Sample records for active region consists

  1. Factor analysis of regional brain activation in bipolar and healthy individuals reveals a consistent modular structure.

    PubMed

    Fleck, David E; Welge, Jeffrey A; Eliassen, James C; Adler, Caleb M; DelBello, Melissa P; Strakowski, Stephen M

    2018-07-01

    The neurophysiological substrates of cognition and emotion, as seen with fMRI, are generally explained using modular structures. The present study was designed to probe the modular structure of cognitive-emotional processing in bipolar and healthy individuals using factor analysis and compare the results with current conceptions of the neurophysiology of bipolar disorder. Exploratory factor analysis was used to assess patterns of covariation among brain regions-of-interest activated during the Continuous Performance Task with Emotional and Neutral Distractors in healthy and bipolar individuals without a priori constraints on the number or composition of latent factors. Results indicated a common cognitive-emotional network consisting of prefrontal, medial temporal, limbic, parietal, anterior cingulate and posterior cingulate modules. However, reduced brain activation to emotional stimuli in the frontal, medial temporal and limbic modules was apparent in the bipolar relative to the healthy group, potentially accounting for emotional dysregulation in bipolar disorder. This study is limited by a relatively small sample size recruited at a single site. The results have yet to be validated on a larger independent sample. Although the modular structure of cognitive-emotional processing is similar in bipolar and healthy individuals, activation in response to emotional/neutral cues varies. These findings are not only consistent with recent conceptions of mood regulation in bipolar disorder, but also suggest that regional activation can be considered within tighter modular structures without compromising data interpretation. This demonstration may serve as a template for data reduction in future region-of-interest analyses to increase statistical power. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Cross-cultural consistency and diversity in intrinsic functional organization of Broca's Region.

    PubMed

    Zhang, Yu; Fan, Lingzhong; Caspers, Svenja; Heim, Stefan; Song, Ming; Liu, Cirong; Mo, Yin; Eickhoff, Simon B; Amunts, Katrin; Jiang, Tianzi

    2017-04-15

    As a core language area, Broca's region was consistently activated in a variety of language studies even across different language systems. Moreover, a high degree of structural and functional heterogeneity in Broca's region has been reported in many studies. This raised the issue of how the intrinsic organization of Broca's region effects by different language experiences in light of its subdivisions. To address this question, we used multi-center resting-state fMRI data to explore the cross-cultural consistency and diversity of Broca's region in terms of its subdivisions, connectivity patterns and modularity organization in Chinese and German speakers. A consistent topological organization of the 13 subdivisions within the extended Broca's region was revealed on the basis of a new in-vivo parcellation map, which corresponded well to the previously reported receptorarchitectonic map. Based on this parcellation map, consistent functional connectivity patterns and modularity organization of these subdivisions were found. Some cultural difference in the functional connectivity patterns was also found, for instance stronger connectivity in Chinese subjects between area 6v2 and the motor hand area, as well as higher correlations between area 45p and middle frontal gyrus. Our study suggests that a generally invariant organization of Broca's region, together with certain regulations of different language experiences on functional connectivity, might exists to support language processing in human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Active Regions' Magnetic Connection

    NASA Image and Video Library

    2017-05-22

    Several bright bands of plasma connect from one active region to another, even though they are tens of thousands of miles away from each other (May 17-18, 2017). Active regions are, by their nature, strong magnetic areas with north and south poles. The plasma consists of charged particles that stream along the magnetic field lines between these two regions. These connecting lines are clearly visible in this wavelength of extreme ultraviolet light. Other loops and strands of bright plasma can be seen rising up and out of smaller active regions as well. The video covers about one day's worth of activity. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21638

  4. Regional and National Grid Integration Studies Consistently Show Higher

    Science.gov Websites

    Levels of Renewables Are Possible | Energy Analysis | NREL Regional and National Grid Integration Studies Consistently Show Higher Levels of Renewables Are Possible Regional and National Grid Integration Studies Consistently Show Higher Levels of Renewables Are Possible Analysis Insights: April 2015

  5. Evidence for magnetic energy storage in coronal active regions

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; De Feiter, L. D.; Vaiana, G. S.

    1976-01-01

    Examination of X-ray images obtained by the S-054 X-ray spectrographic telescope on Skylab shows the presence of some atypical X-ray-emitting coronal structures in active regions which are not consistent with potential extrapolations of photospheric magnetic fields. Analysis of the observed temporal changes in the X-ray-emitting active-region structures demonstrates that the majority of these consist of brightness changes representing temperature (and perhaps density) variations of the material in the loops.

  6. Active Region Coming Around the Bend

    NASA Image and Video Library

    2018-04-23

    A good-sized active region with bright, towering arches began to rotate into view (Apr. 18-19, 2018). The arches consist of charged particles spiraling along magnetic field lines revealed in this wavelength of extreme ultraviolet light. They rise up above the sun's surface many times the size of Earth. The video covers just 16 hours of activity. We will keep our eyes on this region to see if it has the kind of dynamism to produce solar storms. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA22430

  7. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelz, J. T.; Pathak, S., E-mail: jschmelz@memphis.edu

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescalesmore » less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.« less

  8. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    NASA Astrophysics Data System (ADS)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  9. Consistency between the global and regional modeling components of CAMS over Europe.

    NASA Astrophysics Data System (ADS)

    Katragkou, Eleni; Akritidis, Dimitrios; Kontos, Serafim; Zanis, Prodromos; Melas, Dimitrios; Engelen, Richard; Plu, Matthieu; Eskes, Henk

    2017-04-01

    The Copernicus Atmosphere Monitoring Service (CAMS) is a component of the European Earth Observation programme Copernicus. CAMS consists of two major forecast and analysis systems: i) the CAMS global near-real time service, based on the ECMWF Integrated Forecast System (C-IFS), which provides daily analyses and forecasts of reactive trace gases, greenhouse gases and aerosol concentrations ii) a regional ensemble (ENS) for European air quality, compiled and disseminated by Météo-France, which consists of seven ensemble members. The boundaries from the regional ensemble members are extracted from the global CAMS forecast product. This work reports on the consistency between the global and regional modeling components of CAMS, and the impact of global CAMS boundary conditions on regional forecasts. The current analysis includes ozone (O3) carbon monoxide (CO) and aerosol (PM10/PM2.5) forecasts. The comparison indicates an overall good agreement between the global C-IFS and the regional ENS patterns for O3 and CO, especially above 250m altitude, indicating that the global boundary conditions are efficiently included in the regional ensemble simulations. As expected, differences are found within the PBL, with lower/higher C-IFS O3/CO concentrations over continental Europe with respect to ENS.

  10. Patterns of Activity in A Global Model of A Solar Active Region

    NASA Technical Reports Server (NTRS)

    Bradshaw, S. J.; Viall, N. M.

    2016-01-01

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  11. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  12. Derivation of a regional active-optical reflectance sensor corn algorithm

    USDA-ARS?s Scientific Manuscript database

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  13. Characteristics, location and origin of flare activity in a complex active region

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Gary, G. A.; Hagyard, M. J.; Hernandez, A. M.; Rovira, M. G.

    1986-01-01

    The observational characteristics of series of multiple-loop flares from a complex active region are summarized. The location of the highest observed photospheric magnetic shear is found to be the commonly observed site of flare onset, but not, in many cases, the magnetic region where the largest time-integrated energy release is observed. The observations thus reveal a consistent pattern of energy-release processes related to the magnetic-field topology.

  14. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  15. Active Regions Blossoming

    NASA Image and Video Library

    2015-10-28

    As a pair of active regions began to rotate into view, their towering magnetic field lines above them bloomed into a dazzling display of twisting arches (Oct. 27-28, 2015). Some of the lines reached over and connected with the neighboring active region. Active regions are usually the source of solar storms. The images were taken in a wavelength of extreme ultraviolet light. http://photojournal.jpl.nasa.gov/catalog/PIA20048

  16. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  17. Nonpotential features observed in the magnetic field of an active region

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Moore, R. L.; Hagyard, M. J.; Haisch, Bernhard M.

    1987-01-01

    A unique coordinated data set consisting of vector magnetograms, H-alpha photographs, and high-resolution ultraviolet images of a solar active region is used, together with mathematical models, to calculate potential and force-free magnetic field lines and to examine the nonpotential nature of the active region structure. It is found that the overall bipolar magnetic field of the active region had a net twist corresponding to net current of order 3 x 10 to the 12th A and average density of order 4 x 10 to the -4th A/sq m flowing antiparallel to the field. There were three regions of enhanced nonpotentiality in the interior of the active region; in one the field had a marked nonpotential twist or shear with height above the photosphere. The measured total nonpotential magnetic energy stored in the entire active region was of order 10 to the 32nd ergs, about 3 sigma above the noise level.

  18. Photospheric Magnetic Evolution in the WHI Active Regions

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; McTiernan, J. M.; Christe, S.

    2012-01-01

    Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the "proxy Poynting flux," and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.

