Science.gov

Sample records for active recombinant proteins

  1. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  2. Staphylokinase as a Plasminogen Activator Component in Recombinant Fusion Proteins

    PubMed Central

    Szarka, S. J.; Sihota, E. G.; Habibi, H. R.; Wong, S.-L.

    1999-01-01

    The plasminogen activator staphylokinase (SAK) is a promising thrombolytic agent for treatment of myocardial infarction. It can specifically stimulate the thrombolysis of both erythrocyte-rich and platelet-rich clots. However, SAK lacks fibrin-binding and thrombin inhibitor activities, two functions which would supplement and potentially improve its thrombolytic potency. Creating a recombinant fusion protein is one approach for combining protein domains with complementary functions. To evaluate SAK for use in a translational fusion protein, both N- and C-terminal fusions to SAK were constructed by using hirudin as a fusion partner. Recombinant fusion proteins were secreted from Bacillus subtilis and purified from culture supernatants. The rate of plasminogen activation by SAK was not altered by the presence of an additional N- or C-terminal protein sequence. However, cleavage at N-terminal lysines within SAK rendered the N-terminal fusion unstable in the presence of plasmin. The results of site-directed mutagenesis of lysine 10 and lysine 11 in SAK suggested that a plasmin-resistant variant cannot be created without interfering with the plasmin processing necessary for activation of SAK. Although putative plasmin cleavage sites are located at the C-terminal end of SAK at lysine 135 and lysine 136, these sites were resistant to plasmin cleavage in vitro. Therefore, C-terminal fusions represent stable configurations for developing improved thrombolytic agents based on SAK as the plasminogen activator component. PMID:9925575

  3. Recombinant proteins in newly developed foods: identification of allergenic activity.

    PubMed

    Lehrer, S B; Reese, G

    1997-01-01

    A number of agricultural crops are being modified for various purposes using recombinant DNA technology. Since transferred genes may code for proteins that are ordinarily not present, there is concern about the potential allergenicity of these new varieties. The safety evaluation of transgenic foods is relatively easy when the allergenicity of the gene source is known. Recombinant allergens in genetically engineered or altered foods can be identified using traditional immunological assays such as RAST or ELISA inhibition or immunoblotting procedures. Our recent studies of two corn proteins (10 kD and HSZ) used to alter grain amino acid composition and of transgenic soybeans with an altered fatty acid profile are examples of this approach. Both 10 kD and HSZ did not bind IgE antibodies from sera of corn-reactive subjects by immunoblotting. Studies of wild-type and transgenic soybeans with high oleic acidic content by RAST inhibition and immunoblotting with pooled sera of soy-allergic individuals demonstrated no difference in the allergen content of both extracts. In contrast to these studies, a recent investigation by Nordlee et al. (1996) of transgenic soybeans which expressed a methionine/cysteine-rich protein from Brazil nuts identified this protein as a major Brazil nut allergen. These studies indicate that, when the gene source is from a known allergen or if the recipient contains allergens, it is possible to determine whether the allergen content of the transgenic line is altered relative to the nontransgenic varieties.

  4. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity

    PubMed Central

    Bugreev, Dmitry V.; Mazin, Alexander V.

    2004-01-01

    Human Rad51 (hRad51) protein plays a key role in homologous recombination and DNA repair. hRad51 protein forms a helical filament on single-stranded DNA (ssDNA), which performs the basic steps of homologous recombination: a search for homologous double-stranded DNA (dsDNA) and DNA strand exchange. hRad51 protein possesses DNA-dependent ATPase activity; however, the role of this activity has not been understood. Our current results show that Ca2+ greatly stimulates DNA strand exchange activity of hRad51 protein. We found that Ca2+ exerts its stimulatory effect by modulating the ATPase activity of hRad51 protein. Our data demonstrate that, in the presence of Mg2+, the hRad51-ATP-ssDNA filament is quickly converted to an inactive hRad51-ADP-ssDNA form, due to relatively rapid ATP hydrolysis and slow dissociation of ADP. Ca2+ maintains the active hRad51-ATP-ssDNA filament by reducing the ATP hydrolysis rate. These findings demonstrate a crucial role of the ATPase activity in regulation of DNA strand exchange activity of hRad51 protein. This mechanism of Rad51 protein regulation by modulating its ATPase activity is evolutionarily recent; we found no such mechanism for yeast Rad51 (yRad51) protein. PMID:15226506

  5. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  6. Recombination hotspot activity of hypervariable minisatellite DNA requires minisatellite DNA binding proteins.

    PubMed

    Wahls, W P; Moore, P D

    1998-01-01

    Hypervariable minisatellite DNA repeats are found at tens of thousands of loci in the mammalian genome. These sequences stimulate homologous recombination in mammalian cells [Cell 60:95-103]. To test the hypothesis that protein-DNA interaction is required for hotspot function in vivo, we determined whether a second protein binding nearby could abolish hotspot activity. Intermolecular recombination between pairs of plasmid substrates was measured in the presence or absence of the cis-acting recombination hotspot and in the presence or absence of the second trans-acting DNA binding protein. Minisatellite DNA had hotspot activity in two cell lines, but lacked hotspot activity in two closely related cell lines expressing a site-specific helicase that bound to DNA adjacent to the hotspot. Suppression of hotspot function occurred for both replicating and non-replicating recombination substrates. These results indicate that hotspot activity in vivo requires site occupancy by minisatellite DNA binding proteins. PMID:9776980

  7. Annexin proteins PP4 and PP4-X. Comparative characterization of biological activities of placental and recombinant proteins.

    PubMed Central

    Römisch, J; Grote, M; Weithmann, K U; Heimburger, N; Amann, E

    1990-01-01

    The human placental proteins PP4 and PP4-X, belonging to the annexin protein family, were expressed in Escherichia coli at high yield. The proteins were purified to homogeneity. The physicochemical parameters of the recombinant proteins were determined and compared with those of their natural placental counterparts. Except for a minor change in the pI, the proteins appeared to be indistinguishable by several criteria. Both recombinant PP4 and recombinant PP4-X were biologically active in a thromboplastin inhibition test and in a phospholipase A2 inhibition test. Images Fig. 2. Fig. 3. Fig. 4. PMID:2148260

  8. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  9. The recombinant expression and activity detection of MAF-1 fusion protein

    PubMed Central

    Fu, Ping; Wu, Jianwei; Gao, Song; Guo, Guo; Zhang, Yong; Liu, Jian

    2015-01-01

    This study establishes the recombinant expression system of MAF-1 (Musca domestica antifungal peptide-1) and demonstrates the antifungal activity of the expression product and shows the relationship between biological activity and structure. The gene segments on mature peptide part of MAF-1 were cloned, based on the primers designed according to the cDNA sequence of MAF-1. We constructed the recombinant prokaryotic expression plasmid using prokaryotic expression vector (pET-28a(+)) and converted it to the competent cell of BL21(DE3) to gain recombinant MAF-1 fusion protein with His tag sequence through purifying affinity chromatographic column of Ni-NTA. To conduct the Western Blotting test, recombinant MAF-1 fusion protein was used to produce the polyclonal antibody of rat. The antifungal activity of the expression product was detected using Candida albicans (ATCC10231) as the indicator. The MAF-1 recombinant fusion protein was purified to exhibit obvious antifungal activity, which lays the foundation for the further study of MAF-1 biological activity, the relationship between structure and function, as well as control of gene expression. PMID:26423137

  10. Complement receptor activity of recombinant porcine CR1-like protein expressed in a eukaryotic system.

    PubMed

    Yin, Wei; Wei, Xiaoming; Jiang, Junbing; Fan, Kuohai; Zhao, Junxing; Sun, Na; Wang, Zhiwei; Sun, Yaogui; Ma, Haili; Zhao, Xin; Li, Hongquan

    2016-08-01

    Primate complement receptor type 1 (CR1) protein, a single-chain transmembrane glycoprotein, plays an important role in immune adherence and clearing complement-opsonized immune complexes. Here, the mRNA of the porcine primate-like complement receptor (CR1-like) gene was analyzed, and two domain sequences with potential functions were cloned into the pwPICZalpha vector for expression in Pichia pastoris. The recombinant proteins were purified with both Protein Pure Ni-NTA resin and strong anion exchange resin. The activities of the purified recombinant proteins were evaluated by SDS-PAGE, western blotting, and complement receptor assays. The results indicated that two domains of the CR1-like protein, CCP36 and CCP811 with molecular weights of 29.8 kDa and 30 kDa, respectively, were successfully expressed in P. pastoris. These two recombinant proteins possess some of the functions of the primate CR1 protein. Using these two proteins coupled with an antibody blocking technique, we also showed that CR1-like is expressed on natural porcine erythrocytes. PMID:26903010

  11. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  12. Expression of biologically active recombinant rat IgE-binding protein in Escherichia coli.

    PubMed

    Frigeri, L G; Robertson, M W; Liu, F T

    1990-12-01

    IgE-binding protein (epsilon BP) is a protein which has affinity for IgE and was originally identified in rat basophilic leukemia (RBL) cells. Subsequently, it was found to be the rat homolog of CBP35, a murine beta-galactoside-specific lectin. This protein is also designated as L-34 and RL-29 and studied independently by several laboratories. More recently, CBP35 (epsilon BP) was found to be equivalent to Mac-2, a surface marker on activated macrophages. Using rat epsilon BP cDNA, we have succeeded in expressing recombinant epsilon BP in Escherichia coli. Milligram quantities of homogeneous epsilon BP could be obtained from bacterial lysate in a one-step affinity purification procedure utilizing lactosyl-Sepharose 4B and elution with a lactose gradient. The recombinant epsilon BP (r epsilon BP) binds mouse IgE and retains reactivity to anti-peptide antibodies specific for a sequence within rat epsilon BP. The purified r epsilon BP exhibits binding activity to various saccharides, with affinity for N-acetyllactosamine greater than thiodigalactoside greater than lactose much greater than D-galactose greater than L-arabinose, an order identical to that exhibited by native epsilon BP isolated from RBL cells. The recombinant lectin displayed hemagglutination activity when tested with rabbit erythrocytes. Although epsilon BP shares sequence homology to other lectins containing S-type (thiol-dependent) carbohydrate-recognition domains, r epsilon BP is resistant to air oxidation and does not require reducing agents for maintaining its activity. Furthermore, the single cysteine residue appears to be unexposed and can be alkylated only when the protein is denatured in 5.6 M guanidinium hydrochloride. The availability of a source for a large quantity of epsilon BP should facilitate the analysis of biological function(s) and structure-activity relationships of this lectin.

  13. Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity.

    PubMed Central

    Mroczkowski, B; Reich, M; Chen, K; Bell, G I; Cohen, S

    1989-01-01

    NIH 3T3 cells were transfected with cDNA corresponding to human kidney prepro-epidermal growth factor (preproEGF) under control of the inducible mouse metallothionein promoter. The synthesis of recombinant human EGF precursor by these cells has provided us with a model system for analysis of the structure and activity of this precursor. In transfected cells, the precursor was present as an intrinsic 170-kilodalton membrane protein as well as a soluble protein in the extracellular medium; both forms were N glycosylated. Glycosylation of the EGF precursor was determined by (i) the direct incorporation of [3H]mannose and [3H]glucosamine, (ii) metabolic labeling in the presence or absence of glycosylation inhibitors, (iii) enzymatic cleavage of the precursor by N-glycanase or endoglycosidase II, and (iv) lectin chromatography. Recombinant human preproEGF was purified by affinity chromatography, using wheat germ lectin and antibodies to human EGF. The intact precursor was biologically active. Purified preparations of preproEGF (i) competed with 125I-labeled EGF for binding to the EGF receptor in intact fibroblast cells, (ii) activated the intrinsic tyrosine kinase activity of the EGF receptor in membrane preparations, and (iii) sustained the growth of a mouse keratinocyte cell line that is dependent on EGF for growth. These results suggest that proteolytic processing of the precursor may not be essential for its biological function. Images PMID:2789334

  14. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells.

    PubMed

    Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta

    2014-01-01

    Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002-2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.

  15. A heteromeric protein that binds to a meiotic homologous recombination hot spot: correlation of binding and hot spot activity.

    PubMed

    Wahls, W P; Smith, G R

    1994-07-15

    Homologous recombination hot spots are DNA sites that increase the frequency of recombination in their vicinity. The M26 allele of the ade6 gene in Schizosaccharomyces pombe is the first meiotic hot spot with an identified unique nucleotide sequence. We have purified 40,000-fold a heteromeric protein, containing polypeptides Mts1 (70 kD) and Mts2 (28 kD), that binds to the M26 site. Binding in vitro strictly correlates with hot spot activity in vivo for numerous single base pair substitutions in the vicinity of the M26 site, indicating that Mts1/Mts2 activates the M26 site and promotes a rate-limiting step of meiotic recombination. These and other data suggest that homologous recombination may be regulated primarily by discrete DNA sites and proteins that interact with those sites. PMID:7958849

  16. Cloning of habutobin cDNA and antithrombotic activity of recombinant protein

    SciTech Connect

    Sunagawa, Masanori Nakamura, Mariko; Kosugi, Tadayoshi

    2007-11-03

    The habutobin cDNA was cloned from total RNA extracted from venom glands of Trimeresurus flavoviridis (the habu snake). The conceptual translation of 1539 bp of habutobin cDNA consists of 236 amino acids and its molecular weight is 25.7 kDa. Histidine (His)-tagged recombinant habutobin fusion protein, pET-r-habutobin and AcNPV-r-habutobin, was purified by bacterial system and baculoviral system, respectively. After refolding pET-r-habutobin, there were two protein bands at about 32 kDa and 65 kDa, indicating that habutobin might be produced as a monomer protein and processed to form two concatenated protein. Purified AcNPV-r-habutobin dose-dependently increased fibrin forming activity and inhibited collagen-induced aggregation of rabbit washed platelets. Thus, AcNPV-r-habutobin produced by baculoviral system is very useful for study on structure-function relationship, which is necessary for developing an antithrombotic drug from habutobin.

  17. Functional Activity of Antibodies against the Recombinant OpaJ Protein from Neisseria meningitidis

    PubMed Central

    de Jonge, M. I.; Vidarsson, G.; van Dijken, H. H.; Hoogerhout, P.; van Alphen, L.; Dankert, J.; van der Ley, P.

    2003-01-01

    The opacity proteins belong to the major outer membrane proteins of the pathogenic Neisseria and are involved in adhesion and invasion. We studied the functional activity of antibodies raised against the OpaJ protein from strain H44/76. Recombinant OpaJ protein was obtained from Escherichia coli in two different ways: cytoplasmic expression in the form of inclusion bodies followed by purification and refolding and cell surface expression followed by isolation of outer membrane complexes (OMCs). Immunization with purified protein and Quillaja saponin A (QuilA) induced high levels of Opa-specific antibodies, whereas the E. coli OMC preparations generally induced lower levels of antibodies. Two chimeric Opa proteins, hybrids between OpaB and OpaJ, were generated to demonstrate that the hypervariable region 2 is immunodominant. Denatured OpaJ with QuilA induced high levels of immunoglobulin G2a (IgG2a) in addition to IgG1, whereas refolded OpaJ with QuilA induced IgG1 exclusively. These sera did not induce significant complement-mediated killing. However, all sera blocked the interaction of OpaJ-expressing bacteria to CEACAM1-transfected cells. In addition, cross-reactive blocking of OpaB-expressing bacteria to both CEACAM1- and CEA-transfected cells was found for all sera. Sera raised against purified OpaJ and against OpaJ-containing meningococcal OMCs also blocked the nonopsonic interaction of Opa-expressing meningococci with human polymorphonuclear leukocytes. PMID:12704102

  18. Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants.

    PubMed

    Dugdale, Benjamin; Mortimer, Cara L; Kato, Maiko; James, Tess A; Harding, Robert M; Dale, James L

    2014-05-01

    Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.

  19. Vaccinia virus recombinants expressing an 11-kilodalton beta-galactosidase fusion protein incorporate active beta-galactosidase in virus particles.

    PubMed

    Huang, C; Samsonoff, W A; Grzelecki, A

    1988-10-01

    Recombinant plasmids in which vaccinia virus transcriptional regulatory sequences were fused to the Escherichia coli lacZ gene were constructed for insertion of the lacZ gene into the vaccinia virus genome. beta-Galactosidase (beta-gal) was found in some purified recombinant vaccinia virions. By enzyme activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and microscopic techniques, the evidence suggested that beta-gal accounted for 5% of the total protein in the virion. These recombinant viruses were constructed so that a portion of the coding sequences of a late vaccinia virus structural polypeptide was fused to the amino terminus of beta-gal to produce the fusion protein. Removal of the coding sequences resulted in the complete loss of beta-gal activity. This demonstrated that a vaccinia virus DNA segment from a late structural gene is responsible for the incorporation of beta-gal into the virion.

  20. Activated recombinant adenovirus proteinases

    SciTech Connect

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  1. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  2. A novel recombinant single-chain hepatitis C virus NS3-NS4A protein with improved helicase activity.

    PubMed Central

    Howe, A. Y.; Chase, R.; Taremi, S. S.; Risano, C.; Beyer, B.; Malcolm, B.; Lau, J. Y.

    1999-01-01

    Hepatitis C virus (HCV) nonstructural protein 3 (NS3) has been shown to possess protease and helicase activities and has also been demonstrated to spontaneously associate with nonstructural protein NS4A (NS4A) to form a stable complex. Previous attempts to produce the NS3/NS4A complex in recombinant baculovirus resulted in a protein complex that aggregated and precipitated in the absence of nonionic detergent and high salt. A single-chain form of the NS3/NS4A complex (His-NS4A21-32-GSGS-NS3-631) was constructed in which the NS4A core peptide is fused to the N-terminus of the NS3 protease domain as previously described (Taremi et al., 1998). This protein contains a histidine tagged NS4A peptide (a.a. 21-32) fused to the full-length NS3 (a.a. 3-631) through a flexible tetra amino acid linker. The recombinant protein was expressed to high levels in Escherichia coli, purified to homogeneity, and examined for NTPase, nucleic acid unwinding, and proteolytic activities. The single-chain recombinant NS3-NS4A protein possesses physiological properties equivalent to those of the NS3/NS4A complex except that this novel construct is stable, soluble and sixfold to sevenfold more active in unwinding duplex RNA. Comparison of the helicase activity of the single-chain recombinant NS3-NS4A with that of the full-length NS3 (without NS4A) and that of the helicase domain alone suggested that the presence of the protease domain and at least the NS4A core peptide are required for optimal unwinding activity. PMID:10386883

  3. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  4. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  5. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  6. Physical activity in individuals with haemophilia and experience with recombinant factor VIII Fc fusion protein and recombinant factor IX Fc fusion protein for the treatment of active patients: a literature review and case reports

    PubMed Central

    Wang, Michael; Álvarez-Román, María Teresa; Chowdary, Pratima; Quon, Doris V.; Schafer, Kim

    2016-01-01

    The World Federation of Hemophilia and the National Hemophilia Foundation encourage people with haemophilia (PWH) to participate in routine physical activity. The benefits of physical activity for PWH include improvements in joint, bone, and muscle health. Accordingly, a number of studies suggest that levels of physical activity among PWH are similar to those of their healthy peers, especially among individuals who began prophylaxis at an early age (≤3 years). Importantly, several studies found either no increased risk or only a transient increase in risk of bleeding with more intensive physical activity compared with less intensive physical activity. Data on optimal prophylaxis regimens for PWH who participate in physical/sporting activities; however, remain sparse. Long-acting recombinant factor VIII Fc fusion protein (rFVIIIFc) and recombinant factor IX Fc fusion protein (rFIXFc) demonstrated efficacy for the prevention and treatment of bleeding episodes in Phase 3 clinical trials of participants with haemophilia A and B, respectively, with most individuals able to maintain or increase their physical activities. This manuscript reviews the current literature that describes physical activity in PWH. Additionally, case studies are presented to provide supplemental information to clinicians illustrating the use of rFVIIIFc and rFIXFc in physically active patients with haemophilia A and B, respectively. These case reports demonstrate that it is possible for patients to be physically active and maintain good control of their haemophilia with extended interval prophylactic dosing using rFVIIIFc or rFIXFc. PMID:27116081

  7. Enhanced activation of T lymphocytes by urease-deficient recombinant bacillus Calmette-Guérin producing heat shock protein 70-major membrane protein-II fusion protein.

    PubMed

    Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko

    2010-11-15

    To activate naive T cells convincingly using Mycobacterium bovis bacillus Calmette-Guérin (BCG), recombinant BCG (BCG-D70M) that was deficient in urease, expressed with gene encoding the fusion of BCG-derived heat shock protein (HSP) 70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed. BCG-D70M was more potent in activation of both CD4(+) and CD8(+) subsets of naive T cells than recombinant BCGs including urease-deficient BCG and BCG-70M secreting HSP70-MMP-II fusion protein. BCG-D70M efficiently activated dendritic cells (DCs) to induce cytokine production and phenotypic changes and activated CD4(+) T cells even when macrophages were used as APCs. The activation of both subsets of T cells was MHC and CD86 dependent. Pretreatment of DCs with chloroquine inhibited both surface expression of MMP-II on DCs and the activation of T cells by BCG-D70M-infected APCs. The naive CD8(+) T cell activation was inhibited by treatment of DCs with brefeldin A and lactacystin so that the T cell was activated by TAP- and proteosome-dependent cytosolic cross-priming pathway. From naive CD8(+) T cells, effector T cells producing perforin and memory T cells having migration markers were produced by BCG-D70M stimulation. BCG-D70M primary infection in C57BL/6 mice produced T cells responsive to in vitro secondary stimulation with MMP-II and HSP70 and more efficiently inhibited the multiplication of subsequently challenged M. leprae than vector control BCG. These results indicate that the triple combination of HSP70, MMP-II, and urease depletion may provide a useful tool for inducing better activation of naive T cells.

  8. Recombinant snake venom prothrombin activators.

    PubMed

    Lövgren, Ann

    2013-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need for additional cofactors, but does not discriminate non-carboxylated prothrombin from biologically active γ-carboxylated prothrombin. Here we report that recombinant trocarin and oscutarin could not efficiently generate thrombin without additional protein co-factors. We confirm that both trocarin and oscutarin are similar to human coagulation Factor X (FX), explaining the need for additional cofactors. Sequencing of a genomic fragment containing 7 out of the 8 exons coding for oscutarin further confirmed the similarity to human FX. PMID:23111318

  9. Extraction of recombinant protein from Escherichia coli by using a novel cell autolysis activity of VanX.

    PubMed

    Kamioka, Tetsuya; Sohya, Shihori; Wu, Nan; Maki, Tei; Matsuda, Tomoki; Ikegami, Takahisa; Nakamura, Haruki; Kuroda, Yutaka

    2013-08-15

    Escherichia coli is a versatile, low-cost, and popular host for expressing recombinant proteins. However, extracting recombinant proteins from E. coli requires cell wall breakage, which is both time- and effort-consuming. Here we report a novel cell breakage method based on our recent finding that VanX, which is a d-Ala-d-Ala dipeptidase encoded in a vancomycin-resistant VanA gene cluster, exhibits a strong cell lysis activity when expressed in isolation in E. coli. In our strategy, we coexpress VanX with the target protein, causing cell autolysis and release of the cellular content into the culture medium. We demonstrated this strategy for two model proteins, a green fluorescent protein variant (GFPuv) and Gaussia luciferase, and optimized the autolysis conditions and coexpression vectors. The fluorescence activity of GFPuv collected from the medium was identical to that of GFPuv purified by conventional methods. Cell breakage by VanX-mediated autolysis is very simple to implement and will efficiently complement traditional methods. PMID:23624113

  10. Recombinant protein polymers in biomaterials.

    PubMed

    Kim, Wookhyun

    2013-01-01

    Naturally occurring protein-based materials have been found that function as critical components in biomechanical response, fibers and adhesives. A relatively small but growing number of recombinant protein-based materials that mimic the desired features of their natural sources, such as collagens, elastins and silks, are considered as an alternative to conventional synthetic polymers. Advances in genetic engineering have facilitated the synthesis of repetitive protein polymers with precise control of molecular weights which are designed by using synthetic genes encoding tandem repeats of oligopeptide originating from a modular domain of natural proteins. Many repeat sequences as protein polymer building blocks adopt a well-defined secondary structure and undergo self-assembly to result in physically cross-linked networks or with chemical cross-linking so that further form three-dimensional architectures similar to natural counterparts. In this review, recombinant protein polymers currently developed will be presented that have emerged as promising class of next generation biomaterials. PMID:23276922

  11. Differential subcellular targeting of recombinant human α₁-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants.

    PubMed

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Jain, G K; Amla, D V

    2012-11-01

    The response of protein accumulation site on yield, biological activity and in planta stability of therapeutic recombinant human proteinase inhibitor (α₁-PI) was analyzed via targeting to different subcellular locations, like endoplasmic reticulum (ER), apoplast, vacuole and cytosol in leaves of transgenic tomato plants. In situ localization of the recombinant α₁-PI protein in transgenic plant cells was monitored by immunohistochemical staining. Maximum accumulation of recombinant α₁-PI in T₀ and T₁ transgenic tomato plants was achieved from 1.5 to 3.2% of total soluble protein (TSP) by retention in ER lumen, followed by vacuole and apoplast, whereas cytosolic targeting resulted into degradation of the protein. The plant-derived recombinant α₁-PI showed biological activity for elastase inhibition, as monitored by residual porcine pancreatic elastase (PPE) activity assay and band-shift assay. Recombinant α₁-PI was purified from transgenic tomato plants with high yield, homogeneity and biological activity. Purified protein appeared as a single band of ∼48-50 kDa on SDS-PAGE with pI value ranging between 5.1 and 5.3. Results of mass spectrometry and optical spectroscopy of purified recombinant α₁-PI revealed the structural integrity of the recombinant protein comparable to native serum α₁-PI. Enzymatic deglycosylation and lectin-binding assays with the purified recombinant α₁-PI showed compartment-specific N-glycosylation of the protein targeted to ER, apoplast and vacuole. Conformational studies based on urea-induced denaturation and circular dichroism (CD) spectroscopy revealed relatively lower stability of the recombinant α₁-PI protein, compared to its serum counterpart. Pharmacokinetic evaluation of plant derived recombinant and human plasma-purified α₁-PI in rat, by intravenous route, revealed significantly faster plasma clearance and lower area under curve (AUC) of recombinant protein. Our data suggested significance of

  12. Human T-lymphotropic virus tax activates human cytomegalovirus major-immediate early promoter and improves production of recombinant proteins in HEK293 cells.

    PubMed

    Lwa, Teng Rhui; Lee, Jialing; Ng, Chew Har; Lew, Qiao Jing; Hia, Hui Ching; Chao, Sheng-Hao

    2011-01-01

    The human cytomegalovirus (CMV) major immediate-early (MIE) promoter is widely used in mammalian cells for production of recombinant proteins. It is of great interest to further enhance protein production driven by the CMV promoter. Here, we report that the Tax protein of human T-lymphotropic virus stimulates the transgene expression under the control of CMV MIE promoter in HEK293 cells. At least threefold increases in transient production of recombinant proteins, including luciferase and two biopharmaceutical proteins (erythropoietin and interferon-γ), were detected. Furthermore, cyclic adenosine monophosphate (AMP)-response element binding protein 2 (CREB2) was identified as a cellular cofactor, which might be responsible for Tax transactivation of the CMV MIE promoter. Our results not only demonstrate the potential use of this novel expression strategy for improvement of recombinant protein production in HEK293 cells but also provide the molecular mechanism for Tax-mediated activation of CMV MIE promoter. PMID:21425252

  13. In plant activation: an inducible, hyperexpression platform for recombinant protein production in plants.

    PubMed

    Dugdale, Benjamin; Mortimer, Cara L; Kato, Maiko; James, Tess A; Harding, Robert M; Dale, James L

    2013-07-01

    In this study, we describe a novel protein production platform that provides both activation and amplification of transgene expression in planta. The In Plant Activation (INPACT) system is based on the replication machinery of tobacco yellow dwarf mastrevirus (TYDV) and is essentially transient gene expression from a stably transformed plant, thus combining the advantages of both means of expression. The INPACT cassette is uniquely arranged such that the gene of interest is split and only reconstituted in the presence of the TYDV-encoded Rep/RepA proteins. Rep/RepA expression is placed under the control of the AlcA:AlcR gene switch, which is responsive to trace levels of ethanol. Transgenic tobacco (Nicotiana tabacum cv Samsun) plants containing an INPACT cassette encoding the β-glucuronidase (GUS) reporter had negligible background expression but accumulated very high GUS levels (up to 10% total soluble protein) throughout the plant, within 3 d of a 1% ethanol application. The GUS reporter was replaced with a gene encoding a lethal ribonuclease, barnase, demonstrating that the INPACT system provides exquisite control of transgene expression and can be adapted to potentially toxic or inhibitory compounds. The INPACT gene expression platform is scalable, not host-limited, and has been used to express both a therapeutic and an industrial protein.

  14. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus.

    PubMed

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-03-01

    Developing efficient native promoters is important for improving recombinant protein expression by fungal genetic engineering. The promoter region of glyceraldehyde-3-phosphate dehydrogenase gene in Pleurotus ostreatus (Pogpd) was isolated and optimized by upstream truncation. The activities of these promoters with different lengths were further confirmed by fluorescence, quantitative real-time PCR and Western blot analysis. A truncated Pogpd-P2 fragment (795 bp) drove enhanced green fluorescence protein (egfp) gene expression in P. ostreatus much more efficiently than full-length Pogpd-P1. Further truncating Pogpd-P2 to 603, 403 and 231 bp reduced the eGFP expression significantly. However, the 403-bp fragment between -356 bp and the start codon was the minimal but sufficient promoter element for eGFP expression. Compact native promoters for genetic engineering of P. ostreatus were successfully developed and validated in this study. This will broaden the preexisting repertoire of fungal promoters for biotechnology application. PMID:25743073

  15. A kinetic model describing cell growth and production of highly active, recombinant ice nucleation protein in Escherichia coli.

    PubMed

    Palaiomylitou, M A; Matis, K A; Zouboulis, A I; Kyriakidis, D A

    2002-05-01

    A structured kinetic model, which describes the production of the recombinant ice nucleation protein in different conditions, was applied. The model parameters were estimated based on the variation of the specific growth rate and the intracellular product concentration during cultivation. The equations employed relate the cellular plasmid content or plasmid copy number with the cloned-gene expression; these correlations were successfully tested on the experimental data. The optimal nutrient conditions for the growth of Escherichia coli expressing the inaZ gene of Pseudomonas syringae were determined for the production of active ice nucleation protein. The kinetics of the cultures expressing the inaZ gene were studied in a bioreactor at different growth temperatures and nutrient conditions. PMID:11920448

  16. Recombinant Expression of a Novel Fungal Immunomodulatory Protein with Human Tumor Cell Antiproliferative Activity from Nectria haematococca

    PubMed Central

    Li, Shuying; Nie, Ying; Ding, Yang; Shi, Lijun; Tang, Xuanming

    2014-01-01

    To our best knowledge, all of the fungal immunomodulatory proteins (FIPs) have been successfully extracted and identified in Basidomycetes, with only the exception of FIP from ascomycete Nectria haematococca (FIP-nha) discovered through homology alignment most recently. In this work, a gene encoding FIP-nha was synthesized and recombinantly expressed in an Escherichia coli expression system. SDS-PAGE and MALDI-MS analyses of recombinant FIP-nha (rFIP-nha) indicated that the gene was successfully expressed. The yield of the bioactive FIP-nha protein was 42.7 mg/L. In vitro assays of biological activity indicated that the rFIP-nha caused hemagglutination of human and rabbit red blood cells, significantly stimulated mouse spleen lymphocyte proliferation, and enhanced expression of interleukin-2 (IL-2) released from mouse splenocytes, revealing a strong antitumor effect against HL60, HepG2 and MGC823. Through this work, we constructed a rapid and efficient method of FIP production, and suggested that FIP-nha is a valuable candidate for use in future medical care and pharmaceutical products. PMID:25272229

  17. Recombinant expression of a novel fungal immunomodulatory protein with human tumor cell antiproliferative activity from Nectria haematococca.

    PubMed

    Li, Shuying; Nie, Ying; Ding, Yang; Shi, Lijun; Tang, Xuanming

    2014-09-30

    To our best knowledge, all of the fungal immunomodulatory proteins (FIPs) have been successfully extracted and identified in Basidomycetes, with only the exception of FIP from ascomycete Nectria haematococca (FIP-nha) discovered through homology alignment most recently. In this work, a gene encoding FIP-nha was synthesized and recombinantly expressed in an Escherichia coli expression system. SDS-PAGE and MALDI-MS analyses of recombinant FIP-nha (rFIP-nha) indicated that the gene was successfully expressed. The yield of the bioactive FIP-nha protein was 42.7 mg/L. In vitro assays of biological activity indicated that the rFIP-nha caused hemagglutination of human and rabbit red blood cells, significantly stimulated mouse spleen lymphocyte proliferation, and enhanced expression of interleukin-2 (IL-2) released from mouse splenocytes, revealing a strong antitumor effect against HL60, HepG2 and MGC823. Through this work, we constructed a rapid and efficient method of FIP production, and suggested that FIP-nha is a valuable candidate for use in future medical care and pharmaceutical products.

  18. Expression and purification of biologically active rat bone morphogenetic protein-4 produced as inclusion bodies in recombinant Escherichia coli.

    PubMed

    Klösch, Burkhard; Fürst, Walter; Kneidinger, Rudolf; Schuller, Monika; Rupp, Barbara; Banerjee, Asmita; Redl, Heinz

    2005-10-01

    Rat bone morphogenetic protein-4 (rBMP-4) cDNA was cloned from rat osteoblasts by RT-PCR and expressed in E. coli. Monomeric, dimeric and polymeric forms of recombinant rat BMP-4 (rrBMP-4) were obtained from inclusion bodies after solubilization with urea. The dimer was separated from the remaining polymer and host cell contaminants using size exclusion chromatography. Furthermore, purified rrBMP-4 was stabilized at low urea concentration (40 mM) and at pH 8.5 through the addition of bovine serum albumin. Both, rrBMP-4 dimer and polymer were biologically active as tested by the induction of alkaline phosphatase activity in MC3T3-E1 cells.

  19. Recombinant Ov-ASP-1, a Th1-biased protein adjuvant derived from the helminth Onchocerca volvulus, can directly bind and activate antigen-presenting cells.

    PubMed

    He, Yuxian; Barker, Sophie J; MacDonald, Angus J; Yu, Yu; Cao, Long; Li, Jingjing; Parhar, Ranjit; Heck, Susanne; Hartmann, Susanne; Golenbock, Douglas T; Jiang, Shibo; Libri, Nathan A; Semper, Amanda E; Rosenberg, William M; Lustigman, Sara

    2009-04-01

    We previously reported that rOv-ASP-1, a recombinant Onchocerca volvulus activation associated protein-1, was a potent adjuvant for recombinant protein or synthetic peptide-based Ags. In this study, we further evaluated the adjuvanticity of rOv-ASP-1 and explored its mechanism of action. Consistently, recombinant full-length spike protein of SARS-CoV or its receptor-binding domain in the presence of rOv-ASP-1 could effectively induce a mixed but Th1-skewed immune response in immunized mice. It appears that rOv-ASP-1 primarily bound to the APCs among human PBMCs and triggered Th1-biased proinflammatory cytokine production probably via the activation of monocyte-derived dendritic cells and the TLR, TLR2, and TLR4, thus suggesting that rOv-ASP-1 is a novel potent innate adjuvant. PMID:19299698

  20. Heterologous Expression of MeLEA3: A 10 kDa Late Embryogenesis Abundant Protein of Cassava, Confers Tolerance to Abiotic Stress in Escherichia coli with Recombinant Protein Showing In Vitro Chaperone Activity.

    PubMed

    Barros, Nicolle L F; da Silva, Diehgo T; Marques, Deyvid N; de Brito, Fabiano M; dos Reis, Savio P; de Souza, Claudia R B

    2015-01-01

    Late embryogenesis abundant (LEA) proteins are small molecular weight proteins involved in acquisition of tolerance to drought, salinity, high temperature, cold, and freezing stress in many plants. Previous studies revealed a cDNA sequence coding for a 10 kDa atypical LEA protein, named MeLEA3, predicted to be located into mitochondria with potential role in salt stress response of cassava (Manihot esculenta Crantz). Here we aimed to produce the recombinant MeLEA3 protein by heterologous expression in Escherichia coli and evaluate the tolerance of bacteria expressing this protein under abiotic stress. Our result revealed that the recombinant MeLEA3 protein conferred a protective function against heat and salt stress in bacterial cells. Also, the recombinant MeLEA3 protein showed in vitro chaperone activity by protection of NdeI restriction enzyme activity under heat stress. PMID:25990084

  1. High yield expression of biologically active recombinant full length human tuftelin protein in baculovirus-infected insect cells.

    PubMed

    Shay, B; Gruenbaum-Cohen, Y; Tucker, A S; Taylor, A L; Rosenfeld, E; Haze, A; Dafni, L; Leiser, Y; Fermon, E; Danieli, T; Blumenfeld, A; Deutsch, D

    2009-11-01

    Tuftelin is an acidic protein expressed at very early stages of mouse odontogenesis. It was suggested to play a role during epithelial-mesenchymal interactions, and later, when enamel formation commences, to be involved in enamel mineralization. Tuftelin was also detected in several normal soft tissues of different origins and some of their corresponding cancerous tissues. Tuftelin is expressed in low quantities, and undergoes degradation in the enamel extracellular matrix. To investigate the structure and function of tuftelin, the full length recombinant human tuftelin protein was produced. The full length human tuftelin cDNA was cloned using Gateway recombination into the Bac-to-Bac system compatible transfer vector pDest10. This vector adds a hexahistidine tag to the N-terminus of the expressed protein, enabling one-step affinity purification on nickel column. The recombinant human tuftelin protein was transposed into the bacmid and expressed in Spodoptera frugiperda (Sf9) insect cells. The yield of the purified, his-tagged recombinant full length human Tuftelin (rHTuft+) was 5-8 mg/L culture. rHTuft+ was characterized by SDS-PAGE, Western blot, ESI-TOF spectrometry, restriction mapping and MS/MS sequencing. The availability of the purified, full length recombinant human tuftelin protein opened up the possibility to investigate novel functions of tuftelin. Application of rHTuft+ agarose beads onto embryonic mouse mandibular explants caused changes in the surrounding epithelial cells, including morphology, orientation and spatial organization. Further studies using DiI labeling, revealed that rHTuft+, placed on the tooth germ region, brought about recruitment of adjacent embryonic mesenchymal cells. These findings support the hypothesis that tuftelin plays an important role during embryogenesis.

  2. Heterologous recombinant protein with decapacitating activity prevents and reverts cryodamage in ram sperm: An emerging biotechnological tool for cryobiology.

    PubMed

    Zalazar, L; Ledesma, A; Hozbor, F; Cesari, A

    2016-01-01

    During the last decades fundamental and applied aspects of mammalian ram sperm cryopreservation have been increasingly explored by scientists and biotechnologists. Many works report modifications in the composition of the freezing extenders and explore the beneficial and detrimental effects of seminal plasma or seminal plasma components in cryopreservation. Seminal plasma is known to contain stabilizing proteins, thereby this is a good start point to study the maintenance of membrane stability based on the basic knowledge of sperm physiology. However, seminal plasma composition is variable among rams and also the introduction of exogenous seminal plasma or its fractions to commercial semen can be associated with the transmission of viral diseases. Our work shows that a mouse protein, called SPINK3 (Serine Protease Inhibitor Kazal type 3) with decapacitating activity interacts with heterologous ram sperm when it is produced as a recombinant molecule. By immunocytochemistry assays we demonstrate that this protein (naturally expressed by mouse seminal vesicle under androgenic control) binds to the apical portion of both fresh and frozen ram sperm, the same localization described in mouse homologous sperm. Furthermore, it significantly improves sperm progressive motility compared to non-treated samples when it is added to freezing extenders and to dilution media after thawing. On the contrary, addition of SPINK3 does not modify sperm viability. The percentage of sperm with intact acrosome after ionophore induction was also significantly higher in sperm frozen in the presence of SPINK3 compared to control samples and the addition of SPINK3 after thawing significantly reduced both induced and non induced acrosomal loss, indicating that heterologous SPINK3 might act as a calcium inhibitor transport as described in mouse. Based on our results SPINK3 may find a place as a desirable biotechnological tool to achieve a higher proportion of competent sperm to fertilize. PMID

  3. Heterologous recombinant protein with decapacitating activity prevents and reverts cryodamage in ram sperm: An emerging biotechnological tool for cryobiology.

    PubMed

    Zalazar, L; Ledesma, A; Hozbor, F; Cesari, A

    2016-01-01

    During the last decades fundamental and applied aspects of mammalian ram sperm cryopreservation have been increasingly explored by scientists and biotechnologists. Many works report modifications in the composition of the freezing extenders and explore the beneficial and detrimental effects of seminal plasma or seminal plasma components in cryopreservation. Seminal plasma is known to contain stabilizing proteins, thereby this is a good start point to study the maintenance of membrane stability based on the basic knowledge of sperm physiology. However, seminal plasma composition is variable among rams and also the introduction of exogenous seminal plasma or its fractions to commercial semen can be associated with the transmission of viral diseases. Our work shows that a mouse protein, called SPINK3 (Serine Protease Inhibitor Kazal type 3) with decapacitating activity interacts with heterologous ram sperm when it is produced as a recombinant molecule. By immunocytochemistry assays we demonstrate that this protein (naturally expressed by mouse seminal vesicle under androgenic control) binds to the apical portion of both fresh and frozen ram sperm, the same localization described in mouse homologous sperm. Furthermore, it significantly improves sperm progressive motility compared to non-treated samples when it is added to freezing extenders and to dilution media after thawing. On the contrary, addition of SPINK3 does not modify sperm viability. The percentage of sperm with intact acrosome after ionophore induction was also significantly higher in sperm frozen in the presence of SPINK3 compared to control samples and the addition of SPINK3 after thawing significantly reduced both induced and non induced acrosomal loss, indicating that heterologous SPINK3 might act as a calcium inhibitor transport as described in mouse. Based on our results SPINK3 may find a place as a desirable biotechnological tool to achieve a higher proportion of competent sperm to fertilize.

  4. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs

    PubMed Central

    Dumont, Jennifer A.; Liu, Tongyao; Low, Susan C.; Zhang, Xin; Kamphaus, George; Sakorafas, Paul; Fraley, Cara; Drager, Douglas; Reidy, Thomas; McCue, Justin; Franck, Helen W. G.; Merricks, Elizabeth P.; Nichols, Timothy C.; Bitonti, Alan J.; Pierce, Glenn F.

    2012-01-01

    Despite proven benefits, prophylactic treatment for hemophilia A is hampered by the short half-life of factor VIII. A recombinant factor VIII-Fc fusion protein (rFVIIIFc) was constructed to determine the potential for reduced frequency of dosing. rFVIIIFc has an ∼ 2-fold longer half-life than rFVIII in hemophilia A (HemA) mice and dogs. The extension of rFVIIIFc half-life requires interaction of Fc with the neonatal Fc receptor (FcRn). In FcRn knockout mice, the extension of rFVIIIFc half-life is abrogated, and is restored in human FcRn transgenic mice. The Fc fusion has no impact on FVIII-specific activity. rFVIIIFc has comparable acute efficacy as rFVIII in treating tail clip injury in HemA mice, and fully corrects whole blood clotting time (WBCT) in HemA dogs immediately after dosing. Furthermore, consistent with prolonged half-life, rFVIIIFc shows 2-fold longer prophylactic efficacy in protecting HemA mice from tail vein transection bleeding induced 24-48 hours after dosing. In HemA dogs, rFVIIIFc also sustains partial correction of WBCT 1.5- to 2-fold longer than rFVIII. rFVIIIFc was well tolerated in both species. Thus, the rescue of FVIII by Fc fusion to provide prolonged protection presents a novel pathway for FVIII catabolism, and warrants further investigation. PMID:22246033

  5. Molecular cloning, expression of a galectin gene in Pacific white shrimp Litopenaeus vannamei and the antibacterial activity of its recombinant protein.

    PubMed

    Cha, Gui-Hong; Liu, Yuan; Peng, Ting; Huang, Ming-Zhu; Xie, Chen-Ying; Xiao, Yu-Chao; Wang, Wei-Na

    2015-10-01

    Galectins play crucial roles in innate immune responses in invertebrate by recognizing and eliminating microinvaders. In this study, a cDNA encoding a galectin in the Pacific white shrimp (L. vannamei) was identified and characterized. A recombinant variant of this lectin, rLvgalectin, was expressed in the model organism P. pastoris and its expression was confirmed by Western blot. Biochemical assays indicated that the recombinant protein antibacterial rLvgalectin activity and was expressed in all of the organism's tested tissues Injection of the bacterium V. alginolyticus into L. vannamei induced hemocytes upregulation of Lvgalectin. The recombinant Lvgalectin protein (rLvgalectin) could bind various microorganism including Gram-positive bacteria, Gram-negative bacteria and yeast. And it revealed antimicrobial activity against the test Gram-positive bacteria, Gram-negative bacteria, but did not inhibit the growth of fungus Pichia pastoris. Moreover, rLvgalectin could significantly enhance the clearance activity of V. alginolyticus in vivo. In vivo challenge experiments showed that the recombinant rLvgalectin protein can significantly reduce the mortalities of V. alginolyticus injection. Furthermore, Compared to their wild-type counterparts, Lvgalectin-silenced shrimp exhibited increased mortality and hemocyte apoptosis, decreased bacterial clearance ability and total hemocyte counts, and stronger expression of Lvp53, LvproPO, LvPEN3, and LvCrustin following V. alginolyticus challenge. Taken together, these results suggest that galectin is important in the innate immune response of shrimp to pathogens infection.

  6. A successful strategy for the recovering of active P21, an insoluble recombinant protein of Trypanosoma cruzi

    PubMed Central

    Santos, Marlus Alves dos; Teixeira, Francesco Brugnera; Moreira, Heline Hellen Teixeira; Rodrigues, Adele Aud; Machado, Fabrício Castro; Clemente, Tatiana Mordente; Brigido, Paula Cristina; Silva, Rebecca Tavares e.; Purcino, Cecílio; Gomes, Rafael Gonçalves Barbosa; Bahia, Diana; Mortara, Renato Arruda; Munte, Claudia Elisabeth; Horjales, Eduardo; da Silva, Claudio Vieira

    2014-01-01

    Structural studies of proteins normally require large quantities of pure material that can only be obtained through heterologous expression systems and recombinant technique. In these procedures, large amounts of expressed protein are often found in the insoluble fraction, making protein purification from the soluble fraction inefficient, laborious, and costly. Usually, protein refolding is avoided due to a lack of experimental assays that can validate correct folding and that can compare the conformational population to that of the soluble fraction. Herein, we propose a validation method using simple and rapid 1D 1H nuclear magnetic resonance (NMR) spectra that can efficiently compare protein samples, including individual information of the environment of each proton in the structure. PMID:24590372

  7. A successful strategy for the recovering of active P21, an insoluble recombinant protein of Trypanosoma cruzi.

    PubMed

    dos Santos, Marlus Alves; Teixeira, Francesco Brugnera; Moreira, Heline Hellen Teixeira; Rodrigues, Adele Aud; Machado, Fabrício Castro; Clemente, Tatiana Mordente; Brigido, Paula Cristina; Silva, Rebecca Tavares e; Purcino, Cecílio; Gomes, Rafael Gonçalves Barbosa; Bahia, Diana; Mortara, Renato Arruda; Munte, Claudia Elisabeth; Horjales, Eduardo; da Silva, Claudio Vieira

    2014-03-04

    Structural studies of proteins normally require large quantities of pure material that can only be obtained through heterologous expression systems and recombinant technique. In these procedures, large amounts of expressed protein are often found in the insoluble fraction, making protein purification from the soluble fraction inefficient, laborious, and costly. Usually, protein refolding is avoided due to a lack of experimental assays that can validate correct folding and that can compare the conformational population to that of the soluble fraction. Herein, we propose a validation method using simple and rapid 1D (1)H nuclear magnetic resonance (NMR) spectra that can efficiently compare protein samples, including individual information of the environment of each proton in the structure.

  8. A successful strategy for the recovering of active P21, an insoluble recombinant protein of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Santos, Marlus Alves Dos; Teixeira, Francesco Brugnera; Moreira, Heline Hellen Teixeira; Rodrigues, Adele Aud; Machado, Fabrício Castro; Clemente, Tatiana Mordente; Brigido, Paula Cristina; Silva, Rebecca Tavares E.; Purcino, Cecílio; Gomes, Rafael Gonçalves Barbosa; Bahia, Diana; Mortara, Renato Arruda; Munte, Claudia Elisabeth; Horjales, Eduardo; da Silva, Claudio Vieira

    2014-03-01

    Structural studies of proteins normally require large quantities of pure material that can only be obtained through heterologous expression systems and recombinant technique. In these procedures, large amounts of expressed protein are often found in the insoluble fraction, making protein purification from the soluble fraction inefficient, laborious, and costly. Usually, protein refolding is avoided due to a lack of experimental assays that can validate correct folding and that can compare the conformational population to that of the soluble fraction. Herein, we propose a validation method using simple and rapid 1D 1H nuclear magnetic resonance (NMR) spectra that can efficiently compare protein samples, including individual information of the environment of each proton in the structure.

  9. Identification of HUGT1 as a potential BiP activator and a cellular target for improvement of recombinant protein production using a cDNA screening system.

    PubMed

    Ku, Sebastian Chih Yuan; Lwa, Teng Rhui; Giam, Maybelline; Yap, Miranda Gek Sim; Chao, Sheng-Hao

    2009-05-31

    The development of a high-throughput functional genomic screening provides a novel and expeditious approach in identifying critical genes involved in specific biological processes. Here we describe a cell-based cDNA screening system to identify the transcription activators of BiP, an endoplasmic reticulum (ER) chaperone protein. BiP promoter contains the ER stress element which is commonly present in the genes involved in unfolded protein response (UPR) that regulates protein secretion in cells. Therefore, the positive regulators of BiP may also be utilized to improve the recombinant protein production through modulation of UPR. Four BiP activators, including human UDP-glucose:glycoprotein glucosyltransferase 1 (HUGT1), are identified by the cDNA screening. Overexpression of HUGT1 leads to a significant increase in the production of recombinant erythropoietin, interferon gamma, and monoclonal antibody in HEK293 cells. Our results demonstrate that the cDNA screening for BiP activators may be effective to identify the novel BiP regulators and HUGT1 may serve as an ideal target gene for improving the recombinant protein production in mammalian cells. PMID:19466607

  10. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    SciTech Connect

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-09-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by (/sup 3/H)thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3/sup +/ lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3/sup /minus// lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection.

  11. [Recombinant protein production in Escherichia coli].

    PubMed

    Nuc, Przemysław; Nuc, Katarzyna

    2006-01-01

    Growing needs for efficient recombinant production pose new challenges; starting from cell growth optimization under overexpression conditions, improving vectors, gene and protein sequence to suit them to protein biosynthesis machinery of the host, through extending the knowledge of protein folding, fusion protein construction, and coexpression systems, to improvements in protein purification and renaturation technologies. Hitherto Escherichia coli is the most defined and the cheapest protein biosynthesis system. With its wealth of available mutants tested is the best suited to economically test new gene constructs and to scale up the recombinant protein production.

  12. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  13. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    SciTech Connect

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-05-28

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  14. Isolation of a cDNA encoding the alpha-subunit of CAAX-prenyltransferases from Catharanthus roseus and the expression of the active recombinant protein farnesyltransferase.

    PubMed

    Courdavault, Vincent; Burlat, Vincent; St-Pierre, Benoit; Gantet, Pascal; Giglioli-Guivarc'h, Nathalie

    2005-01-01

    Crfta/ggt_Ia (AF525030), a cDNA encoding the ?-subunit of the two types of CaaX-prenyltransferase (CaaX-PTase), i.e. protein farnesyltransferase (PFT) and type I protein geranylgeranyltransferase, was cloned from Catharanthus roseus via a PCR strategy. Crfta/ggt_Ia is 1381-bp long and bears a 999-bp open reading frame encoding a protein of 332 residues (FTA) that shares 66% identity with its Lycopersicon esculentum orthologue. Southern blot analysis revealed that FTA is encoded by a single gene copy per haploid genome. Co-expression of Crfta/ggt_Ia and Crftb encoding the beta-subunit of PFT yielded purified active recombinant PFT. This enzyme is able to prenylate proteins from C. roseus, and could be used as a potent tool for prenylated protein identification.

  15. Recombinant Treponema pallidum Protein Tp0965 Activates Endothelial Cells and Increases the Permeability of Endothelial Cell Monolayer

    PubMed Central

    Zhang, Rui-Li; Zhang, Jing-Ping; Wang, Qian-Qiu

    2014-01-01

    The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis. PMID:25514584

  16. Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis.

