating the uses of multispectral and multi-temporal imagery to characterize deep tunneling activity. A drainage tunnel excavation in Quincy, MA is the case locality. Data used are aerial photographs (digitized) and Daedalus 3600 MSS image data that were collected in July and October of 1994. Analysis of the data includes thermal characterization, spectral characterization, multi-temporal analysis, and volume estimation using digital DEM generation. The results demonstrate the type of information that could be generated by multispectral, multi-temporal data if the study locality were a clandestine excavation site with restricted surface access.

  6. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    SciTech Connect

    Jeong, K; Kuo, H; Ritter, J; Shen, J; Basavatia, A; Yaparpalvi, R; Kalnicki, S; Tome, W

    2015-06-15

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck plan with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images.

  7. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential

  8. Smart actuators: a novel technique for active damping

    NASA Astrophysics Data System (ADS)

    Muth, Michael; Moldovan, Klaus; Goetz, Bernt

    1995-05-01

    Sensors are important components for any automatic process. Their function is to measure physical variables, and thus to allow automatic actions in a technical process, for example in a manufacturing sequence or a measurement. Selecting a sensor for a process, it is mostly overlooked that actuators used in a process also have sensory properties. The reactions of actuators to the state of a process give the possibility to extract relevant information out of the process with actuators. In using the sensory properties of actuators the costs for additional sensors can be saved. Even more important, under some circumstances it may not even be possible to place a special sensor directly at the location of interest: In that case the information about the physical variable is only accessible by analyzing the return signal of the actuator. An example of such a smart actuator combining active and sensory properties is demonstrated in a simple experiment. This experiment shows a steel ball supported as a pendulum. The steel ball can be pushed off, and on swinging back it can be caught in a single pass without any bounce. The actuator uses the piezoelectric effect which shows the underlying principle most clearly: Application of the reversibility of physical effects. In this case mechanical energy can either be produced or absorbed. This experiment is means as a demonstration model for students. It is also used for preliminary investigations developing a fast, actively damped tipping mechanism (optical scanner).

  9. Active Flow Control: Instrumentation Automation and Experimental Technique

    NASA Technical Reports Server (NTRS)

    Gimbert, N. Wes

    1995-01-01

    In investigating the potential of a new actuator for use in an active flow control system, several objectives had to be accomplished, the largest of which was the experimental setup. The work was conducted at the NASA Langley 20x28 Shear Flow Control Tunnel. The actuator named Thunder, is a high deflection piezo device recently developed at Langley Research Center. This research involved setting up the instrumentation, the lighting, the smoke, and the recording devices. The instrumentation was automated by means of a Power Macintosh running LabVIEW, a graphical instrumentation package developed by National Instruments. Routines were written to allow the tunnel conditions to be determined at a given instant at the push of a button. This included determination of tunnel pressures, speed, density, temperature, and viscosity. Other aspects of the experimental equipment included the set up of a CCD video camera with a video frame grabber, monitor, and VCR to capture the motion. A strobe light was used to highlight the smoke that was used to visualize the flow. Additional effort was put into creating a scale drawing of another tunnel on site and a limited literature search in the area of active flow control.

  10. Experimental techniques for screening of antiosteoporotic activity in postmenopausal osteoporosis.

    PubMed

    Satpathy, Swaha; Patra, Arjun; Ahirwar, Bharti

    2015-12-01

    Postmenopausal osteoporosis, a silent epidemic, has become a major health hazard, afflicting about 50% of postmenopausal women worldwide and is thought to be a disease with one of the highest incidences in senile people. It is a chronic, progressive condition associated with micro-architectural deterioration of bone tissue that results in low bone mass, decreased bone strength that predisposes to an increased risk of fracture. Women are more likely to develop osteoporosis than men due to reduction in estrogen during menopause which leads to decline in bone formation and increase in bone resorption activity. Estrogen is able to suppress the production of proinflammatory cytokines like interleukin (IL)-1, IL-6, IL-7 and tumor necrosis factor (TNF-α). This is why these cytokines are elevated in postmenopausal women. In this review article we have made an attempt to collate the various methods and parameters most frequently used for screening of antiosteoporotic activity in postmenopausal osteoporosis. Pertaining to ovariectomized animal model, this is the most appropriate model for studying the efficacy of different drugs to prevent bone loss in postmenopausal osteoporosis.

  11. Miniature Tissue Equivalent Proportional Counter dosimeter for active personal radiation monitoring of astronauts

    NASA Astrophysics Data System (ADS)

    Watson Huber, Aubrey

    The accurate measurement of spaceflight crew radiation exposure is of utmost importance. If onboard instrumentation shows that the pre-determined limit for radiation exposure has been met or exceeded during a mission, that mission can be greatly affected by the implementation of precautionary measures, or, in more extreme cases, the crew's health being negatively affected. Large active regional monitors determine real-time radiation risks of the crew during spaceflight, while small passive personal badges detect individual astronaut total exposure levels upon their return to Earth. At present, there are no personal active radiation dosimeters that can assess the continuous radiation risk to individual astronauts during spaceflight. Personal active radiation devices would be ideal for current operations in low-Earth orbit (LEO), as well as upcoming extravehicular activities on the Moon, Mars, or other planetary bodies. This project focused on the miniaturization of the Tissue Equivalent Proportional Counters (TEPCs) presently being utilized on the International Space Station (ISS) and Space Shuttle, enabling them to become personal crew dosimeters. The miniaturized TEPC prototype design has dimensions of 7.6 x 10.1 x 2.54 cm (3 x 4 x 1 in). It is composed of a 3 x 4 array of 1.27 cm (0.5 in) spherical detectors for measurements equivalent to a 4.39 cm (1.73 in) spherical detector, with an additional standalone sphere of diameter 1.27 cm (0.5 in) for taking measurements in high-flux environments. The detector simulates a tissue-equivalent diameter of 2 microns, is sensitive to lineal energies of 0.3 -- 1000 keV/micron, and can measure charged particles and neutrons ranging from 0.01 -- 100 mGy/hr.

  12. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  13. Heavy ion radiation exposure triggered higher intestinal tumor frequency and greater β-catenin activation than γ radiation in APC(Min/+) mice.

    PubMed

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V S; Fornace, Albert J

    2013-01-01

    Risk of colorectal cancer (CRC) after exposure to low linear energy transfer (low-LET) radiation such as γ-ray is highlighted by the studies in atom bomb survivors. On the contrary, CRC risk prediction after exposure to high-LET cosmic heavy ion radiation exposure is hindered due to scarcity of in vivo data. Therefore, intestinal tumor frequency, size, cluster, and grade were studied in APC(Min/+) mice (n = 20 per group; 6 to 8 wks old; female) 100 to 110 days after exposure to 1.6 or 4 Gy of heavy ion (56)Fe radiation (energy: 1000 MeV/nucleon) and results were compared to γ radiation doses of 2 or 5 Gy, which are equitoxic to 1.6 and 4 Gy (56)Fe respectively. Due to relevance of lower doses to radiotherapy treatment fractions and space exploration, we followed 2 Gy γ and equitoxic 1.6 Gy (56)Fe for comparative analysis of intestinal epithelial cell (IEC) proliferation, differentiation, and β-catenin signaling pathway alterations between the two radiation types using immunoblot, and immunohistochemistry. Relative to controls and γ-ray, intestinal tumor frequency and grade was significantly higher after (56)Fe radiation. Additionally, tumor incidence per unit of radiation (per cGy) was also higher after (56)Fe radiation relative to γ radiation. Staining for phospho-histone H3, indicative of IEC proliferation, was more and alcian blue staining, indicative of IEC differentiation, was less in (56)Fe than γ irradiated samples. Activation of β-catenin was more in (56)Fe-irradiated tumor-free and tumor-bearing areas of the intestinal tissues. When considered along with higher levels of cyclin D1, we infer that relative to γ radiation exposure to (56)Fe radiation induced markedly reduced differentiation, and increased proliferative index in IEC resulting in increased intestinal tumors of larger size and grade due to preferentially greater activation of β-catenin and its downstream effectors.

  14. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90

    PubMed Central

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2017-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 μM. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 μCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  15. Radiation thermometry at NIST: An update of services and research activities

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1989-01-01

    An overview of activities at the National Institute of Standards and Terminology (NIST) in radiation thermometry and related temperature scale research is presented. An expansion of calibration services for pyrometers will be described as well as efforts to develop calibration services for blackbody simulators. Research relevant to the realization of the new international temperature scale (ITS 90) will be discussed.

  16. Effects of ionizing radiation on the blood brain barrier permeability to pharmacologically active substances

    SciTech Connect

    Trnovec, T.; Kallay, Z.; Bezek, S. )

    1990-12-01

    Ionizing radiation can impair the integrity of the blood brain barrier (BBB). Data on early and late damage after brain irradiation are usually reported separately, yet a gradual transition between these two types has become evident. Signs appearing within 3 weeks after irradiation are considered to be early manifestations. The mechanism of radiation-effected integrity impairment of the BBB is discussed in relation to changes in morphological structures forming the BBB, the endothelium of intracerebral vessels, and in the surrounding astrocytes. Alterations in the function of the BBB are manifested in the endothelium by changes in the ultrastructural location of the activity of phosphatases and by the activation of pinocytotic vesicular transport, and in astrocyte cytoplasm by glycogen deposition. The changes in ultrastructure were critically surveyed with regard to increasing doses of radiation to the brain in the range of 5 Gy to 960 Gy. The qualitative as well as the semiquantitative and quantitative observations on the passage of substances across the damaged BBB were treated separately. Qualitative changes are based mainly on findings of extravasation of vital stains and of labelled proteins. The quantitative studies established differences in radiation-induced changes in the permeability of the BBB depending on the structure and physico-chemical properties of the barrier penetrating tracers. Indirect evaluation of radiation-induced BBB changes is based on studies of pharmacological effects of substances acting on the CNS. In conclusion, radiation impairs significantly the integrity of the BBB following single irradiation of the brain with a dose exceeding 10-15 Gy. The response of the BBB to ionizing radiation is dependent both on the dose to which the brain is exposed and on specific properties of the tracer. 68 references.

  17. A study of fraction of absorbed photosynthetically active radiation characteristics based on SAIL model simulation

    NASA Astrophysics Data System (ADS)

    Li, Li; Du, Yongming; Tang, Yong; Liu, Qinhuo

    2012-10-01

    The photosynthetically Active Radiation reached to plant canopy could be divided into two parts that are direct radiation and diffuse radiation. The paths into the vegetation canopy are different of these two kinds of radiation. It makes Fraction of Absorbed Photosynthetically Active Radiation (FPAR) different. So this difference between direct FPAR and diffuse FPAR must be determined to decide whether it should be considered into the FPAR inversion model. In this study, the SAIL model was modified which could output direct FPAR and diffuse FPAR. Then with the change of input parameters such as solar zenith angle, visiblity and LAI, the direct FPAR and diffuse FPAR would be change. When the visibility is set as 5km, 15km and 30km, the contribution of scattering of FPAR on the total FPAR is 52.6%, 29.3% and 21.7%. The error between whole FPAR and direct FPAR is reduced with the increasing of visibility and increased with the reducing of LAI. The maximum relative error is 13.2%. From the simulation analyses, we could see that direct and diffuse FPAR are different with the changes of environment variables. So when modeling of FPAR, the diffuse part cannot be ignored. Direct FPAR and diffuse FPAR must be modeled respectively. This separation will help improve the accuracy of FPAR inversion.

  18. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  19. Activated mechanisms in proteins: a multiple-temperature activation-relaxation technique study

    NASA Astrophysics Data System (ADS)

    Malek, Rachid; Mousseau, Normand; Derreumaux, Philippe

    2001-03-01

    The low-temperature dynamics of proteins is controlled by a complex activated dynamics taking place over long time-scales compared with the period of thermal oscillations. In view of the range of relevant time scales, the numerical study of these processes remains a challenge and numerous methods have been introduced to address this problem. We introduce here a mixture of two algorithms, the activation-relaxation technique (ART)^1,2 coupled with the parallel tempering method, and use it to study the structure of the energy landscape around the native state of a 38-residue polypeptide. While ART samples rapidly the local energy landscape, the parallel tempering, which sets up exchanges of configuration between simultaneous runs at multiple temperatures, generates a very efficient sampling of energy basins separated by high barriers^(3). Results show the nature of the barriers and local minima surrounding the native state of this 38-residue peptide, modeled with off-lattice OPEP-like interactions^4. (1) G.T. Barkema and N. Mousseau, PRL 77, 4358 (1996) (2) N. Mousseau and G.T. Barkema, PRE 57, 2419 (1998) (3) E. Marinari and G. Parisi, Europhys. Lett., 19 (6), 451 (1992) (4) Ph. Derreumaux, J. Chem. Phys. 111, 2301 (1999); PRB 85, 206 (2000)

  20. An Investigation into Techniques for the Determination of Moisture Content on Activated Carbon

    DTIC Science & Technology

    1991-09-01

    Activated carbon (or charcoal ) is a universal adsorbent for the removal of a variety of organic/inorganic contaminants, in both gaseous and aqueous phase...AD-A245 938 i * *~fl Nadoni Waren AN INVESTIGATION INTO TECHNIQUES FOR THE DETERMNATION OF MOISTURE CONTENT ON ACTIVATED CARBON (U) by L.E. Cameron...INVESTIGATION INTO TECHNIQUES FOR THE DETERMINATION OF MOISTURE CONTENT ON ACTIVATED CARBON (U) by L.E. Cameron and S.H.C. Liang Chemical Protecti

  1. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    SciTech Connect

    Yang, Haori

    2016-03-31

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two

  2. Review of studies on modulating enzyme activity by low intensity electromagnetic radiation.

    PubMed

    Vojisavljevic, Vuk; Pirogova, Elena; Cosic, Irena

    2010-01-01

    This paper is a compilation of our findings on non-thermal effects of electromagnetic radiation (EMR) at the molecular level. The outcomes of our studies revealed that that enzymes' activity can be modulated by external electromagnetic fields (EMFs) of selected frequencies. Here, we discuss the possibility of modulating protein activity using visible and infrared light based on the concepts of protein activation outlined in the resonant recognition model (RRM), and by low intensity microwaves. The theoretical basis behind the RRM model expounds a potential interaction mechanism between electromagnetic radiation and proteins as well as protein-protein interactions. Possibility of modulating protein activity by external EMR is experimentally validated by irradiation of the L-lactate Dehydrogenase enzyme.

  3. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique

    PubMed Central

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan

    2016-01-01

    Purpose Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). Material and methods For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. Results For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. Conclusions The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape

  4. Advanced performance and scalability of Si nanowire field-effect transistors analyzed using noise spectroscopy and gamma radiation techniques

    SciTech Connect

    Li, J.; Vitusevich, S. A. Pud, S.; Offenhäusser, A.; Petrychuk, M. V.; Danilchenko, B. A.

    2013-11-28

    High-quality Si nanowire field effect transistors (FETs) were fabricated using thermal nanoimprint and chemical wet etching technologies. FET structures of different lengths demonstrate high carrier mobility with values of about 750 cm{sup 2}/Vs and low volume densities of active traps in the dielectric layers of 5 × 10{sup 17} cm{sup −3} eV{sup −1}. We investigated the transport properties of these n-type channel structures using low-frequency noise spectroscopy before and after gamma radiation treatment. Before gamma irradiation, FET structures with lengths of less than 4 μm exhibited noise from contact regions with 1/(L{sup 2}) dependence for the relative 1/f noise. After gamma radiation, the spectra reflected the priority of channel noise with 1/L dependence for all samples. The transport characteristics show that the fabricated nanowire FETs improved scalability, decreased parameter scattering, and increased stability after treatment. The results demonstrate that these nanowire FETs are promising for nanoelectronic and biosensor applications due to the cost-efficient technology and advanced performance of FETs with improved stability and reliability.

  5. Covering Materials Incorporating Radiation-Preventing Techniques to Meet Greenhouse Cooling Challenges in Arid Regions: A Review

    PubMed Central

    Abdel-Ghany, Ahmed M.; Al-Helal, Ibrahim M.; Alzahrani, Saeed M.; Alsadon, Abdullah A.; Ali, Ilias M.; Elleithy, Rabeh M.

    2012-01-01

    Cooling greenhouses is essential to provide a suitable environment for plant growth in arid regions characterized by brackish water resources. However, using conventional cooling methods are facing many challenges. Filtering out near infra-red radiation (NIR) at the greenhouse cover can significantly reduce the heating load and can solve the overheating problem of the greenhouse air. This paper is to review (i) the problems of using conventional cooling methods and (ii) the advantages of greenhouse covers that incorporate NIR reflectors. This survey focuses on how the cover type affects the transmittance of photosynthetically active radiation (PAR), the reflectance or absorptance of NIR and the greenhouse air temperature. NIR-reflecting plastic films seem to be the most suitable, low cost and simple cover for greenhouses under arid conditions. Therefore, this review discusses how various additives should be incorporated in plastic film to increase its mechanical properties, durability and ability to stand up to extremely harsh weather. Presently, NIR-reflecting covers are able to reduce greenhouse air temperature by no more than 5°C. This reduction is not enough in regions where the ambient temperature may exceed 45°C in summer. There is a need to develop improved NIR-reflecting plastic film covers. PMID:22629223

  6. Mineral composition of TALDICE aeolian ice core dust by means of synchrotron radiation XAS and XRF techniques

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Cibin, G.; Sala, M.; Hampai, D.; Maggi, V.; Marino, F.; Delmonte, B.