  19. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2017-09-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  20. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  1. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  2. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  3. Gyrating Active Region

    NASA Image and Video Library

    2017-01-26

    On Jan. 20, 2017, NASA Solar Dynamics Observatory captured a small area of the sun highlighted three active region. Over half a day this active region sent dark swirls of plasma and bright magnetic arches twisting and turning above it. All the activity in the three areas was driven by competing magnetic forces. The dynamic action was observed in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11703

  4. Energized Active Regions

    NASA Image and Video Library

    2017-06-02

    A pair of relatively small (but frenetic) active regions rotated into view, spouting off numerous small flares and sweeping loops of plasma (May 31-June 2, 2017). At first, only the one active region was observed, but mid-way though the video clip a second one behind the first can be picked out. The dynamic regions were easily the most remarkable areas on the sun during this 42-hour period. The images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21756

  5. Does High Plasma-β Dynamics ``Load'' Active Regions?

    NASA Astrophysics Data System (ADS)

    McIntosh, Scott W.

    2007-03-01

    Using long-duration observations in the He II 304 Å passband of SOHO EIT, we investigate the spatial and temporal appearance of impulsive intensity fluctuations in the pixel light curves. These passband intensity fluctuations come from plasma emitting in the chromosphere, in the transition region, and in the lowest portions of the corona. We see that they are spatially tied to the supergranular scale and that their rate of occurrence is tied to the unsigned imbalance of the magnetic field in which they are observed. The signature of the fluctuations (in space and time) is consistent with their creation by magnetoconvection-forced reconnection, which is driven by the flow field in the high-β plasma. The signature of the intensity fluctuations around an active region suggests that the bulk of the mass and energy going into the active region complex observed in the hotter coronal plasma is supplied by this process, dynamically forcing the looped structure from beneath.

  6. Agitated Active Region

    NASA Image and Video Library

    2016-10-11

    An active region just rotating into view gave us a perfect view of the tussle of magnetic field lines above it (Oct. 10-11, 2016). The particles spiraling along the magnetic field lines become visible in extreme ultraviolet light, helping us to see the struggle going on. There were no eruptions during this period, although active regions are usually the source for solar storms. The video clip covers just one day's worth of activity. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21109

  7. A consistent and uniform research earthquake catalog for the AlpArray region: preliminary results.

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Bagagli, M.; Kissling, E. H.; Diehl, T.; Clinton, J. F.; Giardini, D.; Wiemer, S.

    2017-12-01

    The AlpArray initiative (www.alparray.ethz.ch) is a large-scale European collaboration ( 50 institutes involved) to study the entire Alpine orogen at high resolution with a variety of geoscientific methods. AlpArray provides unprecedentedly uniform station coverage for the region with more than 650 broadband seismic stations, 300 of which are temporary. The AlpArray Seismic Network (AASN) is a joint effort of 25 institutes from 10 nations, operates since January 2016 and is expected to continue until the end of 2018. In this study, we establish a uniform earthquake catalogue for the Greater Alpine region during the operation period of the AASN with a aimed completeness of M2.5. The catalog has two main goals: 1) calculation of consistent and precise hypocenter locations 2) provide preliminary but uniform magnitude calculations across the region. The procedure is based on automatic high-quality P- and S-wave pickers, providing consistent phase arrival times in combination with a picking quality assessment. First, we detect all events in the region in 2016/2017 using an STA/LTA based detector. Among the detected events, we select 50 geographically homogeneously distributed events with magnitudes ≥2.5 representative for the entire catalog. We manually pick the selected events to establish a consistent P- and S-phase reference data set, including arrival-time time uncertainties. The reference data, are used to adjust the automatic pickers and to assess their performance. In a first iteration, a simple P-picker algorithm is applied to the entire dataset, providing initial picks for the advanced MannekenPix (MPX) algorithm. In a second iteration, the MPX picker provides consistent and reliable automatic first arrival P picks together with a pick-quality estimate. The derived automatic P picks are then used as initial values for a multi-component S-phase picking algorithm. Subsequently, automatic picks of all well-locatable earthquakes will be considered to calculate

  8. Unwinding motion of a twisted active region filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Kong, D. F.

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament,more » we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.« less

  9. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  10. HARPs: Tracked Active Region Patch Data Product from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Sun, X.; Bobra, M.

    2012-12-01

    We describe an HMI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated HARPs (HMI Active Region Patches). The HARP data series has been helpful for subsetting individual active regions, for development of near-real-time (NRT) space weather indices for individual active regions, and for defining closed magnetic structures for computationally-intensive algorithms like vector field disambiguation. The data series builds upon the 720s cadence activity masks, which identify large-scale instantaneously-observed magnetic features. Using these masks as a starting point, large spatially-coherent structures are identified using convolution with a longitudinally-extended kernel on a spherical domain. The resulting set of identified regions is then tracked from image to image. The metric for inter-image association is area of overlap between the best current estimate of AR location, as predicted by temporally extrapolating each currently tracked object, and the set of instantaneously-observed magnetic structures. Once completed tracks have been extracted, they are made into a standardized HARP data series by finding the smallest constant-angular-velocity box, of constant width in latitude and longitude, that encompasses all appearances of the active region. This data product is currently available, in definitive and near-real-time forms, with accompanying region-strength, location, and NOAA-AR metadata, on HMI's Joint Science Operations Center (JSOC) data portal.; HARP outlines for three days (2001 February 14, 15, and 16, 00:00 TAI, flipped N-S, selected from the 12-minute cadence original data product). HARPs are shown in the same color (some colors repeated) with a thin white box surrounding each HARP. HARPs are tracked and associated from image to image. HARPs, such as the yellow one in the images above, need not be connected regions. Merges and splits, such as the light blue region, are accounted for automatically.

  11. The Evolution of Active Regions

    NASA Astrophysics Data System (ADS)

    Green, Lucie

    2016-10-01

    The solar corona is a highly dynamic environment which exhibits the largest releases of energy in the Solar System in the form of solar flares and coronal mass ejections. This activity predominantly originates from active regions, which store and release free magnetic energy and dominate the magnetic face of the Sun. Active regions can be long-lived features, being affected by the Sun's convective flows, differential rotation and meridional flows. The Sun's global coronal field can be seen as the superposed growth and subsequent diffusion of all previously formed active regions. This talk will look at active regions as an observable product of the solar dynamo and will discuss the physical processes that are at play which lead to the storage and release of free magnetic energy. What happens to flux that emerges into the corona so that it goes down an evolutionary path that leads to dynamic activity? And how does this activity vary with active region age? When an active region reaches the end of its lifetime, his much of the magnetic flux is recycled back into subsequent solar cycles? The current status of observations and modelling will be reviewed with a look to the future and fundamental questions that are still be be answered.

  12. 15 CFR 930.154 - Listing activities subject to routine interstate consistency review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... information to the Director that coastal effects from listed activities occurring within the geographic area... COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency of Federal Activities Having Interstate Coastal Effects § 930.154 Listing activities...

  13. Stable functional networks exhibit consistent timing in the human brain.

    PubMed

    Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate

  14. Jumpy Active Region

    NASA Image and Video Library

    2017-01-03

    A close-up view of one day in the life of a rather small active region shows the agitation and dynamism of its magnetic field (Dec. 21, 2016). This wavelength of extreme ultraviolet light reveals particles as they spin along the cascading arches of magnetic field lines above the active region. Some darker plasma rises up and spins around at the edge of the sun near the end of the video clip also being pulled by unseen magnetic forces. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA15032

  15. A Survey of Nanoflare Properties in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Klimchuk, J. A.

    2013-12-01

    We investigate coronal heating using a systematic technique to analyze the properties of nanoflares in active regions (AR). Our technique computes cooling times, or time-lags, on a pixel-by-pixel basis using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique has the advantage that it allows us to analyze all of the coronal AR emission, including the so-called diffuse emission. We recently presented results using this time-lag analysis on NOAA AR 11082 (Viall & Klimchuk 2012) and found that the majority of the pixels contained cooling plasma along their line of sight, consistent with impulsive coronal nanoflare heating. Additionally, our results showed that the nanoflare energy is stronger in the AR core and weaker in the active region periphery. Are these results representative of the nanoflare properties exhibited in the majority of ARs, or is AR 11082 unique? Here we present the time-lag results for a survey of ARs and show that these nanoflare patterns are born out in other active regions, for a range of ages, magnetic complexity, and total unsigned magnetic flux. Other aspects of the nanoflare properties, however, turn out to be dependent on certain AR characteristics.

  16. 18- and 24-month-olds' discrimination of gender-consistent and inconsistent activities.

    PubMed

    Hill, Sara E; Flom, Ross

    2007-02-01

    18- and 24-month-olds' ability to discriminate gender-stereotyped activities was assessed. Using a preferential looking paradigm, toddlers viewed male and female actors performing masculine and feminine-stereotyped activities. Consistent with our predictions, and previous research, 24-month-olds, but not 18-month-olds, looked longer at the gender-inconsistent activities than the gender-consistent activities. Results are discussed in terms of toddlers emerging gender stereotypes and perception of everyday events.

  17. Open magnetic fields in active regions

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Solodyna, C. V.; Howard, R.; Levine, R. H.

    1977-01-01

    Soft X-ray images and magnetograms of several active regions and coronal holes are examined which support the interpretation that some of the dark X-ray gaps seen between interconnecting loops and inner cores of active regions are foot points of open field lines inside the active regions. Characteristics of the investigated dark gaps are summarized. All the active regions with dark X-ray gaps at the proper place and with the correct polarity predicted by global potential extrapolation of photospheric magnetic fields are shown to be old active regions, indicating that field opening is accomplished only in a late phase of active-region development. It is noted that some of the observed dark gaps probably have nothing in common with open fields, but are either due to the decreased temperature in low-lying portions of interconnecting loops or are the roots of higher and less dense or cooler loops.

