Science.gov

Sample records for active region ar

  1. CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158

    SciTech Connect

    Tarr, Lucas; Longcope, Dana; Millhouse, Margaret

    2013-06-10

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

  2. CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112

    SciTech Connect

    Tarr, Lucas; Longcope, Dana

    2012-04-10

    The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.

  3. The Role of the Kink Instability of a Long-Lived Active Region AR 9604

    NASA Astrophysics Data System (ADS)

    Tian, Lirong; Liu, Yang; Yang, Jing; Alexander, David

    2005-07-01

    We have traced the long-term evolution of a non-Hale active region composed of NOAA 9604 9632 9672 9704 9738, which displayed strong transient activity with associated geomagnetic effects from September to December, 2001. By studying the development of spot-group and line-of-sight magnetic field together with the evolution of Hα filaments, the EUV and X-ray corona (TRACE 171 Å, Yohkoh/SXT), we have found that the magnetic structure of the active region exhibited a continuous clockwise rotation throughout its entire life. Vector magnetic data obtained from Huairou Solar Observing Station (HSOS) and full-disk line-of-sight magnetograms from SOHO/MDI allowed the determination of the best-fit force-free parameter (proxy of twist), αbest, and the systematic tilt angle (proxy of writhe) which were both found to take positive values. Soft X-ray coronal loops from Yohkoh/SXT displayed a pronounced forward-sigmoid structure in period of NOAA 9704. These observations imply that the magnetic flux tube (loops) with the same handedness (right) of the writhe and the twist rotated clockwise in the solar atmosphere for a long time. We argue that the continuous clockwise rotation of the long-lived active region may be a manifestation that a highly right-hand twisted and kinked flux tube was emerging through the photosphere and chromosphere into the corona.

  4. Armenian Astronomical Society (ArAS) activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    A review on the activities and achievements of Armenian Astronomical Society (ArAS) and Armenian astronomy in general during the last years is given. ArAS membership, ArAS electronic newsletters (ArASNews), ArAS webpage, Annual Meetings, Annual Prize for Young Astronomers (Yervant Terzian Prize) and other awards, international relations, presence in international organizations, local and international summer schools, science camps, astronomical Olympiads and other events, matters related to astronomical education, astronomical heritage, amateur astronomy, astronomy outreach and ArAS further projects are described and discussed.

  5. Independent CMEs from a Single Solar Active Region - The Case of the Super-Eruptive NOAA AR11429

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2014-06-01

    In this investigation we study AR 11429, the origin of the twin super-fast CME eruptions of 07-Mar-2012. This AR fulfills all the requirements for the 'perfect storm'; namely, Hale's law incompatibility and a delta-magnetic configuration. In fact, during its limb-to-limb transit, AR 11429 spawned several eruptions which caused geomagnetic storms, including the biggest in Cycle 24 so far. Magnetic Flux Ropes (MFRs) are twisted magnetic structures in the corona, best seen in ~10MK hot plasma emission and are often considered as the culprit causing such super-eruptions. However, their 'dormant' existence in the solar atmosphere (i.e. prior to eruptions), is a matter of strong debate. Aided by multi-wavelength and multi-spacecraft observations (SDO/HMI & AIA, HINODE/SOT/SP, STEREO B/EUVI) and by using a Non-Linear Force-Free (NLFFF) model for the coronal magnetic field, our work shows two separate, weakly-twisted magnetic flux systems which suggest the existence of possible pre-eruption MFRs.

  6. Plasma Motions and Turbulent Magnetic Diffusivity of Active Region AR 12158 Using a Minimum Energy Functional and Non-Force-Free Reconstructions of Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Tremblay, Benoit; Vincent, Alain

    2017-01-01

    We present a generalization of the resistive minimum-energy fit (MEF-R: Tremblay and Vincent, Solar Phys. 290, 437, 2015) for non-force-free (NFF) magnetic fields. In MEF-R, an extremum principle is used to infer two-dimensional maps of plasma motions [boldsymbol{v}(x,y)] and magnetic eddy diffusivity [η _{eddy}(x,y)] at the photosphere. These reconstructions could be used as boundary conditions in data-driven simulations or in data assimilation. The algorithm is validated using the analytical model of a resistive expanding spheromak by Rakowski, Laming, and Lyutikov ( Astrophys. J. 730, 30, 2011). We study the flaring Active Region AR 12158 using a series of magnetograms and Dopplergrams provided by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The results are discussed for a non-force-free magnetic-field reconstruction [boldsymbol{B}_{NFF}] (Hu and Dasgupta in Solar Phys. 247, 87, 2008). We found that the vertical plasma velocities [vz(x,y)] inferred using MEF-R are very similar to the observed Doppler velocities [vr(x,y)]. Finally, we study the potential spatial correlation between microturbulent velocities and significant values of η_{eddy}(x,y).

  7. Identification of an AR Mutation-Negative Class of Androgen Insensitivity by Determining Endogenous AR Activity

    PubMed Central

    Ukat, M.; Schweikert, H. U.; Hiort, O.; Werner, R.; Drop, S. L. S.; Cools, M.; Hughes, I. A.; Audi, L.; Ahmed, S. F.; Demiri, J.; Rodens, P.; Worch, L.; Wehner, G.; Kulle, A. E.; Dunstheimer, D.; Müller-Roßberg, E.; Reinehr, T.; Hadidi, A. T.; Eckstein, A. K.; van der Horst, C.; Seif, C.; Siebert, R.; Ammerpohl, O.; Holterhus, P.-M.

    2016-01-01

    Context: Only approximately 85% of patients with a clinical diagnosis complete androgen insensitivity syndrome and less than 30% with partial androgen insensitivity syndrome can be explained by inactivating mutations in the androgen receptor (AR) gene. Objective: The objective of the study was to clarify this discrepancy by in vitro determination of AR transcriptional activity in individuals with disorders of sex development (DSD) and male controls. Design: Quantification of DHT-dependent transcriptional induction of the AR target gene apolipoprotein D (APOD) in cultured genital fibroblasts (GFs) (APOD assay) and next-generation sequencing of the complete coding and noncoding AR locus. Setting: The study was conducted at a university hospital endocrine research laboratory. Patients: GFs from 169 individuals were studied encompassing control males (n = 68), molecular defined DSD other than androgen insensitivity syndrome (AIS; n = 18), AR mutation-positive AIS (n = 37), and previously undiagnosed DSD including patients with a clinical suspicion of AIS (n = 46). Intervention(s): There were no interventions. Main Outcome Measure(s): DHT-dependent APOD expression in cultured GF and AR mutation status in 169 individuals was measured. Results: The APOD assay clearly separated control individuals (healthy males and molecular defined DSD patients other than AIS) from genetically proven AIS (cutoff < 2.3-fold APOD-induction; 100% sensitivity, 93.3% specificity, P < .0001). Of 46 DSD individuals with no AR mutation, 17 (37%) fell below the cutoff, indicating disrupted androgen signaling. Conclusions: AR mutation-positive AIS can be reliably identified by the APOD assay. Its combination with next-generation sequencing of the AR locus uncovered an AR mutation-negative, new class of androgen resistance, which we propose to name AIS type II. Our data support the existence of cellular components outside the AR affecting androgen signaling during sexual differentiation with high

  8. Evolution of active region outflows throughout an active region lifetime

    NASA Astrophysics Data System (ADS)

    Zangrilli, L.; Poletto, G.

    2016-10-01

    Context. We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Aims: Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Methods: Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R⊙, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H i Lyα line and the O vi doublet lines at 1031.9 and 1037.6 Å. Results: Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two types of outflows at different latitudes, both possibly originating in the same negative polarity area of the AR. We also analyzed the behavior of the Si xii 520 Å line along the UVCS slit in an attempt to reveal changes in the Si abundance when different regions are traversed. Although we found some evidence for a Si enrichment in the AR outflows, alternative interpretations are also plausible. Conclusions: Our results demonstrate that outflows from ARs are detectable in the intermediate corona throughout the whole AR lifetime. This confirms that outflows contribute to the slow wind.

  9. 76 FR 27077 - Agency Information Collection Activities: Form AR-11 and Form AR-11SR, Extension of an Existing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... SECURITY U.S. Citizenship and Immigration Services Agency Information Collection Activities: Form AR-11 and Form AR- 11SR, Extension of an Existing Information Collection; Comment Request ACTION: 60-Day Notice of Information Collection under Review: Form AR- 11 and Form AR-11SR, Alien's Change of Address...

  10. sup 40 Ar- sup 39 Ar and K-Ar dating of K-rich rocks from the Roccamonfina volcano, Roman Comagmatic Region, Italy

    SciTech Connect

    Di Brozolo, F.R.; Di Girolamo, P.; Turi, B.; Oddone, M. )

    1988-06-01

    Roccamonfina is the northernmost Volcano of the Campanian area of the K-rich Roman comagmatic Region of Italy. It erupted a huge amount of pyroclastics and lavas belonging to both the Leucite-Basanite and Leucitite Series (LBLS) and the Shoshonite Series (SS), spread over an area of about 300 km{sup 2}. The above series correspond to the High-K Series (HKS) and Low-K Series (LKS) of Appleton (1971), respectively. {sup 40}Ar-{sup 39}Ar and K-Ar dating of samples from both series gave ages ranging from 0.656 to 0.096 Ma for the SS and from 1.03( ) to 0.053 Ma for the LBLS. These results indicate that the products of the two series were outpoured together at least between 0.7 and 0.1 Ma age, i.e. during both the so-called pre-caldera phase and the post-caldera phase of activity. The latest products of the volcanism at Roccamonfina were erupted just before the deposition of the Grey Campanian Ignimbrite, which erupted from vents located about 50 km to the south in the Phlegrean Fields near Naples and has an age of about 33,000 years. Taking into account all the available all the available radiometric data the authors conclude that Roccamonfina was active between 1.5 and 0.05 Ma ago, in excellent agreement with the stratigraphic evidence. In this same time span is concentrated the activity of all the centers of the Roman Region north of Naples.

  11. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  12. ELF5-Mediated AR Activation Regulates Prostate Cancer Progression

    PubMed Central

    Li, Kai; Guo, Yongmin; Yang, Xiong; Zhang, Zhihong; Zhang, Changwen; Xu, Yong

    2017-01-01

    The transcription factor E74-like factor 5 (ELF5) is a potent antioncogene that can prevent epithelial-mesenchymal transition (EMT) and metastasis in prostate cancer (PCa). However, little is known how it suppress the tumor growth and if it can interact with androgen receptor (AR). In this study, we find that the ELF5 is frequently expressed in AR activated PCa cells, where it binds to AR acting as a physiological partner and negatively regulates its transcriptional activity. In addition, the interaction between ELF5 and AR is androgen-dependent. Downregulation of ELF5 by shRNA increases the expression of AR-response genes and the progression of PCa. Moreover, ELF5 is a AR-dependent gene that its expression can be induced by androgen and suppressed by antiandrogen treatment. Notably, forced reduction of ELF5 in LNCaP cells facilitates the binding of AR to ARE in ELF5 gene and enabling its transcription, so that low level ELF5 can turn up its own expression by the negative feedback loop. PMID:28287091

  13. ELF5-Mediated AR Activation Regulates Prostate Cancer Progression.

    PubMed

    Li, Kai; Guo, Yongmin; Yang, Xiong; Zhang, Zhihong; Zhang, Changwen; Xu, Yong

    2017-03-13

    The transcription factor E74-like factor 5 (ELF5) is a potent antioncogene that can prevent epithelial-mesenchymal transition (EMT) and metastasis in prostate cancer (PCa). However, little is known how it suppress the tumor growth and if it can interact with androgen receptor (AR). In this study, we find that the ELF5 is frequently expressed in AR activated PCa cells, where it binds to AR acting as a physiological partner and negatively regulates its transcriptional activity. In addition, the interaction between ELF5 and AR is androgen-dependent. Downregulation of ELF5 by shRNA increases the expression of AR-response genes and the progression of PCa. Moreover, ELF5 is a AR-dependent gene that its expression can be induced by androgen and suppressed by antiandrogen treatment. Notably, forced reduction of ELF5 in LNCaP cells facilitates the binding of AR to ARE in ELF5 gene and enabling its transcription, so that low level ELF5 can turn up its own expression by the negative feedback loop.

  14. sup 40 Ar/ sup 39 Ar polyorogenic mineral age record within the southern Mauritanide orogen (M'Bout-Bakel region) West Africa

    SciTech Connect

    Dallmeyer, R.D. ); Lecorche, J.P. )

    1990-12-01

    The southern Mauritanide orogen exposed between M'Bout and Bakel is characterized by several internally imbricated, polydeformed, and variably metamorphosed infrastructural allochthons. {sup 40}Ar/{sup 39}Ar incremental-release ages recorded by hornblende within undeformed granodiorite of the Guidimakha Complex suggest post-magmatic cooling through appropriate argon closure temperatures at approx 670 Ma. {sup 40}Ar/{sup 39}Ar ages recorded by muscovite within lithologic elements of both the Guidimakha Complex and the Diala-Bouanze Series suggest initial regional metamorphism (associated with Pan-African I orogenesis) was following by cooling through muscovite argon closure temperatures between approx 600 and 620 Ma. Slight rejuvenation of muscovite argon systems occurred locally between approx 325 and 350 Ma. Muscovite and whole-rock slate/phyllite argon systems within metavolcanic and metavolcaniclastic components of the infrastructural calc-alkaline igneous complex (easternmost sectors of the M'Bout Series) record {sup 40}Ar/{sup 39}Ar plateau age of approx 300 to 320 Ma. Muscovite and whole-rock slate/phyllite argon systems within westernmost portions of the study area (western portions of the M'Bout Series) record {sup 40}Ar/{sup 39}Ar plateau ages of approx 267 to 312 Ma. All foreland units within the M'Bout-Bakel area were affected by post-Emsian folding. Effects of this tectonic activity are widespread throughout the parautochthon and western metamorphic sequences. These effects include emplacement of suprastructural ( ) allochthons and local reactivation of older thrust faults within infrastructural units.

  15. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis.

    PubMed

    Castillo, Ana F; Orlando, Ulises; Helfenberger, Katia E; Poderoso, Cecilia; Podesta, Ernesto J

    2015-06-15

    The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.

  16. CME Productivity of Active Regions.

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, Y.; Wang, J.; Shen, C.; Ye, P.; Zhang, Q.; Liu, R.; Wang, S.

    2015-12-01

    Solar active regions (ARs) are the major sources of two kinds of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). Although they are believed to be two phenomena in the same eruptive process, the productivity of them could be quiet different for various ARs. Why is an AR productive? And why is a flare-rich AR CME-poor? To answer these questions, we compared the recent super flare-rich but CME-poor AR 12192, with other four ARs; two were productive in both flares and CMEs and the other two were inert to produce any M-class or intenser flares or CMEs. By investigating the photospheric parameters based on the SDO/HMI vector magnetogram, we find the three productive ARs have larger magnetic flux, current and free magnetic energy than the inert ARs. Furthermore, the two ARs productive in both flares and CMEs contain higher current helicity, concentrating along both sides of the flaring neutral lines, indicating the presence of a seed magnetic structure( that is highly sheared or twisted) of a CME; they also have higher decay index in the low corona, showing weak constraint. The results suggest that productive ARs are always large and have strong current system and sufficient free energy to power flares, and more importantly whether or not a flare is accompanied by a CME is seemingly related to (1) if there is significant sheared or twisted core field serving as the seed of the CME and (2) if the constraint of the overlying arcades is weak enough. Moreover, some productive ARs may frequently produce more than one CME. How does this happen? We do a statistical investigation of waiting times of quasi-homologous CMEs ( CME ssuccessive originating from the same ARs within short intervals) from super ARs in solar cycle 23 to answer this question. The waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hours, the first component peaks at 7 hours. The correlation analysis among CME waiting times

  17. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  18. Cell cycle-coupled expansion of AR activity promotes cancer progression.

    PubMed

    McNair, C; Urbanucci, A; Comstock, C E S; Augello, M A; Goodwin, J F; Launchbury, R; Zhao, S G; Schiewer, M J; Ertel, A; Karnes, J; Davicioni, E; Wang, L; Wang, Q; Mills, I G; Feng, F Y; Li, W; Carroll, J S; Knudsen, K E

    2017-03-23

    The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.

  19. Cooperative Dynamics of AR and ER Activity in Breast Cancer.

    PubMed

    D'Amato, Nicholas C; Gordon, Michael A; Babbs, Beatrice; Spoelstra, Nicole S; Carson Butterfield, Kiel T; Torkko, Kathleen C; Phan, Vernon T; Barton, Valerie N; Rogers, Thomas J; Sartorius, Carol A; Elias, Anthony; Gertz, Jason; Jacobsen, Britta M; Richer, Jennifer K

    2016-11-01

    Androgen receptor (AR) is expressed in 90% of estrogen receptor alpha-positive (ER(+)) breast tumors, but its role in tumor growth and progression remains controversial. Use of two anti-androgens that inhibit AR nuclear localization, enzalutamide and MJC13, revealed that AR is required for maximum ER genomic binding. Here, a novel global examination of AR chromatin binding found that estradiol induced AR binding at unique sites compared with dihydrotestosterone (DHT). Estradiol-induced AR-binding sites were enriched for estrogen response elements and had significant overlap with ER-binding sites. Furthermore, AR inhibition reduced baseline and estradiol-mediated proliferation in multiple ER(+)/AR(+) breast cancer cell lines, and synergized with tamoxifen and fulvestrant. In vivo, enzalutamide significantly reduced viability of tamoxifen-resistant MCF7 xenograft tumors and an ER(+)/AR(+) patient-derived model. Enzalutamide also reduced metastatic burden following cardiac injection. Finally, in a comparison of ER(+)/AR(+) primary tumors versus patient-matched local recurrences or distant metastases, AR expression was often maintained even when ER was reduced or absent. These data provide preclinical evidence that anti-androgens that inhibit AR nuclear localization affect both AR and ER, and are effective in combination with current breast cancer therapies. In addition, single-agent efficacy may be possible in tumors resistant to traditional endocrine therapy, as clinical specimens of recurrent disease demonstrate AR expression in tumors with absent or refractory ER.

  20. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells.

    PubMed

    Shafi, Ayesha A; Putluri, Vasanta; Arnold, James M; Tsouko, Efrosini; Maity, Suman; Roberts, Justin M; Coarfa, Cristian; Frigo, Daniel E; Putluri, Nagireddy; Sreekumar, Arun; Weigel, Nancy L

    2015-10-13

    Metastatic prostate cancer (PCa) is primarily an androgen-dependent disease, which is treated with androgen deprivation therapy (ADT). Tumors usually develop resistance (castration-resistant PCa [CRPC]), but remain androgen receptor (AR) dependent. Numerous mechanisms for AR-dependent resistance have been identified including expression of constitutively active AR splice variants lacking the hormone-binding domain. Recent clinical studies show that expression of the best-characterized AR variant, AR-V7, correlates with resistance to ADT and poor outcome. Whether AR-V7 is simply a constitutively active substitute for AR or has novel gene targets that cause unique downstream changes is unresolved. Several studies have shown that AR activation alters cell metabolism. Using LNCaP cells with inducible expression of AR-V7 as a model system, we found that AR-V7 stimulated growth, migration, and glycolysis measured by ECAR (extracellular acidification rate) similar to AR. However, further analyses using metabolomics and metabolic flux assays revealed several differences. Whereas AR increased citrate levels, AR-V7 reduced citrate mirroring metabolic shifts observed in CRPC patients. Flux analyses indicate that the low citrate is a result of enhanced utilization rather than a failure to synthesize citrate. Moreover, flux assays suggested that compared to AR, AR-V7 exhibits increased dependence on glutaminolysis and reductive carboxylation to produce some of the TCA (tricarboxylic acid cycle) metabolites. These findings suggest that these unique actions represent potential therapeutic targets.

  1. A model for meteoritic and lunar 40Ar/39Ar age spectra: Addressing the conundrum of multi-activation energies

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Harrison, T. Mark; Heizler, M. T.; Warren, P. H.

    2016-11-01

    Results of whole-rock 40Ar/39Ar step-heating analyses of extra-terrestrial materials have been used to constrain the timing of impacts in the inner solar system, solidification of the lunar magma ocean, and development of planetary magnetic fields. Despite the importance of understanding these events, the samples we have in hand are non-ideal due to mixed provenance, isotopic disturbances from potentially multiple heating episodes, and laboratory artifacts such as nuclear recoil. Although models to quantitatively assess multi-domain, diffusive 40Ar* loss have long been applied to terrestrial samples, their use on extra-terrestrial materials has been limited. Here we introduce a multi-activation energy, multi-diffusion domain model and apply it to 40Ar/39Ar temperature-cycling, step-heating data for meteoritic and lunar samples. We show that age spectra of extra-terrestrial materials, the Jilin chondrite (K-4) and Apollo 16 lunar breccia (67514 , 43), yielding seemingly non-ideal behavior commonly interpreted as either laboratory artifacts or localized shock heating of pyroxene, are meaningful and can be understood in context of the presence of multi-diffusion domains containing multiple activation energies. Internally consistent results from both the meteoritic and lunar samples reveal high-temperature/short duration thermal episodes we interpret as due to moderate shock heating.

  2. 76 FR 43336 - Agency Information Collection Activities: Form AR-11, Extension of an Existing Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... SECURITY U.S. Citizenship and Immigration Services Agency Information Collection Activities: Form AR-11... Collection under Review: Form AR- 11, Alien's Change of Address Card; OMB Control No. 1615-0007. The... applicable component of the Department of Homeland Security sponsoring this collection: Form AR-11....

  3. Regulatory Activities of Four ArsR Proteins in Agrobacterium tumefaciens 5A

    PubMed Central

    Kang, Yoon-Suk; Brame, Keenan; Jetter, Jonathan; Bothner, Brian B.; Wang, Gejiao

    2016-01-01

    ABSTRACT ArsR is a well-studied transcriptional repressor that regulates microbe-arsenic interactions. Most microorganisms have an arsR gene, but in cases where multiple copies exist, the respective roles or potential functional overlap have not been explored. We examined the repressors encoded by arsR1 and arsR2 (ars1 operon) and by arsR3 and arsR4 (ars2 operon) in Agrobacterium tumefaciens 5A. ArsR1 and ArsR4 are very similar in their primary sequences and diverge phylogenetically from ArsR2 and ArsR3, which are also quite similar to one another. Reporter constructs (lacZ) for arsR1, arsR2, and arsR4 were all inducible by As(III), but expression of arsR3 (monitored by reverse transcriptase PCR) was not influenced by As(III) and appeared to be linked transcriptionally to an upstream lysR-type gene. Experiments using a combination of deletion mutations and additional reporter assays illustrated that the encoded repressors (i) are not all autoregulatory as is typically known for ArsR proteins, (ii) exhibit variable control of each other's encoding genes, and (iii) exert variable control of other genes previously shown to be under the control of ArsR1. Furthermore, ArsR2, ArsR3, and ArsR4 appear to have an activator-like function for some genes otherwise repressed by ArsR1, which deviates from the well-studied repressor role of ArsR proteins. The differential regulatory activities suggest a complex regulatory network not previously observed in ArsR studies. The results indicate that fine-scale ArsR sequence deviations of the reiterated regulatory proteins apparently translate to different regulatory roles. IMPORTANCE Given the significance of the ArsR repressor in regulating various aspects of microbe-arsenic interactions, it is important to assess potential regulatory overlap and/or interference when a microorganism carries multiple copies of arsR. This study explores this issue and shows that the four arsR genes in A. tumefaciens 5A, associated with two separate

  4. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    SciTech Connect

    Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang

    2013-08-01

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.

  5. Cell-cycle coupled expansion of AR activity promotes cancer progression

    PubMed Central

    McNair, Christopher; Urbanucci, Alfonso; Comstock, Clay E.S.; Augello, Michael A.; Goodwin, Jonathan F.; Launchbury, Rosalind; Zhao, Shuang; Schiewer, Mathew J.; Ertel, Adam; Karnes, Jeffrey; Davicioni, Elai; Wang, Liguo; Wang, Qianben; Mills, Ian G.; Feng, Felix Y.; Li, Wei; Carroll, Jason S.; Knudsen, Karen E.

    2016-01-01

    The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle (“Cell Cycle Common”), versus those that were specifically enriched in a subset of cell cycle phases (“Phase Restricted”). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide-desaturase 1 (DEGS1) was identified as an AR regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention, and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention. PMID:27669432

  6. Estimation of (41)Ar activity concentration and release rate from the TRIGA Mark-II research reactor.

    PubMed

    Hoq, M Ajijul; Soner, M A Malek; Rahman, A; Salam, M A; Islam, S M A

    2016-03-01

    The BAEC TRIGA research reactor (BTRR) is the only nuclear reactor in Bangladesh. Bangladesh Atomic Energy Regulatory Authority (BAERA) regulations require that nuclear reactor licensees undertake all reasonable precautions to protect the environment and the health and safety of persons, including identifying, controlling and monitoring the release of nuclear substances to the environment. The primary activation product of interest in terms of airborne release from the reactor is (41)Ar. (41)Ar is a noble gas readily released from the reactor stacks and most has not decayed by the time it moves offsite with normal wind speed. Initially (41)Ar is produced from irradiation of dissolved air in the primary water which eventually transfers into the air in the reactor bay. In this study, the airborne radioisotope (41)Ar generation concentration, ground level concentration and release rate from the BTRR bay region are evaluated theoretically during the normal reactor operation condition by several governing equations. This theoretical calculation eventually minimizes the doubt about radiological safety to determine the radiation level for (41)Ar activity whether it is below the permissible limit or not. Results show that the estimated activity for (41)Ar is well below the maximum permissible concentration limit set by the regulatory body, which is an assurance for the reactor operating personnel and general public. Thus the analysis performed within this paper is so much effective in the sense of ensuring radiological safety for working personnel and the environment.

  7. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

  8. Temperature and Abundance Variations of an Active Region in Three Solar Rotations

    NASA Astrophysics Data System (ADS)

    Ko, Y.; Fludra, A.; Raymond, J. C.

    2002-12-01

    Active region 9718 (AR 9718) appeared at the east limb on November 26, 2001 which was newly formed when it was at the backside of the Sun. It survives through three solar rotations -- AR 9755 and AR 9798 for subsequent rotations. AR 9798 decayed to no visible sunspot before it reached the west limb. SOHO/UVCS observed this region four times, as part of SOHO JOP 151, when it was at the limbs (AR 9718 at the west limb, AR 9755 at both the east and west limbs, and AR 9798 at the west limb). SOHO/CDS made observations when AR 9718 and AR 9755 were at the west limb. We investigate the temperature and abundance variations of this active region during its lifetime, and look for possible correlations between these physical parameters and its magnetic characteristics.

  9. Middle Miocene rifting and volcanic history of the Berufjordor- Breiddalur region, eastern Iceland revealed by 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Gans, P. B.; Askew, R. A.; Thordarson, T.

    2015-12-01

    Eighteen new 40Ar/39r incremental heating analyses of groundmass concentrates from fresh holocrystalline interiors of basalt lavas and dikes collected in an E-W, 35-km-long transect across the Berufjordor- Breiddalur region, eastern Iceland shed important new light on the Miocene spreading history and age of the Breiddalur central volcano. Despite fine-grain sizes and low K contents, most samples yield high quality ages (either simple plateaus or spectra indicative of modest recoil ± low T argon loss) with estimated uncertainties of ±0.1 to 0.2 Ma. Ages decrease monotonically westward in the eastern half of transect from 12.1 to 10.0 Ma over an 18 km distance, in excellent agreement with the estimated half spreading rate of 0.9 cm/yr. In contrast, the western 15 km of the transect (and ~ 1 km of "apparent" vertical succession), including lavas below, above and within the Breiddalur volcano shows no systematic westward younging - all lavas in this region range from 9.1 to 9.8 Ma. Ages from diabase dikes similarly range from 9.1 to 9.8 Ma, except one distinctly younger at 7.8 Ma. The simplest interpretation of the new age determinations is that up until ~9 Ma, a ≥15 km-wide rift zone/plate boundary was situated in the eastern half of the transect. The entire rift zone (including Breiddalur volcano) was then accreted to the Eurasian plate during a westward rift jump of ≥ 15 km. These types of minor jumps in the plate boundary and accretion of entire rift zones to one plate or the other may help explain the "excess width" of Iceland. Also, the data raise questions about the strict applicability of the Palmeson (1973) model, as in this case, a paleo rift zone is not reflected by a dip reversal, and "proximal" or within rift volcanic and plutonic rocks are well exposed at the present surface and are not buried by younger flows as the spreading center moves away.

  10. Identification of a novel distal control region upstream of the human steroidogenic acute regulatory protein (StAR) gene that participates in SF-1-dependent chromatin architecture.

    PubMed

    Mizutani, Tetsuya; Yazawa, Takashi; Ju, Yunfeng; Imamichi, Yoshitaka; Uesaka, Miki; Inaoka, Yoshihiko; Matsuura, Kaoru; Kamiki, Yasue; Oki, Masaya; Umezawa, Akihiro; Miyamoto, Kaoru

    2010-09-03

    StAR (steroidogenic acute regulatory protein) mediates the transport of cholesterol from the outer to the inner mitochondrial membrane, the process of which is the rate-limiting step for steroidogenesis. Transcriptional regulation of the proximal promoter of the human StAR gene has been well characterized, whereas analysis of its distal control region has not. Recently, we found that SF-1 (steroidogenic factor 1) induced the differentiation of mesenchymal stem cells (MSCs) into steroidogenic cells with the concomitant strong induction of StAR expression. Here, we show, using differentiated MSCs, that StAR expression is regulated by a novel distal control region. Using electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays, we identified novel SF-1 binding sites between 3,000 and 3,400 bp upstream of StAR. A luciferase reporter assay revealed that the region worked as a strong regulator to exert maximal transcription of StAR. ChIP analysis of histone H3 revealed that upon SF-1 expression, nucleosome eviction took place at the SF-1 binding sites, not only in the promoter but also in the distal SF-1 binding sites. Chromosome conformation capture analysis revealed that the region upstream of StAR formed a chromatin loop both in the differentiated MSCs and in KGN cells, a human granulosa cell tumor cell line, where SF-1 is endogenously expressed. Finally, SF-1 knockdown resulted in disrupted formation of this chromatin loop in KGN cells. These results indicate that the novel distal control region participate in StAR activation through SF-1 dependent alterations of chromatin structure, including histone eviction and chromatin loop formation.

  11. Oscillations in G-band and Ca II H wing in the active region NOAA AR10789. (Slovak Title: Oscilácie v G páse a Ca II H krídle v aktívnej oblasti NOAA AR10789)

    NASA Astrophysics Data System (ADS)

    Karlovský, V.

    2010-12-01

    Variations of the area of a sunspot in G-band and in Ca II H line wing were analyzed based on observations obtained on 13 July, 2005 by DOT Telescope (La Palma, Canary Islands, Spain) in the active region NOAA 10789. Change of the area at the threshold value of 0.4 was analyzed using wavelet transform in order to determine the significance of the derived periods. Because of the different time dependence of the period distributions in these two spectral regions coherence between the two time series of observations was investigated.

  12. A Survey of Nanoflare Properties in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Klimchuk, J. A.

    2013-12-01

    We investigate coronal heating using a systematic technique to analyze the properties of nanoflares in active regions (AR). Our technique computes cooling times, or time-lags, on a pixel-by-pixel basis using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique has the advantage that it allows us to analyze all of the coronal AR emission, including the so-called diffuse emission. We recently presented results using this time-lag analysis on NOAA AR 11082 (Viall & Klimchuk 2012) and found that the majority of the pixels contained cooling plasma along their line of sight, consistent with impulsive coronal nanoflare heating. Additionally, our results showed that the nanoflare energy is stronger in the AR core and weaker in the active region periphery. Are these results representative of the nanoflare properties exhibited in the majority of ARs, or is AR 11082 unique? Here we present the time-lag results for a survey of ARs and show that these nanoflare patterns are born out in other active regions, for a range of ages, magnetic complexity, and total unsigned magnetic flux. Other aspects of the nanoflare properties, however, turn out to be dependent on certain AR characteristics.

  13. FLOWS AT THE EDGE OF AN ACTIVE REGION: OBSERVATION AND INTERPRETATION

    SciTech Connect

    Boutry, C.; Buchlin, E.; Vial, J.-C.; Regnier, S.

    2012-06-10

    Upflows observed at the edges of active regions have been proposed as the source of the slow solar wind. In the particular case of Active Region (AR) 10942, where such an upflow has been already observed, we want to evaluate the part of this upflow that actually remains confined in the magnetic loops that connect AR 10942 to AR 10943. Both active regions were visible simultaneously on the solar disk and were observed by STEREO/SECCHI EUVI. Using Hinode/EIS spectra, we determine the Doppler shifts and densities in AR 10943 and AR 10942 in order to evaluate the mass flows. We also perform magnetic field extrapolations to assess the connectivity between AR 10942 and AR 10943. AR 10943 displays a persistent downflow in Fe XII. Magnetic extrapolations including both ARs show that this downflow can be connected to the upflow in AR 10942. We estimate that the mass flow received by AR 10943 areas connected to AR 10942 represents about 18% of the mass flow from AR 10942. We conclude that the upflows observed on the edge of active regions represent either large-scale loops with mass flowing along them (accounting for about one-fifth of the total mass flow in this example) or open magnetic field structures where the slow solar wind originates.

  14. FIP bias in a sigmoidal active region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, Lidia; Green, L. M.; Steed, K.; Carlyle, J.

    2014-01-01

    We investigate first ionization potential (FIP) bias levels in an anemone active region (AR) - coronal hole (CH) complex using an abundance map derived from Hinode/EIS spectra. The detailed, spatially resolved abundance map has a large field of view covering 359'' × 485''. Plasma with high FIP bias, or coronal abundances, is concentrated at the footpoints of the AR loops whereas the surrounding CH has a low FIP bias, ~1, i.e. photospheric abundances. A channel of low FIP bias is located along the AR's main polarity inversion line containing a filament where ongoing flux cancellation is observed, indicating a bald patch magnetic topology characteristic of a sigmoid/flux rope configuration.

  15. Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52.

    PubMed

    Joshi, Jugal Bharat; Patel, Divya; Morton, Derrick J; Sharma, Pankaj; Zou, Jin; Hewa Bostanthirige, Dhanushka; Gorantla, Yamini; Nagappan, Peri; Komaragiri, Shravan Kumar; Sivils, Jeffrey C; Xie, Huan; Palaniappan, Ravi; Wang, Guangdi; Cox, Marc B; Chaudhary, Jaideep

    2016-11-27

    Castration-resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen-depleted environment of the prostate. In recent years, targeting multiple chaperones and co-chaperones (e.g., Hsp27, FKBP52) that promote androgen receptor (AR) signaling and/or novel AR regulatory mechanisms have emerged as promising alternative treatments for CRPC. We have shown that inactivation of inhibitor of differentiation 4 (ID4), a dominant-negative helix loop helix protein, promotes de novo steroidogenesis and CRPC with a gene expression signature that resembles constitutive AR activity in castrated mice. In this study, we investigated the underlying mechanism through which loss of ID4 potentiates AR signaling. Proteomic analysis between prostate cancer cell line LNCaP (L+ns) and LNCaP lacking ID4 (L(-)ID4) revealed elevated levels of Hsp27 and FKBP52, suggesting a role for these AR-associated co-chaperones in promoting constitutively active AR signaling in L(-)ID4 cells. Interestingly, protein interaction studies demonstrated a direct interaction between ID4 and the 52-kDa FK506-binding protein (FKBP52) in vitro, but not with AR. An increase in FKBP52-dependent AR transcriptional activity was observed in L(-)ID4 cells. Moreover, pharmacological inhibition of FKBP52-AR signaling, by treatment with MJC13, attenuated the tumor growth, weight, and volume in L(-)ID4 xenografts. Together, our results demonstrate that ID4 selectively regulates AR activity through direct interaction with FKBP52, and its loss, promotes CRPC through FKBP52-mediated AR signaling.

  16. Apparent and Intrinsic Evolution of Active Region Upflows

    NASA Astrophysics Data System (ADS)

    Baker, Deborah; Janvier, Miho; Démoulin, Pascal; Mandrini, Cristina H.

    2017-04-01

    We analyze the evolution of Fe xii coronal plasma upflows from the edges of ten active regions (ARs) as they cross the solar disk using the Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) to do this. Confirming the results of Démoulin et al. ( Sol. Phys. 283, 341, 2013), we find that for each AR there is an observed long-term evolution of the upflows. This evolution is largely due to the solar rotation that progressively changes the viewpoint of dominantly stationary upflows. From this projection effect, we estimate the unprojected upflow velocity and its inclination to the local vertical. AR upflows typically fan away from the AR core by 40° to nearly vertical for the following polarity. The span of inclination angles is more spread out for the leading polarity, with flows angled from -29° (inclined toward the AR center) to 28° (directed away from the AR). In addition to the limb-to-limb apparent evolution, we identify an intrinsic evolution of the upflows that is due to coronal activity, which is AR dependent. Furthermore, line widths are correlated with Doppler velocities only for the few ARs with the highest velocities. We conclude that for the line widths to be affected by the solar rotation, the spatial gradient of the upflow velocities must be large enough such that the line broadening exceeds the thermal line width of Fe xii. Finally, we find that upflows occurring in pairs or multiple pairs are a common feature of ARs observed by Hinode/EIS, with up to four pairs present in AR 11575. This is important for constraining the upflow-driving mechanism as it implies that the mechanism is not local and does not occur over a single polarity. AR upflows originating from reconnection along quasi-separatrix layers between overpressure AR loops and neighboring underpressure loops is consistent with upflows occurring in pairs, unlike other proposed mechanisms that act locally in one polarity.

  17. Static and Impulsive Models of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, James A.

    2008-01-01

    The physical modeling of active regions (ARs) and of the global coronal is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright EUV warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, repetition time) of the impulsive heating.

  18. Evidence of Twisted Flux-Tube Emergence in Active Regions

    NASA Astrophysics Data System (ADS)

    Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.

    2015-03-01

    Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

  19. Novel Stably Transfected Human Reporter Cell Line AIZ-AR as a Tool for an Assessment of Human Androgen Receptor Transcriptional Activity

    PubMed Central

    Bartonkova, Iveta; Novotna, Aneta; Dvorak, Zdenek

    2015-01-01

    Androgen receptor plays multiple physiological and pathological roles in human organism. In the current paper, we describe construction and characterization of a novel stably transfected human reporter cell line AIZ-AR for assessment of transcriptional activity of human androgen receptor. Cell line AIZ-AR is derived from human prostate carcinoma epithelial cell line 22Rv1 that was transfected with reporter plasmid containing 3 copies of androgen response regions (ARRs) followed by a single copy of androgen response element (ARE) from the promoter region of human prostate specific antigen (PSA) gene. AIZ-AR cells remained fully functional for more than 60 days and over 25 passages in the culture and even after cryopreservation. Time-course analyses showed that AIZ-AR cells allow detection of AR ligands as soon as after 8 hours of the treatment. We performed dose-response analyses with 23 steroids in 96-well plate format. We observed activation of AR by androgens, but not by estrogens and mineralocorticoids. Some glucocorticoids and progesterone also induced luciferase, but their potencies were 2-3 orders of magnitude weaker as compared to androgens. Taken together, we have developed a rapid, sensitive, selective, high-throughput and reproducible tool for detection of human AR ligands, with potential use in pharmacological and environmental applications. PMID:25811655

  20. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression.

    PubMed

    Li, Y; Hwang, T H; Oseth, L A; Hauge, A; Vessella, R L; Schmechel, S C; Hirsch, B; Beckman, K B; Silverstein, K A; Dehm, S M

    2012-11-08

    Reactivation of the androgen receptor (AR) during androgen depletion therapy (ADT) underlies castration-resistant prostate cancer (CRPCa). Alternative splicing of the AR gene and synthesis of constitutively active COOH-terminally truncated AR variants lacking the AR ligand-binding domain has emerged as an important mechanism of ADT resistance in CRPCa. In a previous study, we demonstrated that altered AR splicing in CRPCa 22Rv1 cells was linked to a 35-kb intragenic tandem duplication of AR exon 3 and flanking sequences. In this study, we demonstrate that complex patterns of AR gene copy number imbalances occur in PCa cell lines, xenografts and clinical specimens. To investigate whether these copy number imbalances reflect AR gene rearrangements that could be linked to splicing disruptions, we carried out a detailed analysis of AR gene structure in the LuCaP 86.2 and CWR-R1 models of CRPCa. By deletion-spanning PCR, we discovered a 8579-bp deletion of AR exons 5, 6 and 7 in the LuCaP 86.2 xenograft, which provides a rational explanation for synthesis of the truncated AR v567es AR variant in this model. Similarly, targeted resequencing of the AR gene in CWR-R1 cells led to the discovery of a 48-kb deletion in AR intron 1. This intragenic deletion marked a specific CWR-R1 cell population with enhanced expression of the truncated AR-V7/AR3 variant, a high level of androgen-independent AR transcriptional activity and rapid androgen independent growth. Together, these data demonstrate that structural alterations in the AR gene are linked to stable gain-of-function splicing alterations in CRPCa.

  1. Active region seismology

    NASA Technical Reports Server (NTRS)

    Bogdan, Tom; Braun, D. C.

    1995-01-01

    Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.

  2. Geodynamic interpretation of the 40Ar/39Ar dating of ophiolitic and arc-related mafics and metamafics of the northern part of the Anadyr-Koryak region

    USGS Publications Warehouse

    Palandzhyan, S.A.; Layer, P.W.; Patton, W.W.; Khanchuk, A.I.

    2011-01-01

    Isotope datings of amphibole-bearing mafics and metamafics in the northern part of the Anadyr-Koryak region allow clarification of the time of magmatic and metamorphic processes, which are synchronous with certain stages of the geodynamic development of the northwest segment of the Pacific mobile belt in the Phanerozoic. To define the 40Ar/39Ar age of amphiboles, eight samples of amphibole gabbroids and metamafics were selected during field work from five massifs representing ophiolites and mafic plutons of the island arc. Rocks from terranes of three foldbelts: 1) Pekulnei (Chukotka region), 2) Ust-Belaya (West Koryak region), and 3) the Tamvatnei and El'gevayam subterranes of the Mainits terrane (Koryak-Kamchatka region), were studied. The isotope investigations enabled us to divide the studied amphiboles into two groups varying in rock petrographic features. The first was represented by gabbroids of the Svetlorechensk massif of the Pekulnei Range and by ophiolites of the Tamvatnei Mts.; their magmatic amphiboles show the distribution of argon isotopes in the form of clearly distinguished plateau with an age ranging within 120-129 Ma. The second group includes metamorphic amphiboles of metagabbroids and apogabbro amphibolites of the Ust-Belaya Mts., Pekulnei and Kenkeren ranges (El'gevayam subterranes). Their age spectra show loss of argon and do not provide well defined plateaus the datings obtained for them are interpreted as minimum ages. Dates of amphiboles from the metagabbro of the upper tectonic plate of the Ust-Belaya allochthon points to metamorphism in the suprasubduction environment in the fragment of Late Neoproterozoic oceanic lithosphere in Middle-Late Devonian time, long before the Uda-Murgal island arc system was formed. The amphibolite metamorphism in the dunite-clinopyroxenite-metagabbro Pekulnei sequence was dated to occur at the Permian-Triassic boundary. The age of amphiboles from gabbrodiorites of the Kenkeren Range was dated to be Early

  3. Dynamics and evolution of emerging active regions .

    NASA Astrophysics Data System (ADS)

    Battiato, V.; Billotta, S.; Contarino, L.; Romano, P.; Spadaro, D.; Zuccarello, F.

    In the framework of the study on active region emergence, we report the results obtained from the analysis of two ARs (NOAA 10050 and NOAA 10407), characterized by different lifetimes: recurrent the former and short-lived (7 days) the latter. The data used were acquired during two observational campaigns carried out at THEMIS telescope in IPM mode, coordinated with other instruments (IOACT, DOT, BBSO, MDI/SOHO, EIT/SOHO, TRACE). The results obtained have provided indications on the atmospheric layers where the first manifestations of the emerging AR are evidenced, on the rate of emergence of magnetic flux, on the upward velocity of AFS, on asymmetries in downward motions in the AFS legs.

  4. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  5. Plasma Composition in a Sigmoidal Anemone Active Region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, L.; Green, L. M.; Steed, K.; Carlyle, J.

    2013-11-01

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  6. Plasma composition in a sigmoidal anemone active region

    SciTech Connect

    Baker, D.; Van Driel-Gesztelyi, L.; Green, L. M.; Carlyle, J.; Brooks, D. H.; Démoulin, P.; Steed, K.

    2013-11-20

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  7. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  8. Plasma parameters and active species kinetics in CF4/O2/Ar gas mixture: effects of CF4/O2 and O2/Ar mixing ratios

    NASA Astrophysics Data System (ADS)

    Lee, Junmyung; Kwon, Kwang-Ho; Efremov, A.

    2016-12-01

    The effects of both CF4/O2 and O2/Ar mixing ratios in three-component CF4/O2/Ar mixture on plasma parameters, densities and fluxes of active species determining the dry etching kinetics were analyzed. The investigation combined plasma diagnostics by Langmuir probes and zero-dimensional plasma modeling. It was found that the substitution of CF4 for O2 at constant fraction of Ar in a feed gas produces the non-monotonic change in F atom density, as it was repeatedly reported for the binary CF4/O2 gas mixtures. At the same time, the substitution of Ar for O2 at constant fraction of CF4 results in the monotonic increase in F atom density toward more oxygenated plasmas. The natures of these phenomena as well as theirs possible impacts on the etching/polymerization kinetics were discussed in details.

  9. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  10. Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity.

    PubMed

    Poderoso, Cecilia; Maloberti, Paula; Duarte, Alejandra; Neuman, Isabel; Paz, Cristina; Cornejo Maciel, Fabiana; Podesta, Ernesto J

    2009-03-05

    It is known that ERK1/2 and MEK1/2 participate in the regulation of Star gene transcription. However, their role in StAR protein post-transcriptional regulation is not described yet. In this study we analyzed the relationship between the MAPK cascade and StAR protein phosphorylation and function. We have demonstrated that (a) steroidogenesis in MA-10 Leydig cells depends on the specific of ERK1/2 activation at the mitochondria; (b) ERK1/2 phosphorylation is driven by mitochondrial PKA and constitutive MEK1/2 in this organelle; (c) active ERK1/2 interacts with StAR protein, leads to StAR protein phosphorylation at Ser(232) only in the presence of cholesterol; (d) directed mutagenesis of Ser(232) (S232A) inhibited in vitro StAR protein phosphorylation by ERK1; (e) transient transfection of MA-10 cells with StAR S232A cDNA markedly reduced the yield of progesterone production. We show that StAR protein is a substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric complex that regulates cholesterol transport.

  11. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    SciTech Connect

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.

  12. Succinate/NLRP3 Inflammasome Induces Synovial Fibroblast Activation: Therapeutical Effects of Clematichinenoside AR on Arthritis

    PubMed Central

    Li, Yi; Zheng, Jia-Yi; Liu, Jian-Qun; Yang, Jie; Liu, Yang; Wang, Chen; Ma, Xiao-Nan; Liu, Bao-Lin; Xin, Gui-Zhong; Liu, Li-Fang

    2016-01-01

    Clematichinenoside AR (C-AR) is a triterpene saponin isolated from the root of Clematis manshurica Rupr., which is a herbal medicine used in traditional Chinese medicine for the treatment of arthritis. C-AR exerts anti-inflammatory and immunosuppressive properties, but little is known about its action in the suppression of fibroblast activation. Low oxygen tension and transforming growth factor-β (TGF-β1) induction in the synovium contribute to fibrosis in arthritis. This study was designed to investigate the effect of C-AR on synovial fibrosis from the aspects of hypoxic TGF-β1 and hypoxia-inducible transcription factor-1α (HIF-1α) induction. In the synovium of rheumatoid arthritis (RA) rats, hypoxic TGF-β1 induction increased succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activation and induced NLRP3 inflammasome activation in a manner dependent on HIF-1α induction. In response to NLRP3 inflammasome activation, the released IL-1β further increased TGF-β1 induction, suggesting the forward cycle between inflammation and fibrosis in myofibroblast activation. In the synovium of RA rats, C-AR inhibited hypoxic TGF-β1 induction and suppressed succinate-associated NLRP3 inflammasome activation by inhibiting SDH activity, and thereby prevented myofibroblast activation by blocking the cross-talk between inflammation and fibrosis. Taken together, these results showed that succinate worked as a metabolic signaling, linking inflammation with fibrosis through NLRP3 inflammasome activation. These findings suggested that synovial succinate accumulation and HIF-1α induction might be therapeutical targets for the prevention of fibrosis in arthritis. PMID:28003810

  13. The Jaramillo Subchron: New Magnetostratigraphy and 40Ar/39Ar Dating in the Death Valley Region, California

    NASA Astrophysics Data System (ADS)

    Scott, G. R.; Deino, A. L.; Gibert, L.