    2009-04-01

    In this work we present the first accurate non-destructive comparison of the mineral composition of atmospheric dusts contained in a deep ice core from Antarctica using synchrotron radiation. Different mineral assemblages reaching glaciated areas could be correlated to sources areas starting from the knowledge of the dust composition. In this investigation we demonstrate the possibility to characterize with SR the mineral composition of the dust in order to perform its geochemical characterization and to understand the pattern of the transport and the trajectories of the aerosol. This study has been focused on the elemental characterization and the identification of the iron oxidation state of aeolian Antarctic dust by means of synchrotron radiation X-Ray Fluorescence and X-Ray Absorption Spectroscopy. A set of twelve ice samples from the TALDICE (TD, 72˚ 46'S, 159˚ 04'E, 2316 m a.s.l., mean accumulation rate 80 kg*m-2*yr-1) ice core, corresponding to the warm climatic period, Holocene, and to the cold climatic period, Marine Isotopic Stage 3 (MIS 3) have been measured. To obtain both the elemental composition and the iron oxidation state of the mineral dust we performed experiments on specially prepared samples at the Stanford Synchrotron Radiation Lightsource (SSRL) laboratory in the framework of the Proposal N.3082B. Actually, melted ice samples were filtered and then mineral particles were deposited onto Nuclepore polycarbonate membranes in a 1000 class clean room under a 100 class laminar flow bench for both XRF and XAS experiments. A dedicated HV experimental chamber, that allows performing different type of experimental technique on very low absorber concentration samples was developed and tested in Italy. The original experimental setup, including an in-vacuum sample micromanipulator and a special alignment and docking sample system was installed at the beamline 10-2 at SSRL. For the x-ray detection a 7 mm2 high sensitive Silicon Drift Detector was

  7. Innovative techniques to analyze time series of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Potirakis, Stelios M.; Eftaxias, Konstantinos

    2016-04-01

    Magnetic storms are undoubtedly among the most important phenomena in space physics and also a central subject of space weather. The non-extensive Tsallis entropy has been recently introduced, as an effective complexity measure for the analysis of the geomagnetic activity Dst index. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). More precisely, the Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization. Other entropy measures such as Block Entropy, T-Complexity, Approximate Entropy, Sample Entropy and Fuzzy Entropy verify the above mentioned result. Importantly, the wavelet spectral analysis in terms of Hurst exponent, H, also shows the existence of two different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a fractional Brownian persistent behavior (ii) a pattern associated with normal periods, which is characterized by a fractional Brownian anti-persistent behavior. Finally, we observe universality in the magnetic storm and earthquake dynamics, on a basis of a modified form of the Gutenberg-Richter law for the Tsallis statistics. This finding suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism. Signatures of discrete scale invariance in Dst time series further supports the aforementioned proposal.

  8. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    SciTech Connect

    Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.; Bradley, D. A.; Tzaphlidou, M.; Janousch, M.

    2008-05-20

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.

  9. A dosimetric analysis of dose escalation using two intensity-modulated radiation therapy techniques in locally advanced pancreatic carcinoma

    SciTech Connect

    Brown, Michael W.; Ning, Holly; Arora, Barbara; Albert, Paul S.; Poggi, Matthew; Camphausen, Kevin; Citrin, Deborah . E-mail: citrind@mail.nih.gov

    2006-05-01

    Purpose: To perform an analysis of three-dimensional conformal radiation therapy (3D-CRT), sequential boost intensity-modulated radiation therapy (IMRTs), and integrated boost IMRT (IMRTi) for dose escalation in unresectable pancreatic carcinoma. Methods and Materials: Computed tomography images from 15 patients were used. Treatment plans were generated using 3D-CRT, IMRTs, and IMRTi for dose levels of 54, 59.4, and 64.8 Gy. Plans were analyzed for target coverage, doses to liver, kidneys, small bowel, and spinal cord. Results: Three-dimensional-CRT exceeded tolerance to small bowel in 1 of 15 (6.67%) patients at 54 Gy, and 4 of 15 (26.7%) patients at 59.4 and 64.8 Gy. 3D-CRT exceeded spinal cord tolerance in 1 of 15 patients (6.67%) at 59.4 Gy and liver constraints in 1 of 15 patients (6.67%) at 64.8 Gy; no IMRT plans exceeded tissue tolerance. Both IMRT techniques reduced the percentage of total kidney volume receiving 20 Gy (V20), the percentage of small bowel receiving 45 Gy (V45), and the percentage of liver receiving 35 Gy (V35). IMRTi appeared superior to IMRTs in reducing the total kidney V20 (p < 0.0001), right kidney V20 (p < 0.0001), and small bowel V45 (p = 0.02). Conclusions: Sequential boost IMRT and IMRTi improved the ability to achieve normal tissue dose goals compared with 3D-CRT. IMRTi allowed dose escalation to 64.8 Gy with acceptable normal tissue doses and superior dosimetry compared with 3D-CRT and IMRTs.

  10. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.

    2008-05-01

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.

  11. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  12. Shuttle active thermal control system development testing. Volume 5: Integrated radiator/expendable cooling system tests

    NASA Technical Reports Server (NTRS)

    Scheps, P. B.

    1974-01-01

    Tests were conducted to gather data on a space shuttle active control system (ATCS) incorporating both radiators and an expendable cooling device to provide vehicle heat removal. Two systems were tested and design information was provided for both nominal and limit conditions. The tests verified the concept that an integrated radiator/expendable cooling system can adequately maintain desired water quantities while responding to variations in heat loads and environments. In addition, the need for duct heating was demonstrated, while exhaust nozzle heating was also shown to be unnecessary.

  13. Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation - A modeling study

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Myneni, R. B.; Choudhury, B. J.

    1992-01-01

    A 3D radiative transfer model is used to investigate the relationship between spectral indices and fraction of absorbed photosynthetically active radiation (PAR) in horizontally heterogeneous vegetation canopies. Canopy reflection at optical wavelengths and PAR absorption are simulated. Data obtained indicate that the leaf area index of a canopy is less of an instructive parameter than the ground cover and clump leaf area index for these canopies. It is found that the relationship between the normalized difference vegetation index and fraction of absorbed PAR is almost linear and independent of spatial heterogeneity.

  14. Loss of vascular fibrinolytic activity following irradiation of the liver - an aspect of late radiation damage

    SciTech Connect

    Henderson, B.W.; Bicher, H.I.; Johnson, R.J.

    1983-09-01

    The vascular fibrinolytic activity, known to originate from the endothelium, was studied histochemically by fibrinolysis autography in liver samples from beagles exposed to radiation treatment. Eighteen to thirty months prior to sacrifice, six dogs received x irradiation (4600 rad in 5 weeks) and three dogs received x irradiation plus aspirin (1 g/kg). Two dogs served as untreated controls. Control livers showed extensive fibrinolytic activity related to large and small vascular structures. The vascular fibrinolytic activity had been lost from all vessels except the major portal branches in five irradiated livers and was severaly diminished in three. One irradiated liver appeared to possess normal fibrinolytic activity.

  15. Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner

    SciTech Connect

    Seguchi, Shigenobu; Aoyama, Takahiko; Koyama, Shuji; Fujii, Keisuke; Yamauchi-Kawaura, Chiyo

    2010-11-15

    Purpose: The aim of this study was to evaluate radiation dose to patients undergoing computed tomography coronary angiography (CTCA) for prospectively gated axial (PGA) technique and retrospectively gated helical (RGH) technique. Methods: Radiation doses were measured for a 320-detector row CT scanner (Toshiba Aquilion ONE) using small sized silicon-photodiode dosimeters, which were implanted at various tissue and organ positions within an anthropomorphic phantom for a standard Japanese adult male. Output signals from photodiode dosimeters were read out on a personal computer, from which organ and effective doses were computed according to guidelines published in the International Commission on Radiological Protection Publication 103. Results: Organs that received high doses were breast, followed by lung, esophagus, and liver. Breast doses obtained with PGA technique and a phase window width of 16% at a simulated heart rate of 60 beats per minute were 13 mGy compared to 53 mGy with RGH technique using electrocardiographically dependent dose modulation at the same phase window width as that in PGA technique. Effective doses obtained in this case were 4.7 and 20 mSv for the PGA and RGH techniques, respectively. Conversion factors of dose length product to the effective dose in PGA and RGH were 0.022 and 0.025 mSv mGy{sup -1} cm{sup -1} with a scan length of 140 mm. Conclusions: CTCA performed with PGA technique provided a substantial effective dose reduction, i.e., 70%-76%, compared to RGH technique using the dose modulation at the same phase windows as those in PGA technique. Though radiation doses in CTCA with RGH technique were the same level as, or some higher than, those in conventional coronary angiography (CCA), the use of PGA technique reduced organ and effective doses to levels less than CCA except for breast dose.

  16. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  17. A Review of Emerging Analytical Techniques for Objective Physical Activity Measurement in Humans.

    PubMed

    Clark, Cain C T; Barnes, Claire M; Stratton, Gareth; McNarry, Melitta A; Mackintosh, Kelly A; Summers, Huw D

    2017-03-01

    Physical inactivity is one of the most prevalent risk factors for non-communicable diseases in the world. A fundamental barrier to enhancing physical activity levels and decreasing sedentary behavior is limited by our understanding of associated measurement and analytical techniques. The number of analytical techniques for physical activity measurement has grown significantly, and although emerging techniques may advance analyses, little consensus is presently available and further synthesis is therefore required. The objective of this review was to identify the accuracy of emerging analytical techniques used for physical activity measurement in humans. We conducted a search of electronic databases using Web of Science, PubMed, and Google Scholar. This review included studies written in English and published between January 2010 and December 2014 that assessed physical activity using emerging analytical techniques and reported technique accuracy. A total of 2064 papers were initially retrieved from three databases. After duplicates were removed and remaining articles screened, 50 full-text articles were reviewed, resulting in the inclusion of 11 articles that met the eligibility criteria. Despite the diverse nature and the range in accuracy associated with some of the analytic techniques, the rapid development of analytics has demonstrated that more sensitive information about physical activity may be attained. However, further refinement of these techniques is needed.

  18. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    PubMed Central

    Takashima, Akito; Izumi, Yudai; Ikenaga, Eiji; Ohkochi, Takuo; Kotsugi, Masato; Matsushita, Tomohiro; Muro, Takayuki; Kawabata, Akio; Murakami, Tomo; Nihei, Mizuhisa; Yokoyama, Naoki

    2014-01-01

    The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs) achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification. PMID:25075343

  19. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH

    NASA Astrophysics Data System (ADS)

    Blacker, Thomas S.; Marsh, Richard J.; Duchen, Michael R.; Bain, Angus J.

    2013-08-01

    In live tissue, alterations in metabolism induce changes in the fluorescence decay of the biological coenzyme NAD(P)H, the mechanism of which is not well understood. In this work, the fluorescence and anisotropy decay dynamics of NADH and NADPH were investigated as a function of viscosity in a range of water-glycerol solutions. The viscosity dependence of the non-radiative decay is well described by Kramers and Kramers-Hubbard models of activated barrier crossing over a wide viscosity range. Our combined lifetime and anisotropy analysis indicates common mechanisms of non-radiative relaxation in the two emitting states (conformations) of both molecules. The low frequencies associated with barrier crossing suggest that non-radiative decay is mediated by small scale motion (e.g. puckering) of the nicotinamide ring. Variations in the fluorescence lifetimes of NADH and NADPH when bound to different enzymes may therefore be attributed to differing levels of conformational restriction upon binding.

  20. Radiative transfer theory for active remote sensing of a layer of nonspherical particles

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1984-01-01

    The radiative transfer theory is applied to calculate the scattering by a layer of randomly positioned and oriented nonspherical particles. The scattering amplitude functions of each individual particle are calculated with Waterman's T matrix method, which utilizes vector spherical wave functions for expansion of incident, scattered, and surface fields. The orientation of the particles is described by a probability density function of the Eulerian angles of rotation. A rotation matrix is used to relate the T matrix of the principal frame to that of the natural frame of the particle. The extinction matrix and phase matrix of the radiative transfer equations are expressed in terms of the T matrix elements. The extinction matrix for nonspherical particles is generally nondiagonal. There are only two attenuation rates in a specified direction of propagation. The radiative transfer equations are solved by an iterative method to first order in albedo. Numerical results are illustrated as functions of incidence angle and frequency with applications to active remote sensing.

  1. Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators

    NASA Astrophysics Data System (ADS)

    Cao, Yin; Sun, Hongling; An, Fengyan; Li, Xiaodong

    2012-05-01

    A novel active control method of sound radiation from a cylindrical shell under axial excitations is proposed and theoretically analyzed. This control method is based on a pair of piezoelectric stack force actuators which are installed on the shell and parallel to the axial direction. The actuators are driven in phase and generate the same forces to control the vibration and the sound radiation of the cylindrical shell. The model considered is a fluid-loaded finite stiffened cylindrical shell with rigid end-caps and only low-frequency axial vibration modes are involved. Numerical simulations are performed to explore the required control forces and the optimal mounting positions of actuators under different cost functions. The results show that the proposed force actuators can reduce the radiated sound pressure of low-frequency axial modes in all directions.

  2. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  3. Introduction to Radiation Issues for International Space Station Extravehicular Activities. Chapter 1

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Saganti, P. B.; Miller, J.; Cucinotta, F. A.

    2003-01-01

    The International Space Station (ISS) provides significant challenges for radiation protection of the crew due to a combination of circumstances including: the extended duration of missions for many crewmembers, the exceptionally dynamic nature of the radiation environment in ISS orbit, and the necessity for numerous planned extravehicular activities (EVA) for station construction and maintenance. Radiation protection requires accurate radiation dose measurements and precise risk modeling of the transmission of high fluxes of energetic electrons and protons through the relatively thin shielding provided by the space suits worn during EVA. Experiments and analyses have been performed due to the necessity to assure complete radiation safety for the EVA crew and thereby ensure mission success. The detailed characterization described of the material and topological properties of the ISS space suits can be used as a basis for design of space suits used in future exploration missions. In radiation protection practices, risk from exposure to ionizing radiation is determined analytically by the level of exposure, the detrimental quality of the radiation field, the inherent radiosensitivity of the tissues or organs irradiated, and the age and gender of the person at the time of exposure. During low Earth orbit (LEO) EVA, the relatively high fluxes of low-energy electrons and protons lead to large variations in exposure of the skin, lens of the eye, and tissues in other shallow anatomical locations. The technical papers in this publication describe a number of ground-based experiments that precisely measure the thickness of the NASA extravehicular mobility unit (EMU) and Russian Zvezda Orlan-M suits using medical computerized tomography (CT) X-ray analysis, and particle accelerator experiments that measure the minimum kinetic energy required by electrons and photons to penetrate major components of the suits. These studies provide information necessary for improving the

  4. Activation of DNA-PK by Ionizing Radiation Is Mediated by Protein Phosphatase 6

    PubMed Central

    Mi, Jun; Dziegielewski, Jaroslaw; Bolesta, Elzbieta; Brautigan, David L.; Larner, James M.

    2009-01-01

    DNA-dependent protein kinase (DNA-PK) plays a critical role in DNA damage repair, especially in non-homologous end-joining repair of double-strand breaks such as those formed by ionizing radiation (IR) in the course of radiation therapy. Regulation of DNA-PK involves multisite phosphorylation but this is incompletely understood and little is known about protein phosphatases relative to DNA-PK. Mass spectrometry analysis revealed that DNA-PK interacts with the protein phosphatase-6 (PP6) SAPS subunit PP6R1. PP6 is a heterotrimeric enzyme that consists of a catalytic subunit, plus one of three PP6 SAPS regulatory subunits and one of three ankyrin repeat subunits. Endogenous PP6R1 co-immunoprecipitated DNA-PK, and IR enhanced the amount of complex and promoted its import into the nucleus. In addition, siRNA knockdown of either PP6R1 or PP6 significantly decreased IR activation of DNA-PK, suggesting that PP6 activates DNA-PK by association and dephosphorylation. Knockdown of other phosphatases PP5 or PP1γ1 and subunits PP6R3 or ARS-A did not reduce IR activation of DNA-PK, demonstrating specificity for PP6R1. Finally, siRNA knockdown of PP6R1 or PP6 but not other phosphatases increased the sensitivity of glioblastoma cells to radiation-induced cell death to a level similar to DNA-PK deficient cells. Our data demonstrate that PP6 associates with and activates DNA-PK in response to ionizing radiation. Therefore, the PP6/PP6R1 phosphatase is a potential molecular target for radiation sensitization by chemical inhibition. PMID:19198648

  5. Microdosimetric-based risk factors for radiation received in space activities during a trip to Mars.

    PubMed

    Zaider, M

    1996-06-01

    A system for evaluating quality factors, Q, based on the microdosimetric distribution of the radiation field of interest has been set up; it makes use of a specific quality function (SQF) to obtain--given microdosimetric spectra--values for Q. The advantages of a system based on lineal energy are well recognized. Furthermore, recent studies have shown that spectra in 1-microm diameter tissue-equivalent spherical volumes reproduce correctly (in the sense of this formalism) measured RBE values, and thus a proportional counter would be usable as a practical instrument for radiation protection. All specific quality functions, q(y), available to date have been calculated from in vitro cellular data. To extend this approach to radiations of interest in space activities we have recently obtained a new function q(y) for in vivo radiogenic neoplasia using data on the Harderian gland of the mouse. These data were obtained for charged particles and energies relevant to space exposures. Furthermore, we introduce a new procedure that allows one to obtain--here with the use of microdosimetric distributions for the Hiroshima-Nagasaki radiation fields--risk factors scaled from the A-bomb survivorship results. We apply these concepts to particles and energies representing the galactic spectrum. We estimate that for a trip to Mars (450 d) the excess lifetime cancer mortality due to galactic cosmic ray (GCR) radiation is 0.037. This is about 50% lower than the risk coefficient obtained with the aid of standard (LET-based) quality factors.

  6. New mechanism of radiation polarization in type 1 Seyfert active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Gnedin, Yu. N.; Piotrovich, M. Yu.; Natsvlishvili, T. M.; Buliga, S. D.