  18. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges,more » sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.« less

  19. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  20. Enceladus Plume Activity Consistent with Eruptions from Sources within a Thin Shell

    NASA Astrophysics Data System (ADS)

    Hurford, Terry; Spitale, Joseph N.; Rhoden, Alyssa R.; Henning, Wade

    2017-10-01

    Enceladus is a small (radius 250 km) moon that orbits Saturn between the moons Mimas and Tethys with a period of 1.37 days. A 2:1 mean motion resonance with the moon Dione, which orbits just beyond Tethys, excites its orbital eccentricity to the observed value of 0.0047, which in turn produces periodic tidal stress on the surface.In 2005, Cassini detected the eruption of material from warm regions, which correlated with the large Tiger Stripe fractures near the south pole of Enceladus. A 2007 analysis of tidal stress postulated that the eruptive activity might be linked to tidal tension across these fractures and predicted that activity should vary on the orbital timescale such that greatest activity should be observed near apocenter (Hurford et al., 2007). In 2013, results from analysis of Cassini’s Visual and Infrared Map- ping Spectrometer (VIMS) data detected variability of the erupting material in the orbital cycle and qualitatively confirmed the predictions of variable activity from 2007 (Hedman et al., 2013; Hurford et al. 2007).Since then, work has been done to refine models for tidal control of plume activity. Nimmo et al. (2014) found that the plume activity could track the fraction of fractures under tension, but required a ~5 hr lag in Enceladus’ tidal response. This lag seemed plausible in a 24km ice shell. Behounkova et al. (2105) confirmed this result with a slightly improved model that linked tidal activity to normalize average tensile stress on the fracture.In this work, we illustrate how reservoir depth combines with a lag in tidal response to mimic larger delays in tidal activity. Taking into account the depth of the volatile reservoir, we find that the response of Enceladus to tidal deformation needs only be ~3 hrs and is more consistent with eruptions from a thin ice shell (≤10 km). This result is more consistent with recent revisions in ice shell thickness (Iess et al., 2014; Thomas et al., 2016).Hurford et al., 2007, Nature 447, 292

  1. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  2. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... coastal management issues and have similar enforceable policies, e.g., protection of a particular coastal... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS...) Federal agencies shall review their proposed Federal agency activities which affect any coastal use or...

  3. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... coastal management issues and have similar enforceable policies, e.g., protection of a particular coastal... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS...) Federal agencies shall review their proposed Federal agency activities which affect any coastal use or...

  4. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... coastal management issues and have similar enforceable policies, e.g., protection of a particular coastal... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS...) Federal agencies shall review their proposed Federal agency activities which affect any coastal use or...

  5. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... coastal management issues and have similar enforceable policies, e.g., protection of a particular coastal... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS...) Federal agencies shall review their proposed Federal agency activities which affect any coastal use or...

  6. 15 CFR 930.36 - Consistency determinations for proposed activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... coastal management issues and have similar enforceable policies, e.g., protection of a particular coastal... AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS...) Federal agencies shall review their proposed Federal agency activities which affect any coastal use or...

  7. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Technical Reports Server (NTRS)

    Martinez, Francisco; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2016-01-01

    Solar coronal jets are transient (frequently of lifetime approx.10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Cirtain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called "minifilaments" erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancelation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted, and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sites of magnetic-field cancelation.

  8. Consistency in boldness, activity and exploration at different stages of life.

    PubMed

    Herde, Antje; Eccard, Jana A

    2013-12-07

    Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies.

  9. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.

    PubMed

    Krishnaswamy, Jagdish; John, Robert; Joseph, Shijo

    2014-01-01

    Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture

  10. The Twist Limit for Bipolar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  11. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Martinez, F.; Falconer, D. A.; Moore, R. L.

    2016-12-01

    Solar coronal jets are transient (frequently of lifetime 10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Certain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called ``minifilaments,'' erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancellation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted; and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sights of magnetic-field cancelation. Thus our findings support that, at least in many cases, AR coronal jets result from the same physical processes that produce coronal jets in quiet-Sun and coronal-hole regions. FM was supportedby the Research Experience for Undergraduates (REU) program at

  12. Consistency in boldness, activity and exploration at different stages of life

    PubMed Central

    2013-01-01

    Background Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies. PMID:24314274

  13. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  14. Regional differences in hyoid muscle activity and length-dynamics during mammalian head-shaking

    PubMed Central

    Wentzel, Sarah E.; Konow, Nicolai; German, Rebecca Z.

    2010-01-01

    The sternohyoid (SH) and geniohyoid (GH) are antagonist strap-muscles that are active during a number of different behaviors, including sucking, intraoral transport, swallowing, breathing, and extension/flexion of the neck. Because these muscles have served different functions through the evolutionary history of vertebrates, it is quite likely they will have complex patterns of electrical activity and muscle fiber contraction. Different regions of the sternohyoid exhibit different contraction and activity patterns during a swallow. We examined the dynamics of the sternohyoid and geniohyoid muscles during an unrestrained, and vigorous head-shake behavior in an animal model of human head, neck and hyolingual movement. A gentle touch to infant pig ears elicited a head shake of several head revolutions. Using sonomicrometry and intramuscular EMG we measured regional (within) muscle strain and activity in SH and GH. We found that EMG was consistent across three regions (anterior, belly and posterior) of each muscle. Changes in muscle length however, were more complex. In the SH, mid-belly length-change occurred out of phase with the anterior and posterior end-regions, but with a zero-lag timing; the anterior region shortened prior to the posterior. In the GH, the anterior region shortened prior to, and out of phase with the mid-belly and posterior regions. Head-shaking is a relatively simple reflex behavior, yet the underlying patterns of muscle length-dynamics and EMG activity are not. The regional complexity in SH and GH, similar to regionalization of SH during swallowing, suggests that these ‘simple hyoid strap muscles’ are more complex than textbooks often suggest. PMID:21370479

  15. Spasmodic Active Region

    NASA Image and Video Library

    2014-04-30

    An active region that was rotating out of view off the sun's western limb, displayed a dazzling variety of dozens of spurts and eruptions in about 2.5 days (Apr. 19-21, 2014). The frames, taken in extreme ultraviolet light, show ionized Helium not far above the Sun's surface. All of the activity near this region was caused by intense magnetic forces in a powerful struggling with each other. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Tangled up Active Region

    NASA Image and Video Library

    2017-12-08

    This close-up image of the sun presents an active region in profile as it rotated out of view. We can observe both the bright arching field lines and smaller pieces of darker matter in their midst being pulled back and forth just above the Sun's surface over about 36 hours (July 20-22, 2011). Both of these physical responses were caused by strong, tangled magnetic forces that are constantly evolving and reorganizing within the active region. Other active regions can be seen in the foreground as well. The image and movie were taken in extreme ultraviolet light of ionized iron heated to one million degrees. To view a hd video of this event go here: www.flickr.com/photos/gsfc/6006013038 Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Kinked Loop Stretching Between Two Active Regions

    NASA Image and Video Library

    2017-07-25

    Numerous arches of magnetic field lines danced and swayed above a large active region over about a 30-hour period (July 17-18, 2017). We can also see the magnetic field lines from the large active region reached out and connected with a smaller active region. Those linked lines then strengthened (become brighter), but soon began to develop a kink in them and rather swiftly faded from view. All of this activity is driven by strong magnetic forces associated with the active regions. The images were taken in a wavelength of extreme ultraviolet light. https://photojournal.jpl.nasa.gov/catalog/PIA21838

  18. Image Patch Analysis of Sunspots and Active Regions

    NASA Astrophysics Data System (ADS)

    Moon, K.; Delouille, V.; Hero, A.

    2017-12-01

    The flare productivity of an active region has been observed to be related to its spatial complexity. Separating active regions that are quiet from potentially eruptive ones is a key issue in space weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature does not use all of the information present in the observations. In our work, we present an image patch analysis for characterizing sunspots and active regions. We first propose fine-scale quantitative descriptors for an active region's complexity such as intrinsic dimension, and we relate them to the Mount Wilson classification. Second, we introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. To obtain this local geometry, we use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches using the singular value decomposition. The resulting factorizations of active regions can be compared via the definition of appropriate metrics on the factors. The distances obtained from these metrics are then used to cluster the active regions. Results. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the R-value.

  19. A quantity characterizing variation of observed magnetic twist in solar active regions

    NASA Astrophysics Data System (ADS)

    Gao, Yu

    2018-03-01

    An alternative parameter RJz is introduced as the ratio of one of two kinds of opposite-sign current to the total current and is used to investigate the relationship between this quantity and the hemispheric helicity sign rule (HSR) that has been established by a series of previous statistical studies. The classification of current in each hemisphere obeys the following rule: if the product of the current and the corresponding longitudinal field component contributes a consistent sign with respect to the HSR, it is called “HSR-compliant” current, otherwise it is called “HSR-noncompliant” current. Firstly, consistency between the butterfly diagram of RJz and current helicity was obtained in a statistical study. Active regions with RJz smaller than 0.5 tend to obey the HSR whereas those with RJz greater than 0.5 tend to disobey it. The “HSR-compliant” current systems have a 60% probability of realization compared to 40% for “HSR-noncompliant” current systems. Overall, the HSR is violated for active regions in which the “HSR-noncompliant” current is greater than the “HSR-compliant” current. Secondly, the parameter RJz was subsequently used to study the evolution of current systems in the case analyses of flare-productive active regions NOAA AR 11158 and AR 11283. It is found that there is a “RJz -quasi-stationary” phase that is relatively flare quiescent and “RJz -dynamic” phase that is characterized by the occurrence of large flares.