    2014-12-01

    The Jaramillo subchron was the normal polarity period before the present Brunhes chron. However, the Jaramillo's duration was only 10% as long as the Brunhes. Lasting only about 70 ka, the Jaramillo has frequently been missed (or is missing) from many magnetostratigraphic studies of the Early Pleistocene. We have examined two internally-drained basins with high sediment accumulation rates, that also contain Sanidine-bearing tephras. At Kit Fox Hills, in the Death Valley Basin, we sampled across 50m of tilted (45°) fine-grained sandstone/siltstone. A normal polarity magnetozone was delineated over ~12m of section (sedimentation rate of ~15cm/ka). We also collected 8 tephra beds, 4 of which are within the normal magnetozone, and 2 below and 2 above. To the east is the Tecopa Basin, which until the middle Pleistocene was internally-drained. We sampled through 36m of mudstones between the Tecopa Tuff (1.25 Ma) and the Bishop Tuff (0.77 Ma). A normal magnetozone was delineated over a 9m interval, ending 12.5m below the Bishop Tuff. A Sanidine-bearing tephra (previously unidentified) was found 4m above the base of the Jaramillo zone. There were 2 beds of reverse polarity within the Jaramillo zone, at 4.5m and 8m above the base. At least the lower one has been reported from other continental deposits (China, Spain). These sections should provide precisely calibrated chronostratigraphic tie points (approximately every 10-30 ka), providing sub-precessional level, direct geochronological control through the Jaramillo subchron. These sections are also being examined for paleo-environmental indicators (and minerals) that can be used to determine wetter or drier conditions (expanding saline lakes or dry playas). With all these event horizons (ash falls and polarity shifts), the Jaramillo has the potential to be used for high resolution, paleo-climate reconstructions on a regional scale.

  14. Comparison of the dynamics of active regions by methods of computational topology

    NASA Astrophysics Data System (ADS)

    Knyazeva, I. S.; Makarenko, N. G.; Urt'ev, F. A.

    2015-12-01

    This work analyzes the temporal evolution for three active regions (ARs) (AR 2034, AR 2035, and AR 2036). In terms of complexity, these are objects with high a priori probability of flares. However, their actual flare scenarios proved to be very different. The temporal evolution of ARs is analyzed with modern prognostic parameters and descriptors obtained by methods of computational topology. We show that these methods are more suitable for describing the actual situation. We note that the change in complexity descriptors for prognostic problems is more important than the set of characteristics themselves.

  15. THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015

    SciTech Connect

    Jaeggli, S. A.; Norton, A. A.

    2016-03-20

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity; however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  16. Comparative evaluation of the IPCC AR5 CMIP5 versus the AR4 CMIP3 model ensembles for regional precipitation and their extremes over South America

    NASA Astrophysics Data System (ADS)

    Tolen, J.; Kodra, E. A.; Ganguly, A. R.

    2011-12-01

    The assertion that higher-resolution experiments or more sophisticated process models within the IPCC AR5 CMIP5 suite of global climate model ensembles improves precipitation projections over the IPCC AR4 CMIP3 suite remains a hypothesis that needs to be rigorously tested. The questions are particularly important for local to regional assessments at scales relevant for the management of critical infrastructures and key resources, particularly for the attributes of sever precipitation events, for example, the intensity, frequency and duration of extreme precipitation. Our case study is South America, where precipitation and their extremes play a central role in sustaining natural, built and human systems. To test the hypothesis that CMIP5 improves over CMIP3 in this regard, spatial and temporal measures of prediction skill are constructed and computed by comparing climate model hindcasts with the NCEP-II reanalysis data, considered here as surrogate observations, for the entire globe and for South America. In addition, gridded precipitation observations over South America based on rain gage measurements are considered. The results suggest that the utility of the next-generation of global climate models over the current generation needs to be carefully evaluated on a case-by-case basis before communicating to resource managers and policy makers.

  17. Comprehensive geo-spatial data creation for Ar-Riyadh region in the KSA

    NASA Astrophysics Data System (ADS)

    Alrajhi, M.; Hawarey, M.

    2009-04-01

    The General Directorate for Surveying and Mapping (GDSM) of the Deputy Ministry for Land and Surveying (DMLS) of the Ministry of Municipal and Rural Affairs (MOMRA) in the Kingdom of Saudi Arabia (KSA) has the exclusive mandate to carry out aerial photography and produce large-scale detailed maps for about 220 cities and villages in the KSA. This presentation is about the comprehensive geo-spatial data creation for the Ar-Riyadh region, Central KSA, that was founded on country-wide horizontal geodetic ground control using Global Navigation Satellite Systems (GNSS) within the MOMRA's Terrestrial Reference Frame 2000 (MTRF2000) that is tied to International Terrestrial Reference Frame 2000 (ITRF2000) Epoch 2004.0, and vertical geodetic ground control using precise digital leveling in reference to Jeddah 1969 mean sea level, and included aerial photography of area 3,000 km2 at 1:5,500 scale and 10,000 km2 at 1:45,000 scale, full aerial triangulation, and production of orthophoto maps at scale of 1:10,000 (480 sheets) for 10,000 km2, with aerial photography lasting from July 2007 thru August 2007.

  18. Tectonic events, continental intraplate volcanism, and mantle plume activity in northern Arabia: Constraints from geochemistry and Ar-Ar dating of Syrian lavas

    NASA Astrophysics Data System (ADS)

    Krienitz, M.-S.; Haase, K. M.; Mezger, K.; van den Bogaard, P.; Thiemann, V.; Shaikh-Mashail, M. A.

    2009-04-01

    New 40Ar/39Ar ages combined with chemical and Sr, Nd, and Pb isotope data for volcanic rocks from Syria along with published data of Syrian and Arabian lavas constrain the spatiotemporal evolution of volcanism, melting regime, and magmatic sources contributing to the volcanic activity in northern Arabia. Several volcanic phases occurred in different parts of Syria in the last 20 Ma that partly correlate with different tectonic events like displacements along the Dead Sea Fault system or slab break-off beneath the Bitlis suture zone, although the large volume of magmas and their composition suggest that hot mantle material caused volcanism. Low Ce/Pb (<20), Nb/Th (<10), and Sr, Nd, and Pb isotope variations of Syrian lavas indicate the role of crustal contamination in magma genesis, and contamination of magmas with up to 30% of continental crustal material can explain their 87Sr/86Sr. Fractionation-corrected major element compositions and REE ratios of uncontaminated lavas suggest a pressure-controlled melting regime in western Arabia that varies from shallow and high-degree melt formation in the south to increasingly deeper regions and lower extents of the beginning melting process northward. Temperature estimates of calculated primary, crustally uncontaminated Arabian lavas indicate their formation at elevated mantle temperatures (Texcess ˜ 100-200°C) being characteristic for their generation in a plume mantle region. The Sr, Nd, and Pb isotope systematic of crustally uncontaminated Syrian lavas reveal a sublithospheric and a mantle plume source involvement in their formation, whereas a (hydrous) lithospheric origin of lavas can be excluded on the basis of negative correlations between Ba/La and K/La. The characteristically high 206Pb/204Pb (˜19.5) of the mantle plume source can be explained by material entrainment associated with the Afar mantle plume. The Syrian volcanic rocks are generally younger than lavas from the southern Afro-Arabian region, indicating

  19. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  20. {sup 40}Ar/{sup 39}Ar laser fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California: The age of the latest volcanic activity in the Yucca Mountain area

    SciTech Connect

    Turrin, B.D. |; Champion, D.E.

    1991-05-01

    K-Ar and {sup 40}Ar/{sup 39}Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead, an age of 119 {plus_minus} 11 to 141 {plus_minus} 10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported. 32 refs., 2 figs., 2 tabs.

  1. 40Ar/39Ar laser fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California. The age of the latest volcanic activity in the Yucca Mountain area

    USGS Publications Warehouse

    Turrin, Brent D.; Champion, Duane E.; ,

    1991-01-01

    K-Ar and 40Ar/39Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead an age of 119??11 to 141??10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported.

  2. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity

    USGS Publications Warehouse

    Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C.

    2011-01-01

    The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.

  3. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    NASA Astrophysics Data System (ADS)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.

    2016-07-01

    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  4. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Hill, F. E-mail: stripathy@nso.edu

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  5. Active region 11748: Recurring X-class flares, large scale dimmings and waves.

    NASA Astrophysics Data System (ADS)

    Davey, Alisdair R.; Malanushenko, Anna; McIntosh, Scott W.

    2014-06-01

    AR 11748 was a relatively compact active region that crossed the solar disk between 05/14/2013 and 05/26/2013. Despite its size it produced a number X-class flares, and global scale eruptive events that were captured by the SDO Feature Finding Team's (FFT) Dimming Region Detector. Using the results of this module and other FFT modules, we present an analysis of the this AR region and investigate why it was so globally impactful.

  6. SHRIMP U-Pb and 40Ar/39Ar age constraints for relating plutonism and mineralization in the Boulder batholith region, Montana

    USGS Publications Warehouse

    Lund, K.; Aleinikoff, J.N.; Kunk, M.J.; Unruh, D.M.; Zeihen, G.D.; Hodges, W.C.; du Bray, E.A.; O'Neill, J. M.

    2002-01-01

    The composite Boulder batholith, Montana, hosts a variety of mineral deposit types, including important silver-rich polymetallic quartz vein districts in the northern part of the batholith and the giant Butte porphyry copper-molybdenum pre-Main Stage system and crosscutting copper-rich Main Stage vein system in the southern part of the batholith. Previous dating studies have identified ambiguous relationships among igneous and mineralizing events. Mineralizing hydrothermal fluids for these types of deposits and magma for quartz porphyry dikes at Butte have all been considered to be late-stage differentiates of the Boulder batholith. However, previous dating studies indicated that the Boulder batholith plutons cooled from about 78 to 72 Ma, whereas copper-rich Main Stage veins at Butte were dated at about 61 Ma. Recent efforts to date the porphyry copper-molybdenum pre-Main Stage deposits at Butte resulted in conflicting estimates of both 64 and 76 Ma for the mineralizing events. Silver-rich polymetallic quartz vein deposits elsewhere in the batholith have not been dated previously. To resolve this controversy, we used the U.S. Geological Survey, Stanford, SHRIMP RG ion mic??roprobe to date single-age domains within zircons from plutonic rock samples and 40Ar/39Ar geochronology to date white mica, biotite, and K-feldspar from mineral deposits. U-Pb zircon ages are Rader Creek Granodiorite, 80.4 ?? 1.2 Ma; Unionville Granodiorite, 78.2 ?? 0.8 Ma; Pulpit Rock granite, 76.5 ?? 0.8 Ma; Butte Granite, 74.5 ?? 0.9 Ma; altered Steward-type quartz porphyry dike (I-15 roadcut), 66.5 ?? 1.0 Ma; altered Steward-type quartz porphyry dike (Continental pit), 65.7 ?? 0.9 Ma; and quartz monzodiorite of Boulder Baldy (Big Belt Mountains), 66.2 ?? 0.9 Ma. Zircons from Rader Creek Granodiorite and quartz porphyry dike samples contain Archean inheritance. The 40Ar/39Ar ages are muscovite, silver-rich polymetallic quartz vein (Basin district), 74.4 ?? 0.3 Ma; muscovite, silver

  7. Regional Activities Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures…

  8. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  9. The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database

    National Institute of Standards and Technology Data Gateway

    SRD 161 The Spectrum of Th-Ar Hollow Cathode Lamps in the 691nm to 5804nm region Database (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  10. FORMATION OF CORONAL HOLES ON THE ASHES OF ACTIVE REGIONS

    SciTech Connect

    Karachik, Nina V.; Pevtsov, Alexei A.; Abramenko, Valentyna I. E-mail: apevtsov@nso.ed

    2010-05-10

    We investigate the formation of isolated non-polar coronal holes (CHs) on the remnants of decaying active regions (ARs) at the minimum/early ascending phase of sunspot activity. We follow the evolution of four bipolar ARs and measure several parameters of their magnetic fields including total flux, imbalance, and compactness. As regions decay, their leading and following polarities exhibit different dissipation rates: loose polarity tends to dissipate faster than compact polarity. As a consequence, we see a gradual increase in flux imbalance inside a dissipating bipolar region, and later a formation of a CH in place of more compact magnetic flux. Out of four cases studied in detail, two CHs had formed at the following polarity of the decaying bipolar AR, and two CHs had developed in place of the leading polarity field. All four CHs contain a significant fraction of magnetic field of their corresponding AR. Using potential field extrapolation, we show that the magnetic field lines of these CHs were closed on the polar CH at the North, which at the time of the events was in imbalance with the polar CH at the South. This topology suggests that the observed phenomenon may play an important role in transformation of toroidal magnetic field to poloidal field, which is a key step in transitioning from an old solar cycle to a new one. The timing of this observed transition may indicate the end of solar cycle 23 and the beginning of cycle 24.

  11. Helioseismology of pre-emerging active regions. III. Statistical analysis

    SciTech Connect

    Barnes, G.; Leka, K. D.; Braun, D. C.; Birch, A. C.

    2014-05-01

    The subsurface properties of active regions (ARs) prior to their appearance at the solar surface may shed light on the process of AR formation. Helioseismic holography has been applied to samples taken from two populations of regions on the Sun (pre-emergence and without emergence), each sample having over 100 members, that were selected to minimize systematic bias, as described in Paper I. Paper II showed that there are statistically significant signatures in the average helioseismic properties that precede the formation of an AR. This paper describes a more detailed analysis of the samples of pre-emergence regions and regions without emergence based on discriminant analysis. The property that is best able to distinguish the populations is found to be the surface magnetic field, even a day before the emergence time. However, after accounting for the correlations between the surface field and the quantities derived from helioseismology, there is still evidence of a helioseismic precursor to AR emergence that is present for at least a day prior to emergence, although the analysis presented cannot definitively determine the subsurface properties prior to emergence due to the small sample sizes.

  12. FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION

    SciTech Connect

    Baker, D.; Yardley, S. L.; Driel-Gesztelyi, L. van; Long, D. M.; Green, L. M.; Brooks, D. H.; Démoulin, P.

    2015-04-01

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4–6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.

  13. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production.

    PubMed

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions.

  14. High-resolution 40Ar/ 39Ar chronostratigraphy of the post-caldera (<20 ka) volcanic activity at Pantelleria, Sicily Strait

    NASA Astrophysics Data System (ADS)

    Scaillet, Stéphane; Rotolo, Silvio G.; La Felice, Sonia; Vita-Scaillet, Grazia

    2011-09-01

    The island of Pantelleria (Sicily Strait), the type locality for pantellerite, has been the locus of major caldera-forming eruptions that culminated, ca. 50 ka ago, in the formation of the Cinque Denti caldera produced by the Green Tuff eruption. The post-caldera silicic activity since that time has been mostly confined inside the caldera and consists of smaller-energy eruptions represented by more than twenty coalescing pantelleritic centers structurally controlled by resurgence and trapdoor faulting of the caldera floor. A high-resolution 40Ar/ 39Ar study was conducted on key units spanning the recent (post-20 ka) intracaldera activity to better characterize the present-day status (and forecast the short-term behavior of) the system based on the temporal evolution of the latest eruptions. The new 40Ar/ 39Ar data capture a long-term (> 15 ka) decline in eruption frequency with a shift in eruptive pace from 3.5 ka -1 to 0.8 ka -1 associated with a prominent paleosol horizon marking the only recognizable volcanic stasis around 12-14 ka. This shift in extraction frequency occurs without major changes in eruptive style, and is paralleled by a subtle trend of decreasing melt differentiation index. We speculate that this decline probably occurred (i) without short-term variations in melt production/differentiation rate in a steady-state compositionally-zoned silicic reservoir progressively tapped deeper through the sequence, and (ii) that it was possibly modulated by outboard eustatic forcing due to the 140 m sea level rise over the past 21 ka. The intracaldera system is experiencing a protracted stasis since 7 ka. Coupled with recent geodetic evidence of deflation and subsidence of the caldera floor, the system appears today to be on a wane with no temporal evidence for a short-term silicic eruption.

  15. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lundin, Daniel; Brenning, Nils; Raadu, Michel A.; Huo, Chunqing; Minea, Tiberiu

    2016-09-01

    A reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with titanium target. We compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we find that when the discharge is operated in the metal mode Ar+ and Ti+-ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+-ions contribute most significantly to the discharge current while the contribution of O+-ions and secondary electron emission is much smaller. Furthermore, we find that recycling of ionized atoms coming from the target are required for the current generation in both modes of operation. In the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates, and it is concluded that the dominating type of recycling determines the discharge current waveform.

  16. Active Region Release Two CMEs

    NASA Video Gallery

    Solar material can be seen blowing off the sun in this video captured by NASA’s Solar Dynamics Observatory (SDO) on the night of Feb. 5, 2013. This active region on the sun sent out two coronal ...

  17. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Technical Reports Server (NTRS)

    Martinez, Francisco; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2016-01-01

    Solar coronal jets are transient (frequently of lifetime approx.10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Cirtain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called "minifilaments" erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancelation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted, and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sites of magnetic-field cancelation.

  18. Multi-wavelength Observations of Microflares Near an Active Region

    NASA Astrophysics Data System (ADS)

    Bein, B.; Veronig, A.; Rybak, J.; Gömöry, P.; Berkebile-Stoiser, S.; Sütterlin, P.

    We study the multi-wavelength characteristics of a microflaring active region (AR 10898) near disc centre. The analysed data were from the 4^{th} of July 2006, and were recorded by DOT (Hα, Ca II H), RHESSI (X-rays), TRACE (EUV) and SOHO/MDI (magnetograms). The identified microflare events were studied with respect to their magnetic field configuration and their multi-wavelength time evolution.

  19. CUDC-101, a Novel Inhibitor of Full-Length Androgen Receptor (flAR) and Androgen Receptor Variant 7 (AR-V7) Activity: Mechanism of Action and In Vivo Efficacy.

    PubMed

    Sun, Huiying; Mediwala, Sanjay N; Szafran, Adam T; Mancini, Michael A; Marcelli, Marco

    2016-06-01

    Castration-resistant prostate cancer (CRPC) is an androgen receptor (AR)-dependent disease expected to cause the death of more than 27,000 Americans in 2015. There are only a few available treatments for CRPC, making the discovery of new drugs an urgent need. We report that CUDC-101 (an inhibitor od HER2/NEU, EGFR and HDAC) inhibits both the full length AR (flAR) and the AR variant AR-V7. This observation prompted experiments to discover which of the known activities of CUDC-101 is responsible for the inhibition of flAR/AR-V7 signaling. We used pharmacologic and genetic approaches, and found that the effect of CUDC-101 on flAR and AR-V7 was duplicated only by other HDAC inhibitors, or by silencing the HDAC isoforms HDAC5 and HDAC10. We observed that CUDC-101 treatment or AR-V7 silencing by RNAi equally reduced transcription of the AR-V7 target gene, PSA, without affecting viability of 22Rv1 cells. However, when cellular proliferation was used as an end point, CUDC-101 was more effective than AR-V7 silencing, raising the prospect that CUDC-101 has additional targets beside AR-V7. In support of this, we found that CUDC-101 increased the expression of the cyclin-dependent kinase inhibitor p21, and decreased that of the oncogene HER2/NEU. To determine if CUDC-101 reduces growth in a xenograft model of prostate cancer, this drug was given for 14 days to castrated male SCID mice inoculated with 22Rv1 cells. Compared to vehicle, CUDC-101 reduced xenograft growth in a statistically significant way, and without macroscopic side effects. These studies demonstrate that CUDC-101 inhibits wtAR and AR-V7 activity and growth of 22Rv1 cells in vitro and in vivo. These effects result from the ability of CUDC-101 to target not only HDAC signaling, which was associated with decreased flAR and AR-V7 activity, but multiple additional oncogenic pathways. These observations raise the possibility that treatment of CRPC may be achieved by using similarly multi-targeted approaches.

  20. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  1. Resonant proton scattering on 46Ar using the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, J.; Ahn, T.; Ayyad Limonge, Y.; Bazin, D.; Beceiro Novo, S.; Carpenter, L.; Kuchera, M. P.; Lynch, W.; Mittig, W.; Rost, S.; Watwood, N.; Barney, J.; Datta, U.; Estee, J.; Gillibert, A.; Manfredi, J.; Morfouace, P.; Perez Loureiro, D.; Pollacco, E.; Sammut, J.; Sweany, S.

    2016-09-01

    A well-known technique for studying the single-particle properties of neutron-rich nuclei is to use resonant proton scattering on a parent nucleus to populate the isobaric analog states of the corresponding neutron-rich nucleus. The locations and amplitudes of these resonances are directly related to the structure of the nucleus of interest by isospin symmetry. We performed an experiment of this type at the National Superconducting Cyclotron Laboratory to commission the recently completed Active-Target Time Projection Chamber (AT-TPC). A 4.6-MeV/u radioactive beam of 46Ar was injected into the AT-TPC. The detector was filled with isobutane gas-which provided the protons for the reaction and served as the tracking medium-and placed inside a 2-T magnetic field. We will present preliminary results from this experiment and discuss the benefits of the active-target method for this type of measurement.

  2. Discovery of 34 g ,mCl (p,γ ) 35Ar resonances activated at classical nova temperatures

    NASA Astrophysics Data System (ADS)

    Fry, C.; Wrede, C.; Bishop, S.; Brown, B. A.; Chen, A. A.; Faestermann, T.; Hertenberger, R.; Parikh, A.; Pérez-Loureiro, D.; Wirth, H.-F.; García, A.; Ortez, R.

    2015-01-01

    Background: The thermonuclear 34 g ,mCl (p,γ ) 35Ar reaction rates are unknown due to a lack of experimental nuclear physics data. Uncertainties in these rates translate to uncertainties in 34S production in models of classical novae on oxygen-neon white dwarfs. 34S abundances have the potential to aid in the classification of presolar grains. Purpose: Determine resonance energies for the 34 g ,mCl (p,γ ) 35Ar reactions within the region of astrophysical interest for classical novae to a precision of a few keV as an essential first step toward constraining their thermonuclear reaction rates. Method: 35Ar excited states were populated by the 36Ar (d,t ) 35Ar reaction at E (d )=22 MeV and reaction products were momentum analyzed by a high resolution quadrupole-dipole-dipole-dipole (Q3D) magnetic spectrograph. Results: Seventeen new 35Ar levels have been detected at a statistically significant level in the region Ex≈5.9 -6.7 MeV (Er<800 keV ) and their excitation energies have been determined to typical uncertainties of 3 keV. The uncertainties for five previously known levels have also been reduced substantially. The measured level density was compared to those calculated using the WBMB Hamiltonian within the s d -p f model space. Conclusions: Most of the resonances in the region of astrophysical interest have likely been discovered and their energies have been determined, but the resonance strengths are still unknown, and experimentally constraining the 34 g ,mCl (p,γ ) 35Ar reaction rates will require further experiments.

  3. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lundin, D.; Brenning, N.; Raadu, M. A.; Huo, Chunqing; Minea, T. M.

    2016-12-01

    A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.

  4. The Celecoxib Derivative AR-12 Has Broad-Spectrum Antifungal Activity In Vitro and Improves the Activity of Fluconazole in a Murine Model of Cryptococcosis.

    PubMed

    Koselny, Kristy; Green, Julianne; DiDone, Louis; Halterman, Justin P; Fothergill, Annette W; Wiederhold, Nathan P; Patterson, Thomas F; Cushion, Melanie T; Rappelye, Chad; Wellington, Melanie; Krysan, Damian J

    2016-12-01

    Only one new class of antifungal drugs has been introduced into clinical practice in the last 30 years, and thus the identification of small molecules with novel mechanisms of action is an important goal of current anti-infective research. Here, we describe the characterization of the spectrum of in vitro activity and in vivo activity of AR-12, a celecoxib derivative which has been tested in a phase I clinical trial as an anticancer agent. AR-12 inhibits fungal acetyl coenzyme A (acetyl-CoA) synthetase in vitro and is fungicidal at concentrations similar to those achieved in human plasma. AR-12 has a broad spectrum of activity, including activity against yeasts (e.g., Candida albicans, non-albicans Candida spp., Cryptococcus neoformans), molds (e.g., Fusarium, Mucor), and dimorphic fungi (Blastomyces, Histoplasma, and Coccidioides) with MICs of 2 to 4 μg/ml. AR-12 is also active against azole- and echinocandin-resistant Candida isolates, and subinhibitory AR-12 concentrations increase the susceptibility of fluconazole- and echinocandin-resistant Candida isolates. Finally, AR-12 also increases the activity of fluconazole in a murine model of cryptococcosis. Taken together, these data indicate that AR-12 represents a promising class of small molecules with broad-spectrum antifungal activity.

  5. Robust 24 ± 6 ka 40Ar/39Ar age of a low-potassium tholeiitic basalt in the Lassen region of NE California

    USGS Publications Warehouse

    Turrin, Brent D.; Muffler, L. J. Patrick; Clynne, Michael A.; Champion, Duane E.

    2007-01-01

    40Ar/39Ar ages on the Hat Creek Basalt (HCB) and stratigraphically related lava flows show that latest Pleistocene tholeiitic basalt with very low K2O can be dated reliably. The HCB underlies ∼ 15 ka glacial gravel and overlies four andesite and basaltic andesite lava flows that yield 40Ar/39Ar ages of 38 ± 7 ka (Cinder Butte; 1.65% K2O), 46 ± 7 ka (Sugarloaf Peak; 1.85% K2O), 67 ± 4 ka (Little Potato Butte; 1.42% K2O) and 77 ± 11 ka (Potato Butte; 1.62% K2O). Given these firm age brackets, we then dated the HCB directly. One sample (0.19% K2O) clearly failed the criteria for plateau-age interpretation, but the inverse isochron age of 26 ± 6 ka is seductively appealing. A second sample (0.17% K2O) yielded concordant plateau, integrated (total fusion), and inverse isochron ages of 26 ± 18, 30 ± 20 and 24 ± 6 ka, all within the time bracket determined by stratigraphic relations; the inverse isochron age of 24 ± 6 ka is preferred. As with all isotopically determined ages, confidence in the results is significantly enhanced when additional constraints imposed by other isotopic ages within a stratigraphic context are taken into account.

  6. SDO Sees Active Region Outbursts

    NASA Video Gallery

    This close up video by NASA’s Solar Dynamics Observatory shows an active region near the right-hand edge of the sun’s disk, which erupted with at least a dozen minor events over a 30-hour period fr...

  7. A Revisit of Hale's and Joy's Laws of Active Regions Using SOHO MDI Obsevations

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Zhang, J.

    2011-05-01

    Hale's law of polarity defines the rule of opposite direction of two polarities of solar bipolar Active Regions in the two hemispheres. Another law, Joy's law, governs the tilt of ARs with respect to their heliographic latitudes. Both laws are essential for constraining solar dynamo models. In this study we attempt to examine these laws in great detail using a large sample of ARs. With the help of an automatic AR detection algorithm (based on morphological analysis, Zhang et. al, 2010), we have processed high resolution SOHO/MDI synoptic magnetograms over the entire solar cycle 23, we identified all active regions in a uniform and objective way and determined their physical properties, including locations, fluxes of positive and negative polarities ,as well as the direction angles of these regions. Among 1084 bipolar ARs detected, the majority of them (87%) follow Hale's polarity law, while the other 13% of ARs do not. We attribute this deviation to the complexity of AR emergence from the turbulent convection zone. Regarding the Joy's law, we find that there is only a weak positive trend between AR tilt angles and latitudes. On the other hand, the tilt angle has a broad Gaussian-like distribution, with the peak centered around zero degree, and a width of about 20 degree at half maximum. Implications of these results on solar dynamo theory will be discussed.

  8. BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1.

    PubMed

    Zhang, Wenwen; Luo, Jiayan; Yang, Fang; Wang, Yucai; Yin, Yongmei; Strom, Anders; Gustafsson, Jan Åke; Guan, Xiaoxiang

    2016-02-23

    Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor protein that functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. The androgen receptor (AR) is expressed in more than 70% of breast cancers and has been implicated in breast cancer pathogenesis. However, little is known about the role of BRCA1 in AR-mediated cell proliferation in human breast cancer. Here, we report that a high expression of AR in breast cancer patients was associated with shorter overall survival (OS) using a tissue microarray with 149 non-metastatic breast cancer patient samples. We reveal that overexpression of BRCA1 significantly inhibited expression of AR through activation of SIRT1 in breast cancer cells. Meanwhile, SIRT1 induction or treatment with a SIRT1 agonist, resveratrol, inhibits AR-stimulated proliferation. Importantly, this mechanism is manifested in breast cancer patient samples and TCGA database, which showed that low SIRT1 gene expression in tumor tissues compared with normal adjacent tissues predicts poor prognosis in patients with breast cancer. Taken together, our findings suggest that BRCA1 attenuates AR-stimulated proliferation of breast cancer cells via SIRT1 mediated pathway.

  9. Using the WRF Regional Model to Produce High Resolution AR4 Simulations of Climate Change for Mesoamerica

    NASA Astrophysics Data System (ADS)

    Oglesby, R. J.; Rowe, C. M.; Hays, C.

    2010-12-01

    Mesoamerica (the countries from Mexico to Colombia) has been identified by IPCC as a low-latitude, developing region at considerable risk to climate change. Furthermore, the complex topography of the region, and interactions with adjacent tropical oceans, makes understanding of potential climate change from global climate models alone very problematic. Statistical downscaling techniques for the region are not very robust, largely due to the lack of sufficient observations upon which to base the large-scale to small-scale relationships. Therefore, we have used the WRF regional climate model to dynamically downscale global results from a NCAR CCSM simulation employing the A2 emission scenario that was made for IPCC AR4. All of Mesoamerica is covered with a domain with a spatial resolution of 12 km, with selected high elevation regions of Mexico, Colombia, and Peru also covered by 4 km domains. A three-year simulation was made forced by NCEP reanalyses for the years 1991, 1992, and 1993. This run has been evaluated using actual station observations in addition to gridded datasets, in order to identify model strengths and weaknesses (biases) for this region. This comparison clearly demonstrated the need to properly resolve elevation, including both topographic heights and valleys. It also showed the difficulty that the model has in simulating extreme precipitation events, as it usually underestimates the actual amount. Additional five-year simulations were made forced with CCSM output for 2000-2004 (present-day control) and 2050-2054 (climate change scenario for the A2 emission scenario) to investigate potential climate change for the region. Summarizing key results, all land regions, except for a narrow strip along the Pacific coast of Mexico, showed a warming. This warming was largest (up to 3-4 deg C) in the highland regions and the Amazonian basin. The warming was less (generally 1-2 deg C) in the lowland and intermountain regions. Changes in precipitation strongly

  10. Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Zhao, Junwei; Schuck, P. W.

    2012-01-01

    We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the sunspot umbra and outward flows surrounding the sunspot. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the sunspot penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding sunspots. On the other hand, most well-documented flux-emergence-related flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.

  11. Simulated Topography in Western North America Impacts Hemispheric Circulation Patterns and Regional Precipitation in IPCC AR4 Coupled Models

    NASA Astrophysics Data System (ADS)

    McAfee, S. A.; Russell, J. L.

    2009-12-01

    Simulations of the late-20th century (1979-1999) by most of the coupled models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) overestimate mean winter (November to April) precipitation for all or part of western North America in comparison to observations from the Global Precipitation Climatology Project. These precipitation errors appear to be associated with 1) a southward bias in 200-hPa zonal-wind speeds, 2) overly zonal flow patterns (weak Pacific-North America pattern), and 3) muted rain shadows, all of which are also prevalent among general circulation models. In addition, the magnitude of error in simulations of late-20th century winter precipitation is significantly correlated with projected changes in winter precipitation in the mid- and late-21st century over parts of the southwestern United States and Mexico, increasing uncertainty about the timing and extent of drying in a region where water resources are already stressed and intensifying drought is expected. We suggest that these problems are related to difficulties in simulating the extent, volume, and topographic complexity of the Rocky Mountains, Sierra Nevada, Cascades and other mountain ranges in the West within the relatively coarse models. These results identify areas of concern in regional precipitation and water resource projections and suggest steps that can be taken to improve both hemispheric-scale circulation patterns and regional hydrological projections for western North America within general circulation models.

  12. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  13. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  14. The geology and 40Ar/ 39Ar geochronology of magmatic activity and related mineralization in the Nevados del Famatina mining district, La Rioja province, Argentina

    NASA Astrophysics Data System (ADS)

    Losada-Calderón, A. J.; McBride, S. L.; Bloom, M. S.

    1994-01-01

    The Nevados del Famatina mining district (NFMD) is located in La Rioja province, Argentina. This district contains porphyry-style mineralization (Nevados del Famatina) and high sulfidation veins (La Mejicana). The stratigraphic column in the NFMD begins with Cambrian siltstones which were metamorphosed during the Late Ordovician - Early Silurian and intruded by Late Ordovician-Silurian granitic rocks. These units were covered by Upper Paleozoic and Tertiary continental sedimentary rocks which are intercalated with and overlain by dacitic-rhyodacitic porphyritic rocks (Mogote Formation) emplaced during the Pliocene. All these units are covered by Pleistocene sediments and Quaternary alluvial and colluvial deposits. Magmatic activity and related mineralization in the NFMD have been dated by the 40Ar/ 39Ar technique. Step heating studies of orthoclase and biotite phenocrysts from the Mogote Formation in the NFMD suggest that the igneous rocks were emplaced around 5.0±0.3 Ma ago. However, plateau ages of biotite from the outer carapace of the subjacent granodioritic magma chamber and of muscovite from quartz-sericite alteration at both Nevados del Famatina and La Mejicana are around 3.8±0.2 Ma. Emplacement of the shallow stocks is separated from cooling of the outer carapace of the subjacent granodioritic magma chamber to temperatures below 350° C by a time span of approximately 1 Ma. During this interval, a convective hydrothermal system was established proximal to the granodioritic magma chamber, which resulted in porphyry molybdenumcoppergold mineralization adjacent to the igneous rocks and more distal high sulfidation veins located in fault zones.

  15. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  16. Characteristics of active regions associated to large solar energetic proton events

    NASA Astrophysics Data System (ADS)

    Bronarska, K.; Michalek, G.

    2017-01-01

    The relationship between properties of active regions (ARs) and solar energetic particles (SEP events, protons with energy ⩾10 MeV) is examined. For this purpose we study 84 SEP events recorded during the SOHO era (1996-2014). We compare properties of these SEP events with associated ARs, flares and CMEs. The ARs are characterized by McIntosh classification. Statistical analysis demonstrates that SEP events are more likely to be associated to the ARs having complex magnetic structures and the most energetic SEPs are ejected only from the associated ARs having a large and asymmetric penumbra. This tendency is used to estimate intensities of potential SEP events. For this purpose we express a probability of occurrence of an SEP event from a given AR which is correlated with fluxes of associated SEPs. We find that SEP events associated with ARs from eastern longitudes have to be more complex to produce SEP events at Earth. On the other hand, SEP particles originating from mid-longitudes (30 ° < longitude < 70 °) on the west side of solar disk are associated to the least complex ARs. These results could be useful for forecasting of space weather.

  17. SUB-SURFACE MERIDIONAL FLOW, VORTICITY, AND THE LIFETIME OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Maurya, R. A.; Ambastha, A. E-mail: ambastha@prl.res.i

    2010-05-10

    Solar sub-surface fluid topology provides an indirect approach to examine the internal characteristics of active regions (ARs). Earlier studies have revealed the prevalence of strong flows in the interior of ARs having complex magnetic fields. Using the Doppler data obtained by the Global Oscillation Network Group project for a sample of 74 ARs, we have discovered the presence of steep gradients in meridional velocity at depths ranging from 1.5 to 5 Mm in flare productive ARs. The sample of these ARs is taken from the Carrington rotations 1980-2052 covering the period 2001 August-2007 January. The gradients showed an interesting hemispheric trend of negative (positive) signs in the northern (southern) hemisphere, i.e., directed toward the equator. We have discovered three sheared layers in the depth range of 0-10 Mm, providing evidence of complex flow structures in several ARs. An important inference derived from our analysis is that the location of the deepest zero vertical vorticity is correlated with the remaining lifetime of ARs. This new finding may be employed as a tool for predicting the life expectancy of an AR.

  18. Generalized Laplacian for magnetograms of solar active region as possible predictor of strong flare.

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.; Knyazeva, I. S.

    2016-02-01

    Search for predictors of strong flare produced in solar active region (AR) is important application of solar physics. Here we consider the sequence of magnetogram (LOS SDO/HMI instrument) for AR 2034, 2035 and 2036 (April 2014). All three AR were observed on the Sun at about the same time, characterized by low probability of flare events according to official forecasts of NOAA, but 2036 still produced X1-flare near the center of solar disc (April 18). We propose that Generalized Laplacian is a descriptor which could help predict this and similar events. The Laplacian is associated with the flow of Ricci curvature and with topological invariants of the observed field - Betti numbers for compact manifolds. Using discrete version of Morse theory, we consider each pixel of energy flux (B2) image as a simplex and calculate its combinatorial Bochner Laplacian. It was found that maximum of Laplacian is located near AR polarity inversion line. Evolution of total spatial variation of the Laplacian has a number of maxima in time for each of examined AR. However, the maxima in AR 2035 and AR 2034 have relatively low amplitude, while the highest maximum prefaced X1 flare in AR 2036 by about 29 hours.

  19. Hypoxia reduces testosterone synthesis in mouse Leydig cells by inhibiting NRF1-activated StAR expression.

    PubMed

    Wang, Xueting; Pan, Longlu; Zou, Zhiran; Wang, Dan; Lu, Yapeng; Dong, Zhangji; Zhu, Li

    2017-03-07

    Male fertility disorders play a key role in half of all infertility cases. Reduction in testosterone induced by hypoxia might cause diseases in reproductive system and other organs. Hypoxic exposure caused a significant decrease of NRF1. Software analysis reported that the promoter region of steroidogenic acute regulatory protein (StAR) contained NRF1 binding sites, indicating NRF1 promoted testicular steroidogenesis. The purpose of this study is to determine NRF1 is involved in testosterone synthesis; and under hypoxia, the decrease of testosterone synthesis is caused by lower expression of NRF1. We designed both in vivo and in vitro experiments. Under hypoxia, the expressions of NRF1 in Leydig cells and testosterone level were significantly decreased both in vivo and in vitro. Overexpression and interference NRF1 could induced StAR and testosterone increased and decreased respectively. ChIP results confirmed the binding of NRF1 to StAR promoter region. In conclusion, decline of NRF1 expression downregulated the level of StAR, which ultimately resulted in a reduction in testosterone synthesis.

  20. Titanium spallation cross sections between 30 and 584 MeV and Ar-39 activities on the moon

    NASA Technical Reports Server (NTRS)

    Steinburnn, F.; Fireman, E. L.

    1974-01-01

    The production cross sections of Ar39 for Ti spallation at 45-, 319-, 433-, and 584-MeV proton energies were measured to be 0.37 + or - 0.09, 12.4 + or - 3.7, 9.1 + or - 2.7, and 17.8 + or - 6.2 mb, respectively. Normalized Ar39 production rates and activities are also derived for protons above 40 MeV and for three differential proton spectra of the type approximately E(- alpha). It is concluded that, even for samples of high-Ti content, Ti spallation by solar protons below 200-MeV energy does not contribute significantly to their Ar39 radioactivity.

  1. Active Region Transient Brightenings : EIT Versus SXT

    NASA Astrophysics Data System (ADS)

    Berghmans, D.; McKenzie, D.; Clette, F.

    1999-10-01

    On May 13, 1998, the Extreme-Ultraviolet Imaging Telescope (EIT, on board SOHO) has produced a unique image sequence operating in 'shutterless mode' (SOHO JOP 80). In JOP 80, EIT is the leading instrument, followed by several space born instruments (SXT, TRACE, MDI, CDS, SUMER), as well as two observatories on the ground (in La Palma and Sac Peak). The target of the campaign was a relatively small but rapidly evolving active region (AR 8218). For the EIT contribution, a 15 s cadence was achieved in the Fe XII bandpass at 195 deg by leaving EIT's shutter open for 1 hour and operating the CCD in frame transfer mode. We have started the analysis of the huge data set, by making an inventory of the transients observed in the EIT image sequence. These transients range from a B3.5 flare producing a large plasma flow along pre-existing loops, to smaller EUV brightenings of active region loops. In addition, a new class of weaker footpoint brightenings was discovered that produce wave-like disturbances propagating along quasi-open field lines (see the presentation by Eva Robbrecht at this workshop). In this paper we take the opportunity provided by JOP 80, to investigate the correspondence of the transient brightenings observed by EIT in this active region, with the ARTB previously observed by SXT and studied by Shimizu (1992). Within the simultaneous high cadence SOHO JOP 80 image sequences, both EIT and SXT accummulated a few tens of brightening events. At the time of the writing of this abstract, we can say that most of the SXT events have indeed 1 or more EIT counterparts. Typically the SXT events are somewhat bigger than the EIT events where the latter are ussualy located toward the point of origin of the SXT events. Whereas a few brightenings exist in one dataset without any trace in the other dataset (in both directions), we have additionally for a few brightenings in the SXT data, a corresponding EIT darkening as if the plasma is suddenly heated and dissappears from

  2. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    SciTech Connect

    Schmelz, J. T.; Pathak, S.

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescales less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.

  3. New 40Ar/39Ar age determinations and paleomagnetic results bearing on the tectonic and magmatic history of the northern Madison Range and Madison Valley region, southwestern Montana, U.S.A

    USGS Publications Warehouse

    Kellogg, K.S.; Harlan, S.S.

    2007-01-01

    Detailed 40Ar/39Ar dating and paleomagnetic analysis of dacite porphyry sills and dikes that intrude Cretaceous sedimentary rocks in the northern Madison Range in southwestern Montana show that Laramide shortening was essentially complete by ???69 Ma. A negative paleomagnetic fold test indicates that Laramide folding occurred before cooling of the dacite sills and dikes at ???69 Ma. Laramide deformation began synchronous with deposition of the Livingston Formation rocks at ???79 Ma. These results are consistent with previous observations in the region that show the onset of Laramide deformation in the northern Rocky Mountains becoming progressively younger toward the east. 40Ar/39Ar dating of additional igneous rocks in the northern Madison Valley and around Norris, Montana better define post-Laramide tectonomagmatic events in the region, including Eocene-Oligocene volcanism and Basin and Range crustal extension. Dates from three rhyolitic intrusions near Red Mountain are between 48.71 ?? 0.18 Ma and 49.42 ?? 0.18 Ma, similar to the dates from basal silicic flows of the Virginia City volcanic field (part of the southwest Montana volcanic province), suggesting that the Red Mountain intrusions may have been the sources for some of the early extrusive rocks. Magmatism in the Virginia City volcanic field became generally more mafic with time, and a ???30-Ma basalt flow near Norris is considered a late, outlying member of the volcanic field. A tuff along the east side of the Madison Valley half graben yielded a early middle Miocene date (16.2 ?? 0.19 Ma), suggesting that accelerated crustal extension and associated rapid basin sedimentation probably began in the early Miocene, slightly earlier than previous estimates.

  4. STUDY OF THE RECURRING DIMMING REGION DETECTED AT AR 11305 USING THE CORONAL DIMMING TRACKER (CoDiT)

    SciTech Connect

    Krista, Larisza D.; Reinard, Alysha

    2013-01-10

    We present a new approach to coronal dimming detection using the COronal DImming Tracker tool (CODIT), which was found to be successful in locating and tracking multiple dimming regions. This tool, an extension of a previously developed coronal hole tracking software, allows us to study the properties and the spatial evolution of dimming regions at high temporal and spatial cadence from the time of their appearance to their disappearance. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly 193 A wavelength observations and Helioseismic and Magnetic Imager magnetograms to study dimmings. As a demonstration of the detection technique we analyzed six recurrences of a dimming observed near AR 11305 between 2011 September 29 and October 2. The dimming repeatedly appeared and formed in a similar way, first expanding then shrinking and occasionally stabilizing in the same location until the next eruption. The dimming areas were studied in conjunction with the corresponding flare magnitudes and coronal mass ejection (CME) masses. These properties were found to follow a similar trend during the observation period, which is consistent with the idea that the magnitude of the eruption and the CME mass affect the relative sizes of the consecutive dimmings. We also present a hypothesis to explain the evolution of the recurrent single dimming through interchange reconnection. This process would accommodate the relocation of quasi-open magnetic field lines and hence allow the CME flux rope footpoint (the dimming) to expand into quiet-Sun regions. By relating the properties of dimmings, flares, and CMEs we improve our understanding of the magnetic field reconfiguration caused by reconnection.

  5. Collaborative exploration between NIAS genebank and USDA ARS for the collection of genetic resources of fruit and nut species in Hokkaido and the Northern Tohoku Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 7 to 25 September 2009 a collaborative exploration between NIAS Genebank and USDA ARS to collect genetic resources in Hokkaido and the Northern Tohoku region was performed. The investigated areas were mainly upper deciduous forest and subalpine conifer forest zones. The vegetation was mainly fo...

  6. High-wavenumber Solar f-mode Strengthening Prior to Active Region Formation

    NASA Astrophysics Data System (ADS)

    Singh, Nishant K.; Raichur, Harsha; Brandenburg, Axel

    2016-12-01

    We report a systematic strengthening of the local solar surface or fundamental f-mode one to two days prior to the emergence of an active region (AR) in the same (corotating) location. Except for a possibly related increase in the kurtosis of the magnetic field, no indication can be seen in the magnetograms at that time. Our study is motivated by earlier numerical findings of Singh et al., which showed that, in the presence of a nonuniform magnetic field that is concentrated a few scale heights below the surface, the f-mode fans out in the diagnostic kω diagram at high wavenumbers. Here we explore this possibility using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and show for six isolated ARs, 11130, 11158, 11242, 11105, 11072, and 11768, that at large latitudinal wavenumbers (corresponding to horizontal scales of around 3000 {km}), the f-mode displays strengthening about two days prior to AR formation and thus provides a new precursor for AR formation. Furthermore, we study two ARs, 12051 and 11678, apart from a magnetically quiet patch lying next to AR 12529, to demonstrate the challenges in extracting such a precursor signal when a newly forming AR emerges in a patch that lies in close proximity to one or several already existing ARs, which are expected to pollute neighboring patches. We then discuss plausible procedures for extracting precursor signals from regions with crowded environments. The idea that the f-mode is perturbed days before any visible magnetic activity occurs at the surface can be important in constraining dynamo models aimed at understanding the global magnetic activity of the Sun.

  7. A single cell level measurement of StAR expression and activity in adrenal cells.

    PubMed

    Lee, Jinwoo; Yamazaki, Takeshi; Dong, Hui; Jefcoate, Colin

    2017-02-05

    The Steroidogenic acute regulatory protein (StAR) directs mitochondrial cholesterol uptake through a C-terminal cholesterol binding domain (CBD) and a 62 amino acid N-terminal regulatory domain (NTD) that contains an import sequence and conserved sites for inner membrane metalloproteases. Deletion of the NTD prevents mitochondrial import while maintaining steroidogenesis but with compromised cholesterol homeostasis. The rapid StAR-mediated cholesterol transfer in adrenal cells depends on concerted mRNA translation, p37 StAR phosphorylation and controlled NTD cleavage. The NTD controls this process with two cAMP-inducible modulators of, respectively, transcription and translation SIK1 and TIS11b/Znf36l1. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA resolves slow RNA splicing at the gene loci in cAMP-induced Y-1 cells and transfer of individual 3.5 kB mRNA molecules to mitochondria. StAR transcription depends on the CREB coactivator CRTC2 and PKA inhibition of the highly inducible suppressor kinase SIK1 and a basal counterpart SIK2. PKA-inducible TIS11b/Znf36l1 binds specifically to highly conserved elements in exon 7 thereby suppressing formation of mRNA and subsequent translation. Co-expression of SIK1, Znf36l1 with 3.5 kB StAR mRNA may limit responses to pulsatile signaling by ACTH while regulating the transition to more prolonged stress.