    2016-10-01

    In most type 1 Seyfert active galactic nuclei (AGNs), the optical linear continuum polarization degree is usually small (less than 1 per cent) and the polarization position angle is nearly parallel to the AGN radio axis. However, there are many type 1 AGNs with unexplained intermediate values for both positional angles and polarization degrees. Our explanation of polarization degree and positional angle of type 1 Seyfert AGNs focuses on the reflection of non-polarized radiation from sub-parsec jets in optically thick accretion discs. The presence of a magnetic field surrounding the scattering media will induce Faraday rotation of the polarization plane, which may explain the intermediate values of positional angles if there is a magnetic field component normal to the accretion disc. The Faraday rotation depolarization effect in the disc diminishes the competition between polarization of the reflected radiation with the parallel component of polarization and the perpendicular polarization from internal radiation of the disc (the Milne problem) in favour of polarization of the reflected radiation. This effect allows us to explain the observed polarization of type 1 Seyfert AGN radiation even though the jet optical luminosity is much lower than the luminosity of the disc. We present the calculation of polarization degrees for a number of type 1 Seyfert AGNs.

  7. Active sound radiation control of a thick piezolaminated smart rectangular plate

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Seyyed M.; Keshavarzpour, Hemad

    2013-09-01

    A spatial state-space formulation based on the linear three-dimensional piezoelasticity theory in conjunction with the classical Rayleigh integral acoustic radiation model is employed to obtain a semi-analytic solution for the coupled vibroacoustic response of a simply supported, arbitrarily thick, piezolaminated rectangular plate, set in an infinite rigid baffle. The smart structure is composed of an orthotropic supporting core layer integrated with matched volume velocity spatially distributed piezoelectric sensor and uniform force actuator layers. To assist controller design, a frequency-domain subspace-based identification technique is applied to estimate the coupled fluid-structure dynamics of the system. A standard linear quadratic Gaussian (LQG) optimal controller is subsequently synthesized and simulated based on the identified model and the optimal control input voltage for minimizing the estimated net volume velocity (total radiated power) of the panel is calculated in both frequency and time domains. Numerical simulations demonstrate the effectiveness of the adopted volumetric sensing/actuation technique in conjunction with the optimal control strategy for suppressing the predicted sound radiation response of a three-layered (NaNb5O15/Al/PZT4) sandwich panel in both frequency and time domains. The trade-off between dynamic performance and control effort penalty is examined for two different types of loading (i.e., impulsive and broadband random disturbances). Validity of the results is demonstrated by comparison with a commercial finite element package, as well as with the data available in the literature.

  8. Neural Detection of Malicious Network Activities Using a New Direct Parsing and Feature Extraction Technique

    DTIC Science & Technology

    2015-09-01

    NETWORK ACTIVITIES USING A NEW DIRECT PARSING AND FEATURE EXTRACTION TECHNIQUE by Cheng Hong Low September 2015 Thesis Advisor: Phillip Pace Co...FEATURE EXTRACTION TECHNIQUE 5. FUNDING NUMBERS 6. AUTHOR(S) Low, Cheng Hong 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Center for...FEATURE EXTRACTION TECHNIQUE Cheng Hong Low Civlian, ST Aerospace, Singapore M.Sc., National University of Singapore, 2012 Submitted in

  9. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    NASA Astrophysics Data System (ADS)

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca F.; Johnson, Darren J.; Neubauer, Scott C.; Raynie, Richard C.

    2016-06-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 yr-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 yr-1 resulted from net CH4 emissions and the remaining 171 g C m-2 yr-1 resulted from net CO2 emissions. In contrast, -290 g C m2 yr-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 yr-1 emitted as CH4 and -337 g C m-2 yr-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  10. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  11. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques.

    PubMed

    Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of <2mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles. Zn-Cu, Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.

  12. Application of new radiation detection techniques at the Paul Scherrer Institut, especially at the spallation neutron source

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Pleinert, H.; Williams, T.; Pralong, C.

    1999-11-01

    The demands on modern irradiation detection systems are diverse, encompassing spatial resolution, dynamic range, sensitivity and reproducibility. Nevertheless, there are two important new methods which can satisfy most of these demands in several applications: camera based systems and imaging plates. Imaging plates have primarily been used as γ- and β-sensitive detectors in biology and medicine, but are now available also as neutron sensitive systems. These methods are ideally suited for applications in neutron radiography because of their high sensitivity, linearity and digital output. Image processing, quantification of the image data and automated pattern recognition can easily be performed using modern software tools. The imaging plate system at PSI is shared between groups in reactor physics, radiation protection, biology, proton therapy and nuclear medicine. The collected experience from these different interests establishes the basis for a most effective application of this technique. The utilisation of detector systems based on CCD-cameras have other advantages, like low acquisition time, high frame rates, reproducibility as well as high dynamic range. These detectors are applied to investigations of time dependent processes, distribution analyses and quantitative studies. The new radiography facility NEUTRA at the spallation source SINQ provides excellent conditions for neutron radiography studies. Some first examples of investigations with imaging plates and the CCD-camera system are given.

  13. Assessment of usefulness of synchrotron radiation techniques to determine arsenic species in hair and rice grain samples

    PubMed Central

    Lin, Jun; Lin, Guo-fang; Li, Yu-lan; Gao, Xiao-yan; Du, Hui; Jia, Chao-gang; Lu, Hong-chao; Golka, Klaus; Shen, Jian-hua

    2017-01-01

    The arseniasis in Southwest Guizhou, China has been identified as a unique case of endemic arseniasis caused by exposure to indoor combustion of high As-content coal. Present investigation targeted the microdistribution and speciation of the element arsenic in human hair and environmental samples collected in one of the hyper-endemic villages of arseniasis in the area. Analyses were performed by micro-beam X-ray fluorescence (μ-XRF) and X-ray absorption fine structure (XAFS). The total As level in hair samples of diagnosed patients was detected at almost the same level as in their asymptomatic neighbors. Concentrations in the lateral cut of hair samples were high-low-high (from surface to center). XAFS revealed the coexistence of both the As+3 and As+5 states in hair samples. However, the samples from patients displayed a tendency of higher As+3 / As+5 ratio than the asymptomatic fellow villagers. The μ-XRF mapping of rice grains shows that arsenic penetrates the endosperm, the major edible part of the grain, when rice grains were stored over the open fire of high As-content coal. Synchrotron radiation techniques are suitable to determine arsenic species concentrations in different parts of hair and rice grain samples. As arsenic penetrates the endosperm, rinsing the rice grains with water will remain largely ineffective. PMID:28337116

  14. SYSTEMATIC SCANNING ELECTRON MICROSCOPY TECHNIQUE FOR EVALUATING COMBINED BIOLOIGCAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A systematic scanning election microscope analytical technique has been developed to examine granular activated carbon used a a medium for biomass attachment in liquid waste treatment. The procedure allows for the objective monitoring, comparing, and trouble shooting of combined ...

  15. Detection of active faults using EMR-Technique and Cerescope at Landau area in central Upper Rhine Graben, SW Germany

    NASA Astrophysics Data System (ADS)

    Hagag, Wael; Obermeyer, Hennes

    2016-01-01

    Two conjugate sets of active faults oriented NNE-SSW and NNW-SSE have been detected at Landau area in SW Germany. These faults follow the old trends of the rift-related structures predominating in the Upper Rhine Graben (URG), which originated during Late Eocene-Miocene time. Linear and horizontal measurements were performed by using the Cerescope device and interpreted, applying the Electromagnetic Radiation (EMR) Technique. Linear EMR-profiles were helpful for mapping active faults, while the main horizontal stress (σH, N to NNE) was easily identified with EMR-horizontal measurements. Reactivation of rift-related structures of the Upper Rhine Graben at Landau area produces a new system of active shallow fractures following old trends, and has been detected through the present study by Cerescope applying the EMR-Technique. The present results imply that the Enhanced Geothermal System (EGS) to the south of Landau has a great impact on reactivation of the pre-existing rift-related faults by mechanical hydro-fracturing occurring within the reservoir rocks underneath the area.

  16. Absorbed photosynthetically active radiation of steppe vegetation and sun-view geometry effects on APAR estimates

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Mesarch, M. A.; Hays, C. J.; Deering, D. W.; Eck, T. F.

    1992-01-01

    Instantaneous fractions of absorbed photosynthetically active radiation (APAR) were measured at the Streletskaya Steppe Reserve in conjunction with canopy bidirectional-reflected radiation measured at solar zenith angles ranging between 37 and 74 deg during the Kursk experiment (KUREX-91). APAR values were higher for KUREX-91 than those for the first ISLSCP field experiment (FIFE-89) and the amount of APAR of a canopy was a function of solar zenith angle, decreasing as solar zenith angle increased at the resrve. Differences in absorption are attributed to leaf area index (LAI) and leaf angle distribution and subsequently transmitted radiation interactions. LAIs were considerably higher at the reserve than those at the FIFE site. Leaf angle distributions of the reserve approach a uniform distribution while distributions at the FIFE site more closely approximate erectophile distributions. Reflected photosynthetically active radiation (PAR) components at KUREX-91 and FIFE-89 were similar in magnitude and in their response to solar zenith angle. Transmitted PAR increased with increasing solar zenith angle at KUREX-91 and decreased with increasing solar zenith angle at FIFE-89. Transmitted PAR at FIFE-89 was considerably larger than those at KUREX-91.

  17. Active Path Selection of Fluid Microcapsules in Artificial Blood Vessel by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Masuda, Kohji; Muramatsu, Yusuke; Ueda, Sawami; Nakamoto, Ryusuke; Nakayashiki, Yusuke; Ishihara, Ken

    2009-07-01

    Micrometer-sized microcapsules collapse upon exposure to ultrasound. Use of this phenomenon for a drug delivery system (DDS), not only for local delivery of medication but also for gene therapy, should be possible. However, enhancing the efficiency of medication is limited because capsules in suspension diffuse in the human body after injection, since the motion of capsules in blood flow cannot be controlled. To control the behavior of microcapsules, acoustic radiation force was introduced. We detected local changes in microcapsule density by producing acoustic radiation force in an artificial blood vessel. Furthermore, we theoretically estimated the conditions required for active path selection of capsules at a bifurcation point in the artificial blood vessel. We observed the difference in capsule density at both in the bifurcation point and in alternative paths downstream of the bifurcation point for different acoustic radiation forces. Comparing the experimental results with those obtained theoretically, the conditions for active path selection were calculated from the acoustic radiation force and fluid resistance of the capsules. The possibility of controlling capsule flow towards a specific point in a blood vessel was demonstrated.

  18. Correlation among lung damage after radiation, amount of lipid peroxides, and antioxidant enzyme activities

    SciTech Connect

    Nozue, M.; Ogata, T.

    1989-04-01

    The correlation between lipid peroxidation and morphologic changes was examined in Sprague-Dawley rat lungs after 30 Gy single thoracic radiation. The rats were sacrificed every week until the end of the fifth week after radiation. The left lungs were used for the measurement of lipid peroxides and antioxidant enzymes activities. The right lungs were examined by light and electron microscopy. Amounts of lung lipid peroxides were within normal limits, and no cellular degenerative changes were observed in the lungs except for subendothelial and interstitial edema 2 weeks after radiation. Lipid peroxides drastically increased and marked degenerative cellular changes such as edematous swelling, vacuolation, and destruction of cell membranes occurred in the alveolar septa following the third week after radiation. The activities of catalase were significantly higher during the period from the second to the fifth week and those of superoxide dismutase and glutathione peroxidase increased at the end of the fifth week. Our results demonstrated that the acceleration of lipid peroxidation was well correlated with the morphologic expression of cell injury in the irradiated lungs.

  19. Active Control of Turbulent Boundary Layer Induced Sound Radiation from Multiple Aircraft Panels

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2002-01-01

    The objective of this work is to experimentally investigate active structural acoustic control of turbulent boundary layer (TBL) induced sound radiation from multiple panels on an aircraft sidewall. One possible approach for controlling sound radiation from multiple panels is a multi-input/multi-output scheme which considers dynamic coupling between the panels. Unfortunately, this is difficult for more than a few panels, and is impractical for a typical aircraft which contains several hundred such panels. An alternative is to implement a large number of independent control systems. Results from the current work demonstrate the feasibility of reducing broadband radiation from multiple panels utilizing a single-input/single-output (SISO) controller per bay, and is the first known demonstration of active control of TBL induced sound radiation on more than two bays simultaneously. The paper compares sound reduction for fully coupled control of six panels versus independent control on each panel. An online adaptive control scheme for independent control is also demonstrated. This scheme will adjust for slow time varying dynamic systems such as fuselage response changes due to aircraft pressurization, etc.

  20. Active control of acoustic radiation from laminated cylindrical shells integrated with a piezoelectric layer

    NASA Astrophysics Data System (ADS)

    Cao, Xiongtao; Shi, Lei; Zhang, Xusheng; Jiang, Guohe

    2013-06-01

    Active control of sound radiation from piezoelectric laminated cylindrical shells is theoretically investigated in the wavenumber domain. The governing equations of the smart cylindrical shells are derived by using first-order shear deformation theory. The smart layer is divided into lots of actuator patches, each of which is coated with two very thin electrodes at its inner and outer surfaces. Proportional derivative negative feedback control is applied to the actuator patches and the stiffness of the controlled layer is derived in the wavenumber domain. The equivalent driving forces and moments generated by the piezoelectric layer can produce distinct sound radiation. Large actuator patches cause strong wavenumber conversion and fluctuation of the far-field sound pressure, and do not make any contribution to sound reduction. Nevertheless, suitable small actuator patches induce weak wavenumber conversion and play an important role in the suppression of vibration and acoustic power. The derivative gain of the active control can effectively suppress sound radiation from smart cylindrical shells. The effects of small proportional gain on the sound field can be neglected, but large proportional gain has a great impact on the acoustic radiation of cylindrical shells. The influence of different piezoelectric materials on the acoustic power is described in the numerical results.

  1. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    SciTech Connect

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-05-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN/sup -/) for murine Cu-Zn-SOD was determined to be 6.8 x 10/sup -6/ M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied.

  2. Effect of Solar Particle Event Radiation on Gastrointestinal Tract Bacterial Translocation and Immune Activation

    PubMed Central

    Ni, Houping; Balint, Klara; Zhou, Yu; Gridley, Daila S.; Maks, Casey; Kennedy, Ann R.; Weissman, Drew

    2013-01-01

    Space flight conditions within the protection of Earth’s gravitational field have been shown to alter immune responses, which could lead to potentially detrimental pathology. An additional risk of extended space travel outside the Earth’s gravitational field is the effect of solar particle event (SPE) radiation exposure on the immune system. Organisms that could lead to infection include endogenous, latent viruses, colonizing pathogenics, and commensals, as well as exogenous microbes present in the spacecraft or other astronauts. In this report, the effect of SPE-like radiation on containment of commensal bacteria and the innate immune response induced by its breakdown was investigated at the radiation energies, doses and dose rates expected during an extravehicular excursion outside the Earth’s gravitational field. A transient increase in serum lipopolysaccharide was observed 1 day after irradiation and was accompanied by an increase in acute-phase reactants and circulating proinflammatory cytokines, indicating immune activation. Baseline levels were reestablished by 5 days postirradiation. These findings suggest that astronauts exposed to SPE radiation could have impaired containment of colonizing bacteria and associated immune activation. PMID:21294608

  3. Rapid screening of 90Sr activity in water and milk samples using Cherenkov radiation.

    PubMed

    Stamoulis, K C; Ioannides, K G; Karamanis, D T; Patiris, D C

    2007-01-01

    A method for screening 90Sr in milk samples is proposed. This method is based on a liquid scintillation technique taking advantage of Cherenkov radiation, which is produced in a liquid medium and then detected by the photomultipliers of a Liquid Scintillation Counter (LSC). Twenty millilitres of water and milk samples spiked with various concentrations of 90Sr/90Y in equilibrium were added in plastic vials and then were measured with an LSC (TriCarb 3170 TR/SL). The derived efficiencies were 49% for water samples and 14% for milk samples. The detection limit was 470 mBq L(-1)(90)Sr for water, without any pretreatment. Milk contains potassium, which also produces Cherenkov radiation due to the presence of 40K. For this reason, the interference of 40K in the measurements of 90Sr in milk samples was also investigated. The detection limit for milk was 1.7 Bq L(-1)90Sr.

  4. Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity.

    PubMed

    Madureira, Joana; Pimenta, Andreia I; Popescu, Larisa; Besleaga, Alexandra; Dias, Maria Inês; Santos, Pedro M P; Melo, Rita; Ferreira, Isabel C F R; Cabo Verde, Sandra; Margaça, Fernanda M A

    2017-02-01

    A comprehensive assessment of the toxicity and antioxidant activity of cork boiling wastewater and the effects of gamma radiation on these parameters was performed. Antioxidant activity was evaluated using different methodologies as DPPH radical scavenging activity, reducing power and inhibition of β-carotene bleaching. The results have shown that gamma radiation can induce an increase on the antioxidant activity of cork boiling wastewater. Toxicity tests were performed to access the potential added value of the irradiated wastewaters and/or minimization of the impact for discharge in the environment. Two different methods for toxicity evaluation were followed, bacterial growth inhibition test and cytotoxicity assay, in order to predict the behavior of different cells (prokaryotic and eukaryotic) in the presence of cork wastewater. Non-treated cork boiling wastewater seemed to be non-toxic for prokaryotic cells (Pseudomonas fluorescens and Bacillus subtilis) but toxic for eukaryotic cells (A549 human cells and RAW264.7 mouse cells). The gamma radiation treatment at doses of 100 kGy appeared to increase the toxicity of cork compounds for all tested cells, which could be related to a toxic effect of radiolytic products of cork compounds in the wastewaters.

  5. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila.