  20. Perceived built environment and physical activity in U.S. women by sprawl and region.

    PubMed

    Troped, Philip J; Tamura, Kosuke; Whitcomb, Heather A; Laden, Francine

    2011-11-01

    A number of studies have demonstrated relationships between the perceived built environment and physical activity among adults. However, little is known about whether these associations differ by U.S. region and level of urban sprawl. To examine associations between the perceived built environment and physical activity in U.S. women by region and urban sprawl. Nurses' Health Study II participants (N=68,968) completed four perceived neighborhood environment survey items in 2005. Logistic regression was used to estimate associations with meeting physical activity recommendations, adjusting for demographic and weight-status variables, and stratifying by region and sprawl. Data analyses were completed in 2011. Perceived proximity to shops/stores was positively associated with physical activity across regions and levels of sprawl (ORs=1.21-1.46). Perceived access to recreation facilities was also a positive physical activity correlate in most region-sprawl strata, with strongest relationships found in the West (ORs=1.31-1.70). Perceived crime and presence of sidewalks did not show statistically significant associations with physical activity in most region-sprawl strata, although ORs for perceived crime showed a consistent pattern of negative associations (ORs=0.60-0.95). A higher number of positive environmental attributes was associated with a greater odds of meeting physical activity recommendations. Findings indicate that perceived proximity to shops/stores and access to recreation facilities are important correlates of physical activity for women, irrespective of region or sprawl. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  2. Untangling Consequential Futures: Discovering Self-Consistent Regional and Global Multi-Sector Change Scenarios

    NASA Astrophysics Data System (ADS)

    Lamontagne, J. R.; Reed, P. M.

    2017-12-01

    Impacts and adaptations to global change largely occur at regional scales, yet they are shaped globally through the interdependent evolution of the climate, energy, agriculture, and industrial systems. It is important for regional actors to account for the impacts of global changes on their systems in a globally consistent but regionally relevant way. This can be challenging because emerging global reference scenarios may not reflect regional challenges. Likewise, regionally specific scenarios may miss important global feedbacks. In this work, we contribute a scenario discovery framework to identify regionally-specific decision relevant scenarios from an ensemble of scenarios of global change. To this end, we generated a large ensemble of time evolving regional, multi-sector global change scenarios by a full factorial sampling of the underlying assumptions in the emerging shared socio-economic pathways (SSPs), using the Global Change Assessment Model (GCAM). Statistical and visual analytics were then used to discover which SSP assumptions are particularly consequential for various regions, considering a broad range of time-evolving metrics that encompass multiple spatial scales and sectors. In an illustrative examples, we identify the most important global change narratives to inform water resource scenarios for several geographic regions using the proposed scenario discovery framework. Our results highlight the importance of demographic and agricultural evolution compared to technical improvements in the energy sector. We show that narrowly sampling a few canonical reference scenarios provides a very narrow view of the consequence space, increasing the risk of tacitly ignoring major impacts. Even optimistic scenarios contain unintended, disproportionate regional impacts and intergenerational transfers of consequence. Formulating consequential scenarios of deeply and broadly uncertain futures requires a better exploration of which quantitative measures of

  3. The discrete and localized nature of the variable emission from active regions

    NASA Technical Reports Server (NTRS)

    Arndt, Martina Belz; Habbal, Shadia Rifai; Karovska, Margarita

    1994-01-01

    Using data from the Extreme Ultraviolet (EUV) Spectroheliometer on Skylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints, (delta n)/N, that exhibits variable emission, varies by +/- 15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 10(exp 5) K. (5) The ratio of the intensity of the variable to the average background emission, (delta I)/(bar-I), also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.

  4. Thermal shielding of an emerging active region

    NASA Astrophysics Data System (ADS)

    Régnier, S.

    2012-08-01

    Context. The interaction between emerging active regions and the pre-existing coronal magnetic field is important for better understanding the mechanisms of storage and release of magnetic energy from the convection zone to the high corona. Aims: We describe the first steps of an emerging active region within a pre-existing quiet-Sun corona in terms of the thermal and magnetic structure. Methods: We used unprecedented spatial, temporal and spectral coverage from the Atmospheric Imager Assembly (AIA) and from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Results: Starting on 30 May 2010 at 17:00 UT, we followed the emerging active region AR11076 within a quiet-Sun region for 8 h. Using several SDO/AIA filters that cover temperatures from 50 000 K to 10 MK, we show that the emerging process is characterised by a thermal shield at the interface between the emerging flux and pre-existing quiet-Sun corona. Conclusions: The active region 11076 is a peculiar example of an emerging active region because (i) the polarities emerge in a photospheric quiet-Sun region near a supergranular-like distribution, and (ii) the polarities that form the bipolar emerging structure do not rotate with respect to each other, which indicates a slight twist in the emerging flux bundle. There is a thermal shield at the interface between the emerging active region and the pre-existing quiet-Sun region. The thermal shielding structure deduced from all SDO/AIA channels is strongly asymmetric between the two polarities of the active region, suggesting that the heating mechanism for one polarity is probably magnetic reconnection, whilst it is caused by increasing magnetic pressure for the opposite polarity. Appendix A and two movies are available in electronic form at http://www.aanda.org

  5. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  6. Perceived Built Environment and Physical Activity in U.S. Women by Sprawl and Region

    PubMed Central

    Troped, Philip J.; Tamura, Kosuke; Whitcomb, Heather A.; Laden, Francine

    2012-01-01

    Background A number of studies have demonstrated relationships between the perceived built environment and physical activity among adults. However, little is known about whether these associations differ by U.S. region and level of urban sprawl. Purpose To examine associations between the perceived built environment and physical activity in U.S. women by region and urban sprawl. Methods Nurses’ Health Study II participants (N = 68,968) completed four perceived neighborhood environment survey items in 2005. Logistic regression was used to estimate associations with meeting physical activity recommendations, adjusting for demographic and weight-status variables, and stratifying by region and sprawl. Data analyses were completed in 2011. Results Perceived proximity to shops/stores was positively associated with physical activity across regions and levels of sprawl (ORs = 1.21 to 1.46). Perceived access to recreation facilities was also a positive physical activity correlate in most region–sprawl strata with strongest relationships found in the West (ORs = 1.31 to 1.70). Perceived crime and presence of sidewalks did not show statistically significant associations with physical activity in most region–sprawl strata, although ORs for perceived crime showed a consistent pattern of negative associations (ORs from 0.60 to 0.95). A higher number of positive environmental attributes was associated with a greater odds of meeting physical activity recommendations. Conclusions Findings indicate that perceived proximity to shops/stores and access to recreation facilities are important correlates of physical activity for women, irrespective of region or sprawl. PMID:22011417

  7. The trust-region self-consistent field method in Kohn-Sham density-functional theory.

    PubMed

    Thøgersen, Lea; Olsen, Jeppe; Köhn, Andreas; Jørgensen, Poul; Sałek, Paweł; Helgaker, Trygve

    2005-08-15

    The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.

  8. Regional warming of hot extremes accelerated by surface energy fluxes consistent with drying soils

    NASA Astrophysics Data System (ADS)

    Donat, M.; Pitman, A.; Seneviratne, S. I.

    2017-12-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hotspots of accelerated warming of model-simulated hot extremes in Europe, North America, South America and Southeast China. These hotspots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most CMIP5 models. Exploring the conditions on the specific day the hot extreme occurs demonstrates the hotspots are explained by changes in the surface energy fluxes consistent with drying soils. Furthermore, in these hotspot regions we find a relationship between the temperature - heat flux correlation under current climate conditions and the magnitude of future projected changes in hot extremes, pointing to a potential emergent constraint for simulations of future hot extremes. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations of the past 60 years, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a re-evaluation of how climate models resolve the relevant terrestrial processes.

  9. 15 CFR 930.154 - Listing activities subject to routine interstate consistency review.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF... subject to routine interstate consistency review. (a) Geographic location of listed activities. Each... the geographic location for each type of listed activity. (b) In establishing the geographic location...

  10. 15 CFR 930.154 - Listing activities subject to routine interstate consistency review.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF... subject to routine interstate consistency review. (a) Geographic location of listed activities. Each... the geographic location for each type of listed activity. (b) In establishing the geographic location...

  11. 15 CFR 930.154 - Listing activities subject to routine interstate consistency review.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF... subject to routine interstate consistency review. (a) Geographic location of listed activities. Each... the geographic location for each type of listed activity. (b) In establishing the geographic location...

  12. 15 CFR 930.154 - Listing activities subject to routine interstate consistency review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF... subject to routine interstate consistency review. (a) Geographic location of listed activities. Each... the geographic location for each type of listed activity. (b) In establishing the geographic location...