    PubMed

    Surendran, Kameswaran; Schiavi, Susan; Hruska, Keith A

    2005-08-01

    beta-Catenin functions as a transducer of Wnt signals to the nucleus, where it interacts with the T cell factor (TCF) family of DNA binding proteins to regulate gene expression. On the basis of the genes regulated by beta-catenin and TCF in various biologic settings, two predicted functions of beta-catenin/TCF-dependent transcription are to mediate the loss of epithelial polarity and to promote fibroblast activities, such as the increased synthesis of fibronectin during chronic renal disease. These predictions were tested by determination of the expression and function of an inhibitor of Wnt signaling, secreted frizzled-related protein 4 (sFRP4), during renal tubular epithelial injury initiated by unilateral ureteral obstruction (UUO). Despite increased sFRP4 gene expression in perivascular regions of injured kidneys, total sFRP4 protein levels decreased after injury. The decreased sFRP4 protein levels after UUO accompanied increased Wnt-dependent beta-catenin signaling in tubular epithelial and interstitial cells, along with increased expression of markers of fibrosis. Administration of recombinant sFRP4 protein caused a reduction in tubular epithelial beta-catenin signaling and suppressed the progression of renal fibrosis, as evidenced by a partial maintenance of E-cadherin mRNA expression and a reduction in the amount of fibronectin and alpha-smooth muscle actin proteins. Furthermore, recombinant sFRP4 reduced the number of myofibroblasts, a central mediator of fibrosis. It is concluded that beta-catenin signaling is activated in tubular epithelial and interstitial cells after renal injury, and recombinant sFRP4 can interfere with epithelial de-differentiation and with fibroblast differentiation and function during progression of renal fibrosis.

  17. The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis.

    PubMed

    Callebaut, I; Mornon, J P

    1998-08-01

    The RAG1 and RAG2 proteins play a crucial role in V(D)J recombination by cooperating to make specific double-stranded DNA breaks at a pair of recombination signal sequences (RSSs). However, the exact function they perform has heretofore remained elusive. Using a combination of sensitive methods of sequence analysis, we show here that the active core region of the RAG2 protein, confined to the first three quarters of its sequence, is in fact composed of a six-fold repeat of a 50-residue motif which is related to the kelch/mipp motif. This motif, which forms a four-stranded twisted antiparallel beta sheet, is arranged in a circular formation like blades of a propeller or turbine. Given the known properties of the beta-propeller fold in mediating protein-protein interactions, it is proposed that this six-laded propeller structure of the RAG2 active core would play a crucial role in the tight complex formed by the RAG1 and RAG2 proteins and RSSs. Moreover, the presence of a plant homeodomain finger-like motif in the last quarter of the RAG2 sequence suggests a potential interaction of this domain with chromatin components. PMID:9760994

  18. [Enhanced activation of T lymphocytes by urease-deficient recombinant bacillus Calmette-Guérin producing heat shock protein 70-major membrane protein-II fusion protein].

    PubMed

    Makino, Masahiko; Mukai, Tetsu

    2012-09-01

    To activate naïve T cells convincingly using Mycobacterium bovis BCG (BCG), rBCG (BCG-D70M) that was deficient in urease, expressed with gene encoding the fusion of BCG-derived heat shock protein (HSP) 70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed. BCG-D70M was more potent in activation of both CD4+ and CD8+ subsets of naïve T cells than rBCGs including urease-deficient BCG and BCG-70M secreting HSP70-MMP-II fusion protein. BCG-D70M efficiently activated dendritic cells (DC) to induce cytokine production and phenotypic changes, and activated CD4+ T cells even when macrophages were used as APCs. The activation of both subsets of T cells was MHC and CD86 dependent. Pre-treatment of DC with chloroquine inhibited both surface expression of MMP-II on DC and the activation of T cells by BCG-D70M-infected APCs. The naïve CD8+ T cell activation was inhibited by treatment of DC with brefeldin A and lactacystin so that the T cells was activated by TAP- and proteosome-dependent cytosolic cross-priming pathway. From naïve CD8+ T cells, effector T cells producing perforin and memory T cells having migration markers, were produced by BCG-D70M stimulation. BCG-D70M primary infection in C57BL/6 mice produced T cells responsive to in vitro secondary stimulation with MMP-II and HSP70, and more efficiently inhibited the multiplication of subsequently challenged M. leprae than vector control BCG. These results indicate that the triple combination of HSP70, MMP-II and urease depletion may provide useful tool for inducing better activation of naïve T cells.

  19. Protein building blocks preserved by recombination.

    PubMed

    Voigt, Christopher A; Martinez, Carlos; Wang, Zhen-Gang; Mayo, Stephen L; Arnold, Frances H

    2002-07-01

    Borrowing concepts from the schema theory of genetic algorithms, we have developed a computational algorithm to identify the fragments of proteins, or schemas, that can be recombined without disturbing the integrity of the three-dimensional structure. When recombination leaves these schemas undisturbed, the hybrid proteins are more likely to be folded and functional. Crossovers found by screening libraries of several randomly shuffled proteins for functional hybrids strongly correlate with those predicted by this approach. Experimental results from the construction of hybrids of two beta-lactamases that share 40% amino acid identity demonstrate a threshold in the amount of schema disruption that the hybrid protein can tolerate. To the extent that introns function to promote recombination within proteins, natural selection would serve to bias their locations to schema boundaries. PMID:12042875

  20. Mapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2*♦

    PubMed Central

    Zhang, Yu-Hang; Shetty, Keerthi; Surleac, Marius D.; Petrescu, Andrei J.; Schatz, David G.

    2015-01-01

    The RAG endonuclease consists of RAG1, which contains the active site for DNA cleavage, and RAG2, an accessory factor whose interaction with RAG1 is critical for catalytic function. How RAG2 activates RAG1 is not understood. Here, we used biolayer interferometry and pulldown assays to identify regions of RAG1 necessary for interaction with RAG2 and to measure the RAG1-RAG2 binding affinity (KD ∼0.4 μm) (where RAG1 and RAG2 are recombination activating genes 1 or 2). Using the Hermes transposase as a guide, we constructed a 36-kDa “mini” RAG1 capable of interacting robustly with RAG2. Mini-RAG1 consists primarily of the catalytic center and the residues N-terminal to it, but it lacks a zinc finger region in RAG1 previously implicated in binding RAG2. The ability of Mini-RAG1 to interact with RAG2 depends on a predicted α-helix (amino acids 997–1008) near the RAG1 C terminus and a region of RAG1 from amino acids 479 to 559. Two adjacent acidic amino acids in this region (Asp-546 and Glu-547) are important for both the RAG1-RAG2 interaction and recombination activity, with Asp-546 of particular importance. Structural modeling of Mini-RAG1 suggests that Asp-546/Glu-547 lie near the predicted 997-1008 α-helix and components of the active site, raising the possibility that RAG2 binding alters the structure of the RAG1 active site. Quantitative Western blotting allowed us to estimate that mouse thymocytes contain on average ∼1,800 monomers of RAG1 and ∼15,000 molecules of RAG2, implying that nuclear concentrations of RAG1 and RAG2 are below the KD value for their interaction, which could help limit off-target RAG activity. PMID:25745109

  1. RAD6 Promotes Homologous Recombination Repair by Activating the Autophagy-Mediated Degradation of Heterochromatin Protein HP1

    PubMed Central

    Chen, Su; Wang, Chen; Sun, Luxi; Wang, Da-Liang; Chen, Lu; Huang, Zhuan; Yang, Qi; Gao, Jie; Yang, Xi-Bin; Chang, Jian-Feng; Chen, Ping; Lan, Li

    2014-01-01

    Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients. PMID:25384975

  2. Elastomeric Recombinant Protein-based Biomaterials

    PubMed Central

    Annabi, Nasim; Mithieux, Suzanne M.; Camci-Unal, Gulden; Dokmeci, Mehmet R.; Weiss, Anthony S.; Khademhosseini, Ali

    2013-01-01

    Elastomeric protein-based biomaterials, produced from elastin derivatives, are widely investigated as promising tissue engineering scaffolds due to their remarkable properties including substantial extensibility, long-term stability, self-assembly, high resilience upon stretching, low energy loss, and excellent biological activity. These elastomers are processed from different sources of soluble elastin such as animal-derived soluble elastin, recombinant human tropoelastin, and elastin-like polypeptides into various forms including three dimensional (3D) porous hydrogels, elastomeric films, and fibrous electrospun scaffolds. Elastin-based biomaterials have shown great potential for the engineering of elastic tissues such as skin, lung and vasculature. In this review, the synthesis and properties of various elastin-based elastomers with their applications in tissue engineering are described. PMID:23935392

  3. Interaction of 5-HT1B/D ligands with recombinant h 5-HT1A receptors: intrinsic activity and modulation by G-protein activation state.

    PubMed

    Pauwels, P J; Palmier, C; Dupuis, D S; Colpaert, F C

    1998-05-01

    Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. PMID:9650800

  4. Recombinant protein blends: silk beyond natural design.

    PubMed

    Dinjaski, Nina; Kaplan, David L

    2016-06-01

    Recombinant DNA technology and new material concepts are shaping future directions in biomaterial science for the design and production of the next-generation biomaterial platforms. Aside from conventionally used synthetic polymers, numerous natural biopolymers (e.g., silk, elastin, collagen, gelatin, alginate, cellulose, keratin, chitin, polyhydroxyalkanoates) have been investigated for properties and manipulation via bioengineering. Genetic engineering provides a path to increase structural and functional complexity of these biopolymers, and thereby expand the catalog of available biomaterials beyond that which exists in nature. In addition, the integration of experimental approaches with computational modeling to analyze sequence-structure-function relationships is starting to have an impact in the field by establishing predictive frameworks for determining material properties. Herein, we review advances in recombinant DNA-mediated protein production and functionalization approaches, with a focus on hybrids or combinations of proteins; recombinant protein blends or 'recombinamers'. We highlight the potential biomedical applications of fibrous protein recombinamers, such as Silk-Elastin Like Polypeptides (SELPs) and Silk-Bacterial Collagens (SBCs). We also discuss the possibility for the rationale design of fibrous proteins to build smart, stimuli-responsive biomaterials for diverse applications. We underline current limitations with production systems for these proteins and discuss the main trends in systems/synthetic biology that may improve recombinant fibrous protein design and production. PMID:26686863

  5. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors.

    PubMed

    Tan, Janice G L; Lee, Yih Yean; Wang, Tianhua; Yap, Miranda G S; Tan, Tin Wee; Ng, Say Kong

    2015-05-01

    CHO cells are major production hosts for recombinant biologics including the rapidly expanding recombinant monoclonal antibodies (mAbs). Heat shock protein 27 (HSP27) expression was observed to be down-regulated towards the late-exponential and stationary phase of CHO fed-batch bioreactor cultures, whereas HSP27 was found to be highly expressed in human pathological cells and reported to have anti-apoptotic functions. These phenotypes suggest that overexpression of HSP27 is a potential cell line engineering strategy for improving robustness of CHO cells. In this work, HSP27 was stably overexpressed in CHO cells producing recombinant mAb and the effects of HSP27 on cell growth, volumetric production titer and product quality were assessed. Concomitantly, HSP27 anti-apoptosis functions in CHO cells were investigated. Stably transfected clones cultured in fed-batch bioreactors displayed 2.2-fold higher peak viable cell density, delayed loss of culture viability by two days and 2.3-fold increase in mAb titer without affecting the N-glycosylation profile, as compared to clones stably transfected with the vector backbone. Co-immunoprecipitation studies revealed HSP27 interactions with Akt, pro-caspase 3 and Daxx and caspase activity profiling showed delayed increase in caspase 2, 3, 8 and 9 activities. These results suggest that HSP27 modulates apoptosis signaling pathways and delays caspase activities to improve performance of CHO fed-batch bioreactor cultures.

  6. Structural characterization of recombinant therapeutic proteins by circular dichroism.

    PubMed

    Bertucci, Carlo; Pistolozzi, Marco; De Simone, Angela

    2011-10-01

    Most of the protein therapeutics are now produced by recombinant DNA technology. The advantages of recombinant proteins are related to their higher specificity and to their safety as exposure to animal or human diseases. However, several problems are still present in development of recombinant proteins as therapeutics, such as low bioavailability, short serum half-life, and immune response. Their successful application hinges on the protein stereochemical stability, and on the folding and the tendency to aggregate induced by purification steps and storage. All these aspects determine the failure of many potential protein therapies, and limitations in the development of the formulation. The application of multiple analytical techniques is important in order to obtain a detailed product profile and to understand how manufacturing can influence product structure and activity. Surely the protein conformation is a key aspect to be assessed, because a specific conformation is often essential for the biological function of the protein. Thus, there is a growing need to perform structural studies under the conditions in which the proteins operate, and to monitor the structural changes of the protein. Circular dichroism has been increasingly recognised as a valuable and reliable technique to get this information. In particular, examples will be here reported on the use of circular dichroism spectroscopy in the structural characterization of free and formulated recombinant proteins, looking at the prediction of the secondary structure, propensity to conformational changes, stability, and tendency to aggregate.

  7. Making recombinant proteins in animals--different systems, different applications.

    PubMed

    Dyck, Michael K; Lacroix, Dan; Pothier, François; Sirard, Marc-André

    2003-09-01

    Transgenic animal bioreactors represent a powerful tool to address the growing need for therapeutic recombinant proteins. The ability of transgenic animals to produce complex, biologically active recombinant proteins in an efficient and economic manner has stimulated a great deal of interest in this area. As a result, genetically modified animals of several species, expressing foreign proteins in various tissues, are currently being developed. However, the generation of transgenic animals is a cumbersome process and remains problematic in the application of this technology. The advantages and disadvantages of different transgenic systems in relation to other bioreactor systems are discussed.

  8. Oncogenic activation of the human trk proto-oncogene by recombination with the ribosomal large subunit protein L7a.

    PubMed Central

    Ziemiecki, A; Müller, R G; Fu, X C; Hynes, N E; Kozma, S

    1990-01-01

    The trk-2h oncogene, isolated from the human breast carcinoma cell line MDA-MB 231 by genomic DNA-transfection into NIH3T3 cells, consists of the trk proto-oncogene receptor kinase domain fused to a N-terminal 41 amino acid activating sequence (Kozma, S.C., Redmond, S.M.S., Xiao-Chang, F., Saurer, S.M., Groner, B. and Hynes, N.E. (1988) EMBO J., 7, 147-154). Antibodies raised against a bacterially produced beta gal-trk receptor kinase fusion protein recognized a 44 kd phosphoprotein phosphorylated on serine, threonine and tyrosine in extracts of trk-2h transformed NIH3T3 cells. In vitro, in the presence of Mn2+/gamma ATP, this protein became phosphorylated extensively on tyrosine. Cells transformed by trk-2h did not, however, show an elevation in total phosphotyrosine. We have cloned and sequenced the cDNA encoding the amino terminal activating sequences of trk-2h (Kozma et al., 1988). The encoded protein has a high basic amino acid content and the gene is expressed as an abundant 1.2 kb mRNA in human, rat and mouse cells. Antipeptide antibodies raised against a C-terminal peptide recognized specifically a 30 kd protein on Western blots of human, rat and mouse cell extracts. Immunofluorescence revealed, in addition to granular cytoplasmic fluorescence, intense nucleolar staining. The high basic amino acid content and nucleolar staining prompted us to investigate whether the 30 kd protein could be a ribosomal protein. Western immunoblotting analysis of 2D-electrophoretically resolved ribosomal proteins indicated that the 30 kd protein is the ribosomal large subunit protein L7a.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 9. PMID:2403926

  9. The region around residue 115 of human bactericidal/permeability-increasing protein is not involved in lipopolysaccharide binding or bactericidal activity. Chemical synthesis and expression of a gene coding for the active domain and characterization of recombinant proteins.

    PubMed

    Qi, S Y; Li, Y; O'Connor, C D

    1994-03-15

    Bactericidal/permeability-increasing protein (BPI) is a potent antimicrobial agent produced by polymorphonuclear leucocytes that specifically interacts with and kills Gram-negative bacteria. An 825 bp gene determining the bactericidal N-terminal domain of human BPI was chemically synthesized and expressed as inclusion bodies in Escherichia coli. The recombinant polypeptide, BPI', was solubilized and conditions under which it folded to give the active protein were determined. Folding was critically dependent on the urea and salt concentrations as well as the pH. BPI' bound with high affinity to Salmonella typhimurium cells (apparent Kd = 36 nM), permeabilized their outer membranes to actinomycin D, specifically activated a synovial fluid phospholipase A2 and showed potent bactericidal activity. In contrast with the native protein, however, it could not be efficiently released from the cell surface by the addition of high concentrations of Mg2+ ions. Pre-incubation of the protein with lipopolysaccharide or trypsin prevented cytotoxicity. However, boiling BPI' immediately before its addition to cells did not block its bactericidal activity, suggesting that it may be able to function even when presented to cells in an unfolded form. A BPI' derivative, containing a 13-residue foreign antigenic determinant genetically inserted between Ala115 and Asp116, was also produced. The derivative was functional in the above assays and bound with high affinity to S. typhimurium (apparent Kd = 74 nM). These results imply that the region defined by these residues is not involved in the lipopolysaccharide-binding or bactericidal activities of BPI. The availability of functional, nonglycosylated recombinant derivatives of BPI should greatly aid detailed studies on its structure, interactions with lipopolysaccharide and mechanism of action.

  10. Expression, purification, and immobilization of recombinant tamavidin 2 fusion proteins.

    PubMed

    Takakura, Yoshimitsu; Oka, Naomi; Tsunashima, Masako

    2014-01-01

    Tamavidin 2 is a fungal avidin-like protein that binds biotin with high affinity. Unlike avidin or streptavidin, tamavidin 2 in soluble form is produced at high levels in Escherichia coli. In this chapter, we describe a method for immobilization and purification of recombinant proteins with the use of tamavidin 2 as an affinity tag. The protein fused to tamavidin 2 is tightly immobilized and simultaneously purified on biotinylated magnetic microbeads without loss of activity. PMID:24943317

  11. RNA associated with a heterodimeric protein that activates a meiotic homologous recombination hot spot: RL/RT/PCR strategy for cloning any unknown RNA or DNA.

    PubMed

    Wahls, W P

    1994-04-01

    The ade6-M26 mutation in the fission yeast Schizosaccharomyces pombe creates a meiotic homologous recombination hot spot. We have achieved 40,000-fold purification of a heterodimeric DNA-binding protein, Mts1/Mts2, that activates the recombination hot spot. Physical studies suggested the presence of a third subunit. It is demonstrated here that RNA molecules of approximately 210 nucleotides copurified with the heterodimer. To characterize the RNA component, it was necessary to develop a new strategy for cloning of the unknown, low-abundance, partially degraded RNAs that were present in purified Mts1/Mts2 protein preparations. The strategy uses RNA ligase to add DNA oligonucleotide priming sites to the RNA for subsequent reverse transcription and PCR (RNA ligase, reverse transcription-PCR, or RL/RT/PCR). This cloning procedure could be applied to the cloning of any unknown RNA or DNA molecules. Because the cDNA clones obtained from Mts1/Mts2 were largely heterogeneous, it seems likely that the RNAs copurified as a result of tight but nonspecific interactions with the heterodimeric protein. PMID:7518718

  12. Refolding and purification of recombinant L-asparaginase from inclusion bodies of E. coli into active tetrameric protein

    PubMed Central

    Upadhyay, Arun K.; Singh, Anupam; Mukherjee, K. J.; Panda, Amulya K.

    2014-01-01

    A tetrameric protein of therapeutic importance, Escherichia coli L-asparaginase-II was expressed in Escherichia coli as inclusion bodies (IBs). Asparaginase IBs were solubilized using low concentration of urea and refolded into active tetrameric protein using pulsatile dilution method. Refolded asparaginase was purified in two steps by ion-exchange and gel filtration chromatographic techniques. The recovery of bioactive asparaginase from IBs was around 50%. The melting temperature (Tm) of the purified asparaginase was found to be 64°C. The specific activity of refolded, purified asparaginase was found to be comparable to the commercial asparaginase (190 IU/mg). Enzymatic activity of the refolded asparaginase was high even at four molar urea solutions, where the IB aggregates are completely solubilized. From the comparison of chemical denaturation data and activity at different concentrations of guanidine hydrochloride, it was observed that dissociation of monomeric units precedes the complete loss of helical secondary structures. Protection of the existing native-like protein structure during solubilization of IB aggregates with 4 M urea improved the propensity of monomer units to form oligomeric structure. Our mild solubilization technique retaining native-like structures, improved recovery of asparaginase in bioactive tetrameric form. PMID:25309524

  13. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  14. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  15. Extracellular secretion of recombinant proteins

    SciTech Connect

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  16. The effect of the unfolded protein response on the production of recombinant proteins in plants.

    PubMed

    Thomas, David Rhys; Walmsley, Amanda Maree

    2015-02-01

    Recombinant proteins are currently produced through a wide variety of host systems, including yeast, E. coli, insect and mammalian cells. One of the most recent systems developed uses plant cells. While considerable advances have been made in the yields and fidelity of plant-made recombinant proteins, many of these gains have arisen from the development of recombinant factors. This includes elements such as highly effective promoters and untranslated regions, deconstructed viral vectors, silencing inhibitors, and improved DNA delivery techniques. However, unlike other host systems, much of the work on recombinant protein production in plants uses wild-type hosts that have not been modified to facilitate recombinant protein expression. As such, there are still endogenous mechanisms functioning to maintain the health of the cell. The result is that these pathways, such as the unfolded protein response, can actively work to reduce recombinant protein production to maintain the integrity of the cell. This review examines how issues arising from the unfolded protein response have been addressed in other systems, and how these methods may be transferable to plant systems. We further identify several areas of host plant biology that present attractive targets for modification to facilitate recombinant protein production.

  17. Heavy labeling of recombinant proteins.

    PubMed

    Rodriguez, Eric

    2007-01-01

    Because of the cost of isotopic chemicals and heterologous proteins to produce, an economical 15N/13C isotopic labeling method is critically needed. Four protocols have been tested for the expression of Ovine interferon-tau in Pichia pastoris. 13C-glucose in place of 13C-glycerol as well as the need for 15N/13C-sources were evaluated during the growth phase. Sequential addition of 15NH4Cl and 13C-methanol were also evaluated at different ratio. Our results demonstrate that 15N/13C isotopes are not required throughout the initial growth period but are necessary at low concentration a few hours prior to the methanol induction period. We have evaluated the cost of the use of isotopes 15NH4Cl, 13C-glucose and 13C-methanol in our optimised P4 protocol conditions. The cost was one-third that of the standard method using 15NH4Cl and 13C-glucose throughout the entire growth period and was even lower using 13C-glycerol.

  18. Chimeragenesis of distantly-related proteins by noncontiguous recombination.

    PubMed

    Smith, Matthew A; Romero, Philip A; Wu, Timothy; Brustad, Eric M; Arnold, Frances H

    2013-02-01

    We introduce a method for identifying elements of a protein structure that can be shuffled to make chimeric proteins from two or more homologous parents. Formulating recombination as a graph-partitioning problem allows us to identify noncontiguous segments of the sequence that should be inherited together in the progeny proteins. We demonstrate this noncontiguous recombination approach by constructing a chimera of β-glucosidases from two different kingdoms of life. Although the protein's alpha-beta barrel fold has no obvious subdomains for recombination, noncontiguous SCHEMA recombination generated a functional chimera that takes approximately half its structure from each parent. The X-ray crystal structure shows that the structural blocks that make up the chimera maintain the backbone conformations found in their respective parental structures. Although the chimera has lower β-glucosidase activity than the parent enzymes, the activity was easily recovered by directed evolution. This simple method, which does not rely on detailed atomic models, can be used to design chimeras that take structural, and functional, elements from distantly-related proteins. PMID:23225662

  19. Recombinant protein scaffolds for tissue engineering.

    PubMed

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-02-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation.

  20. Prostate tumor cells infected with a recombinant influenza virus expressing a truncated NS1 protein activate cytolytic CD8+ cells to recognize noninfected tumor cells.

    PubMed

    Efferson, Clay L; Tsuda, Naotake; Kawano, Kouichiro; Nistal-Villán, Estanislao; Sellappan, Shankhar; Yu, Dihua; Murray, James L; García-Sastre, Adolfo; Ioannides, Constantin G

    2006-01-01

    Many viral oncolytic approaches against cancer are based on the ability of specific viruses to replicate in tumors expressing components of the constitutively activated Ras/mitogen-activated protein kinase (MAPK) pathways and/or inhibited or dysregulated alpha/beta interferon (IFN-alpha/beta) response pathways. A major issue when considering these approaches is their applicability to tumors that lack activated Ras. To identify the effector mechanisms activated by oncolytic viruses, we investigated inhibition of proliferation of the prostate cancer line LNCap by the recombinant TR-NS1 influenza A virus, a genetically attenuated influenza A/PR8/34 virus expressing a truncated nonstructural protein (NS1) of 126 amino acids. LNCap cells lack constitutively activated MAPK, extracellular signal-regulated kinase (ERK), and p38 and are resistant to death by IFN-alpha. Truncation of the NS1 protein of influenza viruses is known to result in viral attenuation due to a reduced ability of the NS1 to inhibit the IFN-alpha/beta response. Infection with TR-NS1 virus rapidly activated ERK-1 more than ERK-2 in LNCap cells. Importantly, TR-NS1 virus infection transiently inhibited cell proliferation and induced apoptosis in LNCap cells. Addition of peripheral blood mononuclear cells (PBMC) and interleukin 12 (IL-12) to TR-NS1 virus-infected LNCap cells (TR-NS1-LNCap) resulted in faster elimination of TR-NS1-LNCap cells compared with LNCap cells. Moreover, TR-NS1-LNCap cells induced IFN-gamma in PBMC. The levels of IFN-gamma were amplified by IL-12. TR-NS1-LNCap cells also induced tumor-lytic cytotoxic T lymphocytes (CTL). These CTL lysed noninfected LNCap cells in a CD8-dependent manner. Activation of cellular immunity to tumor cells by viruses is an intriguing effector pathway, which should be especially significant for elimination of human tumors that lack activated Ras.

  1. Destabilase-lysozyme of medicinal leech. Multifunctionality of recombinant protein.

    PubMed

    Zavalova, L L; Lazarev, V N; Levitsky, S A; Yudina, T G; Baskova, I P

    2010-09-01

    Preparation and purification of a recombinant protein are described along with characteristics of its specific (for ε-(γ-Glu)-Lys and D-dimer substrates) and nonspecific (for L-γ-Glu-pNA) isopeptidase activities; the absence of peptidase function for α-(α-Glu)-Lys substrate is noted. It is shown that the protein exhibits muramidase (cell walls of Micrococcus lysodeikticus) and specific glycosidase activities. The latter was determined towards the fluorogenic substrate 4-methylumbelliferyl-tetra-N-acetyl-β-chitotetraoxide. Antimicrobial activity of recombinant destabilase-lysozyme protein (recDest-Lys) and its 11-membered amphipathic peptide was revealed towards cells of the strict anaerobic Archaean Methanosarcina barkeri, whose cell walls contain no murein. Possible mechanisms of the effect of recDest-Lys on these cells are discussed.

  2. Recombinant protein materials for bioengineering and nanomedicine.

    PubMed

    Corchero, José Luis; Vázquez, Esther; García-Fruitós, Elena; Ferrer-Miralles, Neus; Villaverde, Antonio

    2014-12-01

    Proteins are essential macromolecules supporting life. Being efficient catalyzers and offering specific cross-molecular contacts, proteins are largely exploited in biotechnology and biomedicine as therapeutics, in industrial catalysis or as molecular reagents. Recombinant enzymes, hormones, immunogens and antibodies are produced aiming to different applications, on the basis of their ability to interact with or modify substrates or biological targets. In nature, proteins also perform task-specific architectonic roles, and they can organize in supramolecular complexes with intriguing physical properties such as elasticity and adhesiveness, and with regulatable stiffness, flexibility and mechanical strength. Proteins have recently gained interest as materials for bioengineering and nanomedicine as they can combine these features with functionality, biocompatibility and degradability in unusually versatile composites. We revise here the fundamental properties of the diverse categories of emerging protein materials resulting from biological synthesis and how they can be genetically re-designed to engineer the interplay between mechanical and biological properties in a medically oriented exploitable way.

  3. A general method of protein purification for recombinant unstructured non-acidic proteins.

    PubMed

    Campos, Francisco; Guillén, Gabriel; Reyes, José L; Covarrubias, Alejandra A

    2011-11-01

    Typical late embryogenesis abundant (LEA) proteins accumulate in response to water deficit imposed by the environment or by plant developmental programs. Because of their physicochemical properties, they can be considered as hydrophilins and as a paradigm of intrinsically unstructured proteins (IUPs) in plants. To study their biophysical and biochemical characteristics large quantities of highly purified protein are required. In this work, we report a fast and simple purification method for non-acidic recombinant LEA proteins that does not need the addition of tags and that preserves their in vitro protective activity. The method is based on the enrichment of the protein of interest by boiling the bacterial protein extract, followed by a differential precipitation with trichloroacetic acid (TCA). Using this procedure we have obtained highly pure recombinant LEA proteins of groups 1, 3, and 4 and one recombinant bacterial hydrophilin. This protocol will facilitate the purification of this type of IUPs, and could be particularly useful in proteomic projects/analyses.

  4. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Main royal jelly protein 1 (MRJP1) is the most abundant member of the main royal jelly protein (MRJP) family among honeybees. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in...

  5. Tailoring recombinant protein quality by rational media design.

    PubMed

    Brühlmann, David; Jordan, Martin; Hemberger, Jürgen; Sauer, Markus; Stettler, Matthieu; Broly, Hervé

    2015-01-01

    Clinical efficacy and safety of recombinant proteins are closely associated with their structural characteristics. The major quality attributes comprise glycosylation, charge variants (oxidation, deamidation, and C- & N-terminal modifications), aggregates, low-molecular-weight species (LMW), and misincorporation of amino acids in the protein backbone. Cell culture media design has a great potential to modulate these quality attributes due to the vital role of medium in mammalian cell culture. The purpose of this review is to provide an overview of the way both classical cell culture medium components and novel supplements affect the quality attributes of recombinant therapeutic proteins expressed in mammalian hosts, allowing rational and high-throughput optimization of mammalian cell culture media. A selection of specific and/or potent inhibitors and activators of oligosaccharide processing as well as components affecting multiple quality attributes are presented. Extensive research efforts in this field show the feasibility of quality engineering through media design, allowing to significantly modulate the protein function.

  6. Green biofactories: recombinant protein production in plants.

    PubMed

    Ahmad, Adil; Pereira, Eridan O; Conley, Andrew J; Richman, Alex S; Menassa, Rima

    2010-11-01

    Until recently, low accumulation levels have been the major bottleneck for plant-made recombinant protein production. However, several breakthroughs have been described in the past few years allowing for very high accumulation levels, mainly through chloroplast transformation and transient expression, coupled with subcellular targeting and protein fusions. Another important factor influencing our ability to use plants for the production of recombinant proteins is the availability of quick and simple purification strategies. Recent developments using oleosin, zein, ELP and hydrophobin fusion tags have shown promise as efficient and cost-effective methods for non-chromatographic separation. Furthermore, plant glycosylation is a major barrier to the parenteral administration of plant-made biopharmaceuticals because of potential immunogenicity concerns. A major effort has been invested in humanizing plant glycosylation, and several groups have been able to reduce or eliminate immunogenic glycans while introducing mammalian-specific glycans. Finally, biosafety issues and public perception are essential for the acceptance of plants as bioreactors for the production of proteins. Over recent years, it has become clear that food and feed plants carry an inherent risk of contaminating our food supply, and thus much effort has focused on the use of non-food plants. Presently, Nicotiana benthamiana has emerged as the preferred host for transient expression, while tobacco is most frequently used for chloroplast transformation. In this review, we focus on the main issues hindering the economical production of recombinant proteins in plants, describing the current efforts for addressing these limitations, and we include an extensive list of recent patents generated with the intention of solving these limitations. PMID:21171961

  7. Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma

    PubMed Central

    Li, Linwei; Li, Xiaoyan; Wang, Wenyu; Gao, Tianhui; Zhou, Yun; Lu, Shixin

    2016-01-01

    The chromosome 2 open reading frame 40 (C2ORF40) gene is a candidate tumor suppressor gene for a variety of tumors. Previous results by the present authors revealed that the C2ORF40 protein is a secreted protein. However, the exact biological function of secreted C2ORF40 protein in carcinogenesis has not been thoroughly investigated. In the present study, the signal peptide sequence of the C2ORF40 cDNA was initially removed to produce secreted recombinant human C2ORF40 protein (rhC2ORF40). Soluble rhC2ORF40 was successfully expressed and purified, which was evaluated for the first time, to the best of our knowledge, for tumor-suppressing function in vivo in esophageal cancer. The present results revealed that soluble purified rhC2ORF40 was concentrated with a purity of >95%. Furthermore, rhC2ORF40 inhibited esophageal cancer cell growth in vivo in a dose-dependent manner compared with a control group (P<0.05). In addition, the present study demonstrated for the first time that rhC2ORF40 decreased telomerase activity using telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (P<0.05), without affecting the expression levels of telomerase-component RNA (P>0.05), as shown with polymerase chain reaction. Overall, the present results demonstrated that soluble rhC2ORF40 inhibited tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma. Therefore, soluble rhC2ORF40 with a high purity and biological activity may be a potential biological therapy drug for esophageal cancer. PMID:27698864

  8. Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma

    PubMed Central

    Li, Linwei; Li, Xiaoyan; Wang, Wenyu; Gao, Tianhui; Zhou, Yun; Lu, Shixin

    2016-01-01

    The chromosome 2 open reading frame 40 (C2ORF40) gene is a candidate tumor suppressor gene for a variety of tumors. Previous results by the present authors revealed that the C2ORF40 protein is a secreted protein. However, the exact biological function of secreted C2ORF40 protein in carcinogenesis has not been thoroughly investigated. In the present study, the signal peptide sequence of the C2ORF40 cDNA was initially removed to produce secreted recombinant human C2ORF40 protein (rhC2ORF40). Soluble rhC2ORF40 was successfully expressed and purified, which was evaluated for the first time, to the best of our knowledge, for tumor-suppressing function in vivo in esophageal cancer. The present results revealed that soluble purified rhC2ORF40 was concentrated with a purity of >95%. Furthermore, rhC2ORF40 inhibited esophageal cancer cell growth in vivo in a dose-dependent manner compared with a control group (P<0.05). In addition, the present study demonstrated for the first time that rhC2ORF40 decreased telomerase activity using telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (P<0.05), without affecting the expression levels of telomerase-component RNA (P>0.05), as shown with polymerase chain reaction. Overall, the present results demonstrated that soluble rhC2ORF40 inhibited tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma. Therefore, soluble rhC2ORF40 with a high purity and biological activity may be a potential biological therapy drug for esophageal cancer.

  9. Cytotoxic Effects and Osteogenic Activity of Calcium Sulfate with and without Recombinant Human Bone Morphogenetic Protein 2 and Nano-Hydroxyapatite Adjacent to MG-63 Cell Line

    PubMed Central

    Ghorbanzadeh, Abdollah; Aminsobhani, Mohsen; Khoshzaban, Ahad; Abbaszadeh, Armin; Ghorbanzadeh, Atiyeh; Shamshiri, Ahmad Reza

    2015-01-01

    Objectives: The aim of this study was to assess the cytotoxic effects and osteogenic activity of recombinant human bone morphogenetic protein (rhBMP2) and nano-hydroxyapatite (n-HA) adjacent to MG-63 cell line. Materials and Methods: To assess cytotoxicity, the 4,5-dimethyl thiazolyl-2,5-diphenyl tetrazolium bromide (MTT) assay was used. Alkaline phosphatase (ALP) activity and osteogenic activity were evaluated using Alizarin red and the von Kossa staining and analyzed by one-way ANOVA followed by Tukey’s post hoc test. Results: The n-HA/calcium sulfate (CS) mixture significantly promoted cell growth in comparison to pure CS. Moreover, addition of rhBMP2 to CS (P=0.02) and also mixing CS with n-HA led to further increase in extracellular calcium production and ALP activity (P=0.03). Conclusion: This in vitro study indicates that a scaffold material in combination with an osteoinductive material is effective for bone matrix formation. PMID:26877731

  10. Overview of the Purification of Recombinant Proteins

    PubMed Central

    Wingfield, Paul T.

    2015-01-01

    When the first version of this unit was written in 1995 protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches many of which were described and mentioned in this unit and elsewhere in the book. In the interim there has been a shift towards an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein and whether to engineer a self cleavage system or simply leave them on. We will briefly address some of these issues. Also although this overview focuses on E.coli, protein expression and purification from the other commonly used expression systems are mentioned and apart from cell breakage methods, the protein purification methods and strategies are essentially the same. PMID:25829302

  11. Evaluation of recombinant Onchocerca volvulus activation associated protein-1 (ASP-1) as a potent Th1-biased adjuvant with a panel of protein or peptide-based antigens and commercial inactivated vaccines.

    PubMed

    Xiao, Wenjun; Du, Lanying; Liang, Chao; Guan, Jie; Jiang, Shibo; Lustigman, Sara; He, Yuxian; Zhou, Yusen

    2008-09-15

    Alum, the only adjuvant approved for clinical applications, can induce strong humoral (Th2) but weak cellular (Th1) immune responses. It is necessary to develop safe and effective adjuvants capable of inducing both humoral and cellular immune responses. We previously showed that activation-associated protein-1 (ASP-1) derived from Onchocerca volvulus has potent adjuvant activity. In this study, we have further evaluated the adjuvanticity of recombinant ASP-1 using a panel of recombinant proteins or synthetic peptide-based antigens, including ovalbumin (OVA), synthetic HIV peptide (HIV-p), recombinant HIV gp41 (rgp41) and HBV HBsAg, as well as three commercially available inactivated vaccines against haemorrhagic fever with renal syndrome (HFRS), Influenza and Rabies. Our results indicate that ASP-1 induced significantly higher IgG1 (Th2-associated) and IgG2a (Th1-associated) responses than alum adjuvant against OVA antigen, HIV-p, and rgp41. Consistently, it induced similar level of IgG1 responses as alum but higher level of IgG2a and IFN-gamma-producing T cell responses than alum adjuvant against HBsAg. Further, ASP-1 improved both IgG1 and IgG2a responses to three commercial inactivated vaccines when used separately or in combination. In conclusion, the recombinant ASP-1, unlike alum adjuvant, is able to induce both Th1 and Th2-associated humoral responses and Th1 cellular responses, suggesting that it can be further developed as a promising adjuvant for subunit-based and inactivated vaccines. PMID:18675867

  12. Patents in therapeutic recombinant protein production using mammalian cells.

    PubMed

    Picanco-Castro, Virginia; de Freitas, Marcela Cristina Correa; Bomfim, Aline de Sousa; de Sousa Russo, Elisa Maria

    2014-01-01

    The industrial production of recombinant proteins preferentially requires the generation of stable cell lines expressing proteins in a quick, relatively facile, and a reproducible manner. Different methods are used to insert exogenous DNA into the host cell, and choosing the appropriate producing cell is of paramount importance for the efficient production and quality of the recombinant protein. This review addresses the advances in recombinant protein production in mammalian cell lines, according to key patents from the last 30 years.

  13. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line.

    PubMed

    Shen, Lirong; Zhang, Weiguang; Jin, Feng; Zhang, Liwen; Chen, Zhengxian; Liu, Liang; Parnell, Laurence D; Lai, Chao-Qiang; Li, Duo

    2010-08-25

    Major royal jelly protein 1 (MRJP1) is the most abundant member of the major royal jelly protein (MRJP) family of honeybee. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in molecular weight to the glycosylated AmMRJP1 from the Western honeybee (Apis mellifera). Western blots probed with anti-AccMRJP1 antibody demonstrated that recombinant AccMRJP1 and soluble protein of the Western honeybee RJ (AmSPRJ) contained immunoreactive MRJP1. The 57 kDa protein in AmSPRJ contained an N-terminal amino sequence of N-I-L-R-G-E, which is identical to that previously characterized in AmMRJP1. The molecular weight of recombinant AccMRJP1 was decreased from 57 to 48 kDa after deglycosylation, indicating that AccMRJP1 was glycosylated. The recombinant AccMRJP1 significantly stimulated Tn-5B-4 cell growth, similar to AmSPRJ and fetal bovine serum, and affected cell shape and adhesion to the substrate.

  14. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity

    PubMed Central

    Karakostis, Kostantinos; Costa, Caterina; Zito, Francesca; Matranga, Valeria

    2015-01-01

    Galectin family members specifically bind beta-galactoside derivatives and are involved in different cellular events, including cell communication, signalling, apoptosis, and immune responses. Here, we report a tandem-repeat type galectin from the Paracentrotus lividus sea urchin embryo, referred to as Pl-GAL-8. The 933nt sequence encodes a protein of 34.73 kDa, containing the conserved HFNPRF and WGxExR motifs in the two highly similar carbohydrate-recognition domains (CRD). The three-dimensional protein structure model of the N-CRD confirms the high evolutionary conservation of carbohydrate binding sites. The temporal gene expression is regulated during development and transcripts localize at the tip of the archenteron at gastrula stage, in a subset of the secondary mesenchyme cells that differentiate into blastocoelar (immune) cells. Functional studies using a recombinant Pl-GAL-8 expressed in bacteria demonstrate its hemo-agglutinating activity on human red blood cells through the binding to lactose, as well as its ability in inhibiting the adhesion of human Hep-G2 cells to the substrate. The recent implications in autoimmune diseases and inflammatory disorders make Gal-8 an attractive candidate for therapeutic purposes. Our results offer a solid basis for addressing the use of the new Pl-GAL-8 in functional and applicative studies, respectively in the developmental and biomedical fields. PMID:26640155

  15. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins.

    PubMed

    Grzybowski, Marcin M; Dziadek, Bożena; Gatkowska, Justyna M; Dzitko, Katarzyna; Długońska, Henryka

    2015-12-01

    Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.

  16. Production of recombinant proteins by yeast cells.

    PubMed

    Celik, Eda; Calık, Pınar

    2012-01-01

    Yeasts are widely used in production of recombinant proteins of medical or industrial interest. For each individual product, the most suitable expression system has to be identified and optimized, both on the genetic and fermentative level, by taking into account the properties of the product, the organism and the expression cassette. There is a wide range of important yeast expression hosts including the species Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomyces pombe, Yarrowia lipolytica and Arxula adeninivorans, with various characteristics such as being thermo-tolerant or halo-tolerant, rapidly reaching high cell densities or utilizing unusual carbon sources. Several strains were also engineered to have further advantages, such as humanized glycosylation pathways or lack of proteases. Additionally, with a large variety of vectors, promoters and selection markers to choose from, combined with the accumulated knowledge on industrial-scale fermentation techniques and the current advances in the post-genomic technology, it is possible to design more cost-effective expression systems in order to meet the increasing demand for recombinant proteins and glycoproteins. In this review, the present status of the main and most promising yeast expression systems is discussed. PMID:21964262

  17. Recombinant production of spider silk proteins.

    PubMed

    Heidebrecht, Aniela; Scheibel, Thomas

    2013-01-01

    Natural spider silk fibers combine extraordinary properties such as stability and flexibility which results in a toughness superseding that of all other fiber materials. As the spider's aggressive territorial behavior renders their farming not feasible, the biotechnological production of spider silk proteins (spidroins) is essential in order to investigate and employ them for applications. In order to accomplish this task, two approaches have been tested: firstly, the expression of partial cDNAs, and secondly, the expression of synthetic genes in several host organisms, including bacteria, yeast, plants, insect cells, mammalian cells, and transgenic animals. The experienced problems include genetic instability, limitations of the translational and transcriptional machinery, and low solubility of the produced proteins. Here, an overview of attempts to recombinantly produce spidroins will be given, and advantages and disadvantages of the different approaches and host organisms will be discussed. PMID:23415154

  18. Activation of Escherichia coli heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20-kD guanine nucleotide-binding proteins.

    PubMed Central

    Lee, C M; Chang, P P; Tsai, S C; Adamik, R; Price, S R; Kunz, B C; Moss, J; Twiddy, E M; Holmes, R K

    1991-01-01

    Escherichia coli heat-labile enterotoxins (LT) are responsible in part for "traveler's diarrhea" and related diarrheal illnesses. The family of LTs comprises two serogroups termed LT-I and LT-II; each serogroup includes two or more antigenic variants. The effects of LTs result from ADP ribosylation of Gs alpha, a stimulatory component of adenylyl cyclase; the mechanism of action is identical to that of cholera toxin (CT). The ADP-ribosyltransferase activity of CT is enhanced by 20-kD guanine nucleotide-binding proteins, known as ADP-ribosylation factors or ARFs. These proteins directly activate the CTA1 catalytic unit and stimulate its ADP ribosylation of Gs alpha, other proteins, and simple guanidino compounds (e.g., agmatine). Because of the similarities between CT and LTs, we investigated the effects of purified bovine brain ARF and a recombinant form of bovine ARF synthesized in Escherichia coli on LT activity. ARF enhanced the LT-I-, LT-IIa-, and LT-IIb-catalyzed ADP ribosylation of agmatine, as well as the auto-ADP ribosylation of the toxin catalytic unit. Stimulation of ADP-ribosylagmatine formation by LTs and CT in the presence of ARF was GTP dependent and enhanced by sodium dodecyl sulfate. With agmatine as substrate, LT-IIa and LT-IIb exhibited less than 1% the activity of CT and LT-Ih. CT and LTs catalyzed ADP-ribosyl-Gs alpha formation in a reaction dependent on ARF, GTP, and dimyristoyl phosphatidylcholine/cholate. With Gs alpha as substrate, the ADP-ribosyltransferase activities of the toxins were similar, although CT and LT-Ih appeared to be slightly more active than LT-IIa and LT-IIb. Thus, LT-IIa and LT-IIb appear to differ somewhat from CT and LT-Ih in substrate specificity. Responsiveness to stimulation by ARF, GTP, and phospholipid/detergent as well as the specificity of ADP-ribosyltransferase activity are functions of LTs from serogroups LT-I and LT-II that are shared with CT. Images PMID:1902492

  19. The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase

    PubMed Central

    López-Villamizar, Iralis; Cabezas, Alicia; Pinto, Rosa María; Canales, José; Ribeiro, João Meireles; Cameselle, José Carlos; Costas, María Jesús

    2016-01-01

    Endogenous cyclic diadenylate phosphodiesterase activity was accidentally detected in lysates of Escherichia coli BL21. Since this kind of activity is uncommon in Gram-negative bacteria, its identification was undertaken. After partial purification and analysis by denaturing gel electrophoresis, renatured activity correlated with a protein identified by fingerprinting as CpdB (cpdB gene product), which is annotated as 3´-nucleotidase / 2´,3´-cyclic-mononucleotide phosphodiesterase, and it is synthesized as a precursor protein with a signal sequence removable upon export to the periplasm. It has never been studied as a recombinant protein. The coding sequence of mature CpdB was cloned and expressed as a GST fusion protein. The study of the purified recombinant protein, separated from GST, confirmed CpdB annotation. The assay of catalytic efficiencies (kcat/Km) for a large substrate set revealed novel CpdB features, including very high efficiencies for 3´-AMP and 2´,3´-cyclic mononucleotides, and previously unknown activities on cyclic and linear dinucleotides. The catalytic efficiencies of the latter activities, though low in relative terms when compared to the major ones, are far from negligible. Actually, they are perfectly comparable to those of the ‘average’ enzyme and the known, bona fide cyclic dinucleotide phosphodiesterases. On the other hand, CpdB differs from these enzymes in its extracytoplasmic location and in the absence of EAL, HD and DHH domains. Instead, it contains the domains of the 5´-nucleotidase family pertaining to the metallophosphoesterase superfamily, although CpdB lacks 5´-nucleotidase activity. The possibility that the extracytoplasmic activity of CpdB on cyclic dinucleotides could have physiological meaning is discussed. PMID:27294396

  20. Co-factor activated recombinant adenovirus proteinases

    SciTech Connect

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  1. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  2. Recombinant HT.sub.m4 gene, protein and assays

    DOEpatents

    Lim, Bing; Adra, Chaker N.; Lelias, Jean-Michel

    1996-01-01

    The invention relates to a recombinant DNA molecule which encodes a HT.sub.m4 protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT.sub.m4 protein and a recombinant HT.sub.m4 protein. The invention also relates to a method for detecting the presence of a hereditary atopy.

  3. Streptomyces as host for recombinant production of Mycobacterium tuberculosis proteins.

    PubMed

    Vallin, Carlos; Ramos, Astrid; Pimienta, Elsa; Rodríguez, Caridad; Hernández, Tairí; Hernández, Ivones; Del Sol, Ricardo; Rosabal, Grisel; Van Mellaert, Lieve; Anné, Jozef

    2006-01-01

    The 45/47 kDa APA protein (Rv1860) of Mycobacterium tuberculosis was produced by Streptomyces lividans. The recombinant protein could be recovered from the culture medium of an S. lividans clone containing the apa gene under control of the promoter and signal sequence of the Streptomyces coelicolor agarase gene. The recombinant protein production was further scaled-up using fermentation conditions. The APA protein was subsequently purified from the culture supernatant by means of immunochromatography. About 80 mg of recombinant protein were obtained per liter of culture media. In vivo tests with the APA protein purified from S. lividans TK24/pRGAPA1 revealed that the recombinant protein was antigenic and could induce high titers of specific antibodies in the mouse biological model. Results obtained concerning heterologous production of APA, its immunogenic and antigenic capacity, demonstrated the potential of S. lividans as a valuable host for the production of recombinant proteins from M. tuberculosis.

  4. Cloning, bacterial expression and biological characterization of recombinant human granulocyte chemotactic protein-2 and differential expression of granulocyte chemotactic protein-2 and epithelial cell-derived neutrophil activating peptide-78 mRNAs.

    PubMed

    Froyen, G; Proost, P; Ronsse, I; Mitera, T; Haelens, A; Wuyts, A; Opdenakker, G; Van Damme, J; Billiau, A

    1997-02-01

    Human osteosarcoma cells secrete a novel C-X-C chemokine called granulocyte chemotactic protein-2 (GCP-2), which was previously identified by amino acid sequencing of the purified natural protein. In order to understand the role of this new protein in inflammatory reactions, we cloned GCP-2 DNA sequences to generate recombinant protein and specific DNA probes and primers. By means of PCR on cloned cDNA of osteosarcoma cells induced by interleukin-1 beta and fibroblasts induced by lipopolysaccharide plus dsRNA, the complete coding domain of GCP-2 was isolated. This sequence was cloned into the bacterial expression vector pHEN1 and, after induction, GCP-2 was secreted into the periplasm of Escherichia coli. Recombinant GCP-2 (rGCP-2) was purified and characterized by SDS/PAGE as a monomeric 6.5-kDa protein and by amino-terminal sequencing. The chemoattractive potency of GCP-2 for neutrophilic granulocytes was about 10-times less than that of interleukin-8 and the minimal effective dose was 10 ng/ml. However, at optimal dose (100 ng/ml) the maximal chemotactic response was comparable with that of interleukin-8. Both characteristics correspond with those of natural GCP-2. In addition, intracellular calcium release in neutrophils by recombinant GCP-2 was achieved with as little as 10 ng/ml. Quantitation studies using reverse transcriptase and the polymerase chain reaction revealed higher GCP-2 mRNA production in normal fibroblasts than in tumor cells. When compared with epithelial-cell-derived neutrophil-activating peptide-78 (ENA-78) mRNA, the GCP-2 mRNA levels were higher in all cell lines tested. In addition, GCP-2 and ENA-78 expression seem to be differentially regulated in that phorbol ester and lipopolysaccharide have opposing effects on their mRNA induction in diploid fibroblasts and epithelial cells, respectively. Interleukin-1 was demonstrated to be a general inducer for both chemokines, while interferon-gamma down-regulates their mRNA expression. The

  5. Soluble recombinant protein production in Pseudoalteromonas haloplanktis TAC125.

    PubMed

    Giuliani, Maria; Parrilli, Ermenegilda; Sannino, Filomena; Apuzzo, Gennaro; Marino, Gennaro; Tutino, Maria Luisa

    2015-01-01

    Solubility/activity issues are often experienced when immunoglobulin fragments are produced in conventional microbial cell factories. Although several experimental approaches have been followed to solve, or at least minimize, the accumulation of the recombinant proteins into insoluble aggregates, sometimes the only alternative strategy is changing the protein production platform. In this chapter we describe the use of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 as host of choice for the production of the heavy-chain antibody fragment VHHD6.1. Combining the use of a regulated psychrophilic gene expression system with an optimized fermentation process in defined growth medium, we obtained the recombinant VHHD6.1 in fully soluble form and correctly translocated into host periplasmic space.

  6. Recombinant protein vaccines produced in insect cells.

    PubMed

    Cox, Manon M J

    2012-02-27

    The baculovirus-insect cell expression system is a well known tool for the production of complex proteins. The technology is also used for commercial manufacture of various veterinary and human vaccines. This review paper provides an overview of how this technology can be applied to produce a multitude of vaccine candidates. The key advantage of this recombinant protein manufacturing platform is that a universal "plug and play" process may be used for producing a broad range of protein-based prophylactic and therapeutic vaccines for both human and veterinary use while offering the potential for low manufacturing costs. Large scale mammalian cell culture facilities previously established for the manufacturing of monoclonal antibodies that have now become obsolete due to yield improvement could be deployed for the manufacturing of these vaccines. Alternatively, manufacturing capacity could be established in geographic regions that do not have any vaccine production capability. Dependent on health care priorities, different vaccines could be manufactured while maintaining the ability to rapidly convert to producing pandemic influenza vaccine when the need arises. PMID:22265860

  7. Regulation of the Mts1-Mts2-dependent ade6-M26 meiotic recombination hot spot and developmental decisions by the Spc1 mitogen-activated protein kinase of fission yeast.