    PubMed

    Lee, Kyu-Sun; Choi, Jong-Soon; Hong, Sae-Yong; Son, Tae-Ho; Yu, Kweon

    2008-07-01

    Mobile phones are widely used in the modern world. However, biological effects of electromagnetic radiation produced by mobile phones are largely unknown. In this report, we show biological effects of the mobile phone 835 MHz electromagnetic field (EMF) in the Drosophila model system. When flies were exposed to the specific absorption rate (SAR) 1.6 W/kg, which is the proposed exposure limit by the American National Standards Institute (ANSI), more than 90% of the flies were viable even after the 30 h exposure. However, in the SAR 4.0 W/kg strong EMF exposure, viability dropped from the 12 h exposure. These EMF exposures triggered stress response and increased the production of reactive oxygen species. The EMF exposures also activated extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling, but not p38 kinase signaling. Interestingly, SAR 1.6 W/kg activated mainly ERK signaling and expression of an anti-apoptotic gene, whereas SAR 4.0 W/kg strongly activated JNK signaling and expression of apoptotic genes. In addition, SAR 4.0 W/kg amplified the number of apoptotic cells in the fly brain. These findings demonstrate that the exposure limit on electromagnetic radiation proposed by ANSI triggered ERK-survival signaling but the strong electromagnetic radiation activated JNK-apoptotic signaling in Drosophila.

  6. Intensity-modulated radiation therapy for pancreatic and prostate cancer using pulsed low–dose rate delivery techniques

    SciTech Connect

    Li, Jie; Lang, Jinyi; Wang, Pei; Kang, Shengwei; Lin, Mu-han; Chen, Xiaoming; Chen, Fu; Guo, Ming; Chen, Lili; Ma, Chang-Ming Charlie

    2014-01-01

    Reirradiation of patients who were previously treated with radiotherapy is vastly challenging. Pulsed low–dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while providing significant tumor control for recurrent cancers. This work investigates treatment planning techniques for intensity-modulated radiation therapy (IMRT)-based PLDR treatment of various sites, including cases with pancreatic and prostate cancer. A total of 20 patients with clinical recurrence were selected for this study, including 10 cases with pancreatic cancer and 10 with prostate cancer. Large variations in the target volume were included to test the ability of IMRT using the existing treatment planning system and optimization algorithm to deliver uniform doses in individual gantry angles/fields for PLDR treatments. Treatment plans were generated with 10 gantry angles using the step-and-shoot IMRT delivery technique, which can be delivered in 3-minute intervals to achieve an effective low dose rate of 6.7 cGy/min. Instead of dose constraints on critical structures, ring structures were mainly used in PLDR-IMRT optimization. In this study, the PLDR-IMRT plans were compared with the PLDR-3-dimensional conformal radiation therapy (3DCRT) plans and the PLDR-RapidArc plans. For the 10 cases with pancreatic cancer that were investigated, the mean planning target volume (PTV) dose for each gantry angle in the PLDR-IMRT plans ranged from 17.6 to 22.4 cGy. The maximum doses ranged between 22.9 and 34.8 cGy. The minimum doses ranged from 8.2 to 17.5 cGy. For the 10 cases with prostate cancer that were investigated, the mean PTV doses for individual gantry angles ranged from 18.8 to 22.6 cGy. The maximum doses per gantry angle were between 24.0 and 34.7 cGy. The minimum doses per gantry angle ranged from 4.4 to 17.4 cGy. A significant reduction in the organ at risk (OAR) dose was observed with the PLDR-IMRT plan when compared with that using the PLDR-3DCRT

  7. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    NASA Astrophysics Data System (ADS)

    Misra, N. L.

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium-plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium-thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript.

  8. Active control of sound radiated by a submarine in bending vibration

    NASA Astrophysics Data System (ADS)

    Caresta, Mauro

    2011-02-01

    This paper theoretically investigates the use of inertial actuators to reduce the sound radiated by a submarine hull in bending vibration under harmonic excitation from the propeller. The radial forces from the propeller are tonal at the blade passing frequency and are transmitted to the hull through the stern end cone. The hull is modelled as a fluid loaded cylindrical shell with ring stiffeners and two equally spaced bulkheads. The cylinder is closed by end-plates and conical end caps. The actuators are arranged in circumferential arrays and attached to the prow end cone. Both Active Vibration Control and Active Structural Acoustic Control are analysed. The inertial actuators can provide control forces with a magnitude large enough to reduce the sound radiated by the vibrations of the hull in some frequency ranges.

  9. Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation

    PubMed Central

    Ding, D.; Kim, T.; Minnich, A. J.

    2016-01-01

    Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. This work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling. PMID:27595609

  10. Cloud and Radiation Mission with Active and Passive Sensing from the Space Station

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1998-01-01

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  11. Effects of autogamy in Paramecium tetraurelia on catalase activity and on radiosensitivity to natural ionizing radiations

    SciTech Connect

    Croute, F.; Dupouy, D.; Charley, J.P.; Soleilhavoup, J.P.; Planel, H.

    1980-02-01

    Catalase activity of Paramecium tetraurelia decreased during autogamy and recovered to normal 5 days later. Autogamy also caused changes in the ciliate's sensitivity sensitivity to natural ionizing radiations - the decrease in cell growth rate previously described in shielded cultures did not occur when autogamous cells were used. Maximum effect of shielding was observed in 11-day-old postautogamous cells. The role of the catalase in the mechanism of natural irradiation effect is discussed.

  12. Aerothermal Performance of a Radiatively and Actively Cooled Panel at Mach 66

    DTIC Science & Technology

    1979-12-01

    Space Administration db~buuabU& Scie ~k ntUcn Tswh~ca Infamaltion Bran•h 1979 . .7 5 -, ’ WNW*" - --- sUrMMRY A flight-weight radiative and actively... ence 7. The panel holder has a sharp leading edge and a rectangular planform 141 cm (55.4 in.) wide by 300 cm (118 in.) long. The depth of the panel

  13. The effect of ionizing radiation on microbiological decontamination of medical herbs and biologically active compounds

    NASA Astrophysics Data System (ADS)

    Migdal, W.; Owczarczyk, B.; Kedzia, B.; Holderna-Kedzia, E.; Segiet-Kujawa, E.

    1998-06-01

    Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology the national program on the application of irradiation to the decontamination of medical herbs is in progress now. The purpose of the program is to elaborate, on the basis of research work, the facility standards and technological instructions indispensable for the practice of radiation technology.

  14. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.; Haberle, Robert; Atsuki Urata, Richard

    2016-10-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic-period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  15. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  16. [Effects of Light Near-Infrared Radiation on Rats Assessed by Succinate Dehydrogenase Activity in Lymphocytes on Blood Smears].

    PubMed

    Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N

    2015-01-01

    Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress.

  17. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.

    PubMed

    Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank

    2012-04-17

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.

  18. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  19. Theatre Techniques for Language Learning: Assumptions and Suggested Progression of Activities.

    ERIC Educational Resources Information Center

    Anderson, Martha L.

    A discussion of the use of drama activities in Second Language instruction looks at the rationale for using such techniques in the language classroom, describes a progression of drama activities used for an intensive course in intermediate English as a Second Language, and examines other considerations in the use of drama in language teaching.…

  20. Teaching Tip: Using Activity Diagrams to Model Systems Analysis Techniques: Teaching What We Preach

    ERIC Educational Resources Information Center

    Lending, Diane; May, Jeffrey

    2013-01-01

    Activity diagrams are used in Systems Analysis and Design classes as a visual tool to model the business processes of "as-is" and "to-be" systems. This paper presents the idea of using these same activity diagrams in the classroom to model the actual processes (practices and techniques) of Systems Analysis and Design. This tip…

  1. Effects of ionizing radiation and restraint stress on activity, avoidance conditioning, and stomach ulcers in albino rats. Final report October 1980-December 1981

    SciTech Connect

    Lanum, J.; Blick, D.W.; Campbell, M.E.; Wheeler, T.G.; Koger, S.A.

    1984-03-01

    In an experiment with albino rats, we have tried to model a nuclear attack scenario in which military personnel receiving 600 to 800 rads of ionizing radiation would be making a counterattack under the stress of an emergency situation. We used a dose of radiation that, though higher than the human exposure field, was estimated to be its physiological equivalent. Restraining the rat in an immobile position, a technique previously shown to have stressing qualities for rats, was chosen as an analogy to the stress of being in a war emergency. Activity and conditioned avoidance acquisition were chosen as test responses. Performance in the activity maze was affected only to a minor degree and in the direction of considering irradiation as activating. However, all irradiated groups showed retarded conditioned avoidance acquisition, which can be interpreted as decreased adaptability to a stressful situation. Further, our results support the expectation of performance decrements in the military scenario that could not be predicted by considering ionizing radiation in isolation. On the avoidance task, male rats in the combination stress-irradiation condition showed more failures to respond and longer response latencies than any other group. Female rats, on the other hand, showed shorter escape/avoidance latencies in the combined stress-irradiation condition than in the irradiation condition alone. This sex difference may be useful as a clue for investigating mechanisms of radiation resistance and interactions between stressors.

  2. Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation

    SciTech Connect

    Edington, C.W.

    1991-02-01

    The activities of the National Academy of Sciences (NAS), in relation to the Radiation Effects Research Foundation (RERF), has a long history and the specific time period supported by this contract is but a small piece of the long-term continuing program. As a background, in August 1945, atomic bombs were dropped on Hiroshima (6 August) and Nagasaki (9 August). Shortly after the bombings, US medical teams joined forces with their Japanese counterparts to form a Joint Commission for the Investigation of the Effects of the Atomic Bombs. As a result of the Joint Commission's investigations, it was determined that consideration should be given to the establishment of a long-term study of the potential late health effects of exposure of the survivors to radiation from the bombs. The results obtained from RERF studies contribute the vast majority of information that provides a better understanding of radiation effects on humans. This information has been used extensively by national organizations and international committees for estimating risks associated with radiation exposures. The estimated risks developed by these independent organizations are used by government agencies around the world to establish standards for protection of individuals exposed in the occupational, medical, and general environment. Some of these results are described briefly in this report.

  3. Photosynthetically active radiation and comparison of methods for its estimation in equatorial Singapore

    NASA Astrophysics Data System (ADS)

    Tan, Puay Yok; Ismail, Mirza Rifqi Bin

    2016-02-01

    Photosynthetically active radiation (PAR) is an important input variable for urban climate, crop modelling and ecosystem services studies. Despite its importance, only a few empirical studies have been conducted on PAR, its relationship to global solar radiation and sky conditions and its estimation in the tropics. We report in this study, the characterisation of PAR in Singapore through direct measurements and development of models for its estimation using input variables of global solar radiation ( H), photometric radiation ( L), clearness index ( k t ) and sky view factor (SVF). Daily PAR showed a good correlation with daily H and had a comparatively small seasonal variation in PAR due to Singapore's equatorial position. The ratio of PAR to H ( PAR/ H) showed a slight depression in midyear from May to August, which correlated well with seasonal patterns in rainfall over the study period. Hourly PAR/ H increased throughout the day. Three empirical models developed in this study were able to predict daily PAR satisfactorily, with the most accurate model being one which included both H and k t as independent variables. A regression model for estimation of PAR under shaded conditions using SVF produced satisfactory estimation of daily PAR but was prone to high mean percentage error at low PAR levels.

  4. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    NASA Astrophysics Data System (ADS)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  5. Intensity Modulated Radiation Therapy with Dose-painting: A Brain-sparing Technique for Intracranial Germ Cell Tumors

    PubMed Central

    Yang, Joanna C.; Terezakis, Stephanie A.; Dunkel, Ira J.; Gilheeney, Stephen W.; Wolden, Suzanne L.

    2016-01-01

    Purpose To assess patterns of failure in pediatric patients with intracranial germ cell tumors (GCT) treated with intensity-modulated radiation therapy with dose-painting (DP-IMRT). Methods Between July 2007 and October 2013, 11 patients with localized GCT, 5 germinomas and 6 non-germinoma germ cell tumors (NGGCT), received definitive treatment with DP-IMRT. Three representative patients were selected for re-planning with (1) whole ventricular irradiation (WVI) with opposed-lateral beams plus IMRT to the primary tumor and (2) sequential-IMRT. These plans were compared to the patients' original DP-IMRT plans for dosimetric analyses. Results Four patients with germinoma received RT alone: 45 Gy in 1.8 Gy fractions to the primary tumor and 25 Gy in 1.0 Gy fractions to whole ventricles using a dose-painting plan. One patient with germinoma received a reduced dose of 30.6 Gy to the primary tumor after neoadjuvant chemotherapy. Patients with NGGCT (n=6) underwent multimodality treatment including chemotherapy (n=6) and surgery (n=3). These patients received 54 Gy to the primary tumor and 32.4-36 Gy to the whole ventricles. Dosimetric analyses showed DP-IMRT delivered decreased mean dose to whole brain, temporal lobes, hippocampi, cochleae, and optic nerves. With median follow-up of 4 years, 3-year failure free survival was 100% for patients with germinoma and 67% for patients with NGGCT. One patient with a pineal NGGCT experienced a local recurrence within the high-dose volume while another experienced an isolated biochemical failure. Conclusions DP-IMRT is dosimetrically superior to standard IMRT techniques for sparing of normal tissues. Disease control in this small series appears at least comparable to published results. PMID:26703370

  6. Reducing the Cost of Proton Radiation Therapy: The Feasibility of a Streamlined Treatment Technique for Prostate Cancer

    PubMed Central

    Newhauser, Wayne D.; Zhang, Rui; Jones, Timothy G.; Giebeler, Annelise; Taddei, Phillip J.; Stewart, Robert D.; Lee, Andrew; Vassiliev, Oleg

    2015-01-01

    Proton radiation therapy is an effective modality for cancer treatments, but the cost of proton therapy is much higher compared to conventional radiotherapy and this presents a formidable barrier to most clinical practices that wish to offer proton therapy. Little attention in literature has been paid to the costs associated with collimators, range compensators and hypofractionation. The objective of this study was to evaluate the feasibility of cost-saving modifications to the present standard of care for proton treatments for prostate cancer. In particular, we quantified the dosimetric impact of a treatment technique in which custom fabricated collimators were replaced with a multileaf collimator (MLC) and the custom range compensators (RC) were eliminated. The dosimetric impacts of these modifications were assessed for 10 patients with a commercial treatment planning system (TPS) and confirmed with corresponding Monte Carlo simulations. We assessed the impact on lifetime risks of radiogenic second cancers using detailed dose reconstructions and predictive dose-risk models based on epidemiologic data. We also performed illustrative calculations, using an isoeffect model, to examine the potential for hypofractionation. Specifically, we bracketed plausible intervals of proton fraction size and total treatment dose that were equivalent to a conventional photon treatment of 79.2 Gy in 44 fractions. Our results revealed that eliminating the RC and using an MLC had negligible effect on predicted dose distributions and second cancer risks. Even modest hypofractionation strategies can yield substantial cost savings. Together, our results suggest that it is feasible to modify the standard of care to increase treatment efficiency, reduce treatment costs to patients and insurers, while preserving high treatment quality. PMID:25920039

  7. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data

    SciTech Connect

    Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.; Noghrehabadi, A.R.

    2010-08-15

    The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output. (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)

  8. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    USGS Publications Warehouse

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  9. [Clinical value of acoustic radiation force impulse technique to predict esophageal and gastric varices in patients with biliary atresia].

    PubMed

    Zhang, G Y; Tang, Y; Niu, N N; Wu, H T

    2017-02-21

    Objective: To investigate the clinical value of acoustic radiation force impulse (ARFI)technique in predicting esophageal and gastric varices in patients with biliary atresia after Kasai portoenterostomy. Methods: A total of 42 patients with biliary atresia after Kasai portoenterostomy were collected from September 2015 to May 2016 in Tianjin First Central Hospital.ARFI technique was used to measure the stiffness of liver and spleen, and 28 healthy children as control.According to the result of CT examination , patients with biliary atresia were divided into two groups , twenty-three patients with esophageal and gastric varices(A group) and nineteen patients without esophageal and gastric varices (B group), Comparing the difference of liver and spleen stiffness between the two groups.The ROC curve analysis was carried out to test the diagnostic power of effective parameter. Results: The ARFI value of liver (2.98±0.80) m/s and spleen (3.00±0.33) m/s of patients with biliary atresia was significantly higher than that of control group((1.10±0.16) m/s, (2.12±0.32) m/s), the differences had statistical significance (both P<0.01). Between group A and group B, the spleen ARFI value of group A(3.16±0.26) m/s was higher than group B(2.83±0.32) m/s, the difference had statistical significance (P<0.01), whereas there was no statistical difference of liver ARFI value between two group((2.93±0.65), (3.02±0.96) m/s)(P>0.05). The cut-off ARFI value of spleen to diagnose esophageal and gastric varices in biliary atresia was 3.02 m/s, and the biggest area under the ROC curve, sensitivity, and specificity were 0.81, 78.6% and 84.5%, respectively. Conclusion: ARFI can be used as a noninvasive method to predict the presence of esophageal and gastric varices in patients with biliary atresia after Kasai portoenterostomy.

  10. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    PubMed

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation.

  11. Airborne gamma radiation measurements of soil moisture during FIFE: Activities and results

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.

    1992-01-01

    Soil moisture measurements were obtained during the summer of 1987 and 1989 near Manhattan, Kansas, using the National Weather Service (NWS) airborne gamma radiation system. A network of 24 flight lines were established over the research area. Airborne surveys were flown daily during two intensive field campaigns. The data collected was sufficient to modify the NWS standard operational method for estimating soil moisture for the Field Experiment (FIFE) flight lines. The average root mean square error of the soil moisture estimates for shorter FIFE flight lines was found to be 2.5 percent, compared with a reported value of 3.9 percent for NWS flight lines. Techniques were developed to compute soil moisture estimates for portions of the flight lines. Results of comparisons of the airborne gamma radiation soil moisture estimates with those obtained using the NASA Pushbroom Microwave Radiation (PBMR) system and hydrological model are presented. The airborne soil moisture measurements, and real averages computed using all remotely sensed and ground data, have been in support of the research of the many FIFE investigators whose overall goal was the upscale integration of models and the application of satellite remote sensing.