  13. Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Zhao, Junwei; Schuck, P. W.

    2012-01-01

    We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the sunspot umbra and outward flows surrounding the sunspot. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the sunspot penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding sunspots. On the other hand, most well-documented flux-emergence-related flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.

  14. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  15. Skylab observations of X-ray loops connecting separate active regions. [solar activity

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.

    1976-01-01

    One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.

  16. A Fractal Dimension Survey of Active Region Complexity

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  17. An investigation of coronal active region loop structures using AS&E rocket X-ray images

    NASA Technical Reports Server (NTRS)

    Webb, D. F.

    1983-01-01

    Simultaneous high spatial resolution observations at 6 cm in soft X-rays, in photospheric magnetograms, and in optical filtergrams were used to compare the most intense sources of centimetric emission in two active regions to coronal loops, sunspots, chromospheric structures, and photospheric magnetic fields. Results show that the majority of the bright microwave components are not associated with sunspots or X-ray emission. A nonthermal mechanism appears necessary to explain the brightest microwave components, discrete regions of continuous particle acceleration may be common in active regions. Studies of the plasma parameters of selected loops imply that the radio emission is consistent with gyro-resonance absorption at the third and fourth harmonic, at least from part of each loop. Results are presented for: (1) X-ray and microwave observations of active regions; (2) comparison of coronal holes observed in soft X-rays and Hel 10830 A spectrosheliograms; and (3) the reappearance of polar coronal holes and the evolution of the solar magnetic field.

  18. Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions.

    PubMed

    Chamberlain, Dan; Brambilla, Mattia; Caprio, Enrico; Pedrini, Paolo; Rolando, Antonio

    2016-08-01

    Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.

  19. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  20. Interactive flare sites within an active region complex

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Gary, G. A.; Machado, M. E.

    1993-01-01

    We examine here a set of images of an active region complex, acquired on June 24-25, 1980, by the Hard X-ray Imaging Spectrometer on SMM, with the purpose of establishing whether there was any interplay between the frequent activity observed at different sites in the activity center and, in such a case, how the interaction was established. By analyzing both quiet and active orbits we show that, as a rule, activity originating in one region triggers the other region's activity. However, we find little unambiguous evidence for the presence of large-scale interconnecting loops. A comparison of X-ray images with magnetic field observations suggested that we interpret the active region behavior in terms of the interaction between different loop systems, in a scenario quite analogous to the interacting bipole representation of individual flares. We conclude that active region interplay provides an easily observable case to study the time-dependent topology and the mechanisms for the spreading of activity in transient events over all energy scales.

  1. Single-unit activity during natural vision: diversity, consistency, and spatial sensitivity among AF face patch neurons.

    PubMed

    McMahon, David B T; Russ, Brian E; Elnaiem, Heba D; Kurnikova, Anastasia I; Leopold, David A

    2015-04-08

    Several visual areas within the STS of the macaque brain respond strongly to faces and other biological stimuli. Determining the principles that govern neural responses in this region has proven challenging, due in part to the inherently complex stimulus domain of dynamic biological stimuli that are not captured by an easily parameterized stimulus set. Here we investigated neural responses in one fMRI-defined face patch in the anterior fundus (AF) of the STS while macaques freely view complex videos rich with natural social content. Longitudinal single-unit recordings allowed for the accumulation of each neuron's responses to repeated video presentations across sessions. We found that individual neurons, while diverse in their response patterns, were consistently and deterministically driven by the video content. We used principal component analysis to compute a family of eigenneurons, which summarized 24% of the shared population activity in the first two components. We found that the most prominent component of AF activity reflected an interaction between visible body region and scene layout. Close-up shots of faces elicited the strongest neural responses, whereas far away shots of faces or close-up shots of hindquarters elicited weak or inhibitory responses. Sensitivity to the apparent proximity of faces was also observed in gamma band local field potential. This category-selective sensitivity to spatial scale, together with the known exchange of anatomical projections of this area with regions involved in visuospatial analysis, suggests that the AF face patch may be specialized in aspects of face perception that pertain to the layout of a social scene.

  2. Active faulting in low- to moderate-seismicity regions: the SAFE project

    NASA Astrophysics Data System (ADS)

    Sebrier, M.; Safe Consortium

    2003-04-01

    SAFE (Slow Active Faults in Europe) is an EC-FP5 funded multidisciplinary effort which proposes an integrated European approach in identifying and characterizing active faults as input for evaluating seismic hazard in low- to moderate-seismicity regions. Seismically active western European regions are generally characterized by low hazard but high risk, due to the concentration of human and material properties with high vulnerability. Detecting, and then analysing, tectonic deformations that may lead to destructive earthquakes in such areas has to take into account three major limitations: - the typical climate of western Europe (heavy vegetation cover and/or erosion) ; - the subdued geomorphic signature of slowly deforming faults ; - the heavy modification of landscape by human activity. The main objective of SAFE, i.e., improving the assessment of seismic hazard through understanding of the mechanics and recurrence of active faults in slowly deforming regions, is achieved through four major steps : (1) extending geologic and geomorphic investigations of fault activity beyond the Holocene to take into account various time-windows; (2) developing an expert system that combines diverse lines of geologic, seismologic, geomorphic, and geophysical evidence to diagnose the existence and seismogenic potential of slow active faults; (3) delineating and characterising high seismic risk areas of western Europe, either from historical or geological/geomorphic evidence; (4) demonstrating and discussing the impact of the project results on risk assessment through a seismic scenario in the Basel-Mulhouse pilot area. To take properly into account known differences in source behavior, these goals are pursued both in extensional (Lower and Upper Rhine Graben, Catalan Coast) and compressional tectonic settings (southern Upper Rhine Graben, Po Plain, and Provence). Two arid compressional regions (SE Spain and Moroccan High Atlas) have also been selected to address the limitations

  3. Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.

    Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  4. Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores-western Mediterranean region

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Lima, Vânia; Vales, Dina; Cesca, Simone; Carrilho, Fernando

    2016-04-01

    The matching between linear trends of hypocentres and fault planes indicated by focal mechanisms (FMs) is frequently used to infer the location and geometry of active faults. This practice works well in regions of fast lithospheric deformation, where earthquake patterns are clear and major structures accommodate the bulk of deformation, but typically fails in regions of slow and distributed deformation. We present a new joint FM and hypocentre cluster algorithm that is able to detect systematically the consistency between hypocentre lineations and FMs, even in regions of distributed deformation. We apply the method to the Azores-western Mediterranean region, with particular emphasis on western Iberia. The analysis relies on a compilation of hypocentres and FMs taken from regional and global earthquake catalogues, academic theses and technical reports, complemented by new FMs for western Iberia. The joint clustering algorithm images both well-known and new seismo-tectonic features. The Azores triple junction is characterised by FMs with vertical pressure (P) axes, in good agreement with the divergent setting, and the Iberian domain is characterised by NW-SE oriented P axes, indicating a response of the lithosphere to the ongoing oblique convergence between Nubia and Eurasia. Several earthquakes remain unclustered in the western Mediterranean domain, which may indicate a response to local stresses. The major regions of consistent faulting that we identify are the mid-Atlantic ridge, the Terceira rift, the Trans-Alboran shear zone and the north coast of Algeria. In addition, other smaller earthquake clusters present a good match between epicentre lineations and FM fault planes. These clusters may signal single active faults or wide zones of distributed but consistent faulting. Mainland Portugal is dominated by strike-slip earthquakes with fault planes coincident with the predominant NNE-SSW and WNW-ESE oriented earthquake lineations. Clusters offshore SW Iberia are

  5. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibrationmore » based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.« less

  6. Depth of origin of solar active regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    Observations show that the individual bipolar magnetic regions on the sun remain confined during their decay phase, with much of the magnetic field pulling back under the surface, in reverse of the earlier emergence. This suggests that the magnetic field is held on a short rein by subsurface forces, for otherwise the region would decay entirely by dispersing across the face of the sun. With the simple assumption that the fields at the surface are controlled from well-defined anchor points at a depth h, it is possible to relate the length l of the bipolar region at the surface to the depth h, with h about equal to l. The observed dimensions l about equal to 100,000 km for normal active regions, and l about equal to 10,000 km for the ephemeral active regions, indicate comparable depths of origin. More detailed observational studies of the active regions may be expected to shed further light on the problem.

  7. Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1989-01-01

    A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.

  8. The activities of the C-terminal regions of the formin protein disheveled-associated activator of morphogenesis (DAAM) in actin dynamics.