    PubMed

    Kon, N; Schroeder, S C; Krawchuk, M D; Wahls, W P

    1998-12-01

    The M26 meiotic recombination hot spot in the ade6 gene of Schizosaccharomyces pombe is activated by the heterodimeric M26 binding protein Mts1-Mts2. The individual Mts1 (Atf1, Gad7) and Mts2 (Pcr1) proteins are also transcription factors involved in developmental decisions. We report that the Mts proteins are key effectors of at least two distinct classes of developmental decisions regulated by the mitogen-activated protein (MAP) kinase cascade. The first class (osmoregulation, spore viability, and spore quiescence) requires the Spc1 MAP kinase and the Mts1 protein but does not require the Mts2 protein. The second class (mating, meiosis, and recombination hot spot activation) requires the Spc1 kinase and the Mts1-Mts2 heterodimer. Northern and Western blotting eliminated any significant role for the Spc1 kinase in regulating the expression levels of the Mts proteins. Gel mobility shift experiments indicated that the Mts1-Mts2 heterodimer does not need to be phosphorylated to bind to ade6-M26 DNA in vitro. However, in vivo dimethyl sulfate footprinting demonstrated that protein-DNA interaction within cells is dependent upon the Spc1 MAP kinase, which phosphorylates the Mts1 protein. Thus, the Spc1 kinase helps regulate the effector activities of the Mts1-Mts2 heterodimer in part by modulating its ability to occupy the M26 DNA site in vivo. Meiotic recombination hot spot function is likely the result of DNA conformational changes imparted by binding of the Mts1-Mts2 meiotic transcription factor. PMID:9819443

  8. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors

    PubMed Central

    Bandaranayake, Ashok D.; Correnti, Colin; Ryu, Byoung Y.; Brault, Michelle; Strong, Roland K.; Rawlings, David J.

    2011-01-01

    A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20–100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications. PMID:21911364

  9. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors.

    PubMed

    Bandaranayake, Ashok D; Correnti, Colin; Ryu, Byoung Y; Brault, Michelle; Strong, Roland K; Rawlings, David J

    2011-11-01

    A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20-100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications. PMID:21911364

  10. Recombinant factor IX-Fc fusion protein (rFIXFc) demonstrates safety and prolonged activity in a phase 1/2a study in hemophilia B patients

    PubMed Central

    Ragni, Margaret V.; Valentino, Leonard A.; Key, Nigel S.; Josephson, Neil C.; Powell, Jerry S.; Cheng, Gregory; Thompson, Arthur R.; Goyal, Jaya; Tubridy, Karen L.; Peters, Robert T.; Dumont, Jennifer A.; Euwart, Donald; Li, Lian; Hallén, Bengt; Gozzi, Peter; Bitonti, Alan J.; Jiang, Haiyan; Luk, Alvin

    2012-01-01

    Current factor IX (FIX) products display a half-life (t1/2) of ∼ 18 hours, requiring frequent intravenous infusions for prophylaxis and treatment in patients with hemophilia B. This open-label, dose-escalation trial in previously treated adult subjects with hemophilia B examined the safety and pharmacokinetics of rFIXFc. rFIXFc is a recombinant fusion protein composed of FIX and the Fc domain of human IgG1, to extend circulating time. Fourteen subjects received a single dose of rFIXFc; 1 subject each received 1, 5, 12.5, or 25 IU/kg, and 5 subjects each received 50 or 100 IU/kg. rFIXFc was well tolerated, and most adverse events were mild or moderate in intensity. No inhibitors were detected in any subject. Dose-proportional increases in rFIXFc activity and Ag exposure were observed. With baseline subtraction, mean activity terminal t1/2 and mean residence time for rFIXFc were 56.7 and 71.8 hours, respectively. This is ∼ 3-fold longer than that reported for current rFIX products. The incremental recovery of rFIXFc was 0.93 IU/dL per IU/kg, similar to plasma-derived FIX. These results show that rFIXFc may offer a viable therapeutic approach to achieve prolonged hemostatic protection and less frequent dosing in patients with hemophilia B. The trial was registered at www.clinicaltrials.gov as NCT00716716. PMID:22110246

  11. Recombinant Protein Production by In Vivo Polymer Inclusion Display ▿

    PubMed Central

    Grage, Katrin; Peters, Verena; Rehm, Bernd H. A.

    2011-01-01

    A novel approach to produce purified recombinant proteins was established. The target protein is produced as polyhydroxyalkanoate (PHA) synthase fusion protein, which mediates intracellular formation of PHA inclusions displaying the target protein. After isolation of the PHA inclusions, the pure target protein was released by simple enterokinase digestion. PMID:21803888

  12. Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins.

    PubMed Central

    von Specht, B U; Knapp, B; Muth, G; Bröker, M; Hungerer, K D; Diehl, K D; Massarrat, K; Seemann, A; Domdey, H

    1995-01-01

    Recombinant outer membrane proteins (Oprs) of Pseudomonas aeruginosa were expressed in Escherichia coli as glutathione S-transferase (GST)-linked fusion proteins. GST-linked Oprs F and I (GST-OprF190-350 [GST linked to OprF spanning amino acids 190 to 350] and GST-OprI21-83, respectively) and recombinant hybrid Oprs (GST-OprF190-342-OprI21-83 and GST-OprI21-83-OprF190-350) were isolated and tested for their efficacy as vaccines in immunodeficient mice. GST-OprF-OprI protected the mice against a 975-fold 50% lethal dose of P. aeruginosa. Expression of GST-unfused OprF-OprI failed in E. coli, although this hybrid protein has been expressed without a fusion part in Saccharomyces cerevisiae and used for immunizing rabbits. The immune rabbit sera protected severe combined deficient (SCID) mice against a 1,000-fold 50% lethal dose of P. aeruginosa. Evidence is provided to show that the most C-terminal part of OprF (i.e., amino acids 332 to 350) carries an important protective epitope. Opr-based hybrid proteins may have implications for a clinical vaccine against P. aeruginosa. PMID:7729895

  13. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    PubMed

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  14. Data Mining for Expressivity of Recombinant Protein Expression

    NASA Astrophysics Data System (ADS)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  15. Rabbits immunized with Epstein-Barr virus gH/gL or gB recombinant proteins elicit higher serum virus neutralizing activity than gp350.

    PubMed

    Cui, Xinle; Cao, Zhouhong; Chen, Quanyi; Arjunaraja, Swadhinya; Snow, Andrew L; Snapper, Clifford M

    2016-07-25

    Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and has been strongly implicated in the etiology of multiple epithelial and lymphoid cancers, such as nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma, Burkitt lymphoma, non-Hodgkin lymphoma and post-transplant lymphoproliferative disorder. There is currently no licensed prophylactic vaccine for EBV. Most efforts to develop prophylactic vaccines have focused on EBV gp350, which binds to CD21/CD35 to gain entry into B cells, and is a major target of serum neutralizing antibody in EBV seropositive humans. However, a recombinant monomeric gp350 protein failed to prevent EBV infection in a phase II clinical trial. Thus, alternative or additional target antigens may be necessary for a successful prophylactic vaccine. EBV gH/gL and gB proteins coordinately mediate EBV fusion and entry into B cells and epithelial cells, strongly suggesting that vaccination with these proteins might elicit antibodies that will prevent EBV infection. We produced recombinant trimeric and monomeric EBV gH/gL heterodimeric proteins and a trimeric EBV gB protein, in addition to tetrameric and monomeric gp350(1-470) proteins, in Chinese hamster ovary cells. We demonstrated that vaccination of rabbits with trimeric and monomeric gH/gL, trimeric gB, and tetrameric gp350(1-470) induced serum EBV-neutralizing titers, using cultured human B cells, that were >100-fold, 20-fold, 18-fold, and 4-fold higher, respectively, than monomeric gp350(1-470). These data strongly suggest a role for testing EBV gH/gL and EBV gB in a future prophylactic vaccine to prevent EBV infection of B cells, as well as epithelial cells.

  16. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  17. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  18. Recombinant HT{sub m4} gene, protein and assays

    DOEpatents

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  19. Rescuing Recombinant Proteins by Sequestration Into the P22 VLP

    PubMed Central

    Patterson, Dustin P.; LaFrance, Benjamin; Douglas, Trevor

    2013-01-01

    Here we report the use of a self-assembling protein cage to sequester and solubilize recombinant proteins which are usually trafficked to insoluble inclusion bodies. Our results suggest that protein cages can be used as novel vehicles to rescue and produce soluble proteins that are otherwise difficult to obtain using conventional methods. PMID:24079011

  20. A recombinant Sp185/333 protein from the purple sea urchin has multitasking binding activities towards certain microbes and PAMPs.

    PubMed

    Lun, Cheng Man; Schrankel, Catherine S; Chou, Hung-Yen; Sacchi, Sandro; Smith, L Courtney

    2016-08-01

    The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that responds to microbes effectively by swift expression of the highly diverse Sp185/333 gene family. The Sp185/333 proteins are predicted to have anti-pathogen functions based on inducible gene expression and their significant sequence diversity. Sp185/333 proteins are all predicted to be intrinsically disordered and do not exhibit sequence similarities to other known proteins. To test the anti-pathogen hypothesis, a recombinant Sp185/333 protein, rSp0032, was evaluated and found to exhibit specific binding to marine Vibrio diazotrophicus and to Saccharomyces cerevisiae, but not to two Bacillus species. rSp0032 also binds to LPS, β-1,3-glucan and flagellin but not to peptidoglycan. rSp0032 binding to LPS can be competed by LPS, β-1,3-glucan and flagellin but not by peptidoglycan. We speculate that the predicted intrinsically disordered structure of rSp0032 may adapt to different conformations in binding to a limited number of PAMPs and pathogens. Given that rSp0032 binds to a range of targets, and that up to 260 different Sp185/333 proteins can be expressed per individual sea urchin, this family of immune response proteins may facilitate effective host protection against a broad array of potential pathogens encountered in the marine environment.

  1. A recombinant Sp185/333 protein from the purple sea urchin has multitasking binding activities towards certain microbes and PAMPs.

    PubMed

    Lun, Cheng Man; Schrankel, Catherine S; Chou, Hung-Yen; Sacchi, Sandro; Smith, L Courtney

    2016-08-01

    The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that responds to microbes effectively by swift expression of the highly diverse Sp185/333 gene family. The Sp185/333 proteins are predicted to have anti-pathogen functions based on inducible gene expression and their significant sequence diversity. Sp185/333 proteins are all predicted to be intrinsically disordered and do not exhibit sequence similarities to other known proteins. To test the anti-pathogen hypothesis, a recombinant Sp185/333 protein, rSp0032, was evaluated and found to exhibit specific binding to marine Vibrio diazotrophicus and to Saccharomyces cerevisiae, but not to two Bacillus species. rSp0032 also binds to LPS, β-1,3-glucan and flagellin but not to peptidoglycan. rSp0032 binding to LPS can be competed by LPS, β-1,3-glucan and flagellin but not by peptidoglycan. We speculate that the predicted intrinsically disordered structure of rSp0032 may adapt to different conformations in binding to a limited number of PAMPs and pathogens. Given that rSp0032 binds to a range of targets, and that up to 260 different Sp185/333 proteins can be expressed per individual sea urchin, this family of immune response proteins may facilitate effective host protection against a broad array of potential pathogens encountered in the marine environment. PMID:27020848

  2. Production and secretion of recombinant proteins in Dictyostelium discoideum.

    PubMed

    Dittrich, W; Williams, K L; Slade, M B

    1994-06-01

    We have expressed useful amounts of three recombinant proteins in a new eukaryotic host/vector system. The cellular slime mold Dictyostelium discoideum efficiently secreted two recombinant products, a soluble form of the normally cell surface associated D. discoideum glycoprotein (PsA) and the heterologous protein glutathione-S-transferase (GST) from Schistosoma japonicum, while the enzyme beta-glucuronidase (GUS) from Escherichia coli was cell associated. Up to 20mg/l of recombinant PsA and 1mg/l of GST were obtained after purification from a standard, peptone based growth medium. The secretion signal peptide was correctly cleaved from the recombinant GST- and PsA-proteins and the expression of recombinant PsA was shown to be stable for at least one hundred generations in the absence of selection. PMID:7764951

  3. Data on the evolutionary history of the V(D)J recombination-activating protein 1 - RAG1 coupled with sequence and variant analyses.

    PubMed

    Kumar, Abhishek; Bhandari, Anita; Sarde, Sandeep J; Muppavarapu, Sekhar; Tandon, Ravi

    2016-09-01

    RAG1 protein is one of the key component of RAG complex regulating the V(D)J recombination. There are only few studies for RAG1 concerning evolutionary history, detailed sequence and mutational hotspots. Herein, we present out datasets used for the recent comprehensive study of RAG1 based on sequence, phylogenetic and genetic variant analyses (Kumar et al., 2015) [1]. Protein sequence alignment helped in characterizing the conserved domains and regions of RAG1. It also aided in unraveling ancestral RAG1 in the sea urchin. Human genetic variant analyses revealed 751 mutational hotspots, located both in the coding and the non-coding regions. For further analysis and discussion, see (Kumar et al., 2015) [1]. PMID:27284568

  4. The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori.

    PubMed

    Xu, Hanfu

    2014-10-01

    The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It's a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.

  5. Induction of protection against divergent H5N1 influenza viruses using a recombinant fusion protein linking influenza M2e to Onchocerca volvulus activation associated protein-1 (ASP-1) adjuvant.

    PubMed

    Zhao, Guangyu; Du, Lanying; Xiao, Wenjun; Sun, Shihui; Lin, Yongping; Chen, Min; Kou, Zhihua; He, Yuxian; Lustigman, Sara; Jiang, Shibo; Zheng, Bo-Jian; Zhou, Yusen

    2010-10-18

    Our previous studies have shown the adjuvanticity of an Onchocerca volvulus recombinant protein, Ov-ASP-1 (ASP-1), when administered in an aqueous formulation with bystander vaccine antigens or commercial vaccines. In this study, we reported a novel formulation that took advantage of the protein nature of the ASP-1 adjuvant by creating recombinant fusion protein vaccines linking the highly conserved extracellular domain of M2 protein (M2e) consensus sequence of H5N1 influenza viruses with the ASP-1 adjuvant. Two recombinant fusion proteins designated M2e-ASP-1 and M2e3-ASP-1 were studied, in which ASP-1 was fused with one or three tandem copies of the M2e antigen. Our results show that these novel recombinant influenza vaccines, particularly M2e3-ASP-1, induced strong anti-M2e-specific humoral and cellular immune responses in the established mouse model. Furthermore, M2e3-ASP-1 was able to provide significant cross-clade protection against divergent H5N1 viruses. Consequently, this study has demonstrated a potential novel vaccine formulation that could provide a complementary prophylactic strategy in preventing the threat of future influenza outbreak resulting from rapid evolution of the H5N1 virus and co-circulation of multiple antigenic variants in various regions.

  6. Challenges and opportunities in the purification of recombinant tagged proteins.

    PubMed

    Pina, Ana Sofia; Lowe, Christopher R; Roque, Ana Cecília A

    2014-01-01

    The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development. PMID:24334194

  7. Utilizing Protein-lean Co-products from Corn Containing Recombinant Pharmaceutical Proteins for Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were used to produce fuel ethanol and residual r-proteins in the co-product, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein ...

  8. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    NASA Astrophysics Data System (ADS)

    Golubnitchaya-Labudová, O.; Portele, A.; Vaçata, V.; Lubec, G.; Rink, H.; Höfer, M.

    1997-10-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating domains in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the insert of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9.

  9. Accelerated protein engineering for chemical biotechnology via homologous recombination.

    PubMed

    Nordwald, Erik M; Garst, Andrew; Gill, Ryan T; Kaar, Joel L

    2013-12-01

    Protein engineering has traditionally relied on random mutagenesis strategies to generate diverse libraries, which require high-throughput screening or selection methods to identify rare variants. Alternatively, approaches to semi-rational library construction can be used to minimize the screening load and enhance the efficiency by which improved mutants may be identified. Such methods are typically limited to characterization of relatively few variants due to the difficulties in generating large rational libraries. New tools from synthetic biology, namely multiplexed DNA synthesis and homologous recombination, provide a promising avenue to rapidly construct large, rational libraries. These technologies also enable incorporation of synthetically encoded features that permit efficient characterization of the fitness of each mutant. Extension of these tools to protein library design could complement rational protein design cycles in an effort to more systematically search complex fitness landscapes. The highly parallelized nature with which such libraries can be generated also has the potential to expand directed protein evolution from single protein targets to protein networks whose concerted activities are required for the biological function of interest. PMID:23540421

  10. Accelerated protein engineering for chemical biotechnology via homologous recombination.

    PubMed

    Nordwald, Erik M; Garst, Andrew; Gill, Ryan T; Kaar, Joel L

    2013-12-01

    Protein engineering has traditionally relied on random mutagenesis strategies to generate diverse libraries, which require high-throughput screening or selection methods to identify rare variants. Alternatively, approaches to semi-rational library construction can be used to minimize the screening load and enhance the efficiency by which improved mutants may be identified. Such methods are typically limited to characterization of relatively few variants due to the difficulties in generating large rational libraries. New tools from synthetic biology, namely multiplexed DNA synthesis and homologous recombination, provide a promising avenue to rapidly construct large, rational libraries. These technologies also enable incorporation of synthetically encoded features that permit efficient characterization of the fitness of each mutant. Extension of these tools to protein library design could complement rational protein design cycles in an effort to more systematically search complex fitness landscapes. The highly parallelized nature with which such libraries can be generated also has the potential to expand directed protein evolution from single protein targets to protein networks whose concerted activities are required for the biological function of interest.

  11. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains.

    PubMed

    Kawakatsu, Taiji; Takaiwa, Fumio

    2010-12-01

    Cereal seeds provide an ideal production platform for high-value products such as pharmaceuticals and industrial materials because seeds have ample and stable space for the deposition of recombinant products without loss of activity at room. Seed storage proteins (SSPs) are predominantly synthesized and stably accumulated in maturing endosperm tissue. Therefore, understanding the molecular mechanisms regulating SSP expression and accumulation is expected to provide valuable information for producing higher amounts of recombinant products. SSP levels are regulated by several steps at the transcriptional (promoters, transcription factors), translational and post-translational levels (modification, processing trafficking, and deposition). Our objective is to develop a seed production platform capable of producing very high yields of recombinant product. Towards this goal, we review here the individual regulatory steps controlling SSP synthesis and accumulation.

  12. QA-RecombineIt: a server for quality assessment and recombination of protein models

    PubMed Central

    Pawlowski, Marcin; Bogdanowicz, Albert; Bujnicki, Janusz M.

    2013-01-01

    QA-RecombineIt provides a web interface to assess the quality of protein 3D structure models and to improve the accuracy of models by merging fragments of multiple input models. QA-RecombineIt has been developed for protein modelers who are working on difficult problems, have a set of different homology models and/or de novo models (from methods such as I-TASSER or ROSETTA) and would like to obtain one consensus model that incorporates the best parts into one structure that is internally coherent. An advanced mode is also available, in which one can modify the operation of the fragment recombination algorithm by manually identifying individual fragments or entire models to recombine. Our method produces up to 100 models that are expected to be on the average more accurate than the starting models. Therefore, our server may be useful for crystallographic protein structure determination, where protein models are used for Molecular Replacement to solve the phase problem. To address the latter possibility, a special feature was added to the QA-RecombineIt server. The QA-RecombineIt server can be freely accessed at http://iimcb.genesilico.pl/qarecombineit/. PMID:23700309

  13. Thermal adaptability of Kluyveromyces marxianus in recombinant protein production

    PubMed Central

    2013-01-01

    Background Kluyveromyces marxianus combines the ease of genetic manipulation and fermentation with the ability to efficiently secrete high molecular weight proteins, performing eukaryotic post-translational modifications. It is able to grow efficiently in a wide range of temperatures. The secretion performances were analyzed in the host K. marxianus L3 in the range between 5°C and 40°C by means of 3 different reporter proteins, since temperature appears a key parameter for production and secretion of recombinant proteins. Results The recombinant strains were able to grow up to 40°C and, along the tested temperature interval (5-40°C), the specific growth rates (μ) were generally lower as compared to those of the untransformed strain. Biomass yields were slightly affected by temperature, with the highest values reached at 15°C and 30°C. The secretion of the endogenous β-fructofuranosidase, used as an internal control, was efficient in the range of the tested temperature, as evaluated by assaying the enzyme activity in the culture supernatants. The endogenous β-fructofuranosidase production was temperature dependent, with the highest yield at 30°C. The heterologous proteins HSA, GAA and Sod1p were all successfully produced and secreted between 5°C and 40°C, albeit each one presented a different optimal production temperature (15, 40, 5-30°C for HSA, GAA and Sod1p, respectively). Conclusions K. marxianus L3 has been identified as a promising and flexible cell factory. In a sole host, the optimization of growth temperatures for the efficient secretion of each individual protein can be carried out over a wide range of temperatures. PMID:23587421

  14. Reconstruction of #7 facial cleft with distraction-assisted in situ osteogenesis (DISO): role of recombinant human bone morphogenetic protein-2 with Helistat-activated collagen implant.

    PubMed

    Carstens, Michael H; Chin, Martin; Ng, Theodore; Tom, William K

    2005-11-01

    A case involving concomitant presentation of a #7 lateral facial cleft with a complete cleft of the ipsilateral lip, alveolus, and palate is presented. The mandibular defect was Pruzansky III with a foreshortened body, absent ramus and absent masseter. Taking advantage of developmental field theory, reconstruction of the osseous defect was undertaken using the autogenous periosteum as a source of mesenchymal stem cells. Expansion of the periosteum was followed by implantation of Helistat (Integra Life Sciences, Plainsboro, NJ) collagen sponge saturated with recombinant human bone morphogenetic protein-2. Stimulation of this distraction-induced envelope by rhBMP-2 resulted in abundant production of bicortical membranous bone in situ within 12 weeks. The neoramus was subsequently suspended from the cranial base, and a temporalis muscle transfer was used to provide motor control of the jaw. Synthesis of bone in this manner is termed DISO (distraction-assisted in situ osteogenesis). The biologic rationale and clinical implications of DISO are discussed.

  15. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    PubMed

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. PMID:26021569

  16. Overexpression and Enzymatic Assessment of Antigenic Fragments of Hyaluronidase Recombinant Protein From Streptococcus pyogenes

    PubMed Central

    Sadoogh Abbasian, Shabnam; Ghaznavi Rad, Ehsanollah; Akbari, Neda; Zolfaghari, Mohammad Reza; pakzad, Iraj; Abtahi, Hamid

    2014-01-01

    Background: Hyaluronidase catalyzes the hydrolysis of hyaluronan polymers to N-acetyl-D-glucosamine and D-glucuronic acid. This enzyme is a dimer of identical subunits. Hyaluronidase has different pharmaceutical and medical applications. Previously, we produced a recombinant hyaluronidase antigenic fragment of Streptococcus pyogenes. Objectives: This study aimed to improve the protein production and purity of hyaluronidase recombinant protein from S. pyogenes. In addition, the enzymatic activity of this protein was investigated. Materials and Methods: The expression of hyaluronidase antigenic fragments was optimized using IPTG concentration, time of induction, temperature, culture, and absorbance of 0.6-0.8-1 at 600 nm. Afterwards, the expressed proteins were purified and the enzymatic activity was assessed by turbid metric method. Results: Data indicated that maximum protein is produced in OD = 0.8, 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG), 37ºC, NB 1.5x, without glucose, incubated for overnight. The enzymatic activity of the recombinant protein was similar to the commercial form of hyaluronidase. Conclusions: The results showed that an antigenic fragment of the recombinant hyaluronidase protein from S. pyogenes has a considerable enzymatic activity. It can be suggested to use it for medical purposes. In addition, applications of bioinformatics software would facilitate the production of a smaller protein with same antigenic properties and enzymatic activity. PMID:25789122

  17. Expression and Purification of Chaperone-Active Recombinant Clusterin

    PubMed Central

    Dabbs, Rebecca A.; Wilson, Mark R.

    2014-01-01

    Clusterin was the first described secreted mammalian chaperone and is implicated as being a key player in both intra- and extracellular proteostasis. Its unique combination of structural features and biological chaperone activity has, however, previously made it very challenging to express and purify the protein in a correctly processed and chaperone-active form. While there are multiple reports in the literature describing the use of recombinant clusterin, all of these reports suffer from one or more of the following shortcomings: details of the methods used to produce the protein are poorly described, the product is incompletely (if at all) characterised, and purity (if shown) is in many cases inadequate. The current report provides the first well validated method to economically produce pure chaperone-active recombinant clusterin. The method was developed after trialling expression in cultured bacterial, yeast, insect and mammalian cells, and involves the expression of recombinant clusterin from stably transfected HEK293 cells in protein-free medium. The product is expressed at between 7.5 and 10 µg/ml of culture, and is readily purified by a combination of immunoaffinity, cation exchange and size exclusion chromatography. The purified product was shown to be glycosylated, correctly proteolytically cleaved into α- and β-subunits, and have chaperone activity similar to that of human plasma clusterin. This new method creates the opportunity to use mutagenesis and metabolic labelling approaches in future studies to delineate functionally important sites within clusterin, and also provides a theoretically unlimited supply of recombinant clusterin which may in the future find applications in the development of therapeutics. PMID:24466307

  18. Recombinant protein expression in Escherichia coli: advances and challenges

    PubMed Central

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field. PMID:24860555

  19. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  20. Isolation and Purification of Recombinant Serine/Threonine Protein Kinases of the Strain Bifidobacterium longum B379M and Investigation of Their Activity.

    PubMed

    Alekseeva, M G; Mavletova, D A; Kolchina, N V; Nezametdinova, V Z; Danilenko, V N

    2015-10-01

    Previously, we identified six serine/threonine protein kinases (STPK) of Bifidobacterium and named them Pkb1-Pkb6. In the present study, we optimized methods for isolation of the six STPK catalytic domains proteins of B. longum B379M: a method for isolation of Pkb3 and Pkb4 in native conditions, a method for isolation of Pkb5 in denaturing conditions, and a method for isolation of Pkb1, Pkb2, and Pkb6 from inclusion bodies. The dialysis conditions for the renaturation of the proteins were optimized. All of the enzymes were isolated in quantities sufficient for study of the protein activity. The proteins were homogeneous according to SDS-PAGE. The autophosphorylation ability of Pkb1, Pkb3, Pkb4, and Pkb6 was investigated for the first time. Autophosphorylation was detected only for the Pkb3 catalytic domain.

  1. Optimizing transient recombinant protein expression in mammalian cells.

    PubMed

    Hopkins, Ralph F; Wall, Vanessa E; Esposito, Dominic

    2012-01-01

    Transient gene expression (TGE) in mammalian cells has become a routine process for expressing recombinant proteins in cell lines such as human embryonic kidney 293 and Chinese hamster ovary cells. The rapidly increasing need for recombinant proteins requires further improvements in TGE technology. While a great deal of focus has been directed toward optimizing the secretion of antibodies and other naturally secreted targets, much less work has been done on ways to improve cytoplasmic expression in mammalian cells. The benefits to protein production in mammalian cells, particularly for eukaryotic proteins, should be very significant - glycosylation and other posttranslational modifications will likely be native or near-native, solubility and protein folding would likely improve overexpression in heterologous hosts, and expression of proteins in their proper intracellular compartments is much more likely to occur. Improvements in this area have been slow, however, due to limited development of the cell culture processes needed for low-cost, higher-throughput expression in mammalian cells, and the relatively low diversity of DNA vectors for protein production in these systems. Here, we describe how the use of recombinational cloning, coupled with improvements in transfection protocols which increase speed and lower cost, can be combined to make mammalian cells much more amenable for routine recombinant protein expression. PMID:21987258

  2. Green factory: plants as bioproduction platforms for recombinant proteins.

    PubMed

    Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J

    2012-01-01

    Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success. PMID:21924345

  3. Green factory: plants as bioproduction platforms for recombinant proteins.

    PubMed

    Xu, Jianfeng; Dolan, Maureen C; Medrano, Giuliana; Cramer, Carole L; Weathers, Pamela J

    2012-01-01

    Molecular farming, long considered a promising strategy to produce valuable recombinant proteins not only for human and veterinary medicine, but also for agriculture and industry, now has some commercially available products. Various plant-based production platforms including whole-plants, aquatic plants, plant cell suspensions, and plant tissues (hairy roots) have been compared in terms of their advantages and limits. Effective recombinant strategies are summarized along with descriptions of scalable culture systems and examples of commercial progress and success.

  4. High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer

    PubMed Central

    2011-01-01

    This report describes the combined use of an enzyme-based glucose release system (EnBase®) and high-aeration shake flask (Ultra Yield Flask™). The benefit of this combination is demonstrated by over 100-fold improvement in the active yield of recombinant alcohol dehydrogenase expressed in E. coli. Compared to Terrific Broth and ZYM-5052 autoinduction medium, the EnBase system improved yield mainly through increased productivity per cell. Four-fold increase in oxygen transfer by the Ultra Yield Flask contributed to higher cell density with EnBase but not with the other tested media, and consequently the product yield per ml of EnBase culture was further improved. PMID:22152005

  5. Production of a recombinant industrial protein using barley cell cultures.

    PubMed

    Ritala, A; Wahlström, E H; Holkeri, H; Hafren, A; Mäkeläinen, K; Baez, J; Mäkinen, K; Nuutila, A M

    2008-06-01

    The use of recombinant DNA-based protein production using genetically modified plants could provide a reproducible, consistent quality, safe, animal-component free, origin-traceable, and cost-effective source for industrial proteins required in large amounts (1000s of metric tons) and at low cost (below US$100/Kg). The aim of this work was to demonstrate the feasibility of using barley suspension cell culture to support timely testing of the genetic constructs and early product characterization to detect for example post-translational modifications within the industrial protein caused by the selected recombinant system. For this study the human Collagen I alpha 1 (CIa1) chain gene encoding the complete helical region of CIa1 optimized for monocot expression was fused to its N- and C-terminal telopeptide and to a bacteriophage T4 fibritin foldon peptide encoding sequences. The CIa1 accumulation was targeted to the endoplasmic reticulum (ER) by fusing the CIa1 gene to an ER-directing signal peptide sequence and an ER retention signal HDEL. The construct containing the CIa1 gene was then introduced into immature barley half embryos or barley cells by particle bombardment. Transgenic barley cells resulting from these transformations were grown as suspension cultures in flasks and in a Wave bioreactor producing CIa1 similar to CIa1 purified from the yeast Pichia pastoris based on Western blotting, pepsin resistance, and mass spectroscopy analysis. The barley cell culture derived-CIa1 intracellular accumulation levels ranged from 2 to 9 microg/l illustrating the need for further process improvement in order to use this technology to supply material for product development activities.

  6. The efficacy of recombinant human activated protein C (rhAPC) vs antithrombin III (at III) vs heparin, in the healing process of partial-thickness burns: a comparative study

    PubMed Central

    Kritikos, O.; Tsagarakis, M.; Tsoutsos, D.; Kittas, C.; Gorgoulis, V.; Papalois, A.; Giannopoulos, A.; Kakiopoulos, G.; Papadopoulos, O.

    2012-01-01

    Summary This is an experimental study regarding the positive effect of recombinant human activated protein C (rhAPC) in the healing process of partial-thickness burns, in comparison to antithrombin III and heparin. On a porcine model we induced superficial partial-thickness and deep partial-thickness burns and performed intravenous administration of the elements of study during the first 48 h. The progress of the condition of the injured tissues was evaluated by histopathological examination at specific time intervals. The results showed an improved healing response of the specimens treated with rhAPC compared to those treated with antithrombin III, heparin, and placebo. PMID:23233823

  7. Production of recombinant proteins in microalgae at pilot greenhouse scale.

    PubMed

    Gimpel, Javier A; Hyun, James S; Schoepp, Nathan G; Mayfield, Stephen P

    2015-02-01

    Recombinant protein production in microalgae chloroplasts can provide correctly folded proteins in significant quantities and potentially inexpensive costs compared to other heterologous protein production platforms. The best results have been achieved by using the psbA promoter and 5' untranslated region (UTR) to drive the expression of heterologous genes in a psbA-deficient, non-photosynthetic, algal host. Unfortunately, using such a strategy makes the system unviable for large scale cultivation using natural sunlight for photosynthetic growth. In this study we characterized eight different combinations of 5' regulatory regions and psbA coding sequences for their ability to restore photosynthesis in a psbA-deficient Chlamydomonas reinhardtii, while maintaining robust accumulation of a commercially viable recombinant protein driven by the psbA promoter/5'UTR. The recombinant protein corresponded to bovine Milk Amyloid A (MAA), which is present in milk colostrum and could be used to prevent infectious diarrhea in mammals. This approach allowed us to identify photosynthetic strains that achieved constitutive production of MAA when grown photosynthetically in 100 L bags in a greenhouse. Under these conditions, the maximum MAA expression achieved was 1.86% of total protein, which corresponded to 3.28 mg/L of culture medium. Within our knowledge, this is the first report of a recombinant protein being produced this way in microalgae. PMID:25116083

  8. Systemic delivery of recombinant proteins by genetically modified myoblasts

    SciTech Connect

    Barr, E.; Leiden, J.M. )

    1991-12-06

    The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with {beta}-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.

  9. [Comparison of expression and antibacterial activities of recombinant porcine lactoferrin expressed in four Lactobacillus species].

    PubMed

    Yu, Hui; Jiang, Yanping; Cui, Wen; Wu, Xiao; He, Jia; Qiao, Xinyuan; Li, Yijing; Tang, Lijie

    2014-09-01

    The coding sequence for the mature peptide of porcine lactoferrin (Plf) was synthesized according to the codon usage of lactobacillus, to establish optimized porcine lactoferrin Lactobacillus expression system. The gene was ligated into the Xho I/BamH I site of Lactobacillus expression vector pPG612.1 and the recombinant plasmid pPG612.1-plf was transformed individually into Lactobacillus casei ATCC393, Lactobacillus pentosus KLDS1.0413, Lactobacillus plantarum KLDS1.0344 or Lactobacillus paracasei KLDS1.0652 by electroporation. After induction with xylose, expression of the recombinant proteins was detected by Western blotting and confocal laser scanning microscopy. Secretion of recombinant Plf proteins from four recombinant species was determined quantitatively by ELISA. The antibacterial activities of recombinant proteins were measured by agar diffusion method. The result shows that Plf was correctly expressed in four species of recombinant lactobacillus, with molecular weight of about 73 kDa. The expression levels in recombinant Lactobacillus casei, Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus paracasei were 9.6 μg/mL, 10.8 μg/mL, 12.5 μg/mL and 9.9 μg/mL, respectively. Antimicrobial activity experiment shows that the recombinant proteins were active against E. coli, Staphylococcus aureus, Salmonella typhimurium, Listeria, Pasteurella. The recombinant Plf expressed by recombinant Lactobacillus plantarum showed the best antibacterial activity among all recombinant lactobacillus species. These data represent a basis for the development and application of porcine lactoferrin from recombinant lactobacillus.

  10. Molecular identification and expression analysis of a natural killer cell enhancing factor (NKEF) from rock bream Oplegnathus fasciatus and the biological activity of its recombinant protein

    PubMed Central

    Kim, Ju-Won; Choi, Hye-Sung; Kwon, Mun-Gyeong; Park, Myoung-Ae; Hwang, Jee-Youn; Kim, Do-Hyung; Park, Chan-Il

    2011-01-01

    Natural killer cell enhancing factor (NKEF) belongs to the defined peroxiredoxin (Prx) family. Rock bream NKEF cDNA was identified by expressed sequence tag (EST) analysis of rock bream liver that was stimulated with the LPS. The full-length RbNKEF cDNA (1062 bp) contained an open reading frame (ORF) of 594 bp encoding 198 amino acids. RbNKEF was significantly expressed in the gill, liver, and intestine. mRNA expression of NKEF in the head kidney was examined under viral and bacterial challenge via real-time RT-PCR. Experimental challenge of rock bream with Edwardsiella tarda, Streptococcus iniae, and RSIV resulted in significant increases in RbNKEF mRNA in the head kidney. To obtain a recombinant NKEF, the RbNKEF ORF was expressed in Escherichia coli BL21 (DE3), and the purified soluble protein exhibited a single band corresponding to the predicted molecular mass. When kidney leucocytes were treated with a high concentration of rRbNKEF (10 μg/mL), they exhibited significantly enhanced cell proliferation and viability under oxidative stress. PMID:24371552

  11. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    PubMed

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  12. Gene Delivery into Plant Cells for Recombinant Protein Production

    PubMed Central

    Chen, Qiang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  13. Gene delivery into plant cells for recombinant protein production.

    PubMed

    Chen, Qiang; Lai, Huafang

    2015-01-01

    Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications. PMID:26075275

  14. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    NASA Technical Reports Server (NTRS)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  15. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    PubMed

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  16. Characterization of functionally active interleukin-18/eGFP fusion protein expression during cell cycle phases in recombinant chicken DF1 Cells.

    PubMed

    Wu, Hsing Chieh; Chen, Yu San; Shien, Jui Hung; Shen, Pin Chun; Lee, Long Huw

    2016-05-01

    The dependence of foreign gene expression on cell cycle phases in mammalian cells has been described. In this study, a DF1/chIL-18a cell line that stably expresses the fusion protein chIL-18 was constructed and the enhanced green fluorescence protein connected through a (G4 S)3 linker sequence investigated the relationship between cell cycle phases and fusion protein production. DF1/chIL-18a cells (1 × 10(5) ) were inoculated in 60-mm culture dishes containing 5 mL of media to achieve 50%-60% confluence and were cultured in the presence of the cycle-specific inhibitors 10058-F4, aphidicolin, and colchicine for 24 and 48 h. The percentage of cell density and mean fluorescence intensity in each cell cycle phase were assessed using flow cytometry. The inhibitors effectively arrested cell growth. The fusion protein production rate was higher in the S phase than in the G0/G1 and G2/M phases. When cell cycle progression was blocked in the G0/G1, S, and G2/M phases by the addition of 10058-F4, aphidicolin, and colchicine, respectively, the aphidicolin-induced single cells showed higher fusion protein levels than did the 10058-F4- or colchicine-induced phase cells and the uninduced control cells. Although the cells did not proliferate after the drug additions, the amount of total fusion protein accumulated in aphidicolin-treated cells was similar to that in the untreated cultures. Fusion protein is biologically active because it induces IFN-γ production in splenocyte cultures of chicken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:581-591, 2016.

  17. A bifunctional invertebrate-type lysozyme from the disk abalone, Haliotis discus discus: genome organization, transcriptional profiling and biological activities of recombinant protein.

    PubMed

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Kasthuri, Saranya Revathy; Whang, Ilson; Lim, Bong-Soo; Nam, Bo-Hye; Lee, Jehee

    2013-10-01

    Lysozyme is an important enzyme in the innate immune system that plays a vital role in fighting microbial infections. In the current study, we identified, cloned, and characterized a gene that encodes an invertebrate-type lysozyme from the disk abalone, Haliotis discus discus (abLysI). The full-length cDNA of abLysI consisted of 545 bp with an open reading frame of 393 bp that encodes 131 amino acids. The theoretical molecular mass of mature abLysI was 12.3 kDa with an isoelectric point of 8.03. Conserved features in other homologs, such as catalytic sites for lytic activity (Glu(30) and Asp(41)), isopeptidase activity (His(107)), and ten cysteine residues were identified in abLysI. Genomic sequence analysis with respect to its cDNA showed that abLysI was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative promoter region. Homology and phylogeny analysis of abLysI depicted high identity and closer proximity, respectively, with an annelid i-type lysozyme from Hirudo medicinalis, and indicated that abLysI is a novel molluscan i-type lysozyme. Tissue-specific expressional studies revealed that abLysI is mainly transcribed in hepatopancreas followed by mantle. In addition, abLysI mRNA expression was induced following bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and viral (viral hemorrhagic septicemia virus) challenges. Recombinantly expressed abLysI [(r)abLysI] demonstrated strong lytic activity against Micrococcus lysodeikticus, isopeptidase activity, and antibacterial activity against several Gram-positive and Gram-negative bacteria. Moreover, (r)abLysI showed optimum lytic activity at pH 4.0 and 60 °C, while exhibiting optimum isopeptidase activity at pH 7.0. Taken together, these results indicate that abLysI is potentially involved in immune responses of the disk abalone to protect it from invaders.

  18. Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-superoxide dismutase purified by a His-tagged recombinant protein method.

    PubMed

    Lin, C T; Lin, M T; Chen, Y T; Shaw, J F

    1995-05-01

    The coding region of copper/zinc-superoxide dismutase (Cu/Zn-SOD) cDNA from sweet potato, Ipomoea batatas (L.) Lam. cv. Tainong 57, was introduced into an expression vector, pET-20b(+). The Cu/Zn-SOD purified by His-tagged technique showed two active forms (dimer and monomer). The amount of proteins of dimer and monomer appeared to be equal, but the activity of dimeric form was seven times higher than that of monomeric form. The enzyme was dissociated into monomer by imidazole buffer above 1.0 M, acidic pH (below 3.0), or SDS (above 1%). The enzyme is quite stable. The enzyme activity is not affected at 85 degrees C for 20 min, in alkali pH 11.2, or in 0.1 M EDTA and also quite resistant to proteolytic attack. Dimer is more stable than monomer. The thermal inactivation rate constant kd calculated for the monomer at 85 degrees C was 0.029 min-1 and the half-life for inactivation was about 28 min. In contrast, there is no significant change of dimer activity after 40 min at 85 degrees C. The enzyme dimer and monomer retained 83% and 58% of original activity, respectively, after 3 h incubation with trypsin at 37 degrees C, while those retained 100% and 31% of original activity with chymotrypsin under the same condition. These results suggest subunit interaction might change the enzyme conformation and greatly improve the catalytic activity and stability of the enzyme. It is also possible that the intersubunit contacts stabilize a particular optimal conformation of the protein or the dimeric structure enhances catalytic activity by increasing the electrostatic steering of substrate into the active site.

  19. Quantitative measurement of bitagged recombinant proteins using an immunometric assay: application to an anti-substance P recombinant antibody.

    PubMed

    Boquet, D; Créminon, C; Clément, G; Frobert, Y; Nevers, M C; Essono, S; Grassi, J

    2000-09-10

    We have developed two different immunometric assays to directly quantify both the total and the active fractions of a recombinant antibody (single chain fragment variable, or ScFv) as obtained in a crude extract from an Escherichia coli expression system. For total determination, the assay is based on the simultaneous recognition of two different peptide Tag sequences (Ha-Tag and Myc-Tag) at each of the N- and C-terminal extremities of the recombinant protein. A monoclonal antibody (mAb 12CA5, directed against Ha-Tag), coated on microtiter plates, is used for capture, and the mAb 9E10 (directed against Myc-Tag), labeled with acetylcholinesterase (AChE, EC 3.1.1.7), acts as tracer. In parallel, for the determination of the active fraction, the capture is performed using microtiter plates coated with the antigen, while solid-phase-immobilized ScFv is measured using the same 9E10 tracer mAb. A synthetic peptide in which the two Tag sequences were joined was used as a standard, thus avoiding the laborious purification of a recombinant protein as reference. The method was applied to the direct measurement, in periplasmic extracts, of the total and active fractions of an ScFv produced at different induction temperatures.

  20. A role for homologous recombination proteins in cell cycle regulation

    PubMed Central

    Kostyrko, Kaja; Bosshard, Sandra; Urban, Zuzanna; Mermod, Nicolas

    2015-01-01

    Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51 paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an essential role both in DNA repair and checkpoint signaling. PMID:26125600

  1. Recovery and purification of plant-made recombinant proteins.

    PubMed

    Wilken, Lisa R; Nikolov, Zivko L

    2012-01-01

    Plants are becoming commercially acceptable for recombinant protein production for human therapeutics, vaccine antigens, industrial enzymes, and nutraceuticals. Recently, significant advances in expression, protein glycosylation, and gene-to-product development time have been achieved. Safety and regulatory concerns for open-field production systems have also been addressed by using contained systems to grow transgenic plants. However, using contained systems eliminates several advantages of open-field production, such as inexpensive upstream production and scale-up costs. Upstream technological achievements have not been matched by downstream processing advancements. In the past 10 years, the most research progress was achieved in the areas of extraction and pretreatment. Extraction conditions have been optimized for numerous proteins on a case-by-case basis leading to the development of platform-dependent approaches. Pretreatment advances were made after realizing that plant extracts and homogenates have unique compositions that require distinct conditioning prior to purification. However, scientists have relied on purification methods developed for other protein production hosts with modest investments in developing novel plant purification tools. Recently, non-chromatographic purification methods, such as aqueous two-phase partitioning and membrane filtration, have been evaluated as low-cost purification alternatives to packed-bed adsorption. This paper reviews seed, leafy, and bioreactor-based platforms, highlights strategies for the primary recovery and purification of recombinant proteins, and compares process economics between systems. Lastly, the future direction and research needs for developing economically competitive recombinant proteins with commercial potential are discussed.

  2. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    PubMed

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  3. Molecular cloning, characterization and expression analysis of peroxiredoxin 6 from disk abalone Haliotis discus discus and the antioxidant activity of its recombinant protein.

    PubMed

    Nikapitiya, Chamilani; De Zoysa, Mahanama; Whang, Ilson; Kim, Choon-Gon; Lee, Youn-Ho; Kim, Sang-Jin; Lee, Jehee

    2009-08-01

    Peroxiredoxins (Prxs) play an important role against various oxidative stresses and intra-cellular signal transduction. Peroxiredoxin 6 (PrxVI) was identified from the disk abalone Haliotis discus discus cDNA library and named HdPrxVI. The full length cDNA of HdPrxVI was 1457 bp with a 654 bp open reading frame (ORF) encoding 218 amino acids. The predicted molecular mass and estimated isoelectric point (pI) of HdPrxVI were 24 kDa and 7.3, respectively. The deduced amino acid sequence demonstrated the greatest degree (72.4%) of identity with Crassostrea gigas PrxVI. The conserved peroxidase catalytic center (42PVCTTE47) with a conserved cysteine residue (Cys44) and a catalytic center for PLA2 activity (27GGSWA31) were observed in the sequence, indicating that it is a member of 1-Cys Prx. Real time PCR results revealed that HdPrxVI mRNA is constitutively expressed in all tissues in a tissue-specific manner. During exposure to haemorrhagic septicaemia virus (VHSV), HdPrxVI mRNA transcription was down-regulated in the gill, suggesting that the abalone responded to the viral infection quickly, and HdPrxVI played a physiological role against virus-induced oxidative stress. The purified recombinant HdPrxVI, together with dithiothreitol (DTT), was shown to scavenge H2O2 in human leukemia THP-1 cells and provided protection against H2O2-induced apoptosis.

  4. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  5. Recombinant protein production from stable mammalian cell lines and pools.

    PubMed

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced.

  6. Recombinant protein production from stable mammalian cell lines and pools.

    PubMed

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. PMID:27322762

  7. Metabolic engineering of Escherichia coli to improve recombinant protein production.

    PubMed

    Liu, Min; Feng, Xinjun; Ding, Yamei; Zhao, Guang; Liu, Huizhou; Xian, Mo

    2015-12-01

    Escherichia coli is one of the most widely used strains for recombinant protein production. However, obstacles also exist in both academic researches and industrial applications, such as the metabolic burden, the carbon source waste, and the cells' physiological deterioration. This article reviews recent approaches for improving recombinant protein production in metabolic engineering, including workhorse selection, stress factor application, and carbon flux regulation. Selecting a suitable host is the first key point for recombinant protein production. In general, it all depends on characteristics of the strains and the target proteins. It will be triggered cells physiological deterioration when the medium is significantly different from the cell's natural environment. Coexpression of stress factors can help proteins to fold into their native conformation. Carbon flux regulation is a direct approach for redirecting more carbon flux toward the desirable pathways and products. However, some undesirable consequences are usually found in metabolic engineering, such as glucose transport inhibition, cell growth retardation, and useless metabolite accumulation. More efficient regulators and platform cell factories should be explored to meet a variety of production demands.

  8. Association of 14-3-3 Proteins to β1-Adrenergic Receptors Modulates Kv11.1 K+ Channel Activity in Recombinant Systems

    PubMed Central

    Tutor, Antonio S.; Delpón, Eva; Caballero, Ricardo; Gómez, Ricardo; Núñez, Lucía; Vaquero, Miguel; Tamargo, Juan; Penela, Petronila

    2006-01-01

    We identify a new mechanism for the β1-adrenergic receptor (β1AR)-mediated regulation of human ether-a-go-go–related gene (HERG) potassium channel (Kv11.1). We find that the previously reported modulatory interaction between Kv11.1 channels and 14-3-3ε proteins is competed by wild type β1AR by means of a novel interaction between this receptor and 14-3-3ε. The association between β1AR and 14-3-3ε is increased by agonist stimulation in both transfected cells and heart tissue and requires cAMP-dependent protein kinase (PKA) activity. The β1AR/14-3-3ε association is direct, since it can be recapitulated using purified 14-3-3ε and β1AR fusion proteins and is abolished in cells expressing β1AR phosphorylation–deficient mutants. Biochemical and electrophysiological studies of the effects of isoproterenol on Kv11.1 currents recorded using the whole-cell patch clamp demonstrated that β1AR phosphorylation–deficient mutants do not recruit 14-3-3ε away from Kv11.1 and display a markedly altered agonist-mediated modulation of Kv11.1 currents compared with wild-type β1AR, increasing instead of inhibiting current amplitudes. Interestingly, such differential modulation is not observed in the presence of 14-3-3 inhibitors. Our results suggest that the dynamic association of 14-3-3 proteins to both β1AR and Kv11.1 channels is involved in the adrenergic modulation of this critical regulator of cardiac repolarization and refractoriness. PMID:16914520

  9. Synthesizing a Cellulase like Chimeric Protein by Recombinant Molecular Biology Techniques

    PubMed Central

    Banerjee, Hirendra Nath; Krauss, Christopher; Smith, Valerie; Mahaffey, Kelly; Boston, Ava

    2016-01-01

    In order to meet the Renewable Fuels Standard demands for 30 billion gallons of biofuels by the end of 2020, new technologies for generation of cellulosic ethanol must be exploited. Breaking down cellulose by cellulase enzyme is very important for this purpose but this is not thermostable and degrades at higher temperatures in bioreactors. Towards creation of a more ecologically friendly method of rendering bioethanol from cellulosic waste, we attempted to produce recombinant higher temperature resistant cellulases for use in bioreactors. The project involved molecular cloning of genes for cellulose-degrading enzymes based on bacterial source, expressing the recombinant proteins in E. coli and optimizing enzymatic activity. We were able to generate in vitro bacterial expression systems to produce recombinant His-tag purified protein which showed cellulase like activity. PMID:27468362

  10. Molecular identification and expression analysis of the CC chemokine gene in rock bream (Oplegnathus fasciatus) and the biological activity of the recombinant protein.

    PubMed

    Kim, Ju-Won; Kim, Eun-Gyeong; Kim, Do-Hyung; Shim, Sang Hee; Park, Chan-Il

    2013-03-01

    We identified the CC chemokine cDNA designated as RbCC1 (CC chemokine 1 in rock bream, Oplegnathus fasciatus), which was isolated using expressed sequence tag (EST) analysis of a lipopolysaccharide (LPS)-stimulated rock bream liver cDNA library. The full-length RbCC1 cDNA (850 bp) contained an open reading frame (ORF) of 366 bp encoding 122 amino acids. Results from our phylogenetic analysis demonstrated that the RbCC1 was closest relationship to the orange-spotted grouper and Mi-iyu croaker CC chemokines located within the fish CC chemokine group. RbCC1 was significantly expressed in the intestine, spleen, liver, and PBLs (peripheral blood leukocytes). Rock bream PBLs were stimulated with several mitogens, LPS and Con A/PMA which significantly induced the expression of RbCC1 mRNA in the PBLs. The RbCC1 mRNA expression in several tissues under conditions of bacterial and viral challenge was examined. The experimental challenge revealed that the kidney and spleen of fish infected with Streptococcus iniae showed the most significant increases in RbCC1 expression compared to the control. In the case of RSIV infection, the RbCC1 mRNA expression was markedly up-regulated in the liver. In this study, recombinant RbCC1 (approximately 53 kDa) was produced using an Escherichia coli expression system followed by purification. Subsequently, the addition of purified rRbCC1 was examined to investigate the impact on the proliferative and chemotactic activity on kidney leukocytes from rock bream. The results demonstrated that the rRbCC1 induces significant biological activity on kidney leukocyte proliferation and attraction at concentrations in the range of 10-300 μg/mL and suggests that rRbCC1 could be utilized as an immune-stimulant and/or molecular adjuvant to enhance the immune effects of vaccines.

  11. Self-assembly studies of native and recombinant fibrous proteins

    NASA Astrophysics Data System (ADS)

    Wilson, Donna Lucille

    The structure of silk proteins consists of alternating amorphous (glycine-rich) and ordered crystalline regions (poly(alanine) and poly(glycine-alanine) repeats), where the organized regions are typically beta-sheet assemblies. In collagen, the basic helical repeat (glycine-proline-hydroxyproline and variants on this repeat) drives hierarchical assembly. Three polypeptide chains form left-handed poly-proline II-like helices, these three chains then self-assemble to form a right-handed triple helix. The focus of this thesis is on these proteins and defined variations thereof to reveal features of fibrous protein self-assembly. The amino acid sequences of native silk and collagen and their respective assembly environments have been systematically manipulated. Spider silk protein, based on the consensus sequence of Nephila clavipes dragline-silk, was genetically engineered to include methionines flanking the beta-sheet forming polyalanine regions. These methionines could be selectively oxidized and reduced, altering the bulkiness and charge of a methionine-based sulfoxide group to control beta-sheet formation by steric hindrance. A second version of the sterical trigger included a recognition site for Protein Kinase A allowing for the selective phosphorylation of a serine. Patterning a monolayer of precursor "director" molecules on length scales ranging from nanometer- to micrometer-length scales simplifies the interpretation of supramolecular assembly. Utilizing the atomic force microscopy (AFM)-based technique of dip-pen nanolithography, thiolated collagen and a collagen-like peptide were patterned at 30--50 nm line widths on evaporated gold surfaces. These are the largest molecules thus far positively printed on a surface at such small-length scales. The method preserved the triple helical structure and biological activity of collagen and even fostered the formation of characteristic higher-levels of structural organization. Nanopatterns were also achieved for

  12. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor

    PubMed Central

    Pauwels, Petrus J; Wurch, Thierry; Palmier, Christiane; Colpaert, Francis C

    1998-01-01

    The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPγS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions.Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H] - N- [4-methoxy-3,4 - methylpiperazin-1-yl) phenyl] -3 - methyl - 4-(4 - pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg−1 protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor.[35S]-GTPγS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethylsulphonamide (CP122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (±)-cyanopindolol and (2′-methyl-4′-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63).The ligands 1′-methyl-5-(2′-methyl-4′-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7-tetrahydrospiro [furo[2,3-f]indole-3-spiro-4′-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S

  13. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor.