  12. A Self-Consistent Radiative Transfer Model for Simulating Active and Passive Observations of Precipitation

    NASA Astrophysics Data System (ADS)

    Adams, I. S.

    2015-12-01

    Current generation sensors suites such as those included on the Global Precipitation Measurement (GPM) mission, Aquarius, and Soil Moisture Active / Passive (SMAP) exploit a combination to provide a greater understanding of geophysical phenomena. While "operationalized" retrieval algorithms require fast forward models, the ability to perform higher fidelity simulations is necessary for understanding the physics of remote sensing problems to test assumptions and to develop parameterizations for the fast models. To ensure proper synergy between active and passive modeling, forward models must be consistent between the two sensor types. This work presents a self-consistent active and passive radiative transfer model for simulating radar and radiometer responses to precipitation. To accomplish this, we extend the Atmospheric Radiative Transfer Simulator (ARTS) version 2.3 to solve the radiative transfer equation for radar under multiple scattering conditions using Monte Carlo integration. Early versions of ARTS (1.1 and later) included a passive Monte Carlo solver, and ARTS is capable of handling atmospheres of up to three dimensions with ellipsoidal planetary geometries. The modular nature of ARTS facilitates extensibility, and the well-developed ray-tracing tools are suited for implementation of Monte Carlo algorithms. Finally, since ARTS handles the full Stokes vector, co- and cross-polarized reflectivity products are possible for scenarios that include nonspherical particles, with or without preferential alignment. The accuracy of the forward model will be demonstrated, and the effects of multiple scattering will be detailed. The three-dimensional nature of the radiative transfer model will be useful for understanding the effects of nonuniform beamfill and multiple scattering for spatially heterogeneous precipitation events. This targets of this forward model are GPM (the Dual-wavelength Precipitation Radar (DPR) and GPM Microwave Imager (GMI)) and airborne sensors

  13. Simulation of TGF-Beta Activation by Low-Dose HZE Radiation in a Cell Culture

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    High charge (Z) and energy (E) (HZE) nuclei comprised in the galactic cosmic rays are main contributors to space radiation risk. They induce many lesions in living matter such as non-specific oxidative damage and the double-strand breaks (DSBs), which are considered key precursors of early and late effects of radiation. There is increasing evidence that cells respond collectively rather than individually to radiation, suggesting the importance of cell signaling1. The transforming growth factor (TGF ) is a signaling peptide that is expressed in nearly all cell type and regulates a large array of cellular processes2. TGF have been shown to mediate cellular response to DNA damage3 and to induce apoptosis in non-irradiated cells cocultured with irradiated cells4. TFG molecules are secreted by cells in an inactive complex known as the latency-associated peptide (LAP). TGF is released from the LAP by a conformational change triggered by proteases, thrombospondin-1, integrins, acidic conditions and .OH radical5. TGF then binds to cells receptors and activates a cascade of events mediated by Smad proteins6, which might interfere with the repair of DNA. Meanwhile, increasingly sophisticated Brownian Dynamics (BD) algorithms have appeared recently in the literature7 and can be applied to study the interaction of molecules with receptors. These BD computer models have contributed to the elucidation of signal transduction, ligand accumulation and autocrine loops in the epidermal growth factor (EGF) and its receptor (EFGR) system8. To investigate the possible roles of TGF in an irradiated cell culture, our Monte-Carlo simulation codes of the radiation track structure9 will be used to calculate the activation of TFG triggered by .OH produced by low doses of HZE ions. The TGF molecules will then be followed by a BD algorithm in a medium representative of a cell culture to estimate the number of activated receptors.

  14. Job Analysis Techniques for Restructuring Health Manpower Education and Training in the Navy Medical Department. Attachment 1. Radiation QPCB Task Sort for Radiation.

    ERIC Educational Resources Information Center

    Technomics, Inc., McLean, VA.

    This publication is Attachment 1 of a set of 16 computer listed QPCB task sorts, by career level, for the entire Hospital Corps and Dental Technician fields. Statistical data are presented in tabular form for a detailed listing of job duties in radiation. (BT)

  15. Activities of the Radiation Shielding Information Center and a report on codes/data for high energy radiation transport

    SciTech Connect

    Roussin, R.W.

    1993-01-01

    From the very early days in its history Radiation Shielding Information Center (RSIC) has been involved with high energy radiation transport. The National Aeronautics and Space Administration was an early sponsor of RSIC until the completion of the Apollo Moon Exploration Program. In addition, the intranuclear cascade work of Bertini at Oak Ridge National Laboratory provided valuable resources which were made available through RSIC. Over the years, RSIC has had interactions with many of the developers of high energy radiation transport computing technology and data libraries and has been able to collect and disseminate this technology. The current status of this technology will be reviewed and prospects for new advancements will be examined.

  16. Activities of the Radiation Shielding Information Center and a report on codes/data for high energy radiation transport

    SciTech Connect

    Roussin, R.W.

    1993-03-01

    From the very early days in its history Radiation Shielding Information Center (RSIC) has been involved with high energy radiation transport. The National Aeronautics and Space Administration was an early sponsor of RSIC until the completion of the Apollo Moon Exploration Program. In addition, the intranuclear cascade work of Bertini at Oak Ridge National Laboratory provided valuable resources which were made available through RSIC. Over the years, RSIC has had interactions with many of the developers of high energy radiation transport computing technology and data libraries and has been able to collect and disseminate this technology. The current status of this technology will be reviewed and prospects for new advancements will be examined.

  17. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  18. Thermal signature analysis of human face during jogging activity using infrared thermography technique

    NASA Astrophysics Data System (ADS)

    Budiarti, Putria W.; Kusumawardhani, Apriani; Setijono, Heru

    2016-11-01

    Thermal imaging has been widely used for many applications. Thermal camera is used to measure object's temperature above absolute temperature of 0 Kelvin using infrared radiation emitted by the object. Thermal imaging is color mapping taken using false color that represents temperature. Human body is one of the objects that emits infrared radiation. Human infrared radiations vary according to the activity that is being done. Physical activities such as jogging is among ones that is commonly done. Therefore this experiment will investigate the thermal signature profile of jogging activity in human body, especially in the face parts. The results show that the significant increase is found in periorbital area that is near eyes and forehand by the number of 7.5%. Graphical temperature distributions show that all region, eyes, nose, cheeks, and chin at the temperature of 28.5 - 30.2°C the pixel area tends to be constant since it is the surrounding temperature. At the temperature of 30.2 - 34.7°C the pixel area tends to increase, while at the temperature of 34.7 - 37.1°C the pixel area tends to decrease because pixels at temperature of 34.7 - 37.1°C after jogging activity change into temperature of 30.2 - 34.7°C so that the pixel area increases. The trendline of jogging activity during 10 minutes period also shows the increasing of temperature. The results of each person also show variations due to physiological nature of each person, such as sweat production during physical activities.

  19. Combined radiation mechanism in the sun's active region no. 75 during the eclipse of 16 February, 1980

    NASA Astrophysics Data System (ADS)

    Ji, Shuchen; Zhao, Renyang; Zhou, Li; Luo, Xianhan

    1993-02-01

    A 3D distribution of the electron temperature and density based on the radio spectrum of active region No. 75 obtained from the solar eclipse observation made on February 16 1980 is calculated. The magnetic field above the active region is calculated in terms of the solar photospheric magnetic field under the assumption of a potential field. Results show that the gyro-resonance radiation is overwhelmingly dominant in the slowly varying radiation of the active region. Bremsstrahlung radiation can reach from 5 to 20 percent of the gyro-resonance.

  20. Devices Materials and Processes for Nanoelectronics: Characterization with Advanced X-Ray Techniques Using Lab-Based and Synchrotron Radiation Sources

    SciTech Connect

    E Zschech; C Wyon; C Murray; G Schneider

    2011-12-31

    Future nanoelectronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nanostructures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nanoelectronics industry is reviewed. The focus of this paper is on the study of nanoscale device and on-chip interconnect materials, and materials for 3D IC integration as well.

  1. Moisture Management in an Active Sportswear: Techniques and Evaluation—A Review Article

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Mani; Sampath, M. B.; Ramachandran, T.

    2013-07-01

    Moisture management property is an important aspect of any fabric meant for active sportswear, which decides the comfort level of that fabric. Every human being sweats during different kinds of activities. An important feature of any fabric is how it transports this water out of the body, so as to make the wearer feel comfortable. This paper reports the concept of moisture management, various production techniques and evaluation of the moisture management characteristics on fabrics for active sportswear.

  2. Modulation of protein expression and activity by radiation: Relevance to intracoronary radiation for the prevention of restenosis

    SciTech Connect

    Vodovotz, Yoram; Mitchell, James B.; Lucia, M. Scott; McKinney, Leslie; Kollum, Marc; Cottin, Yves; Chan, Rosanna C.; Barcellos-Hoff, Mary Helen; Waksman, Ron

    2001-08-25

    Restenosis is a common complication of percutaneous transluminal coronary angioplasty. Recent studies have demonstrated a striking reduction in the neointimal hyperplasia characteristic of restenosis following intracoronary radiation (IR), but the mechanisms by which radiation reduces neointima formation following balloon overstretch injury are not elucidated fully. In addition to direct antimitotic effects mediated via oxygen free radicals, ionizing radiation can induce the expression of numerous genes and thereby mediate indirect effects. Additionally, IR prevents restenosis at the cost of decreased healing and increased thrombosis, and we suggest that these adverse reactions can be modulated by adjunct pharmacology or gene-based strategies. This review discusses several genes and proteins modulated by radiation in the context of arterial injury, and their possible therapeutic relevance.

  3. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.

    PubMed

    Cruse, Michael J; Kucharik, Christopher J; Norman, John M

    2015-01-01

    Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support

  4. TRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gases

    NASA Astrophysics Data System (ADS)

    Stordal, F.; Gauss, M.; Myhre, G.; Mancini, E.; Hauglustaine, D. A.; Köhler, M. O.; Berntsen, T.; . G Stordal, E. J.; Iachetti, D.; Pitari, G.; Isaksen, I. S. A.

    2006-10-01

    We have estimated impacts of alternative aviation routings on the radiative forcing. Changes in ozone and OH have been estimated in four Chemistry Transport Models (CTMs) participating in the TRADEOFF project. Radiative forcings due to ozone and methane have been calculated accordingly. In addition radiative forcing due to CO2 is estimated based on fuel consumption. Three alternative routing cases are investigated; one scenario assuming additional polar routes and two scenarios assuming aircraft cruising at higher (+2000 ft) and lower (-6000 ft) altitudes. Results from the base case in year 2000 are included as a reference. Taking first a steady state backward looking approach, adding the changes in the forcing from ozone, CO2 and CH4, the ranges of the models used in this work are -0.8 to -1.8 and 0.3 to 0.6 m Wm-2 in the lower (-6000 ft) and higher (+2000 ft) cruise levels, respectively. In relative terms, flying 6000ft lower reduces the forcing by 5-10% compared to the current flight pattern, whereas flying higher, while saving fuel and presumably flying time, increases the forcing by about 2-3%. Taking next a forward looking approach we have estimated the integrated forcing (m Wm-2 yr) over 20 and 100 years time horizons. The relative contributions from each of the three climate gases are somewhat different from the backward looking approach. The differences are moderate adopting 100 year time horizon, whereas under the 20 year horizon CO2 naturally becomes less important relatively. Thus the forcing agents impact climate differently on various time scales. Also, we have found significant differences between the models for ozone and methane. We conclude that we are not yet at a point where we can include non-CO2 effects of aviation in emission trading schemes. Nevertheless, the rerouting cases that have been studied here yield relatively small changes in the radiative forcing due to the radiatively active gases.

  5. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  6. A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process

    NASA Astrophysics Data System (ADS)

    Hemperek, Tomasz; Kishishita, Tetsuichi; Krüger, Hans; Wermes, Norbert

    2015-10-01

    An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. FD-SOI MAPS suffers from radiation damage such as transistor threshold voltage shifts due to charge traps in the oxide layers and charge states created at the silicon oxide boundaries (back gate effect). The X-FAB 180-nm HV-SOI technology offers an additional isolation by deep non-depleted implant between the BOX layer and the active circuitry which mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection property. The design and measurement results from a first prototype are presented including charge collection in neutron irradiated samples.

  7. Fish erythrocytes are bicarbonate permeable: problems with determining carbonic anhydrase activity using the modified boat technique.

    PubMed

    Heming, T A; Randall, D J

    1982-01-10

    Effects of foaming agents (blood plasma, bovine serum albumin, polyvinyl-pyrrolidinone) and defoaming agents (octanol, n-foam) on manometric determination of carbonic anhydrase activity in intact erythrocytes of fish were examined. Foaming agents abolished the activity of red cells. Defoaming agents increased the activity and negated any differences in carbonic anhydrase activity between whole blood (red cells in plasma) and "Cortland" blood (red cells in saline). It is concluded that effects of plasma on the carbonic anhydrase activity of intact erythrocytes of fish measured using the modified boat technique are largely nonspecific and related to reagent foaming during mixing, rather than to the action of a specific enzyme inhibitor.

  8. Combination of electrochemical, spectrometric and other analytical techniques for high throughput screening of pharmaceutically active compounds.

    PubMed

    Suzen, Sibel; Ozkan, Sibel A

    2010-08-01

    Recently, use of electrochemistry and combination of this method with spectroscopic and other analytical techniques are getting one of the important approaches in drug discovery and research as well as quality control, drug stability, determination of physiological activity, measurement of neurotransmitters. Many fundamental physiological processes are depending on oxido-reduction reactions in the body. Therefore, it may be possible to find connections between electrochemical and biochemical reactions concerning electron transfer pathways. Applications of electrochemical techniques to redox-active drug development and studies are one of the recent interests in drug discovery. In this review, the latest developments related to the use of electrochemical techniques in drug research in order to evaluate possible combination spectrometric methods with electrochemical techniques.

  9. Acoustic manipulation of active spherical carriers: Generation of negative radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-09-01

    This paper examines theoretically a novel mechanism of generating negative (pulling) radiation force for acoustic manipulation of spherical carriers equipped with piezoelectric actuators in its inner surface. In this mechanism, the spherical particle is handled by common plane progressive monochromatic acoustic waves instead of zero-/higher- order Bessel beams or standing waves field. The handling strategy is based on applying a spatially uniform harmonic electrical voltage at the piezoelectric actuator with the same frequency of handling acoustic waves, in order to change the radiation force effect from repulsive (away from source) to attractive (toward source). This study may be considered as a start point for development of contact-free precise handling and entrapment technology of active carriers which are essential in many engineering and medicine applications.

  10. Active control of sound transmission/radiation from elastic plates by vibration inputs. II - Experiments

    NASA Technical Reports Server (NTRS)

    Metcalf, V. L.; Fuller, C. R.; Silcox, R. J.; Brown, D. E.

    1992-01-01

    Actively controlled harmonic force inputs were applied experimentally to reduce the sound transmitted through an elastic circular plate. The control implementation used a time domain least mean square adaptive algorithm with two error sensors. The control forces were applied directly to the plate by point force vibration inputs, while the error information and performance were measured in the radiated acoustic field by microphones. Test cases were also performed in which the error sensors were accelerometers mounted on the plate. When accelerometers were used as error sensors, the controller performance was degraded; leading to the conclusion that minimizing plate motion does not necessarily lead to an associated decrease in radiated sound levels. In contrast, the results show excellent attenuation of the transmitted sound field when microphone error sensors were used. This result was consistent over a range of frequencies. In addition, the experimental results are compared to previously derived analytical results and the effect of using a point or global minimization scheme is discussed.

  11. Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples

    NASA Technical Reports Server (NTRS)

    Lindstrom, David J.; Lindstrom, Richard M.

    1989-01-01

    Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably.

  12. [Techniques for assaying the activity of transcription factor NF-κB].

    PubMed

    Ling, Xiao-Qian; Wang, Jin-Ke

    2013-05-01

    NF-κB is a stimulatory transcription factor that is ubiquitous in almost all kinds of cells. When cells are under various stimuli, NF-κB is activated and regulates large numbers of target genes, and thus controls important cellular processes, ranging from cell growth and differentiation to apoptosis and cancer. Therefore, NF-κB is a forefront hotspot transcription factor that is intensively studied in virtually all fields of biomedical sciences, and becomes a promising target for disease therapy and drug screening. The activity detection is the first and inevitable step for the studies of NF-κB activation and function.Therefore, the techniques for detection of NF-κB activity have always been paid more attention and continuously developed. Especially in recent year, along with the development of each disciplines, various new techniques have been developed, including ELISA-like assays based on dsDNA-coupled plate, filter binding assays, FRET assays, fluorescence reporting and nucleic acids amplification assays based on exonuclease and endonuclease, MS and flow cytometry assays based on immunomicrobeads, and other biophysical and electrochemical assays. Some of these techniques have already played important roles in NF-κB studies. This paper reviewed new techniques developed in recent years by classification, in order to provide an overview of NF-κB activity assays, which may be helpful for researchers to select appropriate techniques used in their studies. Moreover, the learning and understanding of these techniques may inspire researchers to improve currently existing techniques and develop novel methods for the studies of NF-κB.