  8. OBSERVATIONS OF MULTIPLE SURGES ASSOCIATED WITH MAGNETIC ACTIVITIES IN AR 10484 ON 2003 OCTOBER 25

    SciTech Connect

    Uddin, Wahab; Srivastava, Abhishek K.; Schmieder, B.; Chandra, R.; Bisht, S.; Kumar, Pankaj

    2012-06-10

    We present a multi-wavelength study of recurrent surges observed in H{alpha}, UV (Solar and Heliospheric Observatory (SOHO)/EIT), and Radio (Learmonth, Australia) from the super-active region NOAA 10484 on 2003 October 25. Several bright structures visible in H{alpha} and UV corresponding to subflares are also observed at the base of each surge. Type III bursts are triggered and RHESSI X-ray sources are evident with surge activity. The major surge consists of bunches of ejective paths forming a fan-shaped region with an angular size of ( Almost-Equal-To 65 Degree-Sign ) during its maximum phase. The ejection speed reaches up to {approx}200 km s{sup -1}. The SOHO/Michelson Doppler Imager magnetograms reveal that a large dipole emerges from the east side of the active region on 2003 October 18-20, a few days before the surges. On 2003 October 25, the major sunspots were surrounded by 'moat regions' with moving magnetic features (MMFs). Parasitic fragmented positive polarities were pushed by the ambient dispersion motion of the MMFs and annihilated with negative polarities at the borders of the moat region of the following spot to produce flares and surges. A topology analysis of the global Sun using Potential Field Source Surface shows that the fan structures visible in the EIT 171 A images follow magnetic field lines connecting the present active region to a preceding active region in the southeast. Radio observations of Type III bursts indicate that they are coincident with the surges, suggesting that magnetic reconnection is the driver mechanism. The magnetic energy released by the reconnection is transformed into plasma heating and provides the kinetic energy for the ejections. A lack of a radio signature in the high corona suggests that the surges are confined to follow the closed field lines in the fans. We conclude that these cool surges may have some local heating effects in the closed loops, but probably play a minor role in global coronal heating and the

  9. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Dalmasse, K.; Kliem, B.; Török, T.

    2015-09-01

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

  10. Armenia as a Regional Centre for Astronomy for Development activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  11. Speed of CMEs and the Magnetic Non-Potentiality of their Source Active Regions

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv Kumar; Falconer, David Allen; Moore, Ronald L.; Venkatakrishnan, P.; Winebarger, Amy R.; Khazanov, Igor G.

    2014-01-01

    Most fast coronal mass ejections (CMEs) originate from solar active regions (ARs). Non-potentiality of ARs plausibly determines the speed of CMEs in the outer corona. Several other unexplored parameters might be important as well. To find out the relation between the intial speed of CMEs and the non-potentiality of source ARs, we identified over a hundred of CMEs with source ARs via their co-produced flares. The speed of the CMEs are collected from the SOHO LASCO CME catalog. We have used vector magnetograms obtained with HMI/SDO, to evaluate various magnetic non-potentiality parameters, e.g. magnetic free-energy proxies, twist, shear angle, signed shear angle, net current etc. We have also included several other parameters e.g. total unsigned flux, magnetic area of ARs, area of sunspots, to investigate their correlation, if any, with the initial speeds of CMEs. Our preliminary results show that the ARs with larger non-potentiality and area produce faster CMEs but they can also produce slow ones. The ARs with lesser non-potentiality and area generally produce only slower CMEs.

  12. Statistical study of free magnetic energy and flare productivity of solar active regions

    SciTech Connect

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M.; Wiegelmann, T.

    2014-06-20

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  13. USDA-ARS extension activities in medical, veterinary and urban entomology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the USDA Agricultural Research Service (USDA-ARS), National Program 104 conducts research on veterinary, medical, and urban entomology. The goal of this program is to develop more effective methods of preventing or suppressing insects, ticks, and mites that affect animal and human well-being....

  14. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  15. Physical Properties of Cooling Plasma in Quiescent Active Region Loops

    NASA Astrophysics Data System (ADS)

    Landi, E.; Miralles, M. P.; Curdt, W.; Hara, H.

    2009-04-01

    In the present work, we use SOHO/SUMER, SOHO/UVCS, SOHO/EIT, SOHO/LASCO, STEREO/EUVI, and Hinode/EIS coordinated observations of an active region (AR 10989) at the west limb taken on 2008 April 8 to study the cooling of coronal loops. The cooling plasma is identified using the intensities of SUMER spectral lines emitted at temperatures in the 4.15 <= log T <= 5.45 range. EIS and SUMER spectral observations are used to measure the physical properties of the loops. We found that before cooling took place these loops were filled with coronal hole-like plasma, with temperatures in the 5.6 <= log T <= 5.9 range. SUMER spectra also allowed us to determine the plasma temperature, density, emission measure, element abundances, and dynamic status during the cooling process. The ability of EUVI to observe the emitting region from a different direction allowed us to measure the volume of the emitting region and estimate its emission measure. Comparison with values measured from line intensities provided us with an estimate of the filling factor. UVCS observations of the coronal emission above the active region showed no streamer structure associated with AR 10989 at position angles between 242°and 253fdg EIT, LASCO, and EUVI-A narrowband images and UVCS spectral observations were used to discriminate between different scenarios and monitor the behavior of the active region in time. The present study provides the first detailed measurements of the physical properties of cooling loops, a very important benchmark for theoretical models of loop cooling and condensation.

  16. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.

    PubMed

    Niu, Dong-Dong; Liu, Hong-Xia; Jiang, Chun-Hao; Wang, Yun-Peng; Wang, Qing-Ya; Jin, Hai-Ling; Guo, Jian-Hua

    2011-05-01

    Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces resistance against a broad spectrum of pathogens including Pseudomonas syringae pv. tomato DC3000. This study analyzed AR156-induced systemic resistance (ISR) to DC3000 in Arabidopsis ecotype Col-0 plants. Compared with mock-treated plants, AR156-treated ones showed an increase in biomass and reductions in disease severity and pathogen density in the leaves. The defense-related genes PR1, PR2, PR5, and PDF1.2 were concurrently expressed in the leaves of AR156-treated plants, suggesting simultaneous activation of the salicylic acid (SA)- and the jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways by AR156. The above gene expression was faster and stronger in plants treated with AR156 and inoculated with DC3000 than that in plants only inoculated with DC3000. Moreover, the cellular defense responses hydrogen peroxide accumulation and callose deposition were induced upon challenge inoculation in the leaves of Col-0 plants primed by AR156. Also, pretreatment with AR156 led to a higher level of induced protection against DC3000 in Col-0 than that in the transgenic NahG, the mutant jar1 or etr1, but the protection was absent in the mutant npr1. Therefore, AR156 triggers ISR in Arabidopsis by simultaneously activating the SA- and JA/ET-signaling pathways in an NPR1-dependent manner that leads to an additive effect on the level of induced protection.

  17. The SMM UV observations of Active Region 5395

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Gurman, Joseph B.

    1989-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft was used extensively to study the spatial morphology and time variability of solar active regions in the far UV (at approx. wavelength of 1370 A) since July 1985. The normal spatial resolution of UVSP observations in this 2nd-order mode is 10 sec., and the highest temporal resolution is 64 milliseconds. To make a full-field, 4 min. by 4 min. image this wavelength using 5 sec. raster steps takes about 3 minutes. UVSP can also make observations of the Sun at approx. wavelength of 2790 with 3 sec. spatial resolution when operated in its 1st-order mode; a full-field image at this wavelength (a so-called SNEW image) takes about 8 minutes. UVSP made thousands of observations (mostly in 2nd-order) of AR 5395 during its transit across the visible solar hemisphere (from 7 to 19 March, inclusive). During this period, UVSP's duty cycle for observing AR 5395 was roughly 40 percent, with the remaining 60 percent of the time being fairly evenly divided between aeronomy studies of the Earth's atmosphere and dead time due to Earth occultation of the Sun. UVSP observed many of the flares tagged to AR 5395, including 26 GOES M-level flares and 3 X-level flares, one of which produced so much UV emission that the safety software of UVSP turned off the detector to avoid damage due to saturation. Images and light curves of some of the more spectacular of the AR 5395 events are presented.

  18. Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations

    NASA Astrophysics Data System (ADS)

    Poisson, Mariano; López Fuentes, Marcelo; Mandrini, Cristina H.; Démoulin, Pascal

    2015-11-01

    The main aim of this study is to compare the amount of twist present in emerging active regions (ARs) from photospheric and coronal data. We use linear force-free field models of the observed coronal structure of ARs to determine the global twist. The coronal twist is derived, on one hand, from the force-free parameter [α] of the model and, on the other, from the computed coronal magnetic helicity normalized by the magnetic flux squared. We compare our results, for the same set of ARs, with those of Poisson et al. ( Solar Phys. 290, 727, 2015), in which the twist was estimated using the so-called magnetic tongues observed in line-of-sight magnetograms during AR emergence. We corroborate the agreement between the photospheric and coronal twist-sign and the presence of magnetic tongues as an early proxy of the AR non-potentiality. We find a globally linear relationship between the coronal twist and the one previously deduced for the emerging AR flux rope at the photospheric level. The coronal-twist value is typically lower by a factor of six than the one deduced for the emerging flux rope. We interpret this result as due to the partial emergence of the flux rope that forms the region.

  19. Paleomagnetic and 40Ar/39Ar results from the Grant intrusive breccia and coparison to the Permian Downeys Bluff Sill; evidence for Permian igneous activity at Hicks Dome, southern Illinois Basin

    USGS Publications Warehouse

    Reynolds, Richard L.; Goldhaber, Martin B.; Snee, Lawrence W.

    1997-01-01

    Igneous processes at Hicks dome, a structural upwarp at lat 37.5 degrees N., long 88.4 degrees W. in the southern part of the Illinois Basin, may have thermally affected regional basinal fluid flow and may have provided fluorine for the formation of the Illinois-Kentucky Fluorspar district. The timing of both igneous activity and mineralization is poorly known. For this reason, we have dated an intrusive breccia at Hicks dome, the Grant intrusion, using 40Ar/39Ar geochronometric and paleomagnetic methods. Concordant plateau dates, giving Permian ages, were obtained from amphibole (272.1+or-0.7 [1 sigma] Ma) and phlogopite (272.7+or-0.7 [1 sigma] Ma). After alternating-field (AF) demagnetization, specimens that contain titanomagnetite-bearing igneous rock fragments give a mean remanent direction of declination (D)=168.4 degrees; inclination (I)=-8 degrees; alpha 95=8.6 degrees; number of specimens (N)=10; this direction yields a virtual geomagnetic pole (VGP) at lat 54.8 degrees N., long 119.0 degrees E., delta p=4.4 degrees, delta m=8.7 degrees, near the late Paleozoic part of the North American apparent pole wander path. A nearly identical magnetization was found for the nearby Downeys Bluff sill (previously dated at about 275+or-24 Ma by the Rb-Sr method), in southern Illinois. Both AF and thermal demagnetization isolated shallow, southeasterly remanent directions carried by magnetite in the sill and from pyrrhotite in the baked contact of the Upper Mississippian Downeys Bluff Limestone: D=158.6 degrees; I=-11.8 degrees; alpha 95=3.8 degrees; N=15, yielding a VGP at lat 53.0 degrees N., long 128.7 degrees E., delta p=2.0 degrees, delta m=3.9 degrees. The paleomagnetic results, isotopic dates, and petrographic evidence thus favor the acquisition of thermal remanent magnetization by the Grant breccia and the Downeys Bluff sill during the Permian. The isotopic dates record rapid cooling from temperatures greater than 550 degrees C to less than 300 degrees C (the

  20. Speed of CMEs and the magnetic non-potentiality of their source active regions

    NASA Astrophysics Data System (ADS)

    Tiwari, S. K.; Falconer, D. A.; Moore, R. L.; Venkatakrishnan, P.

    2014-12-01

    Most fast coronal mass ejections (CMEs) originate from solar active regions (ARs). Non-potentiality of ARs is expected to determine the speed and size of CMEs in the outer corona. Several other unexplored parameters might be important as well. To find out the correlation between the initial speed of CMEs and the non-potentiality of source ARs, we associated over a hundred of CMEs with source ARs via their co-produced flares. The speed of the CMEs are collected from the SOHO LASCO CME catalog. We have used vector magnetograms obtained mainly with HMI/SDO, also with Hinode (SOT/SP) when available within an hour of a CME occurence, to evaluate various magnetic non-potentiality parameters, e.g. magnetic free-energy proxies, computed magnetic free energy, twist, shear angle, signed shear angle etc. We have also included several other parameters e.g. total unsigned flux, net current, magnetic area of ARs, area of sunspots, to investigate their correlation, if any, with the initial speeds of CMEs. Our preliminary results show that the ARs with larger non-potentiality and area mostly produce fast CMEs but they can also produce slower ones. The ARs with lesser non-potentiality and area generally produce only slower CMEs, however, there are a few exceptions. The total unsigned flux correlate with the non-potentiality parameters and area of ARs but some ARs with large unsigned flux are also found to be least non-potential. A more detailed analysis is underway. SKT is supported by an appointment to the NASA Postdoctoral Program at the NASA Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. RLM is supported by funding from the Living With a Star Targeted Research and Technology Program of the Heliophysics Division of NASA's Science Mission Directorate. Support for MAG4 development comes from NASA's Game Changing Development Program, and Johnson Space Center's Space Radiation Analysis Group (SRAG).

  1. Basal adenosine modulates the functional properties of AMPA receptors in mouse hippocampal neurons through the activation of A1R A2AR and A3R

    PubMed Central

    Di Angelantonio, Silvia; Bertollini, Cristina; Piccinin, Sonia; Rosito, Maria; Trettel, Flavia; Pagani, Francesca; Limatola, Cristina; Ragozzino, Davide

    2015-01-01

    Adenosine is a widespread neuromodulator within the CNS and its extracellular level is increased during hypoxia or intense synaptic activity, modulating pre- and postsynaptic sites. We studied the neuromodulatory action of adenosine on glutamatergic currents in the hippocampus, showing that activation of multiple adenosine receptors (ARs) by basal adenosine impacts postsynaptic site. Specifically, the stimulation of both A1R and A3R reduces AMPA currents, while A2AR has an opposite potentiating effect. The effect of ARs stimulation on glutamatergic currents in hippocampal cultures was investigated using pharmacological and genetic approaches. A3R inhibition by MRS1523 increased GluR1-Ser845 phosphorylation and potentiated AMPA current amplitude, increasing the apparent affinity for the agonist. A similar effect was observed blocking A1R with DPCPX or by genetic deletion of either A3R or A1R. Conversely, impairment of A2AR reduced AMPA currents, and decreased agonist sensitivity. Consistently, in hippocampal slices, ARs activation by AR agonist NECA modulated glutamatergic current amplitude evoked by AMPA application or afferent fiber stimulation. Opposite effects of AR subtypes stimulation are likely associated to changes in GluR1 phosphorylation and represent a novel mechanism of physiological modulation of glutamatergic transmission by adenosine, likely acting in normal conditions in the brain, depending on the level of extracellular adenosine and the distribution of AR subtypes. PMID:26528137

  2. Morpho-structural evolution of the Cordón Caulle geothermal region, Southern Volcanic Zone, Chile: Insights from gravity and 40Ar / 39Ar dating

    NASA Astrophysics Data System (ADS)

    Sepúlveda, Fabián; Lahsen, Alfredo; Bonvalot, Sylvain; Cembrano, José; Alvarado, Antonia; Letelier, Pablo

    2005-10-01

    The Cordón Caulle geothermal region (40.5°S) is a 13 km × 6 km, NW-SE elongate, volcano-tectonic depression hosting numerous monogenetic volcanic centers, fumaroles, and hot-springs, most of which occur spatially associated with the edges of the depression. Volcanism started at approximately 0.3 Ma, with dominantly mafic effusions, and expressed ultimately in post-glacial and historic dacite-rhyolite eruptions (1921-1922 and 1960). Three NE-trending gravimetric profiles were carried out across the depression of Cordón Caulle, yielding a residual negative anomaly with the greatest amplitude (- 20 mGal) at the center of the depression. A 2D-gravity model given by a 490 m thick shallow body with a density contrast = - 650 kg/m 3, interpreted as a shallow package of dacite-rhyolite lavas and tephra, was found to match the residual anomaly. A dense rock equivalent volume of felsic material on the order of 28 km 3 (25% of the total output of Cordón Caulle) is derived from this thickness. Previous workers explain the origin of felsic rocks at Cordón Caulle in terms of the orientation of the borders of Cordón Caulle relative to the maximum stress direction σ1 (i.e. NE-trending) prevailing during the Quaternary, according to which NW-trending domains were compressional, favoring stagnation, storage and differentiation of magmas. The dominantly monogenetic style of volcanism, the plateau-like morphology and the negative Bouguer anomaly, on the contrary, are interpreted as an indication of extensional tectonics. Intra-arc extension is proposed to be related to coseismic or postseismic stress relaxation accompanying major thrust events, such as the great 1960 Chilean earthquake, which is consistent, at Cordón Caulle, with the direction of propagation of dikes of the 1960 eruption (i.e. coseismic extension) and present-day subsidence inferred from InSAR data (i.e. postseismic extension). Prior to the Quaternary (8.2-1.6 Ma), nearly east-west compression prevailed at

  3. Pleistocene Paleoclimatic Features at Mount Mazama Volcano and the Crater Lake Region, Oregon, Dated by Ar Geochronology

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Lanphere, M. A.

    2005-12-01

    Fifteen examples of the interplay between glacial ice and magma or volcanic rock in the Crater Lake region have been dated by K-Ar or 40Ar/39Ar. Ages of glacial features compare well with times of extensive ice presence implied by marine oxygen isotope stages (MIS; Bassinot et al. 1994 EPSL 126:91-108). Prior to the 7.7-ka caldera-forming eruption, the summit of Mount Mazama was 3700 m asl. Moraines of the last glacial maximum (LGM) reached as low as 1400 m. Late MIS 10 glaciation is recorded at 1900-2000 m: in the SE caldera wall, glaciated andesite (340±6, 341±8 ka; 1σ) is overlain by intracanyon dacite (306±5 ka); in the E wall, similar glaciated andesite underlies till capped by dacite (336±6 ka); on the SW lakeshore, glaciated dacite (351±12 ka) is overlain by andesite (302±10 ka). Early MIS 8 is represented 276±11-ka dacite of Munson Ridge that implies >170 m of ice at 2040 m. In late MIS 8 or in MIS 7.4, voluminous andesite of Applegate Peak (7 ages 269±12 to 211±16 ka) chilled against thick ice along the E edge of Sun Creek valley at 1850 m and higher. Andesite of Garfield Peak (224±9 ka; 2100-2400 m) flowed over andesite (269±12 ka) glaciated during MIS 8.0 or 7.4. North of Castle Creek at 1740 m dacite (216±4 ka) lies on andesite (258±7 ka) glaciated in MIS 7.4 or 8.0. Andesite of Roundtop (159±13 ka) extending 3 km NE of the caldera rim is an MIS 6 ice-bounded lava flow. At Pumice Point, polygonal jointing and breccia occur in thick andesite (117±3 ka) that rests on glaciated (1900 m) mafic andesite (122±20 ka); the andesite is overlain by subaerial dacite (116±5 ka). Although the mafic andesite could have been glaciated in MIS 6, ice-contact/meltwater chilling of the overlying andesite probably dates from MIS 5.4. Below Llao Rock, andesite (70±4 ka) caps sediments deposited on dacite (116±9 ka) during MIS 5.4-4. Andesite (87±15 ka) from a subaerial cone (base 1900 m) ESE of Mazama flowed into ice-free Scott Creek during MIS 5

  4. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  5. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  6. WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?

    SciTech Connect

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd; Liu, Yang; Couvidat, Sebastien; Norton, Aimee A.; Li, Yan; Fisher, George H.; Shen, Chenglong

    2015-05-10

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild”; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

  7. Activation of the Wnt pathway through use of AR79, a glycogen synthase kinase 3β inhibitor, promotes prostate cancer growth in soft tissue and bone

    PubMed Central

    Jiang, Yuan; Dai, Jinlu; Zhang, Honglai; Sottnik, Joe L.; Keller, Jill M.; Escott, Katherine J.; Sanganee, Hitesh J.; Yao, Zhi; McCauley, Laurie K.; Keller, Evan T.

    2013-01-01

    Due to its bone anabolic activity, methods to increase Wnt activity, such as inhibitors of dickkopf-1 and sclerostin, are being clinically explored. Glycogen synthase kinase (GSK3β) inhibits Wnt signaling through inducing β-catenin degradation. Therefore, AR79, an inhibitor of GSK3β, is being evaluated as a bone anabolic agent. However, Wnt activation has potential to promote tumor growth. The goal of this study was to determine if AR79 impacted progression of prostate cancer (PCa). PCa tumors were established in subcutaneous and bone sites of mice followed by AR79 administration. Tumor growth, β-catenin activation, proliferation (Ki67 expression) and apoptosis (caspase 3 activity) were measured. Additionally, PCa and osteoblast cell lines were treated with AR79 and β-catenin status, proliferation (with β-catenin knocked down in some cases) and proportion of the ALDH+CD133+ stem-like cells was determined. AR79 promoted PCa growth, decreased phospho-β-catenin expression and increased total and nuclear β-catenin expression in tumors and increased tumor-induced bone remodeling. Additionally, it decreased caspase 3 and increased Ki67 expression. In addition, AR79 increased bone formation in normal mouse tibiae. AR79 inhibited β-catenin phosphorylation, increased nuclear β-catenin accumulation in PCa and osteoblast cell lines and increased proliferation of PCa cells in vitro through β-catenin. Furthermore, AR79 increased the ALDH+CD133+ cancer stem cell-like proportion of the PCa cell lines. We conclude that AR79, while being bone anabolic, promotes PCa cell growth through Wnt pathway activation. PMID:24088787

  8. Changes in histone modification and DNA methylation of the StAR and Cyp19a1 promoter regions in granulosa cells undergoing luteinization during ovulation in rats.

    PubMed

    Lee, Lifa; Asada, Hiromi; Kizuka, Fumie; Tamura, Isao; Maekawa, Ryo; Taketani, Toshiaki; Sato, Shun; Yamagata, Yoshiaki; Tamura, Hiroshi; Sugino, Norihiro

    2013-01-01

    The ovulatory LH surge induces rapid up-regulation of steroidogenic acute regulatory (StAR) protein and rapid down-regulation of aromatase (Cyp19a1) in granulosa cells (GCs) undergoing luteinization during ovulation. This study investigated in vivo whether epigenetic mechanisms including histone modifications are involved in the rapid changes of StAR and Cyp19a1 gene expression. GCs were obtained from rats treated with equine chorionic gonadotropin (CG) before (0 h) and after human (h)CG injection. StAR mRNA levels rapidly increased after hCG injection, reached a peak at 4 h, and then remained higher compared with 0 h until 12 h. Cyp19a1 mRNA levels gradually decreased after hCG injection and reached their lowest level at 12 h. A chromatin immunoprecipitation assay revealed that levels of histone-H4 acetylation (Ac-H4) and trimethylation of histone-H3 lysine-4 (H3K4me3) increased whereas H3K9me3 and H3K27me3 decreased in the StAR promoter after hCG injection. On the other hand, the levels of Ac-H3 and -H4 and H3K4me3 decreased, and H3K27me3 increased in the Cyp19a1 promoter after hCG injection. Chromatin condensation, which was analyzed using deoxyribonuclease I, decreased in the StAR promoter and increased in the Cyp19a1 promoter after hCG injection. A chromatin immunoprecipitation assay also showed that binding activities of CAATT/enhancer-binding protein β to the StAR promoter increased and binding activities of phosphorylated-cAMP response element binding protein to the Cyp19a1 promoter decreased after hCG injection. These results provide in vivo evidence that histone modifications are involved in the rapid changes of StAR and Cyp19a1 gene expression by altering chromatin structure of the promoters in GCs undergoing luteinization during ovulation.

  9. Static and Dynamic Modeling of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.

    2007-09-01

    Recent hydrostatic simulations of solar active regions have shown that it is possible to reproduce both the total intensity and the general morphology of the high-temperature emission observed at soft X-ray wavelengths using static heating models. These static models, however, cannot account for the lower temperature emission. In addition, there is ample observational evidence that the solar corona is highly variable, indicating a significant role for dynamical processes in coronal heating. Because they are computationally demanding, full hydrodynamic simulations of solar active regions have not been considered previously. In this paper we make first application of an impulsive heating model to the simulation of an entire active region, AR 8156 observed on 1998 February 16. We model this region by coupling potential field extrapolations to full solutions of the time-dependent hydrodynamic loop equations. To make the problem more tractable we begin with a static heating model that reproduces the emission observed in four different Yohkoh Soft X-Ray Telescope (SXT) filters and consider impulsive heating scenarios that yield time-averaged SXT intensities that are consistent with the static case. We find that it is possible to reproduce the total observed soft X-ray emission in all of the SXT filters with a dynamical heating model, indicating that nanoflare heating is consistent with the observational properties of the high-temperature solar corona. At EUV wavelengths the simulated emission shows more coronal loops, but the agreement between the simulation and the observation is still not acceptable.

  10. Chromospheric Mass Motions and Intrinsic Sunspot Rotations for NOAA Active Regions 10484, 10486, and 10488 Using ISOON Data (Postprint)

    DTIC Science & Technology

    2013-08-10

    understand the broader magnetic field context in each active region through the time of the data set. 3 . RESULTS 3.1. NOAA AR 10484 NOAA AR 10484...negative and positive magnetic field areas, respectively, prior to October 27, and the leveling off of the magnetic field areas early on October 28... Magnetic field areas of both polarities remain constant through the rest of the data set with the negative magnetic field area ∼1.3 times larger than the

  11. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction.

    PubMed

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J; Bose, Mahuya; Whittal, Randy M; Bose, Himangshu S

    2015-01-30

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221-229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis.

  12. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  13. The Twist Limit for Bipolar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  14. Stimulation of StAR expression by cAMP is controlled by inhibition of highly inducible SIK1 via CRTC2, a co-activator of CREB.

    PubMed

    Lee, Jinwoo; Tong, Tiegang; Takemori, Hiroshi; Jefcoate, Colin

    2015-06-15

    In mouse steroidogenic cells the activation of cholesterol metabolism is mediated by steroidogenic acute regulatory protein (StAR). Here, we visualized a coordinated regulation of StAR transcription, splicing and post-transcriptional processing, which are synchronized by salt inducible kinase (SIK1) and CREB-regulated transcription coactivator (CRTC2). To detect primary RNA (pRNA), spliced primary RNA (Sp-RNA) and mRNA in single cells, we generated probe sets by using fluorescence in situ hybridization (FISH). These methods allowed us to address the nature of StAR gene expression and to visualize protein-nucleic acid interactions through direct detection. We show that SIK1 represses StAR expression in Y1 adrenal and MA10 testis cells through inhibition of processing mediated by CRTC2. Digital image analysis matches qPCR analyses of the total cell culture. Evidence is presented for spatially separate accumulation of StAR pRNA and Sp-RNA at the gene loci in the nucleus. These findings establish that cAMP, SIK and CRTC mediate StAR expression through activation of individual StAR gene loci.

  15. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway.

    PubMed

    Niu, Dongdong; Wang, Xiujuan; Wang, Yanru; Song, Xiaoou; Wang, Jiansheng; Guo, Jianhua; Zhao, Hongwei

    2016-01-01

    Induced resistance responses play a potent role in plant defense system against pathogen attack. Bacillus cereus AR156 is a plant growth promoting rhizobacterium (PGPR) that installs induced systemic resistance (ISR) to Pseudomonas syringae pv. tomato (Pst) in Arabidopsis. Here, we show that AR156 leaf infiltration enhances disease resistance in Arabidopsis through the activation of a systemic acquired resistance (SAR). PR1 protein expression and reactive oxygen species (ROS) burst are strongly induced in plants treated with AR156 and inoculated with Pst than that in plants inoculated with Pst only. Moreover, AR156 can trigger SAR in jar1 or ein2 mutants, but not in the NahG transgenic and NPR1 mutant plants. Our results indicate that AR156-induced SAR depends on SA-signaling pathway and NPR1, but not JA and ET. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1 gene expression, which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). Altogether, our results indicate that AR156 can induce SAR by the SA-signaling pathways in an NPR1-dependent manner and involves multiple PTI components.

  16. The Ubiquitous Presence of Looplike Fine Structure inside Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.

    2016-03-01

    Although most of the solar surface outside active regions (ARs) is pervaded by small-scale fields of mixed polarity, this magnetic “carpet” or “junkyard” is thought to be largely absent inside AR plages and strong network. However, using extreme-ultraviolet images and line-of-sight magnetograms from the Solar Dynamics Observatory, we find that unipolar flux concentrations, both inside and outside ARs, often have small, loop-shaped Fe ix 17.1 and Fe xii 19.3 nm features embedded within them, even though no minority-polarity flux is visible in the corresponding magnetograms. Such looplike structures, characterized by horizontal sizes of ˜3-5 Mm and varying on timescales of minutes or less, are seen inside bright 17.1 nm moss, as well as in fainter moss-like regions associated with weaker network outside ARs. We also note a tendency for bright coronal loops to show compact, looplike features at their footpoints. Based on these observations, we suggest that present-day magnetograms may be substantially underrepresenting the amount of minority-polarity flux inside plages and strong network, and that reconnection between small bipoles and the overlying large-scale field could be a major source of coronal heating both in ARs and in the quiet Sun.

  17. THE UBIQUITOUS PRESENCE OF LOOPLIKE FINE STRUCTURE INSIDE SOLAR ACTIVE REGIONS

    SciTech Connect

    Wang, Y.-M.

    2016-03-20

    Although most of the solar surface outside active regions (ARs) is pervaded by small-scale fields of mixed polarity, this magnetic “carpet” or “junkyard” is thought to be largely absent inside AR plages and strong network. However, using extreme-ultraviolet images and line-of-sight magnetograms from the Solar Dynamics Observatory, we find that unipolar flux concentrations, both inside and outside ARs, often have small, loop-shaped Fe ix 17.1 and Fe xii 19.3 nm features embedded within them, even though no minority-polarity flux is visible in the corresponding magnetograms. Such looplike structures, characterized by horizontal sizes of ∼3–5 Mm and varying on timescales of minutes or less, are seen inside bright 17.1 nm moss, as well as in fainter moss-like regions associated with weaker network outside ARs. We also note a tendency for bright coronal loops to show compact, looplike features at their footpoints. Based on these observations, we suggest that present-day magnetograms may be substantially underrepresenting the amount of minority-polarity flux inside plages and strong network, and that reconnection between small bipoles and the overlying large-scale field could be a major source of coronal heating both in ARs and in the quiet Sun.

  18. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells.

    PubMed

    Fang, Fang; Qin, Yingxin; Hao, Feng; Li, Qiang; Zhang, Wei; Zhao, Chen; Chen, Shuang; Zhao, Liangzhong; Wang, Liguo; Cai, Jianhui

    2016-08-01

    The androgen signaling pathway serves an important role in the development of prostate cancer. β-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3β (GSK-3β), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates β-catenin stability. In addition, β-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3β/β-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3β, and then promoted degeneration of β-catenin and reduced nuclear accumulation of β-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between β-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway.

  19. CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells

    PubMed Central

    Fang, Fang; Qin, Yingxin; Hao, Feng; Li, Qiang; Zhang, Wei; Zhao, Chen; Chen, Shuang; Zhao, Liangzhong; Wang, Liguo; Cai, Jianhui

    2016-01-01

    The androgen signaling pathway serves an important role in the development of prostate cancer. β-Catenin is an androgen receptor (AR) cofactor and augments AR signaling. Glycogen synthase kinase-3β (GSK-3β), a target of phosphorylated serine/threonine protein kinase B (p-Akt), regulates β-catenin stability. In addition, β-catenin, a coregulator of AR, physically interacts with AR and enhances AR-mediated target gene transcription. The multifunctional glycoprotein cluster of differentiation (CD) 147 is highly expressed on the cell surface of the majority of cancer cells, and it promotes tumor invasion, metastasis and growth. In the present study, the molecular effects of CD147 on the Akt/GSK-3β/β-catenin/AR signaling network were investigated in LNCaP cells. Using short hairpin-mediated RNA knockdown of CD147 in LNCaP cells, it was demonstrated that downregulation of CD147 resulted in inhibitory phosphorylation of GSK-3β, and then promoted degeneration of β-catenin and reduced nuclear accumulation of β-catenin. In addition, immunoprecipitation studies demonstrated that CD147 downregulation decreased the formation of a complex between β-catenin and AR. It was shown that CD147 knockdown suppressed the expression of the AR target gene prostate-specific antigen and the growth of AR-positive LNCaP cells. Furthermore, inhibition of PI3K/Akt with LY294002 augmented CD147-mediated function. The present study indicates that the PI3K/Akt pathway may facilitate CD147-mediated activation of the AR pathway. PMID:27446405

  20. Magnetic Properties of Solar Active Regions That Govern Large Solar Flares and Eruptions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise K.; Hudson, Hugh; Nagashima, Kaori

    2017-01-01

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit δ-sunspots, and at least three ARs violate Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ-sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 1023 Mx, might be able to produce “superflares” with energies of the order of 1034 erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.

  1. A Statistical Study of Flare Productivity Associated with Sunspot Properties in Different Magnetic Types of Active Regions

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Hui; Hsieh, Min-Shiu; Yu, Hsiu-Shan; Chen, P. F.

    2017-01-01

    It is often believed that intense flares preferentially originate from the large-size active regions (ARs) with strong magnetic fields and complex magnetic configurations. This work investigates the dependence of flare activity on the AR properties and clarifies the influence of AR magnetic parameters on the flare productivity, based on two data sets of daily sunspot and flare information as well as the GOES soft X-ray measurements and HMI vector magnetograms. By considering the evolution of magnetic complexity, we find that flare behaviors are quite different in the short- and long-lived complex ARs and the ARs with more complex magnetic configurations are likely to host more impulsive and intense flares. Furthermore, we investigate several magnetic quantities and perform the two-sample Kolmogorov–Smirnov test to examine the similarity/difference between two populations in different types of ARs. Our results demonstrate that the total source field strength on the photosphere has a good correlation with the flare activity in complex ARs. It is noted that intense flares tend to occur at the regions of strong source field in combination with an intermediate field-weighted shear angle. This result implies that the magnetic free energy provided by a complex AR could be high enough to trigger a flare eruption even with a moderate magnetic shear on the photosphere. We thus suggest that the magnetic free energy represented by the source field rather than the photospheric magnetic complexity is a better quantity to characterize the flare productivity of an AR, especially for the occurrence of intense flares.

  2. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  3. Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J.

    PubMed

    Zhang, Guixin; Zhang, Jingwen; Shang, Dong; Qi, Bing; Chen, Hailong

    2015-09-01

    The objective of this study is to investigate the effect of deoxycholic acid (DCA) on rat pancreatic acinar cell line AR42J and the functional mechanisms of DCA on AR42J cells. AR42J cells were treated with various concentrations of DCA for 24 h and also treated with 0.4 mmol/L DCA for multiple times, and then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to detect the AR42J cell survival rate. Flow cytometric was used to detect the cell apoptosis and necrosis in AR42J cells treated with 0.4 mmol/L and 0.8 mmol/L DCA. The cells treated with phosphate buffer saline (PBS) were served as control. In addition, the DNA-binding activity assays of transcription factors (TFs) in nuclear proteins of cells treated with DCA were determined using Panomics Procarta Transcription Factor Assay Kit. The relative survival rates were markedly decreased (P < 0.05) in a dose- and time-dependent manner. Compared with control group, the cell apoptosis and necrosis ratio were both significantly elevated in 0.4 mmol/L DCA and 0.8 mmol/L DCA groups (P < 0.01). A significant increase (P < 0.05) in the activity of transcription factor 2 (ATF2), interferon-stimulated response element (ISRE), NKX-2.5, androgen receptor (AR), p53, and hypoxia-inducible factor-1 (HIF-1) was observed, and the activity of peroxisome proliferator-activated receptor (PPAR), activator protein 1 (AP1), and E2F1 was reduced (P < 0.05). In conclusion, DCA inhibited proliferation and induced apoptosis and necrosis in AR42J cells. The expression changes of related genes regulated by TFs might be the molecular mechanism of AR42J cell injury.

  4. Light Bridge in a Developing Active Region. I. Observation of Light Bridge and its Dynamic Activity Phenomena

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.

  5. Dynamics in Restructuring Active Regions Observed During Soho/Yohkoh/Gbo Campaigns

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Deng, Y.; Mandrini, C. H.; Rudawy, P.; Nitta, N.; Mason, H.; Fletcher, L.; Martens, P.; Brynildsen, N.

    JOP17 and JOP 33 are SOHO Joint Observing Programs in collaboration with Yohkoh/SXT and ground based observatories (GBO's), dedicated to observe dynamical events through the atmosphere. During runs of these programs we observed in restructuring active regions (ARs), surges, subflares, bright knots, but not large flares and jets. From these observations we have been able to derive some of the responses of the coronal and chromospheric plasma to the evolution of the photospheric magnetic field. Emerging flux in an AR led to the formation of Arch Filament Systems in the chromosphere, hot loops and knots in the transition region, and X-ray loops. Frequent surges have been observed in relation to parasitic or mixed polarities, but coronal jets have not yet been found. We discuss the possible mechanisms acting during the restructuring of the active regions (reconnection or ``sea-serpent'' geometries)

  6. 40Ar/39Ar Dating of Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Renne, P. R.; Watkins, J. M.

    2007-12-01

    Application of the 40Ar/39Ar method to volcanic glasses has been somewhat stigmatized following several studies demonstrating secondary mobility of K and Ar. Much of the stigma is unwarranted, however, since most studies only impugned the reliability of the K-Ar and 40Ar/39Ar techniques when applied to glass shards rather than obsidian clasts with low surface area to volume ratios. We provide further evidence for problematic K loss and/or 39Ar recoil ejection from glass shards in 40Ar/39Ar step heating results for comagmatic feldspars and shards. In an extreme case, the plateau age of the feldspars (0.17 ± 0.03 Ma at 2σ) is significantly younger than the plateau age of the glass (0.85 ± 0.05 Ma at 2σ). If the feldspar age is reasonably interpreted as the eruption age of the ash, it is likely that the glass shards experienced K and/or 39Ar loss. Electron microprobe analyses of the glass shards have low totals (~93%) and no systematic lateral variability (i.e., diffusion gradients) in K, suggesting that the lengthscale of the glass shards is smaller than the lengthscale of K diffusion. Obsidian clasts should not be as susceptible to K loss since any hydrated (K-depleted) volume represents a small fraction of the total material and can often be physically removed prior to analysis. Samples described here are detrital obsidian clasts from the Afar region of Ethiopia. Evidence from Fourier Transform Infrared Spectroscopy (FTIR), and previous work by Anovitz (1999), confirm that the scale of water and potassium mobility are often small in comparison to the size of obsidian clasts but large enough to effect the bulk composition of glass shards. This expectation is confirmed in another tuff wherein comagmatic obsidian clasts and sanidine phenocrysts yield indistinguishable 40Ar/39Ar ages of 4.4 Ma High abundances of non-radiogenic 40Ar, and kinetic fractionation of Ar isotopes during quenching and/or laboratory degassing resulting in incomplete equilibration between

  7. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    SciTech Connect

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin; Ma, Suli

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  8. Depth of origin of solar active regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    Observations show that the individual bipolar magnetic regions on the sun remain confined during their decay phase, with much of the magnetic field pulling back under the surface, in reverse of the earlier emergence. This suggests that the magnetic field is held on a short rein by subsurface forces, for otherwise the region would decay entirely by dispersing across the face of the sun. With the simple assumption that the fields at the surface are controlled from well-defined anchor points at a depth h, it is possible to relate the length l of the bipolar region at the surface to the depth h, with h about equal to l. The observed dimensions l about equal to 100,000 km for normal active regions, and l about equal to 10,000 km for the ephemeral active regions, indicate comparable depths of origin. More detailed observational studies of the active regions may be expected to shed further light on the problem.

  9. Evolution of the Bochner Laplacian for magnetograms of solar active regions

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.; Knyazeva, I. S.

    2016-12-01

    A search for powerful flare predictors remains a problem of current interest in solar—terrestrial physics. The magnetograms (LOS SDO/HMI instrument) for active regions (ARs) 1158, 1166, 1283, and 1520, which produced an X-ray flare located near the central meridian, are analyzed. AR 1654, which was rather complex but generated only M flares near western limb, remaining quiet during the passage over the disk, has been analyzed in a similar manner for comparison. The combinatorial Bochner Laplacian was used as a complexity descriptor. We calculate it for each magnetogram, which was converted into the magnetic energy density of the longitudinal field component, and analyze its maximal spatial variation. It has been shown that the maximal spatial Laplacian values trace the neutral line during AR evolution, demonstrating sharp peaks before and after the flare in this case. Although this signature has no established statistical reliability, it can be interesting as an effective parameter when flares are predicted.

  10. The activation energy for nanocrystalline diamond films deposited from an Ar/H2/CH4 hot-filament reactor.

    PubMed

    Barbosa, D C; Melo, L L; Trava-Airoldi, V J; Corat, E J

    2009-06-01

    In this work we have investigated the effect of substrate temperature on the growth rate and properties of nanocrystalline diamond thin films deposited by hot filament chemical vapor deposition (HFCVD). Mixtures of 0.5 vol% CH4 and 25 vol% H2 balanced with Ar at a pressure of 50 Torr and typical deposition time of 12 h. We present the measurement of the activation energy by accurately controlling the substrate temperature independently of other CVD parameters. Growth rates have been measured in the temperature range from 550 to 800 degrees C. Characterization techniques have involved Raman spectroscopy, high resolution X-ray difractometry and scanning electron microscopy. We also present a comparison with most activation energy for micro and nanocrystalline diamond determinations in the literature and propose that there is a common trend in most observations. The result obtained can be an evidence that the growth mechanism of NCD in HFCVD reactors is very similar to MCD growth.

  11. Flux rope proxies and fan-spine structures in active region NOAA 11897

    NASA Astrophysics Data System (ADS)

    Hou, Y. J.; Li, T.; Zhang, J.

    2016-08-01

    Context. Flux ropes are composed of twisted magnetic fields and are closely connected with coronal mass ejections. The fan-spine magnetic topology is another type of complex magnetic fields. It has been reported by several authors, and is believed to be associated with null-point-type magnetic reconnection. Aims: We try to determine the number of flux rope proxies and reveal fan-spine structures in the complex active region (AR) NOAA 11897. Methods: Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigated flux rope proxies in NOAA AR 11897 from 14 November 2013 to 19 November 2013 and display two fan-spine structures in this AR. Results: For the first time, we detect flux rope proxies of NOAA 11897 for a total of 30 times in four different locations during this AR's transference from solar east to west on the disk. Moreover, we notice that these flux rope proxies were tracked by active or eruptive material of filaments 12 times, while for the remaining 18 times they appeared as brightenings in the corona. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. None of these flux rope proxies was observed to erupt; they faded away gradually. In addition to these flux rope proxies, we detect for the first time a secondary fan-spine structure. It was covered by dome-shaped magnetic fields that belong to a larger fan-spine topology. Conclusions: These new observations imply that many flux ropes can exist in an AR and that the complexity of AR magnetic configurations is far beyond our imagination. Movies 1-8 are available in electronic form at http://www.aanda.org

  12. Active Region Oscillations: Results from SOHO JOP 097

    NASA Astrophysics Data System (ADS)

    O'Shea, E.; Fleck, B.; Muglach, K.; Sütterlin, P.

    2001-05-01

    We present here an analysis of data obtained in a sunspot region, using the Coronal Diagnostic Spectrometer (CDS) on SOHO. These data were obtained in the context of the Joint Observing Program (JOP) 97 which, together with CDS, included the Michelson Doppler Imaging (MDI) instrument on SOHO, the TRACE satellite and various ground based observatories, e.g. the DOT on La Palma. Using the lines of Fe XVI 335, Mg IX 368, He I 584, O III 599, Mg X 624 and O V 624 of CDS time series data were obtained in the pore and plage regions of sunspots associated with active regions AR 9166, 9166 and 9169 between September 19-29 2000. In addition to the time series datasets we also obtained 240 arcsec x 240 arcsec raster images of the sunspot regions examined. Using different time series analysis techniques we analyse the different periods of oscillation found in time series datasets and present the results here. This research is part of the European Solar Magnetometry Network supported by the EC through the TMR programme.

  13. Suppression of Active-Region CME Production by the Presence of Other Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor

    2009-01-01

    From the SOHO mission s data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region s total magnetic flux), and (2) a gauge of the active region s free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region s expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region s flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

  14. Differential unroofing within the central metasedimentary Belt of the Grenville Orogen: constraints from 40Ar/39Ar thermochronology

    NASA Astrophysics Data System (ADS)

    Cosca, Michael A.; Essene, Eric J.; Kunk, Michael J.; Sutter, John F.

    1992-04-01

    An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between ˜ 1000 and ˜ 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By ˜ 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before ˜ 600 Ma as required by the deposition of overlying

  15. Differential unroofing within the central metasedimentary Belt of the Grenville Orogen: constraints from 40Ar/39Ar thermochronology

    USGS Publications Warehouse

    Cosca, M.A.; Essene, E.J.; Kunk, M.J.; Sutter, J.F.

    1992-01-01

    An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between ??? 1000 and ??? 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By ??? 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before ??? 600 Ma as required by the deposition of overlying

  16. Active Region Emergence and Remote Flares

    NASA Astrophysics Data System (ADS)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  17. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR).

    PubMed

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph

    2015-06-15

    High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.

  18. WAITING TIMES OF QUASI-HOMOLOGOUS CORONAL MASS EJECTIONS FROM SUPER ACTIVE REGIONS

    SciTech Connect

    Wang Yuming; Liu Lijuan; Shen Chenglong; Liu Rui; Ye Pinzhong; Wang, S.

    2013-02-01

    Why and how do some active regions (ARs) frequently produce coronal mass ejections (CMEs)? These are key questions for deepening our understanding of the mechanisms and processes of energy accumulation and sudden release in ARs and for improving our space weather prediction capability. Although some case studies have been performed, these questions are still far from fully answered. These issues are now being addressed statistically through an investigation of the waiting times of quasi-homologous CMEs from super ARs in solar cycle 23. It is found that the waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hr. The first component is a Gaussian-like distribution with a peak at about 7 hr, which indicates a tight physical connection between these quasi-homologous CMEs. The likelihood of two or more occurrences of CMEs faster than 1200 km s{sup -1} from the same AR within 18 hr is about 20%. Furthermore, the correlation analysis among CME waiting times, CME speeds, and CME occurrence rates reveals that these quantities are independent of each other, suggesting that the perturbation by preceding CMEs rather than free energy input is the direct cause of quasi-homologous CMEs. The peak waiting time of 7 hr probably characterizes the timescale of the growth of the instabilities triggered by preceding CMEs. This study uncovers some clues from a statistical perspective for us to understand quasi-homologous CMEs as well as CME-rich ARs.

  19. Flare Size Distributions and Active Region Types

    NASA Astrophysics Data System (ADS)

    Bai, Taeil

    2007-05-01

    Size distributions of solar flares measured by various size indicators follow a power law with a negative index of about 1.8. On the basis of general appearance of power-law distributions, Lu and his collegues proposed an avalenche model. According to this model, the power-law index should be independent of active region size, but the cutoff size above which the size distribution steepens rapidly is expected to depend on the active region size. I have analyzed the size distribution of flares, using GOES soft X-ray observations for 2004 and 2005. For flares observed by GOES during these years, their locations are almost completely identified even for C-class flares. This enable us to study the dependence of size distribution on active region type. Comparing the power-law portion of size distributions below the high-end cutoff, I have found that the size distribution index depends on active region type. Flares from prolific active regions exhibit a flatter distribution, while flares from non-prolific active regions exhibit a steeper distribution. I plan to discuss a plausible mechanism for such behavior.

  20. Regional patterns of Mesozoic-Cenozoic magmatism in western Alaska revealed by new U-Pb and 40Ar/39Ar ages: Chapter D in Studies by the U.S. Geological Survey in Alaska, vol. 15

    USGS Publications Warehouse

    Bradley, Dwight C.; Miller, Marti L.; Friedman, Richard M.; Layer, Paul W.; Bleick, Heather A.; Jones, III, James V.; Box, Steven E.; Karl, Susan M.; Shew, Nora B.; White, Timothy S.; Till, Alison B.; Dumoulin, Julie A.; Bundtzen, Thomas K.; O'Sullivan, Paul B.; Ullrich, Thomas D.