    PubMed

    Pauwels, P J; Wurch, T; Palmier, C; Colpaert, F C

    1998-01-01

    1. The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPgammaS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H]-N-[4-methoxy-3,4-methylpiperazin-1-yl) phenyl]-3-methyl-4-(4-pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg(-1) protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor. 3. [35S]-GTPgammaS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulphonamide (CP 122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (+/-)-cyanopindolol and (2'-methyl-4'-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63). 4. The ligands 1'-methyl-5-(2'-methyl-4'-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7tetrahydrospiro [furo[2,3-f]indole-3-spiro-4'-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S]-GTPgammaS binding at concentrations

  14. The cytolytic activity of pulmonary CD8+ lymphocytes, induced by infection with a vaccinia virus recombinant expressing the M2 protein of respiratory syncytial virus (RSV), correlates with resistance to RSV infection in mice.

    PubMed Central

    Kulkarni, A B; Connors, M; Firestone, C Y; Morse, H C; Murphy, B R

    1993-01-01

    Previous studies demonstrated that the pulmonary resistance to respiratory syncytial virus (RSV) challenge induced by immunization with a recombinant vaccinia virus expressing the M2 protein of RSV (vac-M2) was significantly greater 9 days after immunization than at 28 days and was mediated predominantly by CD8+ T cells. In this study, we have extended these findings and sought to determine whether the level of CD8+ cytotoxic T-lymphocyte (CTL) activity measured in vitro correlates with the resistance to RSV challenge in vivo. Three lines of evidence documented an association between the presence of pulmonary CTL activity and resistance to RSV challenge. First, vac-M2 immunization induced pulmonary CD8+ CTL activity and pulmonary resistance to RSV infection in BALB/c (H-2d) mice, whereas significant levels of pulmonary CTL activity and resistance to RSV infection were not seen in BALB.K (H-2k) or BALB.B (H-2b) mice. Second, pulmonary CD8+ CTL activity was not induced by infection with other vaccinia virus-RSV recombinants that did not induce resistance to RSV challenge. Third, the peak of pulmonary CTL activity correlated with the peak of resistance to RSV replication (day 6), with little resistance being observed 45 days after immunization. An accelerated clearance of virus was not observed when mice were challenged with RSV 45 days after immunization with vac-M2. The results indicate that resistance to RSV induced by immunization with vac-M2 is mainly mediated by primary pulmonary CTLs and that this resistance decreases to very low levels within 2 months following immunization. The implications for inclusion of CTL epitopes into RSV vaccines are discussed in the context of these observations. PMID:8419638

  15. Advantage of recombinant borrelial proteins for serodiagnosis of neuroborreliosis.

    PubMed

    Kaiser, R; Rauer, S

    1999-01-01

    Two enzyme immunoassay (EIA) systems were compared for their ability to detect Borrelia burgdorferi sensu lato specific IgG and IgM antibodies and to differentiate between symptomatic (83 patients with neuroborreliosis) and asymptomatic seropositive subjects (80 healthy controls). Antibody concentrations were determined by EIA; the antigens used were either a sonicate of B. burgdorferi or three recombinant borrelial proteins: the 14-kDa flagellin fragment, the outer surface protein C (22 kDa) and the high molecular mass protein p83 (83 kDa). In the sonicate, EIA, IgG or IgM antibodies to B. burgdorferi, or both, were detected in all patients with neuroborreliosis and in all controls. Pre-absorption of sera with Treponema phagedenis sonicate diminished the sensitivity of detection of borrelial specific IgG (IgG or IgM or both) antibodies in patients with neuroborreliosis from 80 to 57% (100 to 82%) and in the controls from 100 to 32% (100 to 37%). While being specific for B. burgdorferi, the recombinant EIAs proved to be significantly more sensitive than the sonicate EIA: IgG or IgM, or both antibodies against any of the recombinant antigens were detected in 92% of patients with neuroborreliosis and in 24% of controls. The increase in sensitivity in patients with neuroborreliosis was mostly due to the higher detection rate of IgM antibodies in the recombinant EIA (77% versus 48% in the sonicate EIA), while IgG antibodies were demonstrated with similar frequencies in both EIA systems (57% versus 60%). It was concluded that the recombinant EIAs are superior to the sonicate EIA with pre-absorption of cross-reactive antibodies in the confirmation of an acute borrelial infection and in the differentiation between symptomatic and asymptomatic infections.

  16. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data. PMID:27165321

  17. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  18. Multiple biological activities of human recombinant interleukin 1.

    PubMed Central

    Dinarello, C A; Cannon, J G; Mier, J W; Bernheim, H A; LoPreste, G; Lynn, D L; Love, R N; Webb, A C; Auron, P E; Reuben, R C

    1986-01-01

    Complementary DNA coding for human monocyte interleukin 1 (IL-1), pI 7 form, was expressed in Escherichia coli. During purification, IL-1 activity on murine T cells was associated with the recombinant protein. Homogeneous human recombinant IL-1 (hrIL-1) was tested in several assays to demonstrate the immunological and inflammatory properties attributed to this molecule. hrIL-1 induced proliferative responses in a cloned murine T cell in the presence of suboptimal concentrations of mitogen, whereas no effect was observed with hrIL-1 alone. At concentrations of 0.05 ng/ml, hrIL-1 doubled the response to mitogen (5 X 10(6) half maximal units/mg). Human peripheral blood T cells depleted of adherent cells underwent a blastogenic response and released interleukin 2 in the presence of hrIL-1 and mitogen. hrIL-1 was a potent inflammatory agent by its ability to induce human dermal fibroblast prostaglandin E2 production in vitro and to produce monophasic (endogenous pyrogen) fever when injected into rabbits or endotoxin-resistant mice. These studies establish that the dominant pI 7 form of recombinant human IL-1 possesses immunological and inflammatory properties and acts on the central nervous system to produce fever. Images PMID:3519678

  19. Evaluation of adjuvant activity of fractions derived from Agaricus blazei, when in association with the recombinant LiHyp1 protein, to protect against visceral leishmaniasis.

    PubMed

    de Jesus Pereira, Nathália Cristina; Régis, Wiliam César Bento; Costa, Lourena Emanuele; de Oliveira, Jamil Silvano; da Silva, Alanna Gomes; Martins, Vivian Tamietti; Duarte, Mariana Costa; de Souza, José Roberto Rodrigues; Lage, Paula Sousa; Schneider, Mônica Santos; Melo, Maria Norma; Soto, Manuel; Soares, Sandra Aguiar; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz

    2015-06-01

    The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the

  20. A Library of Functional Recombinant Cell-surface and Secreted P. falciparum Merozoite Proteins*

    PubMed Central

    Crosnier, Cécile; Wanaguru, Madushi; McDade, Brian; Osier, Faith H.; Marsh, Kevin; Rayner, Julian C.; Wright, Gavin J.

    2013-01-01

    Malaria, an infectious disease caused by parasites of the Plasmodium genus, is one of the world's major public health concerns causing up to a million deaths annually, mostly because of P. falciparum infections. All of the clinical symptoms are associated with the blood stage of the disease, an obligate part of the parasite life cycle, when a form of the parasite called the merozoite recognizes and invades host erythrocytes. During erythrocyte invasion, merozoites are directly exposed to the host humoral immune system making the blood stage of the parasite a conceptually attractive therapeutic target. Progress in the functional and molecular characterization of P. falciparum merozoite proteins, however, has been hampered by the technical challenges associated with expressing these proteins in a biochemically active recombinant form. This challenge is particularly acute for extracellular proteins, which are the likely targets of host antibody responses, because they contain structurally critical post-translational modifications that are not added by some recombinant expression systems. Here, we report the development of a method that uses a mammalian expression system to compile a protein resource containing the entire ectodomains of 42 P. falciparum merozoite secreted and cell surface proteins, many of which have not previously been characterized. Importantly, we are able to recapitulate known biochemical activities by showing that recombinant MSP1-MSP7 and P12-P41 directly interact, and that both recombinant EBA175 and EBA140 can bind human erythrocytes in a sialic acid-dependent manner. Finally, we use sera from malaria-exposed immune adults to profile the relative immunoreactivity of the proteins and show that the majority of the antigens contain conformational (heat-labile) epitopes. We envisage that this resource of recombinant proteins will make a valuable contribution toward a molecular understanding of the blood stage of P. falciparum infections and

  1. Systems Biology of Recombinant Protein Production in Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Biedendieck, Rebekka; Bunk, Boyke; Fürch, Tobias; Franco-Lara, Ezequiel; Jahn, Martina; Jahn, Dieter

    Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.

  2. Dielectronic Recombination In Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.; Lestinsky, M.; Wolf, A.

    2006-01-01

    XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.

  3. The role of Deinococcus radiodurans RecFOR proteins in homologous recombination.

    PubMed

    Satoh, Katsuya; Kikuchi, Masahiro; Ishaque, Abu M; Ohba, Hirofumi; Yamada, Mitsugu; Tejima, Kouhei; Onodera, Takefumi; Narumi, Issay

    2012-04-01

    Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed. PMID:22321371

  4. Systems biology of recombinant protein production using Bacillus megaterium.

    PubMed

    Biedendieck, Rebekka; Borgmeier, Claudia; Bunk, Boyke; Stammen, Simon; Scherling, Christian; Meinhardt, Friedhelm; Wittmann, Christoph; Jahn, Dieter

    2011-01-01

    The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data. PMID:21943898

  5. Functional insights into recombinant TROSPA protein from Ixodes ricinus.

    PubMed

    Figlerowicz, Marek; Urbanowicz, Anna; Lewandowski, Dominik; Jodynis-Liebert, Jadwiga; Sadowski, Czeslaw

    2013-01-01

    Lyme disease (also called borreliosis) is a prevalent chronic disease transmitted by ticks and caused by Borrelia burgdorferi s. l. spirochete. At least one tick protein, namely TROSPA from I. scapularis, commonly occurring in the USA, was shown to be required for colonization of the vector by bacteria. Located in the tick gut, TROSPA interacts with the spirochete outer surface protein A (OspA) and initiates the tick colonization. Ixodes ricinus is a primary vector involved in B. burgdorferi s. l. transmission in most European countries. In this study, we characterized the capacities of recombinant TROSPA protein from I. ricinus to interact with OspA from different Borrelia species and to induce an immune response in animals. We also showed that the N-terminal part of TROSPA (a putative transmembrane domain) is not involved in the interaction with OspA and that reduction of the total negative charge on the TROSPA protein impaired TROSPA-OspA binding. In general, the data presented in this paper indicate that recombinant TROSPA protein retains the capacity to form a complex with OspA and induces a significant level of IgG in orally immunized rats. Thus, I. ricinus TROSPA may be considered a good candidate component for an animal vaccine against Borrelia. PMID:24204685

  6. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement. PMID:26216265

  7. Recombinant human activated protein C for the treatment of severe sepsis and septic shock: a study protocol for incorporating observational evidence using a Bayesian approach

    PubMed Central

    Zhang, Zhongheng

    2014-01-01

    Introduction Activated protein C (aPC) plays a pivotal role in modulating a severe inflammatory response and is thought to be beneficial for patients with sepsis. However, several meta-analyses of randomised controlled trials (RCTs) show that aPC is not significantly associated with improved survival in critically ill patients with sepsis. One suggestion is that these analyses simply ignored observational evidence. The present study aims to quantitatively demonstrate how observational data can alter the findings derived from synthesised evidence from RCTs by using a Bayesian approach. Methods and analysis RCTs and observational studies investigating the effect of aPC on mortality outcome in critically ill patients with sepsis will be included. The quality of included RCTs will be assessed by using the Delphi list. Publication bias will be quantitatively analysed by using the traditional Egger regression test and the Begg rank correlation test. Observational data will be used as the informative prior for the distribution of OR. A power transformation of the observational data likelihood will be considered. Observational evidence will be down-weighted by a power of α which takes values from 0 to 1. Trial sequential analysis will be performed to quantify the reliability of data in meta-analysis adjusting significance levels for sparse data and multiple testing on accumulating trials. Trial registration number PROSPERO (CRD42014009562). PMID:25082420

  8. Efficient recovery of recombinant proteins from cereal endosperm is affected by interaction with endogenous storage proteins.

    PubMed

    Peters, Jenny; Sabalza, Maite; Ramessar, Koreen; Christou, Paul; Capell, Teresa; Stöger, Eva; Arcalís, Elsa

    2013-10-01

    Cereal seeds are versatile platforms for the production of recombinant proteins because they provide a stable environment for protein accumulation. Endogenous seed storage proteins, however, include several prolamin-type polypeptides that aggregate and crosslink via intermolecular disulfide bridges, which could potentially interact with multimeric recombinant proteins such as antibodies, which assemble in the same manner. We investigated this possibility by sequentially extracting a human antibody expressed in maize endosperm, followed by precipitation in vitro with zein. We provide evidence that a significant proportion of the antibody pool interacts with zein and therefore cannot be extracted using non-reducing buffers. Immunolocalization experiments demonstrated that antibodies targeted for secretion were instead retained within zein bodies because of such covalent interactions. Our findings suggest that the production of soluble recombinant antibodies in maize could be enhanced by eliminating or minimizing interactions with endogenous storage proteins.

  9. Expression and export: recombinant protein production systems for Aspergillus.

    PubMed

    Fleissner, André; Dersch, Petra

    2010-07-01

    Several Aspergillus species, in particular Aspergillus niger and Aspergillus oryzae, are widely used as protein production hosts in various biotechnological applications. In order to improve the expression and secretion of recombinant proteins in these filamentous fungi, several novel genetic engineering strategies have been developed in recent years. This review describes state-of-the-art genetic manipulation technologies used for strain improvement, as well as recent advances in designing the most appropriate engineering strategy for a particular protein production process. Furthermore, current developments in identifying bottlenecks in the protein production and secretion pathways are described and novel approaches to overcome these limitations are introduced. An appropriate combination of expression vectors and optimized host strains will provide cell factories customized for each production process and expand the great potential of Aspergilli as biotechnology workhorses to more complex multi-step industrial applications.

  10. Recombinant TNF-binding protein from variola virus as a novel potential TNF antagonist.

    PubMed

    Gileva, I P; Nepomnyashchikh, T S; Ryazankin, I A; Shchelkunov, S N

    2009-12-01

    Gel-filtration chromatographic separation of the lysate of Sf21 insect cells infected with recombinant baculovirus BVi67 containing the gene for TNF-binding protein (CrmB) of variola virus (VARV) revealed that hTNF-cytotoxicity neutralization activity is associated with a fraction corresponding mainly to high molecular weight proteins (above 500 kDa) and less with fractions corresponding to proteins of 270 or 90 kDa. The recombinant VARV-CrmB protein has been purified by affinity chromatography. Difference in the experimentally determined and estimated (according to amino acid composition) VARV-CrmB molecular weight is due to glycosylation of the recombinant protein expressed in the insect cells. VARV-CrmB neutralizes in vitro the cytotoxic effect of hTNF and hLTalpha, and its TNF-neutralizing activity is two to three orders of magnitude higher compared to the analogous effects of type I and II soluble TNF receptors, comparable with the activity of mAb MAK195, and somewhat lower than the effect of the commercial drug Remicade.

  11. Recombinant Expression, Purification, and Functional Characterisation of Connective Tissue Growth Factor and Nephroblastoma-Overexpressed Protein

    PubMed Central

    Bohr, Wilhelm; Kupper, Michael; Hoffmann, Kurt; Weiskirchen, Ralf

    2010-01-01

    The CCN family of proteins, especially its prominent member, the Connective tissue growth factor (CTGF/CCN2) has been identified as a possible biomarker for the diagnosis of fibrotic diseases. As a downstream mediator of TGF-β1 signalling, it is involved in tissue scarring, stimulates interstitial deposition of extracellular matrix proteins, and promotes proliferation of several cell types. Another member of this family, the Nephroblastoma-Overexpressed protein (NOV/CCN3), has growth-inhibiting properties. First reports further suggest that these two CCN family members act opposite to each other in regulating extracellular matrix protein expression and reciprocally influence their own expression when over-expressed. We have established stable HEK and Flp-In-293 clones as productive sources for recombinant human CCN2/CTGF. In addition, we generated an adenoviral vector for recombinant expression of rat NOV and established protocols to purify large quantities of these CCN proteins. The identity of purified human CCN2/CTGF and rat CCN3/NOV was proven by In-gel digest followed by ESI-TOF/MS mass spectrometry. The biological activity of purified proteins was demonstrated using a Smad3-sensitive reporter gene and BrdU proliferation assay in permanent cell line EA•hy 926 cells. We further demonstrate for the first time that both recombinant CCN proteins are N-glycosylated. PMID:21209863

  12. Recent advances in production of recombinant spider silk proteins.

    PubMed

    Chung, Hannah; Kim, Tae Yong; Lee, Sang Yup

    2012-12-01

    Spider silk has been drawing much attention as a great biomaterial having many applications in biotechnology and biomedicine owing to its several desired material characteristics such as outstanding strength, toughness, and elasticity as well as biodegradability and biocompatibility. With various applications foreseeable in industry, there has been much effort to produce recombinant spider silk protein in large amounts. However, owing to the difficulties in its production using spiders, alternative host systems and engineering methods have been investigated to develop suitable production systems that can efficiently produce spider silk protein. Here, we review recent advances in production of spider silk proteins in various heterologous host systems with focus given on the development of metabolic and cellular engineering strategies. PMID:22521455

  13. Generation of recombinant antibody fragments for membrane protein crystallization.

    PubMed

    Mir, Syed H; Escher, Claudia; Kao, Wei-Chun; Birth, Dominic; Wirth, Christophe; Hunte, Carola

    2015-01-01

    Membrane proteins are challenging targets for crystallization and structure determination by X-ray crystallography. Hurdles can be overcome by antibody-mediated crystallization. More than 25 unique structures of membrane protein:antibody complexes have already been determined. In the majority of cases, hybridoma-derived antibody fragments either in Fab or Fv fragment format were employed for these complexes. We will briefly introduce the background and current status of the strategy and describe in detail the current protocols of well-established methods for the immunization, the selection, and the characterization of antibodies, as well as the cloning, the production, and the purification of recombinant antibodies useful for structural analysis of membrane proteins.

  14. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.

  15. The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins.

    PubMed

    Akbari, Fariba; Eskandani, Morteza; Khosroushahi, Ahmad Yari

    2014-11-01

    Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein. PMID:25115849

  16. Recombinant human bone morphogenetic protein 2 in lateral ridge augmentation.

    PubMed

    Mehanna, Robert; Koo, Samuel; Kim, David M

    2013-01-01

    This case report describes the augmentation of severe lateral ridge defects in the maxilla and mandible using recombinant human bone morphogenetic protein 2 (rhBMP-2) on an absorbable collagen sponge (ACS). The surgical technique used tenting screws and a membrane to maintain space for the ACS. After 7 months of healing, the ridge width increased from 1 to 2 mm to 6 to 9 mm, thus allowing successful placement of dental implants. De novo bone formation through use of the surgical technique for space maintenance of rhBMP-2/ACS was demonstrated without the need for additional particulate bone grafting. PMID:23342352

  17. Expression of recombinant green fluorescent protein in Bacillus methanolicus.

    PubMed

    Nilasari, Dewi; Dover, Nir; Rech, Sabine; Komives, Claire

    2012-01-01

    Microbial biocatalysts are used in a wide range of industries to produce large scale quantities of proteins, amino acids, and commodity chemicals. While the majority of these processes use glucose or other low-cost sugars as the substrate, Bacillus methanolicus is one example of a biocatalyst that has shown sustained growth on methanol as a carbon source at elevated temperature (50-53°C optimum) resulting in reduced feed and utility costs. Specifically, the complete chemical process enabled by this approach takes methane from natural gas, and following a low-cost conversion to methanol, can be used for the production of high value products. In this study, production of recombinant green fluorescent protein (GFPuv) by B. methanolicus is explored. A plasmid was constructed that incorporates the methanol dehydrogenase (mdh) promoter of B. methanolicus MGA3 together with the GFPuv gene. The plasmid, pNW33N, was shown to be effective for expression in other Bacillus strains, although not previously in B. methanolicus. A published electroporation protocol for transformation of B. methanolicus was modified to result in expression of GFP using plasmid pNW33N-mdh-GFPuv (pNmG). Transformation was confirmed by both agarose gel electrophoresis and by observation of green fluorescence under UV light exposure. The mass yield of cells and protein were measured in shake flask experiments. The optimum concentration of methanol for protein production was found to be at 200 mM. Higher concentrations than 200 mM resulted in slightly higher biomass production but lower amounts of recombinant protein. PMID:22275315

  18. Lysostaphin: immunogenicity of locally administered recombinant protein used in mastitis therapy.

    PubMed

    Daley, M J; Oldham, E R

    1992-03-01

    A recombinant bactericidal protein, recombinant lysostaphin (r-lysostaphin), that may be useful as an intramammary therapeutic for Staphylococcus aureus mastitis in dairy cattle, was evaluated for immunogenicity to various hosts. Although immunogenicity could be demonstrated in a variety of other species when administered parenterally, oral administration failed to elicit a significant immunological response. Similarly, intramammary infusion of r-lysostaphin failed to elicit significant serum titers in the bovine until 18-21 infusions were administered (total administered dose of 2-3 g of protein). Antibody titers from dairy cattle which did develop an immune response were predominantly of the IgG1 subclass. Dairy cattle with significant anti-lysostaphin titers showed no deleterious symptoms (anaphylaxis, etc.) upon subsequent infusion, and these titers did not effect the in vitro bacteriostatic activity of r-lysostaphin. Intramammary infusion of r-lysostaphin does not elicit any observable effects on the host animal or on the potential efficacy of the recombinant molecule. Intramammary recombinant proteins may be suitable effective and safe infusion products that provide an alternative to classical antibiotic therapy.

  19. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    SciTech Connect

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  20. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  1. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    PubMed

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  2. Echinococcus multilocularis laminated-layer components and the E14t 14-3-3 recombinant protein decrease NO production by activated rat macrophages in vitro.

    PubMed

    Andrade, M Amparo; Siles-Lucas, Mar; Espinoza, Elsa; Pérez Arellano, José Luis; Gottstein, Bruno; Muro, Antonio

    2004-05-01

    Echinococcus multilocularis and Echinococcus granulosus cause alveolar and cystic (unilocular) echinococcosis, respectively, in humans and animals. It is known that these parasites can affect, among other molecules, nitric oxide (NO) production by periparasitic host cells. Nevertheless, detailed dissection of parasite components specifically affecting cell NO production has not been done to date. We compare the effect of E. granulosus and E. multilocularis defined metacestode structural (laminated-layer associated) and metabolic (14-3-3 protein, potentially related with E. multilocularis metacestode tumor-like growth) components on the NO production by rat alveolar macrophages in vitro. Our results showed that none of these antigens could stimulate macrophage NO production in vitro. However, a reversed effect of some Echinococcus antigens on NO in vitro production was found when cells were previously exposed to LPS stimulation. This inhibitory effect was found when E. multilocularis laminated-layer (LL) or cyst wall (CW) soluble components from both species were used. Pre-stimulation of cells with LPS also resulted in a strong, dose-dependent reduction of NO and iNOS mRNA production after incubation of cells with the E14t protein. Thus, the E. multilocularis 14-3-3 protein appears to be one of the components accounting for the suppressive effect of the CW and LL metacestode extracts.

  3. Recombinant human bone morphogenetic protein-9 potently induces osteogenic differentiation of human periodontal ligament fibroblasts.

    PubMed

    Fuchigami, Sawako; Nakamura, Toshiaki; Furue, Kirara; Sena, Kotaro; Shinohara, Yukiya; Noguchi, Kazuyuki

    2016-04-01

    To accomplish effective periodontal regeneration for periodontal defects, several regenerative methods using growth and differentiation factors, including bone morphogenetic proteins (BMPs), have been developed. Bone morphogenetic protein-9 exhibits the most potent osteogenic activity of this growth factor family. However, it is unclear whether exogenous BMP-9 can induce osteogenic differentiation in human periodontal ligament (PDL) fibroblasts. Here, we examined the effects of recombinant human (rh) BMP-9 on osteoblastic differentiation in human PDL fibroblasts in vitro, compared with rhBMP-2. Recombinant human BMP-9 potently induced alkaline phosphatase (ALP) activity, mineralization, and increased expression of runt-related transcription factor-2/core binding factor alpha 1 (RUNX2/CBFA1), osterix, inhibitor of DNA binding/differentiation-1 (ID1), osteopontin, and bone sialoprotein genes, compared with rhBMP-2. The levels of rhBMP-9-induced osterix and ALP mRNA were significantly reduced in activin receptor-like kinase-1 and -2 small interfering RNA (siRNA)-transfected human PDL fibroblasts. Recombinant human BMP-9-induced ALP activity was not inhibited by noggin, in contrast to rhBMP-2 induced ALP activity, which was. Phosphorylation of SMAD1/5/8 in human PDL fibroblasts was induced by addition of rhBMP-9. Recombinant human BMP-9-induced ALP activity was suppressed by SB203580, SP600125, and U0126, which are inhibitors of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2), respectively. Our data suggest that rhBMP-9 is a potent inducer of the differentiation of human PDL fibroblasts into osteoblast-like cells and that this may be mediated by the SMAD and mitogen-activated protein kinase (p38, ERK1/2, and JNK) pathways. PMID:26879145

  4. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    PubMed

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories. PMID:25749949

  5. Expression of human recombinant granzyme A zymogen and its activation by the cysteine proteinase cathepsin C.

    PubMed

    Kummer, J A; Kamp, A M; Citarella, F; Horrevoets, A J; Hack, C E

    1996-04-19

    Human granzyme A is one of the serine proteinases present in the granules of cytotoxic T lymphocytes and natural killer cells. Granzymes are synthesized as inactive proenzymes with an amino-terminal prodipeptide, which is processed during transport of granzymes to the cytotoxic granules, where they are stored as active proteinases. In this study, we explored the possibility of producing recombinant granzymes. Recombinant human granzyme A zymogen was expressed in several eukaryotic cell lines (HepG2, Jurkat, and COS-1) after infection with a recombinant vaccinia virus containing full-length granzyme A cDNA. Immunoblot analysis of cell lysates showed that all infected cells produced a disulfide-linked homodimer of identical molecular weight as natural granzyme A. Infected HepG2 cells produced the largest amount of this protease (approximately 160 times more than lymphokine activated killer (LAK) cells). The recombinant protein only had high mannose type oligosaccharides as did the natural protein. Although infected HepG2 and COS cells contained high granzyme A antigen levels, lysates from these cells did not show any granzyme A proteolytic activity. However, the inactive proenzyme could be converted into active granzyme A by incubation with the thiol proteinase cathepsin C (dipeptidyl peptidase I). This study is the first to demonstrate expression of an active recombinant human cytotoxic lymphocyte proteinase and conversion of inactive progranzyme A into an active enzyme by cathepsin C. We suggest that a similar approach can be used for the production of other granzymes and related proteinases.

  6. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures.

  7. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures. PMID:26614282

  8. [Expression, refolding and biological activity of recombinant type-I metalloproteinase acutolysin a from Agkistrodon acutus].

    PubMed

    Xiang, Kai-Jun; Yu, Hong-Xiu; Zou, Chun-Sen; Yuan, Pei-Hua; Liu, Jing

    2002-09-01

    Type-I snake venom metalloproteinase acutolysin A gene was cloned into the prokaryotic expression vector pBAD/gIIIA and the resulting recombinant plasmid pDS was obtained. By the induction with 0.02% L-(+)-arabinose, the recombinant metalloproteinase was expressed in insoluble inclusion body in E. coli TOP10 and reached up to 5%--10% of total bacterial proteins. The recombinant metalloproteinase has an additional sequence of N-terminal 22 amino acids and C-terminal 8 amino acids (housing 6 histidines), both of which derived from the vector. The purified inclusion body was solubilized by 8 mol/L urea or 6 mol/L guanidine-HCl and the denatured soluble recombinant metalloproteinase was allowed to refold in vitro. Western blotting and ELISA obviously showed that the renatured recombinant metalloproteinase possessed strong immune reactivity very closely related to natural acutolysin A. Animal experiments showed that the refolded recombinant metalloproteinase had an obvious hemorrhagic activity. Except PMSF, 1 mmol/L EDTA, 1 mmol/L EGTA, and 3 mmol/L imidazole could inhibit the hemorrhagic activity of the recombinant and the natural metalloproteinases to different extent. Based on the investigations of others and our experimental results, the hemorrhagic mechanism of snake metalloproteinases was discussed.

  9. Biochemical analysis of the human ENA/VASP-family proteins, MENA, VASP and EVL, in homologous recombination.

    PubMed

    Takaku, Motoki; Ueno, Hiroyuki; Kurumizaka, Hitoshi

    2011-06-01

    MENA, VASP and EVL are members of the ENA/VASP family of proteins and are involved in cytoplasmic actin remodeling. Previously, we found that EVL directly interacts with RAD51, an essential protein in the homologous recombinational repair of double-strand breaks (DSBs) and stimulates the RAD51-mediated recombination reactions in vitro. The EVL-knockdown MCF7 cells exhibited a clear reduction in RAD51-foci formation, suggesting that EVL may function in the DSB repair pathway through RAD51-mediated homologous recombination. However, the DSB repair defects were less significant in the EVL-knockdown cells, implying that two EVL paralogues, MENA and VASP, may complement the EVL function in human cells. Therefore, in the present study, we purified human MENA, VASP and EVL as recombinant proteins, and compared their biochemical activities in vitro. We found that all three proteins commonly exhibited the RAD51 binding, DNA binding and DNA-annealing activities. Stimulation of the RAD51-mediated homologous pairing was also observed with all three proteins. In addition, surface plasmon resonance analyses revealed that MENA, VASP and EVL mutually interacted. These results support the ideas that the ENA/VASP-family proteins are functionally redundant in homologous recombination, and that all three may be involved in the DSB repair pathway in humans.

  10. Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase

    PubMed Central

    Liao, You-Di; Jeng, Jen-Chong; Wang, Chiu-Feng; Wang, Sui-Chi; Chang, Shu-Ting

    2004-01-01

    The removal of N-terminal translation initiator Met by methionine aminopeptidase (MetAP) is often crucial for the function and stability of proteins. On the basis of crystal structure and sequence alignment of MetAPs, we have engineered Escherichia coli MetAP by the mutation of three residues, Y168G, M206T, Q233G, in the substrate-binding pocket. Our engineered MetAPs are able to remove the Met from bulky or acidic penultimate residues, such as Met, His, Asp, Asn, Glu, Gln, Leu, Ile, Tyr, and Trp, as well as from small residues. The penultimate residue, the second residue after Met, was further removed if the antepenultimate residue, the third residue after Met, was small. By the coexpression of engineered MetAP in E. coli through the same or a separate vector, we have successfully produced recombinant proteins possessing an innate N terminus, such as onconase, an antitumor ribonuclease from the frog Rana pipiens. The N-terminal pyroglutamate of recombinant onconase is critical for its structural integrity, catalytic activity, and cyto-toxicity. On the basis of N-terminal sequence information in the protein database, 85%–90% of recombinant proteins should be produced in authentic form by our engineered MetAPs. PMID:15215523

  11. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    SciTech Connect

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Celia, Samuel A.; Kashi, Brenda B.; Tamrazian, Eric; Matthews, Jonathan C.; Remington, Mary P.; Pepinsky, R. Blake; Fishman, Paul S.; Brown, Robert H.; Francis, Jonathan W.

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  12. Determination of enamel protein synthesized by recombined mouse molar tooth germs in organ culture.

    PubMed

    Baba, T; Terashima, T; Oida, S; Sasaki, S

    1996-02-01

    Epithelial-mesenchymal interaction is a prerequisite for tooth morphogenesis. To study this interaction, inner enamel epithelium and dental papilla mesenchyme of molar tooth germs from a 16.5-day mouse embryo were dissociated enzymatically and cultured alone or after recombination. Characteristic matrix protein synthesized and secreted by recombined tooth germ was determined quantitatively by enzyme-linked immunosorbent assay. The protein was detected in the culture of recombined tooth germ but not of dissociated enamel epithelium alone. The amount of enamel protein increased until 8 days in culture. Morphological differentiation of the recombined epithelial rudiment into ameloblasts and enamel protein production were confirmed.

  13. Expression and activity of recombinant proaerolysin derived from Aeromonas hydrophila cultured from diseased channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proaerolysin-coding gene was cloned from the genomic DNA of A. hydrophila and heterologously expressed in E. coli. The purified recombinant proaerolysin was inactive and could be activated by treatment with proteases, furin and trypsin, and extra-cellular proteins (ECPs, the cell-free supernatant of...

  14. The insecticidal activity of recombinant garlic lectins towards aphids.

    PubMed

    Fitches, Elaine; Wiles, Duncan; Douglas, Angela E; Hinchliffe, Gareth; Audsley, Neil; Gatehouse, John A

    2008-10-01

    The heterodimeric and homodimeric garlic lectins ASAI and ASAII were produced as recombinant proteins in the yeast Pichia pastoris. The proteins were purified as functional dimeric lectins, but underwent post-translational proteolysis. Recombinant ASAII was a single homogenous polypeptide which had undergone C-terminal processing similar to that occurring in planta. The recombinant ASAI was glycosylated and subject to variable and heterogenous proteolysis. Both lectins showed insecticidal effects when fed to pea aphids (Acyrthosiphon pisum) in artificial diet, ASAII being more toxic than ASAI at the same concentration. Acute toxicity (mortality at < or =48 h exposure; similar timescale to starvation) was only apparent at the highest lectin concentrations tested (2.0 mg ml(-)1), but dose-dependent chronic toxicity (mortality at >3d exposure) was observed over the concentration range 0.125-2.0 mg ml(-1). The recombinant lectins caused mortality in both symbiotic and antibiotic-treated aphids, showing that toxicity is not dependent on the presence of the bacterial symbiont (Buchnera aphidicola), or on interaction with symbiont proteins, such as the previously identified lectin "receptor" symbionin. A pull-down assay coupled with peptide mass fingerprinting identified two abundant membrane-associated aphid gut proteins, alanyl aminopeptidase N and sucrase, as "receptors" for lectin binding. PMID:18707000

  15. Molecular responses of Escherichia coli caused by heat stress and recombinant protein production during temperature induction.

    PubMed

    Valdez-Cruz, Norma A; Ramírez, Octavio T; Trujillo-Roldán, Mauricio A

    2011-01-01

    In a recent review, we discussed the extensively used temperature-inducible expression system, based on the pL and/or pR phage lambda promoters that are finely regulated by the thermo-labile cI857 repressor. In this system, an increase in temperature induces the heterologous protein production and activates the heat shock response, as well as the stringent and SOS responses. The same responses are activated just by the overproduction of recombinant protein. All such responses result in a metabolic burden to the cells, a decrease in the specific growth rate, and alterations in the central carbon metabolism. Altogether, these effects can alter the quantity and quality of the produced foreign protein. Here, we compare and discuss the transcription of selected genes, and the concomitant synthesis of heat-shock proteins (hsp) soon after thermal induction, in relation to the responses that occur in other expression systems that also trigger the heat-shock response.

  16. Molecular beacon aptamers for direct and universal quantitation of recombinant proteins from cell lysates.

    PubMed

    Tan, Xiaohong; Chen, Weijun; Lu, Shun; Zhu, Zhi; Chen, Tao; Zhu, Guizhi; You, Mingxu; Tan, Weihong

    2012-10-01

    Western blot, enzyme linked immunosorbent assay (ELISA), and fluorescent fusion proteins are currently the most common methods for detecting recombinant proteins. However, the former two are cumbersome and time-consuming, and the latter method may interfere with the trafficking and function of the fused recombinant proteins. We report here a rapid, inexpensive, and simple approach to detect and quantify recombinant proteins using an anti-His-tag molecular beacon aptamer (HMBA). We demonstrated the technique by detection and quantitation of expressed recombinant proteins directly from E. coli cell lysate. The amount of expressed P78-His was determined to be 1.49 μg from the 20 μg cell lysate proteins. To the best of our knowledge, this is the first example directly measuring the concentration and expression yield of recombinant proteins from cell lysate, and the entire procedure required only 5 min.

  17. A Recombinant Collagen-mRNA Platform for Controllable Protein Synthesis.

    PubMed

    Sun, Liping; Xiong, Yunjing; Bashan, Anat; Zimmerman, Ella; Shulman Daube, Shirley; Peleg, Yoav; Albeck, Shira; Unger, Tamar; Yonath, Hagith; Krupkin, Miri; Matzov, Donna; Yonath, Ada

    2015-07-01

    We have developed a collagen-mRNA platform for controllable protein production that is intended to be less prone to the problems associated with commonly used mRNA therapy as well as with collagen skin-healing procedures. A collagen mimic was constructed according to a recombinant method and was used as scaffold for translating mRNA chains into proteins. Cysteines were genetically inserted into the collagen chain at positions allowing efficient ribosome translation activity while minimizing mRNA misfolding and degradation. Enhanced green fluorescence protein (eGFP) mRNA bound to collagen was successfully translated by cell-free Escherichia coli ribosomes. This system enabled an accurate control of specific protein synthesis by monitoring expression time and level. Luciferase-mRNA was also translated on collagen scaffold by eukaryotic cell extracts. Thus we have demonstrated the feasibility of controllable protein synthesis on collagen scaffolds by ribosomal machinery.

  18. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination.

    PubMed

    Carmona, Lina Marcela; Fugmann, Sebastian D; Schatz, David G

    2016-04-15

    The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate V(D)J recombination, the process that assembles the B- and T-lymphocyte antigen receptor genes of jawed vertebrates. RAG1 and RAG2 are thought to have arisen from a transposable element, but the origins of this element are not understood. We show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. Conversely, we report low levels of V(D)J recombination by RAG1 in the absence of RAG2. Recombination by RAG1 alone differs from canonical V(D)J recombination in having lost the requirement for asymmetric DNA substrates, implicating RAG2 in the origins of the "12/23 rule," a fundamental regulatory feature of the reaction. We propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity.

  19. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination.

    PubMed

    Carmona, Lina Marcela; Fugmann, Sebastian D; Schatz, David G

    2016-04-15

    The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate V(D)J recombination, the process that assembles the B- and T-lymphocyte antigen receptor genes of jawed vertebrates. RAG1 and RAG2 are thought to have arisen from a transposable element, but the origins of this element are not understood. We show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. Conversely, we report low levels of V(D)J recombination by RAG1 in the absence of RAG2. Recombination by RAG1 alone differs from canonical V(D)J recombination in having lost the requirement for asymmetric DNA substrates, implicating RAG2 in the origins of the "12/23 rule," a fundamental regulatory feature of the reaction. We propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity. PMID:27056670

  20. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination

    PubMed Central

    Carmona, Lina Marcela; Fugmann, Sebastian D.; Schatz, David G.

    2016-01-01

    The recombination-activating gene 1 (RAG1) and RAG2 proteins initiate V(D)J recombination, the process that assembles the B- and T-lymphocyte antigen receptor genes of jawed vertebrates. RAG1 and RAG2 are thought to have arisen from a transposable element, but the origins of this element are not understood. We show that two ancestral RAG1 proteins, Transib transposase and purple sea urchin RAG1-like, have a latent ability to initiate V(D)J recombination when coexpressed with RAG2 and that in vitro transposition by Transib transposase is stimulated by RAG2. Conversely, we report low levels of V(D)J recombination by RAG1 in the absence of RAG2. Recombination by RAG1 alone differs from canonical V(D)J recombination in having lost the requirement for asymmetric DNA substrates, implicating RAG2 in the origins of the “12/23 rule,” a fundamental regulatory feature of the reaction. We propose that evolution of RAG1/RAG2 began with a Transib transposon whose intrinsic recombination activity was enhanced by capture of an ancestral RAG2, allowing for the development of adaptive immunity. PMID:27056670

  1. The autolytic activity of the recombinant amidase of Staphylococcus saprophyticus is inhibited by its own recombinant GW repeats.

    PubMed

    Hell, Wolfgang; Reichl, Sylvia; Anders, Agnes; Gatermann, Sören

    2003-10-10

    The Aas (autolysin/adhesin of Staphylococcus saprophyticus) is a multifunctional surface protein containing two enzymatic domains an N-acetyl-muramyl-L-alanine amidase, an endo-beta-N-acetyl-D-glucosaminidase, and two different regions of repetitive sequences, an N-terminal and a C-terminal repetitive domain. The C-terminal repetitive domain is built up by the repeats R1, R2 and R3, which interconnect the putative active centers of the amidase and glucosaminidase. To investigate the influence of the C-terminal repeats and the N-terminal repeats on the amidase activity, the repetitive domains and fragments of them were cloned and expressed in Escherichia coli. The influence of the different fragments on the activity of the recombinant amidase of the Aas, consisting of the active center of the enzyme and repeat R1, was investigated in a turbidimetric microassay. The different fragments derived from the C-terminal repeats inhibited the amidase activity, while the N-terminal repeats did not influence the activity of the enzyme. The inhibiting activity increased with the number of GW repeats the recombinant fragment contained. Thus we conclude, that the C-terminal GW repeats and not the N-terminal repeats are necessary for the cell wall targeting and the autolytic function of the amidase.

  2. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    PubMed Central

    Chervyakova, Olga V.; Zaitsev, Valentin L.; Iskakov, Bulat K.; Tailakova, Elmira T.; Strochkov, Vitaliy M.; Sultankulova, Kulyaisan T.; Sandybayev, Nurlan T.; Stanbekova, Gulshan E.; Beisenov, Daniyar K.; Abduraimov, Yergali O.; Mambetaliyev, Muratbay; Sansyzbay, Abylay R.; Kovalskaya, Natalia Y.; Nemchinov, Lev. G.; Hammond, Rosemarie W.

    2016-01-01

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. PMID:27338444

  3. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    PubMed Central

    Chakrabarti, Sanjukta; Barrow, Colin J.; Kanwar, Rupinder K.; Ramana, Venkata; Kanwar, Jagat R.

    2016-01-01

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities. PMID:27294920

  4. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization.

    PubMed

    Chakrabarti, Sanjukta; Barrow, Colin J; Kanwar, Rupinder K; Ramana, Venkata; Kanwar, Jagat R

    2016-06-09

    Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1-D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  5. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  6. Molecular characterization of recombinant mouse adenosine kinase and evaluation as a target for protein phosphorylation.

    PubMed

    Sahin, Bogachan; Kansy, Janice W; Nairn, Angus C; Spychala, Jozef; Ealick, Steven E; Fienberg, Allen A; Greene, Robert W; Bibb, James A

    2004-09-01

    The regulation of adenosine kinase (AK) activity has the potential to control intracellular and interstitial adenosine (Ado) concentrations. In an effort to study the role of AK in Ado homeostasis in the central nervous system, two isoforms of the enzyme were cloned from a mouse brain cDNA library. Following overexpression in bacterial cells, the corresponding proteins were purified to homogeneity. Both isoforms were enzymatically active and found to possess K(m) and V(max) values in agreement with kinetic parameters described for other forms of AK. The distribution of AK in discrete brain regions and various peripheral tissues was defined. To investigate the possibility that AK activity is regulated by protein phosphorylation, a panel of protein kinases was screened for ability to phosphorylate recombinant mouse AK. Data from these in vitro phosphorylation studies suggest that AK is most likely not an efficient substrate for PKA, PKG, CaMKII, CK1, CK2, MAPK, Cdk1, or Cdk5. PKC was found to phosphorylate recombinant AK efficiently in vitro. Further analysis revealed, however, that this PKC-dependent phosphorylation occurred at one or more serine residues associated with the N-terminal affinity tag used for protein purification.

  7. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens.

    PubMed

    Vennema, H; de Groot, R J; Harbour, D A; Dalderup, M; Gruffydd-Jones, T; Horzinek, M C; Spaan, W J

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis (FIPV) was recombined into the genome of vaccinia virus, strain WR. The recombinant induced spike protein specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with FIPV, these animals succumbed earlier than the vWR-immunized control group ("early death syndrome").

  8. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    PubMed

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area.

  9. Strain engineering to prevent norleucine incorporation during recombinant protein production in Escherichia coli.

    PubMed

    Veeravalli, Karthik; Laird, Michael W; Fedesco, Mark; Zhang, Yu; Yu, X Christopher

    2015-01-01

    Incorporation of norleucine in place of methionine residues during recombinant protein production in Escherichia coli is well known. Continuous feeding of methionine is commonly used in E. coli recombinant protein production processes to prevent norleucine incorporation. Although this strategy is effective in preventing norleucine incorporation, there are several disadvantages associated with continuous feeding. Continuous feeding increases the operational complexity and the overall cost of the fermentation process. In addition, the continuous feed leads to undesirable dilution of the fermentation medium possibly resulting in lower cell densities and recombinant protein yields. In this work, the genomes of three E. coli hosts were engineered by introducing chromosomal mutations that result in methionine overproduction in the cell. The recombinant protein purified from the fermentations using the methionine overproducing hosts had no norleucine incorporation. Furthermore, these studies demonstrated that the fermentations using one of the methionine overproducing hosts exhibited comparable fermentation performance as the control host in three different recombinant protein production processes. PMID:25315437

  10. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins.

    PubMed

    Kovalskaya, Natalia; Hammond, Rosemarie W

    2009-01-01

    In this study, for the first time, functionally active, recombinant, cysteine-rich plant proteins snakin-1 (SN1) and defensin (PTH1) were expressed and purified using a prokaryotic expression system. The overall level of antimicrobial activities of SN1 and PTH1 produced in Escherichia coli was commensurate with that of the same proteins previously obtained from plant tissues. Both proteins exhibited strong antibacterial activity against the phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus (50% inhibitory concentration (IC(50)) 1.5-8 microM) and antifungal activity against the phytopathogenic fungi Colletotrichum coccoides and Botrytis cinerea (IC(50) 5-14 microM). Significantly weaker activity was observed against Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. tabaci. A pronounced synergistic antimicrobial effect against P. syringae pv. syringae and an additive effect against P. syringae pv. tabaci occurred with a combination of SN1 and PTH1. Aggregation of C. michiganensis subsp. sepedonicus bacterial cells at all protein concentrations tested was observed with the combination of SN1 and PTH1 and with SN1 alone. Our results demonstrate the use of a cost effective prokaryotic expression system for generation and in vitro characterization of plant cysteine-rich proteins with potential antimicrobial activities against a wide range of phytopathogenic microorganisms in order to select the most effective agents for future in vivo studies. PMID:18824107

  11. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin.

    PubMed

    Shin, H; Brown, R M

    1999-03-01

    A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. We then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An "add-back experiment" was performed to study the effect of the recombinant annexin on beta-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg2+ was essential for these activities, whereas a high concentration of Ca2+ was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation. PMID:10069831

  12. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin

    SciTech Connect

    Shin, H.; Brown, R.M. Jr. . Dept. of Botany)

    1999-03-01

    A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. The authors then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An add-back experiment was performed to study the effect of the recombinant annexin on [beta]-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg[sup 2+] was essential for these activities, whereas a high concentration of Ca[sup 2+] was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation.

  13. [Expression, purification of recombinant cationic peptide AIK in Escherichia coli and its antitumor activity].

    PubMed

    Fan, Fangfang; Sun, Huiying; Xu, Hui; Liu, Jiawei; Zhang, Haiyuan; Li, Yilan; Ning, Xuelian; Sun, Yue; Bai, Jing; Fu, Songbin; Zhou, Chunshui

    2015-12-01

    AIK is a novel cationic peptide with potential antitumor activity. In order to construct the AIK expression vector by Gateway technology, and establish an optimal expression and purification method for recombinant AIK, a set of primers containing AttB sites were designed and used to create the AttB-TEV-FLAG-AIR fusion gene by overlapping PCR. The resulting fusion gene was cloned into the donor vector pDONR223 by attB and attP mediated recombination (BP reaction), then, transferred into the destination vector pDESTl 5 by attL and attR mediated recombination (LR reaction). All the cloning was verified by both colony PCR and DNA sequencing. The BL21 F. coli transformed by the GST-AIR expression plasmid was used to express the GST-AIK fusion protein with IPTG induction and the induction conditions were optimized. GST-AIR fusion protein was purified by glutathione magnetic beads, followed by rTEV cleavage to remove GST tag and MTS assay to test the growth inhibition activity of the recombinant AIR on human leukemia HL-60 cells. We found that a high level of soluble expression of GST-AIK protein (more than 30% out of the total bacterial proteins) was achieved upon 0.1 mmol/L ITPG induction for 4 h at 37 °C in the transformed BL21 F. coli with starting OD₆₀₀ at 1.0. Through GST affinity purification and rTEV cleavage, the purity of the resulting recombinant AIK was greater than 95%. And the MTS assays on HL-60 cells confirmed that the recombinant AIK retains an antitumor activity at a level similar to the chemically synthesized AIK. Taken together, we have established a method for expression and purification of recombinant AIK with a potent activity against tumor cells, which will be beneficial for the large-scale production and application of recombinant AIK in the future. PMID:27093838

  14. Comparative Evaluation of Recombinant Protein Production in Different Biofactories: The Green Perspective

    PubMed Central

    Capaldi, Stefano

    2014-01-01

    In recent years, the production of recombinant pharmaceutical proteins in heterologous systems has increased significantly. Most applications involve complex proteins and glycoproteins that are difficult to produce, thus promoting the development and improvement of a wide range of production platforms. No individual system is optimal for the production of all recombinant proteins, so the diversity of platforms based on plants offers a significant advantage. Here, we discuss the production of four recombinant pharmaceutical proteins using different platforms, highlighting from these examples the unique advantages of plant-based systems over traditional fermenter-based expression platforms. PMID:24745008

  15. Effect of Chemical Chaperones in Improving the Solubility of Recombinant Proteins in Escherichia coli▿†

    PubMed Central

    Prasad, Shivcharan; Khadatare, Prashant B.; Roy, Ipsita

    2011-01-01

    The recovery of active proteins from inclusion bodies usually involves chaotrope-induced denaturation, followed by refolding of the unfolded protein. The efficiency of renaturation is low, leading to reduced yield of the final product. In this work, we report that recombinant proteins can be overexpressed in the soluble form in the host expression system by incorporating compatible solutes during protein expression. Green fluorescent protein (GFP), which was otherwise expressed as inclusion bodies, could be made to partition off into the soluble fraction when sorbitol and arginine, but not ethylene glycol, were present in the growth medium. Arginine and sorbitol increased the production of soluble protein, while ethylene glycol did not. Production of ATP increased in the presence of sorbitol and arginine, but not ethylene glycol. A control experiment with fructose addition indicated that protein solubilization was not due to a simple ATP increase. We have successfully reproduced these results with the N-terminal domain of HypF (HypF-N), a bacterial protein which forms inclusion bodies in Escherichia coli. Instead of forming inclusion bodies, HypF-N could be expressed as a soluble protein in the presence of sorbitol, arginine, and trehalose in the expression medium. PMID:21551288

  16. Thermostable tag (TST) protein expression system: engineering thermotolerant recombinant proteins and vaccines.

    PubMed

    Luke, Jeremy M; Carnes, Aaron E; Sun, Ping; Hodgson, Clague P; Waugh, David S; Williams, James A

    2011-02-10

    Methods to increase temperature stability of vaccines and adjuvants are needed to reduce dependence on cold chain storage. We report herein creation and application of pVEX expression vectors to improve vaccine and adjuvant manufacture and thermostability. Defined media fermentation yields of 6g/L thermostable toll-like receptor 5 agonist flagellin were obtained using an IPTG inducible pVEX-flagellin expression vector. Alternative pVEX vectors encoding Pyrococcus furiosus maltodextrin-binding protein (pfMBP) as a fusion partner improved Influenza hemagglutinin antigen vaccine solubility and thermostability. A pfMBP hemagglutinin HA2 domain fusion protein was a potent immunogen. Manufacturing processes that combined up to 5 g/L defined media fermentation yields with rapid, selective, thermostable pfMBP fusion protein purification were developed. The pVEX pfMBP-based thermostable tag (TST) platform is a generic protein engineering approach to enable high yield manufacture of thermostable recombinant protein vaccine components.

  17. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview

    PubMed Central

    Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; Porro, Danilo; Ferrer, Pau; Tutino, Maria Luisa; Mattanovich, Diethard; Villaverde, Antonio

    2008-01-01

    Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes. PMID:18394160

  18. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  19. Recombination activity of interfaces in multicrystalline silicon

    SciTech Connect

    Peshcherova, S. M.; Yakimov, E. B.; Nepomnyashchikh, A. I.; Pavlova, L. A.; Feklisova, O. V.