  13. Design and Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

    NASA Technical Reports Server (NTRS)

    Sunada, Eric; Birur, Gajanana C.; Ganapathi, Gani B.; Miller, Jennifer; Berisford, Daniel; Stephan, Ryan

    2010-01-01

    NASA's proposed lunar lander, Altair, will be exposed to vastly different external environment temperatures. The challenges to the active thermal control system (ATCS) are compounded by unfavorable transients in the internal waste heat dissipation profile: the lowest heat load occurs in the coldest environment while peak loads coincide with the warmest environment. The current baseline for this fluid is a 50/50 inhibited propylene glycol/water mixture with a freeze temperature around -35 C. While the overall size of the radiator's heat rejection area is dictated by the worst case hot scenario, a turn-down feature is necessary to tolerate the worst case cold scenario. A radiator with digital turn-down capability is being designed as a robust means to maintain cabin environment and equipment temperatures while minimizing mass and power consumption. It utilizes active valving to isolate and render ineffective any number of parallel flow tubes which span across the ATCS radiator. Several options were assessed in a trade-study to accommodate flow tube isolation and how to deal with the stagnant fluid that would otherwise remain in the tube. Bread-board environmental tests were conducted for options to drain the fluid from a turned-down leg as well an option to allow a leg to freeze/thaw. Each drain option involved a positive displacement gear pump with different methods of providing a pressure head to feed it. Test results showed that a start-up heater used to generate vapor at the tube inlet held the most promise for tube evacuation. Based on these test results and conclusions drawn from the trade-study, a full-scale radiator design is being worked for the Altair mission profile.

  14. Semi-automated identification of white blood cell using active contour technique

    NASA Astrophysics Data System (ADS)

    Marzuki, Nurhanis Izzati Binti Che; Mahmood, Nasrul Humaimi Bin; Razak, Mohd Azhar Bin Abdul

    2015-05-01

    Manual and automated diagnosis can be used to identify the morphology of blood cells. However, the manual diagnosis of the blood cells is time consuming and need hematologist and pathologist experts in order to diagnose diseases. Recently, the automated diagnosis which is require image processing technique are often been used in this area. This paper focuses on image processing technique to do segmentation on the nucleus of white blood cells (WBC). To identify the nucleus region, there are several image processing techniques applied besides the active contour method. The results obtained show that the detection on the edge of the nucleus is almost same as the original image of the nucleus.

  15. Robust Satellite Techniques for monitoring earth emitted radiation in the Japanese seismic area by using MTSAT observations in the TIR spectral range

    NASA Astrophysics Data System (ADS)

    Genzano, Nicola; Filizzola, Carolina; Hattori, Katsumi; Lisi, Mariano; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    Since eighties, the fluctuations of Earth's thermally emitted radiation, measured by satellite sensors operating in the thermal infrared (TIR) spectral range, have been associated with the complex process of preparation for major earthquakes. But, like other claimed earthquake precursors (seismological, physical, chemical, biological, etc.) they have been for long-time considered with some caution by scientific community. The lack of a rigorous definition of anomalous TIR signal fluctuations and the scarce attention paid to the possibility that other causes (e.g. meteorological) different from seismic activity could be responsible for the observed TIR variations were the main causes of such skepticism. Compared with previously proposed approaches the general change detection approach, named Robust Satellite Techniques (RST), showed good ability to discriminate anomalous TIR signals possibly associated to seismic activity, from the normal variability of TIR signal due to other causes. Thanks to its full exportability on different satellite packages, since 2001 RST has been implemented on TIR images acquired by polar (e.g. NOAA-AVHRR, EOS -MODIS) and geostationary (e.g. MSG-SEVIRI, NOAA-GOES/W, GMS-5/VISSR) satellite sensors, in order to verify the presence (or absence) of TIR anomalies in presence (absence) of earthquakes (with M>4) in different seismogenic areas around the world (e.g. Italy, Greece, Turkey, India, Taiwan, etc.). In this paper, the RST data analysis approach has been implemented on TIR satellite records collected over Japan by the geostationary satellite sensor MTSAT (Multifunctional Transport SATellites) and RETIRA (Robust Estimator of TIR Anomalies) index was used to identify Significant Sequences of TIR Anomalies (SSTAs) in a possible space-time relations with seismic events. Achieved results will be discussed in the perspective of a multi-parametric approach for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  16. Interference Mitigation Technique Using Active Spaceborne Sensor Antenna in EESS (Active) and Space Research Service (Active) for Use in 500 MHz Bandwidth Near 9.6 GHz

    NASA Technical Reports Server (NTRS)

    Huneycutt, Bryan L.

    2005-01-01

    This document presents an interference mitigation technique using the active spaceborne sensor SAR3 antenna in the Earth Exploration-Satellite Service (active) and Space Research Service (active) for use in a 500 MHz bandwidth near 9.6 GHz. The purpose of the document is present antenna designs which offer lower sidelobes and faster rolloff in the sidelobes which in turn mitigates the interference to other services from the EESS (active) and SRS (active) sensors.

  17. Application of Semi Active Control Techniques to the Damping Suppression Problem of Solar Sail Booms

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Whorton, M. S.

    2007-01-01

    Solar sails provide a propellant free form for space propulsion. These are large flat surfaces that generate thrust when they are impacted by light. When attached to a space vehicle, the thrust generated can propel the space vehicle to great distances at significant speeds. For optimal performance the sail must be kept from excessive vibration. Active control techniques can provide the best performance. However, they require an external power-source that may create significant parasitic mass to the solar sail. However, solar sails require low mass for optimal performance. Secondly, active control techniques typically require a good system model to ensure stability and performance. However, the accuracy of solar sail models validated on earth for a space environment is questionable. An alternative approach is passive vibration techniques. These do not require an external power supply, and do not destabilize the system. A third alternative is referred to as semi-active control. This approach tries to get the best of both active and passive control, while avoiding their pitfalls. In semi-active control, an active control law is designed for the system, and passive control techniques are used to implement it. As a result, no external power supply is needed so the system is not destabilize-able. Though it typically underperforms active control techniques, it has been shown to out-perform passive control approaches and can be unobtrusively installed on a solar sail boom. Motivated by this, the objective of this research is to study the suitability of a Piezoelectric (PZT) patch actuator/sensor based semi-active control system for the vibration suppression problem of solar sail booms. Accordingly, we develop a suitable mathematical and computer model for such studies and demonstrate the capabilities of the proposed approach with computer simulations.

  18. Effects of ionizing radiation on the enzyme activities and ultrastructural changes of poultry

    NASA Astrophysics Data System (ADS)

    Hwang, H.-I.; Hau, L.-B.

    1995-02-01

    Enzyme-catalyzed changes are generally recognized as one of the major reasons for fresh meat deterioration after irradiation. In this study, the effects of ionizing radiation and storage on the enzyme activities of poultry as well as the ultrastructural change of muscle were evaluated. When chicken breasts were irradiated at 4°C and -20°C, both Ca 2+-dependent protease and cathepsin D showed some degree of resistance to irradiation. The activities of those two enzymes decreased with the increase of irradiation doses. During storage, Ca 2+-dependent proteases showed a marked decrease in activity. On the other hand, the cathepsin D activity was not significantly changed at either 4°C or -20°C after 20 days. Transmission electron microscope examination showed no structural changes of the myofibrils with a radiation dose of up to 10 kGy at either 4°C or -20°C. Freezing protected the irradiated chicken breasts from autolytic enzymes damage during storage. In contrast, considerable sarcomere degradation occurred in Z-line for irradiated samples when stored at 4°C for 20 days. The action of the proteolytic enzymes may have been responsible for the sarcomere degradation in irradiated chicken breasts.

  19. Investigation of conformal and intensity-modulated radiation therapy techniques to determine the absorbed fetal dose in pregnant patients with breast cancer

    SciTech Connect

    Öğretici, Akın Akbaş, Uğur; Köksal, Canan; Bilge, Hatice

    2016-07-01

    The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealed that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.

  20. Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation

    PubMed Central

    Deloch, Lisa; Derer, Anja; Hartmann, Josefin; Frey, Benjamin; Fietkau, Rainer; Gaipl, Udo S.

    2016-01-01

    Even though there is extensive research carried out in radiation oncology, most of the clinical studies focus on the effects of radiation on the local tumor tissue and deal with normal tissue side effects. The influence of dose fractionation and timing particularly with regard to immune activation is not satisfactorily investigated so far. This review, therefore, summarizes current knowledge on concepts of modern radiotherapy (RT) and evaluates the potential of RT for immune activation. Focus is set on radiation-induced forms of tumor cell death and consecutively the immunogenicity of the tumor cells. The so-called non-targeted, abscopal effects can contribute to anti-tumor responses in a specific and systemic manner and possess the ability to target relapsing tumor cells as well as metastases. The impact of distinct RT concepts on immune activation is outlined and pre-clinical evidence and clinical observations on RT-induced immunity will be discussed. Knowledge on the radiosensitivity of immune cells as well as clinical evidence for enhanced immunity after RT will be considered. While stereotactic ablative body radiotherapy seem to have a beneficial outcome over classical RT fractionation in pre-clinical animal models, in vitro model systems suggest an advantage for classical fractionated RT for immune activation. Furthermore, the optimal approach may differ based on the tumor site and/or genetic signature. These facts highlight that clinical trials are urgently needed to identify whether high-dose RT is superior to induce anti-tumor immune responses compared to classical fractionated RT and in particular how the outcome is when RT is combined with immunotherapy in selected tumor entities. PMID:27379203

  1. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs.

  2. A Monte Carlo simulation for the radiation imaging technique based on the Hemispherical Rotational Modulation Collimator (H-RMC)

    NASA Astrophysics Data System (ADS)

    Le Bao, V.; Kim, G.

    2017-03-01

    The Rotational Modulation Collimator (RMC) is a simple and versatile tool for the radiation imaging system with low cost, makes it a reasonable selection for locating and tracking nuclear materials and radiation sources. In this paper, Monte Carlo simulation-based design studies for an alternative RMC which has an extended field-of-view will be presented. Modulation patterns for 5 different hemispherical RMC (H-RMC) designs were simulated for various source locations, and fundamental characteristics of rotational modulation patterns were investigated. Obtained patterns showed variations depending on the source location for most of the H-RMC designs, exhibiting promises for the future development of an omni-directional radiation imager based on a non-position sensitive radiation detector.

  3. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques.

    PubMed

    Grace, M; Fletcher, L; Powers, S K; Hughes, M; Coombes, J

    1996-12-01

    Homogenization of tissue for analysis of bioenergetic enzyme activities is a common practice in studies examining metabolic properties of skeletal muscle adaptation to disease, aging, inactivity or exercise. While numerous homogenization techniques are in use today, limited information exists concerning the efficacy of specific homogenization protocols. Therefore, the purpose of this study was to compare the efficacy of four commonly used approaches to homogenizing skeletal muscle for analysis of bioenergetic enzyme activity. The maximal enzyme activity (Vmax) of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured from homogenous muscle samples (N = 48 per homogenization technique) and used as indicators to determine which protocol had the highest efficacy. The homogenization techniques were: (1) glass-on-glass pestle; (2) a combination of a mechanical blender and a teflon pestle (Potter-Elvehjem); (3) a combination of the mechanical blender and a biological detergent; and (4) the combined use of a mechanical blender and a sonicator. The glass-on-glass pestle homogenization protocol produced significantly higher (P < 0.05) enzyme activities compared to all other protocols for both enzymes. Of the four protocols examined, the data demonstrate that the glass-on-glass pestle homogenization protocol is the technique of choice for studying bioenergetic enzyme activity in skeletal muscle.

  4. Constitutive STAT5 Activation Correlates With Better Survival in Cervical Cancer Patients Treated With Radiation Therapy

    SciTech Connect

    Chen, Helen H.W.; Chou, Cheng-Yang; Wu, Yuan-Hua; Hsueh, Wei-Ting; Hsu, Chiung-Hui; Guo, How-Ran; Lee, Wen-Ying; Su, Wu-Chou

    2012-02-01

    Purpose: Constitutively activated signal transducers and activators of transcription (STAT) factors, in particular STAT1, STAT3, and STAT5, have been detected in a wide variety of human primary tumors and have been demonstrated to directly contribute to oncogenesis. However, the expression pattern of these STATs in cervical carcinoma is still unknown, as is whether or not they have prognostic significance. This study investigated the expression patterns of STAT1, STAT3, and STAT5 in cervical cancer and their associations with clinical outcomes in patients treated with radical radiation therapy. Methods and Materials: A total of 165 consecutive patients with International Federation of Gynecology and Obstetrics (FIGO) Stages IB to IVA cervical cancer underwent radical radiation therapy, including external beam and/or high-dose-rate brachytherapy between 1989 and 2002. Immunohistochemical studies of their formalin-fixed, paraffin-embedded tissues were performed. Univariate and multivariate analyses were performed to identify and to evaluate the effects of these factors affecting patient survival. Results: Constitutive activations of STAT1, STAT3, and STAT5 were observed in 11%, 22%, and 61% of the participants, respectively. While STAT5 activation was associated with significantly better metastasis-free survival (p < 0.01) and overall survival (p = 0.04), STAT1 and STAT3 activation were not. Multivariate analyses showed that STAT5 activation, bulky tumor ({>=}4 cm), advanced stage (FIGO Stages III and IV), and brachytherapy (yes vs. no) were independent prognostic factors for cause-specific overall survival. None of the STATs was associated with local relapse. STAT5 activation (odds ratio = 0.29, 95% confidence interval = 0.13-0.63) and advanced stage (odds ratio = 2.54; 95% confidence interval = 1.03-6.26) were independent predictors of distant metastasis. Conclusions: This is the first report to provide the overall expression patterns and prognostic significance of

  5. Exploring techniques for vision based human activity recognition: methods, systems, and evaluation.

    PubMed

    Xu, Xin; Tang, Jinshan; Zhang, Xiaolong; Liu, Xiaoming; Zhang, Hong; Qiu, Yimin

    2013-01-25

    With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activity, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation towards the performance of human activity recognition.

  6. Gamma radiation used as hygienization technique for foods does not induce viable but non-culturable state (VBNC) in Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Saroj, Sunil; Shashidhar, R; Bandekar, Jayant

    2009-10-01

    Gamma radiation has been widely used for hygienization of food products. Whether gamma radiation stress induces VBNC state in Salmonella is of great concern. Therefore, the study was carried out to determine whether gamma radiation exposure induces VBNC state in Salmonella enterica subsp. enterica serovar Typhimurium (S. typhimurium). The parameters tested were culturability on agar medium, transcriptional activity by RT-PCR, cytoplasmic membrane integrity, and direct viable count using LIVE/DEAD BacLight bacterial viability kit. The LIVE/DEAD BacLight counts for S. typhimurium cells treated with 0.5 and 1.0 kGy radiation dose were 0.8 and 0.1% of the control, respectively. Plate counts for S. typhimurium cells treated with 0.5 and 1.0 kGy radiation dose were 0.7 and 0.05% of the control, respectively. No viable cells of S. typhimurium were detected by both plate count and LIVE/DEAD BacLight after radiation treatment with 2 kGy. No transcriptional activity was detected in cells treated with 2 kGy radiation dose. If there were VBNC cells present, then significant differences in the counts between the LIVE/DEAD BacLight microscopic counts and plate agar counts must be observed. No significant difference (P > 0.05) in the counts were observed. Thus, it can be concluded that treatment with 2 kGy results in complete killing and does not induce VBNC state in S. typhimurium.

  7. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  8. Gamma radiation effects on phenolics, antioxidants activity and in vitro digestion of pistachio ( Pistachia vera) hull

    NASA Astrophysics Data System (ADS)

    Behgar, M.; Ghasemi, S.; Naserian, A.; Borzoie, A.; Fatollahi, H.

    2011-09-01

    The effect of gamma radiation (10, 20, 30, 40, 50 and 60 kGy) on tannin, total phenolics, antioxidants activity and in vitro digestion of pistachio hulls has been investigated in this study. The possibility of using the radial diffusion method based on software measurement of the rings area has also been investigated in this study. The software based method in radial diffusion method showed a higher r2 (0.995) value when compared to the traditional method. Irradiation reduced the tannin content ( P<0.01) and activity of antioxidants ( P<0.05) of pistachio hull extracts but increased the total phenolic content ( P<0.05). There was no effect of gamma irradiation on the in vitro digestion of the pistachio hull. Irradiation decreased the digestion rate of the pistachio hull at the dose of 40 kGy when compared to the control. This study showed that gamma irradiation decreased tannin and antioxidants activity of pistachio hull.

  9. Evaluation of the latent radiation dose from the activated radionuclides in a cyclotron vault

    NASA Astrophysics Data System (ADS)

    Kim, Hyunduk; Cho, Gyuseong; Kim, Sun A.; Kang, Bo Sun

    2015-02-01

    The production of short-lived radioisotopes for the synthesis of radiopharmaceuticals typically takes advantage of a cyclotron that accelerates a proton beam up to a few tens of MeV. The number of cyclotrons has been continuously increasing since the first operation of the MC-50 for the production of radiopharmaceuticals at the Korea Institute of Radiological & Medical Sciences (KIRAMS) in 1986, and currently 35 cyclotrons are under operation throughout the nation. As the number of operating cyclotrons has increased, concerns about radiation safety for the persons who are working at the facilities and dwelling in the vicinity of the facilities are becoming important issues. Radiation that could emit a time-dependent dose was shown to exist in a cyclotron vault after its shutdown. The calculation of the latent radiation dose rate was performed by using the MCNPX and the FISPACT. The calculated results for the activated long-lived radioisotopes in the concrete wall and the structural components of the cyclotron facility were compared with the measured data that were obtained by using gamma-ray spectroscopy with a HPGe detector.

  10. Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity

    PubMed Central

    Ruiz-González, Clara; Simó, Rafel; Sommaruga, Ruben; Gasol, Josep M.

    2013-01-01

    Heterotrophic bacterioplankton are main consumers of dissolved organic matter (OM) in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in aquatic ecosystems. Three decades of experimental work assessing the effects of sunlight on natural bacterial heterotrophic activity reveal responses ranging from high stimulation to total inhibition. In this review, we compile the existing studies on the topic and discuss the potential causes underlying these contrasting results, with special emphasis on the largely overlooked influences of the community composition and the previous light exposure conditions, as well as the different temporal and spatial scales at which exposure to solar radiation fluctuates. These intricate sunlight-bacteria interactions have implications for our understanding of carbon fluxes in aquatic systems, yet further research is necessary before we can accurately evaluate or predict the consequences of increasing surface UVR levels associated with global change. PMID:23734148

  11. A local active noise control system based on a virtual-microphone technique for railway sleeping vehicle applications

    NASA Astrophysics Data System (ADS)

    Diaz, J.; Egaña, J. M.; Viñolas, J.