    2017-03-02

    In support of regional geologic framework studies, we obtained 50 new argon-40/argon-39 (40Ar/39Ar) ages and 33 new uranium-lead (U-Pb) ages from igneous rocks of southwestern Alaska. Most of the samples are from the Sleetmute and Taylor Mountains quadrangles; smaller collections or individual samples are from the Bethel, Candle, Dillingham, Goodnews Bay, Holy Cross, Iditarod, Kantishna River, Lake Clark, Lime Hills, McGrath, Medfra, Talkeetna, and Tanana quadrangles.A U-Pb zircon age of 317.7±0.6 million years (Ma) reveals the presence of Pennsylvanian intermediate igneous (probably volcanic) rocks in the Tikchik terrane, Bethel quadrangle. A U-Pb zircon age of 229.5±0.2 Ma from gabbro intruding the Rampart Group of the Angayucham-Tozitna terrane, Tanana quadrangle, confirms and tightens a previously cited Triassic age for this intrusive suite. A fresh mafic dike in Goodnews Bay quadrangle yielded a 40Ar/39Ar whole rock age of 155.0±1.9 Ma; this establishes a Jurassic or older age for the previously unconstrained (Paleozoic? to Mesozoic?) sandstone unit that it intrudes. A thick felsic tuff in the Gemuk Group in Taylor Mountains quadrangle yielded a U-Pb zircon age of 153.0±2.0 Ma, extending the age of magmatism in this part of the Togiak terrane back into the Late Jurassic. We report three new U-Pb zircon ages between 120 and 110 Ma—112.0±0.9 Ma from syenite in the Candle quadrangle, 114.9±0.3 Ma from orthogneiss assigned to the Ruby terrane in Iditarod quadrangle, and 116.6±0.1 Ma from a gabbro of the Dishna River mafic-ultramafic complex in Iditarod quadrangle. The latter result requires a substantial age revision, from Triassic to Cretaceous, for at least some rocks that have been mapped as the Dishna River mafic-ultramafic complex. A tuff in the Upper Cretaceous Kuskokwim Group yielded a U-Pb zircon (sensitive high-resolution ion microprobe, SHRIMP) age of 88.3±1.0 Ma; we speculate that the eruptive source was an arc along the trend of the Pebble

  1. Larvicidal and Biting Deterrent Activity of Essential Oils of Curcuma longa, Ar-turmerone, and Curcuminoids Against Aedes aegypti and Anopheles quadrimaculatus (Culicidae: Diptera).

    PubMed

    Ali, Abbas; Wang, Yan-Hong; Khan, Ikhlas A

    2015-09-01

    Essential oils and extract of Curcuma longa, ar-turmerone, and curcuminoids were evaluated for their larvicidal and deterrent activity against mosquitoes. Ar-turmerone and curcuminoids constituted 36.9, 24.9 and 50.6% of rhizome oil, leaf oil, and rhizome extract, respectively. Ar-turmerone was the major compound of the rhizome oil (36.9%) and leaf oil (24.9%). The ethanolic extract had 15.4% ar-turmerone with 6.6% bisdesmethoxycurcumin, 6.1% desmethoxycurcumin, and 22.6% curcumin. In in vitro studies, essential oils of the leaf (biting deterrence index [BDI] = 0.98), rhizome (BDI = 0.98), and rhizome ethanolic extract (BDI = 0.96) at 10 µg/cm(2) showed biting deterrent activity similar to DEET at 25 nmol/cm(2) against Aedes aegypti L. Among the pure compounds, ar-turmerone (BDI = 1.15) showed the biting deterrent activity higher than DEET at 25 nmol/cm(2) whereas the activity of other compounds was lower than DEET. In Anopheles quadrimaculatus Say, only ar-turmerone showed deterrent activity similar to DEET. In dose-response bioassay, ar-turmerone showed significantly higher biting deterrence than DEET at all the dosages. Ar-turmerone, at 15 nmol/cm(2), showed activity similar to DEET at 25 nmol/cm(2) and activity at 5 nmol/cm(2) was similar to DEET at 20 and 15 nmol/cm(2). Leaf essential oil with LC(50) values of 1.8 and 8.9 ppm against larvae of An. quadrimaculatus and Ae. aegypti, respectively, showed highest toxicity followed by rhizome oil and ethanolic extract. Among the pure compounds, ar-turmerone with LC(50) values of 2.8 and 2.5 ppm against larvae of An. quadrimaculatus and Ae. aegypti, respectively, was most toxic followed by bisdesmethoxycurcumin, curcumin, and desmethoxycurcumin.

  2. Explorations of electric current system in solar active regions. I - Empirical inferences of the current flows

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.

    1987-01-01

    Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.

  3. Insights from Zebrafish and Mouse Models on the Activity and Safety of Ar-Turmerone as a Potential Drug Candidate for the Treatment of Epilepsy

    PubMed Central

    Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K.; Dehaen, Wim; de Witte, Peter A. M.; Esguerra, Camila V.

    2013-01-01

    In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application. PMID:24349101

  4. Study of the magnetospheres of active regions on the sun by radio astronomy techniques

    NASA Astrophysics Data System (ADS)

    Bogod, V. M.; Kal'tman, T. I.; Peterova, N. G.; Yasnov, L. V.

    2017-01-01

    In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere-corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.

  5. High-wavenumber solar f-mode strengthening prior to active region formation

    NASA Astrophysics Data System (ADS)

    Singh, Nishant; Raichur, Harsha; Brandenburg, Axel

    2016-05-01

    We report a systematic strengthening of the local solar surface mode, i.e. the f-mode, 1-2 days prior to the emergence of an active region (AR) in the same (corotating) location while no indication can yet be seen in the magnetograms. Our study is motivated by earlier numerical findings of Singh et al. (2014) which showed that, in the presence of a nonuniform magnetic field that is concentrated a few scale heights below the surface, the f-mode fans out in the diagnostic kΩ diagram at high wavenumbers. Here we explore this possibility using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, and show for four ARs 11130, 11158, 11768, and 12051, that at large latitudinal wavenumbers (corresponding to horizontal scales of around 3000 km), the f-mode displays strengthening about two days prior to AR formation and thus provides a new precursor for AR formation. The idea that the f-mode is perturbed days before any visible magnetic activity occurs on the surface can be important in constraining dynamo models aimed at understanding the global magnetic activity of the Sun.

  6. Relationship between the photospheric Poynting flux and the active region luminosity

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Canfield, Richard C.; Fisher, George H.; Hudson, Hugh S.; Welsch, Brian

    2014-06-01

    How does energy radiated by active regions compare with magnetic energy that propagates lower across the photosphere? This is a fundamental question for energy storage and release in active regions, yet it is presently poorly understood. In this work we quantify and compare both energy terms using SDO observations of the active region (AR) 11520. To quantify the magnetic energy crossing the photosphere, or the Poynting flux, we need to know both the magnetic field vector B and electric field vector E as well. Our current electric field inversion technique, PDFI, combines the Poloidal-Toroidal-Decomposition method with information from Doppler measurements, Fourier local correlation tracking (FLCT) results, and the ideal MHD constraint, to determine the electric field from vector magnetic field and Doppler data. We apply the PDFI method to a sequence of Helioseismic and Magnetic Imager (HMI/SDO) vector magnetogram data, to find the electric-field and hence the Poynting-flux evolution in AR 11520. We find that most of the magnetic energy in this AR is injected in the range of $10^7$ to $10^8$ $ergs/{cm^2 s}$, with the largest fluxes reaching $10^{10}$ $ergs/{cm^2 s}$. Integrating over the active region this yields a total energy of order $10^{28}$ ergs/s. To quantify the active region luminosity, we use EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA) spectrally resolved observations. We find the active region luminosity of order $10^{28}$ ergs/s. We compare derived magnetic and radiated energy fluxes on different temporal and spatial scales and estimate their uncertainties. We also discuss the roles that potential/non-potential and emerging/shearing terms play in the total magnetic energy budget.

  7. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-07-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  8. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  9. A New Method to Quantify and Reduce the net Projection Error in Whole-solar-active-region Parameters Measured from Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Falconer, David A.; Tiwari, Sanjiv K.; Moore, Ronald L.; Khazanov, Igor

    2016-12-01

    Projection errors limit the use of vector magnetograms of active regions (ARs) far from the disk center. In this Letter, for ARs observed up to 60° from the disk center, we demonstrate a method for measuring and reducing the projection error in the magnitude of any whole-AR parameter that is derived from a vector magnetogram that has been deprojected to the disk center. The method assumes that the center-to-limb curve of the average of the parameter’s absolute values, measured from the disk passage of a large number of ARs and normalized to each AR’s absolute value of the parameter at central meridian, gives the average fractional projection error at each radial distance from the disk center. To demonstrate the method, we use a large set of large-flux ARs and apply the method to a whole-AR parameter that is among the simplest to measure: whole-AR magnetic flux. We measure 30,845 SDO/Helioseismic and Magnetic Imager vector magnetograms covering the disk passage of 272 large-flux ARs, each having whole-AR flux >1022 Mx. We obtain the center-to-limb radial-distance run of the average projection error in measured whole-AR flux from a Chebyshev fit to the radial-distance plot of the 30,845 normalized measured values. The average projection error in the measured whole-AR flux of an AR at a given radial distance is removed by multiplying the measured flux by the correction factor given by the fit. The correction is important for both the study of the evolution of ARs and for improving the accuracy of forecasts of an AR’s major flare/coronal mass ejection productivity.

  10. Fluxon Modeling of Active Region Evolution

    NASA Astrophysics Data System (ADS)

    Deforest, C. E.; Kankelborg, C. C.; Davey, A. R.; Rachmeler, L.

    2006-12-01

    We present current results and status on fluxon modeling of free energy buildup and release in active regions. Our publicly available code, FLUX, has the unique ability to track magnetic energy buildup with a truly constrained topology in evolving, nonlinear force-free conditions. Recent work includes validation of the model against Low &Lou force-free field solutions, initial evolution studies of idealized active regions, and inclusion of locally parameterized reconnection into the model. FLUX is uniquely able to simulate complete active regions in 3-D on a single workstation; we estimate that a parallelized fluxon model, together with computer vision code to ingest solar data, could run faster than real time on a cluster of \\textasciitilde 30 CPUs and hence provide a true predictive space weather model in the style of predictive simulations of terrestrial weather.

  11. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  12. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds wh...

  13. Initial validation of the Soil Moisture Active Passive mission using USDA-ARS watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission was launched in January 2015 to measure global surface soil moisture. The calibration and validation program of SMAP relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The U...

  14. Active Region Segmentation Based on Stokes Asymmetries

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Harker-Lundberg, B.

    2011-01-01

    During the Stokes inversion process, we would ideally use a distinct model for each structure in an active region which addresses the differences in the physical conditions of these regions. While the Milne-Eddington model of the atmosphere---a frequently-used ideal model that assumes all local thermodynamic equilibrium (LTE) conditions are satisfied---is a sufficient approximation for the description of the solar photosphere, we almost always observe deviations from this model. It is thus of interest to devise a method to systematically and accurately identify the active regions based on their spectra, such that we could use a more sophisticated model catered to each structure in an active region during the actual Stokes inversion process. We present a classification scheme for different active region structures using Stokes asymmetries and line core depths as discriminators. The data used for this investigation were obtained from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) facility using the Vector Spectromagnetograph (VSM), observed in a 3 A bandpass around Fe I 6302.5 A, from March 27, 2008 to March 29, 2008. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  15. ON THE FORMATION OF ACTIVE REGIONS

    SciTech Connect

    Stein, Robert F.; Nordlund, Ake E-mail: aake@nbi.dk

    2012-07-01

    Magnetoconvection can produce an active region without an initial coherent flux tube. A simulation was performed where a uniform, untwisted, horizontal magnetic field of 1 kG strength was advected into the bottom of a computational domain 48 Mm wide by 20 Mm deep. The up and down convective motions produce a hierarchy of magnetic loops with a wide range of scales, with smaller loops riding 'piggy-back' in a serpentine fashion on larger loops. When a large loop approaches the surface, it produces a small active region with a compact leading spot and more diffuse following spots.

  16. Successive injection of opposite magnetic helicity in solar active region NOAA 11928

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Démoulin, P.

    2017-01-01

    Aims: Understanding the nature and evolution of the photospheric helicity flux transfer is crucial to revealing the role of magnetic helicity in coronal dynamics of solar active regions. Methods: We computed the boundary-driven helicity flux with a 12-min cadence during the emergence of the AR 11928 using SDO/HMI photospheric vector magnetograms and the derived flow velocity field. Accounting for the footpoint connectivity defined by nonlinear, force-free magnetic extrapolations, we derived and analyzed the corrected distribution of helicity flux maps. Results: The photospheric helicity flux injection is found to change sign during the steady emergence of the AR. This reversal is confirmed with the evolution of the photospheric electric currents and with the coronal connectivity as observed in EUV wavelengths with SDO/AIA. During approximately the three first days of emergence, the AR coronal helicity is positive while later on the field configuration is close to a potential field. As theoretically expected, the magnetic helicity cancellation is associated with enhanced coronal activity. Conclusions: The study suggests a boundary driven transformation of the chirality in the global AR magnetic structure. This may be the result of the emergence of a flux rope with positive twist around its apex while it has negative twist in its legs. The origin of such mixed helicity flux rope in the convective zone is challenging for models.

  17. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-04-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. Using NSO Kitt Peak synoptic magnetograms, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed lagging-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with lagging-polarity flux located poleward of leading-polarity flux. This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  18. Combined experimental and modeling studies of microwave activated CH4/H2/Ar plasmas for microcrystalline, nanocrystalline, and ultrananocrystalline diamond deposition

    NASA Astrophysics Data System (ADS)

    Richley, James C.; Fox, Oliver J. L.; Ashfold, Michael N. R.; Mankelevich, Yuri A.

    2011-03-01

    A comprehensive study of microwave (MW) activated CH4/H2/Ar plasmas used for diamond chemical vapor deposition is reported, focusing particularly on the effects of gross variations in the H2/Ar ratio in the input gas mixture (from H2/Ar mole fraction ratios of > 10:1, through to ˜1:99). Absolute column densities of C2(a) and CH(X) radicals and of H(n = 2) atoms have been determined by cavity ringdown spectroscopy, as functions of height (z) above a substrate and of process conditions (CH4, H2, and Ar input mole fractions, total pressure, p, and input microwave power, P). Optical emission spectroscopy has also been used to explore the relative densities of electronically excited H atoms, and CH, C2, and C3 radicals, as functions of these same process conditions. These experimental data are complemented by extensive 2D (r, z) modeling of the plasma chemistry, which provides a quantitative rationale for all of the experimental observations. Progressive replacement of H2 by Ar (at constant p and P) leads to an expanded plasma volume. Under H2-rich conditions, > 90% of the input MW power is absorbed through rovibrational excitation of H2. Reducing the H2 content (as in an Ar-rich plasma) leads to a reduction in the absorbed power density; the plasma necessarily expands in order to accommodate a given input power. The average power density in an Ar-rich plasma is much lower than that in an H2-rich plasma operating at the same p and P. Progressive replacement of H2 by Ar is shown also to result in an increased electron temperature, an increased [H]/[H2] number density ratio, but little change in the maximum gas temperature in the plasma core (which is consistently ˜3000 K). Given the increased [H]/[H2] ratio, the fast H-shifting (CyHx + H ↔ CyHx-1 + H2; y = 1-3) reactions ensure that the core of Ar-rich plasma contains much higher relative abundances of "product" species like C atoms, and C2, and C3 radicals. The effects of Ar dilution on the absorbed power

  19. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    NASA Astrophysics Data System (ADS)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  20. EVIDENCE FOR WIDESPREAD COOLING IN AN ACTIVE REGION OBSERVED WITH THE SDO ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-07-01

    A well-known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times than hotter channels. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions (ARs). Is this cooling pattern a common property of AR coronal plasma, or does it only occur in unique circumstances, locations, and times? The new Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data provide a wonderful opportunity to answer this question systematically for an entire AR. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hr of images of AR 11082 observed on 2010 June 19. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the AR including the diffuse emission between loops for the entire 24 hr duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hr time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than {approx}0.8 MK. This suggests that the bulk of the emitting coronal plasma in this AR is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  1. HARPs: Tracked Active Region Patch Data Product from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Sun, X.; Bobra, M.

    2012-12-01

    We describe an HMI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated HARPs (HMI Active Region Patches). The HARP data series has been helpful for subsetting individual active regions, for development of near-real-time (NRT) space weather indices for individual active regions, and for defining closed magnetic structures for computationally-intensive algorithms like vector field disambiguation. The data series builds upon the 720s cadence activity masks, which identify large-scale instantaneously-observed magnetic features. Using these masks as a starting point, large spatially-coherent structures are identified using convolution with a longitudinally-extended kernel on a spherical domain. The resulting set of identified regions is then tracked from image to image. The metric for inter-image association is area of overlap between the best current estimate of AR location, as predicted by temporally extrapolating each currently tracked object, and the set of instantaneously-observed magnetic structures. Once completed tracks have been extracted, they are made into a standardized HARP data series by finding the smallest constant-angular-velocity box, of constant width in latitude and longitude, that encompasses all appearances of the active region. This data product is currently available, in definitive and near-real-time forms, with accompanying region-strength, location, and NOAA-AR metadata, on HMI's Joint Science Operations Center (JSOC) data portal.; HARP outlines for three days (2001 February 14, 15, and 16, 00:00 TAI, flipped N-S, selected from the 12-minute cadence original data product). HARPs are shown in the same color (some colors repeated) with a thin white box surrounding each HARP. HARPs are tracked and associated from image to image. HARPs, such as the yellow one in the images above, need not be connected regions. Merges and splits, such as the light blue region, are accounted for automatically.

  2. Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: A novel epigenetic-targeting approach in acute myeloid leukemia

    PubMed Central

    Mims, Alice; Walker, Alison R.; Huang, Xiaomeng; Sun, Jin; Wang, Hongyan; Santhanam, Ramasamy; Dorrance, Adrienne M.; Walker, Chris; Hoellerbauer, Pia; Tarighat, Somayeh S.; Chan, Kenneth K.; Klisovic, Rebecca B.; Perrotti, Danilo; Caligiuri, Michael A.; Byrd, John C.; Chen, Ching-Shih; Lee, L. James; Jacob, Samson; Mrózek, Krzysztof; Bloomfield, Clara D.; Blum, William; Garzon, Ramiro; Schwind, Sebastian; Marcucci, Guido

    2013-01-01

    Histone deacetylase (HDAC) inhibitors either alone or in combination with hypomethylating agents have limited clinical effect in acute myeloid leukemia (AML). Previously we demonstrated that AML patients with higher miR-29b expression had better response to the hypomethylating agent decitabine. Therefore, an increase in miR-29b expression preceding decitabine treatment may provide a therapeutic advantage. We previously showed that miR-29b expression is suppressed by a repressor complex that includes HDACs. Thus, HDAC inhibition may increase miR-29b expression. We hypothesized that priming AML cells with the novel HDAC inhibitor (HDACI) AR-42 would result in increased response to decitabine treatment via upregulation of miR-29b. Here we show that AR-42 is a potent HDACI in AML, increasing miR-29b levels and leading to downregulation of known miR-29b targets (i.e., SP1, DNMT1, DNMT3A, and DNMT3B). We then demonstrated that the sequential administration of AR-42 followed by decitabine resulted in a stronger anti-leukemic activity in vitro and in vivo than decitabine followed by AR-42 or either drug alone. These preclinical results with AR-42 priming before decitabine administration represents a promising, novel treatment approach and a paradigm shift with regard to the combination of epigenetic-targeting compounds in AML, where decitabine has been traditionally given before HDAC inhibitors. PMID:23178755

  3. Fluorinated analogues of marsanidine, a highly α2-AR/imidazoline I1 binding site-selective hypotensive agent. Synthesis and biological activities.

    PubMed

    Wasilewska, Aleksandra; Sączewski, Franciszek; Hudson, Alan L; Ferdousi, Mehnaz; Scheinin, Mika; Laurila, Jonne M; Rybczyńska, Apolonia; Boblewski, Konrad; Lehmann, Artur

    2014-11-24

    The aim of these studies was to establish the influence of fluorination of the indazole ring on the pharmacological properties of two selective α2-adrenoceptor (α2-AR) agonists: 1-[(imidazolidin-2-yl)imino]-1H-indazole (marsanidine, A) and its methylene analogue 1-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-1H-indazole (B). Introduction of fluorine into the indazole ring of A and B reduced both binding affinity and α2-AR/I1 imidazoline binding site selectivity. The most α2-AR-selective ligands were 6-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6c) and 7-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6d). The in vivo cardiovascular properties of fluorinated derivatives of A and B revealed that in both cases the C-7 fluorination leads to compounds with the highest hypotensive and bradycardic activities. The α2-AR partial agonist 6c was prepared as a potential lead compound for development of a radiotracer for PET imaging of brain α2-ARs.

  4. Three-Dimensional Magnetic Restructuring in Two Homologous Solar Flares in the Seismically Active NOAA AR 11283

    NASA Technical Reports Server (NTRS)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wiegelmann, Thomas; JIang, Chaowei; Dennis, Brian R.; Su, Yang; Donea, Alina; Wang, Haimin

    2014-01-01

    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km s(exp-1) after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km s(exp-1) after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has a weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.

  5. Three-dimensional magnetic restructuring in two homologous solar flares in the seismically active NOAA AR 11283

    SciTech Connect

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin; Wiegelmann, Thomas; Jiang, Chaowei; Dennis, Brian R.; Su, Yang; Donea, Alina

    2014-11-10

    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km s{sup –1} after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km s{sup –1} after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has a weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.

  6. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Bindlish, R.; Colliander, A.; Kim, S.; Das, N. N.; Yueh, S. H.; Bosch, D. D.; Goodrich, D. C.; Prueger, J. H.; Starks, P. J.; Livingston, S.; Seyfried, M. S.; Coopersmith, E. J.

    2015-12-01

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds which contribute to the validation of SMAP soil moisture products. These watersheds consist of a network of in situ sensors that measure soil moisture at a variety of depths including the 5 cm depth, which is critical for satellite validation. Comparisons of the in situ network estimates to the satellite products are ongoing, but initial results have shown strong correlation between satellite estimates and in situ soil moisture measurements once scaling functions were applied. The scaling methodologies for the in situ networks are being reviewed and evaluated. Results from the Little Washita, Fort Cobb, St. Joseph's and Little River Experimental Watersheds show good agreement between the satellite products and in situ measurements. Walnut Gulch results show high accuracy, although with the caveat that these domains are semi-arid with a substantially lower dynamic range. The South Fork Watershed is examined more closely for its detailed scaling function development as well as an apparent bias between satellite and in situ values.

  7. Angiotensin II-induced protein kinase D activates the ATF/CREB family of transcription factors and promotes StAR mRNA expression.

    PubMed

    Olala, Lawrence O; Choudhary, Vivek; Johnson, Maribeth H; Bollag, Wendy B

    2014-07-01

    Aldosterone synthesis is initiated upon the transport of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol is hydrolyzed to pregnenolone. This process is the rate-limiting step in acute aldosterone production and is mediated by the steroidogenic acute regulatory (StAR) protein. We have previously shown that angiotensin II (AngII) activation of the serine/threonine protein kinase D (PKD) promotes acute aldosterone production in bovine adrenal glomerulosa cells, but the mechanism remains unclear. Thus, the purpose of this study was to determine the downstream signaling effectors of AngII-stimulated PKD activity. Our results demonstrate that overexpression of the constitutively active serine-to-glutamate PKD mutant enhances, whereas the dominant-negative serine-to-alanine PKD mutant inhibits, AngII-induced StAR mRNA expression relative to the vector control. PKD has been shown to phosphorylate members of the activating transcription factor (ATF)/cAMP response element binding protein (CREB) family of leucine zipper transcription factors, which have been shown previously to bind the StAR proximal promoter and induce StAR mRNA expression. In primary glomerulosa cells, AngII induces ATF-2 and CREB phosphorylation in a time-dependent manner. Furthermore, overexpression of the constitutively active PKD mutant enhances the AngII-elicited phosphorylation of ATF-2 and CREB, and the dominant-negative mutant inhibits this response. Furthermore, the constitutively active PKD mutant increases the binding of phosphorylated CREB to the StAR promoter. Thus, these data provide insight into the previously reported role of PKD in AngII-induced acute aldosterone production, providing a mechanism by which PKD may be mediating steroidogenesis in primary bovine adrenal glomerulosa cells.

  8. Photoionization of Ar VIII

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Jiang, Wen-xian; Zhou, Chao

    2017-01-01

    The photoionization cross section, energy levels and widths of 22 Rydberg series (in the autoionization region) for Na-like Ar VIII were investigated by using of R-matrix method. The relativistic distorted-wave method is used to calculate the radial functions, and QB method of Quigly-Berrington [Quigley et al. 1998] is employed to calculate the resonance levels and widths. We have identified the formant in the figure of the photoionization cross section.

  9. AR Signaling in Breast Cancer

    PubMed Central

    Rahim, Bilal; O’Regan, Ruth

    2017-01-01

    Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies. PMID:28245550

  10. AR Signaling in Breast Cancer.

    PubMed

    Rahim, Bilal; O'Regan, Ruth

    2017-02-24

    Androgen receptor (AR, a member of the steroid hormone receptor family) status has become increasingly important as both a prognostic marker and potential therapeutic target in breast cancer. AR is expressed in up to 90% of estrogen receptor (ER) positive breast cancer, and to a lesser degree, human epidermal growth factor 2 (HER2) amplified tumors. In the former, AR signaling has been correlated with a better prognosis given its inhibitory activity in estrogen dependent disease, though conversely has also been shown to increase resistance to anti-estrogen therapies such as tamoxifen. AR blockade can mitigate this resistance, and thus serves as a potential target in ER-positive breast cancer. In HER2 amplified breast cancer, studies are somewhat conflicting, though most show either no effect or are associated with poorer survival. Much of the available data on AR signaling is in triple-negative breast cancer (TNBC), which is an aggressive disease with inferior outcomes comparative to other breast cancer subtypes. At present, there are no approved targeted therapies in TNBC, making study of the AR signaling pathway compelling. Gene expression profiling studies have also identified a luminal androgen receptor (LAR) subtype that is dependent on AR signaling in TNBC. Regardless, there seems to be an association between AR expression and improved outcomes in TNBC. Despite lower pathologic complete response (pCR) rates with neoadjuvant therapy, patients with AR-expressing TNBC have been shown to have a better prognosis than those that are AR-negative. Clinical studies targeting AR have shown somewhat promising results. In this paper we review the literature on the biology of AR in breast cancer and its prognostic and predictive roles. We also present our thoughts on therapeutic strategies.

  11. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  12. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  13. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  14. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  15. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  16. Magnetic Structure of Sites of Braiding in Hi-C Active Region

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.

  17. PARALLEL EVOLUTION OF QUASI-SEPARATRIX LAYERS AND ACTIVE REGION UPFLOWS

    SciTech Connect

    Mandrini, C. H.; Cristiani, G. D.; Nuevo, F. A.; Vásquez, A. M.; Baker, D.; Driel-Gesztelyi, L. van; Démoulin, P.; Pick, M.; Vargas Domínguez, S.

    2015-08-10

    Persistent plasma upflows were observed with Hinode’s EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern, which is present in the AR for several days. We propose a scenario in which upflows are observed, provided that a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and lasts as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs; in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support for the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but is also responsible for the continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nançay Radio Heliograph.

  18. Supergranule Diffusion and Active Region Decay

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2004-01-01

    Models of the Sun's magnetic dynamo include turbulent diffusion to parameterize the effects of convective motions on the evolution of the Sun's magnetic field. Supergranules are known to dominate the evolution of the surface magnetic field structure as evidenced by the structure of both the active and quiet magnetic network. However, estimates for the dif hivity attributed to su perymules differ by an order of magnitude from about 100 km sup2/s to more than 1000 km sup2/s. We examine this question of the e i v i t y using three merent approaches. 1) We study the decay of more than 30,000 active regions by determining the rate of change in the sunspot area of each active region from day-to-day. 2) We study the decay of a single isolated active region near the time of solar minimum by examining the magnetic field evolution over five solar rotations fiom SOHOMDI magnetograms obtained at 96-minute intervals. 3) We study the characteristics of supergranules that influence the estimates of their diffusive properties - flow speeds and lifetimes as functions of size - fiom SOHO/MDI Dopplergrams.

  19. LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. I. OBSERVATION OF LIGHT BRIDGE AND ITS DYNAMIC ACTIVITY PHENOMENA

    SciTech Connect

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.

  20. Long-period oscillations of active region patterns: least-squares mapping on second-order curves

    NASA Astrophysics Data System (ADS)

    Dumbadze, G.; Shergelashvili, B. M.; Kukhianidze, V.; Ramishvili, G.; Zaqarashvili, T. V.; Khodachenko, M.; Gurgenashvili, E.; Poedts, S.; De Causmaecker, P.

    2017-01-01

    Context. Active regions (ARs) are the main sources of variety in solar dynamic events. Automated detection and identification tools need to be developed for solar features for a deeper understanding of the solar cycle. Of particular interest here are the dynamical properties of the ARs, regardless of their internal structure and sunspot distribution. Aims: We studied the oscillatory dynamics of two ARs: NOAA 11327 and NOAA 11726 using two different methods of pattern recognition. Methods: We developed a novel method of automated AR border detection and compared it to an existing method for the proof-of-concept. The first method uses least-squares fitting on the smallest ellipse enclosing the AR, while the second method applies regression on the convex hull. Results: After processing the data, we found that the axes and the inclination angle of the ellipse and the convex hull oscillate in time. These oscillations are interpreted as the second harmonic of the standing long-period kink oscillations (with the node at the apex) of the magnetic flux tube connecting the two main sunspots of the ARs. We also found that the inclination angles oscillate with characteristic periods of 4.9 h in AR 11726 and 4.6 h in AR 11327. In addition, we discovered that the lengths of the pattern axes in the ARs oscillate with similar characteristic periods and these oscillations might be ascribed to standing global flute modes. Conclusions: In both ARs we have estimated the distribution of the phase speed magnitude along the magnetic tubes (along the two main spots) by interpreting the obtained oscillation of the inclination angle as the standing second harmonic kink mode. After comparing the obtained results for fast and slow kink modes, we conclude that both of these modes are good candidates to explain the observed oscillations of the AR inclination angles, as in the high plasma β regime the phase speeds of these modes are comparable and on the order of the Alfvén speed. Based on the

  1. Evidence of a Connection Between Active Region Outflows and the Solar Wind

    NASA Astrophysics Data System (ADS)

    Brooks, D. H.; Warren, H. P.

    2012-05-01

    We present new evidence of a connection between active region (AR) outflows and the slow speed solar wind from chemical composition measurements made by the EUV Imaging Spectrometer (EIS) on Hinode. By combining the differential emission measure (DEM) distribution derived using low First Ionization Potential (FIP) elements (Fe and Si) with the modeling of the high FIP element S, we are able to measure the degree of FIP bias in an observed region. We have applied this analysis to the outflow areas of AR 10978 observed in December 2007. Since the results of our study have already been presented by Brooks & Warren (2011), we use this short conference proceeding to show one illustrative example and the methodology in detail. We focus on the western outflow from AR 10978 observed on December 11 and show that the FIP bias of 3.4 matches the value of 3.5 measured in situ three days later at Earth by the Solar Wind Ion Composition Spectrometer (SWICS) on the ACE spacecraft. We consider this to be compelling evidence that the plasma in the outflow region really travels to the slow wind at Earth.

  2. Patterns of helicity in solar active regions

    NASA Technical Reports Server (NTRS)

    Pevtsov, Alexei A.; Canfield, Richard C.; Metcalf, Thomas R.

    1994-01-01

    Using 46 vector magnetograms from the Stokes Polarimeter of Mees Solar Observatory (MSO), we studied patterns of local helicity in three diverse solar active regions. From these magnetograms we computed maps of the local helicity parameter alpha = J(sub z)/B(sub z). Although such maps are noisy, we found patterns at the level approximately 2 to 3 sigma(sub J(sub z)), which repeat in successive magnetograms for up to several days. Typically, the alpha maps of any given active region contain identifiable patches with both positive and negative values of alpha. Even within a single sunspot complex, several such alpha patches can often be seen. We followed 68 alpha patches that could be identified on at least two successive alpha maps. We found that the persistence fraction of such patches decrease exponentially, with a characteristic time approximately 27 hr.

  3. THE CONFINED X-CLASS FLARES OF SOLAR ACTIVE REGION 2192

    SciTech Connect

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M.

    2015-03-10

    The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north–south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10{sup 25} J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

  4. Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis

    PubMed Central

    Niu, Dongdong; Xia, Jing; Jiang, Chunhao; Qi, Beibei; Ling, Xiaoyu; Lin, Siyuan; Zhang, Weixiong; Guo, Jianhua; Jin, Hailing; Zhao, Hongwei

    2016-01-01

    Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance (ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here, by comparing small RNA profiles of Pseudomonas syringae pv. tomato (Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis microRNAs (miRNAs) that are differentially regulated by AR156 pretreatment. miR825 and miR825* are two miRNA generated from a single miRNA gene. Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment.miR825 targets two ubiquitin-protein ligases, while miR825* targets toll-interleukin-like receptor (TIR)-nucleotide binding site (NBS) and leucine-rich repeat (LRR) type resistance (R) genes. The expression of these target genes negatively correlated with the expression of miR825 and miR825*. Moreover, transgenic plants showing reduced expression of miR825 and miR825* displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing miR825 and miR825* were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing miR825 and miR825* and activating the defense related genes they targeted. PMID:26526683

  5. Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis.

    PubMed

    Niu, Dongdong; Xia, Jing; Jiang, Chunhao; Qi, Beibei; Ling, Xiaoyu; Lin, Siyuan; Zhang, Weixiong; Guo, Jianhua; Jin, Hailing; Zhao, Hongwei

    2016-04-01

    Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance (ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here, by comparing small RNA profiles of Pseudomonas syringae pv. tomato (Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis microRNAs (miRNAs) that are differentially regulated by AR156 pretreatment. miR825 and miR825* are two miRNA generated from a single miRNA gene. Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment. miR825 targets two ubiquitin-protein ligases, while miR825* targets toll-interleukin-like receptor (TIR)-nucleotide binding site (NBS) and leucine-rich repeat (LRR) type resistance (R) genes. The expression of these target genes negatively correlated with the expression of miR825 and miR825*. Moreover, transgenic plants showing reduced expression of miR825 and miR825* displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing miR825 and miR825* were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing miR825 and miR825* and activating the defense related genes they targeted.

  6. Enhanced mesoscale climate projections in TAR and AR5 IPCC scenarios: a case study in a Mediterranean climate (Araucanía Region, south central Chile).

    PubMed

    Orrego, R; Abarca-Del-Río, R; Ávila, A; Morales, L

    2016-01-01

    Climate change scenarios are computed on a large scale, not accounting for local variations presented in historical data and related to human scale. Based on historical records, we validate a baseline (1962-1990) and correct the bias of A2 and B2 regional projections for the end of twenty-first century (2070-2100) issued from a high resolution dynamical downscaled (using PRECIS mesoscale model, hereinafter DGF-PRECIS) of Hadley GCM from the IPCC 3rd Assessment Report (TAR). This is performed for the Araucanía Region (Chile; 37°-40°S and 71°-74°W) using two different bias correction methodologies. Next, we study high-resolution precipitations to find monthly patterns such as seasonal variations, rainfall months, and the geographical effect on these two scenarios. Finally, we compare the TAR projections with those from the recent Assessment Report 5 (AR5) to find regional precipitation patterns and update the Chilean `projection. To show the effects of climate change projections, we compute the rainfall climatology for the Araucanía Region, including the impact of ENSO cycles (El Niño and La Niña events). The corrected climate projection from the high-resolution dynamical downscaled model of the TAR database (DGF-PRECIS) show annual precipitation decreases: B2 (-19.19 %, -287 ± 42 mm) and A2 (-43.38 %, -655 ± 27.4 mm per year. Furthermore, both projections increase the probability of lower rainfall months (lower than 100 mm per month) to 64.2 and 72.5 % for B2 and A2, respectively.

  7. Automatic picking based on an AR-AIC-costfunction appraoach applied on tele-, regional- and induced seismic datasets

    NASA Astrophysics Data System (ADS)

    Olbert, Kai; Meier, Thomas; Cristiano, Luigia

    2015-04-01

    GRSN and GEOFON network in Germany from 1990 to 2014. To show the functionality of the algorithm, different event-station-distances are taken into account. For the picking of teleseismic P-, PP- and S-phases event source times and locations are taken from the EHB catalogue. For the regional distances, Pg-, Sg- and Pn-Phases are picked of events from the BGR-catalgoue. In addition to the arrival times, a quality is estimated. Altogether three picks are determined. The most likely pick is the minimum of the previously explained cost function. The latest possible pick is the AIC minimum. The earliest possible pick is found as the minimum of a cost function of the CF without the water level and the time penalty. The earliest- and latest possible pick provide an asymmetric error estimation for the most likely pick. Furthermore a quality estimation based on three criteria is assessed. The criteria are the signal to noise ratio of the waveform, of the CF and the steepness of the CF after the picked onset time. For low quality picks the variance of the residual times to manual picks is much larger than for high quality picks. This confirms the applicability of the proposed quality measures. The picking algorithm works fast, precisely and consistently. Thus, it fulfills the major requirements for a picking procedure. The application to tele- and regional seismic event datasets delivers a high number of first- and later-arriving phase picks with high quality. The comparison with manual P-, Pg-, and S-pick catalogs shows that the residual times between manual picks and automatic picks have a standard deviation of 0.7 seconds around a mean value of 0.08 seconds for teleseismic P-phases, a standard deviation of 4.5 seconds around a mean value of -0.1 seconds for tele seismic S-phases and 0.17 seconds around a mean value of -0.01 seconds for regional Pg-phases. The mean values indicate that the picker has no significant offset to the manual picks, while the standard deviations are

  8. THE NONPOTENTIALITY OF CORONAE OF SOLAR ACTIVE REGIONS, THE DYNAMICS OF THE SURFACE MAGNETIC FIELD, AND THE POTENTIAL FOR LARGE FLARES

    SciTech Connect

    Schrijver, Carolus J.

    2016-04-01

    Flares and eruptions from solar active regions (ARs) are associated with atmospheric electrical currents accompanying distortions of the coronal field away from a lowest-energy potential state. In order to better understand the origin of these currents and their role in M- and X-class flares, I review all AR observations made with Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and SDO/Atmospheric Imaging Assembly from 2010 May through 2014 October within ≈40° from the disk center. I select the roughly 4% of all regions that display a distinctly nonpotential coronal configuration in loops with a length comparable to the scale of the AR, and all that emit GOES X-class flares. The data for 41 regions confirm, with a single exception, that strong-field, high-gradient polarity inversion lines (SHILs) created during emergence of magnetic flux into, and related displacement within, pre-existing ARs are associated with X-class flares. Obvious nonpotentiality in the AR-scale loops occurs in six of ten selected regions with X-class flares, all with relatively long SHILs along their primary polarity inversion line, or with a long internal filament there. Nonpotentiality can exist in ARs well past the flux-emergence phase, often with reduced or absent flaring. I conclude that the dynamics of the flux involved in the compact SHILs is of pre-eminent importance for the large-flare potential of ARs within the next day, but that their associated currents may not reveal themselves in AR-scale nonpotentiality. In contrast, AR-scale nonpotentiality, which can persist for many days, may inform us about the eruption potential other than those from SHILs which is almost never associated with X-class flaring.

  9. Modelling nanoflares in active regions and implications for coronal heating mechanisms

    PubMed Central

    Cargill, P. J.; Warren, H. P.; Bradshaw, S. J.

    2015-01-01

    Recent observations from the Hinode and Solar Dynamics Observatory spacecraft have provided major advances in understanding the heating of solar active regions (ARs). For ARs comprising many magnetic strands or sub-loops heated by small, impulsive events (nanoflares), it is suggested that (i) the time between individual nanoflares in a magnetic strand is 500–2000 s, (ii) a weak ‘hot’ component (more than 106.6 K) is present, and (iii) nanoflare energies may be as low as a few 1023 ergs. These imply small heating events in a stressed coronal magnetic field, where the time between individual nanoflares on a strand is of order the cooling time. Modelling suggests that the observed properties are incompatible with nanoflare models that require long energy build-up (over 10 s of thousands of seconds) and with steady heating. PMID:25897093

  10. Modelling nanoflares in active regions and implications for coronal heating mechanisms.

    PubMed

    Cargill, P J; Warren, H P; Bradshaw, S J

    2015-05-28

    Recent observations from the Hinode and Solar Dynamics Observatory spacecraft have provided major advances in understanding the heating of solar active regions (ARs). For ARs comprising many magnetic strands or sub-loops heated by small, impulsive events (nanoflares), it is suggested that (i) the time between individual nanoflares in a magnetic strand is 500-2000 s, (ii) a weak 'hot' component (more than 10(6.6) K) is present, and (iii) nanoflare energies may be as low as a few 10(23) ergs. These imply small heating events in a stressed coronal magnetic field, where the time between individual nanoflares on a strand is of order the cooling time. Modelling suggests that the observed properties are incompatible with nanoflare models that require long energy build-up (over 10 s of thousands of seconds) and with steady heating.

  11. Cooling and inferred uplift/erosion history of the Grenville Orogen, Ontario: Constraints from 40Ar/39Ar thermochronology

    NASA Astrophysics Data System (ADS)

    Cosca, Michael A.; Sutter, John F.; Essene, Eric J.

    1991-10-01

    Stepwise 40Ar/39Ar degassing experiments of 57 mineral separates of hornblende, muscovite, biotite, and perthitic microcline have been used in conjunction with petrologic observations to place regional constraints on the postmetamorphic cooling and the inferred uplift and erosion history of the Grenville Orogen in Ontario. The 40Ar/39Ar data support an interpretation of slow, nearly uniform cooling (1°-4°C/m.y.) from temperatures of ˜500°C to below ˜150°C. In the Central Gneiss Belt (CGB) hornblendes cooled through Ar closure between 930 and 1025 Ma, whereas in the Central Metasedimentary Belt (CMB) hornblendes record the following range in 40Ar/39Ar cooling ages: 1104 Ma in the Frontenac terrane, 1007-1067 Ma in the Sharbot Lake terrane, 919-1026 Ma in the Elzevir terrane, and 972 Ma in the Central Metasedimentary Belt Boundary Zone. Regional uplift/erosion rates of 0.03-0.14 km/m.y. have been estimated for the Grenville Orogen in Ontario based on the 40Ar/39Ar data, a model retrograde P-T path for rocks of the CGB, and an upper time constraint provided by flat, overlying Cambrian and Ordovician sediments. These erosion rates are consistent with rates estimated for other Proterozoic or Archean granulite terranes but are an order of magnitude slower than active orogens such as the Alps and Himalayas. A regular variation in hornblende 40Ar/39Ar cooling ages is observed in rocks that traverse highly strained often mylonitic shear zones that separate the four major terranes of the CMB. The pattern of 40Ar/39Ar ages is interpreted to reflect late-tectonic extension, consistent with field observations in the Central Metasedimentary Belt Boundary Zone and elsewhere in the CMB. Up to 13 km of vertical displacement is inferred for some rocks in the CMB between the time they cooled below closure to argon diffusion in hornblende (˜500°C) and their exposure at the surface (˜25°C).

  12. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  13. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  14. Ar-Ar_Redux: rigorous error propagation of 40Ar/39Ar data, including covariances

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.

    2015-12-01

    Rigorous data reduction and error propagation algorithms are needed to realise Earthtime's objective to improve the interlaboratory accuracy of 40Ar/39Ar dating to better than 1% and thereby facilitate the comparison and combination of the K-Ar and U-Pb chronometers. Ar-Ar_Redux is a new data reduction protocol and software program for 40Ar/39Ar geochronology which takes into account two previously underappreciated aspects of the method: 1. 40Ar/39Ar measurements are compositional dataIn its simplest form, the 40Ar/39Ar age equation can be written as: t = log(1+J [40Ar/39Ar-298.5636Ar/39Ar])/λ = log(1 + JR)/λ Where λ is the 40K decay constant and J is the irradiation parameter. The age t does not depend on the absolute abundances of the three argon isotopes but only on their relative ratios. Thus, the 36Ar, 39Ar and 40Ar abundances can be normalised to unity and plotted on a ternary diagram or 'simplex'. Argon isotopic data are therefore subject to the peculiar mathematics of 'compositional data', sensu Aitchison (1986, The Statistical Analysis of Compositional Data, Chapman & Hall). 2. Correlated errors are pervasive throughout the 40Ar/39Ar methodCurrent data reduction protocols for 40Ar/39Ar geochronology propagate the age uncertainty as follows: σ2(t) = [J2 σ2(R) + R2 σ2(J)] / [λ2 (1 + R J)], which implies zero covariance between R and J. In reality, however, significant error correlations are found in every step of the 40Ar/39Ar data acquisition and processing, in both single and multi collector instruments, during blank, interference and decay corrections, age calculation etc. Ar-Ar_Redux revisits every aspect of the 40Ar/39Ar method by casting the raw mass spectrometer data into a contingency table of logratios, which automatically keeps track of all covariances in a compositional context. Application of the method to real data reveals strong correlations (r2 of up to 0.9) between age measurements within a single irradiation batch. Propertly taking

  15. Spectroscopic and modeling investigations of the gas-phase chemistry and composition in microwave plasma activated B2H6/Ar/H2 mixtures.

    PubMed

    Ma, Jie; Richley, James C; Davies, David R W; Cheesman, Andrew; Ashfold, Michael N R; Mankelevich, Yuri A

    2010-02-25

    This paper describes a three-pronged study of microwave (MW) activated B(2)H(6)/Ar/H(2) plasmas as a precursor to diagnosis of the B(2)H(6)/CH(4)/Ar/H(2) plasmas used for the chemical vapor deposition of B-doped diamond. Absolute column densities of B atoms and BH radicals have been determined by cavity ring-down spectroscopy as a function of height (z) above a molybdenum substrate and of the plasma process conditions (B(2)H(6) and Ar partial pressures, total pressure, and supplied MW power). Optical emission spectroscopy has been used to explore variations in the relative densities of electronically excited BH, H, and H(2) species as a function of the same process conditions and of time after introducing B(2)H(6) into a pre-existing Ar/H(2) plasma. The experimental measurements are complemented by extensive 2-D(r, z) modeling of the plasma chemistry, which results in refinements to the existing B/H chemistry and thermochemistry and demonstrates the potentially substantial loss of gas-phase BH(x) species through reaction with trace quantities of air/O(2) in the process gas mixture and heterogeneous processes occurring at the reactor wall.

  16. Acid-Induced Activation of the Urease Promoters Is Mediated Directly by the ArsRS Two-Component System of Helicobacter pylori

    PubMed Central

    Pflock, Michael; Kennard, Simone; Delany, Isabel; Scarlato, Vincenzo; Beier, Dagmar

    2005-01-01

    The nickel-containing enzyme urease is an essential colonization factor of the human gastric pathogen Helicobacter pylori which enables the bacteria to survive the low-pH conditions of the stomach. Transcription of the urease genes is positively controlled in response to increasing concentrations of nickel ions and acidic pH. Here we demonstrate that acid-induced transcription of the urease genes is mediated directly by the ArsRS two-component system. Footprint analyses identify binding sites of the phosphorylated ArsR response regulator within the ureA and ureI promoters. Furthermore, deletion of a distal upstream ArsR binding site of the ureA promoter demonstrates its role in acid-dependent activation of the promoter. In addition, acid-induced transcription of the ureA gene is unaltered in a nikR mutant, providing evidence that pH-responsive regulation and nickel-responsive regulation of the ureA promoter are mediated by independent mechanisms involving the ArsR response regulator and the NikR protein. PMID:16177315

  17. Complement C5a-C5aR interaction enhances MAPK signaling pathway activities to mediate renal injury in trichloroethylene sensitized BALB/c mice.

    PubMed

    Zhang, Jia-xiang; Zha, Wan-sheng; Ye, Liang-ping; Wang, Feng; Wang, Hui; Shen, Tong; Wu, Chang-hao; Zhu, Qi-xing

    2016-02-01

    We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals.

  18. Longitudinal oscillation of intensity fronts in a strand at the edge of an active region

    SciTech Connect

    Guo, L.-J.; Tu, C.-Y.; He, J.-S.; Marsch, E.