    2015-06-15

    The electrical activity of grain boundaries in multicrystalline silicon grown from metallurgical silicon by the Bridgman method is investigated by the method of electron-beam induced current. The main tendencies of atypical manifestation of the local electrical activity of Σ3(111) and Σ9(110) special boundaries are revealed. The structural features of the grain boundaries after selective etching and the impurity-distribution characteristics in multicrystalline silicon are determined by the methods of electron backscattering diffraction and electron-probe microanalysis.

  20. Sustained release emphasizing recombinant human bone morphogenetic protein-2.

    PubMed

    Hollinger; Uludag; Winn

    1998-05-01

    Bone homeostasis is a dynamic process involving a myriad of cells and substrates modulated by regulatory signals such as hormones, growth and differentiating factors. When this environment is damaged, the regenerative sequalae follows a programmed pattern, and the capacity for successful recovery is often dependent on the extent of the injury. Many bony deficits that are excessively traumatic will not result in complete recovery and require therapeutic intervention(s) such as autografting or grafting from banked bone. However, for numerous reasons, an unacceptably high rate of failure is associated with these conventional therapies. Thus, alternative approaches are under investigation. A class of osteogenic regulatory molecules, the bone morphogenetic proteins (BMPs), have been isolated, cloned and characterized as potent supplements to augment bone regeneration. Optimizing a therapeutic application for BMPs may be dependent upon localized sustained release which in kind relies on a safe and well characterized carrier system. This review will discuss the current status of BMPs in bone regeneration and specifically will present the potential for a clinical therapeutic role of recombinant human BMP-2 sustained release carrier systems. PMID:10837631

  1. HMG1-related DNA-binding protein isolated with V-(D)-J recombination signal probes.

    PubMed Central

    Shirakata, M; Hüppi, K; Usuda, S; Okazaki, K; Yoshida, K; Sakano, H

    1991-01-01

    In order to isolate cDNA clones for DNA-binding components of the V-(D)-J recombinase, phage libraries from a pre-B-cell line were screened with a radiolabeled probe containing recombination signal sequences (RSS). Among prospective clones, cDNA T160 was analyzed further. It produced a protein of 80.6 kDa which bound to DNA containing RSS but not to DNA in which the RSS had been mutated. A search of a data base revealed that the T160 protein has significant sequence homology (56%) to the nonhistone chromosomal protein HMG1 within the C-terminal region of 80 amino acids. DNA-binding analysis with truncated proteins showed that the HMG homology region is responsible for DNA binding. Using restriction fragment length polymorphisms, the T160 gene was mapped at the proximal end of mouse chromosome 2. Evidence was obtained for genetic linkage between the T160 gene and the recombination activator genes RAG-1 and RAG-2. Images PMID:1678855

  2. Antioxidant efficacy and adhesion rescue by a recombinant mussel foot protein-6.

    PubMed

    Nicklisch, Sascha C T; Das, Saurabh; Martinez Rodriguez, Nadine R; Waite, J Herbert; Israelachvili, Jacob N

    2013-01-01

    Mytilus foot protein type 6 (mfp-6) is crucial for maintaining the reducing conditions needed for optimal wet adhesion in marine mussels. In this report, we describe the expression and production of a recombinant Mytilus californianus foot protein type 6 variant 1 (rmfp-6.1) fused with a hexahistidine affinity tag in Escherichia coli and its purification by affinity chromatography. Recombinant mfp-6 showed high purification yields of 5-6 mg L(-1) cell culture and excellent solubility in low pH buffers that retard oxidation of its many thiol groups. Purified rmfp-6.1 protein showed high 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity when compared with vitamin C. Using the highly sensitive surface forces apparatus (SFA) technique to measure interfacial surface forces in the nano-Newton range, we show that rmfp-6.1 is also able to rescue the oxidation-dependent adhesion loss of mussel foot protein 3 (mfp-3) at pH 3. The adhesion rescue is related to a reduction of dopaquinone back to 3,4-dihydroxyphenyl-l-alanine in mfp-3, which is the reverse reaction observed during the detrimental enzymatic browning process in fruits and vegetables. Broadly viewed, rmfp-6.1 has potential as a versatile antioxidant for applications ranging from personal products to antispoilants for perishable foods during processing and storage. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1587-1593, 2013. PMID:24106182

  3. Inhibition of apoptosis by expression of antiapoptotic proteins in recombinant human keratinocytes.

    PubMed

    Choi, Claudia Y U; Reimers, Kerstin; Allmeling, Christina; Kall, Susanne; Choi, Yeong-Hoon; Vogt, Peter M

    2007-01-01

    The Fas ligand/Fas interaction plays an important role in the regulation of immune responses. Allografted cells undergo Fas-mediated apoptosis induced by CD8+ T cells. Our objective was to prevent human keratinocytes from immunologically induced apoptosis. We focused on three proteins with inhibitory function on Fas-mediated apoptosis. Human keratinocytes were transfected with either Flip, Faim, or Lifeguard (LFG). The treatment proved to be practicable and efficient. The recombinant keratinocytes with expression of our target proteins were cocultured with CD8+ T cells and the apoptotic activity was then evaluated. Activation of caspase-8 was detectable in control but not in the recombinant cells. Quantitative analysis revealed significant induction of T-cell-induced apoptosis in nontransfected keratinocytes (p = 0.04, n = 12) but not in Flip (p = 0.66), Faim (p = 0.42), or LFG (p = 0.44) expressing cells. Our results suggest that heterotopic expression of antiapoptotic proteins can induce the resistance of keratinocytes to a major mechanism of rejection.

  4. Production and purification of biologically active recombinant tilapia (Oreochromis niloticus) prolactins.

    PubMed

    Swennen, D; Rentier-Delrue, F; Auperin, B; Prunet, P; Flik, G; Wendelaar Bonga, S E; Lion, M; Martial, J A

    1991-11-01

    Recombinant expression vectors carrying tilapia prolactin-I or -II (tiPRL-I or tiPRL-II) cDNA were constructed and the tiPRL-I and II proteins were produced in E. coli as inclusion bodies. These inclusion bodies were dissolved in 6 mol urea/l. Refolding of the proteins was followed by SDS-PAGE under non-reducing conditions so as to visualize the oxidized state of the molecules. Proteins tiPRL-I and tiPRL-II were purified by gel filtration and ion-exchange chromatography. The N-terminal sequence and bioactivities of both purified proteins were then analysed. Recombinant tiPRL-I and tiPRL-II induced a significant rise in plasma calcium levels as well as in mucocyte density in the abdominal skin epithelium. When tested on kidney membrane, both proteins exhibited potency in competing with 125I-labelled tiPRL-I for binding sites, but tiPRL-I seemed to be more potent than tiPRL-II in competing for these sites. The results obtained for the biological activities tested suggest that both recombinant prolactins were correctly refolded and had retained the full biological activity previously observed with the natural hormone preparations extracted from the animals. PMID:1744569

  5. Recombinant Reg3β protein protects against streptozotocin-induced β-cell damage and diabetes

    PubMed Central

    Luo, Chen; Yu, Lu-Ting; Yang, Meng-Qi; Li, Xiang; Zhang, Zhi-Yuan; Alfred, Martin O; Liu, Jun-Li; Wang, Min

    2016-01-01

    Regenerating genes (Reg) have been found during the search for factors involved in pancreatic islet regeneration. Our recent study discovered that pancreatic β-cell-specific overexpression of Reg3β protects against streptozotocin (Stz) -induced diabetes in mice. To investigate its potential roles in the treatment of diabetes, we produced a recombinant Reg3β protein and provided evidence that it is active in promoting islet β-cell survival against Stz- triggered cell death. Though ineffective in alleviating preexisting diabetes, pretreatment of recombinant Reg3β was capable of minimizing the Stz-induced hyperglycemia and weight loss, by preserving serum and pancreatic insulin levels, and islet β-cell mass. No obvious changes were observed in the rate of cell proliferation and hypertrophy in α- or acinar-cells after treatment with recombinant Reg3β. The underlying mechanism of Reg3β-mediated protection seems to involve Akt activation which upregulates Bcl-2 and Bcl-xL levels and consequently promotes cell survival. PMID:27767186

  6. Active gamma-carboxylated human factor IX expressed using recombinant DNA techniques.

    PubMed

    de la Salle, H; Altenburger, W; Elkaim, R; Dott, K; Dieterlé, A; Drillien, R; Cazenave, J P; Tolstoshev, P; Lecocq, J P

    Factor IX (Christmas factor), a vitamin K-dependent plasma protein made in the liver, functions in the middle phase of the intrinsic pathway of blood coagulation. A functional deficiency of factor IX underlies haemophilia B, a chromosome X-linked recessive disease for which the major therapeutic approach is replacement treatment using factor IX concentrates. The cloning and characterization of the gene for human factor IX would mean that human factor IX could be produced in greater yield and purity through using recombinant DNA techniques. We have now used a human factor IX cDNA clone, inserted into a vaccinia virus-derived vector, to infect human hepatoma cells which normally produce no factor IX, and mouse fibroblasts. Fully active factor IX was produced by the hepatoma cells, whereas the fibroblasts produced a protein less active than natural factor IX, even in the presence of high levels of vitamin K. Human factor IX is extensively post-translationally modified, and thus represents probably the most complex protein produced in active form by recombinant DNA techniques to date. Our study also illustrates the potential of vaccinia virus-based vectors for expressing significant amounts of complex, clinically useful proteins in eukaryotic cells, in addition to its already demonstrated usefulness for producing live recombinant vaccines.

  7. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli

    PubMed Central

    Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  8. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli.

    PubMed

    Pane, Katia; Durante, Lorenzo; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  9. Triatoma Virus Recombinant VP4 Protein Induces Membrane Permeability through Dynamic Pores

    PubMed Central

    Sánchez-Eugenia, Rubén; Goikolea, Julen; Gil-Cartón, David; Sánchez-Magraner, Lissete

    2015-01-01

    ABSTRACT In naked viruses, membrane breaching is a key step that must be performed for genome transfer into the target cells. Despite its importance, the mechanisms behind this process remain poorly understood. The small protein VP4, encoded by the genomes of most viruses of the order Picornavirales, has been shown to be involved in membrane alterations. Here we analyzed the permeabilization activity of the natively nonmyristoylated VP4 protein from triatoma virus (TrV), a virus belonging to the Dicistroviridae family within the Picornavirales order. The VP4 protein was produced as a C-terminal maltose binding protein (MBP) fusion to achieve its successful expression. This recombinant VP4 protein is able to produce membrane permeabilization in model membranes in a membrane composition-dependent manner. The induced permeability was also influenced by the pH, being greater at higher pH values. We demonstrate that the permeabilization activity elicited by the protein occurs through discrete pores that are inserted on the membrane. Sizing experiments using fluorescent dextrans, cryo-electron microscopy imaging, and other, additional techniques showed that recombinant VP4 forms heterogeneous proteolipidic pores rather than common proteinaceous channels. These results suggest that the VP4 protein may be involved in the membrane alterations required for genome transfer or cell entry steps during dicistrovirus infection. IMPORTANCE During viral infection, viruses need to overcome the membrane barrier in order to enter the cell and replicate their genome. In nonenveloped viruses membrane fusion is not possible, and hence, other mechanisms are implemented. Among other proteins, like the capsid-forming proteins and the proteins required for viral replication, several viruses of the order Picornaviridae contain a small protein called VP4 that has been shown to be involved in membrane alterations. Here we show that the triatoma virus VP4 protein is able to produce membrane

  10. Purification by reflux electrophoresis of whey proteins and of a recombinant protein expressed in Dictyostelium discoideum.

    PubMed

    Corthals, G L; Collins, B M; Mabbutt, B C; Williams, K L; Gooley, A A

    1997-06-27

    Protein purification that combines the use of molecular mass exclusion membranes with electrophoresis is particularly powerful as it uses properties inherent to both techniques. The use of membranes allows efficient processing and is easily scaled up, while electrophoresis permits high resolution separation under mild conditions. The Gradiflow apparatus combines these two technologies as it uses polyacrylamide membranes to influence electrokinetic separations. The reflux electrophoresis process consists of a series of cycles incorporating a forward phase and a reverse phase. The forward phase involves collection of a target protein that passes through a separation membrane before trailing proteins in the same solution. The forward phase is repeated following clearance of the membrane in the reverse phase by reversing the current. We have devised a strategy to establish optimal reflux separation parameters, where membranes are chosen for a particular operating range and protein transfer is monitored at different pH values. In addition, forward and reverse phase times are determined during this process. Two examples of the reflux method are described. In the first case, we described the purification strategy for proteins from a complex mixture which contains proteins of higher electrophoretic mobility than the target protein. This is a two-step procedure, where first proteins of higher mobility than the target protein are removed from the solution by a series of reflux cycles, so that the target protein remains as the leading fraction. In the second step the target protein is collected, as it has become the leading fraction of the remaining proteins. In the second example we report the development of a reflux strategy which allowed a rapid one-step preparative purification of a recombinant protein, expressed in Dictyostelium discoideum. These strategies demonstrate that the Gradiflow is amenable to a wide range of applications, as the protein of interest is not

  11. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein.

    PubMed

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F; Nam, Ho-Woo

    2016-04-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  12. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein

    PubMed Central

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F.; Nam, Ho-Woo

    2016-01-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  13. Production of antigens in Chlamydomonas reinhardtii: green microalgae as a novel source of recombinant proteins.

    PubMed

    Fuhrmann, Markus

    2004-01-01

    Recombinant small-scale proteins are produced in a number of systems, from bacteria like Escherichia coli, through lower eukaryotes like baker's yeast, up to mammalian cell cultures. However, the need for safe and cheap sources of large amounts of recombinant proteins for different purposes, including material sciences, diagnostics, and, of course, medical therapy, has forced the development of alternative production systems. Green microalgae are cheap and easily grown and offer a high protein content, which would seem to make them ideal hosts for the large-scale sustainable production of recombinant proteins in the future. In selected species, recombinant DNA can be introduced into the genomes of the nucleus, the chloroplast, and even the mitochondria, and thus the system offers both prokaryotic (chloroplast, mitochondria) and eukaryotic translation systems for a tailored expression of virtually any protein.

  14. Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli.

    PubMed

    Mehdizadeh Aghdam, Elnaz; Mahmoudi Azar, Lena; Barzegari, Abolfazl; Karimi, Farrokh; Mesbahfar, Majid; Samadi, Naser; Hejazi, Mohammad Saeid

    2012-12-15

    Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H(2)O(2) concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H(2)O(2) concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H(2)O(2) concentration of the cells. However, the H(2)O(2) concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H(2)O(2) elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H(2)O(2) concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase.

  15. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    PubMed Central

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  16. Evaluation of Th1/Th2-Related Immune Response against Recombinant Proteins of Brucella abortus Infection in Mice.

    PubMed

    Im, Young Bin; Park, Woo Bin; Jung, Myunghwan; Kim, Suk; Yoo, Han Sang

    2016-06-28

    Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis.

  17. Detection of contaminating enzymatic activity in plant-derived recombinant biotechnology products.

    PubMed

    Brinson, Robert G; Giulian, Gary G; Kelman, Zvi; Marino, John P

    2014-12-01

    Residual impurities in recombinantly produced protein biologics, such as host cell proteins (HCP), can potentially cause unwanted toxic or immunogenic responses in patients. Additionally, undetected impurities found in recombinant proteins used in cell culture may adversely impact basic research and biotechnology applications. Currently, the enzyme-linked immunosorbent assay (ELISA) is the standard for detection of residual HCP contamination in recombinantly produced biologics. Alternatively, two-dimensional liquid chromatography coupled to mass spectrometry is being developed as a tool for assessing this critical quality attribute. Both of these methods rely on the direct detection of HCPs and some previous knowledge of the contaminant. For contaminating enzymes, the mass level of the impurity may fall below the threshold of detection of these methods and underestimate the true impact. To address this point, here we demonstrate facile detection and characterization of contaminating phytase activity in rice-derived recombinant human serum albumin (rHSA) using a sensitive, label-free nuclear magnetic resonance (NMR) spectroscopy assay. We observed varying degrees of phytase contamination in biotechnology-grade rHSA from various manufacturers by monitoring the degradation of adenosine-5'-triphosphate and myo-inositol-1,2,3,4,5,6-hexakisphosphate by (31)P NMR. The observed lot-to-lot variability may result in irreproducible cell culture results and should be evaluated as a possible critical quality attribute in plant-derived biotherapeutics.

  18. Optimisation of Recombinant Production of Active Human Cardiac SERCA2a ATPase

    PubMed Central

    Antaloae, Ana V.; Montigny, Cédric; le Maire, Marc; Watson, Kimberly A.; Sørensen, Thomas L.-M.

    2013-01-01

    Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins. PMID:23951256

  19. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal po...

  20. Investigating the dynamics of recombinant protein secretion from a microalgal host.

    PubMed

    Lauersen, Kyle J; Huber, Isabel; Wichmann, Julian; Baier, Thomas; Leiter, Andreas; Gaukel, Volker; Kartushin, Viktor; Rattenholl, Anke; Steinweg, Christian; von Riesen, Lena; Posten, Clemens; Gudermann, Frank; Lütkemeyer, Dirk; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    Production of recombinant proteins with microalgae represents an alternative platform over plant- or bacterial-based expression systems for certain target proteins. Secretion of recombinant proteins allows accumulation of the target product physically separate from the valuable algal biomass. To date, there has been little investigation into the dynamics of recombinant protein secretion from microalgal hosts-the culture parameters that encourage secreted product accumulation and stability, while encouraging biomass production. In this work, the efficiency of recombinant protein production was optimized by adjusting cultivation parameters for a strain of Chlamydomonas reinhardtii previously engineered to secrete a functional recombinant Lolium perenne ice binding protein (LpIBP), which has applications as a frozen food texturing and cryopreservation additive, into its culture medium. Three media and several cultivation styles were investigated for effects on secreted LpIBP titres and culture growth. A combination of acetate and carbon dioxide feeding with illumination resulted in the highest overall biomass and recombinant protein titres up to 10mgL(-1) in the culture medium. Pure photoautotrophic production was possible using two media types, with recombinant protein accumulation in all cultivations correlating to culture cell density. Two different cultivation systems were used for scale-up to 10L cultivations, one of which produced yields of secreted recombinant protein up to 12mgL(-1) within six cultivation days. Functional ice recrystallization inhibition (IRI) of the LpIBP from total concentrated extracellular protein extracts was demonstrated in a sucrose solution used as a simplified ice cream model. IRI lasted up to 7 days, demonstrating the potential of secreted products from microalgae for use as food additives. PMID:25975624

  1. Selective Blockade of Trypanosomatid Protein Synthesis by a Recombinant Antibody Anti-Trypanosoma cruzi P2β Protein

    PubMed Central

    Simonetti, Leandro; Duffy, Tomas; Longhi, Silvia A.; Gómez, Karina A.; Hoebeke, Johan; Levin, Mariano J.; Smulski, Cristian R.

    2012-01-01

    The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5) directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β) recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope. PMID:22570698

  2. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. PMID:26805756

  3. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli.

  4. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    SciTech Connect

    Gizatullina, Albina K.; Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V.; Shenkarev, Zakhar O.; Ovchinnikova, Tatiana V.

    2013-10-04

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å{sup 3}). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.

  5. Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID.

    PubMed

    Wakae, Koshou; Magor, Brad G; Saunders, Holly; Nagaoka, Hitoshi; Kawamura, Akemi; Kinoshita, Kazuo; Honjo, Tasuku; Muramatsu, Masamichi

    2006-01-01

    Following activation of mammalian B cells, class switch recombination (CSR) and somatic hypermutation (SHM) of the Ig heavy chain (IgH) gene can improve the functions of the expressed antibodies. Activation-induced cytidine deaminase (AID) is the only known B cell-specific protein required for inducing CSR and SHM in mammals. Lower vertebrates have an AID homologue, and there is some evidence of SHM in vivo. However there is no evidence of CSR in the cartilaginous or bony fishes, and this may be due in part to a lack of cis-elements in the IgH gene that are the normal targets of AID-mediated recombination. We have tested whether bony fish (zebrafish and catfish) AID can mediate CSR and SHM in mammalian cells. As expected, ectopic expression of fish AID in mouse fibroblasts resulted in mutations in an introduced SHM reporter gene, indicating that fish AID can mediate SHM. Unexpectedly, expression of fish AID in mouse AID-/- B cells induced surface IgG expression as well as switched transcripts from Ig gene loci, clearly indicating that the fish AID protein can mediate CSR, at least in mouse cells. These results suggest that the AID protein acquired the ability to mediate CSR before the IgH locus evolved the additional exon clusters and switch regions that are the targets of recombination. We discuss how pleiotropic functions of specific domains within the AID protein may have facilitated the early evolution of CSR in lower vertebrates.

  6. Physical studies of conformational plasticity in a recombinant prion protein.

    PubMed

    Zhang, H; Stockel, J; Mehlhorn, I; Groth, D; Baldwin, M A; Prusiner, S B; James, T L; Cohen, F E

    1997-03-25

    PrP(Sc) is known to be the major, if not the only, component of the infectious prion. Limited proteolysis of PrP(Sc) produces an N-terminally truncated polypeptide of about 142 residues, designated PrP 27-30. Recently, a recombinant protein (rPrP) of 142 residues corresponding to the Syrian hamster PrP 27-30 was expressed in Escherichia coli and purified (Mehlhorn et al., 1996). rPrP has been refolded into both alpha-helical and beta-sheet structures as well as various intermediates in aqueous buffers. The beta-sheet state and two pH-dependent alpha-helical states were characterized by CD and NMR. The alpha-helical conformation occurred only after the formation of an intramolecular disulfide bond, whereas the beta-sheet form was accessible either with or without the disulfide. Of the different alpha-helical forms studied, only those refolded in the pH range 5-8 were substantially soluble at physiological pH, exhibiting similar conformations and monomeric analytical sedimentation profiles throughout the above pH range. Furthermore, refolded alpha-rPrP showed NMR chemical shift dispersion typical of proteins with native conformations, although 2D NMR indicated large segments of conformational flexibility. It displayed a cooperative thermal denaturation transition; at elevated temperatures, it converted rapidly and irreversibly to the thermodynamically more stable beta-sheet form. Unfolding of alpha-rPrP by GdnHCl revealed a two-phase transition with a relatively stable folding intermediate at 2 M GdnHCl. The deltaG values were estimated to be 1.9 +/- 0.4 kcal/mol for the first phase and 6.5 +/- 1.2 kcal/mol for the second, consistent with a folding core surrounded by significant segments of flexible conformation. By NMR, alpha-rPrP(acid) isolated at pH 2 without refolding exhibited heterogeneous line widths, consistent with an acid-denatured molten globular state. We conclude that to the extent that rPrP constitutes a relevant folding domain of PrP(C), the various

  7. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  8. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  9. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications.

    PubMed

    Michon, C; Langella, P; Eijsink, V G H; Mathiesen, G; Chatel, J M

    2016-01-01

    Lactic acid bacteria (LAB) are promising vectors of choice to deliver active molecules to mucosal tissues. They are recognized as safe by the World Health Organization and some strains have probiotic properties. The wide range of potential applications of LAB-driven mucosal delivery includes control of inflammatory bowel disease, vaccine delivery, and management of auto-immune diseases. Because of this potential, strategies for the display of proteins at the surface of LAB are gaining interest. To display a protein at the surface of LAB, a signal peptide and an anchor domain are necessary. The recombinant protein can be attached to the membrane layer, using a transmembrane anchor or a lipoprotein-anchor, or to the cell wall, by a covalent link using sortase mediated anchoring via the LPXTG motif, or by non-covalent liaisons employing binding domains such as LysM or WxL. Both the stability and functionality of the displayed proteins will be affected by the kind of anchor used. The most commonly surfaced exposed recombinant proteins produced in LAB are antigens and antibodies and the most commonly used LAB are lactococci and lactobacilli. Although it is not necessarily so that surface-display is the preferred localization in all cases, it has been shown that for certain applications, such as delivery of the human papillomavirus E7 antigen, surface-display elicits better biological responses, compared to cytosolic expression or secretion. Recent developments include the display of peptides and proteins targeting host cell receptors, for the purpose of enhancing the interactions between LAB and host. Surface-display technologies have other potential applications, such as degradation of biomass, which is of importance for some potential industrial applications of LAB. PMID:27142045

  10. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  11. An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants.

    PubMed

    Rivard, Daniel; Anguenot, Raphaël; Brunelle, France; Le, Van Quy; Vézina, Louis-Philippe; Trépanier, Sonia; Michaud, Dominique

    2006-05-01

    Proteolytic degradation represents a significant barrier to the efficient production of several recombinant proteins in plants, both in vivo during their expression and in vitro during their recovery from source tissues. Here, we describe a strategy to protect recombinant proteins during the recovery process, based on the coexpression of a heterologous proteinase inhibitor acting as a 'mouse trap' against the host proteases during extraction. After confirming the importance of trypsin- and chymotrypsin-like activities in crude protein extracts of potato (Solanum tuberosum L.) leaves, transgenic lines of potato expressing either tomato cathepsin D inhibitor (CDI) or bovine aprotinin, both active against trypsin and chymotrypsin, were generated by Agrobacterium tumefaciens-mediated genetic transformation. Leaf crude protein extracts from CDI-expressing lines, showing decreased levels of cathepsin D-like and ribulose 1,5-bisphosphate carboxylase/oxygenase hydrolysing activities in vitro, conducted decreased turnover rates of the selection marker protein neomycin phosphotransferase II (NPTII) relative to the turnover rates measured for transgenic lines expressing only the marker protein. A similar stabilizing effect on NPTII was observed in leaf protein extracts from plant lines coexpressing bovine aprotinin, confirming the ability of ectopically expressed broad-spectrum serine proteinase inhibitors to reproduce the protein-stabilizing effect of low-molecular-weight proteinase inhibitors generally added to protein extraction media.

  12. Expression and Purification of Recombinant Cyclins and CDKs for Activity Evaluation.

    PubMed

    Gallastegui, Edurne; Bachs, Oriol

    2016-01-01

    Cyclin-dependent kinases (Cdks) belong to a family of key regulators of cell division cycle and transcription. Their activity is mainly regulated by association with regulatory subunits named cyclins but their activities are also regulated by phosphorylation, acetylation, and the association with specific inhibitory proteins (CKIs). The activity of different Cdks is deregulated in many different type of tumors, and thus, Cdks are considered targets for antitumoral therapy. For large screenings of inhibitors the use of purified recombinant Cdks and cyclins is recommended. We report here the current methods to determine their in vitro activity for large screenings of inhibitors.

  13. Staphylococcus simulans Recombinant Lysostaphin: Production, Purification, and Determination of Antistaphylococcal Activity.

    PubMed

    Boksha, I S; Lavrova, N V; Grishin, A V; Demidenko, A V; Lyashchuk, A M; Galushkina, Z M; Ovchinnikov, R S; Umyarov, A M; Avetisian, L R; Chernukha, M Iu; Shaginian, I A; Lunin, V G; Karyagina, A S

    2016-05-01

    Staphylococcus simulans lysostaphin is an endopeptidase lysing staphylococcus cell walls by cleaving pentaglycine cross-bridges in their peptidoglycan. A synthetic gene encoding S. simulans lysostaphin was cloned in Escherichia coli cells, and producer strains were designed. The level of produced biologically active lysostaphin comprised 6-30% of total E. coli cell protein (depending on E. coli M15 or BL21 producer) under batch cultivation conditions. New methods were developed for purification of lysostaphin without affinity domains and for testing its enzymatic activity. As judged by PAGE, the purified recombinant lysostaphin is of >97% purity. The produced lysostaphin lysed cells of Staphylococcus aureus and Staphylococcus haemolyticus clinical isolates. In vitro activity and general biochemical properties of purified recombinant lysostaphin produced by M15 or BL21 E. coli strains were identical to those of recombinant lysostaphin supplied by Sigma-Aldrich (USA) and used as reference in other known studies. The prepared recombinant lysostaphin represents a potential product for development of enzymatic preparation for medicine and veterinary due to the simple purification scheme enabling production of the enzyme of high purity and antistaphylococcal activity. PMID:27297900

  14. A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice.

    PubMed

    Sabzevari, H; Gillies, S D; Mueller, B M; Pancook, J D; Reisfeld, R A

    1994-09-27

    A genetically engineered fusion protein consisting of a human/mouse chimeric anti-ganglioside GD2 antibody (ch14.18) and recombinant human interleukin 2 (rhIL-2) was tested for its ability to target rhIL-2 to tumor sites and stimulate immune effector cells sufficiently to achieve effective tumor cell lysis in vivo. The ch14.18-IL-2 fusion protein proved more effective than equivalent doses of rhIL-2 in suppressing dissemination and growth of human neuroblastoma in an experimental hepatic metastases model of scid (severe combined immunodeficiency) mice reconstituted with human lymphokine-activated killer cells. The ch14.18-IL-2 fusion protein was also more proficient than equivalent doses of rhIL-2 in prolonging the life-span of these animals. This recombinant antibody-cytokine fusion protein may prove useful for future treatment of GD2-expressing human tumors in an adjuvant setting.

  15. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  16. Five RecA-like proteins of Schizosaccharomyces pombe are involved in meiotic recombination.

    PubMed Central

    Grishchuk, A L; Kohli, J

    2003-01-01

    The genome of Schizosaccharomyces pombe contains five genes that code for proteins with sequence similarity to the Escherichia coli recombination protein RecA: rad51+, rhp55+, rhp57+, rlp1+, and dmc1+. We analyzed the effect of deletion of each of these genes on meiotic recombination and viability of spores. Meiotic recombination levels were different from wild type in all recA-related mutants in several genetic intervals, suggesting that all five RecA homologs of S. pombe are required for normal levels of meiotic recombination. Spore viability was reduced in rad51, rhp55, and rhp57 mutants, but not in rlp1 and dmc1. It is argued that reduction of crossover is not the only cause for the observed reduction of spore viability. Analysis of double and triple mutants revealed that Rad51 and Dmc1 play major and partially overlapping roles in meiotic recombination, while Rhp55, Rhp57, and Rlp1 play accessory roles. Remarkably, deletion of Rlp1 decreases the frequency of intergenic recombination (crossovers), but increases intragenic recombination (gene conversion). On the basis of our results, we present a model for the involvement of five RecA-like proteins of S. pombe in meiotic recombination and discuss their respective roles. PMID:14668362

  17. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6-M26 and the osmotic stress response.

    PubMed

    Gao, Jun; Davidson, Mari K; Wahls, Wayne P

    2008-05-01

    The Atf1 protein of Schizosaccharomyces pombe contains a bZIP (DNA-binding/protein dimerization) domain characteristic of ATF/CREB proteins, but no other functional domains or clear homologs have been reported. Atf1-containing, bZIP protein dimers bind to CRE-like DNA sites, regulate numerous stress responses, and activate meiotic recombination at hotspots like ade6-M26. We defined systematically the organization of Atf1 and its heterodimer partner Pcr1, which is required for a subset of Atf1-dependent functions. Surprisingly, only the bZIP domain of Pcr1 is required for hotspot activity and tethering of Atf1 to ade6 promotes recombination in the absence of its bZIP domain and the Pcr1 protein. Therefore the recombination-activation domain of Atf1-Pcr1 heterodimer resides exclusively in Atf1, and Pcr1 confers DNA-binding site specificity in vivo. Atf1 has a modular organization in which distinct regions affect differentially the osmotic stress response (OSA) and meiotic recombination (HRA, HRR). The HRA and HRR regions are necessary and sufficient to activate and repress recombination, respectively. Moreover, Atf1 defines a family of conserved proteins with discrete sequence motifs in the functional domains (OSA, HRA, HRR, bZIP). These findings reveal the functional organization of Atf1 and Pcr1, and illustrate several mechanisms by which bZIP proteins can regulate multiple, seemingly disparate activities. PMID:18375981

  18. [Preparation and characterization of the recombinant protein containing immunomimetic peptide of benzo[a]pyrene].

    PubMed

    Apal'ko, S V; Lunin, V G; Filipenko, M L; Matveeva, V A; Liashchuk, A M; Lavrova, N V; Sherina, E A; Aver'ianov, A V; Kostianko, M V; Glushkov, A N

    2011-01-01

    Two recombinant plasmids were constructed. The first plasmid contained the hybrid gene composed of immunomimetic peptide of benzo[a]pyrene, of the protein pIII of bacteriophage M13 and of cellulose binding domain encoding sequences. The second plasmid contained the hybrid gene composed of the signal peptide of the protein pIII of bacteriophage M13, of immunomimetic peptide of benzo[a]pyrene, of the protein pill of bacteriophage M13 and of cellulose binding domain sequences. The obtained recombinant plasmids were used in expression of chimeric protein containing immunomimetic peptide ofbenzo[a]pyrene based on strain E. coli M15. The lack of the recombinant protein expression using first plasmid was demonstrated. In the same time, it was shown that accumulation of recombinant protein contained immunomimetic peptide with signal peptide of the protein pIIIl of bacteriophage was present. This chimeric protein was produced in "mature" (without signal peptide) and "unprocessing" (with signal peptide) forms. Using the Western-blot analysis, it was shown that the "mature" form only specifically bound to the B2 monoclonal antibody against benzo[a]pyrene. Thus, we expressed, purified, and characterized the recombinant protein containing immunomimetic peptide of benzo[a]pyrene.

  19. A Recombinant Protein Based on Trypanosoma cruzi P21 Enhances Phagocytosis

    PubMed Central

    Moreira, Heline Hellen T.; Cruz, Mário C.; Brígido, Paula C.; dos Santos, Paulo C. F.; Martins, Flávia A.; Bahia, Diana; Maricato, Juliana T.; Janini, Luiz M. R.; Reboredo, Eduardo H.; Mortara, Renato A.; da Silva, Claudio V.

    2012-01-01

    Background P21 is a secreted protein expressed in all developmental stages of Trypanosoma cruzi. The aim of this study was to determine the effect of the recombinant protein based on P21 (P21-His6) on inflammatory macrophages during phagocytosis. Findings Our results showed that P21-His6 acts as a phagocytosis inducer by binding to CXCR4 chemokine receptor and activating actin polymerization in a way dependent onthe PI3-kinase signaling pathway. Conclusions Thus, our results shed light on the notion that native P21 is a component related to T. cruzi evasion from the immune response and that CXCR4 may be involved in phagocytosis. P21-His6 represents an important experimental control tool to study phagocytosis signaling pathways of different intracellular parasites and particles. PMID:23251513

  20. Identification of a DNA binding protein that recognizes the nonamer recombinational signal sequence of immunoglobulin genes.

    PubMed

    Halligan, B D; Desiderio, S V

    1987-10-01

    Extracts of nuclei from B- and T-lymphoid cells contain a protein that binds specifically to the conserved nonamer DNA sequence within the recombinational signals of immunoglobulin genes. Complexes with DNA fragments from four kappa light-chain joining (J) segments have the same electrophoretic mobility. Nonamer-containing DNA fragments from heavy-chain and light-chain genes compete for binding. Within the 5'-flanking DNA of the J kappa 4 gene segment, the binding site has been localized to a 27-base-pair interval spanning the nonamer region. The binding activity is recovered as a single peak after ion-exchange chromatography. The site of binding of the protein and its presence in nuclei of lymphoid cells suggest that it may function in the assembly of immunoglobulin genes.

  1. Recombinant Preparation, Biochemical Analysis, and Structure Determination of Sirtuin Family Histone/Protein Deacylases.

    PubMed

    Suenkel, B; Steegborn, C

    2016-01-01

    Lysine acetylation is long known as a regulatory posttranslational modification of histone proteins and is emerging as a ubiquitous intracellular protein modification. Additional lysine acylations such as succinylation and glutarylation have also been found on histones and other proteins. Acylations are reversibly attached through nonenzymatic acylation mechanisms and the action of protein acyl transferases and protein deacylases (PDACs). Sirtuins are an evolutionary defined class of PDACs and act as metabolic sensors by catalyzing a unique deacylation reaction that requires the cosubstrate NAD(+). Sirtuins are found in all domains of life, and the mammalian sirtuin family comprises seven isoforms in different cellular compartments. They regulate a wide range of cellular targets and functions, such as energy metabolism and stress responses, and they have been implicated in aging processes and aging-related diseases. A large body of functional, biochemical, biophysical, and structural work on isolated sirtuins has provided many important insights that complement the many physiological studies on this enzyme family. They enabled the comprehensive structural and biochemical analysis of sirtuin catalysis, substrate selectivity, and regulation. Here, we describe the recombinant production of sirtuin proteins, with an emphasis on the mammalian isoforms. We then describe their application in activity and binding assays and for crystal structure analysis. We provide protocols for these procedures, and we discuss typical pitfalls in studying this enzyme family and how to avoid them. This information will support further molecular studies on sirtuin mechanisms and functions. PMID:27372754

  2. Better and faster: improvements and optimization for mammalian recombinant protein production

    PubMed Central

    Almo, Steven C.; Love, James D.

    2014-01-01

    Thanks to numerous technological advances, the production of recombinant proteins in mammalian cell lines has become an increasingly routine task that is no longer viewed as a heroic enterprise. While production in prokaryotic or lower eukaryotic systems may be more rapid and economical, the advantages of producing large amounts of protein that closely resembles the native form is often advantageous and may be essential for the realization of functionally active material for biological studies or biopharmaceuticals. The correct folding, processing and post-translational modifications conferred by expression in a mammalian cell is relevant to all classes of proteins, including cytoplasmic, secreted or integral membrane proteins. Therefore considerable efforts have focused on the development of growth media, cell lines, transformation methods and selection techniques that enable the production of grams of functional protein in weeks, rather than months. This review will focus on a plethora of methods that are broadly applicable to the high yield production of any class of protein (cytoplasmic, secreted or integral membrane) from mammalian cells. PMID:24721463

  3. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli

    PubMed Central

    de Marco, Ario

    2009-01-01

    Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins. PMID:19442264

  4. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  5. Co-expression of ferrochelatase allows for complete heme incorporation into recombinant proteins produced in E. coli

    PubMed Central

    Sudhamsu, Jawahar; Kabir, Mariam; Airola, Michael V.; Patel, Bhumit A.; Yeh, Syun-Ru; Rousseau, Dennis L.; Crane, Brian R.

    2010-01-01

    Over-expression of heme binding proteins in E. coli often results in sub-optimal heme incorporation and the amount of heme-bound protein produced usually varies with the protein of interest. Complete heme incorporation is important for biochemical characterization, spectroscopy, structural studies, and for the production of homogeneous commercial proteins with high activity. We have determined that recombinant proteins expressed in E. coli often contain less than a full complement of heme because they rather are partially incorporated with free-base porphyrin. Porphyrin-incorporated proteins have similar spectral characteristics as the desired heme-loaded targets, and thus are difficult to detect, even in purified samples. We present a straightforward and inexpensive solution to this problem that involves the co-expression of native ferrochelatase with the protein of interest. The method is shown to be effective for proteins that contain either Cys- or His- ligated hemes. PMID:20303407

  6. Unexpected Deposition Patterns of Recombinant Proteins in Post-Endoplasmic Reticulum Compartments of Wheat Endosperm1

    PubMed Central

    Arcalis, Elsa; Marcel, Sylvain; Altmann, Friedrich; Kolarich, Daniel; Drakakaki, Georgia; Fischer, Rainer; Christou, Paul; Stoger, Eva

    2004-01-01

    Protein transport within cereal endosperm cells is complicated by the abundance of endoplasmic reticulum (ER)-derived and vacuolar protein bodies. For wheat storage proteins, two major transport routes run from the ER to the vacuole, one bypassing and one passing through the Golgi. Proteins traveling along each route converge at the vacuole and form aggregates. To determine the impact of this trafficking system on the fate of recombinant proteins expressed in wheat endosperm, we used confocal and electron microscopy to investigate the fate of three recombinant proteins containing different targeting information. KDEL-tagged recombinant human serum albumin, which is retrieved to the ER lumen in leaf cells, was deposited in prolamin aggregates within the vacuole of endosperm cells, most likely following the bulk of endogenous glutenins. Recombinant fungal phytase, a glycoprotein designed for secretion, was delivered to the same compartment, with no trace of the molecule in the apoplast. Glycan analysis revealed that this protein had passed through the Golgi. The localization of human serum albumin and phytase was compared to that of recombinant legumin, which contains structural targeting information directing it to the vacuole. Uniquely, legumin accumulated in the globulin inclusion bodies at the periphery of the prolamin bodies, suggesting a different mode of transport and/or aggregation. Our results demonstrate that recombinant proteins are deposited in an unexpected pattern within wheat endosperm cells, probably because of the unique storage properties of this tissue. Our data also confirm that recombinant proteins are invaluable tools for the analysis of protein trafficking in cereals. PMID:15489278

  7. Efficient expression and purification of recombinant therapeutic protein candidates, human midkine and pleiotrophin.

    PubMed

    Murasugi, Akira

    2013-01-01

    Midkine is a heparin-binding growth factor that promotes cell growth, survival, and migration. Externally added midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction in the mouse. Preclinical testing of this protein is in progress. Externally added pleiotrophin, a member of the midkine protein family, promotes functional recovery after neural transplantation in rats. Thus, pleiotrophin is also a candidate therapeutic protein. Large amounts of these proteins were obtained by using the heterologous protein expression system of Pichia pastoris, and the recombinant P. pastoris clones were cultured in a controlled fermentor. Intracellular expression yielded about 300 mg/L recombinant human (rh)-midkine, which was extracted, renatured, and purified. From 1 L of the culture, 64 mg of rh-midkine was purified. Secretory expression induced by the midkine secretion signal resulted in about 100 mg of rhmidkine in 1 L of the culture supernatant, but over 70% of the rh-midkine had yeast-specific glycosylation. Three threonyl residues that are targets for glycosylation were substituted with alanyl residues, and nonglycosylated, active rh-midkine was obtained. In secretory expression using α-mating factor prepro-sequence, about 640 mg/L rh-midkine was obtained, but it was partially truncated. Therefore, a protease-deficient host was used, and about 360 mg/L intact rh-midkine was then obtained. The rh-midkine was recovered and purified, with 70% final yield. All purified rh-midkine, regardless of expression method, was able to promote mammalian cell proliferation. In secretory expression of rh-pleiotrophin using α- mating factor prepro-sequence, 260 mg/L rh-pleiotrophin could be secreted. The rh-pleiotrophin was recovered and efficiently purified with 72% final yield. PMID:24372230

  8. Efficient expression and purification of recombinant therapeutic protein candidates, human midkine and pleiotrophin.

    PubMed

    Murasugi, Akira

    2013-01-01

    Midkine is a heparin-binding growth factor that promotes cell growth, survival, and migration. Externally added midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction in the mouse. Preclinical testing of this protein is in progress. Externally added pleiotrophin, a member of the midkine protein family, promotes functional recovery after neural transplantation in rats. Thus, pleiotrophin is also a candidate therapeutic protein. Large amounts of these proteins were obtained by using the heterologous protein expression system of Pichia pastoris, and the recombinant P. pastoris clones were cultured in a controlled fermentor. Intracellular expression yielded about 300 mg/L recombinant human (rh)-midkine, which was extracted, renatured, and purified. From 1 L of the culture, 64 mg of rh-midkine was purified. Secretory expression induced by the midkine secretion signal resulted in about 100 mg of rhmidkine in 1 L of the culture supernatant, but over 70% of the rh-midkine had yeast-specific glycosylation. Three threonyl residues that are targets for glycosylation were substituted with alanyl residues, and nonglycosylated, active rh-midkine was obtained. In secretory expression using α-mating factor prepro-sequence, about 640 mg/L rh-midkine was obtained, but it was partially truncated. Therefore, a protease-deficient host was used, and about 360 mg/L intact rh-midkine was then obtained. The rh-midkine was recovered and purified, with 70% final yield. All purified rh-midkine, regardless of expression method, was able to promote mammalian cell proliferation. In secretory expression of rh-pleiotrophin using α- mating factor prepro-sequence, 260 mg/L rh-pleiotrophin could be secreted. The rh-pleiotrophin was recovered and efficiently purified with 72% final yield.

  9. Recombinant immunocytokines targeting the mouse transferrin receptor: construction and biological activities.

    PubMed

    Dreier, T; Lode, H N; Xiang, R; Dolman, C S; Reisfeld, R A; Kang, A S

    1998-01-01

    Localized cytokine therapies with recombinant monoclonal antibody-cytokine fusion proteins, designated immunocytokines, have become of increasing interest for tumor immunotherapy, since they direct immunomodulatory cytokines into the tumor microenvironment. To investigate their mechanisms of action in a variety of syngeneic tumor models, recombinant mouse cytokines IL2 and GM-CSF were engineered as fusion proteins to the carboxyl terminus of a chimeric rat/mouse antitransferrin receptor antibody, ch17217 and expressed in stable-transfected Chinese hamster ovary cells. The recombinant immunocytokines were readily purified by affinity chromatography and their binding characteristics were identical to those shown for the ch17217 antibody. The IL2 immunocytokine had an activity similar to recombinant mouse IL2, whereas the GM-CSF immunocytokine had enhanced cytokine activity relative to recombinant mouse GM-CSF. The clearance rates of ch17217 and the GM-CSF and IL2 immunocytokines were relatively similar with elimination phases (t1/2alpha) of 1.8 h and distribution phases (t1/2beta) of 83, 88, and 91 h, respectively. Both immunocytokines demonstrated effective antitumor activity by suppressing the growth of hepatic metastases of mouse neuroblastoma and pulmonary metastases of mouse colon carcinoma in syngeneic A/J and BALB/c mice, respectively. These results indicate that biologically effective IL2 and GM-CSF immunocytokines combine the targeting ability of an antitransferrin receptor monoclonal antibody with the immunomodulatory functions of each cytokine. Because of the universal expression of the transferrin receptor on mouse tumor cell lines, these constructs should prove useful to determine their efficacy in a wide variety of syngeneic mouse tumor models and to perform detailed studies of their modes of action.

  10. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter.

    PubMed

    Braun-Galleani, Stephanie; Baganz, Frank; Purton, Saul

    2015-08-01

    Microalgae have potential as platforms for the synthesis of high-value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low-cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co-expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl-1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl-1. This study suggests that recombinant protein expression is product-specific and needs to be optimized individually. PMID:26098300

  11. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter

    PubMed Central

    Baganz, Frank; Purton, Saul

    2015-01-01

    Abstract Microalgae have potential as platforms for the synthesis of high‐value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low‐cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co‐expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl‐1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl‐1. This study suggests that recombinant protein expression is product‐specific and needs to be optimized individually. PMID:26098300

  12. Secretion of active recombinant phytase from soybean cell-suspension cultures.

    PubMed Central

    Li, J; Hegeman, C E; Hanlon, R W; Lacy, G H; Denbow, M D; Grabau, E A

    1997-01-01

    Phytase, an enzyme that degrades the phosphorus storage compound phytate, has the potential to enhance phosphorus availability in animal diets when engineered into soybean (Glycine max) seeds. The phytase gene from Aspergillus niger was inserted into soybean transformation plasmids under control of constitutive and seed-specific promoters, with and without a plant signal sequence. Suspension cultures were used to confirm phytase expression in soybean cells. Phytase mRNA was observed in cultures containing constitutively expressed constructs. Phytase activity was detected in the culture medium from transformants that received constructs containing the plant signal sequence, confirming expectations that the protein would follow the default secretory pathway. Secretion also facilitated characterization of the biochemical properties of recombinant phytase. Soybean-synthesized phytase had a lower molecular mass than did the fungal enzyme. However, deglycosylation of the recombinant and fungal phytase yielded polypeptides of identical molecular mass (49 kD). Temperature and pH optima of the recombinant phytase were indistinguishable from the commercially available fungal phytase. Thermal inactivation studies of the recombinant phytase suggested that the additional protein stability would be required to withstand the elevated temperatures involved in soybean processing. PMID:9232886

  13. Structure, origin, and transforming activity of feline leukemia virus-myc recombinant provirus FTT.

    PubMed Central

    Doggett, D L; Drake, A L; Hirsch, V; Rowe, M E; Stallard, V; Mullins, J I

    1989-01-01

    A myc-containing recombinant feline leukemia provirus, designated FTT, was molecularly cloned from the cat T-cell lymphoma line F422. Its transforming activity, as well as the nucleotide sequence of the 3' 2.7 kilobases of FTT, including v-myc, was determined. The predicted v-myc protein differs from feline c-myc by three amino acid changes and is truncated by two amino acids at the carboxyl terminus. Comparison with feline leukemia virus (FeLV), feline c-myc, and other FeLV proviruses indicates that recombination junctions involved in the generation of FeLV-onc viruses occur at preferred locations within the virus. They usually follow or occur within the sequence ACCCC at 5' junctions and may result from homologous recombination between sequences of marked purine-pyrimidine strand bias, especially at 3' junctions. Some recombination sites also resemble recombinase recognition sequences utilized in immunoglobulin and T-cell receptor variable-region joining. Transfection of primary rat embryo fibroblasts and subsequent in vivo analysis revealed that morphologic and tumorigenic transformation require cotransfection of FTT with human EJ-ras DNA; neither gene alone is sufficient. FTT v-myc is expressed in these transformed rat cells as a 3.0-kilobase subgenomic RNA; however, in contrast to the depressed level of c-myc expression in v-myc-involved feline tumors, steady-state levels of rat c-myc RNA and protein are apparently unaltered. Images PMID:2539507

  14. A basic motif in the N-terminal region of RAG1 enhances V(D)J recombination activity.

    PubMed Central

    McMahan, C J; Difilippantonio, M J; Rao, N; Spanopoulou, E; Schatz, D G

    1997-01-01

    The variable portions of antigen receptor genes are assembled from component gene segments by a site-specific recombination reaction known as V(D)J recombination. The RAG1 and RAG2 proteins are the critical lymphoid cell-specific components of the recombination enzymatic machinery and are responsible for site-specific DNA recognition and cleavage. Previous studies had defined a minimal, recombinationally active core region of murine RAG1 consisting of amino acids 384 to 1008 of the 1,040-residue RAG1 protein. No recombination function has heretofore been ascribed to any portion of the 383-amino-acid N-terminal region that is missing from the core, but it seems likely to be of functional significance, based on its evolutionary conservation. Using extrachromosomal recombination substrates, we demonstrate here that the N-terminal region enhances the recombination activity of RAG1 by up to an order of magnitude in a variety of cell lines. Deletion analysis localized a region of the N terminus critical for this effect to amino acids 216 to 238, and further mutagenesis demonstrated that a small basic amino acid motif (BIIa) in this region is essential for enhancing the activity of RAG1. Despite the fact that BIIa is important for the interaction of RAG1 with the nuclear localization factor Srp-1, it does not appear to enhance recombination by facilitating nuclear transport of RAG1. A variety of models for how this region stimulates the recombination activity of RAG1 are considered. PMID:9234712

  15. The cloning, expression and purification of recombinant human neuritin from Escherichia coli and the partial analysis of its neurobiological activity.

    PubMed

    Li, Yuanyuan; Tang, Juan; Zhang, Yunhua; Wang, Haiyan; Yuan, Wumei; Yu, Na; Luo, Xing; Xu, Xiaoling; Huang, Jin; Yang, Lei

    2015-12-01

    Neuritin (Nrn1) is a neurotrophic factor that plays various roles in neural development and synaptic plasticity. In this study, the NRN1 gene was cloned and expressed in Escherichia coli and then recombinant neuritin protein was purified so that its neurobiological activity could be evaluated. The protein, which was obtained at a concentration of 0.45 mg/ml and > 90% purity, had the predicted molecular weight of 30 kDa, as determined via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blot analysis confirmed that an anti-neuritin antibody could recognize the fusion protein. Subsequent functional analyses revealed that recombinant neuritin promoted neurite outgrowth in embryonic chicken dorsal root ganglia and PC12 cells. These results suggest that recombinant neuritin protein could be a valuable tool for inducing neurite regeneration, for instance in cases of spinal cord injury or neurological diseases. PMID:26751893

  16. Protease-Triggered, Integrin-Targeted Cellular Uptake of Recombinant Protein Micelles.

    PubMed

    Gao, Chen; Vargo, Kevin B; Hammer, Daniel A

    2016-09-01

    Targeting nanoparticles for drug delivery has great potential for improving efficacy and reducing side effects from systemic toxicity. New developments in the assembly of materials afford the opportunity to expose cryptic targeting domains in tissue-specific microenvironments in which certain proteases are expressed. Here, recombinant proteins are designed to combine the responsiveness to environmental proteases with specific targeting. Materials made recombinantly allow complete control over amino acid sequence, in which each molecule is identically functionalized. Previously, oleosin, a naturally occurring plant protein that acts as a surfactant, has been engineered to self-assemble into spherical micelles-a useful structure for drug delivery. To make oleosins that are locally activated to bind receptors, oleosin is genetically modified to incorporate the integrin-binding motif RGDS just behind a domain cleavable by thrombin. The resulting modified oleosin self-assembles into spherical micelles in aqueous environments, with the RGDS motif protected by the thrombin-cleavable domain. Upon the addition of thrombin, the RGDS is exposed and the binding of the spherical micelles to breast cancer cells is increased fourfold. PMID:27284959

  17. Expression and Characterization of Recombinant Human Secretory Leukocyte Protease Inhibitor (SLPI) Protein from Pichia pastoris

    PubMed Central

    Li, Zhiguo; Moy, Allison; Sohal, Kirti; Dam, Carolyn; Kuo, Peter; Ulrich, Beau; Whittaker, James; Whittaker, Mei; Düzgünes, Nejat; Konopka, Kryatyna; Franz, Andreas H.; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P.