    2006-11-01

    Low-frequency broadband noise generated on a railway vehicle by the wheel-rail interaction could be a big annoyance for passengers in sleeping cars. Low-frequency acoustic radiation is extremely difficult to attenuate by using passive devices. In this article, an active noise control (ANC) technique has been proposed for this purpose. A three-dimensional cabin was built in the laboratory to carry out the experiments. The proposed scheme is based on a Filtered-X Least Mean Square (FXLMS) control algorithm, particularised for a virtual-microphone technique. Control algorithms were designed with the Matlab-Simulink tool, and the Real Time Windows Target toolbox of Matlab was used to run in real time the ANC system. Referring to the results, different simulations and experimental performances were analysed to enlarge the silence zone around the passenger's ear zone and along the bed headboard. Attenuations of up to 20 and 15 dB(A) (re:20 μPa) were achieved at the passenger's ear in simulations and in experimental results, respectively.

  12. Activities of the Radiation Shielding Information Center and a report on codes/data for high energy radiation transport

    SciTech Connect

    Roussin, R.W.

    1994-10-01

    From the very early days in its history RSIC has been involved with high energy radiation transport. The National Aeronautics and Space Administration was an early sponsor of RSIC until the completion of the Apollo Moon Exploration Program. In addition, the intranuclear cascade work of Bertini at Oak Ridge National Laboratory provided valuable resources which were made available through RSIC. Over the years, RSIC has had interactions with many of the developers of high energy radiation transport computing technology and data libraries and has been able to collect and disseminate this technology. The current status of this technology will be reviewed and prospects for new advancements will be examined.

  13. NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation

    PubMed Central

    Kim, Jung-Hyun; Thimmulappa, Rajesh K.; Kumar, Vineet; Cui, Wanchang; Kumar, Sarvesh; Kombairaju, Ponvijay; Zhang, Hao; Margolick, Joseph; Matsui, William; Macvittie, Thomas; Malhotra, Sanjay V.; Biswal, Shyam

    2014-01-01

    A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2–related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell (HSPC) function and mitigates IR-induced myelosuppression and mortality. Augmenting NRF2 signaling in mice, either by genetic deletion of the NRF2 inhibitor Keap1 or by pharmacological NRF2 activation with 2-trifluoromethyl-2′-methoxychalone (TMC), enhanced hematopoietic reconstitution following bone marrow transplantation (BMT). Strikingly, even 24 hours after lethal IR exposure, oral administration of TMC mitigated myelosuppression and mortality in mice. Furthermore, TMC administration to irradiated transgenic Notch reporter mice revealed activation of Notch signaling in HSPCs and enhanced HSPC expansion by increasing Jagged1 expression in BM stromal cells. Administration of a Notch inhibitor ablated the effects of TMC on hematopoietic reconstitution. Taken together, we identified a mechanism by which NRF2-mediated Notch signaling improves HSPC function and myelosuppression following IR exposure. Our data indicate that targeting this pathway may provide a countermeasure against the damaging effects of IR exposure. PMID:24463449

  14. Adaptive control of radiated noise from a cylindrical shell using active fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Goddu, Gregory; McDowell, Donald; Bingham, Brian S.

    2000-06-01

    This paper describes the application of Active Fiber Composite (AFC) actuators, a hybrid piezoelectric device, to the reduction of acoustic radiation from a cylindrical shell by active control methods. AFCs were developed to provide a mechanically robust method for large-area, orthotropic actuation and sensing in active structures. The actuation layer is formed by small diameter piezoelectric fibers that are unidirectionally aligned and imbedded in a resin matrix system. By the nature of its structure, an AFC actuator allows use of the primary piezoelectric effect in the plane of the composite. A cylindrical shell testbed is used for this experiment due to the predominance of this structure, and the resulting general interest, within the field of underwater acoustics. To control acoustic radiation from the cylindrical shell, the AFC actuators, placed at optimal locations determined using numerical models, are used to generate a strain field that counteracts the strain associated with acoustically efficient shell motions. Using an end-mounted accelerometer as the error measurement, an adaptive LMS algorithm is used to minimize the error signal in real-time. Experimental are supplied to validate both the device and the methodology in a complex, real-world environment.

  15. MAG4 versus alternative techniques for forecasting active region flare productivity

    PubMed Central

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  16. Search for emission of ultra high energy radiation from active galactic nuclei

    SciTech Connect

    The CYGNUS Collaboration

    1993-05-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 {times} 10{sup {minus}14} cm{sup {minus}2}s{sup {minus}1}.

  17. Search for emission of ultra high energy radiation from active galactic nuclei

    SciTech Connect

    Not Available

    1993-01-01

    A search for emission of ultra-high energy gamma radiation from 13 active galactic nuclei that were detected by EGRET, using the CYGNUS extensive air-shower array, is described. The data set has been searched for continuous emission, emission on the time scale of one week, and for on the time scale of out day. No evidence for emission from any of the AGN on any of the time scales examined was found. The 90% C.L. upper limit to the continuous flux from Mrk 421 above 50 TeV is 7.5 [times] 10[sup [minus]14] cm[sup [minus]2]s[sup [minus]1].

  18. Meeting the Grand Challenge of Protecting Astronauts Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.

    2016-01-01

    membrane structure (EIMS) in both charged and uncharged configurations. The amount of charge shielding behind and around the EIMS was studied for different combinations of membrane structure voltages and electron energies. Both passive and active shielding were observed, with active shielding capable of deflecting nearly all incoming electrons. The pattern of charge distribution around the structure was studied as well as the stability of the structures in the charge flow. The charge deflection experiments illustrate that the EIMS remain inflated during charge deflection, but will experience small amplitude oscillations. Investigations were performed to determine a potential cause of the vibrations. It is postulated these vibrations are due to the charge flux causing local membrane charge distribution changes. As the membrane structure inflation pressure is changed, the shape responds, and causes the observed sustained vibration. Having identified this phenomenon is important when considering electrostatically inflated membrane structures (EIMS) in a space environment. Additionally, this project included a study of membrane material impacts, specifically the impact of membrane thickness. Extremely thin materials presented new challenges with vacuum preparation techniques and rapid charging. The thinner and lighter membrane materials were successfully inflated using electrostatic forces in a vacuum chamber. However, care must be taken when varying the potentials of such lighter structures as the currents can cause local heating and melting of the very thin membranes. Lastly, a preliminary analysis is performed to study rough order of magnitude power requirements for using EIMS for radiation shielding. The EIMS power requirement becomes increasingly more challenging as the spacecraft voltage is increased. As a result, the emphasis is on the deflection of charges away from the spacecraft rather than totally stopping them. This significantly alleviates the initial power

  19. Recognition of human activity characteristics based on state transitions modeling technique

    NASA Astrophysics Data System (ADS)

    Elangovan, Vinayak; Shirkhodaie, Amir

    2012-06-01

    Human Activity Discovery & Recognition (HADR) is a complex, diverse and challenging task but yet an active area of ongoing research in the Department of Defense. By detecting, tracking, and characterizing cohesive Human interactional activity patterns, potential threats can be identified which can significantly improve situation awareness, particularly, in Persistent Surveillance Systems (PSS). Understanding the nature of such dynamic activities, inevitably involves interpretation of a collection of spatiotemporally correlated activities with respect to a known context. In this paper, we present a State Transition model for recognizing the characteristics of human activities with a link to a prior contextbased ontology. Modeling the state transitions between successive evidential events determines the activities' temperament. The proposed state transition model poses six categories of state transitions including: Human state transitions of Object handling, Visibility, Entity-entity relation, Human Postures, Human Kinematics and Distance to Target. The proposed state transition model generates semantic annotations describing the human interactional activities via a technique called Casual Event State Inference (CESI). The proposed approach uses a low cost kinect depth camera for indoor and normal optical camera for outdoor monitoring activities. Experimental results are presented here to demonstrate the effectiveness and efficiency of the proposed technique.

  20. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1992-01-01

    Numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series are presented. This approach makes it possible to extract dynamical invariants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), given a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  1. Nonlinear techniques for forecasting solar activity directly from its time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.; Cooley, J.

    1993-01-01

    This paper presents numerical techniques for constructing nonlinear predictive models to forecast solar flux directly from its time series. This approach makes it possible to extract dynamical in variants of our system without reference to any underlying solar physics. We consider the dynamical evolution of solar activity in a reconstructed phase space that captures the attractor (strange), give a procedure for constructing a predictor of future solar activity, and discuss extraction of dynamical invariants such as Lyapunov exponents and attractor dimension.

  2. Nonlinear changes in brain electrical activity due to cell phone radiation.

    PubMed

    Marino, Andrew A; Nilsen, Erik; Frilot, Clifton

    2003-07-01

    We studied the effect of an electromagnetic field from a cellular telephone on brain electrical activity, using a novel analytical method based on a nonlinear model. The electroencephalogram (EEG) from rabbits was embedded in phase space and local recurrence plots were calculated and quantified using recurrence quantitation analysis to permit statistical comparisons between filtered segments of exposed and control epochs from individual rabbits. When the rabbits were exposed to the radiation from a standard cellular telephone (800 MHz band, 600 mW maximum radiated power) under conditions that simulated normal human use, the EEG was significantly affected in nine of ten animals studied. The effect occurred beginning about 100 ms after initiation of application of the field and lasted approximately 300 ms. In each case, the fields increased the randomness in the EEG. A control procedure ruled out the possibility that the observations were a product of the method of analysis. No differences were found between exposed and control epochs in any animal when the experiment was repeated after the rabbits had been sacrificed, indicating that absorption of radiation by the EEG electrodes could not account for the observed effect. No effect was seen when deposition of energy in the brain was minimized by repositioning the radiating antenna from the head to the chest, showing that the type of tissue that absorbed the energy determined the observed changes in the EEG. We conclude that, in normal use, the fields from a standard cellular telephone can alter brain function as a consequence of absorption of energy by the brain.

  3. Analysis of photosynthetically active radiation under various sky conditions in Wuhan, Central China.

    PubMed

    Wang, Lunche; Gong, Wei; Lin, Aiwen; Hu, Bo

    2014-10-01

    Observations of photosynthetically active radiation (PAR) and global solar radiation (G) at Wuhan, Central China during 2005-2012 were first reported to investigate PAR variability at different time scales and its PAR fraction (F(p)) under different sky conditions. Both G irradiances (I(g)) and PAR irradiances (I(p)) showed similar seasonal features that peaked in values at noon during summer and reached their lower values in winter. F(p) reached higher values during either sunrise or sunset; lower values of F p appeared at local noon because of the absorption effects of water vapor and clouds on long-wave radiation. There was an inverse relationship between clearness index (K(t)) and F(p); the maximum I(p) decreased by 22.3 % (39.7 %) when sky conditions changed from overcast to cloudless in summer (winter); solar radiation was more affected by cloudiness than the seasonal variation in cloudy skies when compared with that in clear skies. The maximum daily PAR irradiation (R(p)) was 11.89 MJ m⁻² day⁻¹ with an annual average of 4.85 MJ m⁻² day⁻¹. F p was in the range of 29-61.5 % with annual daily average value being about 42 %. Meanwhile, hourly, daily, and monthly relationships between R p and G irradiation (R g) under different sky conditions were investigated. It was discovered that cloudy skies were the dominated sky condition in this region. Finally, a clear-sky PAR model was developed by analyzing the dependence of PAR irradiances on optical air mass under various sky conditions for the whole study period in Central China, which will lay foundations for ecological process study in the near future.

  4. ON THE ANISOTROPY OF NUCLEI MID-INFRARED RADIATION IN NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Yang, Huan; Wang, JunXian; Liu, Teng E-mail: jxw@ustc.edu.cn

    2015-01-20

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  5. On the Anisotropy of Nuclei Mid-Infrared Radiation in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Wang, JunXian; Liu, Teng

    2015-01-01

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  6. Modeling the ratio of photosynthetically active radiation to broadband global solar radiation using ground and satellite-based data in the tropics

    NASA Astrophysics Data System (ADS)

    Janjai, S.; Wattan, R.; Sripradit, A.

    2015-12-01

    Data from four stations in Thailand are used to model the ratio of photosynthetically active radiation (PAR) to broadband global solar radiation. The model expresses the ratio of PAR-to-broadband global solar radiation as a function of cloud index, aerosol optical depth, precipitable water, total ozone column and solar zenith angle. Data from the MTSAT-1R and OMI/AURA satellites are used to estimate the cloud index and total ozone column, respectively at each of the four stations, while aerosol optical depth and precipitable water are retrieved from Aerosol Robotic Network (AERONET) sunphotometer measurements, also available at each station. When tested against hourly measurements, the model exhibits a coefficient of variance (R2) equal to or better than 0.96, and root mean square difference (RMSD) in the range of 7.3-7.9% and mean bias difference (MBD) of -4.5% to 3.5%. The model compares favorably with other existing models.

  7. An optimized posterior axillary boost technique in radiation therapy to supraclavicular and axillary lymph nodes: A comparative study

    SciTech Connect

    Hernandez, Victor; Arenas, Meritxell; Müller, Katrin; Gomez, David; Bonet, Marta

    2013-01-01

    To assess the advantages of an optimized posterior axillary (AX) boost technique for the irradiation of supraclavicular (SC) and AX lymph nodes. Five techniques for the treatment of SC and levels I, II, and III AX lymph nodes were evaluated for 10 patients selected at random: a direct anterior field (AP); an anterior to posterior parallel pair (AP-PA); an anterior field with a posterior axillary boost (PAB); an anterior field with an anterior axillary boost (AAB); and an optimized PAB technique (OptPAB). The target coverage, hot spots, irradiated volume, and dose to organs at risk were evaluated and a statistical analysis comparison was performed. The AP technique delivered insufficient dose to the deeper AX nodes. The AP-PA technique produced larger irradiated volumes and higher mean lung doses than the other techniques. The PAB and AAB techniques originated excessive hot spots in most of the cases. The OptPAB technique produced moderate hot spots while maintaining a similar planning target volume (PTV) coverage, irradiated volume, and dose to organs at risk. This optimized technique combines the advantages of the PAB and AP-PA techniques, with moderate hot spots, sufficient target coverage, and adequate sparing of normal tissues. The presented technique is simple, fast, and easy to implement in routine clinical practice and is superior to the techniques historically used for the treatment of SC and AX lymph nodes.

  8. An investigation of the interaction of intense laser radiation with molecules of sulfur hexafluoride through the buffer gas technique

    NASA Astrophysics Data System (ADS)

    Eletskii, A. V.; Klimov, V. D.; Udalova, T. A.

    1981-02-01

    Measurements of the coefficient of the absorption of intense (approximately 10 to the 7th W/sq cm) radiation from a CO2 laser by SF6 molecules in the presence of noble gases and at pressures up to 40 bars are presented. The dependence of the coefficient of absorption on the pressure and type of buffer gas, as well as on the wavelength and intensity of the incident radiation, makes it possible to follow the formation of the vibrational state distribution function of the molecules. The character of the distribution function depends on the competition between vibrational relaxation processes and laser radiation absorption. At high pressures, that is, at helium pressures greater than approximately 20-40 bars, a two-level scheme for the interaction of intense laser radiation with SF6 is implemented experimentally for the first time. Here, molecules excited by light to the v = 1 state relax instantaneously upon collision. The dependence of the rate constant for the destruction of SF6 molecular states on the number of the vibrational level v upon collision with helium atoms can be evaluated from the experimental data. Taken as a whole, the data confirm the assumption of the linear, single-photon nature of the interaction of laser radiation with SF6 molecules.

  9. Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis

    PubMed Central

    Mercer, Kathryn; Li, Melissa; Giangregorio, Lora; Burns, Catherine

    2016-01-01

    Background Wearable activity trackers are promising as interventions that offer guidance and support for increasing physical activity and health-focused tracking. Most adults do not meet their recommended daily activity guidelines, and wearable fitness trackers are increasingly cited as having great potential to improve the physical activity levels of adults. Objective The objective of this study was to use the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy to examine if the design of wearable activity trackers incorporates behavior change techniques (BCTs). A secondary objective was to critically analyze whether the BCTs present relate to known drivers of behavior change, such as self-efficacy, with the intention of extending applicability to older adults in addition to the overall population. Methods Wearing each device for a period of 1 week, two independent raters used CALO-RE taxonomy to code the BCTs of the seven wearable activity trackers available in Canada as of March 2014. These included Fitbit Flex, Misfit Shine, Withings Pulse, Jawbone UP24, Spark Activity Tracker by SparkPeople, Nike+ FuelBand SE, and Polar Loop. We calculated interrater reliability using Cohen's kappa. Results The average number of BCTs identified was 16.3/40. Withings Pulse had the highest number of BCTs and Misfit Shine had the lowest. Most techniques centered around self-monitoring and self-regulation, all of which have been associated with improved physical activity in older adults. Techniques related to planning and providing instructions were scarce. Conclusions Overall, wearable activity trackers contain several BCTs that have been shown to increase physical activity in older adults. Although more research and development must be done to fully understand the potential of wearables as health interventions, the current wearable trackers offer significant potential with regard to BCTs relevant to uptake by all populations, including older adults. PMID:27122452

  10. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    SciTech Connect

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie; Benderitter, Marc; Sabourin, Jean-Christophe; Crandall, David L.; Milliat, Fabien

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.

  11. An Active Self-Determination Technique: Involving Students in Effective Career Planning.

    ERIC Educational Resources Information Center

    Denison, Grace L.