    2010-03-25

    The edge of a solar active region (AR) is considered as a possible source region of the slow solar wind. Winebarger et al.(2001) observed outflows from an AR with velocities between 5 and 20 km/s. Recently, Sakao et al.(2007) reported the outflow of X-ray-emitting plasma from the edge of an AR. This outflow was inferred from the observation of outward traveling intensity enhancements. However, in Robbrecht et al.(2001), propagation of slow magnetoacoustic waves along the strand was considered as the possible cause for the longitudinal extension of the strand. Whether this phenomenon relates to a slow-mode wave or the outflow of plasma or a heating process of different parts of the strand is still an open question. Here we try to identify the nature of such a traveling event through studying the longitudinal motions of certain intensity level fronts in the strand. We find that the intensity front is oscillating like a sinusoidal signal along the strand with a period of 11 minutes. This result suggests that the oscillation might be partly related with the 5-minute p-mode oscillation in the photosphere. Moreover, we find that such oscillation of intensity-level fronts can be described by a model in which the strand has periodic extension. Yet, the relation between the extending strand and slow solar wind needs to be further studied.

  19. MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS

    SciTech Connect

    Ofman, L.; Liu, W.; Title, A.; Aschwanden, M.

    2011-10-20

    Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.

  20. The evolution of active region loop plasma

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Antiochos, S. K.

    1980-01-01

    The adjustment of coronal active-region loops to changes in their heating rate is investigated numerically. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux is dissipated by a static chromosphere, and (2) the method by which the chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates.

  1. Pederson Current Dissipation In Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, M. G.

    2011-05-01

    Pederson current dissipation in emerging active regions. Certain regions of the solar atmosphere, such as the photosphere and chromosphere, as well as prominences, contain a significant amount of neutral atoms, and a complete description of the plasma requires including the effects of partial ionization. In the chromosphere the dissipation of Pederson currents is important for the evolution of emerging magnetic fields. Due to the relatively high number density in the chromosphere, the ion-neutral collision time-scale is much smaller than timescales associated with flux emergence. Hence we use a single-fluid approach to model the partially ionized plasma. Looking at both the emergence of large-scale sub-surface structures, and the emergence and reconnection of undulatory fields, we investigate the effect of Pederson current dissipation on the state of the emerging field, on magnetic reconnection and on dissipative heating of the atmosphere. Specifically we examine the effect of motions across fieldlines in the partially ionized regions, and how this can increase the free energy supplied to the corona by flux emergence. We also look at reconnection associated with flux emergence in the partially ionized atmosphere, and how this can account for observed small-scale brightenings (Ellerman Bombs).

  2. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  3. MAGNETIC ENERGY AND HELICITY IN TWO EMERGING ACTIVE REGIONS IN THE SUN

    SciTech Connect

    Liu, Y.; Schuck, P. W.

    2012-12-20

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158, are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term, (2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and (4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course. We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  4. Active region coronal loops - Structural and variability

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.; Strong, Keith T.; Harrison, Richard A.; Gary, G. A.

    1988-01-01

    X-ray images of a pair of active region loops are studied which show significant, short time-scale variability in the line fluxes of O VIII, Ne IX, and Mg XI and in the 3.5-11.5 keV soft X-ray bands. Vector magnetograms and high-resolution UV images were used to model the three-dimensional characteristics of the loops. X-ray light curves were generated spanning four consecutive orbits for both loops individually, and light curves of the loop tops and brightest points were also generated. The largest variations involve flux changes of up to several hundred percent on time scales of 10 minutes. No significant H-alpha flare activity is reported, and loop temperatures remain in the four to six million K range. The decay phases of the light curves indicate radiative cooling, inhibition of conduction, and some type of 'continued heating' due to ongoing, underlying activity at the microflare level.

  5. Applying antibody-sensitive hypervariable region 1-deleted hepatitis C virus to the study of escape pathways of neutralizing human monoclonal antibody AR5A

    PubMed Central

    Velázquez-Moctezuma, Rodrigo; Bukh, Jens

    2017-01-01

    Hepatitis C virus (HCV) is a major cause of end-stage liver diseases. With 3–4 million new HCV infections yearly, a vaccine is urgently needed. A better understanding of virus escape from neutralizing antibodies and their corresponding epitopes are important for this effort. However, for viral isolates with high antibody resistance, or antibodies with moderate potency, it remains challenging to induce escape mutations in vitro. Here, as proof-of-concept, we used antibody-sensitive HVR1-deleted (ΔHVR1) viruses to generate escape mutants for a human monoclonal antibody, AR5A, targeting a rare cross-genotype conserved epitope. By analyzing the genotype 1a envelope proteins (E1/E2) of recovered Core-NS2 recombinant H77/JFH1ΔHVR1 and performing reverse genetic studies we found that resistance to AR5A was caused by substitution L665W, also conferring resistance to the parental H77/JFH1. The mutation did not induce viral fitness loss, but abrogated AR5A binding to HCV particles and intracellular E1/E2 complexes. Culturing J6/JFH1ΔHVR1 (genotype 2a), for which fitness was decreased by L665W, with AR5A generated AR5A-resistant viruses with the substitutions I345V, L665S, and S680T, which we introduced into J6/JFH1 and J6/JFH1ΔHVR1. I345V increased fitness but had no effect on AR5A resistance. L665S impaired fitness and decreased AR5A sensitivity, while S680T combined with L665S compensated for fitness loss and decreased AR5A sensitivity even further. Interestingly, S680T alone had no fitness effect but sensitized the virus to AR5A. Of note, H77/JFH1L665S was non-viable. The resistance mutations did not affect cell-to-cell spread or E1/E2 interactions. Finally, introducing L665W, identified in genotype 1, into genotypes 2–6 parental and HVR1-deleted variants (not available for genotype 4a) we observed diverse effects on viral fitness and a universally pronounced reduction in AR5A sensitivity. Thus, we were able to take advantage of the neutralization-sensitive HVR1

  6. EUV Observations of Active Region Dynamics

    NASA Astrophysics Data System (ADS)

    Deluca, E. E.; Cirtain, J. W.; del Zanna, G.; Mason, H. E.; Martens, P. C.; Schmelz, J.; Golub, L.

    2005-05-01

    Data collected during SoHO JOP 146, in collaboration with TRACE, is used to investigate the physical characteristics of coronal active region loops as a function of time and position along and across loop structures. These data include TRACE images in all three EUV passbands, and simultaneous CDS spectroscopic observations. Preliminary measurements of the loop temperature both along the loop half-length and loop cross-section are presented as a function of time. We will show the temperature and density profiles of several structures as a function of position, show changes in temperature and density with time and characterize the coronal background emission. Questions raised by these results will be greatly advanced with the high resolution spectra available from the EIS on Solar-B.

  7. Active region helicity evolution and related coronal mass ejection activity.

    NASA Astrophysics Data System (ADS)

    Green, L.; Mandrini, C.; van Driel-Gesztelyi, L.; Demoulin, P.

    The computation of magnetic helicity has become increasingly important in the studies of solar activity. Observations of helical structures in the solar atmosphere, and their subsequent ejection into the interplanetary medium, have resulted in considerable interest to find the link between the amount of helicity in the coronal magnetic field and the origin of coronal mass ejections (CMEs). This is reinforced by theory which shows magnetic helicity to be a well preserved quantity (Berger, 1984), and so with a continued injection into the corona an endless accumulation will occur. CMEs therefore provide a natural method to remove helicity from the corona. Recent works (DeVore, 2000, Chae, 2001, Chae et al., 2001, Demoulin et al., 2002, Green et al., 2002) have endeavoured to find the source of helicity in the corona to explain the observed CME activity in specific cases. The main candidates being differential rotation, shear motions or a transfer of helicity from below the photosphere into the corona. In order to establish a confident relation between CMEs and helicity, these works needs to be expanded to include CME source regions with different characteristics. A study of a very different active region will be presented and the relationship between helicity content and CME activity will be discussed in the framework of the previous studies.

  8. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    PubMed

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.

  9. Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells.

    PubMed

    Dietze, Raimund; Konrad, Lutz; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2013-03-01

    Sertoli cells express α1 and α4 isoforms of the catalytic subunit of Na(+),K(+)-ATPase (sodium pump). Our recent findings demonstrated that interactions of the α4 isoform with cardiotonic steroids (CTS) like ouabain induce signaling cascades that resemble the so-called non-classical testosterone pathway characterized by activation of the c-Src/c-Raf/Erk1/2/CREB signaling cascade. Here we investigate a possible physiological significance of the activated cascade. The results obtained in the current investigation show that the ouabain-induced signaling cascade also leads to the activation of the CREB-related activating transcription factor 1 (ATF-1) in the Sertoli cell line 93RS2 in a concentration- and time-dependent manner, as demonstrated by detection of ATF-1 phosphorylated on Ser63 in western blots. The ouabain-activated ATF-1 protein was found to localize to the cell nuclei. The sodium pump α4 isoform mediates this activation, as it is ablated when cells are incubated with siRNA to the α4 isoform. Ouabain also leads to increased expression of steroidogenic acute regulator (StAR) protein, which has been shown to be a downstream consequence of CREB/ATF-1 activation. Taking into consideration that CTS are most likely produced endogenously, the demonstrated induction of StAR expression by ouabain establishes a link between CTS, the α4 isoform of the sodium pump, and steroidogenesis crucial for male fertility and reproduction.

  10. Investigating Energetic X-Shaped Flares on the Outskirts of A Solar Active Region.

    PubMed

    Liu, Rui; Chen, Jun; Wang, Yuming; Liu, Kai

    2016-09-28

    Typical solar flares display two quasi-parallel, bright ribbons on the chromosphere. In between is the polarity inversion line (PIL) separating concentrated magnetic fluxes of opposite polarity in active regions (ARs). Intriguingly a series of flares exhibiting X-shaped ribbons occurred at the similar location on the outskirts of NOAA AR 11967, where magnetic fluxes were scattered, yet three of them were alarmingly energetic. The X shape, whose center coincided with hard X-ray emission, was similar in UV/EUV, which cannot be accommodated in the standard flare model. Mapping out magnetic connectivities in potential fields, we found that the X morphology was dictated by the intersection of two quasi-separatrix layers, i.e., a hyperbolic flux tube (HFT), within which a separator connecting a double null was embedded. This topology was not purely local but regulated by fluxes and flows over the whole AR. The nonlinear force-free field model suggested the formation of a current layer at the HFT, where the current dissipation can be mapped to the X-shaped ribbons via field-aligned heat conduction. These results highlight the critical role of HFTs in 3D magnetic reconnection and have important implications for astrophysical and laboratory plasmas.

  11. Investigating Energetic X-Shaped Flares on the Outskirts of A Solar Active Region

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Jun; Wang, Yuming; Liu, Kai

    2016-09-01

    Typical solar flares display two quasi-parallel, bright ribbons on the chromosphere. In between is the polarity inversion line (PIL) separating concentrated magnetic fluxes of opposite polarity in active regions (ARs). Intriguingly a series of flares exhibiting X-shaped ribbons occurred at the similar location on the outskirts of NOAA AR 11967, where magnetic fluxes were scattered, yet three of them were alarmingly energetic. The X shape, whose center coincided with hard X-ray emission, was similar in UV/EUV, which cannot be accommodated in the standard flare model. Mapping out magnetic connectivities in potential fields, we found that the X morphology was dictated by the intersection of two quasi-separatrix layers, i.e., a hyperbolic flux tube (HFT), within which a separator connecting a double null was embedded. This topology was not purely local but regulated by fluxes and flows over the whole AR. The nonlinear force-free field model suggested the formation of a current layer at the HFT, where the current dissipation can be mapped to the X-shaped ribbons via field-aligned heat conduction. These results highlight the critical role of HFTs in 3D magnetic reconnection and have important implications for astrophysical and laboratory plasmas.

  12. Investigating Energetic X-Shaped Flares on the Outskirts of A Solar Active Region

    PubMed Central

    Liu, Rui; Chen, Jun; Wang, Yuming; Liu, Kai

    2016-01-01

    Typical solar flares display two quasi-parallel, bright ribbons on the chromosphere. In between is the polarity inversion line (PIL) separating concentrated magnetic fluxes of opposite polarity in active regions (ARs). Intriguingly a series of flares exhibiting X-shaped ribbons occurred at the similar location on the outskirts of NOAA AR 11967, where magnetic fluxes were scattered, yet three of them were alarmingly energetic. The X shape, whose center coincided with hard X-ray emission, was similar in UV/EUV, which cannot be accommodated in the standard flare model. Mapping out magnetic connectivities in potential fields, we found that the X morphology was dictated by the intersection of two quasi-separatrix layers, i.e., a hyperbolic flux tube (HFT), within which a separator connecting a double null was embedded. This topology was not purely local but regulated by fluxes and flows over the whole AR. The nonlinear force-free field model suggested the formation of a current layer at the HFT, where the current dissipation can be mapped to the X-shaped ribbons via field-aligned heat conduction. These results highlight the critical role of HFTs in 3D magnetic reconnection and have important implications for astrophysical and laboratory plasmas. PMID:27677354

  13. NUMERICAL MODELING OF THE INITIATION OF CORONAL MASS EJECTIONS IN ACTIVE REGION NOAA 9415

    SciTech Connect

    Zuccarello, F. P.; Poedts, S.; Meliani, Z. E-mail: Stefaan.Poedts@wis.kuleuven.be

    2012-10-20

    Coronal mass ejections (CMEs) and solar flares are the main drivers of weather in space. Understanding how these events occur and what conditions might lead to eruptive events is of crucial importance for up to date and reliable space weather forecasting. The aim of this paper is to present a numerical magnetohydrodynamic (MHD) data-inspired model suitable for the simulation of the CME initiation and their early evolution. Starting from a potential magnetic field extrapolation of the active region (AR) NOAA 9415, we solve the full set of ideal MHD equations in a non-zero plasma-{beta} environment. As a consequence of the applied twisting motions, a force-free-magnetic field configuration is obtained, which has the same chirality as the investigated AR. We investigate the response of the solar corona when photospheric motions resembling the ones observed for AR 9415 are applied at the inner boundary. As a response to the converging shearing motions, a flux rope is formed that quickly propagates outward, carrying away the plasma confined inside the flux rope against the gravitational attraction by the Sun. Moreover, a compressed leading edge propagating at a speed of about 550 km s{sup -1} and preceding the CME is formed. The presented simulation shows that both the initial magnetic field configuration and the plasma-magnetic-field interaction are relevant for a more comprehensive understanding of the CME initiation and early evolution phenomenon.

  14. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.

  15. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China

    USGS Publications Warehouse

    Yang, Li-Qiang; Deng, J.; Goldfarb, Richard J.; Zhang, Jiahua; Gao, Bang-Fei; Wang, Zhong-Liang

    2014-01-01

    China's largest gold resource is located in the highly endowed northwestern part of the Jiaodong gold province. Most gold deposits in this area are associated with the NE- to NNE-trending shear zones on the margins of the 130–126 Ma Guojialing granite. These deposits collectively formed at ca. 120 ± 5 Ma during rapid uplift of the granite. The Dayingezhuang deposit is a large (> 120 t Au) orogenic gold deposit in the same area, but located along the eastern margin of the Late Jurassic Linglong Metamorphic Core Complex. New 40Ar/39Ar geochronology on hydrothermal sericite and muscovite from the Dayingezhuang deposit indicate the gold event is related to evolution of the core complex at 130 ± 4 Ma and is the earliest important gold event that is well-documented in the province. The Dayingezhuang deposit occurs along the Linglong detachment fault, which defines the eastern edge of the ca. 160–150 Ma Linglong granite–granodiorite massif. The anatectic rocks of the massif were rapidly uplifted, at rates of at least 1 km/m.y. from depths of 25–30 km, to form the metamorphic core complex. The detachment fault, with Precambrian metamorphic basement rocks in the hangingwall and the Linglong granitoids and migmatites in the footwall, is characterized by early mylonitization and a local brittle overprinting in the footwall. Gold is associated with quartz–sericite–pyrite–K-feldspar altered footwall cataclasites at the southernmost area of the brittle deformation along the detachment fault. Our results indicate that there were two successive, yet distinct gold-forming tectonic episodes in northwestern Jiaodong. One event first reactivated the detachment fault along the edge of the Linglong massif between 134 and 126 Ma, and then a second reactivated the shears along the margins of the Guojialing granite. Both events may relate to a component of northwest compression after a middle Early Cretaceous shift from regional NW–SE extension to a NE

  16. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  17. Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis

    PubMed Central

    Nie, Pingping; Li, Xia; Wang, Shune; Guo, Jianhua; Zhao, Hongwei; Niu, Dongdong

    2017-01-01

    Induced resistance response is a potent and cost effective plant defense against pathogen attack. The effectiveness and underlying mechanisms of the suppressive ability by Bacillus cereus AR156 to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis has been investigated previously; however, the strength of induced systemic resistance (ISR) activity against Botrytis cinerea remains unknown. Here, we show that root-drench application of AR156 significantly reduces disease incidence through activation of ISR. This protection is accompanied with multilayered ISR defense response activated via enhanced accumulation of PR1 protein expression in a timely manner, hydrogen peroxide accumulation and callose deposition, which is significantly more intense in plants with both AR156 pretreatment and B. cinerea inoculation than that in plants with pathogen inoculation only. Moreover, AR156 can trigger ISR in sid2-2 and NahG mutants, but not in jar1, ein2 and npr1 mutant plants. Our results indicate that AR156-induced ISR depends on JA/ET-signaling pathway and NPR1, but not SA. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1/WRKY53 gene expression, both of which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). The results indicate that AR156 can induce ISR by the JA/ET-signaling pathways in an NPR1-dependent manner and involves multiple PTI components. PMID:28293243

  18. Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis.

    PubMed

    Nie, Pingping; Li, Xia; Wang, Shune; Guo, Jianhua; Zhao, Hongwei; Niu, Dongdong

    2017-01-01

    Induced resistance response is a potent and cost effective plant defense against pathogen attack. The effectiveness and underlying mechanisms of the suppressive ability by Bacillus cereus AR156 to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis has been investigated previously; however, the strength of induced systemic resistance (ISR) activity against Botrytis cinerea remains unknown. Here, we show that root-drench application of AR156 significantly reduces disease incidence through activation of ISR. This protection is accompanied with multilayered ISR defense response activated via enhanced accumulation of PR1 protein expression in a timely manner, hydrogen peroxide accumulation and callose deposition, which is significantly more intense in plants with both AR156 pretreatment and B. cinerea inoculation than that in plants with pathogen inoculation only. Moreover, AR156 can trigger ISR in sid2-2 and NahG mutants, but not in jar1, ein2 and npr1 mutant plants. Our results indicate that AR156-induced ISR depends on JA/ET-signaling pathway and NPR1, but not SA. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1/WRKY53 gene expression, both of which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). The results indicate that AR156 can induce ISR by the JA/ET-signaling pathways in an NPR1-dependent manner and involves multiple PTI components.

  19. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  20. Temporal evolution of the magnetic topology of the NOAA active region 11158

    SciTech Connect

    Zhao, Jie; Li, Hui; Pariat, Etienne; Schmieder, Brigitte; Guo, Yang; Wiegelmann, Thomas

    2014-05-20

    We studied the temporal evolution of the magnetic topology of the active region (AR) 11158 based on the reconstructed three-dimensional magnetic fields in the corona. The non-linear force-free field extrapolation method was applied to the 12 minute cadence data obtained with the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory during 5 days. By calculating the squashing degree factor Q in the volume, the derived quasi-separatrix layers (QSLs) show that this AR has an overall topology, resulting from a magnetic quadrupole, including a hyperbolic flux tube (HFT) configuration that is relatively stable at the timescale of the flare (∼1-2 hr). A strong QSL, which corresponds to some highly sheared arcades that might be related to the formation of a flux rope, is prominent just before the M6.6 and X2.2 flares, respectively. These facts indicate the close relationship between the strong QSL and the high flare productivity of AR 11158. In addition, with a close inspection of the topology, we found a small-scale HFT that has an inverse tear-drop structure above the aforementioned QSL before the X2.2 flare. It indicates the existence of magnetic flux rope at this place. Even though a global configuration (HFT) is recognized in this AR, it turns out that the large-scale HFT only plays a secondary role during the eruption. In conclusion, we dismiss a trigger based on the breakout model and highlight the central role of the flux rope in the related eruption.

  1. THE NAKED EMERGENCE OF SOLAR ACTIVE REGIONS OBSERVED WITH SDO/HMI

    SciTech Connect

    Centeno, Rebecca

    2012-11-01

    We take advantage of the HMI/SDO instrument to study the naked emergence of active regions (ARs) from the first imprints of the magnetic field on the solar surface. To this end, we followed the first 24 hr in the life of two rather isolated ARs that appeared on the surface when they were about to cross the central meridian. We analyze the correlations between Doppler velocities and the orientation of the vector magnetic field, consistent finding that the horizontal fields connecting the main polarities are dragged to the surface by relatively strong upflows and are associated with elongated granulation that is, on average, brighter than its surroundings. The main magnetic footpoints, on the other hand, are dominated by vertical fields and downflowing plasma. The appearance of moving dipolar features (MDFs, of opposite polarity to that of the AR) in between the main footpoints is a rather common occurrence once the AR reaches a certain size. The buoyancy of the fields is insufficient to lift up the magnetic arcade as a whole. Instead, weighted by the plasma that it carries, the field is pinned down to the photosphere at several places in between the main footpoints, giving life to the MDFs and enabling channels of downflowing plasma. MDF poles tend to drift toward each other, merge and disappear. This is likely to be the signature of a reconnection process in the dipped field lines, which relieves some of the weight allowing the magnetic arcade to finally rise beyond the detection layer of the Helioseismic and Magnetic Imager spectral line.

  2. ArArCALC—software for 40Ar/ 39Ar age calculations

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.

    2002-06-01

    ArArCALC is a Microsoft Excel ® 97-2000-XP application for performing calculations in 40Ar/ 39Ar geochronology. It is coded in Visual Basic for Applications and can be used under the Windows ® 95/98/NT/2000/ME/XP operating systems. ArArCALC provides an easy-to-use graphical interface for the calculation of age plateaus, total fusion ages and isochrons following the regression of 40Ar/ 39Ar mass spectrometry data. Results are stored in single Excel workbooks including nine different data tables and four different diagrams. Analytical, internal and external errors are calculated based on error propagation of all input parameters, analytical data and applied corrections. Finally, the age calculation results can be recalibrated with reference to the primary K-Ar standards (e.g. GA-1550, MMhb-1) in order to obtain more consistent absolute40Ar/ 39Ar age determinations. ArArCALC is distributed as freeware.

  3. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (˜200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  4. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun; Su Jiangtao; Li Hui; Ichimoto, Kiyoshi; Shibata, Kazunari

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  5. Determining K/Ar age of fault activity through analysis of clay mineralogy: A case study of "El Doctor Fault", México

    NASA Astrophysics Data System (ADS)

    Garduño, D. E.; Pi, T.; Sole, J.; Martini, M.; Alcala, J. R.

    2013-05-01

    The upper continental crust of Mexico is cut by several major faults, some of which were interpreted as terrane boundaries. Although the age of such faults is key to reconstructing the tectonic evolution of Mexico, geochronologic studies focused on the absolute dating of a fault are scattered. The Doctor fault zone is a decakilometric NNW-SSE structure that produced the overriding of the Lower Cretaceus El Doctor carbonate platform onto foreland calcareous turbidites of Upper Cretaceous Soyatal Formation. In the fault zone, turbidites of the Soyatal Formation display a pervasive foliation at the submillimeter-scale. In calcareous layers, this foliation is defined by seams of opaque minerals concentrated along stilolitic surfaces, whereas in lutitic layers it is defined by iso-oriented fine-grained illite. We collected 17 samples from a traverse across the Doctor fault zone, in order to (1) defining and quantifying fault-related changes in clay mineralogy, (2) studying fabrics in clay-rich fault rocks and protolith, and (3) dating the fault activity by illite K/Ar with laser. Texture was studied with petrographic microscope on polished thin sections. Three size fractions (from 2 μm to 0.05 μm) were extracted using centrifugation. Clay mineralogy was determined using XRD in clay oriented samples and the illite crystallinity (IC) has been determined by the Kübler method (Kisch, 1990). The amount of 2M1 illite was quantified using XRD patterns from a randomly oriented sample, achieved using WILDFIRE (Reynolds, 1994, Haines and Van der Pluijm, 2008) and RIETVELD methods and the timing of fault main activity is determined using K/Ar dating. The mineralogy of the samples consists of quartz, calcite, plagioclase, hematite and clays. The clay mineralogy contain illite (zone 1, zone 2 and zone 3), smectite (zone 2), chlorite (zone 3), kaolinite (zone 1 and zone3), and vermiculite (zone 3). The range of IC (0.24 to 0.4) is attributed to heterogeneous origins of illite

  6. 39Ar/Ar measurements using ultra-low background proportional counters

    SciTech Connect

    Hall, Jeter C.; Aalseth, Craig E.; Bonicalzi, Ricco; Brandenberger, Jill M.; Day, Anthony R.; Humble, Paul H.; Mace, Emily K.; Panisko, Mark E.; Seifert, Allen

    2016-01-08

    Age dating groundwater and seawater using 39Ar/Ar ratios is an important tool to understand water mass flow rates and mean residence time. For modern or contemporary argon, the 39Ar activity is 1.8 mBq per liter of argon. Radiation measurements at these activity levels require ultra low-background detectors. Low-background proportional counters have been developed at Pacific Northwest National Laboratory. These detectors use traditional mixtures of argon and methane as counting gas, and the residual 39Ar from commercial argon has become a predominant source of background activity in these detectors. We demonstrated sensitivity to 39Ar by using geological or ancient argon from gas wells in place of commercial argon. The low level counting performance of these proportional counters is then demonstrated for sensitivities to 39Ar/Ar ratios sufficient to date water masses as old as 1000 years.

  7. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  8. The ArsD As(III) metallochaperone

    PubMed Central

    Ajees, A. Abdul; Yang, Jianbo

    2013-01-01

    Arsenic, a toxic metalloid widely existing in the environment, causes a variety of health problems. The ars operon encoded by Escherichia coli plasmid R773 has arsD and arsA genes, where ArsA is an ATPase that is the catalytic subunit of the ArsAB As(III) extrusion pump, and ArsD is an arsenic chaperone for ArsA. ArsD transfers As(III) to ArsA and increases the affinity of ArsA for As(III), allowing resistance to environmental concentrations of arsenic. Cys12, Cys13 and Cys18 in ArsD form a three sulfur-coordinated As(III) binding site that is essential for metallochaperone activity. ATP hydrolysis by ArsA is required for transfer of As(III) from ArsD to ArsA, suggesting that transfer occurs with a conformation of ArsA that transiently forms during the catalytic cycle. The 1.4 Å x-ray crystal structure of ArsD shows a core of four β-strands flanked by four α-helices in a thioredoxin fold. Docking of ArsD with ArsA was modeled in silico. Independently ArsD mutants exhibiting either weaker or stronger interaction with ArsA were selected. The locations of the mutations mapped on the surface of ArsD are consistent with the docking model. The results suggest that the interface with ArsA involves one surface of α1 helix and metalloid binding site of ArsD. PMID:21188475

  9. Early stellate cell activation and veno-occlusive-disease (VOD)-like hepatotoxicity in dogs treated with AR-H047108, an imidazopyridine proton pump inhibitor.

    PubMed

    Berg, Anna-Lena; Böttcher, Gerhard; Andersson, Kjell; Carlsson, Enar; Lindström, Anna-Karin; Huby, Russell; Håkansson, Helen; Skånberg-Wilhelmsson, Inger; Hellmold, Heike

    2008-07-01

    Dogs treated with AR-H047108, an imidazopyridine potassium competitive acid blocker (P-CAB), developed clinical signs of hepatic dysfunction as well as morphologically manifest hepatotoxicity in repeat-dose toxicity studies. An investigative one-month study was performed, with interim euthanasia after one and two weeks. A detailed histopathological and immunohistochemical characterization of the liver lesions was conducted, including markers for fibrosis, Kupffer cell activation, apoptosis, and endothelial injury. In addition, hepatic retinoid and procollagen 1alpha2 mRNA levels in livers of dogs treated with AR-H047108 were analyzed. The results showed an early inflammatory process in central veins and centrilobular areas, present after one week of treatment. This inflammatory reaction was paralleled by activation of stellate/Ito cells to myofibroblasts and was associated with sinusoidal and centrivenular fibrosis. The early activation of stellate cells coincided with a significant decrease in retinyl ester levels, and a significant increase in procollagen 1alpha2 mRNA levels, in the liver. At later time points (three and six months), there was marked sinusoidal fibrosis in centrilobular areas, as well as occlusion of central veins resulting from a combination of fibrosis and increased thickness of smooth muscle bundles in the vessel wall. The pattern of lesions suggests a veno-occlusive-disease (VOD)-like scenario, possibly linked to the imidazopyridine chemical structure of the compound facilitated by specific morphological features of the dog liver.

  10. Formation and eruption of an active region sigmoid. I. A study by nonlinear force-free field modeling

    SciTech Connect

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2014-01-01

    We present a comprehensive study of the formation and eruption of an active region (AR) sigmoid in AR 11283. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by vector magnetograms. A detailed analysis of the fields compared with observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a preexisting bipolar AR, forming a null-point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux cancellation, forming a bald patch separatrix surface (BPSS). The FR grows gradually until its axis runs into a torus instability (TI) domain, and the BPSS also develops a full S-shape. The combined effects of the TI-driven expansion of the FR and the line tying at the BP tear the FR into two parts with the upper portion freely expelled and the lower portion remaining behind the postflare arcades. This process dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid and the rope. The accelerated expansion of the upper-portion rope strongly pushes its envelope flux near the null point and triggers breakout reconnection at the null, which further drives the eruption. We discuss the important implications of these results for the formation and disruption of the sigmoid region with an FR.

  11. Formation and Eruption of an Active Region Sigmoid. I. A Study by Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang

    2014-01-01

    We present a comprehensive study of the formation and eruption of an active region (AR) sigmoid in AR 11283. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by vector magnetograms. A detailed analysis of the fields compared with observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a preexisting bipolar AR, forming a null-point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux cancellation, forming a bald patch separatrix surface (BPSS). The FR grows gradually until its axis runs into a torus instability (TI) domain, and the BPSS also develops a full S-shape. The combined effects of the TI-driven expansion of the FR and the line tying at the BP tear the FR into two parts with the upper portion freely expelled and the lower portion remaining behind the postflare arcades. This process dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid and the rope. The accelerated expansion of the upper-portion rope strongly pushes its envelope flux near the null point and triggers breakout reconnection at the null, which further drives the eruption. We discuss the important implications of these results for the formation and disruption of the sigmoid region with an FR.

  12. Fine Structure in the Mm-Wavelength Spectra of the Active Region

    NASA Astrophysics Data System (ADS)

    Sawant, H. S.; Cecatto, J. R.

    1990-11-01

    RESUMEN. Faltan observaciones solares espectrosc6picas en la longitud de onda milimetrica. Hay sugerencias de que se puede superponer una fi na estructura en frecuencia a la componente-S de la regi6n solar activa, asi como a la componente del brote en las longitudes de onda milimetri- cas. Se ha desarrollado un receptor de alta sensibilidad de pasos de frecuencia que opera en el intervalo de 23-18 GHz con una resoluci6n de 1 GHz y resoluci6n de tiempo variable entre 1.2 y 96 sec, usando la an- tena de Itapetinga de 13.7-m para estudiar la estructura fina en frecuencia y tiempo. Discutimos el espectro en longitud de onda-mm en re- giones activas y su evoluci6n en el tiempo. El estudio de Ia evoluci6n en el tiempo de la regi6n activa en AR 5569 observada el 29 de junio de 1989, sugiere la existencia de estructuras finas como funci6n deltiempo. ABSTRACT. There is a lack of mm-wavelength spectroscopic solar observations. There are suggestions that a fine structure in frequency may be superimposed on the S-component of solar active region as well as on the burst component at inm-wavelengths. To study fine structure in frequency and time, a high sensitivity step frequency receiver operating in the frequency range 23-18 GHz with frequency resolution of 1 GHz and variable time resolution 1.2 to 96 sec, using 13.7 m diameter Itapetinga radome covered antenna, has been developed. Here, we discuss mm-wavelength spectra of active regions and their time evolution. Study of time evolution of an active region AR 5569 observed on 29th June, 1989 suggests existence of fine structures as a function of time. ( Ck : SUN-ACTIVITY - SUN-RADIO RADIATION

  13. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  14. Quantum-mechanical vs. semi-classical spectral-line widths and shifts from the line core in the non-impact region for the Ar-perturbed/ K-radiator system

    NASA Astrophysics Data System (ADS)

    Kreye, W. C.

    2007-09-01

    New quantum-mechanical (QM) and semi-classical (SC) shifts (d's) and widths (HWHM's, w's) were measured from the line core of computed full spectral-line shapes for the Ar-perturbed/K-radiator system (K/Ar). The initial state of our model was based on a 4p2P3/2,1/2 pseudo-potential for the K/Ar system, and the final state on a zero potential. The Fourier transform of the line shape formed the basis for the computations. Excellent agreement was found between the QM and SC values of d and of w in a high-pressure (P) non-impact region, which was characterized by a √P dependence of w and a P dependence of d. These agreements were shown to be another example of a correspondence between classical (SC) quantities and QM quantities in the limit of large quantum numbers. Typically at P=1×106 Torr and T=400 K, wQM=448 cm-1 and wSC=479 cm-1, where the deviation from the mean is ±3.3%. Also, dQM=-3815 cm-1 and dSC=-3716 cm-1, where the deviation from the mean is ±1.3%. A new general method was formulated which yielded a definite pressure P0, which was defined as an upper limit to the low-pressure impact approximation and a lower limit to the non-impact region.

  15. MAG4 versus alternative techniques for forecasting active region flare productivity

    PubMed Central

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  16. Technique for inferring sizes of stellar-active regions

    SciTech Connect

    Dobson-Hockey, A.K.; Radick, R.R.

    1986-01-01

    Inspection of spectroheliograms showing large, well-developed active regions generally show the sunspots to lead the associated plage, in the sense of the solar rotation. Measurements have been made from spectroheliograms of spot-plage offsets and compared with nearly contemporaneous integrated disk observations. Larger active regions generally show larger spot leads; however, information regarding active-region sizes and spot-plage offsets is not readily obtainable form stellar-type observations of the Sun.

  17. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    SciTech Connect

    Vemareddy, P.

    2015-06-20

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity flux has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.

  18. A HELIOSEISMIC SURVEY OF NEAR-SURFACE FLOWS AROUND ACTIVE REGIONS AND THEIR ASSOCIATION WITH FLARES

    SciTech Connect

    Braun, D. C.

    2016-03-10

    We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region (AR) during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists for several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to the occurrence to 70 M and X-class flares is made. While flows evolve with the passage of the ARs across the disk, no discernible precursors or other temporal changes specifically associated with flares are detected.

  19. ACTH Action on StAR Biology.

    PubMed

    Clark, Barbara J

    2016-01-01

    Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies.

  20. ACTH Action on StAR Biology

    PubMed Central

    Clark, Barbara J.

    2016-01-01

    Adrenocorticotropin hormone (ACTH) produced by the anterior pituitary stimulates glucocorticoid synthesis by the adrenal cortex. The first step in glucocorticoid synthesis is the delivery of cholesterol to the mitochondrial matrix where the first enzymatic reaction in the steroid hormone biosynthetic pathway occurs. A key response of adrenal cells to ACTH is activation of the cAMP-protein kinase A (PKA) signaling pathway. PKA activation results in an acute increase in expression and function of the Steroidogenic Acute Regulatory protein (StAR). StAR plays an essential role in steroidogenesis- it controls the hormone-dependent movement of cholesterol across the mitochondrial membranes. Currently StAR's mechanism of action remains a major unanswered question in the field. However, some insight may be gained from understanding the mechanism(s) controlling the PKA-dependent phosphorylation of StAR at S194/195 (mouse/human StAR), a modification that is required for function. This mini-review provides a background on StAR's biology with a focus on StAR phosphorylation. The model for StAR translation and phosphorylation at the outer mitochondrial membrane, the location for StAR function, is presented to highlight a unifying theme emerging from diverse studies. PMID:27999527

  1. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network

    PubMed Central

    Ramos-Montoya, Antonio; Lamb, Alastair D; Russell, Roslin; Carroll, Thomas; Jurmeister, Sarah; Galeano-Dalmau, Nuria; Massie, Charlie E; Boren, Joan; Bon, Helene; Theodorou, Vasiliki; Vias, Maria; Shaw, Greg L; Sharma, Naomi L; Ross-Adams, Helen; Scott, Helen E; Vowler, Sarah L; Howat, William J; Warren, Anne Y; Wooster, Richard F; Mills, Ian G; Neal, David E

    2014-01-01

    Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies. PMID:24737870

  2. A Fractal Dimension Survey of Active Region Complexity

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  3. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  4. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  5. Numerical Simulation of a Solar Active Region. I: Bastille Day Flare

    NASA Astrophysics Data System (ADS)

    Vincent, Alain; Charbonneau, Paul; Dubé, Caroline

    2012-06-01

    We present three-dimensional unsteady modeling and numerical simulations of a coronal active region, carried out within the compressible single-fluid MHD approximation. We focus on AR 9077 on 14 July 2000, and the triggering of the X5.7 GOES X-ray class "Bastille Day" flare. We simulate only the lower corona, although we include a virtual photosphere and chromosphere below. The boundary conditions at the base of this layer are set using temperature maps from line intensities and line-of-sight magnetograms (SOHO/MDI). From the latter, we generate vector magnetograms using the force-free approximation; these vector magnetograms are then used to produce the boundary condition on the velocity field using a minimum energy principle (Longcope, Astrophys. J. 612, 1181, 2004). The reconnection process is modeled through a dynamical hyper-resistivity which is activated when the current exceeds a critical value (Klimas et al., J. Geophys. Res. 109, 2218, 2004). Comparing the time series of X-ray fluxes recorded by GOES with modeled time series of various mean physical variables such as current density, Poynting energy flux, or radiative loss inside the active region, we can demonstrate that the model properly captures the evolution of an active region over a day and, in particular, is able to explain the initiation of the flare at the observed time.

  6. Separable solutions of force-free spheres and applications to solar active regions

    SciTech Connect

    Prasad, A.; Mangalam, A.; Ravindra, B. E-mail: mangalam@iiap.res.in

    2014-05-10

    We present a systematic study of the force-free field equation for simple axisymmetric configurations in spherical geometry and apply it to the solar active regions. The condition of separability of solutions in the radial and angular variables leads to two classes of solutions: linear and nonlinear force-free fields (NLFF). We have studied these linear solutions and extended the nonlinear solutions for the radial power law index to the irreducible rational form n = p/q, which is allowed for all cases of odd p and cases of q > p for even p, where the poloidal flux ψ∝1/r{sup n} and the field B∝1/r {sup n+2}. We apply these solutions to simulate photospheric vector magnetograms obtained using the spectropolarimeter on board Hinode. The effectiveness of our search strategy is first demonstrated on test inputs of dipolar, axisymmetric, and nonaxisymmetric linear force-free fields. Using the best fit, we build three-dimensional axisymmetric field configurations and calculate the energy and relative helicity with two independent methods, which are in agreement. We have analyzed five magnetograms for AR 10930 spanning a period of three days during which two X-class flares occurred and found the free energy and relative helicity of the active region before and after the flare; our analysis indicates a peak in these quantities before the flare events, which is consistent with the other results. We also analyzed single-polarity regions AR 10923 and 10933, which showed very good fits to potential fields. This method provides useful reconstruction of NLFF and input fields for other numerical techniques.

  7. Statistical analysis of the horizontal divergent flow in emerging solar active regions

    SciTech Connect

    Toriumi, Shin; Hayashi, Keiji; Yokoyama, Takaaki

    2014-10-10

    Solar active regions (ARs) are thought to be formed by magnetic fields from the convection zone. Our flux emergence simulations revealed that a strong horizontal divergent flow (HDF) of unmagnetized plasma appears at the photosphere before the flux begins to emerge. In our earlier study, we analyzed HMI data for a single AR and confirmed presence of this precursor plasma flow in the actual Sun. In this paper, as an extension of our earlier study, we conducted a statistical analysis of the HDFs to further investigate their characteristics and better determine the properties. From SDO/HMI data, we picked up 23 flux emergence events over a period of 14 months, the total flux of which ranges from 10{sup 20} to 10{sup 22} Mx. Out of 23 selected events, 6 clear HDFs were detected by the method we developed in our earlier study, and 7 HDFs detected by visual inspection were added to this statistic analysis. We found that the duration of the HDF is on average 61 minutes and the maximum HDF speed is on average 3.1 km s{sup –1}. We also estimated the rising speed of the subsurface magnetic flux to be 0.6-1.4 km s{sup –1}. These values are highly consistent with our previous one-event analysis as well as our simulation results. The observation results lead us to the conclusion that the HDF is a rather common feature in the earliest phase of AR emergence. Moreover, our HDF analysis has the capability of determining the subsurface properties of emerging fields that cannot be directly measured.

  8. Sunspot Rotation as a Driver of Major Solar Eruptions in the NOAA Active Region 12158

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Cheng, X.; Ravindra, B.

    2016-09-01

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°-5° h-1 with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  9. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  10. Software Displays Data on Active Regions of the Sun

    NASA Technical Reports Server (NTRS)

    Golightly, Mike; Weyland, Mark; Raben, Vern

    2011-01-01

    The Solar Active Region Display System is a computer program that generates, in near real time, a graphical display of parameters indicative of the spatial and temporal variations of activity on the Sun. These parameters include histories and distributions of solar flares, active region growth, coronal mass ejections, size, and magnetic configuration. By presenting solar-activity data in graphical form, this program accelerates, facilitates, and partly automates what had previously been a time-consuming mental process of interpretation of solar-activity data presented in tabular and textual formats. Intended for original use in predicting space weather in order to minimize the exposure of astronauts to ionizing radiation, the program might also be useful on Earth for predicting solar-wind-induced ionospheric effects, electric currents, and potentials that could affect radio-communication systems, navigation systems, pipelines, and long electric-power lines. Raw data for the display are obtained automatically from the Space Environment Center (SEC) of the National Oceanic and Atmospheric Administration (NOAA). Other data must be obtained from the NOAA SEC by verbal communication and entered manually. The Solar Active Region Display System automatically accounts for the latitude dependence of the rate of rotation of the Sun, by use of a mathematical model that is corrected with NOAA SEC active-region position data once every 24 hours. The display includes the date, time, and an image of the Sun in H light overlaid with latitude and longitude coordinate lines, dots that mark locations of active regions identified by NOAA, identifying numbers assigned by NOAA to such regions, and solar-region visual summary (SRVS) indicators associated with some of the active regions. Each SRVS indicator is a small pie chart containing five equal sectors, each of which is color-coded to provide a semiquantitative indication of the degree of hazard posed by one aspect of the activity at

  11. 75 FR 29655 - Amendment of Class E Airspace; Batesville, AR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Batesville, AR AGENCY... airspace for Batesville, AR. Decommissioning of the Independence County non-directional beacon (NDB) at Batesville Regional Airport, Batesville, AR, has made this action necessary to enhance the safety...

  12. Reading cinnamon activates olfactory brain regions.

    PubMed

    González, Julio; Barros-Loscertales, Alfonso; Pulvermüller, Friedemann; Meseguer, Vanessa; Sanjuán, Ana; Belloch, Vicente; Avila, César

    2006-08-15

    Some words immediately and automatically remind us of odours, smells and scents, whereas other language items do not evoke such associations. This study investigated, for the first time, the abstract linking of linguistic and odour information using modern neuroimaging techniques (functional MRI). Subjects passively read odour-related words ('garlic', 'cinnamon', 'jasmine') and neutral language items. The odour-related terms elicited activation in the primary olfactory cortex, which include the piriform cortex and the amygdala. Our results suggest the activation of widely distributed cortical cell assemblies in the processing of olfactory words. These distributed neuron populations extend into language areas but also reach some parts of the olfactory system. These distributed neural systems may be the basis of the processing of language elements, their related conceptual and semantic information and the associated sensory information.

  13. Simultaneous Longitudinal and Transverse Oscillations in an Active-Region Filament

    NASA Astrophysics Data System (ADS)

    Pant, Vaibhav; Mazumder, Rakesh; Yuan, Ding; Banerjee, Dipankar; Srivastava, Abhishek K.; Shen, Yuandeng

    2016-11-01

    We report on the co-existence of longitudinal and transverse oscillations in an active-region filament. On March 15, 2013, an M1.1 class flare was observed in Active Region AR 11692. A coronal mass ejection (CME) was found to be associated with the flare. The CME generated a shock wave that triggered the oscillations in a nearby filament, situated south-west of the active region as observed from National Solar Observatory (NSO) Global Oscillation Network Group (GONG) Hα images. In this work we report the longitudinal oscillations in the two ends of the filament, which co-existed with the transverse oscillations. We propose a scenario in which an incoming shock wave hits the filament obliquely and triggers both longitudinal and transverse oscillations. Using the observed parameters, we estimate the lower limit of the magnetic field strength. We use a simple pendulum model with gravity as the restoring force to estimate the radius of curvature. We also calculate the mass accretion rate that causes the filament motions to damp quite fast.

  14. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    SciTech Connect

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian

    2013-09-01

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.

  15. INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME

    SciTech Connect

    Vemareddy, P.; Zhang, J.

    2014-12-20

    An eruption event launched from the solar active region (AR) NOAA 11719 is investigated based on coronal EUV observations and photospheric magnetic field measurements obtained from the Solar Dynamic Observatory. The AR consists of a filament channel originating from a major sunspot and its south section is associated with an inverse-S sigmoidal system as observed in Atmospheric Imaging Assembly passbands. We regard the sigmoid as the main body of the flux rope (FR). There also exists a twisted flux bundle crossing over this FR. This overlying flux bundle transforms in shape similar to kink-rise evolution, which corresponds with the rise motion of the FR. The emission measure and temperature along the FR exhibits an increasing trend with its rising motion, indicating reconnection in the thinning current sheet underneath the FR. Net magnetic flux of the AR, evaluated at north and south polarities, showed decreasing behavior whereas the net current in these fluxes exhibits an increasing trend. Because the negative (positive) flux has a dominant positive (negative) current, the chirality of AR flux system is likely negative (left handed) in order to be consistent with the chirality of inverse S-sigmoidal FR. This analysis of magnetic fields of the source AR suggests that the cancelling fluxes are prime factors of the monotonous twisting of the FR system, reaching to a critical state to trigger kink instability and rise motion. This rise motion may have led to the onset of the torus instability, resulting in an Earth-directed coronal mass ejection, and the progressive reconnection in the thinning current sheet beneath the rising FR led to the M6.5 flare.

  16. THE ROLE OF ACTIVE REGION LOOP GEOMETRY. I. HOW CAN IT AFFECT CORONAL SEISMOLOGY?

    SciTech Connect

    Selwa, M.; Ofman, L.; Solanki, S. K. E-mail: leon.ofman@nasa.gov

    2011-01-01

    We present numerical results of coronal loop oscillation excitation using a three-dimensional (3D) MHD model of an idealized active region (AR) field. The AR is initialized as a potential dipole magnetic configuration with gravitationally stratified density and contains a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations of this loop by velocity: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. We vary the geometry of the loop in the 3D MHD model and find that it affects both the period of oscillations and the synthetic observations (difference images) that we get from oscillations. Due to the overestimated effective length of the loop in the case of loops which have maximum separation between their legs above the footpoints (>50% of observed loops), the magnetic field obtained from coronal seismology can also be overestimated. The 3D MHD model shows how the accuracy of magnetic field strength determined from coronal seismology can be improved. We study the damping mechanism of the oscillations and find that vertical kink waves in 3D stratified geometry are damped mainly due to wave leakage in the horizontal direction.

  17. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  18. Construction of a chimeric ArsA-ArsB protein for overexpression of the oxyanion-translocating ATPase.