    2009-01-01

    The human secretory leukocyte protease inhibitor (SLPI) has been shown to possess anti-protease, anti-inflammatory and antimicrobial properties. Its presence in saliva is believed to be a major deterrent to oral transmission of human immunodeficiency virus-1. The 11.7 kD peptide is a secreted, nonglycosylated protein rich in disulfide bonds. Currently, recombinant SLPI is only available as an expensive bacterial expression product. We have investigated the utility of the methylotrophic yeast Pichia pastoris to produce and secrete SLPI with C-terminal c-myc and polyhistidine tags. The posttransformational vector amplification protocol was used to isolate strains with increased copy number, and culturing parameters were varied to optimize SLPI expression. Modification of the purification procedure allowed the secreted, recombinant protein to be isolated from the cell-free fermentation medium with cobalt affinity chromatography. This yeast-derived SLPI was shown to have an anti-protease activity comparable to the commercially available bacterial product. Thus, P. pastoris provides an efficient, cost-effective system for producing SLPI for structure function analysis studies as well as a wide array of potential therapeutic applications. PMID:19505578

  18. Recombinant lipidated dengue-3 envelope protein domain III stimulates broad immune responses in mice.

    PubMed

    Chiang, Chen-Yi; Liu, Shih-Jen; Hsieh, Chun-Hsiang; Chen, Mei-Yu; Tsai, Jy-Ping; Liu, Hsueh-Hung; Chen, I-Hua; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-02-17

    The linkage of an immunogen with a toll-like receptor ligand has great potential to induce highly potent immune responses with the initial features of antigen-presenting cell activation. In the current study, we expressed recombinant dengue-3 envelope protein domain III (D3ED III) in lipidated form using an Escherichia coli-based system. The recombinant lipidated dengue-3 envelope protein domain III (LD3ED III) augments the expression levels of IL-12 family cytokines. LD3ED III-immunized mice enhance wide ranges of T cell responses as indicated by IFN-γ, IL-17, IL-21 production. Additionally, LD3ED III-immunized mice increase the frequencies of anti-D3ED III antibody producing cells. The boosted antibody titers cover various IgG isotypes, including IgG1, IgG2a, IgG2b, and IgG3. Importantly, LD3ED III-immunized mice induce neutralizing antibody capacity associated with a reduction of viremia levels after challenges. In contrast, mice that are immunized with D3ED III formulated with aluminum phosphate (D3ED III/Alum) only enhance Th2 responses and boost IgG1 antibody titers. Neither neutralizing antibody responses nor the inhibition of viremia levels after challenge is observed in mice that are immunized with D3ED III/Alum. These results suggest that LD3ED III can induce broad profiles of cellular and humoral immune responses.

  19. Balancing the Expression and Production of a Heterodimeric Protein: Recombinant Agkisacutacin as a Novel Antithrombotic Drug Candidate

    PubMed Central

    Guo, Yugang; Wu, Jing; Jia, Hao; Chen, Wei; Shao, Changsheng; Zhao, Lei; Ma, Jiajia; Li, Rui; Zhong, Yongjun; Fang, Fang; Wang, Dong; Sun, Jie; Qian, Fang; Dai, Xiangrong; Zhang, Guohui; Tian, Zhigang; Xiaoyi Li, Benjamin; Xiao, Weihua

    2015-01-01

    Agkisacucetin extracted from the venom of Agkistrodon acutus has been demonstrated to be a promising antithrombotic drug candidate in clinical studies due to its function as a novel platelet membrane glycoprotein (GP) Ib inhibitor. Agkisacucetin is a heterodimeric protein composed of α- and β-subunits with seven disulphide bonds. Both subunits form inactive homodimeric products, which cause difficulties for recombinant production. In this study, Agkisacucetin α- and β-subunits were inserted sequentially into the chromosome of Pichia pastoris at the mutant histidinol dehydrogenase gene and ribosomal DNA repeat sites, respectively. By optimizing the gene copies and productivity of each subunit by drug screening, we successfully obtained a recombinant strain with balanced expression of the two subunits. Using this strain, a yield greater than 100 mg/L recombinant Agkisacucetin in fed-batch fermentation was reached. The recombinant Agkisacucetin possessed extremely similar binding affinity to recombinant GPIb and human platelets in in vitro assays, and its ristocetin-induced platelet aggregation activity ex vivo was identical to that of the extracted native Agkisacucetin, demonstrating that the yeast-derived Agkisacucetin could be an effective alternative to native Agkisacucetin. Moreover, this study provides an effective strategy for balancing the expression and production of heterodimeric proteins in P. pastoris. PMID:26144864

  20. Balancing the Expression and Production of a Heterodimeric Protein: Recombinant Agkisacutacin as a Novel Antithrombotic Drug Candidate.

    PubMed

    Guo, Yugang; Wu, Jing; Jia, Hao; Chen, Wei; Shao, Changsheng; Zhao, Lei; Ma, Jiajia; Li, Rui; Zhong, Yongjun; Fang, Fang; Wang, Dong; Sun, Jie; Qian, Fang; Dai, Xiangrong; Zhang, Guohui; Tian, Zhigang; Xiaoyi Li, Benjamin; Xiao, Weihua

    2015-01-01

    Agkisacucetin extracted from the venom of Agkistrodon acutus has been demonstrated to be a promising antithrombotic drug candidate in clinical studies due to its function as a novel platelet membrane glycoprotein (GP) Ib inhibitor. Agkisacucetin is a heterodimeric protein composed of α- and β-subunits with seven disulphide bonds. Both subunits form inactive homodimeric products, which cause difficulties for recombinant production. In this study, Agkisacucetin α- and β-subunits were inserted sequentially into the chromosome of Pichia pastoris at the mutant histidinol dehydrogenase gene and ribosomal DNA repeat sites, respectively. By optimizing the gene copies and productivity of each subunit by drug screening, we successfully obtained a recombinant strain with balanced expression of the two subunits. Using this strain, a yield greater than 100 mg/L recombinant Agkisacucetin in fed-batch fermentation was reached. The recombinant Agkisacucetin possessed extremely similar binding affinity to recombinant GPIb and human platelets in in vitro assays, and its ristocetin-induced platelet aggregation activity ex vivo was identical to that of the extracted native Agkisacucetin, demonstrating that the yeast-derived Agkisacucetin could be an effective alternative to native Agkisacucetin. Moreover, this study provides an effective strategy for balancing the expression and production of heterodimeric proteins in P. pastoris. PMID:26144864

  1. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli.

  2. Lifecycle management for recombinant protein production using mammalian cell culture technology.

    PubMed

    Moran, Enda; Gammell, Patrick

    2014-01-01

    Product lifecycle management refers to the oversight process and activities carried out to fully realize the commercial potential and value of a product in the marketplace. It is typical for many changes to be introduced to the production processes and testing methods for biopharmaceutical drugs over their lifetime in the commercial marketplace. Technology lifecycle management, as discussed here, refers to the management of the different phases or generations of processes and methods used to make and test the active biopharmaceutical ingredient or drug product, and the adoption of different devices used to present the drug product to patients. The factors to consider when making changes to a commercial biopharmaceutical manufacturing process as part of a technology lifecycle management program are discussed. A case study outlines one approach taken in bringing forward a major process change to a cell culture process for the production of a therapeutic recombinant protein.

  3. Purification of recombinant protein by cold-coacervation of fusion constructs incorporating resilin-inspired polypeptides.

    PubMed

    Lyons, Russell E; Elvin, Christopher M; Taylor, Karin; Lekieffre, Nicolas; Ramshaw, John A M

    2012-12-01

    Polypeptides containing between 4 and 32 repeats of a resilin-inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence-related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold-coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein-poor phase. We show that purification of recombinant proteins by cold-coacervation can be performed when engineered as a fusion partner to a resilin-inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time-consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold-coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature.

  4. Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20.

    PubMed

    Hardy, Christopher M; Clydesdale, Gavin; Mobbs, Karen J; Pekin, Jenny; Lloyd, Megan L; Sweet, Clive; Shellam, Geoffrey R; Lawson, Malcolm A

    2004-03-01

    Mouse PH20 (mPH20), the mouse homologue to guinea pig hyaluronidase protein PH20 (gpPH20), was used to produce contraceptive vaccines that target both sexes of mice. Previously, immunization with a female gamete antigen (the zona pellucida subunit 3 protein) delivered in a recombinant murine cytomegalovirus (MCMV), or as a purified recombinant protein, has been shown to induce infertility in female mice. There is evidence, however, that sperm protein antigens could provide broader contraceptive coverage by affecting both males and females, and the most promising has been gpPH20 when tested in a guinea pig model. Mice were therefore either inoculated with a recombinant MCMV expressing mPH20 or immunized directly with purified recombinant mPH20 protein fused to maltose-binding protein. Mice treated with either vaccine formulation developed serum antibodies that cross-reacted to a protein band of 55 kDa corresponding to mPH20 in Western blots of mouse sperm. However, there was no significant reduction in the fertility of males or females compared with control animals with either formulation. We conclude from our data that recombinant mPH20 is not a useful antigen for inclusion in immunocontraceptive vaccines that target mice.

  5. A novel method for the purification of low soluble recombinant C-type lectin proteins.

    PubMed

    Yin, Chunhui; Jia, Ying; Garcia, Carlos A

    2012-08-31

    Snake venoms contain a complex mixture of many biological molecules including proteins. The purification of recombinant proteins is a key step in studying their function and structure with affinity chromatography as the common method used in their purification. In bacterial expression systems, hydrophobic recombinant proteins are usually precipitated into inclusion bodies, and contaminants are typically associated with tagged proteins after purification. The purpose of this study was to develop a procedure to purify hydrophobic recombinant proteins without an affinity tag. Snake venom mature C-type lectin-like proteins (CLPs) with a tag were cloned, expressed, and purified by repeated sonication and wash steps. The effects of the signal peptide on the expression and solubility of the recombinant protein were investigated. The CLPs in washed inclusion bodies were solubilized and refolded by dialysis. The CLPs without a tag were successfully purified with a yield 38 times higher than the traditional method, and inhibited blood platelet aggregation with an IC(50) of 100.57 μM in whole blood. This novel procedure is a rapid, and inexpensive method to purify functional recombinant hydrophobic CLPs from snake venoms useful in the development of drug therapies. PMID:22867876

  6. Molecular design of performance proteins with repetitive sequences: recombinant flagelliform spider silk as basis for biomaterials.

    PubMed

    Vendrely, Charlotte; Ackerschott, Christian; Römer, Lin; Scheibel, Thomas

    2008-01-01

    Most performance proteins responsible for the mechanical stability of cells and organisms reveal highly repetitive sequences. Mimicking such performance proteins is of high interest for the design of nanostructured biomaterials. In this article, flagelliform silk is exemplary introduced to describe a general principle for designing genes of repetitive performance proteins for recombinant expression in Escherichia coli . In the first step, repeating amino acid sequence motifs are reversely transcripted into DNA cassettes, which can in a second step be seamlessly ligated, yielding a designed gene. Recombinant expression thereof leads to proteins mimicking the natural ones. The recombinant proteins can be assembled into nanostructured materials in a controlled manner, allowing their use in several applications. PMID:19031057

  7. Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination.

    PubMed

    Grigera, Fernando; Bellacosa, Alfonso; Kenter, Amy L

    2013-01-01

    Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2-5 despite concomitant reduction of MSH2. We show by comparison in Msh2(+/-) B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6-8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3' end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR.

  8. Alprolix (recombinant Factor IX Fc fusion protein): extended half-life product for the prophylaxis and treatment of hemophilia B.

    PubMed

    Ducore, Jonathan M; Miguelino, Maricel G; Powell, Jerry S

    2014-10-01

    Hemophilia B is a genetic disease caused by mutation of the gene for coagulation protein Factor IX. When severe, the disease leads to spontaneous life-threatening bleeding episodes. Current therapy requires frequent intravenous infusions of therapeutic recombinant or plasma-derived protein concentrates containing Factor IX. Alprolix™ (recombinant Factor IX Fc fusion protein), is a therapeutic Factor IX preparation that has been engineered for a prolonged half-life in circulation, has completed pivotal clinical trials and has been approved recently in the USA, Canada, Australia and Japan for use in the clinic for patients with hemophilia B. This promising therapy should allow patients to use fewer infusions to maintain appropriate Factor IX activity levels in all clinical settings, and its use may be indicated in both on demand and prophylactic treatments.

  9. Techno-economic evaluation of an inclusion body solubilization and recombinant protein refolding process.

    PubMed

    Freydell, Esteban J; van der Wielen, Luuk A M; Eppink, Michel H M; Ottens, Marcel

    2011-01-01

    Expression of recombinant proteins in Escherichia coli is normally accompanied by the formation of inclusion bodies (IBs). To obtain the protein product in an active (native) soluble form, the IBs must be first solubilized, and thereafter, the soluble, often denatured and reduced protein must be refolded. Several technically feasible alternatives to conduct IBs solubilization and on-column refolding have been proposed in recent years. However, rarely these on-column refolding alternatives have been evaluated from an economical point of view, questioning the feasibility of their implementation at a preparative scale. The presented study assesses the economic performance of four distinct process alternatives that include pH induced IBs solubilization and protein refolding (pH_IndSR); IBs solubilization using urea, dithiothreitol (DTT), and alkaline pH followed by batch size-exclusion protein refolding; inclusion bodies (IBs) solubilization using urea, DTT, and alkaline pH followed by simulated moving bed (SMB) size-exclusion protein refolding, and IBs solubilization using urea, DTT and alkaline pH followed by batch dilution protein refolding. The economic performance was judged on the basis of the direct fixed capital, and the production cost per unit of product (P(C)). This work shows that (1) pH_IndSR system is a relatively economical process, because of the low IBs solubilization cost; (2) substituting β-mercaptoethanol for dithiothreithol is an attractive alternative, as it significantly decreases the product cost contribution from the IBs solubilization; and (3) protein refolding by size-exclusion chromatography becomes economically attractive by changing the mode of operation of the chromatographic reactor from batch to continuous using SMB technology.

  10. Capillary gel electrophoresis for the quantification and purity determination of recombinant proteins in inclusion bodies.

    PubMed

    Espinosa-de la Garza, Carlos E; Perdomo-Abúndez, Francisco C; Campos-García, Víctor R; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2013-09-01

    In this work, a high-resolution CGE method for quantification and purity determination of recombinant proteins was developed, involving a single-component inclusion bodies (IBs) solubilization solution. Different recombinant proteins expressed as IBs were used to show method capabilities, using recombinant interferon-β 1b as the model protein for method validation. Method linearity was verified in the range from 0.05 to 0.40 mg/mL and a determination coefficient (r(2) ) of 0.99 was obtained. The LOQs and LODs were 0.018 and 0.006 mg/mL, respectively. RSD for protein content repeatability test was 2.29%. In addition, RSD for protein purity repeatability test was 4.24%. Method accuracy was higher than 90%. Specificity was confirmed, as the method was able to separate recombinant interferon-β 1b monomer from other aggregates and impurities. Sample content and purity was demonstrated to be stable for up to 48 h. Overall, this method is suitable for the analysis of recombinant proteins in IBs according to the attributes established on the International Conference for Harmonization guidelines.

  11. Biophysical characterization of highly active recombinant Gaussia luciferase expressed in Escherichia coli.

    PubMed

    Rathnayaka, Tharangani; Tawa, Minako; Sohya, Shihori; Yohda, Masafumi; Kuroda, Yutaka

    2010-09-01

    Recently, the smallest bioluminescent protein (MW: 19.9 kDa), Gaussia luciferase (GLuc), has been isolated from the marine copepod Gaussia princeps and has attracted much attention as a reporter protein. However, preparation of large quantities of homogeneous natively folded recombinant GLuc appears to be difficult due to its ten cysteines. Here, we report the biophysical characterization of recombinant GLuc expressed using a novel Escherichia coli expression system based on a cold induced expression vector (pCold). Using this system, a large fraction of the protein was expressed in the soluble fraction. GLuc, purified exclusively from the supernatant using nickel affinity chromatography, yielded a large amount of pure GLuc with a native disulfide bond pattern (Soluble-GLuc). Soluble-GLuc had a strong bioluminescence activity and it retained 65% of its activity after 30 min incubation at 95 degrees C. Soluble-GLuc remained fully folded until 40 degrees C, as assessed by circular dichroism; and the thermal denaturation curve was S-shaped, indicating a cooperative transition, with a midpoint temperature of 56 degrees C. These results indicate that both the structure and bioluminescence activity of GLuc remain stable at high temperatures, and they strongly suggest GLuc's potential as a reporter protein. PMID:20452471

  12. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli.

    PubMed

    Hsu, Shao-Yen; Lin, Yu-Sheng; Li, Shu-Jyuan; Lee, Wen-Chien

    2014-09-01

    A co-expression system was established in Escherichia coli for enhancing the cellular expression of heat shock transcription factor, sigma 32 (σ(32)). A Shine-Dalgarno sequence and the rpoH gene of E. coli, which encodes σ(32), were cloned into a bacterial plasmid containing a gene fusion encoding a doubly tagged N-acetyl-d-neuraminic acid aldolase (GST-Neu5Ac aldolase-5R). After the IPTG induction, a substantially higher level of sigma 32 was observed up to 3 h in the co-expression cells, but an enhancement in the solubility of target protein was manifest only in the first hour. Nevertheless, the co-expression of sigma 32 led to higher level of Neu5Ac aldolase enzymatic activity in both the soluble and insoluble (inclusion body) fractions. The Neu5Ac aldolase activity of the supernatant from the lysate of cells co-expressing GST-Neu5Ac aldolase-5R and recombinant σ(32) was 3.4-fold higher at 3 h postinduction than that in cells overexpressing GST-Neu5Ac aldolase-5R in the absence of recombinantly expressed σ(32). The results of acrylamide quenching indicated that the conformational quality of the fusion protein was improved by the co-expression of recombinant σ(32). Thus, the increased level of intracellular σ(32) might have created favorable conditions for the proper folding of recombinant proteins through the cooperative effects of chaperones/heat shock proteins expressed by the E. coli host, which resulted in smaller inclusion bodies, improved conformational quality and a higher specific activity of the overexpressed GST-Neu5Ac aldolase-5R protein.

  13. An Acidic Thermostable Recombinant Aspergillus nidulans Endoglucanase Is Active towards Distinct Agriculture Residues

    PubMed Central

    Tavares, Eveline Queiroz de Pinho; Rubini, Marciano Regis; Mello-de-Sousa, Thiago Machado; Duarte, Gilvan Caetano; de Faria, Fabrícia Paula; Ferreira Filho, Edivaldo Ximenes; Kyaw, Cynthia Maria; Silva-Pereira, Ildinete; Poças-Fonseca, Marcio Jose

    2013-01-01

    Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A) was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as Km = 27.5 ± 4.33 mg/mL, Vmax = 1.185 ± 0.11 mmol/min, and 55.8 IU (international units)/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol. PMID:23936633

  14. Expression and purification of soluble bio-active rice plant catalase-A from recombinant Escherichia coli.

    PubMed

    Ray, Mamata; Mishra, Panchanand; Das, Priyanka; Sabat, Surendra Chandra

    2012-01-01

    Catalase in plants is a heme-coordinated tetrameric protein that primarily disproportionates hydrogen peroxide into water and oxygen. It plays an important role in maintaining cellular concentration of hydrogen peroxide to a level, necessary for all aspects of normal plant growth and development. Except for its recombinant expression in transgenic plants and insect cell line, the protein is yet to be synthesized in its bio-active form in prokaryotic expression system. Attempts made in past for recombinant expression of plant catalase in Escherichia coli consistently resulted in formation of insoluble and inactive aggregates of inclusion body. Here we have shown the specific requirement of a thioredoxin fusion partner, the involvement of trigger factor protein and the low temperature treatment during induction period for synthesis of completely solubilized rice plant catalase-A in recombinant E. coli. Furthermore, the bacteria required the supplementation of δ-aminolevulinic acid to produce bio-active recombinant rice catalase-A. The molecular and biochemical properties of the purified recombinant protein showed the characteristic features of a typical mono-functional plant catalase. These results attest to the usefulness of the present protocol for production of plant catalase using E. coli as heterologous expression system.

  15. Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator.

    PubMed

    Kim, Y H; Park, J H; Hong, S H; Koh, J Y

    1999-04-23

    Human recombinant tissue plasminogen activator (tPA) may benefit ischemic stroke patients by dissolving clots. However, independent of thrombolysis, tPA may also have deleterious effects on neurons by promoting excitotoxicity. Zinc neurotoxicity has been shown to be an additional key mechanism in brain injuries. Hence, if tPA affects zinc neurotoxicity, this may provide additional insights into its effect on neuronal death. Independent of its proteolytic action, tPA markedly attenuated zinc-induced cell death in cortical culture, and, when injected into cerebrospinal fluid, also reduced kainate seizure-induced hippocampal neuronal death in adult rats.

  16. Production of recombinant protein in Escherichia coli cultured in extract from waste product alga, Ulva lactuca.

    PubMed

    Rechtin, Tammy M; Hurst, Matthew; Potts, Tom; Hestekin, Jamie; Beitle, Robert; McLaughlin, John; May, Peter

    2014-01-01

    This study examined the potential for waste product alga, Ulva lactuca, to serve as a media component for recombinant protein production in Escherichia coli. To facilitate this investigation, U. lactuca harvested from Jamaica Bay was dried, and nutrients acid extracted for use as a growth media. The E. coli cell line BL21(DE3) was used to assess the effects on growth and production of recombinant green fluorescent protein (GFP). This study showed that media composed of acid extracts without further nutrient addition maintained E. coli growth and recombinant protein production. Extracts made from dried algae lots less than six-months-old were able to produce two-fold more GFP protein than traditional Lysogeny Broth media. PMID:24799463

  17. Biomimetic production of silk-like recombinant squid sucker ring teeth proteins.

    PubMed

    Ding, Dawei; Guerette, Paul A; Hoon, Shawn; Kong, Kiat Whye; Cornvik, Tobias; Nilsson, Martina; Kumar, Akshita; Lescar, Julien; Miserez, Ali

    2014-09-01

    The sucker ring teeth (SRT) of Humboldt squid exhibit mechanical properties that rival those of robust engineered synthetic polymers. Remarkably, these properties are achieved without a mineral phase or covalent cross-links. Instead, SRT are exclusively made of silk-like proteins called "suckerins", which assemble into nanoconfined β-sheet reinforced supramolecular networks. In this study, three streamlined strategies for full-length recombinant suckerin protein production and purification were developed. Recombinant suckerin exhibited high solubility and colloidal stability in aqueous-based solvents. In addition, the colloidal suspensions exhibited a concentration-dependent conformational switch, from random coil to β-sheet enriched structures. Our results demonstrate that recombinant suckerin can be produced in a facile manner in E. coli and processed from mild aqueous solutions into materials enriched in β-sheets. We suggest that recombinant suckerin-based materials offer potential for a range of biomedical and engineering applications.

  18. Impact of Profiling Technologies in the Understanding of Recombinant Protein Production

    NASA Astrophysics Data System (ADS)

    Vijayendran, Chandran; Flaschel, Erwin

    Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.

  19. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris.

    PubMed

    Gizatullina, Albina K; Finkina, Ekaterina I; Mineev, Konstantin S; Melnikova, Daria N; Bogdanov, Ivan V; Telezhinskaya, Irina N; Balandin, Sergey V; Shenkarev, Zakhar O; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2013-10-01

    Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600Å(3)). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.

  20. Expression of the superantigen Mycoplasma arthritidis mitogen in Escherichia coli and characterization of the recombinant protein.

    PubMed Central

    Knudtson, K L; Manohar, M; Joyner, D E; Ahmed, E A; Cole, B C

    1997-01-01

    Mycoplasma arthritidis mitogen (MAM), is a soluble protein with classical superantigenic properties and is produced by an organism that causes an acute and chronic proliferative arthritis. Unfortunately, the process of obtaining purified MAM from M. arthritidis culture supernatants is extremely time-consuming and costly, and very little material is recovered. Thus, our laboratory has expressed MAM in Escherichia coli by using a protein fusion expression system. The construction and expression of recombinant MAM (rMAM), as well as a comparison of the biological properties of rMAM to those of native MAM, are discussed. Briefly, conversion of the three UGA codons to UGG codons was required to obtain full-length expression and mitogenic activity of rMAM. Antisera to native MAM recognized both rMAM and the fusion protein. The T-cell receptor Vbeta and major histocompatibility complex class II receptor usages by rMAM and the fusion protein were identical to that of native MAM. In addition, the ability to induce suppression and form the superantigen bridge could also be demonstrated with rMAM. Importantly, dose-response experiments indicated that homogeneous native MAM and rMAM were of equal potency. Thus, MAM has been successfully expressed in E. coli, thereby creating a viable alternative to native MAM. PMID:9393783

  1. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6–M26 and the osmotic stress response

    PubMed Central

    Gao, Jun; Davidson, Mari K.; Wahls, Wayne P.

    2008-01-01

    The Atf1 protein of Schizosaccharomyces pombe contains a bZIP (DNA-binding/protein dimerization) domain characteristic of ATF/CREB proteins, but no other functional domains or clear homologs have been reported. Atf1-containing, bZIP protein dimers bind to CRE-like DNA sites, regulate numerous stress responses, and activate meiotic recombination at hotspots like ade6–M26. We defined systematically the organization of Atf1 and its heterodimer partner Pcr1, which is required for a subset of Atf1-dependent functions. Surprisingly, only the bZIP domain of Pcr1 is required for hotspot activity and tethering of Atf1 to ade6 promotes recombination in the absence of its bZIP domain and the Pcr1 protein. Therefore the recombination–activation domain of Atf1-Pcr1 heterodimer resides exclusively in Atf1, and Pcr1 confers DNA-binding site specificity in vivo. Atf1 has a modular organization in which distinct regions affect differentially the osmotic stress response (OSA) and meiotic recombination (HRA, HRR). The HRA and HRR regions are necessary and sufficient to activate and repress recombination, respectively. Moreover, Atf1 defines a family of conserved proteins with discrete sequence motifs in the functional domains (OSA, HRA, HRR, bZIP). These findings reveal the functional organization of Atf1 and Pcr1, and illustrate several mechanisms by which bZIP proteins can regulate multiple, seemingly disparate activities. PMID:18375981

  2. Recombinant Paracoccin Reproduces the Biological Properties of the Native Protein and Induces Protective Th1 Immunity against Paracoccidioides brasiliensis Infection

    PubMed Central

    Alegre, Ana Claudia Paiva; Oliveira, Aline Ferreira; Dos Reis Almeida, Fausto Bruno; Roque-Barreira, Maria Cristina; Hanna, Ebert Seixas

    2014-01-01

    Background Paracoccin is a dual-function protein of the yeast Paracoccidioides brasiliensis that has lectin properties and N-acetylglucosaminidase activities. Proteomic analysis of a paracoccin preparation from P. brasiliensis revealed that the sequence matched that of the hypothetical protein encoded by PADG-3347 of isolate Pb-18, with a polypeptide sequence similar to the family 18 endochitinases. These endochitinases are multi-functional proteins, with distinct lectin and enzymatic domains. Methodology/principal findings The multi-exon assembly and the largest exon of the predicted ORF (PADG-3347), was cloned and expressed in Escherichia coli cells, and the features of the recombinant proteins were compared to those of the native paracoccin. The multi-exon protein was also used for protection assays in a mouse model of paracoccidioidomycosis. Conclusions/Significance Our results showed that the recombinant protein reproduced the biological properties described for the native protein—including binding to laminin in a manner that is dependent on carbohydrate recognition—showed N-acetylglucosaminidase activity, and stimulated murine peritoneal macrophages to produce high levels of TNF-α and nitric oxide. Considering the immunomodulatory potential of glycan-binding proteins, we also investigated whether prophylactic administration of recombinant paracoccin affected the course of experimental paracoccidioidomycosis in mice. In comparison to animals injected with vehicle (controls), mice treated with recombinant paracoccin displayed lower pulmonary fungal burdens and reduced pulmonary granulomas. These protective effects were associated with augmented pulmonary levels of IL-12 and IFN-γ. We also observed that injection of paracoccin three days before challenge was the most efficient administration protocol, as the induced Th1 immunity was balanced by high levels of pulmonary IL-10, which may prevent the tissue damage caused by exacerbated inflammation. The

  3. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair.

    PubMed

    Marceau, Aimee H

    2012-01-01

    Double-stranded (ds) DNA contains all of the necessary genetic information, although practical use of this information requires unwinding of the duplex DNA. DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for myriad cellular functions. Exposure of ssDNA presents several problems to the cell. First, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. Cells deal with these potential problems by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes. SSBs are essential proteins found in all domains of life. SSBs bind ssDNA with high affinity and in a sequence-independent manner and, in doing so, SSBs help to form the central nucleoprotein complex substrate for DNA replication, recombination, and repair processes. While SSBs are found in every organism, the proteins themselves share surprisingly little sequence similarity, subunit composition, and oligomerization states. All SSB proteins contain at least one DNA-binding oligonucleotide/oligosaccharide binding (OB) fold, which consists minimally of a five stranded beta-sheet arranged as a beta barrel capped by a single alpha helix. The OB fold is responsible for both ssDNA binding and oligomerization (for SSBs that operate as oligomers). The overall organization of OB folds varies between bacteria, eukaryotes, and archaea. As part of SSB/ssDNA cellular structures, SSBs play direct roles in the DNA replication, recombination, and repair. In many cases, SSBs have been found to form specific complexes with diverse genome maintenance proteins, often helping to recruit SSB/ssDNA-processing enzymes to the proper cellular sites of action. This clustering of genome maintenance

  4. The effects of protein solubility on the RNA Integrity Number (RIN) for recombinant Escherichia coli

    PubMed Central

    Baig, Faraz; Harcum, Sarah W.

    2013-01-01

    High quality, intact messenger RNA (mRNA) is required for DNA microarray and reverse transcriptase polymerase chain reaction analysis and is generally obtained from total RNA isolations. The most widely recognized measure of RNA integrity is the RNA Integrity Number (RIN) obtained from the Agilent Bioanalyzer, as it provides sizing, quantification, and quality control measures. This work describes comparisons of the RIN values obtained for recombinant E. coli. Uninduced recombinant E. coli cultures were examined, as well as induced cultures that produced either a soluble or insoluble recombinant protein. The uninduced cultures and the induced cultures producing soluble protein had higher RIN values than the induced cultures producing insoluble protein. These lower RIN values for E. coli producing the insoluble protein indicate that cellular degradation of the ribosomal RNA species is the likely cause of the lower RIN values. As the use of DNA microarrays and other gene expression tools increase in usage in the industrial recombinant protein production community, these results suggest the need for further studies to determine acceptable RIN ranges for gene expression analysis and effects of various culture conditions on RIN values for recombinant E. coli. PMID:24151430

  5. Characterization and recombinant expression of a divergent ice nucleation protein from 'Pseudomonas borealis'.

    PubMed

    Wu, Zhongqin; Qin, Lei; Walker, Virginia K

    2009-04-01

    Isolates of 'Pseudomonas borealis' were recovered after ice-affinity selection of summer-collected soils. 'P. borealis' DL7 was further characterized and shown to have ice nucleation activity (INA), a property that allows the crystallization of ice at temperatures close to the melting point, effectively preventing the supercooling of water. INA was optimally detected after culturing at temperatures consistent with psychrophilic growth. The sequence encoding the 'P. borealis' ice nucleation protein (INP) was obtained using both PCR and chromosome walking. When expressed in Escherichia coli, the resulting inaPb recombinants had INA. The 'P. borealis' sequence, dubbed inaPb, is clearly related to previously cloned INP genes, but it shows greater divergence. Sequence analysis suggests that there are two opposite flat surfaces, one relatively hydrophobic that likely serves as an ice template, and the other that could function as a complementary face to facilitate interprotein interaction for ice-step formation. PMID:19332818

  6. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    PubMed Central

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  7. Purified and Recombinant Hemopexin: Protease Activity and Effect on Neutrophil Chemotaxis

    PubMed Central

    Lin, Tian; Liu, Jialin; Huang, Feng; van Engelen, Tjitske SR; Thundivalappil, Sujatha R; Riley, Frank E; Super, Michael; Watters, Alexander L; Smith, Ann; Brinkman, Nathan; Ingber, Donald E; Warren, H Shaw

    2016-01-01

    Infusion of the heme-binding protein hemopexin has been proposed as a novel approach to decrease heme-induced inflammation in settings of red blood cell breakdown, but questions have been raised as to possible side effects related to protease activity and inhibition of chemotaxis. We evaluated protease activity and effects on chemotaxis of purified plasma hemopexin obtained from multiple sources as well as a novel recombinant fusion protein Fc-hemopexin. Amidolytic assay was performed to measure the protease activity of several plasma-derived hemopexin and recombinant Fc-hemopexin. Hemopexin was added to the human monocyte culture in the presence of lipopolysaccharides (LPS), and also injected into mice intravenously (i.v.) 30 min before inducing neutrophil migration via intraperitoneal (i.p.) injection of thioglycolate. Control groups received the same amount of albumin. Protease activity varied widely between hemopexins. Recombinant Fc-hemopexin bound heme, inhibited the synergy of heme with LPS on tumor necrosis factor (TNF) production from monocytes, and had minor but detectable protease activity. There was no effect of any hemopexin preparation on chemotaxis, and purified hemopexin did not alter the migration of neutrophils into the peritoneal cavity of mice. Heme and LPS synergistically induced the release of LTB4 from human monocytes, and hemopexin blocked this release, as well as chemotaxis of neutrophils in response to activated monocyte supernatants. These results suggest that hemopexin does not directly affect chemotaxis through protease activity, but may decrease heme-driven chemotaxis and secondary inflammation by attenuating the induction of chemoattractants from monocytes. This property could be beneficial in some settings to control potentially damaging inflammation induced by heme. PMID:26772775

  8. Recombinant human parathyroid hormone related protein 1-34 and 1-84 and their roles in osteoporosis treatment.

    PubMed

    Wang, Hua; Liu, Jingning; Yin, Ying; Wu, Jun; Wang, Zilu; Miao, Dengshun; Sun, Wen

    2014-01-01

    Osteoporosis is a common disorder characterized by compromised bone strength that predisposes patients to increased fracture risk. Parathyroid hormone related protein (PTHrP) is one of the candidates for clinical osteoporosis treatment. In this study, GST Gene Fusion System was used to express recombinant human PTHrP (hPTHrP) 1-34 and 1-84. To determine whether the recombinant hPTHrP1-34 and 1-84 can enhance renal calcium reabsorption and promote bone formation, we examined effects of recombinant hPTHrP1-34 and 1-84 on osteogenic lineage commitment in a primary bone marrow cell culture system and on osteoporosis treatment. Results revealed that both of recombinant hPTHrP1-34 and 1-84 increased colony formation and osteogenic cell differentiation and mineralization in vitro; however, the effect of recombinant hPTHrP1-84 is a little stronger than that of hPTHrP1-34. Next, ovariectomy was used to construct osteoporosis animal model (OVX) to test activities of these two recombinants in vivo. HPTHrP1-84 administration elevated serum calcium by up-regulating the expression of renal calcium transporters, which resulted in stimulation of osteoblastic bone formation. These factors contributed to augmented bone mass in hPTHrP1-84 treated OVX mice but did not affect bone resorption. There was no obvious bone mass alteration in hPTHrP1-34 treated OVX mice, which may be, at least partly, associated with shorter half-life of hPTHrP1-34 compared to hPTHrP1-84 in vivo. This study implies that recombinant hPTHrP1-84 is more effective than hPTHrP1-34 to enhance renal calcium reabsorption and to stimulate bone formation in vivo. PMID:24516619

  9. Biologically produced bifunctional recombinant protein nanoparticles for immunoassays.

    PubMed

    Jääskeläinen, Anu; Harinen, Reija-Riitta; Soukka, Tero; Lamminmäki, Urpo; Korpimäki, Teemu; Virta, Marko

    2008-02-01

    Nanoparticles are increasingly used as labels for analytical purposes. In general, nanoparticles need to be functionalized with binding molecules (mostly antibodies or fragments thereof) and label substances using a multistep process that requires several manufacturing and purification steps. Here, we present a biological method of producing functionalized nanoparticles for effective use as label agents in a bioaffinity assay. The particles are based on the globular protein shell of human ferritin. A single chain Fv fragment (scFv) of an antibody is used as the binding moiety and Eu3+ ions as the label substance. Conventional chemical conjugation of the particle and antibody fragment is replaced with genetic fusion between the ferritin subunit and scFv genes. The material, for example, the fusion construct is produced in a single bacterial culture as insoluble forms that are easily purified by centrifugations. The subunits are solubilized and self-assembled, and label ions are introduced by shifting the pH. The functionality of these particles is demonstrated with a bioaffinity assay. This method of producing nanoparticles with inherent antigen binding activity presents several possibilities for the simple production of specific, functional nanoparticles. Production is fast, economical, and environmentally sustainable, making the system advantageous, particularly in applications requiring large quantities of specific nanoparticles. PMID:18179181

  10. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    NASA Astrophysics Data System (ADS)

    Sun, L. W.; Zhao, Y.; Niu, L. P.; Jiang, R.; Song, Y.; Feng, H.; feng, K.; Qi, C.

    2011-02-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  11. Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli.

    PubMed

    Yero, Daniel; Pajón, Rolando; Niebla, Olivia; Sardiñas, Gretel; Vivar, Isbel; Perera, Yasser; García, Darien; Delgado, Maité; Cobas, Karem

    2006-04-01

    In the post-genomic era, every aspect of the production of proteins must be accelerated. In this way, several vectors are currently exploited for rapid production of recombinant proteins in Escherichia coli. N-terminal fusions to the first 47 amino acids of the LpdA (dihydrolipoamide dehydrogenase A) protein of Neisseria meningitidis have been shown to increase the expression of recombinant proteins. Consequently, we have constructed a modified N-terminal LpdA fusion vector, introducing the blue/white colony selection by exploiting a bicistronic gene organization. In the new vector, the sequence encoding the first 47 amino acids of meningococcal LpdA and the alpha-peptide sequence of beta-galactosidase were connected via a ribosome-binding site, and two MCSs (multiple cloning sites) were located surrounding the latter, allowing efficient cloning by colour selection of recombinants. The vector was also improved with the addition of a C-terminal polyhistidine tag, and an EKS (enterokinase recognition sequence) immediately after the LpdA fusion sequence. The new plasmid was employed in the expression and purification of six different bacterial polypeptides. One of these recombinant proteins, P6 protein from Haemophilus influenzae, was used as a model and its N-terminal fusion sequence was totally removed from the recombinant version after incubation with the enterokinase protease, while the polyhistidine tail successfully allowed the purification of the unfused protein from the protease reaction. Two completely new neisserial vaccine candidates, NMB0088 and NMB1126 proteins, were cloned, expressed and purified using this system. To our knowledge, this constitutes the first report of the cloning and expression of these proteins in E. coli.

  12. Expression of recombinant small hydrophobic protein for serospecific detection of avian pneumovirus subgroup C.

    PubMed

    Luo, Lizhong; Sabara, Marta I; Li, Yan

    2005-01-01

    The small hydrophobic (SH) gene of the avian pneumovirus (APV) Colorado isolate (CO), which belongs to subgroup C (APV/C), was expressed with a baculovirus vector. The recombinant SH protein was evaluated as a potential subgroup-specific diagnostic reagent in order to differentiate infections resulting from APV/C from those induced by APV/A, APV/B, and human metapneumovirus (hMPV). When the recombinant baculovirus was used to infect insect cells, a 31- to 38-kDa glycosylated form of the SH protein was produced and subsequently tested for reactivity with antibodies specific for APV/A, APV/B, APV/C, and hMPV. Western blot analysis showed that the expressed recombinant SH protein could only be recognized by APV/C-specific antibodies. This result was consistent with sequence analysis of the APV/C SH protein, which had very low (24%) amino acid identity with the corresponding protein of hMPV and no discernible identity with the SH protein of APV/A or APV/B. A recombinant SH protein-based enzyme-linked immunosorbent assay (ELISA) was developed, and it further confirmed the lack of reactivity of this protein with antisera raised to APV/A, APV/B, and hMPV and supported its designation as a subgroup-specific antigen. This finding indicated that the recombinant SH protein was a suitable antigen for ELISA-based detection of subgroup-specific antibodies in turkeys and could be used for serologically based differential diagnosis of APV and hMPV infections.

  13. Expression of Recombinant Small Hydrophobic Protein for Serospecific Detection of Avian Pneumovirus Subgroup C

    PubMed Central

    Luo, Lizhong; Sabara, Marta I.; Li, Yan

    2005-01-01

    The small hydrophobic (SH) gene of the avian pneumovirus (APV) Colorado isolate (CO), which belongs to subgroup C (APV/C), was expressed with a baculovirus vector. The recombinant SH protein was evaluated as a potential subgroup-specific diagnostic reagent in order to differentiate infections resulting from APV/C from those induced by APV/A, APV/B, and human metapneumovirus (hMPV). When the recombinant baculovirus was used to infect insect cells, a 31- to 38-kDa glycosylated form of the SH protein was produced and subsequently tested for reactivity with antibodies specific for APV/A, APV/B, APV/C, and hMPV. Western blot analysis showed that the expressed recombinant SH protein could only be recognized by APV/C-specific antibodies. This result was consistent with sequence analysis of the APV/C SH protein, which had very low (24%) amino acid identity with the corresponding protein of hMPV and no discernible identity with the SH protein of APV/A or APV/B. A recombinant SH protein-based enzyme-linked immunosorbent assay (ELISA) was developed, and it further confirmed the lack of reactivity of this protein with antisera raised to APV/A, APV/B, and hMPV and supported its designation as a subgroup-specific antigen. This finding indicated that the recombinant SH protein was a suitable antigen for ELISA-based detection of subgroup-specific antibodies in turkeys and could be used for serologically based differential diagnosis of APV and hMPV infections. PMID:15643005

  14. 75 FR 69687 - Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities Recombinant DNA Research: Proposed Actions Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines... the NIH Recombinant DNA Advisory Committee (RAC) and specifically approved by the NIH Director as...

  15. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA... the trial with the NIH OBA or the Recombinant DNA Advisory Committee (RAC) review and reporting... Nucleic Acid Molecules, or DNA or RNA Derived from Recombinant or Synthetic Nucleic Acid Molecules,...

  16. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms.

    PubMed

    Ryzhikov, Mikhail; Gupta, Richa; Glickman, Michael; Korolev, Sergey

    2014-10-17

    Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks. PMID:25170075

  17. Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs

    PubMed Central

    Farahmand, Mahin; Nahrevanian, Hossein

    2016-01-01

    Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs. PMID:26883952

  18. Generation of Recombinant Modified Vaccinia Virus Ankara Encoding VP2, NS1, and VP7 Proteins of Bluetongue Virus.

    PubMed

    Marín-López, Alejandro; Ortego, Javier

    2016-01-01

    Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental vaccine vector for its lack of replication in mammalian cells and high expression level of foreign/heterologous genes. Recombinant MVAs (rMVAs) are used as platforms for protein production as well as vectors to generate vaccines against a high number of infectious diseases and other pathologies. The portrait of the virus combines desirable elements such as high-level biological safety, the ability to activate appropriate innate immune mediators upon vaccination, and the capacity to deliver substantial amounts of heterologous antigens. Recombinant MVAs encoding proteins of bluetongue virus (BTV), an Orbivirus that infects domestic and wild ruminants transmitted by biting midges of the Culicoides species, are excellent vaccine candidates against this virus. In this chapter we describe the methods for the generation of rMVAs encoding VP2, NS1, and VP7 proteins of bluetongue virus as a model example for orbiviruses. The protocols included cover the cloning of VP2, NS1, and VP7 BTV-4 genes in a transfer plasmid, the construction of recombinant MVAs, the titration of virus working stocks and the protein expression analysis by immunofluorescence and radiolabeling of rMVA infected cells as well as virus purification.

  19. Overexpressing target helper genes enhances secretion and glycosylation of recombinant proteins in Pichia pastoris under simulated microgravity.

    PubMed

    Huangfu, Jie; Xu, Yinghua; Li, Chun; Li, Jun

    2016-10-01

    In this study, the potential helper genes were identified through the data analysis of transcriptomic and proteomic profiling in recombinant Pichia pastoris cultured under simulated microgravity (SMG). Co-expressing of four genes PRX1, YAP1, AHA1, and YPT6, involved in the oxidative stress response and protein folding, exhibited promising helper factor effects on the recombinant protein yields in engineered P. pastoris, respectively. When two of the above genes were co-expressed simultaneously, β-glucuronidase (PGUS) specific activity was further increased by 30.3-50.6 % comparing with that of single helper gene, particularly when the oxidative stress response and protein folding genes were both present in the combinations. In addition, co-expressing co-chaperone AHA1 and transcription factor YAP1 not only enhanced PGUS secretion, but also affected its glycosylation. Thus, through deep "omics" analysis of SMG effects, our results provided combined impact of new helper factors to improve the efficacy of recombinant protein secretion and glycosylation in engineered P. pastoris. PMID:27535143

  20. Expression and purification of recombinant antibody formats and antibody fusion proteins.

    PubMed

    Siegemund, Martin; Richter, Fabian; Seifert, Oliver; Unverdorben, Felix; Kontermann, Roland E

    2014-01-01

    In the laboratory-scale production of antibody fragments or antibody fusion proteins, it is often difficult to keep track on the most suitable affinity tags for protein purification from either prokaryotic or eukaryotic host systems. Here, we describe how such recombinant proteins derived from Escherichia coli lysates as well as HEK293 cell culture supernatants are purified by IMAC and by different affinity chromatography methods based on fusions to FLAG-tag, Strep-tag, and Fc domains. PMID:24515473

  1. Recombinant Expression, Biophysical Characterization, and Cardiolipin-Induced Changes of Two Caenorhabditis elegans Cytochrome c Proteins

    PubMed Central

    Vincelli, Amber J.; Pottinger, Danielle S.; Zhong, Fangfang; Hanske, Jonas; Rolland, Stéphane G.; Conradt, Barbara; Pletneva, Ekaterina V.

    2013-01-01

    Cytochrome c (cyt c) is one of the most widely studied biomolecules, but not much is known about this protein from nematodes. Recombinant expression of C. elegans CYC-2.1 and CYC-2.2 allowed for detailed characterization of their structural features, redox properties, stabilities, and interactions with cardiolipin (CL)-containing liposomes. Using a variety of spectroscopic tools, we show that CYC-2.1 and CYC-2.2 adopt a globular α-helical fold with His/Met heme ligation. The longer CYC-2.2 has a lower thermodynamic stability than CYC-2.1 and lacks His residues to misligate to the heme in the protein’s denatured state. Both C. elegans proteins bind to CL-containing liposomes and these interactions promote the proteins’ peroxidase activity but to a much greater degree for CYC-2.2. Dye-to-heme distance distributions from time-resolved FRET in bimane-labeled CYC-2.1 and CYC-2.2 revealed similar populations of extended and compact conformers for CL-bound proteins, suggesting that their distinct peroxidase activities in the presence of CL arise from differences in the local heme environments for the two polypeptide ensembles. Without inhibition from His misligation, a less stable and more prone to unfolding CYC-2.2 allows for better access of substrates to the heme and thus exhibits higher peroxidase activity. Similar features of the conformational ensembles of CYC-2.1 and CYC-2.2 to those of mammalian cyt c suggest that C. elegans proteins, particularly the former, could serve as useful models for examining the mechanism of cyt c-CL interactions in live organisms. PMID:23282202

  2. Evaluation of the recombinant protein TpF1 of Treponema pallidum for serodiagnosis of syphilis.

    PubMed

    Jiang, Chuanhao; Zhao, Feijun; Xiao, Jinhong; Zeng, Tiebing; Yu, Jian; Ma, Xiaohua; Wu, Haiying; Wu, Yimou

    2013-10-01

    Syphilis is a chronic infection caused by Treponema pallidum subsp. pallidum, and diagnosis with sensitive and specific methods is a challenging process that is important for its prevention and treatment. In the present study, we established a recombinant protein TpF1-based indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a Western blot assay for human and rabbit sera. The 20-kDa recombinant protein TpF1 was detected by Western blotting performed with sera from rabbits immunized with recombinant TpF1 and infected with the T. pallidum Nichols strain and T. pallidum clinical isolates but was not detected by Western blotting with sera from uninfected rabbits. The sensitivity of the recombinant protein was determined by screening sera from individuals with primary, secondary, latent, and congenital syphilis (n = 82). The specificity of the recombinant protein was determined by screening sera from uninfected controls (n = 30) and individuals with potentially cross-reactive infections, including Lyme disease (n = 30) and leptospirosis (n = 5). The sensitivities of TpF1-based ELISAs were 93.3%, 100%, 100%, and 100% for primary, secondary, latent, and congenital syphilis, respectively, and the specificities were all 100% for sera from uninfected controls and individuals with potentially cross-reactive infections. In Western blot assays, the sensitivities and specificities of TpF1 for human sera were all 100%. The reactivities of TpF1 with syphilitic sera were proportional to the titers of the T. pallidum particle agglutination (TPPA) assay. These data indicate that the recombinant protein TpF1 is a highly immunogenic protein in human and rabbit infections and a promising marker for the screening of syphilis. PMID:23945159

  3. Detection of antibodies to caprine arthritis-encephalitis virus using recombinant gag proteins.

    PubMed

    Rimstad, E; East, N; DeRock, E; Higgins, J; Pedersen, N C

    1994-01-01

    The coding sequences of the core proteins p17 and p28 of caprine arthritis-encephalitis virus (CAEV) were amplified using the polymerase chain reaction and cloned into the plasmid expression vector p-GEX-2T. Both p17 and p28 were expressed as fusion proteins with glutathione S-transferase. The recombinant proteins were affinity purified from induced bacterial lysates using glutathione-agarose beads. The purified proteins were used in an enzyme-linked immunosorbent assay (ELISA) to detect antibodies against CAEV in goat sera and milk samples. Three different ELISA tests were developed based on p17, p28 or the combination of these two recombinant proteins (p17 + p28). A comparison was made to an ELISA based on purified whole virus particles and to agar immunodiffusion test (AGID). Sera with conflicting results in the different ELISA tests were examined by Western blotting. There was a high correlation between the ELISA tests based on p17 + p28 recombinant proteins and whole virus ELISA, with an estimated kappa value of 0.92. Only 72-75% of the sera that tested positive in these two ELISA tests were positive in AGID. Antibodies to CAEV were detected in significantly more animals when serum samples were tested compared to milk samples. Based on the time and materials required to prepare the reagents, the recombinant based ELISA test was less expensive than the whole virus ELISA.

  4. Micro-algae come of age as a platform for recombinant protein production

    PubMed Central

    Specht, Elizabeth; Miyake-Stoner, Shigeki

    2010-01-01

    A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins. PMID:20556634

  5. A highly effective and adjustable dual plasmid system for O-GlcNAcylated recombinant protein production in E. coli.

    PubMed

    Han, Cuifang; Shan, Hui; Bi, Chuanlin; Zhang, Xinling; Qi, Jieqiong; Zhang, Boyuan; Gu, Yuchao; Yu, Wengong

    2015-06-01

    O-GlcNAcylation is a ubiquitous, dynamic and reversible post-translational protein modification in metazoans, and it is catalysed and removed by O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. Prokaryotes lack endogenous OGT activity. It has been reported that coexpression of mammalian OGT with its target substrates in Escherichia coli produce O-GlcNAcylated recombinant proteins, but the plasmids used were not compatible, and the expression of both OGT and its target protein were induced by the same inducer. Here, we describe a compatible dual plasmid system for coexpression of OGT and its target substrate for O-GlcNAcylated protein production in E. coli. The approach was validated using the CKII and p53 protein as control. This compatible dual plasmid system contains an arabinose-inducible OGT expression vector with a pUC origin and an isopropyl β-d-thiogalactopyranoside-inducible OGT target substrate expression vector bearing a p15A origin. The dual plasmid system produces recombinant proteins with varying O-GlcNAcylation levels by altering the inducer concentration. More importantly, the O-GlcNAcylation efficiency was much higher than the previously reported system. Altogether, we established an adjustable compatible dual plasmid system that can effectively yield O-GlcNAcylated proteins in E. coli.

  6. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.

    PubMed

    Wakasa, Yuhya; Takaiwa, Fumio

    2016-01-01

    Rice seeds are an ideal production platform for high-value recombinant proteins in terms of economy, scalability, safety, and stability. Strategies for the expression of large amounts of recombinant proteins in rice seeds have been established in the past decade and transgenic rice seeds that accumulate recombinant products such as bioactive peptides and proteins, which promote the health and quality of life of humans, have been generated in many laboratories worldwide. One of the most important advantages is the potential for direct oral delivery of transgenic rice seeds without the need for recombinant protein purification (downstream processing), which has been attributed to the high expression levels of recombinant products. Transgenic rice will be beneficial as a delivery system for pharmaceuticals and nutraceuticals in the future. This chapter introduces the strategy for producing recombinant protein in the edible part (endosperm) of the rice grain and describes methods for the analysis of transgenic rice seeds in detail. PMID:26614293

  7. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning

    PubMed Central

    Teulé, Florence; Cooper, Alyssa R; Furin, William A; Bittencourt, Daniela; Rech, Elibio L; Brooks, Amanda; Lewis, Randolph V

    2009-01-01

    The extreme strength and elasticity of spider silks originate from the modular nature of their repetitive proteins. To exploit such materials and mimic spider silks, comprehensive strategies to produce and spin recombinant fibrous proteins are necessary. This protocol describes silk gene design and cloning, protein expression in bacteria, recombinant protein purification and fiber formation. With an improved gene construction and cloning scheme, this technique is adaptable for the production of any repetitive fibrous proteins, and ensures the exact reproduction of native repeat sequences, analogs or chimeric versions. The proteins are solubilized in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at 25–30% (wt/vol) for extrusion into fibers. This protocol, routinely used to spin single micrometer-size fibers from several recombinant silk-like proteins from different spider species, is a powerful tool to generate protein libraries with corresponding fibers for structure–function relationship investigations in protein-based biomaterials. This protocol may be completed in 40 d. PMID:19229199

  8. Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma.