    PubMed

    Vig, Andrea Teréz; Földi, István; Szikora, Szilárd; Migh, Ede; Gombos, Rita; Tóth, Mónika Ágnes; Huber, Tamás; Pintér, Réka; Talián, Gábor Csaba; Mihály, József; Bugyi, Beáta

    2017-08-18

    Disheveled-associated activator of morphogenesis (DAAM) is a diaphanous-related formin protein essential for the regulation of actin cytoskeleton dynamics in diverse biological processes. The conserved formin homology 1 and 2 (FH1-FH2) domains of DAAM catalyze actin nucleation and processively mediate filament elongation. These activities are indirectly regulated by the N- and C-terminal regions flanking the FH1-FH2 domains. Recently, the C-terminal diaphanous-autoregulatory domain (DAD) and the C terminus (CT) of formins have also been shown to regulate actin assembly by directly interacting with actin. Here, to better understand the biological activities of DAAM, we studied the role of DAD-CT regions of Drosophila DAAM in its interaction with actin with in vitro biochemical and in vivo genetic approaches. We found that the DAD-CT region binds actin in vitro and that its main actin-binding element is the CT region, which does not influence actin dynamics on its own. However, we also found that it can tune the nucleating activity and the filament end-interaction properties of DAAM in an FH2 domain-dependent manner. We also demonstrate that DAD-CT makes the FH2 domain more efficient in antagonizing with capping protein. Consistently, in vivo data suggested that the CT region contributes to DAAM-mediated filopodia formation and dynamics in primary neurons. In conclusion, our results demonstrate that the CT region of DAAM plays an important role in actin assembly regulation in a biological context. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Falconer, David; Sterling, Alphonse

    2012-01-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  10. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2013-01-01

    It has been found previously, by measuring from active ]region magnetograms a proxy of the free energy in the active region fs magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main ]sequence path bordering the free ]energy ]limit line in (flux content, free ]energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free ]energy limit, the ratio of magnetic ]shear free energy to the non ]free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. Evidently, most active regions in which this core ]field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

  11. Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae

    USGS Publications Warehouse

    Silvestro, S.; Vaz, D.A.; Fenton, L.K.; Geissler, P.E.

    2011-01-01

    We present evidence of widespread aeolian activity in the Arabia Terra/Meridiani region (Mars), where different kinds of aeolian modifications have been detected and classified. Passing from the regional to the local scale, we describe one particular dune field in Meridiani Planum, where two ripple populations are distinguished by means of different migration rates. Moreover, a consistent change in the ripple pattern is accompanied by significant dune advancement (between 0.4-1 meter in one Martian year) that is locally triggered by large avalanche features. This suggests that dune advancement may be common throughout the Martian tropics. ?? 2011 by the American Geophysical Union.

  12. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats

    PubMed Central

    Shukla, Charu; Koch, Lauren G.; Britton, Steven L.; Cai, Minying; Hruby, Victor J.; Bednarek, Maria; Novak, Colleen M.

    2015-01-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of melanocortin peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. PMID:26404873

  13. Active Region Jets II: Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco

    2017-08-01

    We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ˜<2‧‧) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  14. Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge?

    NASA Astrophysics Data System (ADS)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2015-03-01

    Regional climate modelling sometimes requires that the regional model be nudged towards the large-scale driving data to avoid the development of inconsistencies between them. These inconsistencies are known to produce large surface temperature and rainfall artefacts. Therefore, it is essential to maintain the synoptic circulation within the simulation domain consistent with the synoptic circulation at the domain boundaries. Nudging techniques, initially developed for data assimilation purposes, are increasingly used in regional climate modeling and offer a workaround to this issue. In this context, several questions on the "optimal" use of nudging are still open. In this study we focus on a specific question which is: What variable should we nudge? in order to maintain the consistencies between the regional model and the driving fields as much as possible. For that, a "Big Brother Experiment", where a reference atmospheric state is known, is conducted using the weather research and forecasting (WRF) model over the Euro-Mediterranean region. A set of 22 3-month simulations is performed with different sets of nudged variables and nudging options (no nudging, indiscriminate nudging, spectral nudging) for summer and winter. The results show that nudging clearly improves the model capacity to reproduce the reference fields. However the skill scores depend on the set of variables used to nudge the regional climate simulations. Nudging the tropospheric horizontal wind is by far the key variable to nudge to simulate correctly surface temperature and wind, and rainfall. To a lesser extent, nudging tropospheric temperature also contributes to significantly improve the simulations. Indeed, nudging tropospheric wind or temperature directly impacts the simulation of the tropospheric geopotential height and thus the synoptic scale atmospheric circulation. Nudging moisture improves the precipitation but the impact on the other fields (wind and temperature) is not significant. As

  15. ACTIVE REGION MORPHOLOGIES SELECTED FROM NEAR-SIDE HELIOSEISMIC DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, G. A.; McAteer, R. T. J.; Henney, C. J.

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, Air Force Data Assimilative Photospheric flux Transport synchronic maps and Global Oscillation Network Group near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can bemore » decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.« less

  16. Software Displays Data on Active Regions of the Sun

    NASA Technical Reports Server (NTRS)

    Golightly, Mike; Weyland, Mark; Raben, Vern

    2011-01-01

    The Solar Active Region Display System is a computer program that generates, in near real time, a graphical display of parameters indicative of the spatial and temporal variations of activity on the Sun. These parameters include histories and distributions of solar flares, active region growth, coronal mass ejections, size, and magnetic configuration. By presenting solar-activity data in graphical form, this program accelerates, facilitates, and partly automates what had previously been a time-consuming mental process of interpretation of solar-activity data presented in tabular and textual formats. Intended for original use in predicting space weather in order to minimize the exposure of astronauts to ionizing radiation, the program might also be useful on Earth for predicting solar-wind-induced ionospheric effects, electric currents, and potentials that could affect radio-communication systems, navigation systems, pipelines, and long electric-power lines. Raw data for the display are obtained automatically from the Space Environment Center (SEC) of the National Oceanic and Atmospheric Administration (NOAA). Other data must be obtained from the NOAA SEC by verbal communication and entered manually. The Solar Active Region Display System automatically accounts for the latitude dependence of the rate of rotation of the Sun, by use of a mathematical model that is corrected with NOAA SEC active-region position data once every 24 hours. The display includes the date, time, and an image of the Sun in H light overlaid with latitude and longitude coordinate lines, dots that mark locations of active regions identified by NOAA, identifying numbers assigned by NOAA to such regions, and solar-region visual summary (SRVS) indicators associated with some of the active regions. Each SRVS indicator is a small pie chart containing five equal sectors, each of which is color-coded to provide a semiquantitative indication of the degree of hazard posed by one aspect of the activity at

  17. The interpretation of simultaneous soft X-ray spectroscopic and imaging observations of an active region. [in solar corona

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Gerassimenko, M.; Krieger, A. S.; Vaiana, G. S.

    1975-01-01

    Simultaneous soft X-ray spectroscopic and broad-band imaging observations of an active region have been analyzed together to determine the parameters which describe the coronal plasma. From the spectroscopic data, models of temperature-emission measure-elemental abundance have been constructed which provide acceptable statistical fits. By folding these possible models through the imaging analysis, models which are not self-consistent can be rejected. In this way, only the oxygen, neon, and iron abundances of Pottasch (1967), combined with either an isothermal or exponential temperature-emission-measure model, are consistent with both sets of data. Contour maps of electron temperature and density for the active region have been constructed from the imaging data. The implications of the analysis for the determination of coronal abundances and for future satellite experiments are discussed.

  18. 44 CFR 206.349 - Consistency determinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... consistency determination is required, the FEMA Regional Administrator shall evaluate the action according to... with DOI. (a) Impact identification. FEMA shall identify impacts of the following types that would... evaluation must result in a finding of consistency with CBRA by the Regional Administrator before funding may...

  19. 44 CFR 206.349 - Consistency determinations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... consistency determination is required, the FEMA Regional Administrator shall evaluate the action according to... with DOI. (a) Impact identification. FEMA shall identify impacts of the following types that would... evaluation must result in a finding of consistency with CBRA by the Regional Administrator before funding may...

  20. Coronal loops and active region structure

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Zirin, H.

    1981-01-01

    Synoptic H-alpha Ca K, magnetograph and Skylab soft X-ray and EUV data were compared for the purpose of identifying the basic coronal magnetic structure of loops in a 'typical' active region and studying its evolution. A complex of activity in July 1973, especially McMath 12417, was emphasized. The principal results are: (1) most of the brightest loops connected the bright f plage to either the sunspot penumbra or to p satellite spots; no non-flaring X-ray loops end in umbrae; (2) short, bright loops had one or both ends in regions of emergent flux, strong field or high field gradients; (3) stable, strongly sheared loop arcades formed over filaments; (4) EFRs were always associated with compact X-ray arcades; and (5) loops connecting to other active regions had their bases in outlying plage of weak field strength in McM 417 where H-alpha fibrils marked the direction of the loops

  1. Millimeter wavelength observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1973-01-01

    Polarization properties of active regions at 9 mm are discussed, and the observed degree of polarization is used to obtain an estimate of chromospheric magnetic fields. Also discussed is the polarization structure at 9 mm of an active region that produced a minor flare around 1900 UT on September 28, 1971. Total power observations indicate that new regions develop, or weak regions intensify at millimeter wavelengths as a result of bursts at distant sites. The spectra of the peak flux density of moderately strong bursts observed at 9 mm show a sharp drop toward the shorter millimeter wavelengths. The weak bursts at 3.5 mm are manifest mainly as heating phenomena.

  2. Consistency of climate change projections from multiple global and regional model intercomparison projects

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.

    2018-03-01

    We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.

  3. Simultaneous SMM flat crystal spectrometer and Very Large Array observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.; Willson, Robert F.; Smith, Kermit L.; Strong, Keith T.