    PubMed

    Dou, D; Owolabi, J B; Dey, S; Rosen, B P

    1992-12-25

    Resistance to toxic oxyanions of arsenic and antimony in Escherichia coli is conferred by the conjugative R-factor R773, which encodes an ATP-driven anion extrusion pump. The ars operon is composed of three structural genes, arsA, arsB, and arsC. Although transcribed as a single unit, the three genes are differentially expressed as a result of translational differences, such that the ArsA and ArsC proteins are produced in high amounts relative to the amount of ArsB protein made. Consequently, biochemical characterization of the ArsB protein, which is an integral membrane protein containing the anion-conducting pathway, has been limited, precluding studies of the mechanism of this oxyanion pump. To overexpress the arsB gene, a series of changes were made. First, the second codon, an infrequently used leucine codon, was changed to a more frequently utilized codon. Second, a GC-rich stem-loop (delta G = -17 kcal/mol) between the third and twelfth codons was destabilized by changing several of the bases of the base-paired region. Third, the re-engineered arsB gene was fused 3' in frame to the first 1458 base pairs of the arsA gene to encode a 914-residue chimeric protein (486 residues of the ArsA protein plus 428 residues of the mutated ArsB protein) containing the entire re-engineered ArsB sequence except for the initiating methionine. The ArsA-ArsB chimera has been overexpressed at approximately 15-20% of the total membrane proteins. Cells producing the chimeric ArsA-ArsB protein with an arsA gene in trans excluded 73AsO2- from cells, demonstrating that the chimera can function as a component of the oxyanion-translocating ATPase.

  19. Active Region Soft X-Ray Spectra and Temperature Analyses based on Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid V.; Wieman, Seth; Woods, Thomas N.; Jones, Andrew; Moore, Christopher

    2016-05-01

    Some initial results of soft x-ray spectral (0.5 to 3.0 nm) observations of active regions (AR11877 and AR11875) from a sounding rocket flight NASA 36.290 on 21 October 2013 at about 18:30 UT are reported. These observations were made by a Solar Aspect Monitor (SAM), a rocket version of the EUV Variability Experiment’s (EVE) channel, a pinhole camera modified for EVE rocket suite of instruments to include a free-standing transmission grating (200 nm period), which provided spectrally-resolved images of the solar disk. Intensity ratios for strong emission lines extracted from temporally averaged SAM spectral profiles of the ARs were compared to appropriately convolved modeled CHIANTI spectra. These ratios represent the AR’s temperature structures, which are compared to the structures derived from some other observations and temperature models.

  20. ACTIVE REGION MORPHOLOGIES SELECTED FROM NEAR-SIDE HELIOSEISMIC DATA

    SciTech Connect

    MacDonald, G. A.; McAteer, R. T. J.; Henney, C. J.; Arge, C. N.; Díaz Alfaro, M.; González Hernández, I.; Lindsey, C.

    2015-07-01

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, Air Force Data Assimilative Photospheric flux Transport synchronic maps and Global Oscillation Network Group near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can be decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.

  1. Active Region Morphologies Selected From Near-side Helioseismic Data

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon Andrew; Henney, Carl; Diaz Alfaro, Manuel; Gonzalez Hernandez, Irene; Arge, Nick; Lindsey, Charles; McAteer, James

    2015-04-01

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, ADAPT synchronic maps and GONG near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can be decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.

  2. Active Region Morphologies Selected from Near-side Helioseismic Data

    NASA Astrophysics Data System (ADS)

    MacDonald, G. A.; Henney, C. J.; Díaz Alfaro, M.; González Hernández, I.; Arge, C. N.; Lindsey, C.; McAteer, R. T. J.

    2015-07-01

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, Air Force Data Assimilative Photospheric flux Transport synchronic maps and Global Oscillation Network Group near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can be decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.

  3. A Multi Wavelength Study of Active Region Development

    NASA Astrophysics Data System (ADS)

    Lara, A.; Gopalswamy, N.; Kundu, M. R.; Perez-Enriquez, R.; Koshiishi, H.; Enome, S.

    1996-05-01

    We report on a study of the evolution of several active regions during 1993 April 17-28 using data obtained at multiple wavelengths that probe various heights of the active region corona. We use simultaneous microwave (1.5 and 17 GHz) and Soft X-ray images obtained by the Very Large Array (VLA), the Nobeyama Radio Heliograph (NRH) and the Soft X-ray Telescope (SXT) on board the Yohkoh spacecraft. We also use photospheric magnetograms from Kitt Peak National Observatory to study the development of Solar Active Regions. We have followed the development of various observed parameters such as brightness temperature and polarization using radio images. The X-ray data were used to track the development of density and temperature of active regions. Using the fact that the quiet active region radiation is thermal and adopting proper emission mechanism at each frequency domain, we construct a consistent picture for the three dimensional structure of the active regions. Particular attention has been paid to the mode coupling observed at 17 GHz while the active regions crossed the solar disk.

  4. Analysis of the Flux Growth Rate in Emerging Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Abramenko, V. I.; Kutsenko, A. S.; Tikhonova, O. I.; Yurchyshyn, V. B.

    2017-04-01

    We studied the emergence process of 42 active regions (ARs) by analyzing the time derivative, R(t), of the total unsigned flux. Line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) were used. A continuous piecewise linear fitting to the R(t)-profile was applied to detect an interval, Δ t2, of nearly constant R(t) covering one or several local maxima. The magnitude of R(t) averaged over Δ t2 was accepted as an estimate of the maximum value of the flux growth rate, R_{MAX}, which varies in a range of (0.5 - 5)×10^{20} Mx hour^{-1} for ARs with a maximum total unsigned flux of (0.5 - 3)× 10^{22} Mx. The normalized flux growth rate, RN, was defined under the assumption that the saturated total unsigned flux, F_{MAX}, equals unity. Out of 42 ARs in our initial list, 36 events were successfully fitted, and they form two subsets (with a small overlap of eight events): the ARs with a short (<13 hours) interval Δ t2 and a high (>0.024 hour^{-1}) normalized flux emergence rate, RN, form the "rapid" emergence event subset. The second subset consists of "gradual" emergence events, and it is characterized by a long (>13 hours) interval Δ t2 and a low RN (<0.024 hour^{-1}). In diagrams of R_{MAX} plotted versus F_{MAX}, the events from different subsets do not overlap, and each subset displays an individual power law. The power-law index derived from the entire ensemble of 36 events is 0.69 ± 0.10. The rapid emergence is consistent with a two-step emergence process of a single twisted flux tube. The gradual emergence is possibly related to a consecutive rising of several flux tubes emerging at nearly the same location in the photosphere.

  5. On the State of a Solar Active Region Before Flares and CMEs

    NASA Astrophysics Data System (ADS)

    Korsós, M. B.; Erdélyi, R.

    2016-06-01

    Several attempts have been made to find reliable diagnostic tools to determine the state prior to flares and related coronal mass ejections (CMEs) in solar active regions (ARs). Characterization of the level of mixed states is carried out using the Debrecen sunspot Data for 116 flaring ARs. Conditional flare probabilities (CFPs) are calculated for different flaring classes. The association with slow/fast CMEs is examined. Two precursor parameters are introduced: (i) the sum of the (daily averaged) horizontal magnetic gradient G S (G DS ) and (ii) the separation parameter {S}l-f. We found that if {S}l-f≤slant 1 for a flaring AR then the CFP of the expected highest-intensity flare being X-class is more than 70%. If 1≤slant {S}l-f≤slant 3 the CFP is more than 45% for the highest-intensity flare(s) to be M-class, and if 3≤slant {S}l-f≤slant 13 there is larger than 60% CFP that C-class flare(s) may have the strongest intensity within 48 hr. Next, from analyzing G S for determining CFP we found: if 5.5≤slant {log}({G}S) ≤slant 6.5, then it is very likely that C-class flare(s) may be the most intense; if 6.5≤slant {log}({G}S)≤slant 7.5 then there is ˜45% CFP that M-class could have the highest intensity; finally, if 7.5≤slant {log}({G}S) then there is at least 70% chance that the strongest energy release will be X-class in the next 48 hr. ARs are unlikely to produce X-class flare(s) if 13≤slant {S}l-f and log(G S ) ≤slant 5.5. Finally, in terms of providing an estimate of an associated slow/fast CME, we found that, if {log}({S}l-f) ≥slant 0.4 or {log}({G}{DS}) ≤slant 6.5, there is no accompanying fast CME in the following 24 hr.

  6. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  7. Sounding Rocket Observations of Active Region Soft X-Ray Spectra Between 0.5 and 2.5 nm Using a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Wieman, Seth; Didkovsky, Leonid; Woods, Thomas; Jones, Andrew; Moore, Christopher

    2016-12-01

    Spectrally resolved measurements of individual solar active regions (ARs) in the soft X-ray (SXR) range are important for studying dynamic processes in the solar corona and their associated effects on the Earth's upper atmosphere. They are also a means of evaluating atomic data and elemental abundances used in physics-based solar spectral models. However, very few such measurements are available. We present spectral measurements of two individual ARs in the 0.5 to 2.5 nm range obtained on the NASA 36.290 sounding rocket flight of 21 October 2013 (at about 18:30 UT) using the Solar Aspect Monitor (SAM), a channel of the Extreme Ultaviolet Variability Experiment (EVE) payload designed for underflight calibrations of the orbital EVE on the Solar Dynamics Observatory (SDO). The EVE rocket instrument is a duplicate of the EVE on SDO, except the SAM channel on the rocket version was modified in 2012 to include a freestanding transmission grating to provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST/SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. We discuss techniques (incorporating the NIST/SURF data) for determining SXR spectra from the dispersed AR images as well as the resulting spectra for NOAA ARs 11877 and 11875 observed on the 2013 rocket flight. In comparisons with physics-based spectral models using the CHIANTI v8 atomic database we find that both AR spectra are in good agreement with isothermal spectra (4 MK), as well as spectra based on an AR differential emission measure (DEM) included with the CHIANTI distribution, with the exception of the relative intensities of strong Fe xvii lines associated with 2p6-2p53{s} and 2p6-2p

  8. Magnetic field configuration in a flaring active region

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Balmaceda, L. A.; Vieira, L. E.

    2015-10-01

    The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides continuous monitoring of the Sun's vector magnetic field through full-disk photospheric data with both high cadence and high spatial resolution. Here we investigate the evolution of AR 11249 from March 6 to March 7, 2012. We make use of HMI Stokes imaging, SDO/SHARPs, the HMI magnetic field line-of-sight (LOS) maps and the transverse components of the magnetic field as well as LOS velocity maps in order to detect regions with significant flux emergence and/or cancellation. In addition, we apply the Local Correlation Tracking (LCT) technique to the total and signed magnetic flux data and derive maps of horizontal velocity. From this analysis, we were able to pinpoint localized shear regions (and a shear channel) where penumbrae and pore formation areas, with strong linear polarization signals, are stretched and squeezed, showing also important downflows and upflows. We have also utilized Hinode/SP data and compared them to the HMI-SHARPs and the HMI-Stokes spectrograms. The aforementioned shear channel seems to correspond well with the X-class flare main channel of March 7 2012, as observed in AIA/SDO 171, 304 and 1600 Å.

  9. A Space Weather mission concept: Observatories of the Solar Corona and Active Regions (OSCAR)

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Janitzek, Nils; Lee, Arrow; Löschl, Philipp; Seifert, Bernhard; Hoilijoki, Sanni; Kraaikamp, Emil; Isha Mrigakshi, Alankrita; Philippe, Thomas; Spina, Sheila; Bröse, Malte; Massahi, Sonny; O'Halloran, Liam; Pereira Blanco, Victor; Stausland, Christoffer; Escoubet, Philippe; Kargl, Günter

    2015-02-01

    Coronal Mass Ejections (CMEs) and Corotating Interaction Regions (CIRs) are major sources of magnetic storms on Earth and are therefore considered to be the most dangerous space weather events. The Observatories of Solar Corona and Active Regions (OSCAR) mission is designed to identify the 3D structure of coronal loops and to study the trigger mechanisms of CMEs in solar Active Regions (ARs) as well as their evolution and propagation processes in the inner heliosphere. It also aims to provide monitoring and forecasting of geo-effective CMEs and CIRs. OSCAR would contribute to significant advancements in the field of solar physics, improvements of the current CME prediction models, and provide data for reliable space weather forecasting. These objectives are achieved by utilising two spacecraft with identical instrumentation, located at a heliocentric orbital distance of 1 AU from the Sun. The spacecraft will be separated by an angle of 68° to provide optimum stereoscopic view of the solar corona. We study the feasibility of such a mission and propose a preliminary design for OSCAR.

  10. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  11. Flight activity of USDA-ARS Russian honey bees (Hymenoptera: Apidae) during pollination of lowbush blueberries in Maine.

    PubMed

    Danka, Robert G; Beaman, Lorraine D

    2007-04-01

    Flight activity was compared in colonies of Russian honey bees, Apis mellifera L. (Hymenoptera: Apidae), and Italian bees during commercial pollination of lowbush blueberries (principally Vaccinium angustifolium Aiton) in Washington Co., ME, in late May and early June in 2003 and 2004. Colonies of the two stocks were managed equally in Louisiana during autumn through early spring preceding observations in late spring each year. Resulting average populations of adult bees and of brood were similar in colonies of the two bee stocks during pollination. Flight during pollination was monitored hourly on 6 d each year by counting bees exiting each colony per minute; counts were made manually with flight cones on 17 colonies per stock in 2003 and electronically with ApiSCAN-Plus counters on 20 colonies per stock in 2004. Analysis of variance showed that temperature, colony size (population of adult bees or brood), and the interaction of these effects were the strongest regulators of flight activity in both years. Russian and Italian bees had similar flight activity at any given colony size, temperature, or time of day. Flight increased linearly with rising temperatures and larger colony sizes. Larger colonies, however, were more responsive than smaller colonies across the range of temperatures measured. In 2003, flight responses to varying temperatures were less in the afternoon and evening (1500-1959 hours) than they were earlier in the day. Russian colonies had flight activity that was suitable for late spring pollination of lowbush blueberries.

  12. Light Bridge in a Developing Active Region. II. Numerical Simulation of Flux Emergence and Light Bridge Formation

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Cheung, Mark C. M.; Katsukawa, Yukio

    2015-10-01

    Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.

  13. LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. II. NUMERICAL SIMULATION OF FLUX EMERGENCE AND LIGHT BRIDGE FORMATION

    SciTech Connect

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.

  14. Regulation of AR Degradation and Function by Ubiquitylation

    DTIC Science & Technology

    2015-10-01

    assays to examine effects of site directed mutants on AR transcriptional activity. Lentiviruses encoding AR wild-type or mutants were used to establish...regulated Luciferase reporter gene then showed that only the K911A mutant AR had increased activity (~2-fold) (Fig. 1A). Table 1. AR...the stably expressed AR WT versus K911R mutant . As shown in figure 1B, the K911R mutant had increased activity in response to 1 nM DHT. Finally

  15. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  16. Observed Helicity of Active Regions in Solar Cycle 21

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Pevtsov, A. A.; Blehm, Z.; Smith, J. E.; Six, Frank (Technical Monitor)

    2003-01-01

    We report the results of a study of helicity in solar active regions during the peak of activity in solar cycle 21 from observations with the Marshall Space Flight Center's solar vector magnetograph. Using the force-free parameter alpha as the proxy for helicity, we calculated an average value of alpha for each of 60 active regions from a total of 449 vector magnetograms that were obtained during the period 1980 March to November. The signs of these average values of alpha were correlated with the latitude of the active regions to test the hemispheric rule of helicity that has been proposed for solar magnetic fields: negative helicity predominant in northern latitudes, positive in the southern ones. We have found that of the 60 regions that were observed, 30 obey the hemispheric rule and 30 do not.

  17. Photospheric Magnetic Free Energy Density of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi

    2016-12-01

    We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity 1/4π{B}n\\cdot{B}p is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (Bp) and the non-potential magnetic field (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.

  18. AFS dynamics in a short-lived active region

    NASA Astrophysics Data System (ADS)

    Zuccarello, F.; Battiato, V.; Contarino, L.; Romano, P.; Spadaro, D.; Vlahos, L.

    2005-11-01

    In the framework of the study on active region emergence, we report the results obtained from the analysis of the short-lived (7 days) active region NOAA 10407. The data used were acquired during an observational campaign carried out with the THEMIS telescope in IPM mode in July 2003, coordinated with other ground- and space-based instruments (INAF-OACT, DOT, BBSO, MDI/SOHO, EIT/SOHO, TRACE). We determined the morphological and magnetic evolution of NOAA 10407, as well as the velocity fields associated with its magnetic structures. Within the limits imposed by the spatial and temporal resolution of the images analyzed, the first evidence of the active region formation is initially observed in the transition region and lower corona, and later on (i.e. after about 7 h) in the inner layers, as found in a previous analysis concerning a long-lived, recurrent active region. The results also indicate that the AFS formed in the active region shows typical upward motion at the AFS's tops and downward motion at the footpoints. The velocity values relevant to the upward motions decrease over the evolution of the region, similarly to the case of the recurrent active region, while we notice an increasing trend in the downflow velocity during the early phases of the time interval analyzed by THEMIS. On the other hand, the AFS preceding legs show a higher downflow than the following ones, a result in contrast with that found in the long-lived active region. The chromospheric area overhanging the sunspot umbra shows an upward motion of ˜ 2 km s-1, while that above the pores shows a downward motion of ~4 km s-1.

  19. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    PubMed Central

    Haque, Md. Nuruzzaman

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p < 0.001)). Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP), containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons' active ageing level in Thailand. PMID:27375903

  20. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  1. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  2. 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy

    USGS Publications Warehouse

    Lanphere, Marvin A.; Champion, Duane E.; Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Scarpati, Claudio; Tedesco, Dario; Calvert, Andrew T.

    2007-01-01

    The Italian volcano, Vesuvius, erupted explosively in AD 79. Sanidine from pumice collected at Casti Amanti in Pompeii and Villa Poppea in Oplontis yielded a weighted-mean 40Ar/39Ar age of 1925±66 years in 2004 (1σ uncertainty) from incremental-heating experiments of eight aliquants of sanidine. This is the calendar age of the eruption. Our results together with the work of Renne et al. (1997) and Renne and Min (1998) demonstrate the validity of the 40Ar/39Ar method to reconstruct the recent eruptive history of young, active volcanoes.

  3. 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Lanphere, Marvin; Champion, Duane; Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Scarpati, Claudio; Tedesco, Dario; Calvert, Andrew

    2007-01-01

    The Italian volcano, Vesuvius, erupted explosively in AD 79. Sanidine from pumice collected at Casti Amanti in Pompeii and Villa Poppea in Oplontis yielded a weighted-mean 40Ar/39Ar age of 1925±66 years in 2004 (1σ uncertainty) from incremental-heating experiments of eight aliquants of sanidine. This is the calendar age of the eruption. Our results together with the work of Renne et al. (1997) and Renne and Min (1998) demonstrate the validity of the 40Ar/39Ar method to reconstruct the recent eruptive history of young, active volcanoes.

  4. Structural Relationship Between Piton des Neiges and Piton de la Fournaise Volcanoes: New K-Ar Data and Geomorphological Study of the Takamaka Region (East Reunion Island, Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Salvany, T.; Lahitte, P.; Gillot, P.; Kluska, J.

    2007-12-01

    Reunion Island (Indian ocean) is a volcanic complex resulting from hotspot activity composed of three coalescent eruptive systems. The first subaerial volcano (la Montagne massif), which only outcrops in the NW part has been dated between 2.2 and 1.8 Ma (McDougall, 1971). After a major flank collapse of this volcano (Gillot et al., 1994), Piton des Neiges (PNv) edificated from 1.2 Ma to 30 ka (McDougall., 1971; Gillot et al.,1982). then, Piton de la Fournaise volcano (PFv), one of the most active on Earth, started its activity about 530 kyr ago (Gillot et al., 1989; 1990) and was affected by 3 eastward flank collapses (Gillot et al., 1994). Its present complex morphology is characterized by large scale erosional depressions, (Cirques) cut in the volcanic structures, such as Cilaos, Mafate or Salazie in PNv, Grand Bassin between the two volcanoes, and Grand Pays in PFv. Due to the tropical conditions, deeply incised valleys are present throughout the island. The eastern part of the island (Takamaka area), where we show that products of both PNv and PFv overlap, is one of the most rainy place in the world. It is deeply incised and has been highly eroded during the coeval building stages of PFv and PNv since at least 530 kyr. In order to constrain the relationship between the PNv and PFv volcanoes and to characterise the morphological evolution of this area, we realized a new geochronological study of the different massifs based on the accurate K- Ar technique devoted to the dating of very young rocks (Cassignol technique; Gillot et Cornette, 1986). A preserved structure between the two volcano, Morne de l'Etang, is dated between 1.36 +/- 0.02 Ma, which is older than the primary known activity of Piton des Neiges (about 1.2 Ma; McDougall, 1971), to 0.97 +/- 0.02 Ma. It may either correspond to a remnant and older part of PNv or it belongs to the Proto Fournaise 'les Alizés' volcano', which existence is still debated. Our analysis also emphasizes the fact that PFv

  5. The nature of chromospheric active regions on V410 Tauri

    NASA Astrophysics Data System (ADS)

    Mekkaden, M. V.; Pukalenthi, S.; Muneer, S.; Bastian, Anju Barbara

    2005-12-01

    We present spectroscopic observations in the region of H alpha and Li I lines of the weak emission T Tauri star V410 Tau obtained over 1999/2000, 2002/2003 and 2003/2004 seasons. The emission strength showed rotational modulation during the 1999/2000 season in such a way that the emis- sion strength is maximum at light minimum and vice versa. This indicates that the photospheric and chromospheric active regions overlap over shorter dura- tions of time and the lifetimes of chromospheric active regions are far shorter than the photospheric active regions. But the observations obtained during the 2003/2004 season do not follow the trend observed at earlier seasons. This can be due to the change in the location of chromospheric active regions. Another possibility is the occurrence of a major change in the photospheric active re- gions that have caused a redistribution of photospheric as well as chromospheric active regions. The Li I EW does not show any appreciable change over the four-year period.

  6. Using data assimilation to reconstruct convection patterns below an active region of solar corona from observed magnetograms

    NASA Astrophysics Data System (ADS)

    Pirot, D.; Vincent, A. P.; Charbonneau, P.; Solar Physics Research Group of University of Montreal

    2011-12-01

    Solar magnetic field originates deep inside the convection zone and rises through it to produce active regions. Detailled simulations of solar convection including granulation and radiation that have been performed in the past are important both to understand the physics of magnetic flux tube evolution as well as the algorithms used for simulations. A challenging problem is the reconstruction of the effective patterns of convection below an observed active region as given by magnetograms and temperature maps at photospheric levels. Since convection in the sun is strongly stratified in density it can be regarded as being anelastic, therefore we used ANMHD software. Here we chosed AR9077-20000714 also known to have produced the ''Bastille day'' flare a region of area 175 Mm2. To this purpose we used an anelastic convection model that we modified to include the Nudging Back and Forth, a Newtonian relaxation technique for the data assimilation of SOHO/MDI temperature and magnetograms. Vector magnetograms are first choice for the upper boundary condition to be data assimilated. However they have been computed from SOHO line of sight magnetograms using the force free hypothesis as if we would be just above photosphere. We found that velocity shears between slow diverging upflows and fast turbulent downflows produce Ω and U-shaped magnetic field loops. The coronal arcade system of AR9077-20000714 (the ``slinky'') is here understood as the emerging part of the magneto convective pattern below.

  7. Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives

    NASA Astrophysics Data System (ADS)

    Cremades, H.; Mandrini, C. H.; Schmieder, B.; Crescitelli, A. M.

    2015-06-01

    The cluster formed by active regions (ARs) NOAA 11121 and 11123, approximately located on the solar central meridian on 11 November 2010, is of great scientific interest. This complex was the site of violent flux emergence and the source of a series of Earth-directed events on the same day. The onset of the events was nearly simultaneously observed by the Atmospheric Imaging Assembly (AIA) telescope onboard the Solar Dynamics Observatory (SDO) and the Extreme-Ultraviolet Imagers (EUVI) on the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite of telescopes onboard the Solar-Terrestrial Relations Observatory (STEREO) twin spacecraft. The progression of these events in the low corona was tracked by the Large Angle Spectroscopic Coronagraphs (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) and the SECCHI/COR coronagraphs on STEREO. SDO and SOHO imagers provided data from the Earth's perspective, whilst the STEREO twin instruments procured images from the orthogonal directions. This spatial configuration of spacecraft allowed optimum simultaneous observations of the AR cluster and the coronal mass ejections that originated in it. Quadrature coronal observations provided by STEREO revealed many more ejective events than were detected from Earth. Furthermore, joint observations by SDO/AIA and STEREO/SECCHI EUVI of the source region indicate that all events classified by GOES as X-ray flares had an ejective coronal counterpart in quadrature observations. These results directly affect current space weather forecasting because alarms might be missed when there is a lack of solar observations in a view direction perpendicular to the Sun-Earth line.

  8. Twist of Magnetic Fields in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi; Bao, Shudong; Kuzanyan, Kirill M.

    2002-05-01

    We study the twist properties of photospheric magnetic fields in solar active regions using magnetographic data on 422 active regions obtained at the Huairou Solar Observing Station in 1988 1997. We calculate the mean twist (force-free field αf) of the active regions and compare it with the mean current-helicity density of these same active regions, h c =B ∥·(∇×B)∥. The latitude and longitude distributions and time dependence of these quantities is analyzed. These parameters represent two different tracers of the α effect in dynamo theory, so we might expect them to possess similar properties. However, apart from differences in their definitions, they also display differences associated with the technique used to recalculate the magnetographic data and with their different physical meanings. The distributions of the mean αf and h c both show hemispherical asymmetry—negative (positive) values in the northern (southern) hemisphere—although this tendency is stronger for h c. One reason for these differences may be the averaging procedure, when twists of opposite sign in regions with weak fields make a small contribution to the mean current-helicity density. Such transequatorial regularity is in agreement with the expectations of dynamo theory. In some active regions, the average αf and h c do not obey this transequatorial rule. As a whole, the mean twist of the magnetic fields αf of active regions does not vary significantly with the solar cycle. Active regions that do not follow the general behavior for αf do not show any appreciable tendency to cluster at certain longitudes, in contrast to results for h c noted in previous studies. We analyze similarities and differences in the distributions of these two quantities. We conclude that using only one of these tracers, such as αf, to search for signatures of the α effect can have disadvantages, which should be taken into account in future studies.

  9. SDO/HMI survey of emerging active regions for helioseismology

    NASA Astrophysics Data System (ADS)

    Schunker, H.; Braun, D. C.; Birch, A. C.; Burston, R. B.; Gizon, L.

    2016-11-01

    Context. Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which would enable us to perform statistical analyses. Aims: Our goal is to collate a uniform data set of emerging active regions observed by the SDO/HMI instrument suitable for helioseismic analysis, where each active region is centred on a 60° × 60° area and can be observed up to seven days before emergence. Methods: We restricted the sample to active regions that were visible in the continuum and emerged into quiet Sun largely avoiding pre-existing magnetic regions. As a reference data set we paired a control region (CR), with the same latitude and distance from central meridian, with each emerging active region (EAR). The control regions do not have any strong emerging flux within 10° of the centre of the map. Each region was tracked at the Carrington rotation rate as it crossed the solar disk, within approximately 65° from the central meridian and up to seven days before, and seven days after, emergence. The mapped and tracked data, consisting of line-of-sight velocity, line-of-sight magnetic field, and intensity as observed by SDO/HMI, are stored in datacubes that are 410 min in duration and spaced 320 min apart. We call this data set, which is currently comprised of 105 emerging active regions observed between May 2010 and November 2012, the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. Results: To demonstrate the utility of a data set of a large number of emerging active regions, we measure the relative east-west velocity of the leading and trailing polarities from the line-of-sight magnetogram maps during the first day after emergence. The latitudinally averaged line-of-sight magnetic field of all the EARs shows that, on average, the leading (trailing) polarity moves in a prograde (retrograde) direction with a speed of 121 ± 22 m s-1 (-70 ± 13 m s-1) relative to the

  10. [Ar III]/[O III] and [S III]/[O III]: well-behaved oxygen abundance indicators for HII regions and star forming galaxies

    NASA Astrophysics Data System (ADS)

    Stasińska, G.

    2006-08-01

    We propose two statistical methods to derive oxygen abundances in HII regions and star forming galaxies and calibrate them with a sample of several hundred giant HII regions in spiral and blue compact galaxies as well as of galaxies from the Sloan Digital Sky Survey. We show the advantages of our new abundance indicators over previous ones.

  11. Triggering Process of the X1.0 Three-ribbon Flare in the Great Active Region NOAA 12192

    NASA Astrophysics Data System (ADS)

    Bamba, Yumi; Inoue, Satoshi; Kusano, Kanya; Shiota, Daikou

    2017-04-01

    The solar magnetic field in a flare-producing active region (AR) is much more complicated than theoretical models, which assume a very simple magnetic field structure. The X1.0 flare, which occurred in AR 12192 on 2014 October 25, showed a complicated three-ribbon structure. To clarify the trigger process of the flare and to evaluate the applicability of a simple theoretical model, we analyzed the data from Hinode/Solar Optical Telescope and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, Atmospheric Imaging Assembly. We investigated the spatio-temporal correlation between the magnetic field structures, especially the non-potentiality of the horizontal field, and the bright structures in the solar atmosphere. As a result, we determined that the western side of the positive polarity, which is intruding on a negative polarity region, is the location where the flare was triggered. This is due to the fact that the sign of the magnetic shear in that region was opposite that of the major shear of the AR, and the significant brightenings were observed over the polarity inversion line (PIL) in that region before flare onset. These features are consistent with the recently proposed flare-trigger model that suggests that small reversed shear (RS) magnetic disturbances can trigger solar flares. Moreover, we found that the RS field was located slightly off the flaring PIL, contrary to the theoretical prediction. We discuss the possibility of an extension of the RS model based on an extra numerical simulation. Our result suggests that the RS field has a certain flexibility for displacement from a highly sheared PIL, and that the RS field triggers more flares than we expected.

  12. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  13. Predictions of active region flaring probability using subsurface helicity measurements

    NASA Astrophysics Data System (ADS)

    Reinard, A. A.; Komm, R.; Hill, F.

    2010-12-01

    Solar flares are responsible for a number of hazardous effects on the earth such as disabling high-frequency radio communications, interfering with GPS measurements, and disrupting satellites. However, forecasting flare occurrence is currently very difficult. One possible means for predicting flare occurrence lies in helioseismology, i.e. analysis of the region below the active region for signs of an impending flare. Time series helioseismic data collected by the Global Oscillation Network Group (GONG) has been analyzed for a subset of active regions that produce large flares and a subset with very high magnetic field strength that produce no flares. A predictive parameter has been developed and analyzed using discriminant analysis as well as traditional forecasting tools such as the Heidke skill score. Preliminary results show that this parameter predicts the flaring probability of an active region 2-3 days in advance with a relatively high degree of success.

  14. Helium Line Formation and Abundance in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Mauas, P. J. D.; Andretta, V.; Falchi, A.; Falciani, R.; Teriaca, L.; Cauzzi, G.

    2005-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground-based and Solar and Heliospheric Observatory (SOHO) instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines Ca II K, Hα, and Na I D, as well as He I 10830, 5876, 584, and He II 304 Å lines have been observed. The EUV radiation in the range λ<500 Å and in the range 260<λ<340 Å has also been measured at the same time. These simultaneous observations allow us to build semiempirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it is of fundamental importance for the D3 and 10830 Å lines. Finally, we build two more models, assuming values of He abundance [He]=0.07 and 1.5, only in the region where temperatures are >1×104 K. This region, between the chromosphere and transition region, has been indicated as a good candidate for processes that might be responsible for strong variations of [He]. The set of our observables can still be well reproduced in both cases, changing the atmospheric structure mainly in the low transition region. This implies that, to choose between different values of [He], it is necessary to constrain the transition region with different observables, independent of the He lines.

  15. 40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA

    USGS Publications Warehouse

    Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.

    2014-01-01

    The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.

  16. Universities and Economic Development Activities: A UK Regional Comparison

    ERIC Educational Resources Information Center

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.

    2011-01-01

    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  17. IFLA General Conference, 1985. Division on Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on regional library activities which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Importance of Information Resources in National Development with Particular Reference to the Asian Scene" (Yogendra P. Dubey, India); (2) "Report of the Activities of the Regional…

  18. Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, Mark G.; Schuck, Peter W.

    2017-04-01

    Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the development of coronal models which are “data-driven” at the photosphere. We present an investigation to determine the feasibility and accuracy of such methods. Our validation framework uses a simulation of active region (AR) formation, modeling the emergence of magnetic flux from the convection zone to the corona, as a ground-truth data set, to supply both the photospheric information and to perform the validation of the data-driven method. We focus our investigation on how the accuracy of the data-driven model depends on the temporal frequency of the driving data. The Helioseismic and Magnetic Imager on NASA’s Solar Dynamics Observatory produces full-disk vector magnetic field measurements at a 12-minute cadence. Using our framework we show that ARs that emerge over 25 hr can be modeled by the data-driving method with only ∼1% error in the free magnetic energy, assuming the photospheric information is specified every 12 minutes. However, for rapidly evolving features, under-sampling of the dynamics at this cadence leads to a strobe effect, generating large electric currents and incorrect coronal morphology and energies. We derive a sampling condition for the driving cadence based on the evolution of these small-scale features, and show that higher-cadence driving can lead to acceptable errors. Future work will investigate the source of errors associated with deriving plasma variables from the photospheric magnetograms as well as other sources of errors, such as reduced resolution, instrument bias, and noise.

  19. RECONSTRUCTING THE SUBSURFACE THREE-DIMENSIONAL MAGNETIC STRUCTURE OF A SOLAR ACTIVE REGION USING SDO/HMI OBSERVATIONS

    SciTech Connect

    Chintzoglou, Georgios; Zhang Jie

    2013-02-10

    A solar active region (AR) is a three-dimensional (3D) magnetic structure formed in the convection zone, whose property is fundamentally important for determining the coronal structure and solar activity when emerged. However, our knowledge of the detailed 3D structure prior to its emergence is rather poor, largely limited by the low cadence and sensitivity of previous instruments. Here, using the 45 s high-cadence observations from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we are able for the first time to reconstruct a 3D data cube and infer the detailed subsurface magnetic structure of NOAA AR 11158, and to characterize its magnetic connectivity and topology. This task is accomplished with the aid of the image-stacking method and advanced 3D visualization. We find that the AR consists of two major bipoles or four major polarities. Each polarity in 3D shows interesting tree-like structure, i.e., while the root of the polarity appears as a single tree-trunk-like tube, the top of the polarity has multiple branches consisting of smaller and thinner flux tubes which connect to the branches of the opposite polarity that is similarly fragmented. The roots of the four polarities align well along a straight line, while the top branches are slightly non-coplanar. Our observations suggest that an active region, even appearing highly complicated on the surface, may originate from a simple straight flux tube that undergoes both horizontal and vertical bifurcation processes during its rise through the convection zone.

  20. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    SciTech Connect

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  1. Activated region fitting: a robust high-power method for fMRI analysis using parameterized regions of activation.

    PubMed

    Weeda, Wouter D; Waldorp, Lourens J; Christoffels, Ingrid; Huizenga, Hilde M

    2009-08-01

    An important issue in the analysis of fMRI is how to account for the spatial smoothness of activated regions. In this article a method is proposed to accomplish this by modeling activated regions with Gaussian shapes. Hypothesis tests on the location, spatial extent, and amplitude of these regions are performed instead of hypothesis tests of individual voxels. This increases power and eases interpretation. Simulation studies show robust hypothesis tests under misspecification of the shape model, and increased power over standard techniques especially at low signal-to-noise ratios. An application to real single-subject data also indicates that the method has increased power over standard methods.

  2. Dynamics of active regions observed with Hinode XRT

    NASA Astrophysics Data System (ADS)

    Sakao, Taro

    We present dynamics of active regions observed with the X-Ray Telescope (XRT) aboard Hinode. XRT is a grazing-incidence imager with a Walter Type-I-like mirror of 34 cm diameter with a back-illuminated CCD device. The XRT can image the X-ray corona of the Sun with angular resolution consistent with 1 arcsec CCD pixel size. In addition to this unprecedentedly-high angular resolution ever achieved as a solar X-ray telescope, enhanced sensitivity of the CCD towards longer X-ray wavelengths (particularly beyond 50 Angstroms) enables XRT to image, and perform temperature diagnostics on, a wide range of coronal plasmas from those as low as 1 MK to high-temperature plasmas even exceeding 10 MK. This adds a notable advantage to the XRT such that it can observe most, if not all, active phenomena taking place in and around active regions. Since the beginning of observations with XRT on 23 October 2006, the XRT has so far made various interesting observations regarding active regions. These include (1) continuous outflow of plasmas from the edge of a solar active region that is likely to be a source of (slow) solar wind, (2) clear signature of eruptions for activities even down to GOES B-level, (3) detailed structure and evolution of flaring loops, (4) formation of large-scale hot loops around active regions, and so on. Dynamic phenomena in and around active regions observed with Hinode XRT will be presented and their possible implications to the Sun-Earth connection investigation will be discussed.

  3. EVIDENCE OF IMPULSIVE HEATING IN ACTIVE REGION CORE LOOPS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2010-11-01

    Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained emission measure EM(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely, static equilibrium, strong condensation, and strong evaporation from Klimchuk et al. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log T[K] = 5.15-6.3. Using photospheric abundances, we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the strong condensation case (EM{sub con}), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3-5 MK) seen in the core of active regions are heated by nanoflares.

  4. Active Region Soft X-Ray Spectra as Observed Using Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Woods, T. N.; Jones, A. R.; Caspi, A.; Warren, H. P.

    2015-12-01

    Observations of solar active regions (ARs) in the soft x-ray spectral range (0.5 to 3.0 nm) were made on sounding rocket flight NASA 36.290 using a modified Solar Aspect Monitor (SAM), a pinhole camera on the EUV Variability Experiment (EVE) sounding rocket instrument. The suite of EVE rocket instruments is designed for under-flight calibrations of the orbital EVE on SDO. While the sounding rocket EVE instrument is for the most part a duplicate of the EVE on SDO, the SAM channel on the rocket version was modified in 2012 to include a free-standing transmission grating so that it could provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features on it, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. For solar observations, this spectral separation is on a similar scale to the spatial size of the AR on the CCD, so dispersed AR images associated with emission lines of similar wavelength tend to overlap. Furthermore, SAM shares a CCD detector with MEGS-A, a separate EVE spectrometer channel, and artifacts of the MEGS-A signal (a set of bright spectral lines) appear in the SAM images. For these reasons some processing and analysis of the solar images obtained by SAM must be performed in order to determine spectra of the observed ARs. We present a method for determining AR spectra from the SAM rocket images and report initial soft X-ray spectra for two of the major active regions (AR11877 and AR11875) observed on flight 36.290 on 21 October 2013 at about 18:30 UT. We also compare our results with concurrent measurements from other solar soft x-ray instrumentation.

  5. 40Ar/39Ar ages of lunar impact glasses: Relationships among Ar diffusivity, chemical composition, shape, and size

    NASA Astrophysics Data System (ADS)

    Zellner, N. E. B.; Delano, J. W.

    2015-07-01

    Lunar impact glasses, which are quenched melts produced during cratering events on the Moon, have the potential to provide not only compositional information about both the local and regional geology of the Moon but also information about the impact flux over time. We present in this paper the results of 73 new 40Ar/39Ar analyses of well-characterized, inclusion-free lunar impact glasses and demonstrate that size, shape, chemical composition, fraction of radiogenic 40Ar retained, and cosmic ray exposure (CRE) ages are important for 40Ar/39Ar investigations of these samples. Specifically, analyses of lunar impact glasses from the Apollo 14, 16, and 17 landing sites indicate that retention of radiogenic 40Ar is a strong function of post-formation thermal history in the lunar regolith, size, and chemical composition. This is because the Ar diffusion coefficient (at a constant temperature) is estimated to decrease by ∼3-4 orders of magnitude with an increasing fraction of non-bridging oxygens, X(NBO), over the compositional range of most lunar impact glasses with compositions from feldspathic to basaltic. Based on these relationships, lunar impact glasses with compositions and sizes sufficient to have retained ∼90% of their radiogenic Ar during 750 Ma of cosmic ray exposure at time-integrated temperatures of up to 290 K have been identified and are likely to have yielded reliable 40Ar/39Ar ages of formation. Additionally, ∼50% of the identified impact glass spheres have formation ages of ⩽500 Ma, while ∼75% of the identified lunar impact glass shards and spheres have ages of formation ⩽2000 Ma. Higher thermal stresses in lunar impact glasses quenched from hyperliquidus temperatures are considered the likely cause of poor survival of impact glass spheres, as well as the decreasing frequency of lunar impact glasses in general with increasing age. The observed age-frequency distribution of lunar impact glasses may reflect two processes: (i) diminished

  6. Interplanetary planar magnetic structures associated with expanding active regions

    NASA Technical Reports Server (NTRS)

    Nakagawa, Tomoko; Uchida, Yutaka

    1995-01-01

    Planar magnetic structures are interplanetary objects whose magnetic field cannot be explained by Parker's solar wind model. They are characterized by two-dimensional structure of magnetic field that are highly variable and parallel to a plane which is inclined to the ecliptic plane. They appeared independently of interplanetary compression, solar flares, active prominences nor filament disappearances, but the sources often coincided with active regions. On the other hand, it has been discovered by the Yohkoh Soft X-ray telescope that active-region corona expand outwards at speeds of a few to a few tens of km/s near the Sun. The expansions occurred repeatedly, almost continually, even in the absence of any sizable flares. In the Yohkoh Soft X-ray images, the active-region corona seems to expand out into interplanetary space. Solar sources of interplanetary planar magnetic structures observed by Sakigake were examined by Yohkoh soft X-ray telescope. During a quiet period of the Sun from January 6 to November 11, 1993, there found 5 planar magnetic structures according to the criteria (absolute value of Bn)/(absolute value of B) less than 0.1 for planarity and (dB)/(absolute value of B) greater than 0.7 for variability of magnetic field, where Bn, dB, and the absolute value of B are field component normal to a plane, standard deviation, and average of the magnitude of the magnetic field, respectively. Sources of 4 events were on low-latitude (less than 5 degrees) active regions from which loop-like structures were expanding. The coincidence, 80%, is extremely high with respect to accidental coincidence, 7%, of Sakigake windows of solar wind observation with active regions. The last source was on loop-like features which seemed to be related with a mid-latitude (20 degrees) active region.

  7. Speed of CMEs and the Magnetic Non-Potentiality of Their Source ARs

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Falconer, David A.; Moore, Ronald L.; Venkatakrishnan, P.

    2014-01-01

    Most fast coronal mass ejections (CMEs) originate from solar active regions (ARs). Non-potentiality of ARs is expected to determine the speed and size of CMEs in the outer corona. Several other unexplored parameters might be important as well. To find out the correlation between the initial speed of CMEs and the non-potentiality of source ARs, we associated over a hundred of CMEs with source ARs via their co-produced flares. The speed of the CMEs are collected from the SOHO LASCO CME catalog. We have used vector magnetograms obtained mainly with HMI/SDO, also with Hinode (SOT/SP) when available within an hour of a CME occurrence, to evaluate various magnetic non-potentiality parameters, e.g. magnetic free-energy proxies, computed magnetic free energy, twist, shear angle, signed shear angle etc. We have also included several other parameters e.g. total unsigned flux, net current, magnetic area of ARs, area of sunspots, to investigate their correlation, if any, with the initial speeds of CMEs. Our preliminary results show that the ARs with larger non-potentiality and area mostly produce fast CMEs but they can also produce slower ones. The ARs with lesser non-potentiality and area generally produce only slower CMEs, however, there are a few exceptions. The total unsigned flux correlate with the non-potentiality parameters and area of ARs but some ARs with large unsigned flux are also found to be least non-potential. A more detailed analysis is underway.

  8. ISWI contributes to ArsI insulator function in development of the sea urchin

    PubMed Central

    Yajima, Mamiko; Fairbrother, William G.; Wessel, Gary M.

    2012-01-01

    Insulators are genomic elements that regulate transcriptional activity by forming chromatin boundaries. Various DNA insulators have been identified or are postulated in many organisms, and the paradigmatic CTCF-dependent insulators are perhaps the best understood and most widespread in function. The diversity of DNA insulators is, however, understudied, especially in the context of embryonic development, when many new gene territories undergo transitions in functionality. Here we report the functional analysis of the arylsulfatase insulator (ArsI) derived from the sea urchin, which has conserved insulator activity throughout the many metazoans tested, but for which the molecular mechanism of function is unknown. Using a rapid in vivo assay system and a high-throughput mega-shift assay, we identified a minimal region in ArsI that is responsible for its insulator function. We discovered a small set of proteins specifically bound to the minimal ArsI region, including ISWI, a known chromatin-remodeling protein. During embryogenesis, ISWI was found to interact with select ArsI sites throughout the genome, and when inactivated led to misregulation of select gene expression, loss of insulator activity and aberrant morphogenesis. These studies reveal a mechanistic basis for ArsI function in the gene regulatory network of early development. PMID:22949616

  9. ISWI contributes to ArsI insulator function in development of the sea urchin.

    PubMed

    Yajima, Mamiko; Fairbrother, William G; Wessel, Gary M

    2012-10-01

    Insulators are genomic elements that regulate transcriptional activity by forming chromatin boundaries. Various DNA insulators have been identified or are postulated in many organisms, and the paradigmatic CTCF-dependent insulators are perhaps the best understood and most widespread in function. The diversity of DNA insulators is, however, understudied, especially in the context of embryonic development, when many new gene territories undergo transitions in functionality. Here we report the functional analysis of the arylsulfatase insulator (ArsI) derived from the sea urchin, which has conserved insulator activity throughout the many metazoans tested, but for which the molecular mechanism of function is unknown. Using a rapid in vivo assay system and a high-throughput mega-shift assay, we identified a minimal region in ArsI that is responsible for its insulator function. We discovered a small set of proteins specifically bound to the minimal ArsI region, including ISWI, a known chromatin-remodeling protein. During embryogenesis, ISWI was found to interact with select ArsI sites throughout the genome, and when inactivated led to misregulation of select gene expression, loss of insulator activity and aberrant morphogenesis. These studies reveal a mechanistic basis for ArsI function in the gene regulatory network of early development.

  10. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  11. Bimanual passive movement: functional activation and inter-regional coupling.

    PubMed

    Macaluso, Emiliano; Cherubini, Andrea; Sabatini, Umberto

    2007-01-01

    The aim of this study was to investigate intra-regional activation and inter-regional connectivity during passive movement. During fMRI, a mechanic device was used to move the subject's index and middle fingers. We assessed four movement conditions (unimanual left/right, bimanual symmetric/asymmetric), plus Rest. A conventional intra-regional analysis identified the passive stimulation network, including motor cortex, primary and secondary somatosensory cortex, plus the cerebellum. The posterior (sensory) part of the sensory-motor activation around the central sulcus showed a significant modulation according to the symmetry of the bimanual movement, with greater activation for asymmetric compared to symmetric movements. A second set of fMRI analyses assessed condition-dependent changes of coupling between sensory-motor regions around the superior central sulcus and the rest of the brain. These analyses showed a high inter-regional covariation within the entire network activated by passive movement. However, the specific experimental conditions modulated these patterns of connectivity. Highest coupling was observed during the Rest condition, and the coupling between homologous sensory-motor regions around the left and right central sulcus was higher in bimanual than unimanual conditions. These findings demonstrate that passive movement can affect the connectivity within the sensory-motor network. We conclude that implicit detection of asymmetry during bimanual movement relies on associative somatosensory region in post-central areas, and that passive stimulation reduces the functional connectivity within the passive movement network. Our findings open the possibility to combine passive movement and inter-regional connectivity as a tool to investigate the functionality of the sensory-motor system in patients with very poor mobility.

  12. Radio-derived three-dimensional structure of a solar active region

    NASA Astrophysics Data System (ADS)

    Tun, Samuel D.