    PubMed

    Zaid, Khaled Waleed; Chantiri, Mansour; Bassit, Ghassan

    2016-01-01

    Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor-β superfamily, regulate many cellular activities including cell migration, differentiation, adhesion, proliferation and apoptosis. Use of recombinant human bone morphogenic protein?2 (rhBMP?2) in oral and maxillofacial surgery has seen a tremendous increase. Due to its role in many cellular pathways, the influence of this protein on carcinogenesis in different organs has been intensively studied over the past decade. BMPs also have been detected to have a role in the development and progression of many tumors, particularly disease-specific bone metastasis. In oral squamous cell carcinoma - the tumor type accounting for more than 90% of head and neck malignancies- aberrations of both BMP expression and associated signaling pathways have a certain relation with the development and progression of the disease by regulating a range of biological functions in the altered cells. In the current review, we discuss the influence of BMPs -especially rhBMP-2- in the development and progression of oral squamous cell carcinoma. PMID:27039814

  9. Study on the immune response to recombinant Hsp70 protein from Megalobrama amblycephala.

    PubMed

    Chen, Nan; Wan, Xiao-Ling; Huang, Chun-Xiao; Wang, Wei-Min; Liu, Hong; Wang, Huan-Ling

    2014-11-01

    The expression of heat shock protein 70 (Hsp70) is induced in response to many factors including high temperature, infection, metal pollutants and toxic chemicals. In this study, Megalobrama amblycephala HSP70 promoter was cloned, and characteristic heat shock elements (HSEs) were identified in the promoter region. The recombinant M. amblycephala Hsp70 protein (rMaHsp70) was expressed and purified from Escherichia coli BL21 (DE3). To evaluate in vivo immune response of rMaHsp70, we administered intraperitoneal (IP) injection, and demonstrated that rMaHsp70 stimulated M. amblycephala immune activity by inducing the expression of HSP70, HIF-1α, HSC70, CXCR4b, TNF-α and IL-1β mRNAs in liver, headkidney, spleen and gill, as well as SOD, glutathione, lysozyme and interferon alpha proteins in serum and liver. The effect of rMaHsp70 as adjuvant against Aeromonas hydrophila was assessed by injecting a mixed vaccine of rMaHsp70 and A. hydrophila (A. hydrophila/Hsp70) into M. amblycephala, and the relative percent survival (RPS) in the A. hydrophila/Hsp70 group was 75% compared to 50% in the A. hydrophila/PBS group. Furthermore, rMaHsp70 also promoted the proliferation and suppressed apoptosis in M. amblycephala fin cells (MAF) in a dose-dependent manner. Taken together, these results suggest that rMaHsp70 can induce organic immune response and improve environmental tolerance. PMID:25113416

  10. Transcriptional analysis for oral vaccination of recombinant viral proteins against white spot syndrome virus (WSSV) in Litopenaeus vannamei.

    PubMed

    Choi, Mi Ran; Kim, Yeong Jin; Jang, Ji-Suk; Kim, Sung-Koo

    2011-02-01

    This study was carried out for the molecular level identification of recombinant protein vaccine efficacy, by oral feeding against white spot syndrome virus infection, with the comparison of viral mRNA transcriptional levels in shrimp cells. For the determination of WSSV dilution ratio for the vaccination experiment by oral feeding, in vivo virus titration was carried out using different virus dilutions of virus stock (1×10(2), 2×10(2), and 1×10(3)). Among the dilution ratios, 2×10(2) diluted WSSV stock was chosen as the optimal condition because this dilution showed 90% mortality at 10 days after virus injection. Recombinant viral proteins, rVP19 and rVP28, produced as protein vaccines were delivered in shrimps by oral feeding. The cumulative mortalities of the shrimps vaccinated with rVP19 and rVP28 at 21 days after the challenge with WSSV were 66.7% and 41.7%, respectively. This indicates that rVP28 showed a better protective effect against WSSV in shrimp than rVP19. Through the comparison of mRNA transcriptional levels of viral genes from collected shrimp organ samples, it was confirmed that viral gene transcriptions of vaccinated shrimps were delayed for 4~10 days compared with those of unvaccinated shrimps. Protection from WSSV infection in shrimp by the vaccination with recombinant viral proteins could be accomplished by the prevention of entry of WSSV due to the shrimp immune system activated by recombinant protein vaccines.

  11. Intranasal vaccination of recombinant H5N1 HA1 proteins fused with foldon and Fc induces strong mucosal immune responses with neutralizing activity: Implication for developing novel mucosal influenza vaccines

    PubMed Central

    Yu, Fei; Li, Ye; Guo, Yan; Wang, Lili; Yang, Jie; Zhao, Guangyu; Zhou, Yusen; Du, Lanying; Jiang, Shibo

    2015-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus remains a threat to public health because of its continued spread in poultry in some countries and its ability to infect humans with high mortality rate, calling for the development of effective and safe vaccines against H5N1 infection. Here, we constructed 4 candidate vaccines by fusing H5N1 hemagglutinin 1 (HA1) with foldon (HA1-Fd), human IgG Fc (HA1-Fc), foldon and Fc (HA1-FdFc) or His-tag (HA1-His). We then compared their ability to induce mucosal immune responses and neutralizing antibodies in the presence or absence of Poly(I:C) and CpG adjuvants via the intranasal route. Without an adjuvant, HA1-FdFc could elicit appreciable humoral immune responses and local mucosal IgA antibodies in immunized mice, while other vaccine candidates only induced background immune responses. In the presence of Poly(I:C) and CpG, both HA1-Fd and HA1-Fc elicited much higher levels of serum IgG and local mucosal IgA antibodies than HA1-His. Poly(I:C) and CpG could also augment the neutralizing antibody responses induced by these 4 vaccine candidates in the order of HA1-FdFc > HA1-Fc > HA1-Fd > HA1-His. These results suggest that both Fd and Fc potentiate the immunogenicity of the recombinant HA1 protein and that Poly(I:C) and CpG serve as efficient mucosal adjuvants in promoting efficacy of these vaccine candidates to induce strong systemic and local antibody responses and potent neutralizing antibodies, providing a useful strategy to develop effective and safe mucosal H5N1 vaccines. PMID:26260706

  12. Intranasal vaccination of recombinant H5N1 HA1 proteins fused with foldon and Fc induces strong mucosal immune responses with neutralizing activity: Implication for developing novel mucosal influenza vaccines.

    PubMed

    Yu, Fei; Li, Ye; Guo, Yan; Wang, Lili; Yang, Jie; Zhao, Guangyu; Zhou, Yusen; Du, Lanying; Jiang, Shibo

    2015-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus remains a threat to public health because of its continued spread in poultry in some countries and its ability to infect humans with high mortality rate, calling for the development of effective and safe vaccines against H5N1 infection. Here, we constructed 4 candidate vaccines by fusing H5N1 hemagglutinin 1 (HA1) with foldon (HA1-Fd), human IgG Fc (HA1-Fc), foldon and Fc (HA1-FdFc) or His-tag (HA1-His). We then compared their ability to induce mucosal immune responses and neutralizing antibodies in the presence or absence of Poly(I:C) and CpG adjuvants via the intranasal route. Without an adjuvant, HA1-FdFc could elicit appreciable humoral immune responses and local mucosal IgA antibodies in immunized mice, while other vaccine candidates only induced background immune responses. In the presence of Poly(I:C) and CpG, both HA1-Fd and HA1-Fc elicited much higher levels of serum IgG and local mucosal IgA antibodies than HA1-His. Poly(I:C) and CpG could also augment the neutralizing antibody responses induced by these 4 vaccine candidates in the order of HA1-FdFc > HA1-Fc > HA1-Fd > HA1-His. These results suggest that both Fd and Fc potentiate the immunogenicity of the recombinant HA1 protein and that Poly(I:C) and CpG serve as efficient mucosal adjuvants in promoting efficacy of these vaccine candidates to induce strong systemic and local antibody responses and potent neutralizing antibodies, providing a useful strategy to develop effective and safe mucosal H5N1 vaccines.

  13. Recombinant methods in protein and whole-cell biosensing

    NASA Astrophysics Data System (ADS)

    Shetty, R. S.; Salins, Lyndon L.; Ramanathan, S.; Daunert, Sylvia

    1999-12-01

    In this paper, we investigate the use of fluorescently- labeled binding proteins and genetically engineered bacterial cells for sensing of phosphate, glucose, and L- arabinose. To optimize the performance of the labeled binding proteins for biosensing purposes, a few key considerations were taken into account. A site-selective labeling protocol of the fluorescent reporter to the protein was used to ensure that the probe reported from a specific domain of the protein. The labeling sites chosen were hypothesized to undergo a physicochemical change when the biorecognition element binds the analyte. Cysteine mutations were introduced into the binding proteins by site-directed mutagenesis using the polymerase chain reaction. The residues selected were all in close proximity to the binding cleft, a region that is affected the most by the conformational change that accompanies ligand binding. The cysteine residues were then labeled with environment- sensitive fluorophores and changes in the fluorescence properties of the conjugates were monitored and related to the amount of ligand present. The application of microorganisms in sensing systems represent new advances in the development of novel analytical techniques for the detection of a target analyte. In these systems, a genetically engineered organism generates an analytically useful signal when it encounters a specific target substance due to selective recognition and binding properties towards that particular compound. This concept has been demonstrated using an optical bacteria-based sensing system capable of detecting the monosaccharide L-arabinose that employed the green fluorescent protein as a reporter protein.

  14. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    PubMed

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  15. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    PubMed

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  16. Expression and purification of recombinant active prostate-specific antigen from Escherichia coli.

    PubMed

    Jeong, Sujin; Lee, Seong-Wook

    2007-05-01

    Human prostate-specific antigen (PSA), a 33 kDa serine protease with comprehensive homology to glandular kallikrein, is secreted from prostatic tissue into the seminal fluid and enters into the circulation. The level of PSA increases in the serum of patients with prostatic cancer and hence is widely employed as a marker of the disease status. In particular, an enzymatically active PSA that is a form cleaved at the N-terminal seven-amino-acids prosequence, APLILSR, of proPSA may play an important roll in the progression of prostate cancer. Thus, the presence of the active form would selectively discriminate the cancer from benign prostatic hyperplasia. In this study, we developed a convenient purification method for the acquisition of active PSA and proPSA. Recombinant proPSA and active PSA were expressed directly in Escherichia coli, easily and efficiently isolated from inclusion bodies, refolded, and purified. Moreover, the enzymatic activity of the recombinant active PSA was confirmed as serine protease using chromogenic chymotrypsin substrate. This purified active PSA could be further applied to scrutinize the biological or conformational characteristics of the protein and to develop specific diagnostic and/or therapeutic agents against prostate cancer.

  17. Algorithms for selecting breakpoint locations to optimize diversity in protein engineering by site-directed protein recombination.

    PubMed

    Zheng, Wei; Ye, Xiaoduan; Friedman, Alan M; Bailey-Kellogg, Chris

    2007-01-01

    Protein engineering by site-directed recombination seeks to develop proteins with new or improved function, by accumulating multiple mutations from a set of homologous parent proteins. A library of hybrid proteins is created by recombining the parent proteins at specified breakpoint locations; subsequent screening/selection identifies hybrids with desirable functional characteristics. In order to improve the frequency of generating novel hybrids, this paper develops the first approach to explicitly plan for diversity in site-directed recombination, including metrics for characterizing the diversity of a planned hybrid library and efficient algorithms for optimizing experiments accordingly. The goal is to choose breakpoint locations to sample sequence space as uniformly as possible (which we argue maximizes diversity), under the constraints imposed by the recombination process and the given set of parents. A dynamic programming approach selects optimal breakpoint locations in polynomial time. Application of our method to optimizing breakpoints for an example biosynthetic enzyme, purE, demonstrates the significance of diversity optimization and the effectiveness of our algorithms.

  18. Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae.

    PubMed Central

    Soustelle, Christine; Vedel, Michèle; Kolodner, Richard; Nicolas, Alain

    2002-01-01

    In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis. PMID:12072452

  19. Several recombinant capsid proteins of equine rhinitis a virus show potential as diagnostic antigens.

    PubMed

    Li, Fan; Stevenson, Rachel A; Crabb, Brendan S; Studdert, Michael J; Hartley, Carol A

    2005-06-01

    Equine rhinitis A virus (ERAV) is a significant pathogen of horses and is also closely related to Foot-and-mouth disease virus (FMDV). Despite these facts, knowledge of the prevalence and importance of ERAV infections remains limited, largely due to the absence of a simple, robust diagnostic assay. In this study, we compared the antigenicities of recombinant full-length and fragmented ERAV capsid proteins expressed in Escherichia coli by using sera from experimentally infected and naturally exposed horses. We found that, from the range of antigens tested, recombinant proteins encompassing the C-terminal region of VP1, full-length VP2, and the N-terminal region of VP2 reacted specifically with antibodies present in sera from each of the five experimentally infected horses examined. Antibodies to epitopes on VP2 (both native and recombinant forms) persisted longer postinfection (>105 days) than antibodies specific for epitopes on other fragments. Our data also suggest that B-cell epitopes within the C terminus of VP1 and N terminus of VP2 contribute to a large proportion of the total reactivity of recombinant VP1 and VP2, respectively. Importantly, the reactivity of these VP1 and VP2 recombinant proteins in enzyme-linked immunosorbent assays (ELISAs) correlated well with the results from a range of native antigen-based serological assays using sera from 12 field horses. This study provides promising candidates for development of a diagnostic ERAV ELISA.

  20. Evaluation of recombinant proteins of Burkholderia mallei for serodiagnosis of glanders.

    PubMed

    Pal, Vijai; Kumar, Subodh; Malik, Praveen; Rai, Ganga Prasad

    2012-08-01

    Glanders is a contagious disease caused by the Gram-negative bacillus Burkholderia mallei. The number of equine glanders outbreaks has increased steadily during the last decade. The disease must be reported to the Office International des Epizooties, Paris, France. Glanders serodiagnosis is hampered by the considerable number of false positives and negatives of the internationally prescribed tests. The major problem leading to the low sensitivity and specificity of the complement fixation test (CFT) and enzyme-linked immunosorbent assay (ELISA) has been linked to the test antigens currently used, i.e., crude preparations of whole cells. False-positive results obtained from other diagnostic tests utilizing crude antigens lead to financial losses to animal owners, and false-negative results can turn a risk into a possible threat. In this study, we report on the identification of diagnostic targets using bioinformatics tools for serodiagnosis of glanders. The identified gene sequences were cloned and expressed as recombinant proteins. The purified recombinant proteins of B. mallei were used in an indirect ELISA format for serodiagnosis of glanders. Two recombinant proteins, 0375H and 0375TH, exhibited 100% sensitivity and specificity for glanders diagnosis. The proteins also did not cross-react with sera from patients with the closely related disease melioidosis. The results of this investigation highlight the potential of recombinant 0375H and 0375TH proteins in specific and sensitive diagnosis of glanders.

  1. The Quaternary Structure of the Recombinant Bovine Odorant-Binding Protein Is Modulated by Chemical Denaturants

    PubMed Central

    Stepanenko, Olga V.; Stepanenko, Olesya V.; Staiano, Maria; Kuznetsova, Irina M.; Turoverov, Konstantin K.; D’Auria, Sabato

    2014-01-01

    A large group of odorant-binding proteins (OBPs) has attracted great scientific interest as promising building blocks in constructing optical biosensors for dangerous substances, such as toxic and explosive molecules. Native tissue-extracted bovine OBP (bOBP) has a unique dimer folding pattern that involves crossing the α-helical domain in each monomer over the other monomer’s β-barrel. In contrast, recombinant bOBP maintaining the high level of stability inherent to native tissue bOBP is produced in a stable native-like state with a decreased tendency for dimerization and is a mixture of monomers and dimers in a buffered solution. This work is focused on the study of the quaternary structure and the folding-unfolding processes of the recombinant bOBP in the absence and in the presence of guanidine hydrochloride (GdnHCl). Our results show that the recombinant bOBP native dimer is only formed at elevated GdnHCl concentrations (1.5 M). This process requires re-organizing the protein structure by progressing through the formation of an intermediate state. The bOBP dimerization process appears to be irreversible and it occurs before the protein unfolds. Though the observed structural changes for recombinant bOBP at pre-denaturing GdnHCl concentrations show a local character and the overall protein structure is maintained, such changes should be considered where the protein is used as a sensitive element in a biosensor system. PMID:24409322

  2. Toward an era of utilizing methionine overproducing hosts for recombinant protein production in Escherichia coli.

    PubMed

    Veeravalli, Karthik; Laird, Michael W

    2015-01-01

    Amino acid sequence variants, especially variants containing non-canonical amino acids such as norleucine and norvaline, are a concern during therapeutic protein production in microbial systems. Substitution of methionine residues with norleucine in recombinant proteins produced in Escherichia coli is well known. Continuous feeding of amino acids such as methionine is commonly used in E. coli fermentation processes to control incorporation of norleucine in the recombinant protein. There are several disadvantages associated with continuous feeding during a fermentation process. For example, a continuous feed increases the operational complexity and cost of a manufacturing process and results in dilution of culture medium which could result in lower cell densities and product yields. To overcome the limitations of existing approaches to prevent norleucine incorporation during E. coli fermentations, a new approach using an engineered host was developed that overproduces methionine in the cell to prevent norleucine incorporation without negatively impacting fermentation process performance and product yields. In this commentary, the results on using methionine overproducing hosts for recombinant protein production in E. coli and some "watch outs" when using these hosts for recombinant protein production are discussed.

  3. Toward an era of utilizing methionine overproducing hosts for recombinant protein production in Escherichia coli

    PubMed Central

    Veeravalli, Karthik; Laird, Michael W

    2015-01-01

    Amino acid sequence variants, especially variants containing non-canonical amino acids such as norleucine and norvaline, are a concern during therapeutic protein production in microbial systems. Substitution of methionine residues with norleucine in recombinant proteins produced in Escherichia coli is well known. Continuous feeding of amino acids such as methionine is commonly used in E. coli fermentation processes to control incorporation of norleucine in the recombinant protein. There are several disadvantages associated with continuous feeding during a fermentation process. For example, a continuous feed increases the operational complexity and cost of a manufacturing process and results in dilution of culture medium which could result in lower cell densities and product yields. To overcome the limitations of existing approaches to prevent norleucine incorporation during E. coli fermentations, a new approach using an engineered host was developed that overproduces methionine in the cell to prevent norleucine incorporation without negatively impacting fermentation process performance and product yields. In this commentary, the results on using methionine overproducing hosts for recombinant protein production in E. coli and some “watch outs” when using these hosts for recombinant protein production are discussed. PMID:25801611

  4. Recombinant Flagellin-Porcine Circovirus Type 2 Cap Fusion Protein Promotes Protective Immune Responses in Mice

    PubMed Central

    Zhang, Chunyan; Zhu, Shanshan; Wei, Li; Yan, Xu; Wang, Jing; Quan, Rong; She, Ruiping; Hu, Fengjiao; Liu, Jue

    2015-01-01

    The Cap protein of porcine circovirus type 2 (PCV2) that serves as a major host-protective immunogen was used to develop recombinant vaccines for control of PCV2-associated diseases. Growing research data have demonstrated the high effectiveness of flagellin as an adjuvant for humoral and cellular immune responses. Here, a recombinant protein was designed by fusing a modified version of bacterial flagellin to PCV2 Cap protein and expressed in a baculovirus system. When administered without adjuvant to BALB/c mice, the flagellin-Cap fusion protein elicited stronger PCV2-specific IgG antibody response, higher neutralizing antibody levels, milder histopathological changes and lower viremia, as well as higher secretion of cytokines such as TNF-α and IFN-γ that conferred better protection against virus challenge than those in the recombinant Cap alone-inoculated mice. These results suggest that the recombinant Cap protein when fused to flagellin could elicit better humoral and cellular immune responses against PCV2 infection in a mouse model, thereby acting as an attractive candidate vaccine for control of the PCV2-associated diseases. PMID:26070075

  5. Expression of functional Bunyamwera virus L protein by recombinant vaccinia viruses.

    PubMed

    Jin, H; Elliott, R M

    1991-08-01

    A cDNA containing the complete coding sequence of the Bunyamwera virus (family Bunyaviridae) L genome segment has been constructed and cloned into two recombinant vaccinia virus expression systems. In the first, the L gene is under control of vaccinia virus P7.5 promoter; in the second, the L gene is under control of the bacteriophage T7 phi 10 promoter, and expression of the L gene requires coinfection with a second recombinant vaccinia virus which synthesizes T7 RNA polymerase. Both systems express a protein which is the same size as the Bunyamwera virus L protein and is recognized by a monospecific L antiserum. The expressed L protein was shown to be functional in synthesizing Bunyamwera virus RNA in a nucleocapsid transfection assay: recombinant vaccinia virus-infected cells were transfected with purified Bunyamwera virus nucleocapsids, and subsequently, total cellular RNA was analyzed by Northern (RNA) blotting. No Bunyamwera virus RNA was detected in control transfections, but in cells which had previously been infected with recombinant vaccinia viruses expressing the L protein, both positive- and negative-sense Bunyamwera virus S segment RNA was detected. The suitability of this system to delineate functional domains within the Bunyamwera virus L protein is discussed.

  6. Properties and mutation studies of a bacteriophage-derived chimeric recombinant staphylolytic protein P128

    PubMed Central

    Saravanan, Sanjeev Rajagopalan; Paul, Vivek Daniel; George, Shilpa; Sundarrajan, Sudarson; Kumar, Nirmal; Hebbur, Madhavi; Kumar, Naveen; Veena, Ananda; Maheshwari, Uma; Appaiah, Chemira Biddappa; Chidambaran, Muralidharan; Bhat, Anuradha Gopal; Hariharan, Sukumar; Padmanabhan, Sriram

    2013-01-01

    P128 is a chimeric anti-staphylococcal protein having a catalytic domain from a Staphylococcus bacteriophage K tail associated structural protein and a cell wall targeting domain from the Staphylococcus bacteriocin-lysostaphin. In this study, we disclose additional properties of P128 and compared the same with lysostaphin. While lysostaphin was found to get inactivated by heat and was inactive on its parent strain S. simulans biovar staphylolyticus, P128 was thermostable and was lytic towards S. simulans biovar staphylolyticus demonstrating a difference in their mechanism of action. Selected mutation studies of the catalytic domain of P128 showed that arginine and cysteine, at 40th and 76th positions respectively, are critical for the staphylolytic activity of P128, although these amino acids are not conserved residues. In comparison to native P128, only the R40S mutant (P301) was catalytically active on zymogram gel and had a similar secondary structure, as assessed by circular dichroism analysis and in silico modeling with similar cell binding properties. Mutation of the arginine residue at 40th position of the P128 molecule caused dramatic reduction in the Vmax (∆OD600 [mg/min]) value (nearly 270 fold) and the recombinant lysostaphin also showed lesser Vmax value (nearly 1.5 fold) in comparison to the unmodified P128 protein. The kinetic parameters such as apparent Km (Km APP) and apparent Kcat (KcatAPP) of the native P128 protein also showed significant differences in comparison to the values observed for P301 and lysostaphin. PMID:24251076

  7. Contraceptive efficacy of recombinant fusion protein comprising zona pellucida glycoprotein-3 fragment and gonadotropin releasing hormone.

    PubMed

    Arukha, Ananta Prasad; Minhas, Vidisha; Shrestha, Abhinav; Gupta, Satish Kumar

    2016-04-01

    Contraceptive vaccines have been used for the management of wildlife population. In the present study, we have examined the contraceptive potential of Escherichia coli-expressed recombinant fusion protein comprising of 'promiscuous' T cell epitope of tetanus toxoid [TT; amino acid (aa) residues 830-844] followed by dilysine linker (KK), dog ZP3 fragment (aa residues 307-346), triglycine spacer (GGG), T cell epitope of bovine RNase (bRNase; aa residues 94-104), GnRH, T cell epitope of circumsporozoite protein of Plasmodium falciparum (CSP; aa residues 362-383), and GnRH. SDS-PAGE analysis of the purified refolded protein revealed a dominant ∼12 kDa band, which in Western blot reacted with mouse polyclonal antibodies against dog ZP3 fragment and mouse monoclonal antibodies against GnRH. Immunization of female FvB/J mice following two booster schedule with the above recombinant protein supplemented with alum led to high antibody titres against the immunogen as well as ZP3 and GnRH as determined by ELISA. The immune sera reacted with zona pellucida of mouse oocyte and also inhibited in-vitro fertilization. The qRT-PCR studies showed decrease in the ovarian GnRH receptor in mice immunized with the recombinant fusion protein. Mating studies revealed high contraceptive efficacy of the recombinant protein as in two independent experiments, 90% of the immunized female mice failed to conceive. Following one booster immunization schedule, 50% of the immunized female mice failed to conceive. However, in adjuvanted controls, all the female mice became pregnant. To conclude, the recombinant protein described herein has a good potential to be developed as candidate contraceptive vaccine. PMID:26859695

  8. Effect of codon-optimized E. coli signal peptides on recombinant Bacillus stearothermophilus maltogenic amylase periplasmic localization, yield and activity.

    PubMed

    Samant, Shalaka; Gupta, Gunja; Karthikeyan, Subbulakshmi; Haq, Saiful F; Nair, Ayyappan; Sambasivam, Ganesh; Sukumaran, Sunilkumar

    2014-09-01

    Recombinant proteins can be targeted to the Escherichia coli periplasm by fusing them to signal peptides. The popular pET vectors facilitate fusion of target proteins to the PelB signal. A systematic comparison of the PelB signal with native E. coli signal peptides for recombinant protein expression and periplasmic localization is not reported. We chose the Bacillus stearothermophilus maltogenic amylase (MA), an industrial enzyme widely used in the baking and brewing industry, as a model protein and analyzed the competence of seven, codon-optimized, E. coli signal sequences to translocate MA to the E. coli periplasm compared to PelB. MA fusions to three of the signals facilitated enhanced periplasmic localization of MA compared to the PelB fusion. Interestingly, these three fusions showed greatly improved MA yields and between 18- and 50-fold improved amylase activities compared to the PelB fusion. Previously, non-optimal codon usage in native E. coli signal peptide sequences has been reported to be important for protein stability and activity. Our results suggest that E. coli signal peptides with optimal codon usage could also be beneficial for heterologous protein secretion to the periplasm. Moreover, such fusions could even enhance activity rather than diminish it. This effect, to our knowledge has not been previously documented. In addition, the seven vector platform reported here could also be used as a screen to identify the best signal peptide partner for other recombinant targets of interest. PMID:25038884

  9. The Recombinant Maize Ribosome-Inactivating Protein Transiently Reduces Viral Load in SHIV89.6 Infected Chinese Rhesus Macaques

    PubMed Central

    Wang, Rui-Rui; Au, Ka-Yee; Zheng, Hong-Yi; Gao, Liang-Min; Zhang, Xuan; Luo, Rong-Hua; Law, Sue Ka-Yee; Mak, Amanda Nga-Sze; Wong, Kam-Bo; Zhang, Ming-Xu; Pang, Wei; Zhang, Gao-Hong; Shaw, Pang-Chui; Zheng, Yong-Tang

    2015-01-01

    Ribosome inactivating proteins (RIPs) inhibit protein synthesis by depurinating the large ribosomal RNA and some are found to possess anti-human immunodeficiency virus (HIV) activity. Maize ribosome inactivating protein (RIP) has an internal inactivation loop which is proteolytically removed for full catalytic activity. Here, we showed that the recombinant active maize RIP protected chimeric simian-human immunodeficiency virus (SHIV) 89.6-infected macaque peripheral blood mononuclear cells from lysis ex vivo and transiently reduced plasma viral load in SHIV89.6-infected rhesus macaque model. No evidence of immune dysregulation and other obvious side-effects was found in the treated macaques. Our work demonstrates the potential development of maize RIP as an anti-HIV agent without impeding systemic immune functions. PMID:25606813

  10. Increased flexibility decreases antifreeze protein activity

    PubMed Central

    Patel, Shruti N; Graether, Steffen P

    2010-01-01

    Antifreeze proteins protect several cold-blooded organisms from subzero environments by preventing death from freezing. The Type I antifreeze protein (AFP) isoform from Pseudopleuronectes americanus, named HPLC6, is a 37-residue protein that is a single α-helix. Mutational analysis of the protein showed that its alanine-rich face is important for binding to and inhibiting the growth of macromolecular ice. Almost all structural studies of HPLC6 involve the use of chemically synthesized protein as it requires a native N-terminal aspartate and an amidated C-terminus for full activity. Here, we examine the role of C-terminal amide and C-terminal arginine side chain in the activity, structure, and dynamics of nonamidated Arg37 HPLC6, nonamidated HPLC6 Ala37, amidated HPLC6 Ala37, and fully native HPLC6 using a recombinant bacterial system. The thermal hysteresis (TH) activities of the nonamidated mutants are 35% lower compared with amidated proteins, but analysis of the NMR data and circular dichroism spectra shows that they are all still α-helical. Relaxation data from the two nonamidated mutants indicate that the C-terminal residues are considerably more flexible than the rest of the protein because of the loss of the amide group, whereas the amidated Ala37 mutant has a C-terminus that is as rigid as the wild-type protein and has high TH activity. We propose that an increase in flexibility of the AFP causes it to lose activity because its dynamic nature prevents it from binding strongly to the ice surface. PMID:20936690

  11. Recent advances in recombinant protein-based malaria vaccines.

    PubMed

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-12-22

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.

  12. Recent advances in recombinant protein-based malaria vaccines

    PubMed Central

    Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807

  13. Rapid screening for the robust expression of recombinant proteins in algal plastids.

    PubMed

    Barrera, Daniel; Gimpel, Javier; Mayfield, Stephen

    2014-01-01

    Chlamydomonas reinhardtii has many advantages as a photosynthetic model organism. One of these is facile, targeted chloroplast transformation by particle bombardment. Functional recombinant proteins can be expressed to significant levels in this system, potentially outperforming higher plants in speed of scaling, cost, and space requirements. Several strategies and regulatory regions can be used for achieving transgene expression. Here we present two of those strategies: one makes use of the psbD promoter for expressing moderate levels of the recombinant protein in a photosynthetic background. The other strategy is based on the strong psbA promoter for obtaining high yields of the recombinant product in a non-photosynthetic strain. We herein describe the vectors, transformation procedures, and screening methods associated with these two strategies. PMID:24599869

  14. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein. PMID:24293828

  15. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    PubMed

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein.

  16. Drosophila brca2 Is Required for Mitotic and Meiotic DNA Repair and Efficient Activation of the Meiotic Recombination Checkpoint

    PubMed Central

    Klovstad, Martha; Abdu, Uri; Schüpbach, Trudi

    2008-01-01

    Heterozygous mutations in the tumor suppressor BRCA2 confer a high risk of breast and other cancers in humans. BRCA2 maintains genome stability in part through the regulation of Rad51-dependent homologous recombination. Much about its precise function in the DNA damage responses is, however, not yet known. We have made null mutations in the Drosophila homolog of BRCA2 and measured the levels of homologous recombination, non-homologous end-joining, and single-strand annealing in the pre-meiotic germline of Drosophila males. We show that repair by homologous recombination is dramatically decreased in Drosophila brca2 mutants. Instead, large flanking deletions are formed, and repair by the non-conservative single-strand annealing pathway predominates. We further show that during meiosis, Drosophila Brca2 has a dual role in the repair of meiotic double-stranded breaks and the efficient activation of the meiotic recombination checkpoint. The eggshell patterning defects that result from activation of the meiotic recombination checkpoint in other meiotic DNA repair mutants can be strongly suppressed by mutations in brca2. In addition, Brca2 co-immunoprecipitates with the checkpoint protein Rad9, suggesting a direct role for Brca2 in the transduction of the meiotic recombination checkpoint signal. PMID:18266476

  17. Cell culture process operations for recombinant protein production.

    PubMed

    Abu-Absi, Susan; Xu, Sen; Graham, Hugh; Dalal, Nimish; Boyer, Marcus; Dave, Kedar

    2014-01-01

    The market for protein therapeutics has grown significantly over the past two decades and the pace of development continues to increase. It is a challenge to the industry to maintain the desired quality attributes while accelerating delivery to patients, reducing the cost of goods, and providing production flexibility. Efficient manufacturing scale production of protein therapeutics is required to continue to meet the needs of the patients and stockholders. This chapter describes batch, fed-batch, and perfusion processes and their utilization in the production of monoclonal antibodies and other therapeutic proteins. In addition, we have provided detailed discussions of the ongoing challenges of lactate metabolism and the future prospects of process monitoring and control. PMID:24153406

  18. Cell culture process operations for recombinant protein production.

    PubMed

    Abu-Absi, Susan; Xu, Sen; Graham, Hugh; Dalal, Nimish; Boyer, Marcus; Dave, Kedar

    2014-01-01

    The market for protein therapeutics has grown significantly over the past two decades and the pace of development continues to increase. It is a challenge to the industry to maintain the desired quality attributes while accelerating delivery to patients, reducing the cost of goods, and providing production flexibility. Efficient manufacturing scale production of protein therapeutics is required to continue to meet the needs of the patients and stockholders. This chapter describes batch, fed-batch, and perfusion processes and their utilization in the production of monoclonal antibodies and other therapeutic proteins. In addition, we have provided detailed discussions of the ongoing challenges of lactate metabolism and the future prospects of process monitoring and control.

  19. Endotoxin depletion of recombinant protein preparations through their preferential binding to histidine tags.

    PubMed

    Mack, Laura; Brill, Boris; Delis, Natalia; Groner, Bernd

    2014-12-01

    The presence of endotoxins in preparations of recombinantly produced therapeutic proteins poses serious problems for patients. Endotoxins can cause fever, respiratory distress syndromes, intravascular coagulation, or endotoxic shock. A number of methods have been devised to remove endotoxins from protein preparations using separation procedures based on molecular mass or charge properties. Most of the methods are limited in their endotoxin removal capacities and lack general applicability. We are describing a biotechnological approach for endotoxin removal. This strategy exploits the observation that endotoxins form micelles that expose negative charges on their surface, leading to preferential binding of endotoxins to cationic surfaces, allowing the separation from their resident protein. Endotoxins exhibit high affinity to stretches of histidines, which are widely used tools to facilitate the purification of recombinant proteins. They bind to nickel ions and are the basis for protein purification from cellular extracts by immobilized metal affinity chromatography. We show that the thrombin-mediated cleavage of two histidine tags from the purified recombinant protein and the adsorption of these histidine tags and their associated endotoxins to a nickel affinity column result in an appreciable depletion of the endotoxins in the purified protein fraction.

  20. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity.

    PubMed

    Fernandez-del-Carmen, Asun; Juárez, Paloma; Presa, Silvia; Granell, Antonio; Orzáez, Diego

    2013-02-20

    The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins.

  1. Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli

    PubMed Central

    Hwang, Dong Soo; Yoo, Hyo Jin; Jun, Jong Hyub; Moon, Won Kyu; Cha, Hyung Joon

    2004-01-01

    Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments. PMID:15184131

  2. Antigenic Profiles of Recombinant Proteins from Mycobacterium avium subsp paratuberculosis in Sheep with Johne's Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to improve the ELISA test to detect Mycobacterium avium subsp paratuberculosis have been explored over several years. Previously, selected recombinant proteins of M. avium subspecies paratuberculosis were found to be immunogenic in cattle with Johne’s disease. In the present study, antibo...

  3. Indirect enzyme-linked immunosorbent assay for detection of immunoglobulin G reactive with a recombinant protein expressed from the gene encoding the 116-kilodalton protein of Mycoplasma pneumoniae.

    PubMed

    Duffy, M F; Whithear, K G; Noormohammadi, A H; Markham, P F; Catton, M; Leydon, J; Browning, G F

    1999-04-01

    Serology remains the method of choice for laboratory diagnosis of Mycoplasma pneumoniae infection. Currently available serological tests employ complex cellular fractions of M. pneumoniae as antigen. To improve the specificity of M. pneumoniae diagnosis, a recombinant protein was assessed as a serodiagnostic reagent. A panel of recombinant proteins were expressed from a cloned M. pneumoniae gene that encodes a 116-kDa surface protein antigen. The recombinant proteins were assessed for reactivity with patient sera and the most antigenic was further assessed for its serodiagnostic potential by indirect enzyme-linked immunosorbent assay (ELISA). The ELISA based on the recombinant protein was equivalent in sensitivity to the commercial test (Serodia Myco II; Fujirebio Inc.) to which it was compared. Southern and Western blotting data suggested that the recombinant protein derived from the 116-kDa protein of M. pneumoniae could provide a species-specific diagnostic tool, although further assessment is required.

  4. Solution Structure and DNA-binding Properties of the Winged Helix Domain of the Meiotic Recombination HOP2 Protein*

    PubMed Central

    Moktan, Hem; Guiraldelli, Michel F.; Eyster, Craig A.; Zhao, Weixing; Lee, Chih-Ying; Mather, Timothy; Camerini-Otero, R. Daniel; Sung, Patrick; Zhou, Donghua H.; Pezza, Roberto J.

    2014-01-01

    The HOP2 protein is required for efficient double-strand break repair which ensures the proper synapsis of homologous chromosomes and normal meiotic progression. We previously showed that in vitro HOP2 shows two distinctive activities: when it is incorporated into a HOP2-MND1 heterodimer, it stimulates DMC1 and RAD51 recombination activities, and the purified HOP2 alone is proficient in promoting strand invasion. The structural and biochemical basis of HOP2 action in recombination are poorly understood; therefore, they are the focus of this work. Herein, we present the solution structure of the amino-terminal portion of mouse HOP2, which contains a typical winged helix DNA-binding domain. Together with NMR spectral changes in the presence of double-stranded DNA, protein docking on DNA, and mutation analysis to identify the amino acids involved in DNA coordination, our results on the three-dimensional structure of HOP2 provide key information on the fundamental structural and biochemical requirements directing the interaction of HOP2 with DNA. These results, in combination with mutational experiments showing the role of a coiled-coil structural feature involved in HOP2 self-association, allow us to explain important aspects of the function of HOP2 in recombination. PMID:24711446

  5. Recombinant C3adesArg/acylation stimulating protein (ASP) is highly bioactive: a critical evaluation of C5L2 binding and 3T3-L1 adipocyte activation.

    PubMed

    Cui, Wei; Lapointe, Marc; Gauvreau, Danny; Kalant, David; Cianflone, Katherine

    2009-10-01

    C5L2 is a recently identified receptor for C5a/C5adesArg, C3a and C3adesArg (ASP). C5a/C5adesArg bind with high affinity, with no identified activation. By contrast, some studies demonstrate C3a/ASP binding/activation to C5L2; others do not. Our aim is to critically evaluate ASP/C3adesArg-C5L2 binding and bioactivity. Cell-associated fluorescent-ASP (Fl-ASP) binding to C5L2 increased from transiently transfectedRecombinant ASP (rASP) produced in modified Escherichia coli Origami (DE3) (allowing folding and disulphide bridge formation), purified under non-denaturing conditions demonstrated 10x greater bioactivity vs. proteolytically derived plasma ASP for triglyceride synthesis and fatty acid uptake in 3T3-L1 adipocytes and preadipocytes while adipose tissue from C5L2 KO mice was non-responsive. rASP stimulation of adipocyte BODIPY-fatty acid uptake demonstrated EC(50) 115+/-93 nM and maximal stimulation of 413+/-33%, p<0.001. ASP binding has distinct characteristics that lead to C5L2 activation and increased

  6. Lytic efficacy of apoli protein E2 (ApoE2) and recombinant tissue plasminogen activator (rt-PA) treatment with 120 kHz ultrasound in an in-vitro human clot model

    NASA Astrophysics Data System (ADS)

    Meunier, Jason M.; Cheng, Jason Y.; Clark, Joseph F.; Shaw, George J.

    2005-04-01

    Currently, the only FDA approved therapy for acute ischemic stroke is recombinant tissue plasminogen activator (rt-PA). However rt-PA has substantial side effects such as hemorrhage. This has led to interest in other potential therapies. For example, ultrasound (US) increases the lytic efficacy of rt-PA. Also, apolipoprotein E2 (ApoE2) increases rt-PA activity. This suggests combining US, ApoE2 and rt-PA to improve thrombolysis, but the efficacy is not known. Here, the lytic efficacy of apoE2, rt-PA and 120 kHz US is measured in a human clot model. Whole blood was obtained from volunteers, after local institutional approval. Clots were formed in 1.7 mm micropipettes, and placed in a water tank that allowed microscopic video imaging during US and thrombolytic exposure. Clots were treated with rt-PA ([rt-PA]=3.15 μg/ml), rt-PA and apoE2 ([apoE2]=9.8 μg/ml), or rt-PA, apoE2 and 120 kHz US (0.35 MPa, PRF=1667 Hz, 80% duty cycle) for 15 min at 37°C in human plasma. Clot lysis was visually recorded and the lysis depth (LD) determined from these data using an image analysis algorithm. LD was linear with time for all treatments (R2>=0.81), allowing the determination of a lytic rate (LR). LR was found to be 0.35+/-0.03, 1.55+/-0.11, and 0.75+/-0.04 μm/min for the rt-PA, rt-PA and apoE2, and US treated groups respectively. The thrombolytic efficacy of rt-PA is enhanced by ApoE2. The interaction of 120 kHz with apoE2 and rt-PA showed a reduced lytic efficacy compared with rt-PA and apoE2 treatment alone. It is possible that US interferes with the ApoE2-mediated activation of rt-PA.

  7. Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins.

    PubMed

    Culver, G M; Noller, H F

    1999-06-01

    from ribosomes. Particles reconstituted from the recombinant proteins sediment at 30S in sucrose gradients, bind tRNA in a template-dependent manner, and associate with 50S subunits to form 70S ribosomes that are active in poly(U)-directed polyphenylalanine synthesis. Both the protein composition and the dimethyl sulfate modification pattern of 16S ribosomal RNA are similar for 30S subunits reconstituted with either recombinant proteins or proteins isolated as a mixture from ribosomal subunits as well as for natural 30S subunits.

  8. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    PubMed Central

    Haon, Mireille; Grisel, Sacha; Navarro, David; Gruet, Antoine; Berrin, Jean-Guy; Bignon, Christophe

    2015-01-01

    Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes). This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in P. pastoris. We first used three fungal glycoside hydrolases (GHs) that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (GHs, carbohydrate esterases and auxiliary activity enzyme families) out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community. PMID:26441929

  9. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris.

    PubMed

    Haon, Mireille; Grisel, Sacha; Navarro, David; Gruet, Antoine; Berrin, Jean-Guy; Bignon, Christophe

    2015-01-01

    Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes). This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in P. pastoris. We first used three fungal glycoside hydrolases (GHs) that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (GHs, carbohydrate esterases and auxiliary activity enzyme families) out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users' community.

  10. Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology.

    PubMed

    Choi, S I; Song, H W; Moon, J W; Seong, B L

    2001-12-20

    Enterokinase and recombinant enterokinase light chain (rEK(L)) have been used widely to cleave fusion proteins with the target sequence of (Asp)(4)-Lys. In this work, we show that their utility as a site-specific cleavage agent is compromised by sporadic cleavage at other sites, albeit at low levels. Further degradation of the fusion protein in cleavage reaction is due to an intrinsic broad specificity of the enzyme rather than to the presence of contaminating proteases. To offer facilitated purification from fermentation broth and efficient removal of rEK(L) after cleavage reaction, thus minimizing unwanted cleavage of target protein, histidine affinity tag was introduced into rEK(L). Utilizing the secretion enhancer peptide derived from the human interleukin 1 beta, the recombinant EK(L) was expressed in Saccharomyces cerevisiae and efficiently secreted into culture medium. The C-terminal His-tagged EK(L) was purified in a single-step procedure on nickel affinity chromatography. It retained full enzymatic activity similar to that of EK(L), whereas the N-terminal His-tagged EK(L) was neither efficiently purified nor had any enzymatic activity. After cleavage reaction of fusion protein, the C-terminal His-tagged EK(L) was efficiently removed from the reaction mixture by a single passage through nickel-NTA spin column. The simple affinity tag renders rEK(L) extremely useful for purification, post-cleavage removal, recovery, and recycling and will broaden the utility and the versatility of the enterokinase for the production of recombinant proteins. PMID:11745150

  11. Beyond the cytoplasm of Escherichia coli: localizing recombinant proteins where you want them.

    PubMed

    Boock, Jason T; Waraho-Zhmayev, Dujduan; Mizrachi, Dario; DeLisa, Matthew P

    2015-01-01

    Recombinant protein expression in Escherichia coli represents a cornerstone of the biotechnology enterprise. While cytoplasmic expression in this host has received the most attention, achieving substantial yields of correctly folded proteins in this compartment can sometimes be met with difficulties. These issues can often be overcome by targeting protein expression to extracytoplasmic compartments (e.g., membrane, periplasm) or to the culture medium. This chapter discusses various strategies for exporting proteins out of the cytoplasm as well as tools for monitoring and optimizing these different export mechanisms. PMID:25447860

  12. Recombinant conotoxin, TxVIA, produced in yeast has insecticidal activity.

    PubMed

    Bruce, C; Fitches, E C; Chougule, N; Bell, H A; Gatehouse, J A

    2011-07-01

    Conotoxins are a diverse collection of more than 50,000 peptides produced by predatory marine snails of the genus Conus in order to immobilize their prey. Many conotoxins modulate the activity of ion channels, and show high specificity to their targets; as a result, some have valuable pharmaceutical applications. However, obtaining active peptide is difficult and to date has only been achieved though natural collection, chemical synthesis, or the use of prokaryotic expression systems, which often have the disadvantage of requiring subsequent steps to correctly fold the peptide. This paper reports the production of a conotoxin, TxVIA from Conus textile, as a biologically active recombinant protein, using the yeast Pichia pastoris as expression host. The presence of the pro-peptide was found to be necessary for the expression of biologically active conotoxin. We also show that TxVIA is not, as previously reported, mollusc-specific, but also shows insecticidal activity when injected into lepidopteran (cabbage moth) and dipteran (house fly) larvae. In contrast, recombinant TxVIA was not found to be molluscicidal to the grey field slug Deroceras reticulatum. PMID:21640131

  13. Recombinant Dragline Silk-Like Proteins-Expression and Purification.

    PubMed

    Gaines, William A; Marcotte, William R

    2011-03-01

    Spider dragline silk is a proteinaceous fiber with impressive physical characteristics making it attractive for use in advanced materials. The fiber is composed of two proteins (spidroins MaSp1 and MaSp2), each of which contains a large central repeat array flanked by non-repetitive N- and C-terminal domains. The repeat arrays appear to be largely responsible for the tensile properties of the fiber, suggesting that the N- and C-terminal domains may be involved in self-assembly. We recently isolated the MaSp1 and MaSp2 N-terminal domains from Nephila clavipes and have incorporated these into mini-silk genes for expression in transgenic systems. Current efforts involve the development of expression vectors that will allow purification using a removable affinity tag for scalable protein purification.

  14. Preparative Purification of Recombinant Proteins: Current Status and Future Trends

    PubMed Central

    Saraswat, Mayank; Ravidá, Alessandra; Holthofer, Harry

    2013-01-01

    Advances in fermentation technologies have resulted in the production of increased yields of proteins of economic, biopharmaceutical, and medicinal importance. Consequently, there is an absolute requirement for the development of rapid, cost-effective methodologies which facilitate the purification of such products in the absence of contaminants, such as superfluous proteins and endotoxins. Here, we provide a comprehensive overview of a selection of key purification methodologies currently being applied in both academic and industrial settings and discuss how innovative and effective protocols such as aqueous two-phase partitioning, membrane chromatography, and high-performance tangential flow filtration may be applied independently of or in conjunction with more traditional protocols for downstream processing applications. PMID:24455685

  15. Rescue of failed oocyte activation after ICSI in a mouse model of male factor infertility by recombinant phospholipase Cζ.

    PubMed

    Sanusi, Randa; Yu, Yuansong; Nomikos, Michail; Lai, F Anthony; Swann, Karl

    2015-10-01

    Artificial oocyte activation to overcome failed fertilization after intracytoplasmic sperm injection (ICSI) in human oocytes typically employs Ca(2+) ionophores to produce a single cytosolic Ca(2+) increase. In contrast, recombinant phospholipase Czeta (PLCζ) causes Ca(2+) oscillations indistinguishable from those occurring during fertilization, but remains untested for its efficacy in a scenario of ICSI fertilization failure. Here, we compare PLCζ with other activation stimuli in a mouse model of failed oocyte activation after ICSI, in which heat-treated sperm are injected into mouse oocytes. We show that increasing periods of 56 °C exposure of sperm produces a progressive loss of Ca(2+) oscillations after ICSI. The decrease in Ca(2+) oscillations produces a reduction in oocyte activation and embryo development to the blastocyst stage. We treated such oocytes that failed to activate after ICSI either with Ca(2+) ionophore, or with Sr(2+) media which causes Ca(2+) oscillations, or we injected them with recombinant human PLCζ. All these treatments rescued oocyte activation, although Sr(2+) and PLCζ gave the highest rates of development to blastocyst. When recombinant PLCζ was given to oocytes previously injected with control sperm, they developed normally to the blastocyst stage at rates similar to that after control ICSI. The data suggest that recombinant human PLCζ protein is an efficient means of rescuing oocyte activation after ICSI failure and that it can be effectively used even if the sperm already contains endogenous Ca(2+) releasing activity.

  16. Liposomes containing recombinant E protein vaccine against duck Tembusu virus in ducks.

    PubMed

    Ma, Tengfei; Liu, Yongxia; Cheng, Jia; Liu, Yanhan; Fan, Wentao; Cheng, Ziqiang; Niu, Xudong; Liu, Jianzhu

    2016-04-27

    To obtain an effective vaccine candidate against duck Tembusu viral (DTMUV) disease which causes egg-drop and great economical loss in the Chinese duck industry, liposome vaccines containing recombinant E protein were prepared and assessed in this study. The recombinant plasmid (PET28a-E) was constructed and transformed into BL21 (DE3) cells to produce E proteins. The recombinant E proteins were purified and entrapped by liposomes through reverse-phase evaporation. Eighty-four cherry valley ducks were randomly divided into seven groups and inoculated intramuscularly at one- or seven-day-old with liposomes-E protein or Freund's adjuvant-E protein vaccine. Blood samples were collected from the first week to the tenth week for serum antibody, plasma for viremia, as well as oropharyngeal and cloacal swabs for virus shedding analyses after being challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of duck Tembusu virus. Results showed that serum antibody level of the liposomes vaccine was higher than the Freund's adjuvant vaccine, and inoculating twice was superior to once; furthermore, the viremia and virus shedding tests also proved that the liposomes vaccine can provide complete protection against DTMUV challenge. These results demonstrated that the liposomes-E protein vaccine could be used as a potential candidate vaccine to prevent DTMUV infection in ducks. PMID:27016654

  17. Cryptocaryon irritans recombinant proteins as potential antigens for sero-surveillance of cryptocaryonosis.

    PubMed

    Lokanathan, Y; Mohd-Adnan, A; Kua, B-C; Nathan, S

    2016-09-01

    Cryptocaryonosis is a major problem for mariculture, and the absence of suitable sero-surveillance tools for the detection of cryptocaryonosis makes it difficult to screen Cryptocaryon irritans-infected fish, particularly asymptomatic fish. In this study, we proposed a serum-based assay using selected C. irritans proteins to screen infected and asymptomatic fish. Eight highly expressed genes were chosen from an earlier study on C. irritans expressed sequence tags and ciliate glutamine codons were converted to universal glutamine codons. The chemically synthesized C. irritans genes were then expressed in an Escherichia coli expression host under optimized conditions. Five C. irritans proteins were successfully expressed in E. coli and purified by affinity chromatography. These proteins were used as antigens in an enzyme-linked immunosorbent assay (ELISA) to screen sera from experimentally immunized fish and naturally infected fish. Sera from both categories of fish reacted equally well with the expressed C. irritans recombinant proteins as well as with sonicated theronts. This study demonstrated the utility of producing ciliate recombinant proteins in a heterologous expression host. An ELISA was successfully developed to diagnose infected and asymptomatic fish using the recombinant proteins as antigens. PMID:27086498

  18. IMAC capture of recombinant protein from unclarified mammalian cell feed streams

    PubMed Central

    Kinna, Alexander; Tolner, Berend; Rota, Enrique Miranda; Titchener‐Hooker, Nigel; Nesbeth, Darren

    2015-01-01

    ABSTRACT Fusion‐tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300–500 μm diameter agarose resin beads that allow free passage of cells but capture His‐tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His‐tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ∼8 U/mL and 2 ng/μL in column flow‐through, respectively. Recovery of His‐tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams. Biotechnol. Bioeng. 2016;113: 130–140. © 2015 Wiley Periodicals, Inc. PMID:26174988

  19. IMAC capture of recombinant protein from unclarified mammalian cell feed streams.

    PubMed

    Kinna, Alexander; Tolner, Berend; Rota, Enrique Miranda; Titchener-Hooker, Nigel; Nesbeth, Darren; Chester, Kerry

    2016-01-01

    Fusion-tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300-500 μm diameter agarose resin beads that allow free passage of cells but capture His-tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His-tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ∼ 8 U/mL and 2 ng/μL in column flow-through, respectively. Recovery of His-tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams.