    This paper discusses creating story boards to help students with disabilities to develop effective career plans. It describes storyboarding as a technique for project planning which requires active involvement of both hemispheres of the brain. A group of 6-8 people, including students, teachers, counselors, and vocational rehabilitation…

  12. RADON REDUCTION TECHNIQUES FOR EXISTING DETACHED HOUSES - TECHNICAL GUIDANCE (THIRD EDITION) FOR ACTIVE SOIL DEPRESSURIZATION SYSTEMS

    EPA Science Inventory

    This technical guidance document is designed to aid in the selection, design, installation and operation of indoor radon reduction techniques using soil depressurization in existing houses. Its emphasis is on active soil depressurization; i.e., on systems that use a fan to depre...

  13. Status of the Usage of Active Learning and Teaching Method and Techniques by Social Studies Teachers

    ERIC Educational Resources Information Center

    Akman, Özkan

    2016-01-01

    The purpose of this study was to determine the active learning and teaching methods and techniques which are employed by the social studies teachers working in state schools of Turkey. This usage status was assessed using different variables. This was a case study, wherein the research was limited to 241 social studies teachers. These teachers…

  14. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    PubMed

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  15. Radiation absorbed from dental implant radiography: a comparison of linear tomography, CT scan, and panoramic and intra-oral techniques

    SciTech Connect

    Clark, D.E.; Danforth, R.A.; Barnes, R.W.; Burtch, M.L. )

    1990-01-01

    Absorbed radiation dose in bone marrow, thyroid, salivary gland, eye, and skin entrance was determined by placement of lithium fluoride thermoluminescent dosimeters (TLD's) at selected anatomical sites within and on a human-like x-ray phantom. The phantom was exposed to radiation from linear tomographic and computer-assisted tomographic (CT) simulated dental implant radiographic examinations. The mean dose was determined for each anatomical site. Resulting dose measurements from linear tomography and computer-assisted tomography are compared with reported panoramic and intra-oral doses. CT examination delivered the greatest dose, while linear tomography was generally lowest. Panoramic and intra-oral doses were similar to those of linear tomography.

  16. Personal Active Dosimeter for Space: the Light Observer for Radiation Environment (LORE) project

    NASA Astrophysics Data System (ADS)

    Narici, Livio

    Long permanence in space outside the protections of the Earth magnetic shield and atmosphere (during long journeys, and on the Moon or/and Mars) requires a careful monitoring of absorbed doses by each astronaut. This is of paramount importance for transient and cumulative effects mostly due to Solar Particle Events. Alarming features and the possibility of monitoring absorbed dose also discriminating the kind of incoming radiation will be needed. Stemming from our large experience in detector building, in modelling, in designing of the supporting electronic, from our payloads flown on satellites, MIR Station and ISS (Nina, Mita, SilEye, SilEye2, Alteino, Pamela, ALTEA) we are developping a personal active dosimeter with alarming and wireless features. The goal is a small object able to measure charged and neutral ionizing radiation (the possibility to insert a miniaturized gamma detector will be investigated) The device will feature portability (cigarette-box dimensions, rechargeable batteries), sensitivity to ions (H to above Fe), to hard X-rays, and possibly to gamma with the ability to detect and count neutrons. Flash memories should contain pre loaded tables and the real Time code to perform the real time operations and risk thresholds so to activate an alarm if/when needed. Whenever in range, the device will connect wirelessly to the main computer and send there the raw and pre-analyzed data for a complete monitoring and possible more sophisticated analyses. The two major novelties and challenges in this project are the miniaturization of the device, including the firmware, and the definition of the transfer function and of its uncertainties, linking measured data with real flux data. This will require the proper balancing among size, radiation discrimination ability and uncertainty minimization.

  17. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy

    PubMed Central

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-01-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6, heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. PMID:26177264

  18. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy.

    PubMed

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-09-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6 , heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy.

  19. Lighting-induced Electron Precipitation (LEP) Events versus Geomagnetic Activity: A Probe Tool to Re-Evaluate the Electron Radiation Belt Loss Mechanisms (P16)

    NASA Astrophysics Data System (ADS)

    Fernandez, J. H.; Raulin, J.-P.; Correia, E.; Brum, C. G. M.

    2006-11-01

    We present the first results of an incipient attempt to re-model the Van Allen electron radiation belts equilibrium mechanisms. During the 23rd cycle solar minimum period (1995-1997) the Lightning- induced Electron Precipitation (LEP) events (electron precipitation from the geo-space to the upper Earth atmosphere) occurrence at the Antarctica Peninsula region was collected and studied. With statistical techniques we have reproduced the pattern of the events incidence during that period. The year 1998 was also analyzed and two well-defined geomagnetic storms (01-07 May and 26-31 Aug) were studied in association with the Trimpi events data. We have confirmed the narrow relationship between events occurrence rate and geomagnetic activity. The next step, in order to carry on the model, will be the modeling of the solar maximum LEP occurrence and to compute these results in the present radiation belts population models.

  20. Evaluation of radioisotope tracer and activation analysis techniques for contamination monitoring in space environment simulation chambers

    NASA Technical Reports Server (NTRS)

    Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.

    1973-01-01

    Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.

  1. The effect of ultraviolet radiation-induced suppressor cells on T-cell activity.

    PubMed Central

    Ullrich, S E

    1987-01-01

    The suppression of contact hypersensitivity (CHS) after a single exposure to ultraviolet (UV) radiation provides an excellent model system with which to study both the activation and the mode of action of suppressor T cells. Suppression of CHS after UV radiation is mediated by hapten-specific suppressor T cells (UVTs). These cells have a broad range of activity: CHS and antibody production in vivo and the generation of cytolytic T lymphocytes (CTL) and T-cell proliferative responses in vitro are suppressed by UVTs. The present study is concerned with determining the target of UVTs. The UVTs could suppress the response to hapten-modified T-dependent antigens, such as trinitrophenyl (TNP)-modified sheep erythrocytes (TNP-SRBC) or TNP-conjugated bovine serum albumin (TNP-BSA), but had no suppressive effect on the response to a T-independent antigen, TNP-conjugated lipopolysaccharide (TNP-LPS). The UVTs also suppressed the generation of interleukin-2 (IL-2) in vitro. The suppression of CTL generation in vitro and CHS in vivo could be overcome by the addition of exogenous IL-2. These data suggest that UVTs suppress the immune response by affecting T-helper cell function. PMID:2952584

  2. A novel Nrf2 activator from microbial transformation inhibits radiation-induced dermatitis in mice.

    PubMed

    Nakagami, Yasuhiro; Masuda, Kayoko

    2016-09-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that regulates many antioxidants, and we have recently succeeded in obtaining a novel Nrf2 activator, RS9, from microbial transformation. RS9 is categorized as a triterpenoid, and well-known triterpenoids such as RTA 402 (bardoxolone methyl) and RTA 408 have been tested in clinical trials. RTA 408 lotion is currently being tested in patients at risk for radiation dermatitis. This prompted us to study the profiles of RS9 in the skin. All the above triterpenoids increased the level of an Nrf2-targeted gene, NADPH:quinone oxidoreductase-1, in normal human epidermal keratinocytes. Among them, the activity of RS9 was prominent; furthermore, the cellular toxicity was less compared with RTA compounds. BALB/c mice were irradiated with 30 Gy/day on Day 0, and compounds were topically applied on the back once daily from Day 1 to Day 30. Dermatitis scores peaked on Day 18, with a score of 2.6 in vehicle-treated mice, and topical applications of 0.1% RTA 402, RTA 408 and RS9 reduced the scores to 1.8, 2.0 and 1.4, respectively. Moreover, the percentage of animals with scores ≥2 was analyzed, and 0.1% RS9 suppressed the percentage from 100% to 47%. These results imply that RS9 has potential efficacy for treating radiation dermatitis.

  3. Estimates and Measurements of Photosynthetically Active Radiation and Global Solar Irradiance in Rondonia

    SciTech Connect

    Aguiar, Leonardo J. G.; Costa, Jose M. N. da; Fischer, Graciela R.; Aguiar, Renata G.

    2009-03-11

    Measurements of photosynthetically active radiation (PAR) and global solar irradiance (R{sub s}) were made at a LBA (The Large Scale Biosphere-Atmosphere Experiment in Amazonia) experimental site, at Fazenda Nossa Senhora (10 deg. 45' S; 62 deg. 21' W), in Rondonia, in the years of 2004 and 2005, with the objective of estimating the seasonal variation of the ratio between the photosynthetically active radiation and the global solar irradiance. The relationship between PAR and R{sub s} were made by using linear regressions equations with data from year 2004 and tested with data from the year 2005. The seasonal variation of the ratio PAR/R{sub s} ranged from 0.43 (September) to 0.48 (January). The linear regression equations between PAR and R{sub s} obtained were: a) On an hourly basis: PAR 0.747+0.478*R{sub s},(R{sup 2} = 0.99; wet season) and PAR = -4.578+0.452*R{sub s}(R{sup 2} 0.99; dry season); b) On a daily basis: PAR = 4.956+0.466*R{sub s}(R{sup 2} = 0.99; wet season) and PAR = -6.762+0.457*R{sub s}(R{sup 2} = 0.96; dry season)

  4. A novel Nrf2 activator from microbial transformation inhibits radiation-induced dermatitis in mice

    PubMed Central

    Nakagami, Yasuhiro; Masuda, Kayoko

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that regulates many antioxidants, and we have recently succeeded in obtaining a novel Nrf2 activator, RS9, from microbial transformation. RS9 is categorized as a triterpenoid, and well-known triterpenoids such as RTA 402 (bardoxolone methyl) and RTA 408 have been tested in clinical trials. RTA 408 lotion is currently being tested in patients at risk for radiation dermatitis. This prompted us to study the profiles of RS9 in the skin. All the above triterpenoids increased the level of an Nrf2-targeted gene, NADPH:quinone oxidoreductase-1, in normal human epidermal keratinocytes. Among them, the activity of RS9 was prominent; furthermore, the cellular toxicity was less compared with RTA compounds. BALB/c mice were irradiated with 30 Gy/day on Day 0, and compounds were topically applied on the back once daily from Day 1 to Day 30. Dermatitis scores peaked on Day 18, with a score of 2.6 in vehicle-treated mice, and topical applications of 0.1% RTA 402, RTA 408 and RS9 reduced the scores to 1.8, 2.0 and 1.4, respectively. Moreover, the percentage of animals with scores ≥2 was analyzed, and 0.1% RS9 suppressed the percentage from 100% to 47%. These results imply that RS9 has potential efficacy for treating radiation dermatitis. PMID:27242339

  5. A Launch Requirements Trade Study for Active Space Radiation Shielding for Long Duration Human Missions

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer

    2015-01-01

    A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.

  6. Active control of near-field radiative heat transfer between graphene-covered metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua

    2017-04-01

    In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.

  7. Support of Activities of the NAS in Relation to the Radiation Effects Research Foundation

    SciTech Connect

    Douple, Evan B.

    2006-05-31

    The National Academies (NA) provides support for the activities related to the long-term follow up of the health of the survivors of the atomic bombings of Hiroshima and Nagasaki being conducted by the Radiation Effects Research Foundation (RERF) laboratories in Hiroshima and Nagasaki, Japan. The NA serves as scientific and administrative liaison between the U.S. Department of Energy (DOE) and RERF, and performs tasks in the areas of scientific oversight, information/public interface, fiscal oversight, and personnel management. The project includes recruitment and support of approximately 10 NA employees who work at RERF in Japan. Specific activities are performed consistent with the cooperative agreement’s Statement of Work between DOE and NA and consistent with an Annual Work Plan developed by DOE and NA.

  8. Predicting Atlantic seasonal hurricane activity using outgoing longwave radiation over Africa

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Li, Laifang

    2016-07-01

    Seasonal hurricane activity is a function of the amount of initial disturbances (e.g., easterly waves) and the background environment in which they develop into tropical storms (i.e., the main development region). Focusing on the former, a set of indices based solely upon the meridional structure of satellite-derived outgoing longwave radiation (OLR) over the African continent are shown to be capable of predicting Atlantic seasonal hurricane activity with very high rates of success. Predictions of named storms based on the July OLR field and trained only on the time period prior to the year being predicted yield a success rate of 87%, compared to the success rate of NOAA's August outlooks of 53% over the same period and with the same average uncertainty range (±2). The resulting OLR indices are statistically robust, highly detectable, physically linked to the predictand, and may account for longer-term observed trends.

  9. Association of orogenic activity with the Ordovician radiation of marine life

    NASA Technical Reports Server (NTRS)

    Miller, A. I.; Mao, S.

    1995-01-01

    The Ordovician radiation of marine life was among the most substantial pulses of diversification in Earth history and coincided in time with a major increase in the global level of orogenic activity. To investigate a possible causal link between these two patterns, the geographic distributions of 6576 individual appearances of Ordovician vician genera around the world were evaluated with respect to their proximity to probable centers of orogeny (foreland basins). Results indicate that these genera, which belonged to an array of higher taxa that diversified in the Middle and Late Ordovician (trilobites, brachiopods, bivalves, gastropods, monoplacophorans), were far more diverse in, and adjacent to, foreland basins than they were in areas farther removed from orogenic activity (carbonate platforms). This suggests an association of orogeny with diversification at that time.

  10. Use of narrow-band spectra to estimate the fraction of absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Huemmrich, Karl F.; Goward, Samuel N.

    1990-01-01

    A novel approach is proposed for using high-spectral resolution imagers to estimate the fraction of photosynthetically active radiation adsorbed, f(apar), by vegetated land surfaces. In comparison to approaches using broad-band vegetation indices, the proposed method appears to be relatively insensitive to the reflectance of nonphotosynthetically active material beneath the canopy, such as leaf litter or soil. The method is based on a relationship between the second derivative of the reflectance vs wavelength function for terrestrial vegetation and f(apar). The relationship can be defined by the second derivatives in either of two windows, one in the visible region centered at 0.69 micron, another in the near-infrared region centered at 0.74 micron.

  11. The effects of self-mobilization techniques for the sciatic nerves on physical functions and health of low back pain patients with lower limb radiating pain

    PubMed Central

    Jeong, Ui-Cheol; Kim, Cheol-Yong; Park, Young-Han; Hwang-Bo, Gak; Nam, Chan-Woo

    2016-01-01

    [Purpose] This study aimed to examine the effects of self-mobilization techniques for the sciatic nerves on the quality of life in patients with chronic low back pain in the lower limbs accompanied by radiating pain. [Subjects and Methods] The subjects were divided into two groups: a group receiving of lumbar segmental stabilization exercise training including sciatic nerve mobilization techniques, which included 8 males and 7 females, and a group receiving lumbar segmental stabilization exercise training, which included 8 males and 7 females. [Results] There were statistically significant differences in comparison of measurement results between the groups before and after the intervention. [Conclusion] Application of mobilization techniques for the sciatic nerves may promote healing of the soft tissues by stimulating the functions of the nervous system to improve nervous system adaptability and decrease sensitivity, helping to alleviate the symptoms. PMID:26957726

  12. Radiation Characteristics of Cavity Backed Aperture Antennas in Finite Ground Plane Using the Hybrid FEM/MoM Technique and Geometrical Theory of Diffraction

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    A technique using hybrid Finite Element Method (FEM)/Method of Moments (MoM), and Geometrical Theory of Diffraction (GTD) is presented to analyze the radiation characteristics of cavity fed aperture antennas in a finite ground plane. The cavity which excites the aperture is assumed to be fed by a cylindrical transmission line. The electromagnetic (EM) fields inside the cavity are obtained using FEM. The EM fields and their normal derivatives required for FEM solution are obtained using (1) the modal expansion in the feed region and (2) the MoM for the radiating aperture region(assuming an infinite ground plane). The finiteness of the ground plane is taken into account using GTD. The input admittance of open ended circular, rectangular, and coaxial line radiating into free space through an infinite ground plane are computed and compared with earlier published results. Radiation characteristics of a coaxial cavity fed circular aperture in a finite rectangular ground plane are verified with experimental results.

  13. Locating radiation hazards and sources within contaminated areas by implementing a reverse ray tracing technique in the RadBall™ technology.

    PubMed

    Farfán, Eduardo B; Stanley, Steven; Holmes, Christopher; Lennox, Kathryn; Oldham, Mark; Clift, Corey; Thomas, Andrew; Adamovics, John

    2012-02-01

    RadBall™ is a novel technology that can locate unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semisphere. The collimator has a number of small holes; as a result, specific areas of the polymer are exposed to radiation, becoming increasingly more opaque in proportion to the absorbed dose. The polymer semisphere is imaged in an optical computed tomography scanner that produces a high resolution three-dimensional map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data, using a reverse ray tracing technique, provides information on the spatial distribution of gamma-ray sources in a given area, forming a three-dimensional characterization of the area of interest. The RadBall™ technology and its reverse ray tracing technique were investigated using known radiation sources at the Savannah River Site's Health Physics Instrument Calibration Laboratory and unknown sources at the Savannah River National Laboratory's Shielded Cells facility.

  14. A technique for multi-dimensional optimization of radiation dose, contrast dose, and image quality in CT imaging

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan

    2016-03-01

    The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).

  15. IMPROVING DISPLACEMENT SIGNAL-TO-NOISE RATIO FOR LOW-SIGNAL RADIATION FORCE ELASTICITY IMAGING USING BAYESIAN TECHNIQUES

    PubMed Central

    Dumont, Douglas M.; Walsh, Kristy M.; Byram, Brett C.

    2017-01-01

    Radiation force-based elasticity imaging is currently being investigated as a possible diagnostic modality for a number of clinical tasks, including liver fibrosis staging and the characterization of cardiovascular tissue. In this study, we evaluate the relationship between peak displacement magnitude and image quality and propose using a Bayesian estimator to overcome the challenge of obtaining viable data in low displacement signal environments. Displacement data quality were quantified for two common radiation f