    Solar active regions are the source of the most violent events observed on the Sun, some of which have a direct impact to modern civilization. Efforts to understand and predict such events require determination of the three-dimensional distributions of density, temperature, and magnetic fields above such active regions. This thesis presents the structure of the solar atmosphere above active region AR 10923, observed on 2006 Nov 10, as deduced from multi-wavelength studies including combined microwave observations from the Very Large Array (VLA) and the Owens Valley Solar Array (OVSA). The VLA observations provide excellent image quality at a few widely spaced frequencies while the OVSA data provide information at many intermediate frequencies to fill in the spectral coverage. In order to optimize the OVSA data for spectroscopic studies, the L1 method of self-calibration was implemented at this observatory, producing the best single frequency maps produced to date. Images at the 25 distinct, available frequencies are used to provide spatially resolved spectra along many lines of sight in the active region, from which microwave spectral diagnostics are obtained for deducing two-dimensional maps of temperature, magnetic field strength, and column density. The derived quantities are compared with multi-wavelength observations from SoHO and Hinode spacecraft, and with a standard potential magnetic field extrapolation. It is found that a two component temperature model is required to fit the data, in which a hot (> 2 MK) lower corona above the strong-field plage and sunspot regions (emitting via the gyroresonance process) is overlaid with somewhat cooler (˜ 1 MK) coronal loops that partially absorb the gyroresonance emission through the free-free (Bremsstrahlung) process. It is also found that the potential magnetic field extrapolation model can quantitatively account for the observed gyroresonance emission over most of the active region, but in a few areas a higher

  13. 39Ar- 40Ar ages of martian nakhlites

    NASA Astrophysics Data System (ADS)

    Park, Jisun; Garrison, Daniel H.; Bogard, Donald D.

    2009-04-01

    We report 39Ar- 40Ar ages of whole rock (WR) and plagioclase and pyroxene mineral separates of nakhlites MIL 03346 and Y-000593, and of WR samples of nakhlites NWA 998 and Nakhla. All age spectra are complex and indicate variable degrees of 39Ar recoil and variable amounts of trapped 40Ar in the samples. Thus, we examine possible Ar-Ar ages in several ways. From consideration of both limited plateau ages and isochron ages, we prefer Ar-Ar ages of NWA 998 = 1334 ± 11 Ma, MIL 03346 = 1368 ± 83 Ma (mesostasis) and 1334 ± 54 Ma (pyroxene), Y-000593 = 1367 ± 7 Ma, and Nakhla = 1357 ± 11 Ma, (2 σ errors). For NWA 998 and MIL 03346 the Ar-Ar ages are within uncertainties of preliminary Rb-Sr isochron ages reported in the literature. These Ar-Ar ages for Y-000593 and Nakhla are several Ma older than Sm-Nd ages reported in the literature. We conclude that the major factor in producing Ar-Ar ages slightly too old is the presence of small amounts of trapped martian or terrestrial 40Ar on weathered grain surfaces that was degassed along with the first several percent of 39Ar. A total K- 40Ar isochron for WR and mineral data from five nakhlites analyzed by us, plus Lafayette data in the literature, gives an isochron age of 1325 ± 18 Ma (2 σ). We emphasize the precision of this isochron over the value of the isochron age. Our Ar-Ar data are consistent with a common formation age for nakhlites. The cosmic-ray exposure (CRE) age for NWA 998 of ˜12 Ma is also similar to CRE ages for other nakhlites.

  14. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  15. Active region moss. Basic physical parameters and their temporal variation

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Mason, H. E.; Del Zanna, G.; Young, P. R.

    2010-07-01

    Context. Active region moss are transition region phenomena, first noted in the images recorded by the Transition Region and Coronal Explorer (TRACE) in λ171. Moss regions are thought to be the footpoints of hot loops (3-5 MK) seen in the core of active regions. These hot loops appear “fuzzy” (unresolved). Therefore, it is difficult to study the physical plasma parameters in individual hot core loops and hence their heating mechanisms. Moss regions provide an excellent opportunity to study the physics of hot loops. In addition, they allow us to study the transition region dynamics in the footpoint regions. Aims: To derive the physical plasma parameters such as temperature, electron density, and filling factors in moss regions and to study their variation over a short (an hour) and a long time period (5 consecutive days). Methods: Primarily, we have analyzed spectroscopic observations recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard Hinode. In addition we have used supplementary observations taken from TRACE and the X-Ray Telescope (XRT) aboard Hinode. Results: The moss emission is strongest in the Fe XII and Fe XIII lines. Based on analyses using line ratios and emission measure we found that moss regions have a characteristic temperature of log T[K] = 6.2. The temperature structure in moss region remains almost identical from one region to another and it does not change with time. The electron densities measured at different locations in the moss regions using Fe XII ratios are about 1-3 × 1010 cm-3 and about 2-4 × 109 cm-3 using Fe XIII and Fe XIV. The densities in the moss regions are similar in different places and show very little variation over short and long time scales. The derived electron density substantially increased (by a factor of about 3-4 or even more in some cases) when a background subtraction was performed. The filling factor of the moss plasma can vary between 0.1-1 and the path length along which the emission

  16. Towards establishing high-precision 40Ar/39Ar chronologies for distal tephra archives

    NASA Astrophysics Data System (ADS)

    Mark, D. F.

    2012-12-01

    To develop further understanding of palaeoclimate change in a context of, for example, the expansion of hominin out of Africa and abrupt climate change, correlation between high-resolution terrestrial, marine and ice core archives from around the globe is key. Whereas there can be significant uncertainties in the tuning of palaeoclimate proxy records (i.e., wiggle matching) between regions, direct tephra correlations have essentially zero uncertainty, providing the correlations are robust. Tephrochronology has demonstrated tremendous potential for correlation of records across regions and construction of relative chronological tephra matrices. However absolute dating is often required for: (1) pinning of events to the geological timescale; and (2) to confirm the validity of correlations if geochemical fingerprints do not prove to be definitive. 14C dating can be used for radiocarbon-bearing sediments within which volcanic tephra are intercalated. However, the technique only extends over the last 50 ka and precision suffers dramatically with increasing age. The technique is reliant on the availability of radiocarbon-bearing material within sediments and direct comparison of 14C chronologies from marine and terrestrial settings is problematic owing to marine reservoir offset. OSL dating can also be used to date sediments above and below tephra units but uncertainties are typically too large for development of high-precision chronologies. Volcanic K-bearing distal tephra can theoretically be dated using the 40Ar/39Ar technique thereby placing direct temporal constraints on palaeoclimate records. However, in reality, distal tephra are usually fine-grained and crystal-poor, lacking mineral phases amenable to 40Ar/39Ar dating of young rocks, e.g., sanidine. Although the distal samples contain abundant K-bearing glass shards, they have been shown to provide unreliable 40Ar/39Ar ages likely due to a combination of post eruption K-loss (during glass hydration?) and 37Ar and

  17. Using a Differential Emission Measure and Density Measurements in an Active Region Core to Test a Steady Heating Model

    NASA Astrophysics Data System (ADS)

    Winebarger, Amy R.; Schmelz, Joan T.; Warren, Harry P.; Saar, Steve H.; Kashyap, Vinay L.

    2011-10-01

    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high-temperature active region loops close to equilibrium. In this paper, we couple observations of active region (AR) 10955 made with the X-Ray Telescope and the EUV Imaging Spectrometer on board Hinode to test a simple steady heating model. First we calculate the differential emission measure (DEM) of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3 MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6.3 < log T < 6.7. This model, for the first time, accounts for the base pressure, loop length, and distribution of apex temperatures of the core loops. We find that the density-sensitive spectral line intensities and the bulk of the hot emission in the active region core are consistent with steady heating. We also find, however, that the steady heating model cannot address the emission observed at lower temperatures. This emission may be due to foreground or background structures, or may indicate that the heating in the core is more complicated. Different heating scenarios must be tested to determine if they have the same level of agreement.

  18. Development of a Low-Level Ar-37 Calibration Standard

    SciTech Connect

    Williams, Richard M.; Aalseth, Craig E.; Bowyer, Ted W.; Day, Anthony R.; Fuller, Erin S.; Haas, Derek A.; Hayes, James C.; Hoppe, Eric W.; Humble, Paul H.; Keillor, Martin E.; LaFerriere, Brian D.; Mace, Emily K.; McIntyre, Justin I.; Miley, Harry S.; Myers, Allan W.; Orrell, John L.; Overman, Cory T.; Panisko, Mark E.; Seifert, Allen

    2016-03-07

    Argon-37 is an important environmental signature of an underground nuclear explosion. Producing and quantifying low-level 37Ar standards is an important step in the development of sensitive field measurement instruments for use during an On-Site Inspection, a key provision of the Comprehensive Nuclear-Test-Ban Treaty. This paper describes progress at Pacific Northwest National Laboratory (PNNL) in the development of a process to generate and quantify low-level 37Ar standard material, which can then be used to calibrate sensitive field systems at activities consistent with soil background levels. The 37Ar used for our work was generated using a laboratory-scale, high-energy neutron source to irradiate powdered samples of calcium carbonate. Small aliquots of 37Ar were then extracted from the head space of the irradiated samples. The specific activity of the head space samples, mixed with P10 (90% stable argon:10% methane by mole fraction) count gas, is then derived using the accepted Length-Compensated Internal-Source Proportional Counting method. Due to the low activity of the samples, a set of three Ultra-Low Background Proportional-Counters designed and fabricated at PNNL from radio-pure electroformed copper was used to make the measurements in PNNL’s shallow underground counting laboratory. Very low background levels (<10 counts/day) have been observed in the spectral region near the 37Ar emission feature at 2.8 keV. Two separate samples from the same irradiation were measured. The first sample was counted for 12 days beginning 28 days after irradiation, the second sample was counted for 24 days beginning 70 days after irradiation (the half-life of 37Ar is 35.0 days). Both sets of measurements were analyzed and yielded very similar results for the starting activity (~0.1 Bq) and activity concentration (0.15 mBq/ccSTP argon) after P10 count gas was added. A detailed uncertainty model was developed based on the ISO Guide to the Expression of Uncertainty in

  19. On the Active Region Bright Grains Observed in the Transition Region Imaging Channels of IRIS

    NASA Astrophysics Data System (ADS)

    Skogsrud, H.; Rouppe van der Voort, L.; De Pontieu, B.

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5-1.″7 that generally move limbward with velocities up to about 30 km s-1. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  20. ON THE ACTIVE REGION BRIGHT GRAINS OBSERVED IN THE TRANSITION REGION IMAGING CHANNELS OF IRIS

    SciTech Connect

    Skogsrud, H.; Voort, L. Rouppe van der; Pontieu, B. De

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5–1.″7 that generally move limbward with velocities up to about 30 km s{sup −1}. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  1. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription

    PubMed Central

    Carpenter, Beth M.; West, Abby L.; Gancz, Hanan; Servetas, Stephanie L.; Pich, Oscar Q.; Gilbreath, Jeremy J.; Hallinger, Daniel R.; Forsyth, Mark H.; Merrell, D. Scott; Michel, Sarah L. J.

    2015-01-01

    Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct “cross-talk” between HpArsRS and HpNikR at

  2. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription.

    PubMed

    Carpenter, Beth M; West, Abby L; Gancz, Hanan; Servetas, Stephanie L; Pich, Oscar Q; Gilbreath, Jeremy J; Hallinger, Daniel R; Forsyth, Mark H; Merrell, D Scott; Michel, Sarah L J

    2015-01-01

    Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA ) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct "cross-talk" between HpArsRS and HpNikR at

  3. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  4. Quaternary continental weathering geochronology by laser-heating 40Ar/39Ar analysis of supergene cryptomelane

    NASA Astrophysics Data System (ADS)

    Feng, Yuexing; Vasconcelos, Paulo

    2001-07-01

    Incremental laser-heating analyses of supergene cryptomelane clusters extracted from three distinct weathering profiles from the Mary Valley region, southeast Queensland, Australia, yield reproducible and well-defined plateau ages ranging from 346 ± 15 to 291 ± 14 ka (2 σ). Precipitation of supergene cryptomelane in this period implies that relative humid climate prevailed in southeast Queensland from 340 to 290 ka, a result consistent with oxygen isotope analyses of marine sediments from Ocean Drilling Program Site 820 and with regional pollen and spore records. These results, the first report on the precise 40Ar/39Ar dating of Quaternary supergene cryptomelane, indicate that 40Ar/39Ar analysis of pedogenic minerals provides a reliable geochronometer for the study of Quaternary surficial processes useful in the study of soil formation rates, continental paleoclimates, and archaeological sites devoid of datable volcanic minerals.

  5. Measuring 36Ar without H35Cl interference

    NASA Astrophysics Data System (ADS)

    Saxton, John

    2015-04-01

    Noble gas measurements are usually made in static mode, when the mass spectrometer sensitivity is inversely proportional to volume: this makes the building of very large instruments to obtain high mass resolution impracticable. A particularly challenging interference has hitherto been H35Cl, which differs in mass from 36Ar by 1 part in 3937. We have developed a method which makes improved use of the available MRP to remove interferences, and used it to obtain HCl-free 36Ar measurements on a multicollector instrument with MRP of only ~6000 (MRP= mass resolving power = m/dm 5-95% on side of peak). By arranging that the target mass position on a minor isotope (e.g. 36Ar), from which the interference must be removed, coincides with the ~50% point on the side of a major isotope (e.g. 40Ar), it is possible both to set the mass accurately and to verify the mass position and stability during measurements. The peak top of 40Ar is measured in a separate mass step. Two small corrections are necessary. One compensates for the residual HCl tail at the 36Ar position. The other arises because the peak is not totally flat in the region of interest: 40Ar and 36Ar+HCl are measured on the peak top, whilst 36Ar is measured at the extreme edge, with slightly lower efficiency. The required correction parameters can be obtained from a series of air calibrations with different target/interference ratios. With samples containing 4x10-15to 3x10-14moles of 40Ar, 36Ar/40Ar was measured, without HCl interference, to a 1σ precision of 0.5%, only slightly worse than counting statistics. This is potentially useful for 40Ar/39Ar dating, where 36Ar is used to correct for trapped air, and may be particularly significant for smaller or younger samples.

  6. Urban, Rural, and Regional Variations in Physical Activity

    ERIC Educational Resources Information Center

    Martin, Sarah Levin; Kirkner, Gregory J.; Mayo, Kelly; Matthews, Charles E.; Durstine, Larry; Hebert, James R.

    2005-01-01

    Purpose: There is some speculation about geographic differences in physical activity (PA) levels. We examined the prevalence of physical inactivity (PIA) and whether US citizens met the recommended levels of PA across the United States. In addition, the association between PIA/PA and degree of urbanization in the 4 main US regions (Northeast,…

  7. IFLA General Conference, 1987. Division of Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Six of the seven papers in this collection focus on regional library activities in Africa, Asia and Oceania, and Latin America and the Caribbean: (1) "Libraries and Information Services in a Changing World: The Challenges African Information Services Face at the End of the 1980s" (Dejen Abate, Ethiopia); (2) "The Computer and…

  8. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  9. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  10. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  11. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  12. Doppler Shifts in Active Region Moss Using SOHO/SUMER

    NASA Astrophysics Data System (ADS)

    Winebarger, Amy; Tripathi, Durgesh; Mason, Helen E.; Del Zanna, Giulio

    2013-04-01

    The velocity of the plasma at the footpoint of hot loops in active region cores can be used to discriminate between different heating frequencies. Velocities on the order of a few kilometers per second would indicate low-frequency heating on sub-resolution strands, while velocities close to zero would indicate high-frequency (steady) heating. To discriminate between these two values requires accurate velocity measurements; previous velocity measurements suffer from large uncertainties, mainly due to the lack of an absolute wavelength reference scale. In this paper, we determine the velocity in the loop footpoints using observations from Solar Ultraviolet Measurements of Emitted Radiation (SUMER) on Solar and Heliospheric Observatory. We use neutral spectral lines to determine the wavelength scale of the observations with an uncertainty in the absolute velocity of <3.5 km s-1 and co-aligned Transition Region and Coronal Explorer (TRACE) images to identify footpoint regions. We studied three different active regions and found average redshifts in the Ne VIII 770 Å emission line (formed at 6 × 105 K) of 5.17 ± 5.37 km s-1 and average redshifts in the C IV 1548 and 1550 Å emission lines (formed at 1 × 105 K) of 13.94 ± 4.93 km s-1 and 14.91 ± 6.09 km s-1, respectively. We find no correlation between the brightness in the spectral line and the measured velocity, nor do we find correlation between the Ne VIII and C IV velocities measured co-spatially and co-temporally. SUMER scanned two of the active regions twice; in those active regions we find positive correlation between the co-spatial velocities measured during the first and second scans. These results provide definitive and quantitative measurements for comparisons with simulations of different coronal heating mechanisms.

  13. MEIS1 functions as a potential AR negative regulator

    SciTech Connect

    Cui, Liang; Yang, Yutao; Hang, Xingyi; Cui, Jiajun; Gao, Jiangping

    2014-10-15

    The androgen receptor (AR) plays critical roles in human prostate carcinoma progression and transformation. However, the activation of AR is regulated by co-regulators. MEIS1 protein, the homeodomain transcription factor, exhibited a decreased level in poor-prognosis prostate tumors. In this study, we investigated a potential interaction between MEIS1 and AR. We found that overexpression of MEIS1 inhibited the AR transcriptional activity and reduced the expression of AR target gene. A potential protein–protein interaction between AR and MEIS1 was identified by the immunoprecipitation and GST pull-down assays. Furthermore, MEIS1 modulated AR cytoplasm/nucleus translocation and the recruitment to androgen response element in prostate specific antigen (PSA) gene promoter sequences. In addition, MEIS1 promoted the recruitment of NCoR and SMRT in the presence of R1881. Finally, MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells. Taken together, our data suggests that MEIS1 functions as a novel AR co-repressor. - Highlights: • A potential interaction was identified between MEIS1 and AR signaling. • Overexpression of MEIS1 reduced the expression of AR target gene. • MEIS1 modulated AR cytoplasm/nucleus translocation. • MEIS1 inhibited the proliferation and anchor-independent growth of LNCaP cells.

  14. Regional differences in rat conjunctival ion transport activities.

    PubMed

    Yu, Dongfang; Thelin, William R; Rogers, Troy D; Stutts, M Jackson; Randell, Scott H; Grubb, Barbara R; Boucher, Richard C

    2012-10-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na(+) transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface.

  15. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  16. 40Ar/39Ar and cosmic ray exposure ages of plagioclase-rich lithic fragments from Apollo 17 regolith, 78461

    NASA Astrophysics Data System (ADS)

    Das, J. P.; Baldwin, S. L.; Delano, J. W.

    2016-01-01

    Argon isotopic data is used to assess the potential of low-mass samples collected by sample return missions on planetary objects (e.g., Moon, Mars, asteroids), to reveal planetary surface processes. We report the first 40Ar/39Ar ages and 38Ar cosmic ray exposure (CRE) ages, determined for eleven submillimeter-sized (ranging from 0.06 to 1.2 mg) plagioclase-rich lithic fragments from Apollo 17 regolith sample 78461 collected at the base of the Sculptured Hills. Total fusion analysis was used to outgas argon from the lithic fragments. Three different approaches were used to determine 40Ar/39Ar ages and illustrate the sensitivity of age determination to the choice of trapped (40Ar/36Ar)t. 40Ar/39Ar ages range from ~4.0 to 4.4 Ga with one exception (Plag#10). Surface CRE ages, based on 38Ar, range from ~1 to 24 Ma. The relatively young CRE ages suggest recent re-working of the upper few centimeters of the regolith. The CRE ages may result from the effect of downslope movement of materials to the base of the Sculptured Hills from higher elevations. The apparent 40Ar/39Ar age for Plag#10 is >5 Ga and yielded the oldest CRE age (i.e., ~24 Ma). We interpret this data to indicate the presence of parentless 40Ar in Plag#10, originating in the lunar atmosphere and implanted in lunar regolith by solar wind. Based on a chemical mixing model, plagioclase compositions, and 40Ar/39Ar ages, we conclude that lithic fragments originated from Mg-suite of highland rocks, and none were derived from the mare region.

  17. Active sonar, beaked whales and European regional policy.

    PubMed

    Dolman, Sarah J; Evans, Peter G H; Notarbartolo-di-Sciara, Giuseppe; Frisch, Heidrun

    2011-01-01

    Various reviews, resolutions and guidance from international and regional fora have been produced in recent years that acknowledge the significance of marine noise and its potential impacts on cetaceans. Within Europe, ACCOBAMS and ASCOBANS have shown increasing attention to the issue. The literature highlights concerns surrounding the negative impacts of active sonar on beaked whales in particular, where concerns primarily relate to the use of mid-frequency active sonar (1-10kHz), as used particularly in military exercises. The authors review the efforts that European regional policies have undertaken to acknowledge and manage possible negative impacts of active sonar and how these might assist the transition from scientific research to policy implementation, including effective management and mitigation measures at a national level.

  18. Transcriptionally active genome regions are preferred targets for retrovirus integration.

    PubMed Central

    Scherdin, U; Rhodes, K; Breindl, M

    1990-01-01

    We have analyzed the transcriptional activity of cellular target sequences for Moloney murine leukemia virus integration in mouse fibroblasts. At least five of the nine random, unselected integration target sequences studied showed direct evidence for transcriptional activity by hybridization to nuclear run-on transcripts prepared from uninfected cells. At least four of the sequences contained multiple recognition sites for several restriction enzymes that cut preferentially in CpG-rich islands, indicating integration into 5' or 3' ends or flanking regions of genes. Assuming that only a minor fraction (less than 20%) of the genome is transcribed in mammalian cells, we calculated the probability that this association of retroviral integration sites with transcribed sequences is due to chance to be very low (1.6 x 10(-2]. Thus, our results strongly suggest that transcriptionally active genome regions are preferred targets for retrovirus integration. Images PMID:2296087

  19. THE EVOLUTION OF DARK CANOPIES AROUND ACTIVE REGIONS

    SciTech Connect

    Wang, Y.-M.; Robbrecht, E.; Muglach, K. E-mail: eva.robbrecht@oma.be

    2011-05-20

    As observed in spectral lines originating from the chromosphere, transition region, and low corona, active regions are surrounded by an extensive 'circumfacular' area which is darker than the quiet Sun. We examine the properties of these dark moat- or canopy-like areas using Fe IX 17.1 nm images and line-of-sight magnetograms from the Solar Dynamics Observatory. The 17.1 nm canopies consist of fibrils (horizontal fields containing extreme-ultraviolet-absorbing chromospheric material) clumped into featherlike structures. The dark fibrils initially form a quasiradial or vortical pattern as the low-lying field lines fanning out from the emerging active region connect to surrounding network and intranetwork elements of opposite polarity. The area occupied by the 17.1 nm fibrils expands as supergranular convection causes the active-region flux to spread into the background medium; the outer boundary of the dark canopy stabilizes where the diffusing flux encounters a unipolar region of opposite sign. The dark fibrils tend to accumulate in regions of weak longitudinal field and to become rooted in mixed-polarity flux. To explain the latter observation, we note that the low-lying fibrils are more likely to interact with small loops associated with weak, opposite-polarity flux elements in close proximity, than with high loops anchored inside strong unipolar network flux. As a result, the 17.1 nm fibrils gradually become concentrated around the large-scale polarity inversion lines (PILs), where most of the mixed-polarity flux is located. Systematic flux cancellation, assisted by rotational shearing, removes the field component transverse to the PIL and causes the fibrils to coalesce into long PIL-aligned filaments.

  20. EUV analysis of an active region. [of solar corona in limb region

    NASA Technical Reports Server (NTRS)

    Raghavan, N.; Withbroe, G. L.

    1975-01-01

    A sequence of extreme-ultraviolet (EUV) spectroheliograms of McMath region No. 10283 were obtained by OSO-6. The lines O VI (1032 A) Mg X (625 A), Si XII (499 A), and Fe XVI (335 A) were used to determine coronal temperatures and densities above the active region. A comparison of theoretical and observed line ratios yielded coronal temperatures of 2.2 to 2.3 million K above the active region and 2.0 to 2.1 million K in the surrounding area. The temperatures derived from ratios involving the O VI intensities are systematically higher than the others. This is attributed to an error in the theoretical O VI intensities. The intensities observed above the limb are compared with intensities predicted by a simple model based on cylindrical geometry. The overall agreement shows that the assumption of an isothermal corona in hydrostatic equilibrium above the active region is a resonable working hypothesis and that the adopted geometrical model for the electron density distribution is adequate.

  1. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  2. The evolution and orientation of early cycle 22 active regions

    NASA Technical Reports Server (NTRS)

    Cannon, Anne T.; Marquette, William H.

    1991-01-01

    The evolution of six major active regions which appeared during the first phase of the present solar cycle (cycle 22) has been studied. It was found that the northern hemisphere regions exhibited a broad range of evolutionary behavior in which the commonly accepted 'normal pattern' (whereby the follower flux moves preferentially polewards ahead of the leader flux) is represented at one end of the range. At the other end of the range, the leader flux is displaced polewards of the follower flux. In the latter cases equatorward extensions of the polar coronal hole are noted.

  3. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  4. Ar/Ar Dating Independent of Monitor Standard Ages

    NASA Astrophysics Data System (ADS)

    Boswell, S.; Hemming, S. R.

    2015-12-01

    Because the reported age of an analyzed sample is dependent on the age of the co-irradiated monitor standard(s), Ar/Ar dating is a relative dating technique. There is disagreement at the 1% scale in the age of commonly used monitor standards, and there is a great need to improve the inter-laboratory calibrations. Additionally, new approaches and insights are needed to meet the challenge of bringing the Ar/Ar chronometer to the highest possible precision and accuracy. In this spirit, we present a conceptual framework for Ar/Ar dating that does not depend on the age of monitor standards, but only on the K content of a solid standard. The concept is demonstrated by introducing a re-expressed irradiation parameter (JK) that depends on the ratio of 39ArK to 40Ar* rather than the 40Ar*/39ArK ratio. JK is equivalent to the traditional irradiation parameter J and is defined as JK = (39Ar/40K) • (λ/λe). The ultimate precision and accuracy of the method will depend on how precisely and accurately the 39Ar and 40K can be estimated, and will require isotope dilution measurements of both from the same aliquot. We are testing the workability of our technique at the 1% level by measuring weighed and irradiated hornblende and biotite monitor standards using GLO-1 glauconite to define a calibration curve for argon signals versus abundance.

  5. PATTERNS OF ACTIVITY IN A GLOBAL MODEL OF A SOLAR ACTIVE REGION

    SciTech Connect

    Bradshaw, S. J.; Viall, N. M. E-mail: Nicholeen.M.Viall@nasa.gov

    2016-04-10

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  6. Arsenic resistance strategy in Pantoea sp. IMH: Organization, function and evolution of ars genes

    PubMed Central

    Wang, Liying; Zhuang, Xuliang; Zhuang, Guoqiang; Jing, Chuanyong

    2016-01-01

    Pantoea sp. IMH is the only bacterium found in genus Pantoea with a high As resistance capacity, but its molecular mechanism is unknown. Herein, the organization, function, and evolution of ars genes in IMH are studied starting with analysis of the whole genome. Two ars systems - ars1 (arsR1B1C1H1) and ars2 (arsR2B2C2H2) - with low sequence homology and two arsC-like genes, were found in the IMH genome. Both ars1 and ars2 are involved in the As resistance, where ars1 is the major contributor at 15 °C and ars2 at 30 °C. The difference in the behavior of these two ars systems is attributed to the disparate activities of their arsR promoters at different temperatures. Sequence analysis based on concatenated ArsRBC indicates that ars1 and ars2 clusters may be acquired from Franconibacter helveticus LMG23732 and Serratia marcescens (plasmid R478), respectively, by horizontal gene transfer (HGT). Nevertheless, two arsC-like genes, probably arising from the duplication of arsC, do not contribute to the As resistance. Our results indicate that Pantoea sp. IMH acquired two different As resistance genetic systems by HGT, allowing the colonization of changing ecosystems, and highlighting the flexible adaptation of microorganisms to resist As. PMID:27966630

  7. Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Valley Bean and Beet Farm during 2011 (including Project 905)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation and rating plots were planted at the Saginaw Valley Research & Extension Center in Frankenmuth, MI in 2011 that focused on Cercospora leaf spot performance, conducted in conjunction with Beet Sugar Development Foundation and including USDA-ARS cooperators. 263 breeding lines were tested i...

  8. Sugar Beet Activities of the USDA-ARS East Lansing Conducted in Cooperation with Saginaw Valley Bean and Beet Farm During 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two evaluation plots were planted at the Saginaw Valley Research & Extension Center in Frankenmuth, MI in 2009; one agronomic trial and one combined Cercospora evaluation trial. All trials were planted, following normal fall and spring tillage operations, with a USDA-ARS modified John Deere/Almaco ...

  9. Combined K-Ar and 40Ar/39Ar dating of the upper Jaramillo reversal

    NASA Astrophysics Data System (ADS)

    Guillou, Herve; Carracedo, Juan Carlos; Kissel, Catherine; Laj, Carlo; Nomade, Sebastien; Perez Torrado, Francisco Jose; Rodriguez Gonzalez, Alejandro; Wandres, Camille

    2013-04-01

    The Jaramillo subchron was first evidenced in 1966 (Doell and Dalrymple) through the Rhyolotic domes of the Valles Caldera, New Mexico (USA). 40Ar/39Ar studies achieved by Spell et McDougall (1992), Spell et Harrison (1993), Izett and Obradovich (1994) and Singer et al. (1994) defined the base of this subchron at 1053±6 ka, and the ceiling at 986±5 ka. Channell et al. (2009) delimited the age of the Jaramillo subchron by astronomic calibration (base 1071 ka, top 990 ka). To provide additional absolute ages on this geomagnetic period, which is critical to improve our knowledge of the earth magnetic field behaviour, we have carried out a study combining paleomagnetism and isotopic dating of a lava sequence from Tenerife island. This sequence of basaltic lava flows is some 500 m thick. The first 400 m present, based on field magnetometer measurements, normal polarity lavas, with dykes of normal and reverse polarity, passing at the top to reverse polarity lavas. Preliminary K-Ar ages bracketed this sequence between 1018 ± 18 ka and 978 ± 17 ka. Therefore, the upper Jaramillo reversal at least appeared to be potentially recorded in this sequence. A more detailed paleomagnetic study was then carried out to more precisely delimit the reversal itself (see Laj et al., session EMRP3.4). We have undertaken 40Ar/39Ar incremental heating and unspiked K-Ar experiments on groundmass from four transitionally magnetized flows. The first transitional flow is K-Ar dated at 993 ± 18 ka and 40Ar/39Ar dated at 991 ± 13 ka, the second at 981 ± 17 ka (K-Ar) and 1000 ± 13 ka (40Ar/39Ar), the third at 950 ± 17 ka (K-Ar) and 1000 ± 8 ka (40Ar/39Ar) and the fourth at 984 ± 17 ka (K-Ar) and 977 ± 12 (40Ar/39Ar). 40Ar/39Ar ages and K-Ar ages (relative to FCT 28.02 Ma) are indistinguishable at 2σ. The age of the upper boundary of the Jaramillo event calculated combining 40Ar/39Ar ages and K-Ar ages is 992 ± 6 ka, in agreement with previous estimates.

  10. Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: Evidence for nanoflare heating

    SciTech Connect

    Brosius, Jeffrey W.; Daw, Adrian N.; Rabin, D. M.

    2014-08-01

    We present spatially resolved EUV spectroscopic measurements of pervasive, faint Fe XIX 592.2 Å line emission in an active region observed during the 2013 April 23 flight of the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectral resolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 Å (formed at temperature T ≈ 8.9 MK) and Fe XII at 592.6 Å (T ≈ 1.6 MK). The Fe XIX line emission, observed over an area in excess of 4920 arcsec{sup 2} (2.58 × 10{sup 9} km{sup 2}, more than 60% of the active region), provides strong evidence for the nanoflare heating model of the solar corona. No GOES events occurred in the region less than 2 hr before the rocket flight, but a microflare was observed north and east of the region with RHESSI and EUNIS during the flight. The absence of significant upward velocities anywhere in the region, particularly the microflare, indicates that the pervasive Fe XIX emission is not propelled outward from the microflare site, but is most likely attributed to localized heating (not necessarily due to reconnection) consistent with the nanoflare heating model of the solar corona. Assuming ionization equilibrium we estimate Fe XIX/Fe XII emission measure ratios of ∼0.076 just outside the AR core and ∼0.59 in the core.

  11. Primordial abundance of 40Ar

    NASA Astrophysics Data System (ADS)

    Sripada, V. S. Murty

    Primordial abundance of the isotope (40) Ar is still not known accurately. Recent results from Genesis could also not provide (40) Ar/ (36) Ar value of solar wind, due mainly to the overwhelming (40) Ar blank. A major part of (40) Ar is contributed by the radioactive decay of (40) K (half life = 1.25 Ga), even in the nebula, as the nebula grew old. Any attempt to determine this quantity needs a sample that satisfies the following criteria: A primitive mineral/phase that formed very early in the nebula, that can trap a large amount of noble gas (Ar); and a phase that acquires minimum amount (or total absence) of in situ produced components (cosmogenic and radiogenic) of Ar. Carbon phases in the ureilite meteorites and Phase Q from chondrites best fit this criteria. The minimum (40) Ar/ (36) Ar value so far observed in Phase Q is 0.2. Also, the relatively lower value of 1.035±±0.002 for trapped (129) Xe/ (132) Xe in ureilites, as compared to 1.042±±0.002 in Phase Q suggests that trapping of gases in ureilites might have predated that of Phase Q. If this interpretation is valid, ureilites are a better host of most primitive nebular Ar. Earlier attempts on ureilite studies in 1970s have yielded the lowest (40) Ar/ (36) Ar ratio in the meteorite Dayalpur, the major uncertainty for this value mostly coming from blank correction for (40) Ar/ (36) Ar. Recent developments in low blank extraction systems and more sensitive multi-collector noble gas mass spectrometers, as compared to 1970s have prompted us to make a fresh attempt in measuring this important quantity. We have analysed a number of ureilite acid residues by stepwise temperature extraction, using both pyrolysis and combustion techniques, for Ar to ascertain the trapped (40) Ar/ (36) Ar ratio in the solar nebula. These acid residues are mostly made of C rich phases, with only trace amounts of K (radiogenic parent of (40) Ar) and target elements for the production of cosmogenic Ar component. They mostly contain

  12. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  13. Modeling the Subsurface Evolution of Active-Region Flux Tubes

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2009-12-01

    I present results from a set of 3-D spherical-shell MHD simulations of the buoyant rise of active region flux tubes in the solar interior that put new constraints on the initial twist of the subsurface tubes in order for them to emerge with tilt angles consistent with the observed Joy's law for the mean tilt of solar active regions. Due to asymmetric stretching of the Ω-shaped tube by the Coriolis force, a field strength asymmetry develops with the leading side having a greater field strength and thus being more cohesive compared to the following side. Furthermore, the magnetic flux in the leading leg shows more coherent values of local twist α ≡ JB / B2, whereas the values in the following leg show large fluctuations and are of mixed signs.

  14. Regional Blood-Brain Barrier Responses to Central Cholinergic Activity

    DTIC Science & Technology

    1989-07-30

    regions were of particular interest because they show the largest decreases in glucose metabolism following limbic seizures ( Ben - Ari et al., 1981). It is...following seizures ( Ben - Ari et. al., 1981). The piriform cortex-amygdala also appears to be a generator of epileptiform activity in a variety of seizure...produced by PTZ. Such studies are ongoing and the results will be given in subsequent reports. 11 REFERENCES Ben - Ari , Y., D. Richie, E. Tremblay and G

  15. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ˜ 700-1200 km s-1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ˜{10}11.5 cm-3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  16. Practical reactor production of 41Ar from argon clathrate.

    PubMed

    Mercer, J R; Duke, M J; McQuarrie, S A

    2000-06-01

    The radionuclide 41Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of 40Ar for thermal neutron activation makes preparation of suitable activities of 41Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of 41Ar even with low power reactors.

  17. Non-steady, Intermittent, Hot Loops in an Active Region Observed with the SDO/AIA

    NASA Astrophysics Data System (ADS)

    Cadavid, Ana C.; Lawrence, J. K.; Christian, D. J.

    2013-07-01

    While there is accumulated evidence of high temperature coronal emission in active region cores that corresponds to structures in equilibrium, other studies have found of evolving loops. We investigate the EUV intensity variations of two low and short coronal loops observed in the core of NOAA AR 11250 on 13 July 2011 between UT 12:02 and 16:32. The loops (32 Mm loop 1, 23 Mm loop 2), run directly between the AR opposite polarities, and are first detectable in the 94Å band (effective temperature ~ 7 MK). Space-time slices present intermittent brightenings evocative of turbulence. Spatial averages over the intermoss loop region lead to light curves used to analyze the temporal evolution of the loops. We find quantities with scaling regimes that are characteristic of intermittent processes. In particular intensity histograms display scaling ranges with slopes ~ -1.8, and spectra also show a scaling region for frequencies 1-8 mHz, with slopes - 3.8 (loop 1) and -2.8 (loop 2). We further investigate the time evolution of the loops in five other AIA EUV channels. The results are separated into two classes. Group A (94Å, 335Å, 211Å) characterized by hotter temperatures 2-6 MK), and group B (193Å, 171Å, 131Å) by cooler temperatures (0.4 - 1.6 MK). In loop 1 (group A) the intensity peaks in the 94Å channel are followed by maxima in the 335 Å channel with a time lag of ~10 min, suggestive of a cooling pattern with an exponential decay. The 211Å maxima follow those in the 335 Å channel, but there is no systematic relation which would indicate a progressive cooling process. In group B the signals in the 171 and 131Å channels track each other closely, and tend to lag behind the 193Å. The three signals follow a general gradual increase reaching a maximum at about the middle of the time series and then decrease. An exponential cooling model can also be associated with the 193 and 171Å pair. For loop 2 the observations in the group B light curves present similar

  18. 40Ar/ 39Ar analyses of clinopyroxene inclusions in African diamonds: implications for source ages of detrital diamonds

    NASA Astrophysics Data System (ADS)

    Phillips, D.; Harris, J. W.; Kiviets, G. B.

    2004-01-01

    -heating increments, indicating that age variations are not due to compositional, mineralogical or alteration effects. The favoured explanation for these results is partial retention of extraneous argon in primary and/or secondary fluid inclusions. This component is then preferentially outgassed in lower temperature heating steps, yielding older apparent ages. The partial retention of extraneous argon by clinopyroxene inclusions clearly restricts efforts to determine source ages for detrital diamond deposits. Results from individual samples must necessarily be interpreted as maximum source emplacement ages. Nonetheless, step-heating analyses of several clinopyroxene inclusions from a detrital diamond deposit may provide reasonable constraints on the ages of source kimberlites/lamproites; however minor age populations as well as those closely spaced in time, may be difficult to resolve. It is argued that the majority of older 40Ar/ 39Ar ages can be explained in terms of the partial retention of inherited argon, produced between the times of diamond crystallisation and kimberlite eruption. Although the presence of excess argon in some clinopyroxene inclusions cannot be excluded, available evidence (e.g. no excess argon in Premier eclogitic inclusions or potassium-poor inclusions) suggests that this is not a factor for most samples. Three possible mechanistic models are forwarded to account for the uptake of inherited (± excess) argon in fluid inclusions. The first envisages negligible interface porosity and diffusion of extraneous argon exclusively to primary fluid inclusions, which subsequently partially decrepitated during eruption, causing accumulation of argon at the diamond/clinopyroxene interface. The second model permits diffusive loss of extraneous argon to both the interface region and primary fluid inclusions. The third involves diffusion of extraneous argon to the interface region, with later entrapment of some interface argon in secondary fluid inclusions, produced by

  19. Sintokamide A Is a Novel Antagonist of Androgen Receptor That Uniquely Binds Activation Function-1 in Its Amino-terminal Domain*

    PubMed Central

    Banuelos, Carmen A.; Tavakoli, Iran; Tien, Amy H.; Caley, Daniel P.; Mawji, Nasrin R.; Li, Zhenzhen; Wang, Jun; Yang, Yu Chi; Imamura, Yusuke; Yan, Luping; Wen, Jian Guo; Andersen, Raymond J.; Sadar, Marianne D.

    2016-01-01

    Androgen receptor (AR) is a validated drug target for all stages of prostate cancer including metastatic castration-resistant prostate cancer (CRPC). All current hormone therapies for CRPC target the C-terminal ligand-binding domain of AR and ultimately all fail with resumed AR transcriptional activity. Within the AR N-terminal domain (NTD) is activation function-1 (AF-1) that is essential for AR transcriptional activity. Inhibitors of AR AF-1 would potentially block most AR mechanisms of resistance including constitutively active AR splice variants that lack the ligand-binding domain. Here we provide evidence that sintokamide A (SINT1) binds AR AF-1 region to specifically inhibit transactivation of AR NTD. Consistent with SINT1 targeting AR AF-1, it attenuated transcriptional activities of both full-length AR and constitutively active AR splice variants, which correlated with inhibition of growth of enzalutamide-resistant prostate cancer cells expressing AR splice variants. In vivo, SINT1 caused regression of CRPC xenografts and reduced expression of prostate-specific antigen, a gene transcriptionally regulated by AR. Inhibition of AR activity by SINT1 was additive to EPI-002, a known AR AF-1 inhibitor that is in clinical trials (NCT02606123). This implies that SINT1 binds to a site on AF-1 that is unique from EPI. Consistent with this suggestion, these two compounds showed differences in blocking AR interaction with STAT3. This work provides evidence that the intrinsically disordered NTD of AR is druggable and that SINT1 analogs may provide a novel scaffold for drug development for the treatment of prostate cancer or other diseases of the AR axis. PMID:27576691

  20. AR Alternative Splicing and Prostate Cancer Progression

    DTIC Science & Technology

    2012-07-01

    the PCR target regions . For conventional PCR, genomic DNA was amplified using a Taq Polymerase PCR kit (Qia- gen), according to the manufacturer’s...n repeats and AT-rich sequence in both of these regions (Fig. 4C). It is common for the endpoints of genomic deletions or insertions to map to...rearrangements under- lying TE- related genetic diseases, including cancer (29), and often arise through NAHR. However, sequencing the 22Rv1 AR break fusion

  1. Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/ 39Ar thermochronometry of Martian meteorites

    NASA Astrophysics Data System (ADS)

    Cassata, William S.; Shuster, David L.; Renne, Paul R.; Weiss, Benjamin P.

    2010-12-01

    The thermal histories of Martian meteorite are important for the interpretation of petrologic, geochemical, geochronological, and paleomagnetic constraints that they provide on the evolution of Mars. In this paper, we quantify 40Ar/ 39Ar ages and Ar diffusion kinetics of Martian meteorites Allan Hills (ALH) 84001, Nakhla, and Miller Range (MIL) 03346. We constrain the thermal history of each meteorite and discuss the resulting implications for their petrology, paleomagnetism, and geochronology. Maskelynite in ALH 84001 yields a 40Ar/ 39Ar isochron age of 4163 ± 35 Ma, which is indistinguishable from recent Pb-Pb ( Bouvier et al., 2009a) and Lu-Hf ages ( Lapen et al., 2010). The high precision of this result arises from clear resolution of a reproducible trapped 40Ar/ 36Ar component in maskelynite in ALH 84001 ( 40Ar/ 36Ar = 632 ± 90). The maskelynite 40Ar/ 39Ar age predates the Late Heavy Bombardment and likely represents the time at which the original natural remanent magnetization (NRM) component observed in ALH 84001 was acquired. Nakhla and MIL 03346 yield 40Ar/ 39Ar isochron ages of 1332 ± 24 and 1339 ± 8 Ma, respectively, which we interpret to date crystallization. Multi-phase, multi-domain diffusion models constrained by the observed Ar diffusion kinetics and 40Ar/ 39Ar age spectra suggest that localized regions within both ALH 84001 and Nakhla were intensely heated for brief durations during shock events at 1158 ± 110 and 913 ± 9 Ma, respectively. These ages may date the marginal melting of pyroxene in each rock, mobilization of carbonates and maskelynite in ALH 84001, and NRM overprints observed in ALH 84001. The inferred peak temperatures of the shock heating events (>1400 °C) are sufficient to mobilize Ar, Sr, and Pb in constituent minerals, which may explain some of the dispersion observed in 40Ar/ 39Ar, Rb-Sr, and U-Th-Pb data toward ages younger than ˜4.1 Ga. The data also place conservative upper bounds on the long-duration residence

  2. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  3. ArsP: a methylarsenite efflux permease

    PubMed Central

    Chen, Jian; Madegowda, Mahendra; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2015-01-01

    Trivalent organoarsenic compounds are far more toxic than either pentavalent organoarsenicals or inorganic arsenite. Many microbes methylate inorganic arsenite (As(III)) to more toxic and carcinogenic methylarsenite (MAs(III)). Additionally, monosodium methylarsenate (MSMA or MAs(V)) has been used widely as an herbicide and is reduced by microbial communities to MAs(III). Roxarsone (3-nitro-4-hydroxybenzenearsonic acid) is a pentavalent aromatic arsenical that is used as antimicrobial growth promoter for poultry and swine, and its active form is the trivalent species Rox(III). A bacterial permease, ArsP, from Campylobacter jejuni, was recently shown to confer resistance to roxarsone. In this study C. jejuni arsP was expressed in Escherichia coli and shown to confer resistance to MAs(III) and Rox(III) but not to inorganic As(III) or pentavalent organoarsenicals. Cells of E. coli expressing arsP did not accumulate trivalent organoarsenicals. Everted membrane vesicles from those cells accumulated MAs(III)>Rox(III) with energy supplied by NADH oxidation, reflecting efflux from cells. The vesicles did not transport As(III), MAs(V) or pentavalent roxarsone. Mutation or modification of the two conserved cysteine residues resulted in loss of transport activity, suggesting that they play a role in ArsP function. Thus ArsP is the first identified efflux system specific for trivalent organoarsenicals. PMID:26234817

  4. Specific fragmentation of [(CH 3) 2CO]Ar n heteroclusters induced by the Ar L 23- and O K-shell excitation

    NASA Astrophysics Data System (ADS)

    Tamenori, Y.; Okada, K.; Tabayashi, K.; Gejo, T.; Honma, K.

    2008-09-01

    Ionic fragmentation following the inner-shell photoexcitation of [(CH 3) 2CO]Ar n heteroclusters was investigated in the Ar L 23- and O K-edge regions. A partial ion yield (PIY) measurement revealed that Arn+ and various acetone fragments ( Hm+, CHm+, C2Hm+, CHm+, and )2CO]+hν→[Ar]n+·[(CH)2CO]+e

  5. Paleomagnetic and 40Ar/39Ar geochronologic data from late Proterozoic mafic dikes and sills, Montana and Wyoming

    USGS Publications Warehouse

    Harlan, Stephen S.; Geissman, John William; Snee, Lawrence W.

    1997-01-01

    Paleomagnetic and 40Ar/39Ar results from mafic dikes and sills in northwestern Wyoming and western Montana yield similar virtual geomagnetic poles and isotopic dates. In combination with paleomagnetic and geochronologic data from elsewhere in the western Cordillera, these data provide evidence for a regional mafic magnetic event at 780 to 770 Ma that affected a large area of western North America.

  6. Holocene fire activity in the Carpathian region: regional climate vs. local controls

    NASA Astrophysics Data System (ADS)

    Florescu, Gabriela; Feurdean, Angelica

    2015-04-01

    Introduction. Fire drives significant changes in ecosystem structure and function, diversity, species evolution, biomass dynamics and atmospheric composition. Palaeodata and model-based studies have pointed towards a strong connection between fire activity, climate, vegetation and people. Nevertheless, the relative importance of these factors appears to be strongly variable and a better understanding of these factors and their interaction needs a thorough investigation over multiple spatial (local to global) and temporal (years to millennia) scales. In this respect, sedimentary charcoal, associated with other proxies of climate, vegetation and human impact, represents a powerful tool of investigating changes in past fire activity, especially in regions with scarce fire dataset such as the CE Europe. Aim. To increase the spatial and temporal coverage of charcoal records and facilitate a more critical examination of the patterns, drivers and consequences of biomass burning over multiple spatial and temporal scales in CE Europe, we have investigated 6 fossil sequences in the Carpathian region (northern Romania). These are located in different geographical settings, in terms of elevation, vegetation composition, topography and land-use. Specific questions are: i) determine trends in timing and magnitude of fire activity, as well as similarities and differences between elevations; ii) disentangle the importance of regional from local controls in fire activity; iii) evaluate ecological consequences of fire on landscape composition, structure and diversity. Methods. We first determine the recent trends in fire activity (the last 150 years) from charcoal data and compare them with instrumental records of temperature, precipitation, site history and topography for a better understanding of the relationship between sedimentary charcoal and historical fire activity. We then statistically quantify centennial to millennial trends in fire activity (frequency, magnitude) based on

  7. 40Ar/39Ar ages in deformed potassium feldspar: evidence of microstructural control on Ar isotope systematics

    NASA Astrophysics Data System (ADS)

    Reddy, Steven M.; Potts, Graham J.; Kelley, Simon P.