    1987-01-01

    High-resolution images of the quiescent emission from two solar active regions at 20 cm (VLA) and soft X-ray (SMM FCS) wavelengths are compared. There are regions where the X-ray coronal loops have been completely imaged at 20 cm wavelength. In other regions, the X-ray radiation was detected without detectable 20 cm radiation, and vice versa. The X-ray data were used to infer average electron temperatures of about 3-million K and average electron densities of about 2.5 x 10 to the 9th/cu cm for the X-ray emitting plasma in the two active regions. The thermal bremsstrahlung of the X-ray emitting plasma is optically thin at 20 cm wavelength. The 20 cm brightness temperatures were always less than T(e), which is consistent with optically thin bremsstrahlung. The low T(B) can be explained if a higher, cooler plasma covers the hotter X-ray emitting plasma. Thermal gyroresonance radiation must account for the intense 20 cm radiation near and above sunspots where no X-ray radiation is detected.

  4. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magneticmore » elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.« less

  5. Consistency of a lumbar movement pattern across functional activities in people with low back pain.

    PubMed

    Marich, Andrej V; Hwang, Ching-Ting; Salsich, Gretchen B; Lang, Catherine E; Van Dillen, Linda R

    2017-05-01

    Limitation in function is a primary reason people with low back pain seek medical treatment. Specific lumbar movement patterns, repeated throughout the day, have been proposed to contribute to the development and course of low back pain. Varying the demands of a functional activity test may provide some insight into whether people display consistent lumbar movement patterns during functional activities. Our purpose was to examine the consistency of the lumbar movement pattern during variations of a functional activity test in people with low back pain and back-healthy people. 16 back-healthy adults and 32 people with low back pain participated. Low back pain participants were classified based on the level of self-reported functional limitations. Participants performed 5 different conditions of a functional activity test. Lumbar excursion in the early phase of movement was examined. The association between functional limitations and early phase lumbar excursion for each test condition was examined. People with low back pain and high levels of functional limitation demonstrated a consistent pattern of greater early phase lumbar excursion across test conditions (p<0.05). For each test condition, the amount of early phase lumbar excursion was associated with functional limitation (r=0.28-0.62). Our research provides preliminary evidence that people with low back pain adopt consistent movement patterns during the performance of functional activities. Our findings indicate that the lumbar spine consistently moves more readily into its available range in people with low back pain and high levels of functional limitation. How the lumbar spine moves during a functional activity may contribute to functional limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Variability, trends, and drivers of regional fluctuations in Australian fire activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2017-07-01

    Throughout the world fire regimes are determined by climate, vegetation, and anthropogenic factors, and they have great spatial and temporal variability. The availability of high-quality satellite data has revolutionized fire monitoring, allowing for a more consistent and comprehensive evaluation of temporal and spatial patterns. Here we utilize a satellite based "active fire" (AF) product to statistically analyze 2001-2015 variability and trends in Australian fire activity and link this to precipitation and large-scale atmospheric structures (namely, the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)) known to have potential for predicting fire activity in different regions. It is found that Australian fire activity is decreasing (during summer (December-February)) or stable, with high temporal and spatial variability. Eastern New South Wales (NSW) has the strongest decreasing trend (to the 1% confidence level), especially during the winter (JJA) season. Other significantly decreasing areas are Victoria/NSW, Tasmania, and South-east Queensland. These decreasing fire regions are relatively highly populated, so we suggest that the declining trends are due to improved fire management, reducing the size and duration of bush fires. Almost half of all Australian AFs occur during spring (September-November). We show that there is considerable potential throughout Australia for a skillful forecast for future season fire activity based on current and previous precipitation activity, ENSO phase, and to a lesser degree, the IOD phase. This is highly variable, depending on location, e.g., the IOD phase is for more indicative of fire activity in southwest Western Australia than for Queensland.

  7. Small but Dynamic Active Region

    NASA Image and Video Library

    2018-04-20

    The sun featured just one, rather small active region over the past few days, but it developed rapidly and sported a lot of magnetic activity in just one day (Apr. 11-12, 2018). The activity was observed in a wavelength of extreme ultraviolet light. The loops and twisting arches above it are evidence of magnetic forces tangling with each other. The video clip was produced using Helioviewer software. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA06676

  8. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  9. An fMRI study of sex differences in regional activation to a verbal and a spatial task.

    PubMed

    Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E

    2000-09-01

    Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.

  10. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  11. Active Region Photospheric Magnetic Properties Derived from Line-of-Sight and Radial Fields

    NASA Astrophysics Data System (ADS)

    Guerra, J. A.; Park, S.-H.; Gallagher, P. T.; Kontogiannis, I.; Georgoulis, M. K.; Bloomfield, D. S.

    2018-01-01

    The effect of using two representations of the normal-to-surface magnetic field to calculate photospheric measures that are related to the active region (AR) potential for flaring is presented. Several AR properties were computed using line-of-sight (B_{los}) and spherical-radial (Br) magnetograms from the Space-weather HMI Active Region Patch (SHARP) products of the Solar Dynamics Observatory, characterizing the presence and features of magnetic polarity inversion lines, fractality, and magnetic connectivity of the AR photospheric field. The data analyzed correspond to {≈ }4{,}000 AR observations, achieved by randomly selecting 25% of days between September 2012 and May 2016 for analysis at 6-hr cadence. Results from this statistical study include: i) the Br component results in a slight upwards shift of property values in a manner consistent with a field-strength underestimation by the B_{los} component; ii) using the Br component results in significantly lower inter-property correlation in one-third of the cases, implying more independent information as regards the state of the AR photospheric magnetic field; iii) flaring rates for each property vary between the field components in a manner consistent with the differences in property-value ranges resulting from the components; iv) flaring rates generally increase for higher values of properties, except the Fourier spectral power index that has flare rates peaking around a value of 5/3. These findings indicate that there may be advantages in using Br rather than B_{los} in calculating flare-related AR magnetic properties, especially for regions located far from central meridian.

  12. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans

    PubMed Central

    Butler, Victoria J.; Branicky, Robyn; Yemini, Eviatar; Liewald, Jana F.; Gottschalk, Alexander; Kerr, Rex A.; Chklovskii, Dmitri B.; Schafer, William R.

    2015-01-01

    Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force–posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control. PMID:25551155

  13. Internal consistency of the CHAMPS physical activity questionnaire for Spanish speaking older adults.

    PubMed

    Rosario, Martín G; Vázquez, Jenniffer M; Cruz, Wanda I; Ortiz, Alexis

    2008-09-01

    The Community Healthy Activities Model Program for Seniors (CHAMPS) is a physical activity monitoring questionnaire for people between 65 to 90 years old. This questionnaire has been previously translated to Spanish to be used in the Latin American population. To adapt the Spanish version of the CHAMPS questionnaire to Puerto Rico and assess its internal consistency. An external review committee adapted the existent Spanish version of the CHAMPS to be used in the Puerto Rican population. Three older adults participated in a second phase with the purpose of training the research team. After the second phase, 35 older adults participated in a third content adaptation phase. During the third phase, the preliminary Spanish version for Puerto Rico of the CHAMPS was given to the 35 participants to assess for clarity, vocabulary and understandability. Interviews to each participant in the third phase were carried out to obtain feedback and create a final Spanish version of the CHAMPS for Puerto Rico. After analyses of this phase, the external review committee prepared a final Spanish version of the CHAMPS for Puerto Rico. The final version was administered to 15 older adults (76 +/- 6.5 years) to assess the internal consistency by using Cronbach's Alpha analysis. The questionnaire showed a strong internal consistency of 0.76. The total time to answer the questionnaire was 17.4 minutes. The Spanish version of the CHAMPS questionnaire for Puerto Rico suggested being an easy to administer and consistent measurement tool to assess physical activity in older adults.

  14. Epidemiology of Road Traffic Injuries in Qassim Region, Saudi Arabia: Consistency of Police and Health Data

    PubMed Central

    Barrimah, Issam; Midhet, Farid; Sharaf, Fawzi

    2012-01-01

    Introduction In Saudi Arabia, road traffic accidents (RTA) are becoming a serious public health problem. Police reports are designed for legal purposes with very little information on the health consequences. Also, health system data include detailed health information, but not related or linked to the data obtained police reports. Examining the consistency of these sources is vital to build an accurate surveillance system that can track the risk factors and the health consequences, as well as establishing and evaluating prevention interventions. Objectives This study is intended to: ▪ Examine the consistency of health -registration data with the data gathered by the traffic police department. ▪ Elucidate the magnitude, risk factors and outcome of RTI in Qassim region of Saudi Arabia, ▪ Compare the pattern of accidents in Qassim with those at different regions of the Kingdom. Methodology Health care information was collected on visits of victims of road traffic accidents to emergency and outpatients’ departments of the major hospitals in Qassim region during the year 2010. The information included the patients’ demographics, and clinical characteristics. Traffic Police Department information was also collected on all accidents that occurred in the study region. A Questionnaire was also developed and pilot tested to collect data from a random sample of population attending hospital outpatient and Primary Health Care clinics. Data included previous involvement in road traffic accident, and information about any injury; fatality or disability due to these RTI. Results During the study period, road traffic death rate based on death registration data was almost twice as high as the rate reported by the police (P < 0.05). There was also a significant decline of 27% according to police-reported data during the study period, as opposed to a non-significant increase of 8% according to health registration data during the same period. Population Survey Information

  15. Brain Activity in Self- and Value-Related Regions in Response to Online Antismoking Messages Predicts Behavior Change

    PubMed Central

    Cooper, Nicole; Tompson, Steve; O’Donnell, Matthew Brook; Falk, Emily B.