  20. Liposomes containing recombinant E protein vaccine against duck Tembusu virus in ducks.

    PubMed

    Ma, Tengfei; Liu, Yongxia; Cheng, Jia; Liu, Yanhan; Fan, Wentao; Cheng, Ziqiang; Niu, Xudong; Liu, Jianzhu

    2016-04-27

    To obtain an effective vaccine candidate against duck Tembusu viral (DTMUV) disease which causes egg-drop and great economical loss in the Chinese duck industry, liposome vaccines containing recombinant E protein were prepared and assessed in this study. The recombinant plasmid (PET28a-E) was constructed and transformed into BL21 (DE3) cells to produce E proteins. The recombinant E proteins were purified and entrapped by liposomes through reverse-phase evaporation. Eighty-four cherry valley ducks were randomly divided into seven groups and inoculated intramuscularly at one- or seven-day-old with liposomes-E protein or Freund's adjuvant-E protein vaccine. Blood samples were collected from the first week to the tenth week for serum antibody, plasma for viremia, as well as oropharyngeal and cloacal swabs for virus shedding analyses after being challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of duck Tembusu virus. Results showed that serum antibody level of the liposomes vaccine was higher than the Freund's adjuvant vaccine, and inoculating twice was superior to once; furthermore, the viremia and virus shedding tests also proved that the liposomes vaccine can provide complete protection against DTMUV challenge. These results demonstrated that the liposomes-E protein vaccine could be used as a potential candidate vaccine to prevent DTMUV infection in ducks.

  1. An Efficient Genome-Wide Fusion Partner Screening System for Secretion of Recombinant Proteins in Yeast

    PubMed Central

    Bae, Jung-Hoon; Hyun Sung, Bong; Kim, Hyun-Jin; Park, Soon-Ho; Lim, Kwang-Mook; Kim, Mi-Jin; Lee, Cho-Ryong; Sohn, Jung-Hoon

    2015-01-01

    To produce rarely secreted recombinant proteins in the yeast Saccharomyces cerevisiae, we developed a novel genome-wide optimal translational fusion partner (TFP) screening system that involves recruitment of an optimal secretion signal and fusion partner. A TFP library was constructed from a genomic and truncated cDNA library by using the invertase-based signal sequence trap technique. The efficiency of the system was demonstrated using two rarely secreted proteins, human interleukin (hIL)-2 and hIL-32. Optimal TFPs for secretion of hIL-2 and hIL-32 were easily selected, yielding secretion of these proteins up to hundreds of mg/L. Moreover, numerous uncovered yeast secretion signals and fusion partners were identified, leading to efficient secretion of various recombinant proteins. Selected TFPs were found to be useful for the hypersecretion of other recombinant proteins at yields of up to several g/L. This screening technique could provide new methods for the production of various types of difficult-to-express proteins. PMID:26195161

  2. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    PubMed

    Zhang, Litai; Huang, Xiaofeng; Xue, Bai; Peng, Quanhui; Wang, Zhisheng; Yan, Tianhai; Wang, Lizhi

    2015-01-01

    Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats. PMID:26445479

  3. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    PubMed Central

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  4. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein

    PubMed Central

    Zhang, Litai; Huang, Xiaofeng; Xue, Bai; Peng, Quanhui; Wang, Zhisheng; Yan, Tianhai; Wang, Lizhi

    2015-01-01

    Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats. PMID:26445479

  5. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    PubMed

    Zhang, Litai; Huang, Xiaofeng; Xue, Bai; Peng, Quanhui; Wang, Zhisheng; Yan, Tianhai; Wang, Lizhi

    2015-01-01

    Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4) emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF) on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF) in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.

  6. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination.

    PubMed

    Huang, Shengfeng; Tao, Xin; Yuan, Shaochun; Zhang, Yuhang; Li, Peiyi; Beilinson, Helen A; Zhang, Ya; Yu, Wenjuan; Pontarotti, Pierre; Escriva, Hector; Le Petillon, Yann; Liu, Xiaolong; Chen, Shangwu; Schatz, David G; Xu, Anlong

    2016-06-30

    Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates. A typical ProtoRAG is flanked by 5-bp target site duplications and a pair of terminal inverted repeats (TIRs) resembling V(D)J recombination signal sequences. Between the TIRs reside tail-to-tail-oriented, intron-containing RAG1-like and RAG2-like genes. We demonstrate that ProtoRAG was recently active in the lancelet germline and that the lancelet RAG1/2-like proteins can mediate TIR-dependent transposon excision, host DNA recombination, transposition, and low-efficiency TIR rejoining using reaction mechanisms similar to those used by vertebrate RAGs. We propose that ProtoRAG represents a molecular "living fossil" of the long-sought RAG transposon.

  7. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination.

    PubMed

    Huang, Shengfeng; Tao, Xin; Yuan, Shaochun; Zhang, Yuhang; Li, Peiyi; Beilinson, Helen A; Zhang, Ya; Yu, Wenjuan; Pontarotti, Pierre; Escriva, Hector; Le Petillon, Yann; Liu, Xiaolong; Chen, Shangwu; Schatz, David G; Xu, Anlong

    2016-06-30

    Co-option of RAG1 and RAG2 for antigen receptor gene assembly by V(D)J recombination was a crucial event in the evolution of jawed vertebrate adaptive immunity. RAG1/2 are proposed to have arisen from a transposable element, but definitive evidence for this is lacking. Here, we report the discovery of ProtoRAG, a DNA transposon family from lancelets, the most basal extant chordates. A typical ProtoRAG is flanked by 5-bp target site duplications and a pair of terminal inverted repeats (TIRs) resembling V(D)J recombination signal sequences. Between the TIRs reside tail-to-tail-oriented, intron-containing RAG1-like and RAG2-like genes. We demonstrate that ProtoRAG was recently active in the lancelet germline and that the lancelet RAG1/2-like proteins can mediate TIR-dependent transposon excision, host DNA recombination, transposition, and low-efficiency TIR rejoining using reaction mechanisms similar to those used by vertebrate RAGs. We propose that ProtoRAG represents a molecular "living fossil" of the long-sought RAG transposon. PMID:27293192

  8. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus. PMID:27076136

  9. RIG-I ligand enhances the immunogenicity of recombinant H7HA protein.

    PubMed

    Cao, Weiping; Liepkalns, Justine S; Kamal, Ram P; Reber, Adrian J; Kim, Jin Hyang; Hofstetter, Amelia R; Amoah, Samuel; Stevens, James; Ranjan, Priya; Gangappa, Shivaprakash; York, Ian A; Sambhara, Suryaprakash

    2016-01-01

    Avian H7N9 influenza virus infection with fatal outcomes continues to pose a pandemic threat and highly immunogenic vaccines are urgently needed. In this report we show that baculovirus-derived recombinant H7 hemagglutinin protein, when delivered with RIG-I ligand, induced enhanced antibody and T cell responses and conferred protection against lethal challenge with a homologous H7N9 virus. These findings indicate the potential utility of RIG-I ligands as vaccine adjuvants to increase the immunogenicity of recombinant H7 hemagglutinin.

  10. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  11. Chloroplast-Based Expression of Recombinant Proteins by Gateway® Cloning Technology.

    PubMed

    Gottschamel, Johanna; Lössl, Andreas

    2016-01-01

    Plastid transformation for the expression of recombinant proteins and entire enzymatic pathways has become a promising tool for plant biotechnology in the past decade. Several improvements of the technology have turned plant plastids into robust and dependable expression platforms for multiple high value compounds. In this chapter, we describe our current methodology based on Gateway(®) recombinant cloning, which we have adapted for plastid transformation. We describe the steps required for cloning, biolistic transformation, identification, and regeneration of transplastomic plant lines and Western blot analysis. PMID:26614278

  12. Construction and characterization of a recombinant reticuloendotheliosis virus expressing enhanced green fluorescent protein.

    PubMed

    Deng, Xiaoyun; Hu, Feng; Qi, Xiaole; Gao, Li; Li, Kai; Gao, Honglei; Gao, Yulong; Wang, Yongqiang; Shen, Nan; Hua, Yuping; Wang, Xiaomei

    2015-09-01

    Reticuloendotheliosis virus (REV) causes an immunosuppressive and oncogenic disease in chickens and other birds. In this study, based on an infectious clone of REV, named HLJR0901, a recombinant virus containing the enhanced green fluorescence protein (EGFP) gene was constructed by inserting the EGFP expression cassette downstream of the 3' terminus of the viral env gene. An EGFP-tagged REV that stably expresses EGFP was rescued. This visible recombinant REV could contribute to the further understanding of the molecular mechanism involved in the replication and pathogenicity of REV.

  13. Tunable recombinant protein expression with E. coli in a mixed-feed environment.

    PubMed

    Sagmeister, Patrick; Schimek, Clemens; Meitz, Andrea; Herwig, Christoph; Spadiut, Oliver

    2014-04-01

    Controlling the recombinant protein production rate in Escherichia coli is of utmost importance to ensure product quality and quantity. Up to now, only the genetic construct, introduced into E. coli, and the specific growth rate of the culture were used to influence and stir the productivity. However, bioprocess technological means to control or even tune the productivity of E. coli are scarce. Here, we present a novel method for the process-technological control over the recombinant protein expression rate in E. coli. A mixed-feed fed-batch bioprocess based on the araBAD promoter expression system using both D-glucose and L-arabinose as assimilable C-sources was designed. Using the model product green fluorescent protein, we show that the specific product formation rate can be efficiently tuned even on the cellular level only via the uptake rate of L-arabinose. This novel approach introduces an additional degree of freedom for the design of recombinant bioprocesses with E. coli. We anticipate that the presented method will result in significant quality and robustness improvement as well as cost and process time reduction for recombinant bacterial bioprocesses in the future.

  14. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

    PubMed Central

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A. Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  15. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses.

    PubMed

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  16. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; Ye, Fuzhou; Guan, Liya; Liu, Hong; Qin, Qiwei

    2011-09-01

    Green fluorescent protein-tagged recombinant virus has been successfully applied to observing the infective dynamics and evaluating viral replication. Here, we identified soft-shelled turtle iridovirus (STIV) ORF55 as an envelope protein (VP55), and developed a recombinant STIV expressing an enhanced green fluorescent protein (EGFP) fused to VP55 (EGFP-STIV). Recombinant EGFP-STIV shared similar single-step growth curves and ultrastructural morphology with wild type STIV (wt-STIV). The green fluorescence distribution during EGFP-STIV infection was consistent with the intracellular distribution of VP55 which was mostly co-localized with virus assembly sites. Furthermore, EGFP-STIV could be used to evaluate viral replication conveniently under drug treatment, and the result showed that STIV replication was significantly inhibited after the addition of antioxidant pyrrolidine dithiocarbamate (PDTC). Thus, the EGFP-tagged recombinant iridovirus will not only be useful for further investigations on the viral replicative dynamics, but also provide an alternative simple strategy to screen for antiviral substances.

  17. Tissue Plasminogen Activator Neurotoxicity is Neutralized by Recombinant ADAMTS 13

    PubMed Central

    Fan, Mengchen; Xu, Haochen; Wang, Lixiang; Luo, Haiyu; Zhu, Ximin; Cai, Ping; Wei, Lixiang; Lu, Lu; Cao, Yongliang; Ye, Rong; Fan, Wenying; Zhao, Bing-Qiao

    2016-01-01

    Tissue plasminogen activator (tPA) is an effective treatment for ischemic stroke, but its neurotoxicity is a significant problem. Here we tested the hypothesis that recombinant ADAMTS 13 (rADAMTS 13) would reduce tPA neurotoxicity in a mouse model of stroke. We show that treatment with rADAMTS 13 in combination with tPA significantly reduced infarct volume compared with mice treated with tPA alone 48 hours after stroke. The combination treatment significantly improved neurological deficits compared with mice treated with tPA or vehicle alone. These neuroprotective effects were associated with significant reductions in fibrin deposits in ischemic vessels and less severe cell death in ischemic brain. The effect of rADAMTS13 on tPA neurotoxicity was mimicked by the N-methyl-D-aspartate (NMDA) receptor antagonist M-801, and was abolished by injection of NMDA. Moreover, rADAMTS 13 prevents the neurotoxicity effect of tPA, by blocking its interaction with the NMDA receptor NR2B and the attendant phosphorylation of NR2B and activation of ERK1/2. Finally, the NR2B-specific NMDA receptor antagonist ifenprodil abolished tPA neurotoxicity and rADAMTS 13 treatment had no further beneficial effect. Our data suggest that the combination of rADAMTS 13 and tPA may provide a novel treatment of ischemic stroke by diminishing the neurotoxic effects of exogenous tPA. PMID:27181025

  18. Essential bacterial helicases that counteract the toxicity of recombination proteins.

    PubMed

    Petit, Marie-Agnès; Ehrlich, Dusko

    2002-06-17

    PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previously isolated mutations in B.subtilis recF, recL, recO and recR, which belong to the same complementation group, all suppress the lethality of a pcrA mutation. Similarly, recF, recO or recR mutations suppress the lethality of the Escherichia coli rep uvrD double mutant. We conclude that RecFOR proteins are toxic in cells devoid of PcrA in Gram-positive bacteria, or Rep and UvrD in Gram-negative bacteria, and propose that the RecFOR proteins interfere with an essential cellular process, possibly replication, when DExx helicases PcrA, or Rep and UvrD are absent. PMID:12065426

  19. Multiplexed expression and screening for recombinant protein production in mammalian cells

    PubMed Central

    Chapple, Susan DJ; Crofts, Anna M; Shadbolt, S Paul; McCafferty, John; Dyson, Michael R

    2006-01-01

    Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E) suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell culture will also be useful

  20. Dematin, a human erythrocyte cytoskeletal protein, is a substrate for a recombinant FIKK kinase from Plasmodium falciparum.

    PubMed

    Brandt, Gabriel S; Bailey, Scott

    2013-09-01

    P. falciparum causes the most deadly form of malaria, resulting from the adherence of infected red blood cells to blood vessels. During the blood stage of infection, the parasite secretes a large number of proteins into the host erythrocyte. The secretion of a 20-member family of protein kinases known as FIKK kinases, after a conserved Phe-Ile-Lys-Lys sequence motif, is unique to P. falciparum. Identification of physiological substrates of these kinases may provide perspective on the importance of FIKK kinase activity to P. falciparum virulence. We demonstrate, for the first time, the heterologous expression and purification of a FIKK kinase (PfFk4.1, PFD1165w). The recombinant kinase is active against general substrates and phosphorylates itself. Having demonstrated kinase activity, we incubated recombinant Fk4.1 with parasite and human erythrocyte lysates. No parasite-derived substrates were identified. However, treatment of erythrocyte ghosts shows that the FIKK kinase Fk4.1 phosphorylates dematin, a cytoskeletal protein found at the red blood cell spectrin-actin junction.

  1. Overcoming inefficient secretion of recombinant VEGF-C in baculovirus expression vector system by simple purification of the protein from cell lysate.

    PubMed

    Klaus, Tomasz; Kulesza, Małgorzata; Bzowska, Monika; Wyroba, Barbara; Kilarski, Witold W; Bereta, Joanna

    2015-06-01

    The first reports about successfully expressed recombinant proteins with the use of a baculovirus vector were published over 30years ago. Despite the long time of refining this expression system, early problems with the production of baculovirus-derived secretory proteins are still not satisfactorily solved. The high expression level driven by baculoviral promoters often does not result in the desired yield of secreted recombinant proteins, which frequently accumulate inside insect cells and are only partially processed. During our attempts to produce vascular endothelial growth factor C (VEGF-C) with the use of a baculovirus vector we also faced an inefficient secretion of the recombinant protein to culture medium. We were not able to improve the outcome and obtain an acceptable concentration of VEGF-C in the medium by changing the culture conditions or utilizing different signal peptides. However, as a significant amount of native VEGF-C was detected inside the baculovirus-infected cells, we developed a simple method to purify recombinant, glycosylated VEGF-C from a lysate of the cells. The presented results indicate that the lack of a secretory protein in the insect cell culture medium after baculovirus infection does not necessarily signify failure in the production of the protein. As demonstrated by us and contrary to generally accepted views, the lysate of baculovirus-infected cells may constitute a valuable source of the biologically active, secretory protein.

  2. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.

    PubMed

    McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi

    2015-07-01

    Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc.

  3. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    SciTech Connect

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun; Zhang, Qinagmin; Qi, Jianxun; Gao, George Fu

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.

  4. Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks.

    PubMed

    Sabalza, Maite; Christou, Paul; Capell, Teresa

    2014-12-01

    Molecular pharming is a cost-effective platform for the production of recombinant proteins in plants. Although the biopharmaceutical industry still relies on a small number of standardized fermentation-based technologies for the production of recombinant proteins there is now a greater awareness of the advantages of molecular pharming particularly in niche markets. Here we discuss some of the technical, economic and regulatory barriers that constrain the clinical development and commercialization of plant-derived pharmaceutical proteins. We also discuss strategies to increase productivity and product quality/homogeneity. The advantages of whole plants should be welcomed by the industry because this will help to reduce the cost of goods and therefore expand the biopharmaceutical market into untapped sectors.

  5. Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks.

    PubMed

    Sabalza, Maite; Christou, Paul; Capell, Teresa

    2014-12-01

    Molecular pharming is a cost-effective platform for the production of recombinant proteins in plants. Although the biopharmaceutical industry still relies on a small number of standardized fermentation-based technologies for the production of recombinant proteins there is now a greater awareness of the advantages of molecular pharming particularly in niche markets. Here we discuss some of the technical, economic and regulatory barriers that constrain the clinical development and commercialization of plant-derived pharmaceutical proteins. We also discuss strategies to increase productivity and product quality/homogeneity. The advantages of whole plants should be welcomed by the industry because this will help to reduce the cost of goods and therefore expand the biopharmaceutical market into untapped sectors. PMID:25048244

  6. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    DOE PAGES

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen; Sánchez-Quesada, Miguel; Jiménez López, Concepción; Prozorov, Tanya

    2014-01-01

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus , strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formationmore » of biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.« less

  7. Simultaneous targeting of Requiem & Alg-2 in Chinese hamster ovary cells for improved recombinant protein production.

    PubMed

    Lim, Yiping; Mantalaris, Athanasios; Yap, Miranda G S; Wong, Danny C F

    2010-11-01

    Apoptosis is known to be the main cause of cell death in the bioreactor environment, leading to the loss of recombinant protein productivity. In a previous study, transcriptional profiling was used to identify and target four early apoptosis-signaling genes: FADD, FAIM, Alg-2, and Requiem. The resulting cell lines had increased viable cell numbers and extended culture viability, which translated to increased protein productivity. Combinatorial targeting of two genes simultaneously has previously been shown to be more effective than targeting one gene alone. In this study, we sought to determine if targeting Requiem and Alg-2 was more effective than targeting Requiem alone. We found that targeting Requiem and Alg-2 did not result in extended culture viability, but resulted in an increase in maximum viable cell numbers and cumulative IVCD under fed-batch conditions. This in turn led to an approximately 1.5-fold increase in recombinant protein productivity.

  8. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    SciTech Connect

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen; Sanchez-Quesada, Miguel; Lopez, Concepcion Jimenez; Prozorov, Tanya

    2014-03-07

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus, strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formation of biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.

  9. Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli.

    PubMed

    Tsao, Chen-Yu; Hooshangi, Sara; Wu, Hsuan-Chen; Valdes, James J; Bentley, William E

    2010-05-01

    Quorum sensing (QS) enables an individual bacterium's metabolic state to be communicated to and ultimately control the phenotype of an emerging population. Harnessing the hierarchical nature of this signal transduction process may enable the exploitation of individual cell characteristics to direct or "program" entire populations of cells. We re-engineered the native QS regulon so that individual cell signals (autoinducers) are used to guide high level expression of recombinant proteins in E. coli populations. Specifically, the autoinducer-2 (AI-2) QS signal initiates and guides the overexpression of green fluorescent protein (GFP), chloramphenicol acetyl transferase (CAT) and beta-galactosidase (LacZ). The new process requires no supervision or input (e.g., sampling for optical density measurement, inducer addition, or medium exchange) and represents a low-cost, high-yield platform for recombinant protein production. Moreover, rewiring a native signal transduction circuit exemplifies an emerging class of metabolic engineering approaches that target regulatory functions. PMID:20060924

  10. [Hepatitis E virus capsid protein production by high cell density culture of recombinant Escherichia coli].

    PubMed

    Liu, Ru-Shi; He, Zhi-Qiang; Li, Shao-Wei; Yang, Kun-Yu; Xian, Yang-Ling; Pang, Shu-Qiang; Zhang, Jun; Li, Yi-Min; Xia, Ning-Shao

    2004-05-01

    Production of Hepatitis E Virus capsid protein by high cell density culture in recombinant E. coli has been studied in 10L and 30L fermentors. The effects of different factors on growth and producing recombinant protein of E. coli have been studied by batch culture, such as different media, the ratio of phosphate and Magnesium sulfate. Comparison of fermentation performance for recombinant E. coli in different fed-methods culture has been investigated by fed-batch culture. The effects of inducing at different stages of growth and time of inducing on growth and producing recombinant protein, also obtained by fed-batch culture. At last, the solubility of inclusion body in different urea concentrations also has been obtained by fed-batch culture. The results show that the concentration of phosphate and Magnesium sulfate in the optimal media is 80mmol/L and 20mmol/L in batch culture respectively, that induction with 1.0mmol/L IPTG at mid log phase (about 45 OD at 600nm) is suitable for growth and recombinant protein expression, the cells were approaching stationary growth phase and the maximum cell OD at 600nm of 80 was achieved in 5h of fed-batch culture, and the expression level is 29.74%. The results also indicate that the solubility of inclusion body in 4mol/L urea solution induced at 37 degrees C reaches 14mg/mL, over 80% inclusion body was resolved. The culture process achieved in 10L fermentor could be successfully scaled up to 30L fenmentor with good reproducibility. PMID:15971623

  11. Liposomes containing recombinant gp85 protein vaccine against ALV-J in chickens.

    PubMed

    Zhang, Limei; Cai, Dongjie; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Qi, Chunhua; Liu, Jianzhu; Xu, Ruixue; Zhao, Peng; Cui, Zhizhong

    2014-05-01

    To study the potential of liposome vaccines in the clinical prevention of ALV-J, the effect of recombinant gp85 protein of subgroup J avian leukosis virus (ALV-J) entrapped by liposomes in chickens against ALV-J infection was investigated in this paper. A recombinant plasmid (PET28a-gp85) containing the PET28a vector and gp85 gene was constructed and then expressed in Rosetta (DE3) cells with 0.5mM IPTG to produce recombinant gp85 proteins that could be entrapped by liposomes through reverse-phase evaporation. The chickens were inoculated intramuscularly either once or twice with the liposomes or with Freund's adjuvant emulsion containing recombinant gp85 protein. Sixty chickens were raised to one week old for the first inoculation and to three weeks old for the second inoculation. Chickens raised to five weeks old were challenged with a 10(2.4) 50% tissue culture infective dose (TCID50) of ALV-J. Blood samples were collected from each chicken at weekly intervals for serum antibody and viremia analyses. Changes in serum antibodies showed that positive serum antibodies (S/P value >0.6) could be induced in all groups regardless of the frequency of inoculation but improved significantly in the twice-inoculated groups. As well, high levels of antibodies emerged earlier in the Freund's adjuvant groups but persisted longer in the liposome groups. Detection of viremia indicated that the liposomes provide better protection against ALV-J than Freund's adjuvant emulsion and that this protection is directly influenced by serum antibody levels. Overall, this study reveals the potential of liposome vaccines containing recombinant gp85 protein in the clinical prevention of ALV-J.

  12. Reflectometric interference spectroscopy-based immunosensing using immobilized antibody via His-tagged recombinant protein A.

    PubMed

    Choi, Hyung Woo; Sakata, Yasuhiko; Ooya, Tooru; Takeuchi, Toshifumi

    2015-02-01

    The proposed approach demonstrated in this study provides an immunosensing system based on reflectometric interference spectroscopy (RIfS) in combination with an antibody immobilization method using histidine-tagged recombinant protein A. Carboxymethyldextran (CMD) was immobilized on a 3-aminopropyltriethoxysilane-treated a silicon nitride-coated silicon wafer, followed by chelating histidine-tagged recombinant protein A with copper (II) ions. The CMD-layer was found to be advantageous in terms of not only immobilization of histidine-tagged recombinant protein A-mediated an antibody against myoglobin (anti-Myo) but also prevention of non-specific binding of myoglobin. Myoglobin was repeatedly detected, and the apparent detection limit was 0.1 μg mL(-1). The proposed RIfS-based protein sensing system, in conjunction with the easy preparation of silicon-based inexpensive immunosensing chips, is expected to be applicable for label-free optical detection for other proteins in various fields.

  13. Presence of the propeptide on recombinant lysosomal dipeptidase controls both activation and dimerization.

    PubMed

    Dolenc, Iztok; Pain, Roger; Turk, Vito

    2007-01-01

    Lysosomal dipeptidase catalyzes the hydrolysis of dipeptides with unsubstituted terminals. It is a homodimer and binds zinc. Dimerization is an important issue in understanding the enzyme's function. In this study, we investigated the influence of the propeptide on the folding and dimerization of recombinant lysosomal dipeptidase. For this purpose, we separately cloned and overexpressed the mature protein and the proenzyme. The overexpressed proteins were localized exclusively to insoluble inclusion bodies. Refolding of the urea-solubilized inclusion bodies showed that only dipeptidase lacking the propeptide was dimeric. The soluble renatured proenzyme was a monomer, although circular dichroism and fluorescence spectra of the proenzyme indicated the formation of secondary and tertiary structure. The propeptide thus controls dimerization, as well as activation, of lysosomal dipeptidase.

  14. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs

    PubMed Central

    Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-01-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  15. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs.

    PubMed

    Nagy, Zita; Kalousi, Alkmini; Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-02-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  16. Phosphorylation-Independent Regulation of Atf1-Promoted Meiotic Recombination by Stress-Activated, p38 Kinase Spc1 of Fission Yeast

    PubMed Central

    Gao, Jun; Davidson, Mari K.; Wahls, Wayne P.

    2009-01-01

    Background Stress-activated protein kinases regulate multiple cellular responses to a wide variety of intracellular and extracellular conditions. The conserved, multifunctional, ATF/CREB protein Atf1 (Mts1, Gad7) of fission yeast binds to CRE-like (M26) DNA sites. Atf1 is phosphorylated by the conserved, p38-family kinase Spc1 (Sty1, Phh1) and is required for many Spc1-dependent stress responses, efficient sexual differentiation, and activation of Rec12 (Spo11)-dependent meiotic recombination hotspots like ade6-M26. Methodology/Principal Findings We sought to define mechanisms by which Spc1 regulates Atf1 function at the ade6-M26 hotspot. The Spc1 kinase was essential for hotspot activity, but dispensable for basal recombination. Unexpectedly, a protein lacking all eleven MAPK phospho-acceptor sites and detectable phosphorylation (Atf1-11M) was fully proficient for hotspot recombination. Furthermore, tethering of Atf1 to ade6 in the chromosome by a heterologous DNA binding domain bypassed the requirement for Spc1 in promoting recombination. Conclusions/Significance The Spc1 protein kinase regulates the pathway of Atf1-promoted recombination at or before the point where Atf1 binds to chromosomes, and this pathway regulation is independent of the phosphorylation status of Atf1. Since basal recombination is Spc1-independent, the principal function of the Spc1 kinase in meiotic recombination is to correctly position Atf1-promoted recombination at hotspots along chromosomes. We also propose new hypotheses on regulatory mechanisms for shared (e.g., DNA binding) and distinct (e.g., osmoregulatory vs. recombinogenic) activities of multifunctional, stress-activated protein Atf1. PMID:19436749

  17. Monitoring the centrifugal recovery of recombinant protein inclusion bodies.

    PubMed

    Middelberg, A P; O'Neill, B K

    1991-04-01

    The industrial processing of proteins expressed as insoluble inclusion bodies employs a reasonably standard sequence of unit operations. One of these is centrifugation, which serves to concentrate the inclusion bodies after disruption of the host microorganism, and also separates the inclusion bodies from other cellular debris. Monitoring the performance of the centrifuge is essential if excessive product and hence financial loss is to be avoided and a reasonable separation obtained. The analytical disc centrifuge may be used to monitor the centrifugation. This instrument returns the sample size distribution with high resolution and without fouling. By obtaining size distributions of the centrifuge feed, supernatant and concentrate, the fractional collection efficiency of the centrifuge may be determined as a function of the Stokes diameter, and a mass balance constructed. PMID:1367325

  18. Nanopatterning of recombinant proteins and viruses using block copolymer templates

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur Von Wald

    The study of interfaces is important in understanding biological interactions, including cellular signaling and virus infection. This thesis is an original effort to examine the interaction between a block copolymer and both a protein and a virus. Block copolymers intrinsically form nanometer-scale structures over large areas without expensive processing, making them ideal for the synthesis of the nanopatterned surfaces used in this study. The geometry of these nanostructures can be easily tuned for different applications by altering the block ratio and composition of the block copolymer. Block copolymers can be used for controlled uptake of metal ions, where one block selectively binds metal ions while the other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-opening metathesis polymerization. It formed spherical domains with spheres approximately 30 nm in diameter, and these spheres were then subsequently loaded with nickel ion. This norbornene block copolymer was tested for its ability to bind histidine-tagged green fluorescent protein (hisGFP), and it was found that the nickel-loaded copolymer was able to retain hisGFP through chelation between the histidine tag and the metal-containing portions of the copolymer surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel, forming a cylindrical microstructure. The binding of Tobacco mosaic virus and Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron microscopy allowed for observation of both block copolymer nanostructures and virus particles. Results showed that Tween washes could not remove bound Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that the size and tunability of block copolymers and the lack of processing needed to attain different structures makes them attractive for many applications, including microfluidic devices, surfaces to influence cellular signaling and growth, and as a nanopatterning surface for

  19. Identification of DSB-1, a Protein Required for Initiation of Meiotic Recombination in Caenorhabditis elegans, Illuminates a Crossover Assurance Checkpoint

    PubMed Central

    Stamper, Ericca L.; Rodenbusch, Stacia E.; Rosu, Simona; Ahringer, Julie; Villeneuve, Anne M.; Dernburg, Abby F.

    2013-01-01

    Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance. PMID:23990794

  20. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells.

    PubMed

    Bleckmann, Maren; Schürig, Margitta; Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop

    2016-01-01

    The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS. PMID:26934632

  1. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed Central

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges. PMID:8764013

  2. Construction of a recombinant herpesvirus expressing the jellyfish green fluorescent protein.

    PubMed

    Boldogköi, Z; Erdélyi, F; Sik, A; Freund, T F; Fodor, I

    1999-01-01

    Here we report the insertion of a synthetic version of the cDNA encoding the jellyfish (Aequorea victoria) green fluorescent protein (gfph ) into the genome of pseudorabies (Aujeszky's disease) virus (PrV). A putative latency promoter (PLAT) located at the inverted repeat region of the PrV genome was chosen as the target site for the insertion. Recombinant viral DNA designated as vLAT-gfp was generated as a result of homologous recombination between the transfected viral DNA and a plasmid containing the GFP-expression cassette flanked by viral sequences homologous to the target region. Plaques containing recombinant virus were selected visually using a fluorescent microscope. We demonstrated a GFP-expression in infected neurons of rat brain which showed normal morphology at early stage of viral infection by monitoring fluorescent light emission. PMID:10398563

  3. The recombinant LIC10508 is a plasma fibronectin, plasminogen, fibrinogen and C4BP-binding protein of Leptospira interrogans.

    PubMed

    Siqueira, Gabriela H; Teixeira, Aline F; Fernandes, Luis G; de Souza, Gisele O; Kirchgatter, Karin; Romero, Eliete C; Vasconcellos, Silvio A; Vieira, Monica L; Nascimento, Ana Lucia T O

    2016-03-01

    Leptospirosis is a zoonosis caused by pathogenic Leptospira spp. In this study, we report that the recombinant proteins LIC10507, LIC10508 and LIC10509 are recognized by confirmed leptospirosis serum samples at both phases of the disease. The recombinant rLIC10508 and rLIC10507 are plasminogen (PLG)-binding proteins, capable of generating plasmin in the presence of a PLG activator. The proteins bind to PLG in a dose-dependent and saturable manner, fulfilling host-ligand interaction. Furthermore, rLIC10508 interacts with fibrinogen (Fg), plasma fibronectin and C4b binding protein (C4BP). The binding of rLIC10508 to Fg decreases the fibrin clotting in a thrombin-catalyzed reaction. The incubation with 4 μM of protein promoted 40% inhibition upon clotting formation. C4BP bound to rLIC10508 retained its cofactor activity for factor I promoting the cleavage of C4b protein, which may reduce the membrane attack complex formation. Although these proteins have high amino acid sequence similarity, rLIC10508 is the most talented of the three, a behavior that might be explained by its unique putative 3D structure, whereas structures of rLIC10507 and rLIC10509 are very similar. Plasmin generation (rLIC10507 and rLIC10508), together with decreasing fibrin clot formation (rLIC10508) and impairment of the complement system (rLIC10508) may help the bacteria to overcome host defense, facilitating the infection process.

  4. Making recombinant proteins in filamentous fungi- are we expecting too much?

    PubMed

    Nevalainen, Helena; Peterson, Robyn

    2014-01-01

    Hosts used for the production of recombinant proteins are typically high-protein secreting mutant strains that have been selected for a specific purpose, such as efficient production of cellulose-degrading enzymes. Somewhat surprisingly, sequencing of the genomes of a series of mutant strains of the cellulolytic Trichoderma reesei, widely used as an expression host for recombinant gene products, has shed very little light on the nature of changes that boost high-level protein secretion. While it is generally agreed and shown that protein secretion in filamentous fungi occurs mainly through the hyphal tip, there is growing evidence that secretion of proteins also takes place in sub-apical regions. Attempts to increase correct folding and thereby the yields of heterologous proteins in fungal hosts by co-expression of cellular chaperones and foldases have resulted in variable success; underlying reasons have been explored mainly at the transcriptional level. The observed physiological changes in fungal strains experiencing increasing stress through protein overexpression under strong gene promoters also reflect the challenge the host organisms are experiencing. It is evident, that as with other eukaryotes, fungal endoplasmic reticulum is a highly dynamic structure. Considering the above, there is an emerging body of work exploring the use of weaker expression promoters to avoid undue stress. Filamentous fungi have been hailed as candidates for the production of pharmaceutically relevant proteins for therapeutic use. One of the biggest challenges in terms of fungally produced heterologous gene products is their mode of glycosylation; fungi lack the functionally important terminal sialylation of the glycans that occurs in mammalian cells. Finally, exploration of the metabolic pathways and fluxes together with the development of sophisticated fermentation protocols may result in new strategies to produce recombinant proteins in filamentous fungi.

  5. Structural and functional characterization of recombinant napin-like protein of Momordica charantia expressed in methylotrophic yeast Pichia pastoris.

    PubMed

    Yadav, Shailesh Kumar R; Sahu, Tejram; Dixit, Aparna

    2016-08-01

    Napin and napin-like proteins belong to the 2S albumin seed storage family of proteins and have been shown to display a variety of biological activities. However, due to a high degree of polymorphism, purification of a single napin or napin-like protein exhibiting biological activity is extremely difficult. In the present study, we have produced the napin-like protein of Momordica charantia using the methylotrophic Pichia pastoris expression system. The recombinant napin-like protein (rMcnapin) secreted in the extracellular culture supernatant was enriched by ammonium sulfate precipitation, and purified using size exclusion chromatography at a yield of ∼290 mg/L of culture. Secondary structure analysis of the purified rMcnapin revealed it to be predominantly α-helical with minimal β strand content. CD spectroscopic and fluorescence spectroscopic analyses revealed the rMcnapin to be stable at a wide range of temperatures and pH. The rMcnapin exhibited antifungal activity against Trichoderma viride with an IC50 of ∼3.7 μg/ml and trypsin inhibitor activity with an IC50 of 4.2 μM. Thus, large amounts of homogenous preparations of the biologically active rMcnapin could be obtained at shake flask level, which is otherwise difficult from its natural source. PMID:27020281

  6. A recombinant vaccinia virus containing the papilloma E2 protein promotes tumor regression by stimulating macrophage antibody-dependent cytotoxicity.

    PubMed

    Rosales, C; Graham, V V; Rosas, G A; Merchant, H; Rosales, R

    2000-09-01

    Human papillomavirus infection is associated with cervical cancer. The E6 and E7 papillomavirus proteins are normally required for the maintenance of the malignant phenotype. Expression of these proteins in infected cells is negatively regulated by the binding of the papilloma E2 protein to the long terminal control region of the papilloma virus genome. The E2 protein can also promote cell arrest and apoptosis in HeLa cells. Therefore, it is clear that this protein has the potential of inhibiting the malignant phenotype. Because, anticancer vaccines based in vaccinia viruses have recently been shown to be an effective way to treat and to eradicate tumors, a recombinant vaccinia virus expressing the E2 gene of bovine papilloma virus (Modified Vaccinia Ankara, MVA E2) was created, to explore further the antitumor potential of the E2 protein. A series of rabbits, containing the VX2 transplantable papilloma carcinoma, were treated with MVA E2. An impressive tumor regression, up to a complete disappearance of tumor, was observed in most animals (80%). In contrast, very little or no regression was detected if the normal vaccinia virus was used. Lymphocytes isolated from MVA E2-treated rabbits did not show cytotoxic activity against tumor cells. However, in these animals a humoral immune response against tumor cells was observed. These antitumor antibodies were capable of activating macrophages to destroy tumor cells efficiently. These data indicate that injecting the MVA E2 recombinant vaccinia virus directly into the tumor results in a robust and long-lasting tumor regression. Data also suggest that antitumor antibodies are responsible, at least in part, for eliminating tumors by activating macrophage antibody-dependent cytotoxicity.

  7. Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity.

    PubMed

    Münch, Karin M; Müller, Johannes; Wienecke, Sarah; Bergmann, Simone; Heyber, Steffi; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2015-09-01

    During the past 2 decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single-cell level using green fluorescent protein as a model product revealed cell culture heterogeneity characterized by a significant proportion of less productive bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time lapse microscopy and flow cytometry. Cell culture heterogeneity was not caused simply by plasmid loss: instead, an asymmetric distribution of plasmids during cell division was detected during the exponential-growth phase. Multicopy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was achieved mainly by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multicopy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species. PMID:26116677

  8. Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity

    PubMed Central

    Münch, Karin M.; Müller, Johannes; Wienecke, Sarah; Bergmann, Simone; Heyber, Steffi; Biedendieck, Rebekka; Jahn, Dieter

    2015-01-01

    During the past 2 decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single-cell level using green fluorescent protein as a model product revealed cell culture heterogeneity characterized by a significant proportion of less productive bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time lapse microscopy and flow cytometry. Cell culture heterogeneity was not caused simply by plasmid loss: instead, an asymmetric distribution of plasmids during cell division was detected during the exponential-growth phase. Multicopy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was achieved mainly by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multicopy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species. PMID:26116677

  9. Polar Fixation of Plasmids during Recombinant Protein Production in Bacillus megaterium Results in Population Heterogeneity.

    PubMed

    Münch, Karin M; Müller, Johannes; Wienecke, Sarah; Bergmann, Simone; Heyber, Steffi; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2015-09-01

    During the past 2 decades, Bacillus megaterium has been systematically developed for the gram-per-liter scale production of recombinant proteins. The plasmid-based expression systems employed use a xylose-controlled promoter. Protein production analyses at the single-cell level using green fluorescent protein as a model product revealed cell culture heterogeneity characterized by a significant proportion of less productive bacteria. Due to the enormous size of B. megaterium, such bistable behavior seen in subpopulations was readily analyzed by time lapse microscopy and flow cytometry. Cell culture heterogeneity was not caused simply by plasmid loss: instead, an asymmetric distribution of plasmids during cell division was detected during the exponential-growth phase. Multicopy plasmids are generally randomly distributed between daughter cells. However, in vivo and in vitro experiments demonstrated that under conditions of strong protein production, plasmids are retained at one of the cell poles. Furthermore, it was found that cells with accumulated plasmids and high protein production ceased cell division. As a consequence, the overall protein production of the culture was achieved mainly by the subpopulation with a sufficient plasmid copy number. Based on our experimental data, we propose a model whereby the distribution of multicopy plasmids is controlled by polar fixation under protein production conditions. Thereby, cell lines with fluctuating plasmid abundance arise, which results in population heterogeneity. Our results provide initial insights into the mechanism of cellular heterogeneity during plasmid-based recombinant protein production in a Bacillus species.

  10. Substrate oscillations boost recombinant protein release from Escherichia coli.

    PubMed

    Jazini, Mohammadhadi; Herwig, Christoph

    2014-05-01

    Intracellular production of recombinant proteins in prokaryotes necessitates subsequent disruption of cells for protein recovery. Since the cell disruption and subsequent purification steps largely contribute to the total production cost, scalable tools for protein release into the extracellular space is of utmost importance. Although there are several ways for enhancing protein release, changing culture conditions is rather a simple and scalable approach compared to, for example, molecular cell design. This contribution aimed at quantitatively studying process technological means to boost protein release of a periplasmatic recombinant protein (alkaline phosphatase) from E. coli. Quantitative analysis of protein in independent bioreactor runs could demonstrate that a defined oscillatory feeding profile was found to improve protein release, about 60 %, compared to the conventional constant feeding rate. The process technology included an oscillatory post-induction feed profile with the frequency of 4 min. The feed rate was oscillated triangularly between a maximum (1.3-fold of the maximum feed rate achieved at the end of the fed-batch phase) and a minimum (45 % of the maximum). The significant improvement indicates the potential to maximize the production rate, while this oscillatory feed profile can be easily scaled to industrial processes. Moreover, quantitative analysis of the primary metabolism revealed that the carbon dioxide yield can be used to identify the preferred feeding profile. This approach is therefore in line with the initiative of process analytical technology for science-based process understanding in process development and process control strategies.

  11. Immune responses to a recombinant Rv0057-Rv1352 fusion protein of Mycobacterium tuberculosis.

    PubMed

    Yang, Yourong; Feng, Jindong; Zhang, Junxian; Zhao, Weiguo; Liu, Yu; Liang, Yan; Bai, Xuejuan; Wang, Lan; Wu, Xueqiong

    2015-01-01

    The identification and characterization of antigens of Mycobacterium tuberculosis help in understanding the mechanisms of protective immunity and in improving diagnostic methods for TB. Rv0057 and Rv1352 proteins are new T-cell antigens, found to play roles in TB infection. In this study, a recombinant fusion protein Rv0057-Rv1352 was made and analyzed for its immunological characteristics and potential utility. It showed good immunoreactivity with serum from TB patients by western blotting. The antibody levels against Rv0057-Rv1352 were significantly higher in sera from 69 TB patients than in sera from 60 patients with non-TB respiratory diseases (P<0.001). The sensitivities of a diagnostic ELISA test based on detecting Rv0057-Rv1352 antibody (60.3%) or 38 kDa-16 kDa antibody (58.8%) were comparable to commercial rapid test B (75.4%), and significantly higher (p<0.001) than bacteriological methods (15.9%), rapid test A (20.3%), or rapid test C (29.0%). The specificities of Rv0057-Rv1352 (93.3%) or 38 kDa-16 kDa antibody tests (93.3%) were equivalent to the rapid tests A (93.3%) and C (86.7%), and significantly higher than rapid test B (63.3%, p<0.001). When 38 kDa-16 kDa was used together with Rv0057-Rv1352, the test sensitivity reached 85.5%, and its specificity remained high (86.7%). The test was as sensitive with bacterium-positive TB patients as with bacterium-negative. In an ELISPOT assay for cellular immunity, Rv0057-Rv1352 stimulated T lymphocytes to produce fewer spots secreting IFN-γ than CFP10-ESAT6 fusion protein did (p>0.05). These results suggest that Rv0057-Rv1352 has potential for the serodiagnosis of active pulmonary TB. PMID:25696009

  12. Solitary BioY Proteins Mediate Biotin Transport into Recombinant Escherichia coli

    PubMed Central

    Finkenwirth, Friedrich; Kirsch, Franziska

    2013-01-01

    Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [3H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane. PMID:23836870

  13. A systematic investigation of production of synthetic prions from recombinant prion protein.

    PubMed

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.

  14. Purified recombinant bluetongue virus VP1 exhibits RNA replicase activity.

    PubMed

    Boyce, Mark; Wehrfritz, Josa; Noad, Rob; Roy, Polly

    2004-04-01

    The polymerase protein of all known double-stranded RNA (dsRNA) viruses is located within a complex subviral core particle that is responsible for transcription of the viral genome. For members of the family Reoviridae, this particle allows messenger sense RNA synthesis while sequestering the viral genome away from cellular dsRNA surveillance systems during infection of eukaryotic cells. The core particle of bluetongue virus (BTV) consists of the major structural proteins VP3 and VP7 and the minor enzymatic proteins VP1 (polymerase), VP4 (capping enzyme), and VP6 (helicase). In this report we have characterized fully processive dsRNA synthesis by VP1 from a viral plus-strand RNA template in the absence of the other proteins of the BTV core. This replicase activity consists of de novo initiation of synthesis, followed by elongation of the minus strand. Purified VP1 exhibits little sequence specificity for BTV plus-strand template, suggesting that the choice of viral over nonviral RNA template comes from its association with other proteins within the viral core.

  15. Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1).

    PubMed

    Yang, A H; Yeh, K W

    2005-06-01

    A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5'-/3'-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST-CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 microg recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150-200 microg/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium.

  16. Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1).

    PubMed

    Yang, A H; Yeh, K W

    2005-06-01

    A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5'-/3'-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST-CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 microg recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150-200 microg/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium. PMID:15647900

  17. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  18. Protection against Asiatic Taenia solium induced by a recombinant 45W-4B protein.

    PubMed

    Luo, Xuenong; Zheng, Yadong; Hou, Junling; Zhang, Shaohua; Cai, Xuepeng

    2009-02-01

    Taenia solium is a great threat not only to human health but also to the pig-raising industry. Oncospheral stage-specific 45W proteins are good candidates for the development of anticysticercosis vaccines. In this study, a recombinant 45W-4B protein was highly produced and used for vaccination. Two animal trials resulted in a significant reduction in parasite burden induced by the definite protein against Asiatic T. solium, up to 97.0% and 98.4%, respectively. These provide informative results for the development of effective 45W-4B vaccines against cysticercosis caused by both Chinese and Mexican T. solium isolates and even by other isolates.

  19. Recombinant activated factor VII in post partum haemorrhage

    PubMed Central

    Magon, Navneet; Babu, K. M.; Kapur, Krishan; Chopra, Sanjiv; Joneja, Gurdarshan Singh

    2013-01-01

    Post-partum haemorrhage (PPH) is a life-threatening obstetric complication and the leading cause of maternal death. Any bleeding that results in or could result in haemodynamic instability, if untreated, must be considered as PPH. There is no controversy about the need for prevention and treatment of PPH. The keystone of management of PPH entails first, non-invasive and nonsurgical methods and then invasive and surgical methods. However, mortality remains high. Therefore, new advancements in the treatment are most crucial. One such advancement has been the use of recombinant activated factor VII (rFVIIa) in PPH. First used 12 years back in PPH, this universal haemostatic agent has been effectively used in controlling PPH. The best available indicator of rFVIIa efficacy is the arrest of haemorrhage, which is judged by visual evidence and haemodynamic stabilization. It also reduces costs of therapy and the use of blood components in massive PPH. In cases of intractable PPH with no other obvious indications for hysterectomy, administration of rFVIIa should be considered before surgery. We share our experience in a series of cases of PPH, successfully managed using rFVIIa. PMID:24403703

  20. Generation and characterization of a recombinant chimeric protein (rCpLi) consisting of B-cell epitopes of a dermonecrotic protein from Loxosceles intermedia spider venom.

    PubMed

    Mendes, T M; Oliveira, D; Figueiredo, L F M; Machado-de-Avila, R A; Duarte, C G; Dias-Lopes, C; Guimarães, G; Felicori, L; Minozzo, J C; Chávez-Olortegui, C

    2013-06-01

    A chimeric protein was constructed expressing three epitopes of LiD1, a dermonecrotic toxin from the venom of Loxosceles intermedia spider. This species is responsible for a large number of accidents involving spiders in Brazil. We demonstrated that the chimeric protein (rCpLi) generated is atoxic and that antibodies previously developed in rabbits against synthetic epitopes reactive with rCpLi in ELISA and immunoblot assays. The antibody response in rabbits against the rCpLi was evaluated by ELISA and we have detected an antibody response in all immunized animals. Overlapping peptides covering the amino acid sequence of the rCpLi were synthesized on a cellulose membrane, and their recognition by rabbit anti-rCpLi serum assessed. Three different antigenic regions were identified. The percentage of inhibition of the dermonecrotic, hemorrhagic and edematogenic activities caused by the recombinant protein LiD1r in naïve rabbits was assessed by pre-incubation with anti-rCpLi antibodies. Anti-rCpLi induced good dermonecrotic and hemorrhagic protection. The levels of protection were similar to the antiboides anti-LiD1r. In summary, we have developed a polyepitope recombinant chimeric protein capable of inducing multiple responses of neutralizing antibodies in a rabbit model. This engineered protein may be a promising candidate for therapeutic serum development or vaccination.

  1. Antigenicity of Recombinant Maltose Binding Protein-Mycobacterium avium subsp. paratuberculosis Fusion Proteins with and without Factor Xa Cleaving

    PubMed Central

    Begg, Douglas J.; Purdie, Auriol C.; Bannantine, John P.; Whittington, Richard J.

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants. Proteomic studies have shown that M. avium subsp. paratuberculosis expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such proteins are hypothesized to be expressed in vivo, are recognized by the host immune system, and may be of potential use in the diagnosis of JD. In this study, 50 recombinant maltose binding protein (MBP)-M. avium subsp. paratuberculosis fusion proteins were evaluated using serum samples from sheep infected with M. avium subsp. paratuberculosis, and 29 (58%) were found to be antigenic. Among 50 fusion proteins, 10 were evaluated in MBP fusion and factor Xa-cleaved forms. A total of 31 proteins (62%) were found to be antigenic in either MBP fusion or factor Xa-cleaved forms. Antigenicity after cleavage and removal of the MBP tag was marginally enhanced. PMID:24132604

  2. A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors.

    PubMed

    Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar

    2015-11-01

    With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants. PMID:26451762

  3. A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors.

    PubMed

    Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar

    2015-11-01

    With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.

  4. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression.

    PubMed

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  5. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression

    PubMed Central

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area–time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  6. Recombinant Protein-Stabilized Monodisperse Microbubbles with Tunable Size Using a Valve-Based Microfluidic Device

    PubMed Central

    2015-01-01

    Microbubbles are used as contrast enhancing agents in ultrasound sonography and more recently have shown great potential as theranostic agents that enable both diagnostics and therapy. Conventional production methods lead to highly polydisperse microbubbles, which compromise the effectiveness of ultrasound imaging and therapy. Stabilizing microbubbles with surfactant molecules that can impart functionality and properties that are desirable for specific applications would enhance the utility of microbubbles. Here we generate monodisperse microbubbles with a large potential for functionalization by combining a microfluidic method and recombinant protein technology. Our microfluidic device uses an air-actuated membrane valve that enables production of monodisperse microbubbles with narrow size distribution. The size of microbubbles can be precisely tuned by dynamically changing the dimension of the channel using the valve. The microbubbles are stabilized by an amphiphilic protein, oleosin, which provides versatility in controlling the functionalization of microbubbles through recombinant biotechnology. We show that it is critical to control the composition of the stabilizing agents to enable formation of highly stable and monodisperse microbubbles that are echogenic under ultrasound insonation. Our protein-shelled microbubbles based on the combination of microfluidic generation and recombinant protein technology provide a promising platform for ultrasound-related applications. PMID:25265041

  7. Comparison of Immunoprotection of Leptospira Recombinant Proteins with conventional vaccine in experimental animals.

    PubMed

    Parthiban, M; Kumar, S Senthil; Balachandran, C; Kumanan, K; Aarthi, K S; Nireesha, G

    2015-12-01

    Leptospirosis is a bacterial disease caused by bacteria of the genus Leptospira affecting humans and animals. Untreated leptospirosis may result in severe kidney damage, meningitis, liver failure, respiratory distress, and even death. Virulent leptospirosis can rapidly enter kidney fibroblasts and induce a programmed cell death. Thus, it is a challenge for immunologists to develop an effective and safe leptospirosis vaccine. Here, we compared the commercial canine leptospira vaccine and recombinant proteins (OmpL1 and LipL41) with and without adjuvant in terms of immune response and challenge studies in hamsters and immune response studies alone in experimental dogs. The outer membrane proteins viz., lipL41 and OmpL1 of leptospira interrogans serovars icterohaemorrhagiae were amplified. The primers were designed in such a way that amplified products of OmpL1 and lipL41 were ligated and cloned simultaneously into a single vector. The cloned products were expressed in E. coli BL21 cells. The immunoprotection studies were conducted for both recombinant proteins and commercial vaccine. The challenge experiment studies revealed that combination of both rLip41 and rOmpL1 and commercial vaccine gave 83% and 87% protection, respectively. Histopathological investigation revealed mild sub lethal changes were noticed in liver and kidney in commercially vaccinated group alone. The immune responses against recombinant leptospiral proteins were also demonstrated in dogs. PMID:26742322

  8. Overexpression of microRNAs enhances recombinant