    2001-05-01

    Detailed field and microstructural studies have been combined with high spatial resolution ultraviolet laser 40Ar/39Ar dating of naturally deformed K-feldspar to investigate the direct relationship between deformation-related microstructure and Ar isotope systematics. The sample studied is a ~1,000 Ma Torridonian arkose from Skye, Scotland, that contains detrital feldspars previously metamorphosed at amphibolite-facies conditions ~1,700 Ma. The sample was subsequently deformed ~430 Ma ago during Caledonian orogenesis. The form and distribution of deformation-induced microstructures within three different feldspar clasts has been mapped using atomic number contrast and orientation contrast imaging, at a range of scales, to identify intragrain variations in composition and lattice orientation. These variations have been related to thin section and regional structural data to provide a well-constrained deformation history for the feldspar clasts. One hundred and forty-three in-situ 40Ar/39Ar analyses measured using ultraviolet laser ablation record a range of apparent ages (317-1030 Ma). The K-feldspar showing the least strain records the greatest range of apparent ages from 420-1,030 Ma, with the oldest apparent ages being found close to the centre of the feldspar away from fractures and the detrital grain boundary. The most deformed K-feldspar yields the youngest apparent ages (317-453 Ma) but there is no spatial relationship between apparent age and the detrital grain boundary. Within this feldspar, the oldest apparent ages are recorded from orientation domain boundaries and fracture surfaces where an excess or trapped 40Ar component resides. Orientation contrast images at a similar scale to the Ar analyses illustrate a significant deformation-related microstructural difference between the feldspars and we conclude that deformation plays a significant role in controlling Ar systematics of feldspars at both the inter- and intragrain scales even at relatively low

  8. STRUCTURE AND STABILITY OF MAGNETIC FIELDS IN SOLAR ACTIVE REGION 12192 BASED ON NONLINEAR FORCE-FREE FIELD MODELING

    SciTech Connect

    Inoue, S.; Hayashi, K.; Kusano, K.

    2016-02-20

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  9. Structure and Stability of Magnetic Fields in Solar Active Region 12192 Based on the Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Hayashi, K.; Kusano, K.

    2016-02-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  10. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  11. Density and Temperature Measurements in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  12. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells

    PubMed Central

    Bolton, Eric C.

    2015-01-01

    The androgen receptor (AR) mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT). However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR), and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK) complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation. PMID:26372468

  13. Direct dating of weathering phenomena by [sup 40]Ar/[sup 39]Ar and K-Ar analysis of supergene K-Mn oxides

    SciTech Connect

    Vasconcelos, P.M.; Brimhall, G.H. ); Renne, P.R.; Becker, T.A. )

    1994-03-01

    Potassium-bearing manganese oxides, cryptomelane, K[sub 1-2](Mn[sup 3+]Mn[sup 4+])[sub 8] O[sub 16] [center dot] xH[sub 2]O, and hollandite, (K,Ba)[sub 1-2](Mn[sup 3+],Mn[sup 4+])[sub 8] O[sub 16] [center dot] xH[sub 2]O, are often authigenically precipitated in weathering profiles. Dating of these phases allows timing of the progression of oxidation fronts during weathering and pedogenic processes. Potential problems in manganese oxide dating, such as Ar and/or K losses, excess argon, [sup 39]Ar loss by recoil during neutron irradiation, etc. are addressed. The K-Ar and [sup 40]Ar/[sup 39]Ar analytical results indicate that Ar and/or K losses, excess [sup 40]Ar, and [sup 39]Ar recoil seem not to pose problems in manganese oxide dating. This investigation suggests that the fine scale, laser-probe [sup 40]Ar/[sup 39]Ar technique is most appropriate for dating of weathering phenomena because this technique permits identification of contaminating phases and the presence of multiple generations of weathering minerals in the inherently complex mineral assemblage characteristic of weathering profiles. K-Ar and [sup 40]Ar/[sup 39]Ar dating of supergene K-bearing manganese oxides formed during lateritization of Archean and Proterozoic bedrocks in the Carajas Region, Amazonia, Brazil, indicates that weathering started before 72 [+-] 6 Ma. Petrographic, electron microscope, and electron microprobe investigation reveal multiple generations of manganese oxide precipitation. Age clusters at 65-69, 51-56, 40-43, 33-35, 20, 24, 12-17 Ma, and zero-age (0.2 [+-] 0.2 Ma) suggest episodic precipitation of K-Mn oxides resulting form changing weathering conditions in the Amazon throughout the Cenozoic. K-Ar and [sup 40]Ar/[sup 39]Ar dating of supergene cryptomelane from weathering profiles in eastern Minas Gerais, southeastern Brazil, suggests continuous weathering from 10 to 5.6 Ma ago, possibly reflecting local climatic conditions due to the proximity with the Atlantic Ocean.

  14. A Trio of Confined Flares in AR 11087

    NASA Astrophysics Data System (ADS)

    Joshi, Anand D.; Forbes, Terry G.; Park, Sung-Hong; Cho, Kyung-Suk

    2015-01-01

    We investigate three flares that occurred in active region, AR 11087, observed by the Dutch Open Telescope (DOT) on 2010 July 13, in a span of three hours. The first two flares have soft X-ray class B3, whereas the third flare has class C3. The third flare not only was the largest in terms of area and brightness but also showed a very faint coronal mass ejection (CME) associated with it, while the earlier two flares had no associated CME. The active region, located at 27° N, 26° E, has a small U-shaped active region filament to the south of the sunspot, and a quiescent filament is located to its west. Hα observations from DOT, as well as extreme-ultraviolet images and magnetograms from the STEREO spacecraft and Solar Dynamics Observatory, are used to study the dynamics of the active region during the three flares. Our observations imply that the first two flares are confined and that some filament material drains to the surface during these flares. At the onset of the third flare downflows are again observed within the active region, but a strong upflow is also observed at the northern end of the adjacent quiescent filament to the west. It is at the latter location that the CME originates. The temporal evolution of the flare ribbons and the dynamics of the filaments are both consistent with the idea that reconnection in a pre-existing current sheet leads to a loss of equilibrium.

  15. Whole-Rock 40Ar/39Ar Step-heating Analyses, Problems and Potential

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Harrison, M.; Heizler, M. T.; Lovera, O. M.; Warren, P. H.

    2015-12-01

    Whole-rock 40Ar/39Ar step-heating analyses of extra-terrestrial materials are used to constrain the impact history of the inner solar system, the formation age of the Moon, and timing of paleomagnetic fields. Despite the importance of knowing the timing of these important events, the samples we have in hand are usually disturbed through mixing, (multiple?) impact events, and perhaps recoil loss. Extra-terrestrial 40Ar/39Ar data are typically interpreted through the assignment of essentially arbitrary plateau ages rather than through a robust physical model. Although the use of models capable of quantitatively assessing diffusive 40Ar* loss in extra-terrestrial samples has been around for nearly 50 years, this early advance has been widely ignored. Here we present implications of applying a robust, multi-activation energy, multi-diffusion domain model to step-heated 40Ar/39Ar data, with temperature cycling. Our findings show that for even a single heating event, "plateau" ages are unlikely to record meaningful ages. Further, if the sample has experienced multiple heating events or contains inherited clasts, recovering a unique solution may be impossible. Indeed the most readily interpretable portion of the age spectrum is the early heating steps which represents a maximum age estimate of the last re-heating event. Our results challenge the chronologic validity of 40Ar/39Ar "plateau" ages and by extension the hypotheses that are based on this data (e.g., the Late Heavy Bombardment). Future work will require new analytical procedures, interpretative frameworks, and (potentially) the combination of multiple chronometers to derive a robust impact history for the early solar system.

  16. Photometric observations of the energetics of small solar active regions

    SciTech Connect

    Lawrence, J.K.; Chapman, G.A. )

    1990-10-01

    The energetics of small solar active regions was investigated using for the analysis the photometric solar images taken from July 29 to September 6, 1984 with the San Fernando Observatory's 28-cm vacuum telescope, vacuum spectroheliograph, and dual 512 element Reticon linear diode arrays. Ten small newly formed regions were observed, whose entire sunspot evolution apparently occurred within the observed disk crossing. Seven of these showed a net energy excess of a few times 10 to the 33th ergs during this time. These results are discussed in connection with the 0.1 percent decline in solar irradiance observed by the SMM/ACRIM and Nimbus 7/ERB radiometers between 1980 and 1986. 35 refs.

  17. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  18. Influence of the Cardiac Myosin Hinge Region on Contractile Activity

    NASA Astrophysics Data System (ADS)

    Margossian, Sarkis S.; Krueger, John W.; Sellers, James R.; Cuda, Giovanni; Caulfield, James B.; Norton, Paul; Slayter, Henry S.

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the antihinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  19. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s-1) as well as modest non-thermal velocities (with an average of ˜24 km s-1 and the peak of the distribution at ˜15 km s-1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  20. A Minimum Energy Fit Method to Reconstruct Photospheric Velocity and Magnetic Diffusivity in Active Regions from Observed Magnetograms and Dopplergrams

    NASA Astrophysics Data System (ADS)

    Tremblay, Benoit; Vincent, Alain

    2015-02-01

    We introduce MEF-R, a generalization of the minimum energy fit (MEF; Longcope, Astrophys. J. 612, 1181, 2004) to a non-ideal (resistive) gas. The new technique requires both vector magnetograms and Doppler velocities as input fields. However, in the case of active regions observed only with the Michelson-Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO) such as AR 9077, we have only access to line-of-sight magnetograms. We reconstruct two-dimensional maps of the magnetic diffusivity η( x, y) together with velocity components v x ( x, y), v y ( x, y), and v z ( x, y) under the linear force-free magnetic field approximation. Computed maps for v z ( x, y) very well match the Doppler velocities v r ( x, y). We find the average value < η>≈108 m2 s-1 with a standard deviation of ≈ 1010 m2 s-1. Such high values of η( x, y) are to be expected at some places since our magnetic diffusivity is actually eddy-diffusivity. Inside AR 9077, the maps of η( x, y) do not resemble closely the maps from classical models of the magnetic diffusivity, but they are closer to η as a function of temperature than to η as a function of electric current density.

  1. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    SciTech Connect

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R. E-mail: dnandi@iiserkol.ac.i E-mail: anthony@maths.dundee.ac.u

    2010-09-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  2. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect

    Morgan, Huw; Jeska, Lauren; Leonard, Drew

    2013-06-01

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  3. Implications of Special Regions to Conducting Human Activities on Mars

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Barlow, N. G.; Beaty, D. W.; Jones, M. A.; Hipkin, V.

    2014-12-01

    A MEPAG Science Analysis Group (SAG) has undertaken an analysis of Special Regions (SR) on Mars—regions where indigenous martian life could exist or where Earth microbes, if introduced, could survive and reproduce. The SR-SAG has considered the impact of SR on future human activities on the martian surface. Human exploration requires access to in-situ resources, some of which may be found in SR. Water and oxygen for ISRU are found in the atmosphere, surface/near-surface ice, hydrated minerals, and perchlorates. Water ice is most abundant at latitudes poleward of ~60 degrees, but polar darkness, cold temperatures, and CO2 degassing present hazards to human operations in these regions. Accessible water is more limited toward the equator, though temperature and solar energy conditions become more favorable. The possible presence of liquid water in Recurring Slope Lineae and active gullies leads to their treatment as SR. Fuel for surface operations and propellants for crew ascent could be manufactured from the martian atmosphere and surface materials, but dust in the atmosphere may clog ISRU equipment and perchlorate is toxic to humans. Power may be produced from solar or nuclear energy. Reliance on solar energy limits operations to the equatorial zone where easily accessible ice resources are limited. Nuclear power allows surface operations at a range of latitudes, but waste heat could convert some non-SR into SR. Radiation shielding is necessary for long-term human operations on Mars and could be obtained by deposition of regolith or by water storage in tanks or as ice around habitats, or the use of underground habitats. SR-SAG recognizes that it will be impossible for all human-associated processes and operations to be conducted within entirely closed systems. Protocols need to be established so (1) human missions to Mars will not contaminate SR nor be contaminated by materials from them, and (2) human activities on Mars will avoid converting areas into SR.

  4. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  5. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  6. Hinode Observations of an Eruption from a Sigmoidal Active Region

    NASA Astrophysics Data System (ADS)

    Green, L. M.; Wallace, A. J.; Kliem, B.

    2012-08-01

    We analyse the evolution of a bipolar active region which produces an eruption during its decay phase. The soft X-ray arcade develops high shear over a time span of two days and transitions to sigmoidal shortly before the eruption. We propose that the continuous sigmoidal soft X-ray threads indicate that a flux rope has formed which is lying low in the solar atmosphere with a bald patch separatrix surface topology. The formation of the flux rope is driven by the photospheric evolution which is dominated by fragmentation of the main polarities, motion due to supergranular flows and cancellation at the polarity inversion line.

  7. SOI/MDI studies of active region seismology and evolution

    NASA Technical Reports Server (NTRS)

    Tarbell, Ted D.; Title, Alan; Hoeksema, J. Todd; Scherrer, Phil; Zweibel, Ellen

    1995-01-01

    The solar oscillations investigation (SOI) will study solar active regions using both helioseismic and conventional observation techniques. The Michelson Doppler imager (MDI) can perform Doppler continuum and line depth imagery and can produce longitudinal magnetograms, showing either the full disk or a high resolution field of view. A dynamics program of continuous full disk Doppler observations for two months per year, campaign programs of eight hours of continuous observation per day, and a synoptic magnetic program of about 15 full disk magnetograms per day, are planned. The scientific plans, measurements and observation programs, are described.

  8. Substrate-emitting semiconductor laser with a trapezoidal active region

    SciTech Connect

    Dikareva, N V; Nekorkin, S M; Karzanova, M V; Zvonkov, B N; Aleshkin, V Ya; Dubinov, A A; Afonenko, A A

    2014-04-28

    Semiconductor lasers with a narrow (∼2°) directional pattern in the planes both parallel and perpendicular to the p–n junction are fabricated. To achieve a low radiation divergence in the p–n junction plane, the active region in this plane was designed in the form of a trapezium. The narrow directional pattern in the plane perpendicular to the p–n junction was ensured by the use of a leaky mode, through which more than 90% of laser power was coupled out. (lasers)

  9. C IV Doppler shifts observed in active region filaments

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.

    1986-01-01

    The Doppler shift properties of 21 active region filaments were studied using C IV Dopplergram data. Most are associated with corridors of weak magnetic field that separate opposite polarity strong fields seen in photospheric magnetograms. A majority of the filaments are relatively blue shifted, although several lie very close to the dividing lines between blue and red shift. Only one filament in the samples is clearly red shifted. A new calibration procedure for Dopplergrams indicates that sizable zero point offsets are often required. The center-to-limb behavior of the resulting absolute Doppler shifts suggests that filament flows are usually quite small. It is possible that they vanish.

  10. Chromospheric Evolution and the Flare Activity of Super-Active Region NOAA 6555

    NASA Technical Reports Server (NTRS)

    PrasadC, Debi; Ambastha, Ashok; Srivastava, Nandita; Tripathy, Sushanta C.; Hagyard, Mona J.

    1997-01-01

    Super-active region NOAA 6555 was highly flare productive during the period March 21st - 27th, 1991 of its disk passage. We have studied its chromospheric activity using high spatial resolution H alpha filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.

  11. One-electron pseudopotential investigation of the RbAr and FrAr van der Waals systems

    NASA Astrophysics Data System (ADS)

    Dhiflaoui, J.; Berriche, H.

    2012-12-01

    The potential energy curves of the ground state and many excited states of RbAr and FrAr van der Waals systems have been determined using a one-electron pseudopotential approach. The pseudopotential technique is used to replace the effect of the Rb+ and Fr+ cores and the electron-Ar interaction. In addition a core-core interaction is included. This has permitted to reduce the number of active electrons of the RbAr and FrAr systems to only one electron, the valence electron. This has led to use very large basis sets for Rb, Fr and Ar atoms. In this context, the potential energy curves of the ground and many excited states are performed at the SCF level. The core-core interactions for Rb+Ar and Fr+Ar are included using the CCSD(T) accurate potentials of Hickling et al. [H. Hickling, L. Viehland, D. Shepherd, P. Soldan, E. Lee and T. Wright, Phys. Chem. Chem. Phys. 6 (2004) 4233]. In addition, the spectroscopic constants of these states are derived and compared with the available theoretical works. Such comparison for RbAr has shown a very good agreement for the ground and the first excited states. However, the FrAr system was not studied previously and its spectroscopic constants are presented here for the first time.

  12. An alternative hypothesis for high-T 40Ar/39Ar age spectrum discordance in polyphase extraterrestrial materials

    NASA Astrophysics Data System (ADS)

    Cassata, W. S.; Shuster, D. L.; Renne, P. R.; Weiss, B. P.

    2009-12-01

    A common feature observed in 40Ar/39Ar age spectra of extraterrestrial (ET) rocks is a conspicuous decrease in the ages of high temperature extractions relative to lower temperature steps and a correlated increase in Ca/K, often succeeded by a monotonic increase in ages. This feature is routinely attributed to recoil-implanted 39Ar from a potassium (K)-rich donor phase into a K-poor receptor phase (e.g., 1,2). While 39Ar recoil redistribution is undoubtedly manifested in many terrestrial and ET 40Ar/39Ar whole-rock age spectra, it cannot easily explain the magnitude of high release temperature 40Ar*/39ArK anomalies observed in Martian meteorites ALH 84001 and Nakhla, as well as other course-grained meteorites and lunar rocks. Depending on the aliquot and sample, 50 - 100% of the pyroxene release spectra in ALH 84001 and Nakhla appear strongly perturbed to lower ages. As the mean recoil distance of 39Ar ~0.1 µm, the recoil hypothesis demands that a high-K phase be ubiquitously distributed amongst sub-micron to micron sized pyroxene crystals to account for the observed pyroxene age spectra. However, in both Nakhla and ALH 84001, pyroxene is often completely isolated from high-K phases and individual grains commonly exceed 100 µm in diameter. 40Ar/39Ar analyses of pyroxene-bearing terrestrial basalts, wherein fine-grained pyroxene and plagioclase are intimately adjoined, show that recoil-implanted 39Ar into pyroxene produces much less precipitous anomalies in 40Ar*/39ArK, as predicted by the recoil lengthscale. An alternative hypothesis is that whole-rock age spectra of ET samples with anomalously low ages at high temperatures may reflect diffusive 40Ar distributions within considerably degassed pyroxene grains. Owing to apparent differences in activation energies between glass and/or plagioclase and pyroxene, 40Ar may diffuse more rapidly from pyroxene under certain high-temperature conditions (i.e., above the temperature at which the extrapolated Ar Arrhenius

  13. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  14. Behaviour of oscillations in loop structures above active regions

    NASA Astrophysics Data System (ADS)

    Kolobov, D. Y.; Kobanov, N. I.; Chelpanov, A. A.; Kochanov, A. A.; Anfinogentov, S. A.; Chupin, S. A.; Myshyakov, I. I.; Tomin, V. E.

    2015-12-01

    In this study we combine the multiwavelength ultraviolet-optical (Solar Dynamics Observatory, SDO) and radio (Nobeyama Radioheliograph, NoRH) observations to get further insight into space-frequency distribution of oscillations at different atmospheric levels of the Sun. We processed the observational data on NOAA 11711 active region and found oscillations propagating from the photospheric level through the transition region upward into the corona. The power maps of low-frequency (1-2 mHz) oscillations reproduce well the fan-like coronal structures visible in the Fe IX 171 Å line. High frequency oscillations (5-7 mHz) propagate along the vertical magnetic field lines and concentrate inside small-scale elements in the umbra and at the umbra-penumbra boundary. We investigated the dependence of the dominant oscillation frequency upon the distance from the sunspot barycentre to estimate inclination of magnetic tubes in higher levels of sunspots where it cannot be measured directly, and found that this angle is close to 40° above the umbra boundaries in the transition region.

  15. Active Region Magnetic Structure Observed in the Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Metcalf, Thomas R.

    2001-01-01

    The magnetic flux above sunspots and plage in NOAA (National Oceanic and Atmospheric Administration) Active Region 8299 has been measured in the photosphere and the chromosphere. We investigate the vertical magnetic structure above the umbrae, penumbrae and plage regions using quantitative statistical comparisons of the photospheric and chromospheric vector magnetic flux data. The results include: (1) a decrease in flux with height, (2) the direct detection of the superpenumbral canopy in the chromosphere, (3) values for dB/dz which are consistent with earlier investigations when derived from a straight difference between the two datasets but quite low when derived from the delta x B = 0 condition, (4) a monolithic structure in the umbra which extends well into the upper chromosphere with a very complex and varied structure in the penumbra and plage, as evidenced by (5) a uniform magnetic scale height in the umbrae with an abrupt jump to widely varying scale heights in the penumbral and plage regions. Further, we find (6) evidence for a very large (delta z approximately equals 3Mm) height difference between the atmospheric layers sampled in the two magnetograms, almost a factor of three larger than that implied by atmospheric models. We additionally test the apropriateness of using photospheric magnetic flux as a boundary for field-line extrapolations, and find a better agreement with observed coronal structure when the chromospheric flux is used as a boundary.

  16. Photospheric electric current and transition region brightness within an active region

    NASA Technical Reports Server (NTRS)

    Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.

    1984-01-01

    Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.

  17. Mechanistic Support for Combined MET and AR Blockade in Castration-Resistant Prostate Cancer.

    PubMed

    Qiao, Yuanyuan; Feng, Felix Y; Wang, Yugang; Cao, Xuhong; Han, Sumin; Wilder-Romans, Kari; Navone, Nora M; Logothetis, Christopher; Taichman, Russell S; Keller, Evan T; Palapattu, Ganesh S; Alva, Ajjai S; Smith, David C; Tomlins, Scott A; Chinnaiyan, Arul M; Morgan, Todd M

    2016-01-01

    A recent phase III trial of the MET kinase inhibitor cabozantinib in men with castration-resistant prostate cancer (CRPC) failed to meet its primary survival end point; however, most men with CRPC have intact androgen receptor (AR) signaling. As previous work supports negative regulation of MET by AR signaling, we hypothesized that intact AR signaling may have limited the efficacy of cabozantinib in some of these patients. To assess the role of AR signaling on MET inhibition, we first performed an in silico analysis of human CRPC tissue samples stratified by AR signaling status ((+) or (-)), which identified MET expression as markedly increased in AR(-) samples. In vitro, AR signaling inhibition in AR(+) CRPC models increased MET expression and resulted in susceptibility to ligand (HGF) activation. Likewise, MET inhibition was only effective in blocking cancer phenotypes in cells with MET overexpression. Using multiple AR(+) CRPC in vitro and in vivo models, we showed that combined cabozantinib and enzalutamide (AR antagonist) treatment was more efficacious than either inhibitor alone. These data provide a compelling rationale to combine AR and MET inhibition in CRPC and may explain the negative results of the phase III cabozantinib study in CRPC. Similarly, the expression of MET in AR(-) disease, whether due to AR inhibition or loss of AR signaling, suggests potential utility for MET inhibition in select patients with AR therapy resistance and in AR(-) prostate cancer.

  18. Multi-Wavelength Study of Active Region Loop Dynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, D.

    2006-11-01

    Observations have revealed the existence of weak transient disturbances in extended coronal loop systems. These propagating disturbances (PDs) originate from small scale brightenings at the footpoints of the loops and propagate upward along the loops. In all cases observed, the projected propagation speed is close to, but below the expected sound speed in the loops. This suggests that the PDs could be interpreted as slow mode MHD waves. Interpreting the oscillation in terms of different wave modes and/or plasma motions always depend on the line of sight as we observe in the limb or on the center of the disk. The JOP 165 campaign will address some of these questions. MDI and TRACE photospheric and UV imaging of TRACE and SPIRIT have been acquired simultaneously with high temporal and spatial coverage along with the spectroscopic data from CDS. EIT was operated in the shutter-less mode to achieve high Cadence. Some of the off- limb active region dynamics and oscillations observed during this JOP campaign will be focused in this presentation. Plasma condensations and temporal variations in active region loops will be also addressed.

  19. Magnetic field measurements in and above a limb active region

    NASA Astrophysics Data System (ADS)

    Philip, Judge

    2013-07-01

    We analyze spectropolarimetric data of a limb active region (NOAA 11302) obtained on September 22nd 2011 using the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope (DST). Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm were obtained in three scans over a 45"x75" area. Simultaneous narrow band Ca II K and G-band intensity data were acquired with a cadence of 5s at the DST. The He I data show not only typical active region polarization signatures, but also signatures in plumes -- cool post flare loops -- which extend many Mm into the corona across the visible limb. The plumes have remarkably uniform brightness, and the plume plasma is significantly Doppler shifted as it drains from the corona. Using carefully constructed observing and calibration sequences and applying Principal Component Analysis to remove instrumental artifacts, we achieved a polarization sensitivity approaching 0.02%. With this sensitivity we attempt to diagnose the vector magnetic fields and plasma properties of chromospheric and cool coronal material in and above NOAA 11302. Inversions using various radiative transfer models in the HAZEL code are remarkably consistent with the idea that plume spectra are formed in a simple, slab-like geometry, but that the ``disk'' spectra are formed under more traditional models (Milne-Eddington). The inverted magnetic data of He I lines are compared with photospheric inversions of DST Si I and Fe I data from the Solar Dynamics Observatory.

  20. Material Supply and Magnetic Configuration of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda

    2016-11-01

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  1. Hinode/EIS Spectroscopic Validation of Very Hot Plasma Imaged with the Solar Dynamics Observatory in Non-flaring Active Region Cores

    NASA Astrophysics Data System (ADS)

    Testa, Paola; Reale, Fabio

    2012-05-01

    We use coronal imaging observations with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), and Hinode/Extreme-ultraviolet Imaging Spectrometer (EIS) spectral data to explore the potential of narrowband EUV imaging data for diagnosing the presence of hot (T >~ 5 MK) coronal plasma in active regions. We analyze observations of two active regions (AR 11281, AR 11289) with simultaneous AIA imaging and EIS spectral data, including the Ca XVII line (at 192.8 Å), which is one of the few lines in the EIS spectral bands sensitive to hot coronal plasma even outside flares. After careful co-alignment of the imaging and spectral data, we compare the morphology in a three-color image combining the 171, 335, and 94 Å AIA spectral bands, with the image obtained for Ca XVII emission from the analysis of EIS spectra. We find that in the selected active regions the Ca XVII emission is strong only in very limited areas, showing striking similarities with the features bright in the 94 Å (and 335 Å) AIA channels and weak in the 171 Å band. We conclude that AIA imaging observations of the solar corona can be used to track hot plasma (6-8 MK), and so to study its spatial variability and temporal evolution at high spatial and temporal resolution.

  2. Plasma AR and abiraterone-resistant prostate cancer.

    PubMed

    Romanel, Alessandro; Gasi Tandefelt, Delila; Conteduca, Vincenza; Jayaram, Anuradha; Casiraghi, Nicola; Wetterskog, Daniel; Salvi, Samanta; Amadori, Dino; Zafeiriou, Zafeiris; Rescigno, Pasquale; Bianchini, Diletta; Gurioli, Giorgia; Casadio, Valentina; Carreira, Suzanne; Goodall, Jane; Wingate, Anna; Ferraldeschi, Roberta; Tunariu, Nina; Flohr, Penny; De Giorgi, Ugo; de Bono, Johann S; Demichelis, Francesca; Attard, Gerhardt

    2015-11-04

    Androgen receptor (AR) gene aberrations are rare in prostate cancer before primary hormone treatment but emerge with castration resistance. To determine AR gene status using a minimally invasive assay that could have broad clinical utility, we developed a targeted next-generation sequencing approach amenable to plasma DNA, covering all AR coding bases and genomic regions that are highly informative in prostate cancer. We sequenced 274 plasma samples from 97 castration-resistant prostate cancer patients treated with abiraterone at two institutions. We controlled for normal DNA in patients' circulation and detected a sufficiently high tumor DNA fraction to quantify AR copy number state in 217 samples (80 patients). Detection of AR copy number gain and point mutations in plasma were inversely correlated, supported further by the enrichment of nonsynonymous versus synonymous mutations in AR copy number normal as opposed to AR gain samples. Whereas AR copy number was unchanged from before treatment to progression and no mutant AR alleles showed signal for acquired gain, we observed emergence of T878A or L702H AR amino acid changes in 13% of tumors at progression on abiraterone. Patients with AR gain or T878A or L702H before abiraterone (45%) were 4.9 and 7.8 times less likely to have a ≥50 or ≥90% decline in prostate-specific antigen (PSA), respectively, and had a significantly worse overall [hazard ratio (HR), 7.33; 95% confidence interval (CI), 3.51 to 15.34; P = 1.3 × 10(-9)) and progression-free (HR, 3.73; 95% CI, 2.17 to 6.41; P = 5.6 × 10(-7)) survival. Evaluation of plasma AR by next-generation sequencing could identify cancers with primary resistance to abiraterone.

  3. Transcriptional and posttranscriptional regulation of Bacillus sp. CDB3 arsenic-resistance operon ars1

    PubMed Central

    Yu, Xuefei; Zheng, Wei; Bhat, Somanath; Aquilina, J. Andrew

    2015-01-01

    Bacillus sp. CDB3 possesses a novel eight-gene ars cluster (ars1, arsRYCDATorf7orf8) with some unusual features in regard to expression regulation. This study demonstrated that the cluster is a single operon but can also produce a short three-gene arsRYC transcript. A hairpin structure formed by internal inverted repeats between arsC and arsD was shown to diminish the expression of the full operon, thereby probably acting as a transcription attenuator. A degradation product of the arsRYC transcript was also identified. Electrophoretic mobility shift analysis demonstrated that ArsR interacts with the ars1 promoter forming a protein-DNA complex that could be impaired by arsenite. However, no interaction was detected between ArsD and the ars1 promoter, suggesting that the CDB3 ArsD protein may not play a regulatory role. Compared to other ars gene clusters, regulation of the Bacillus sp. CDB3 ars1 operon is more complex. It represents another example of specific mRNA degradation in the transporter gene region and possibly the first case of attenuator-mediated regulation of ars operons. PMID:26355338

  4. 40Ar-39Ar Age Constraints on Volcanism and Tectonism in the Terror Rift of the Ross Sea, Antarctica

    USGS Publications Warehouse

    2007-01-01

    Volcanic sills and dikes inferred from seismic reflection profiles and geophysical studies of the Ross Sea are thought to be related to the rift basins in the region, and their emplacement to be coeval with extension. However, lack of precise geochronology in the Terror Rift of the Ross Sea region has left these inferred relationships poorly constrained and has hindered neotectonic studies, because of the large temporal gaps between seismic reflectors of known ages. New 40Ar/39Ar geochronology presented here for submarine volcanic rocks provides better age constraints for neotectonic interpretations within the Terror Rift. Several samples from seamounts yielded young ages between 156 ± 21 and 122 ± 26 Ka. These ages support interpretations that extension within the Terror Rift was active at least through the Pleistocene. Three evenly spaced samples from the lowermost 100 m of Franklin Island range in age from 3.28 ± 0.04 to 3.73 ± 0.05 Ma. These age determinations demonstrate that construction of a small volcanic edifice such as Franklin Island took at least several hundred thousand years, and therefore that much larger ones in the Erebus Volcanic Province are likely to have taken considerably longer than previously inferred. This warrants caution in applying a limited number of age determinations to define the absolute ages of events in the Ross Sea region

  5. ANOMALOUS RELATIVE AR/CA CORONAL ABUNDANCES OBSERVED BY THE HINODE/EUV IMAGING SPECTROMETER NEAR SUNSPOTS

    SciTech Connect

    Doschek, G. A.; Warren, H. P.; Feldman, U.

    2015-07-20

    In determining the element abundance of argon (a high first ionization potential; FIP element) relative to calcium (a low FIP element) in flares, unexpectedly high intensities of two Ar xiv lines (194.40, 187.96 Å) relative to a Ca xiv line (193.87 Å) intensity were found in small (a few arcseconds) regions near sunspots in flare spectra recorded by the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. In the most extreme case the Ar xiv line intensity relative to the Ca xiv intensity was 7 times the value expected from the photospheric abundance ratio, which is about 30 times the abundance of argon relative to calcium in active regions, i.e., the measured Ar/Ca abundance ratio is about 10 instead of 0.37 as in active regions. The Ar xiv and Ca xiv lines are formed near 3.4 MK and have very similar contribution functions. This is the first observation of the inverse FIP effect in the Sun. Other regions show increases of 2–3 over photospheric abundances, or just photospheric abundances. This phenomenon appears to occur rarely and only over small areas of flares away from the regions containing multi-million degree plasma, but more work is needed to quantify the occurrences and their locations. In the bright hot regions of flares the Ar/Ca abundance ratio is coronal, i.e., the same as in active regions. In this Letter we show three examples of the inverse FIP effect.

  6. Photonic crystal lasers using wavelength-scale embedded active region

    NASA Astrophysics Data System (ADS)

    Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya; Fujii, Takuro; Hasebe, Koichi; Kakitsuka, Takaaki

    2014-01-01

    Lasers with ultra-low operating energy are desired for use in chip-to-chip and on-chip optical interconnects. If we are to reduce the operating energy, we must reduce the active volume. Therefore, a photonic crystal (PhC) laser with a wavelength-scale cavity has attracted a lot of attention because a PhC provides a large Q-factor with a small volume. To improve this device's performance, we employ an embedded active region structure in which the wavelength-scale active region is buried with an InP PhC slab. This structure enables us to achieve effective confinement of both carriers and photons, and to improve the thermal resistance of the device. Thus, we have obtained a large external differential quantum efficiency of 55% and an output power of -10 dBm by optical pumping. For electrical pumping, we use a lateral p-i-n structure that employs Zn diffusion and Si ion implantation for p-type and n-type doping, respectively. We have achieved room-temperature continuous-wave operation with a threshold current of 7.8 µA and a maximum 3 dB bandwidth of 16.2 GHz. The results of an experimental bit error rate measurement with a 10 Gbit s-1 NRZ signal reveal the minimum operating energy for transferring a single bit of 5.5 fJ. These results show the potential of this laser to be used for very short reach interconnects. We also describe the optimal design of cavity quality (Q) factor in terms of achieving a large output power with a low operating energy using a calculation based on rate equations. When we assume an internal absorption loss of 20 cm-1, the optimized coupling Q-factor is 2000.

  7. Recent Activities on the Embrace Space Weather Regional Warning Center: the New Space Weather Data Center

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dal Lago, Alisson; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Takahashi, Hisao; Costa, D. Joaquim; Banik Padua, Marcelo; Campos Velho, Haroldo

    2016-07-01

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is known by the acronyms Embrace that stands for the Portuguese statement "Estudo e Monitoramento BRAasileiro de Clima Espacial" Program (Brazilian Space Weather Study and Monitoring program). The mission of the Embrace/INPE program is to monitor the Solar-Terrestrial environment, the magnetosphere, the upper atmosphere and the ground induced currents to prevent effects on technological and economic activities. The Embrace/INPE system monitors the physical parameters of the Sun-Earth environment, such as Active Regions (AR) in the Sun and solar radiation by using radio telescope, Coronal Mass Ejection (CME) information by satellite and ground-based cosmic ray monitoring, geomagnetic activity by the magnetometer network, and ionospheric disturbance by ionospheric sounders and using data collected by four GPS receiver network, geomagnetic activity by a magnetometer network, and provides a forecasting for Total Electronic Content (TEC) - 24 hours ahead - using a version of the SUPIM model which assimilates the two latter data using nudging approach. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. Regarding outreach, it has being published a daily bulletin in Portuguese and English with the status of the space weather environment on the Sun, the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, a comprehensive data bank and an interface layer are under commissioning to allow an easy and direct access to all the space weather data collected by Embrace through the Embrace web Portal. The information being released encompasses data from: (a) the Embrace Digisonde Network (Embrace DigiNet) that monitors

  8. Regional variation in myofilament length-dependent activation.

    PubMed

    Cazorla, Olivier; Lacampagne, Alain

    2011-07-01

    The Frank-Starling law is an important regulatory mechanism of the heart that links the end-diastolic volume with the systolic ejection fraction. This beat-to-beat regulation of the heart, underlined at the cellular level by higher myofilament calcium sensitivity at longer sarcomere length, is known as length-dependent activation or stretch sensitization of activation. However, the heart is structurally and functionally heterogeneous and asymmetrical. Specifically, contractile properties are not uniform within the left ventricle partly due to transmural differences in action potential waveforms and calcium homeostasis. The present review will focus on the role of the contractile machinery in the transmural contractile heterogeneity and its adaptation to changes in muscle strain. The expression of different myosin isoforms, the level of titin-based passive tension, and thin and thick sarcomeric regulatory proteins are considered to explain the regional cellular contractile properties. Finally, the importance of transmural heterogeneity of length-dependent activation and the consequences of its modification on the heart mechanics are discussed. Despite extensive research since the characterization of the Frank-Starling law, the molecular mechanisms by which strain information is transduced to the contractile machinery have not been fully determined yet.

  9. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  10. In-depth survey of sunspot and active region catalogs

    NASA Astrophysics Data System (ADS)

    Lefèvre, Laure; Clette, Frédéric; Baranyi, Tunde

    2011-08-01

    When consulting detailed photospheric catalogs for solar activity studies spanning long time intervals, solar physicists face multiple limitations in the existing catalogs: finite or fragmented time coverage, limited time overlap between catalogs and even more importantly, a mismatch in contents and conventions. In view of a study of new sunspot-based activity indices, we have conducted a comprehensive survey of existing catalogs. In a first approach, we illustrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspot groups. For this, we use the unique Debrecen Photoheliographic Data (DPD), which is already a composite of several ground observatories and SOHO data, and the USAF/Mount Wilson catalog from the Solar Optical Observing Network (SOON). We also describe our semi-interactive cross-identification method, which was needed to match the non-overlapping solar active region nomenclature, the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database collecting all available sunspot group parameters to address future solar cycle studies beyond the traditional sunspot index time series Ri.

  11. Inhibition of Androgen Receptor Transcriptional Activity as a Novel Mechanism of Action of Arsenic

    PubMed Central

    Rosenblatt, Adena E.; Burnstein, Kerry L.

    2009-01-01

    Environmental sodium arsenite is a toxin that is associated with male infertility due to decreased and abnormal sperm production. Arsenic trioxide (ATO), another inorganic trivalent semimetal, is an effective therapy for acute promyelocytic leukemia, and there is investigation of its possible efficacy in prostate cancer. However, the mechanism of arsenic action in male urogenital tract tissues is not clear. Because the androgen receptor (AR) plays an important role in spermatogenesis and prostate cancer, we explored the possibility that trivalent arsenic regulates AR function. We found that arsenic inhibited AR transcriptional activity in prostate cancer and Sertoli cells using reporter gene assays testing several androgen response element-containing regions and by assessing native target gene expression. Arsenic inhibition of AR activity was not due to down-regulation of AR protein levels, decreased hormone binding to AR, disruption of AR nuclear translocation, or interference with AR-DNA binding in vitro. However, chromatin immunoprecipitation studies revealed that arsenic inhibited AR recruitment to an AR target gene enhancer in vivo. Consistent with a deficiency in AR-chromatin binding, arsenic disrupted AR amino and carboxyl termini interaction. Furthermore, ATO caused a significant decrease in prostate cancer cell proliferation that was more pronounced in cells expressing AR compared with cells depleted of AR. In addition, inhibition of AR activity by ATO and by the AR antagonist, bicalutamide, was additive. Thus, arsenic-induced male infertility may be due to inhibition of AR activity. Further, because AR is an important target in prostate cancer therapy, arsenic may serve as an effective therapeutic option. PMID:19131511

  12. Cooling and inferred uplift/erosion history of the Grenville Orogen, Ontario: Constraints from sup 40 Ar/ sup 39 Ar thermochronology

    SciTech Connect

    Cosca, M.A.

    1989-01-01

    Thermochronological ({sup 40}Ar/{sup 39}Ar) data are presented from 76 mineral separates of hornblende, muscovite, biotite, phlogopite, and K-feldspar. Samples were selected from regionally metamorphosed gneiss, amphibolite, metasediment, marble, metagabbro and pegmatite across the two major metamorphic belts of the Grenville Province, the Central Metasedimentary Belt (CMB) and the Central Gneiss Belt (CGB). When combined with published temperature estimates for closure to argon diffusion in the phases analyzed, cooling rates from {approximately}500 C to {approximately}120 C of 1-4 C/MA are calculated across the entire Grenville Province of Ontario. Regional uplift/erosion rates for the Grenville Orogen of Ontario have been estimated from the {sup 40}Ar/{sup 39}Ar data, a retrograde P-T path for rocks of the CGB, and an upper time constraint provided by flat, overlying Cambro-Ordovician sediments. Twenty-two of the hornblendes used for thermochronology have been quantitatively analyzed for major elements by microprobe, Fe{sup 2+}/Fe{sup 3+} by wet chemistry, and for H{sub 2}O by manometric measurement. Water activities calculated from hornblende equilibria are typically low (<0.01) because of the exponential dilutions in hornblende (tremolite) activity required by present activity-composition models. An oxyamphibole component of 25% further reduces any amphibole component and the H{sub 2}O activity by as much as 50% below that calculated with simplifying assumption. These findings indicate that different amphibole normalization schemes have a marked effect on the activity calculated for a specific amphibole or H{sub 2}O, and should be carefully evaluated.

  13. Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare

    SciTech Connect

    Malanushenko, A.; Schrijver, C. J.; DeRosa, M. L.; Wheatland, M. S.

    2014-03-10

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the non-potential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of active region (AR) 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around the time of major flare activity on 2011 February 15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also being subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about 1 × 10{sup 32} erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption, the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by ≈0.9 full turns about its axis.

  14. Hard x ray highlights of AR 5395

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Dennis, Brian R.

    1989-01-01

    Active Region 5395 produced an exceptional series of hard x ray bursts notable for their frequency, intensity, and impulsivity. Over the two weeks from March 6 to 19, 447 hard x ray flares were observed by the Hard X Ray Burst Spectrometer on Solar Maximum Mission (HXRBS/SMM), a rate of approx. 35 per day which exceeded the previous high by more than 50 percent. During one 5 day stretch, more than 250 flares were detected, also a new high. The three largest GOES X-flares were observed by HXRBS and had hard x ray rates over 100,000 s(exp -1) compared with only ten flares above 100,000(exp -1) during the previous nine years of the mission. An ongoing effort for the HXRBS group has been the correlated analysis of hard x ray data with flare data at other wavelengths with the most recent emphasis on those measurements with spatial information. During a series of bursts from AR 5395 at 1644 to 1648 UT on 12 March 1989, simultaneous observations were made by HXRBS and UVSP (Ultra Violet Spectrometer Polarimeter) on SMM, the two-element Owens Valley Radio Observatory (OVRO) interferometric array, and R. Canfield's H-alpha Echelle spectrograph at the National Solar Observatory at Sacramento Peak. The data show strong correlations in the hard x ray, microwave, and UV lightcurves. This event will be the subject of a combined analysis.

  15. AR-39-AR-40 "Age" of Basaltic Shergottite NWA-3171

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Park, Jisun

    2007-01-01

    North-West-Africa 3171 is a 506 g, relatively fresh appearing, basaltic shergottite with similarities to Zagami and Shergotty, but not obviously paired with any of the other known African basaltic shergottites. Its exposure age has the range of 2.5-3.1 Myr , similar to those of Zagami and Shergotty. We made AR-39-AR-40 analyses of a "plagioclase" (now shock-converted to maskelynite) separate and of a glass hand-picked from a vein connected to shock melt pockets.. Plagioclase was separated using its low magnetic susceptibility and then heavy liquid with density of <2.85 g/cm(exp 3). The AR-39-AR-40 age spectrum of NWA-317 1 plag displays a rise in age over 20-100% of the 39Ar release, from 0.24 Gyr to 0.27 Gy.

  16. 40Ar/39Ar Studies of Antarctic Micrometeorites

    NASA Astrophysics Data System (ADS)

    Saxton, J. M.; Knott, S. F.; Turner, G.; Maurette, M.

    1992-07-01

    We have used the ^40Ar/^39Ar technique to study eight dust particles, in the size range 50-100 microns, collected by filtering Antarctic blue ice (Maurette et al. 1989). The particles were pressed into aluminium foil and their compositions estimated using SEM/EDX techniques. Six were found to have approximately chondritic Mg/Fe/Si ratios, suggesting an extraterrestrial origin. The remaining two particles appeared to be composed mostly of iron and we are not sure of their origin. The particles were then irradiated with a fast neutron fluence of approximately 6 x 10^18 cm^-2, and the argon in them extracted using a pulsed laser delivering about 100 mJ per pulse. We attempted to step heat most of the particles by initially defocusing the beam to reduce the heating effect. In four cases, a sufficient amount of gas was released for step heating to be profitable. The results for five of the chondritic particles are shown in the figure. One yielded a very small amount of gas and is not plotted. The high temperature step is shown for those particles that were step heated. In this diagram, air plots on the y-axis (^36Ar/^40Ar = 0.00338), a purely radiogenic component plots on the x-axis, and addition of ^36Ar moves a point vertically upwards. Four particles have ^36Ar/^40Ar ratios higher than air. This confirms their extraterrestrial origin. We believe the 36Ar is most probably derived from solar energetic particles; only 10^2-10^3 years exposure at 1 AU would be required to produce the level of ^36Ar we observe (10^-12-10^-13 ccSTP), assuming that no 36Ar is lost during atmospheric passage. This is comfortably less than the time taken for a particle of this size to drift in from 2AU to 1AU due to the Poynting Robertson effect, which is of the order 10^5 years. The concentration ^36Ar content is of the order of 10^-7-10^-6 g^-1, which is comparable to the levels of trapped ^36Ar found in primitive meteorites. This interpretation of the source of the ^36Ar would seem to

  17. Production of 37Ar in The University of Texas TRIGA reactor facility

    SciTech Connect

    Egnatuk, Christine M.; Lowrey, Justin; Biegalski, S.; Bowyer, Ted W.; Haas, Derek A.; Orrell, John L.; Woods, Vincent T.; Keillor, Martin E.

    2011-06-19

    The detection of {sup 37}Ar is important for on-site inspections for the Comprehensive Nuclear-Test-Ban Treaty monitoring. In an underground nuclear explosion this radionuclide is produced by {sup 40}Ca(n,{alpha}){sup 37}Ar reaction in surrounding soil and rock. With a half-life of 35 days, {sup 37}Ar provides a signal useful for confirming the location of an underground nuclear event. An ultra-low-background proportional counter developed by Pacific Northwest National Laboratory is used to detect {sup 37}Ar, which decays via electron capture. The irradiation of Ar gas at natural enrichment in the 3L facility within the Mark II TRIGA reactor facility at The University of Texas at Austin provides a source of {sup 37}Ar for the calibration of the detector. The {sup 41}Ar activity is measured by the gamma activity using an HPGe detector after the sample is removed from the core. Using the {sup 41}Ar/{sup 37}Ar production ratio and the {sup 41}Ar activity, the amount of {sup 37}Ar created is calculated. The {sup 41}Ar decays quickly (half-life of 109.34 minutes) leaving a radioactive sample of high purity {sup 37}Ar and only trace levels of {sup 39}Ar.

  18. On the modified active region design of interband cascade lasers

    SciTech Connect

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J.; Weih, R.; Dallner, M.; Kamp, M.; Höfling, S.

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  19. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    SciTech Connect

    Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.; Krucker, S.; Welsch, B. T.; Fisher, G. H.; Primavera, L.; Servidio, S.; Lepreti, F.; Carbone, V.; Vecchio, A.

    2015-03-01

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  20. The ChArMEx database

    NASA Astrophysics Data System (ADS)

    Ferré, Hélène; Belmahfoud, Nizar; Boichard, Jean-Luc; Brissebrat, Guillaume; Cloché, Sophie; Descloitres, Jacques; Fleury, Laurence; Focsa, Loredana; Henriot, Nicolas; Mière, Arnaud; Ramage, Karim; Vermeulen, Anne; Boulanger, Damien

    2015-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The project includes long term monitoring of environmental parameters , intensive field campaigns, use of satellite data and modelling studies. Therefore ChARMEx scientists produce and need to access a wide diversity of data. In this context, the objective of the database task is to organize data management, distribution system and services, such as facilitating the exchange of information and stimulating the collaboration between researchers within the ChArMEx community, and beyond. The database relies on a strong collaboration between ICARE, IPSL and OMP data centers and has been set up in the framework of the Mediterranean Integrated Studies at Regional And Locals Scales (MISTRALS) program data portal. ChArMEx data, either produced or used by the project, are documented and accessible through the database website: http://mistr