    2017-01-01

    In this study, we combined approaches from media psychology and neuroscience to ask whether brain activity in response to online antismoking messages can predict smoking behavior change. In particular, we examined activity in subregions of the medial prefrontal cortex linked to self- and value-related processing, to test whether these neurocognitive processes play a role in message-consistent behavior change. We observed significant relationships between activity in both brain regions of interest and behavior change (such that higher activity predicted a larger reduction in smoking). Furthermore, activity in these brain regions predicted variance independent of traditional, theory-driven self-report metrics such as intention, self-efficacy, and risk perceptions. We propose that valuation is an additional cognitive process that should be investigated further as we search for a mechanistic explanation of the relationship between brain activity and media effects relevant to health behavior change. PMID:29057013

  16. Local Helioseismology of Emerging Active Regions: A Case Study

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis

    2018-04-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation

  17. Hemisphere Rule in Active Regions with Different Properties

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, X.

    2017-12-01

    Magnetic twist in solar active regions has been found to have a hemispheric preferencein sign (hemisphere rule): negative in the northern hemisphere and positive in the southern.The strength of the preference reported in previous studies ranges greatly, from 58% to 82%.In this presentation, we will show an investigation that examines this hemispheric preference bystudying active regions in Solar Cycle 24 using the vector magnetic field data taken by the Helioseismicand Magnetic Imager (HMI). While in general the strength of the hemisphere preference is wellwithin the range reported by the previous studies, it differs substantially in different groupsof active regions that possess different properties in magnetic helicity: the group with theopposite signs of magnetic twist and writhe has a much stronger preference strength than thegroup with the same signs. This difference becomes even more significant in emerging activeregions. We place here a discussion on possible links between origin of magnetic twist, hemispherepreference, and emergence and evolution of active regions.

  18. Solar Active Region Coronal Jets. II. Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Martinez, Francisco

    2017-07-01

    We study a series of X-ray-bright, rapidly evolving active region coronal jets outside the leading sunspot of AR 12259, using Hinode/X-ray telescope, Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), and Interface Region Imaging Spectrograph (IRIS) data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets. The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ≲ 2\\prime\\prime ) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2016). Some jets strands are difficult/impossible to detect, perhaps due to, e.g., their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ˜ 1.5× {10}19 Mx hr-1. An average flux of ˜ 5× {10}18 Mx canceled prior to each episode, arguably building up ˜1028-1029 erg of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption build up and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  19. Phenotypic regional fMRI activation patterns during memory encoding in MCI and AD

    PubMed Central

    Browndyke, Jeffrey N.; Giovanello, Kelly; Petrella, Jeffrey; Hayden, Kathleen; Chiba-Falek, Ornit; Tucker, Karen A.; Burke, James R.; Welsh-Bohmer, Kathleen A.

    2014-01-01

    Background Reliable blood-oxygen-level-dependent (BOLD) fMRI phenotypic biomarkers of Alzheimer's disease (AD) or mild cognitive impairment (MCI) are likely to emerge only from a systematic, quantitative, and aggregate examination of the functional neuroimaging research literature. Methods A series of random-effects, activation likelihood estimation (ALE) meta-analyses were conducted on studies of episodic memory encoding operations in AD and MCI samples relative to normal controls. ALE analyses were based upon a thorough literature search for all task-based functional neuroimaging studies in AD and MCI published up to January 2010. Analyses covered 16 fMRI studies, which yielded 144 distinct foci for ALE meta-analysis. Results ALE results indicated several regional task-based BOLD consistencies in MCI and AD patients relative to normal controls across the aggregate BOLD functional neuroimaging research literature. Patients with AD and those at significant risk (MCI) showed statistically significant consistent activation differences during episodic memory encoding in the medial temporal lobe (MTL), specifically parahippocampal gyrus, as well superior frontal gyrus, precuneus, and cuneus, relative to normal controls. Conclusions ALE consistencies broadly support the presence of frontal compensatory activity, MTL activity alteration, and posterior midline “default mode” hyperactivation during episodic memory encoding attempts in the diseased or prospective pre-disease condition. Taken together these robust commonalities may form the foundation for a task-based fMRI phenotype of memory encoding in AD. PMID:22841497

  20. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  1. The N-terminal Region of the DNA-dependent Protein Kinase Catalytic Subunit Is Required for Its DNA Double-stranded Break-mediated Activation*

    PubMed Central

    Davis, Anthony J.; Lee, Kyung-Jong; Chen, David J.

    2013-01-01

    DNA-dependent protein kinase (DNA-PK) plays an essential role in the repair of DNA double-stranded breaks (DSBs) mediated by the nonhomologous end-joining pathway. DNA-PK is a holoenzyme consisting of a DNA-binding (Ku70/Ku80) and catalytic (DNA-PKcs) subunit. DNA-PKcs is a serine/threonine protein kinase that is recruited to DSBs via Ku70/80 and is activated once the kinase is bound to the DSB ends. In this study, two large, distinct fragments of DNA-PKcs, consisting of the N terminus (amino acids 1–2713), termed N-PKcs, and the C terminus (amino acids 2714–4128), termed C-PKcs, were produced to determine the role of each terminal region in regulating the activity of DNA-PKcs. N-PKcs but not C-PKcs interacts with the Ku-DNA complex and is required for the ability of DNA-PKcs to localize to DSBs. C-PKcs has increased basal kinase activity compared with DNA-PKcs, suggesting that the N-terminal region of DNA-PKcs keeps basal activity low. The kinase activity of C-PKcs is not stimulated by Ku70/80 and DNA, further supporting that the N-terminal region is required for binding to the Ku-DNA complex and full activation of kinase activity. Collectively, the results show the N-terminal region mediates the interaction between DNA-PKcs and the Ku-DNA complex and is required for its DSB-induced enzymatic activity. PMID:23322783

  2. NGA-West2 Empirical Fourier Model for Active Crustal Regions to Generate Regionally Adjustable Response Spectra

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Cotton, F.; Scherbaum, F.; Kuehn, N. M.

    2016-12-01

    Adjustment of median ground motion prediction equations (GMPEs) from data-rich (host) regions to data-poor regions (target) is one of major challenges that remains with the current practice of engineering seismology and seismic hazard analysis. Fourier spectral representation of ground motion provides a solution to address the problem of adjustment that is physically transparent and consistent with the concepts of linear system theory. Also, it provides a direct interface to appreciate the physically expected behavior of seismological parameters on ground motion. In the present study, we derive an empirical Fourier model for computing regionally adjustable response spectral ordinates based on random vibration theory (RVT) from shallow crustal earthquakes in active tectonic regions, following the approach of Bora et al. (2014, 2015). , For this purpose, we use an expanded NGA-West2 database with M 3.2—7.9 earthquakes at distances ranging from 0 to 300 km. A mixed-effects regression technique is employed to further explore various components of variability. The NGA-West2 database expanded over a wide magnitude range provides a better understanding (and constraint) of source scaling of ground motion. The large global volume of the database also allows investigating regional patterns in distance-dependent attenuation (i.e., geometrical spreading and inelastic attenuation) of ground motion as well as in the source parameters (e.g., magnitude and stress drop). Furthermore, event-wise variability and its correlation with stress parameter are investigated. Finally, application of the derived Fourier model in generating adjustable response spectra will be shown.

  3. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  4. Results of the IRIS UV Burst Survey, Part I: Active Regions Tracked Limb to Limb

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; DeLuca, E.

    2017-12-01

    We present results from the first phase of an effort to thoroughly characterize UV bursts within the Interface Region Imaging Spectrograph (IRIS) data catalogue. The observational signatures of these phenomena include dramatically intensified and broadened NUV/FUV emission line profiles with absorption features from cool metallic ions. These properties suggest that UV bursts originate from plasma at transition region temperatures (≥ 80,000 K) which is deeply embedded in the cool lower chromosphere ( 5,000 K). Rigorously characterizing the energetic and dynamical properties of UV bursts is crucial since they have considerable potential to heat active region chromospheres and could provide critical constraints for models of magnetic reconnection in these regions. The survey first focuses on IRIS observations of active regions tracked from limb to limb. All observations consist of large field-of-view raster scans of 320 or 400 steps each, which allow for widespread detection of many burst profiles at the expense of having limited short-term time evolution information. We detect bursts efficiently by applying a semi-automated single-Gaussian fitting technique to Si IV 1393.8 Å emission profiles that isolates the distinct burst population in a 4-D parameter space. The robust sample of NUV/FUV burst spectra allows for precise constraints of properties critical for modeling reconnection in the chromosphere, including outflow kinetic energy, density estimates from intensity ratios of Si IV 1402.8 Å and O IV 1401.2 Å emission lines, and coincident measures of emission in other wavelengths. We also track burst properties throughout the lifetimes of their host active regions, noting changes in detection rate and preferential location as the active regions evolve. Finally, the tracked active region observations provide a unique opportunity to investigate line-of-sight effects on observed UV burst spectral properties, particularly the strength of Ni II 1393.3 Å absorption

  5. Altered regional and circuit resting-state activity in patients with occult spastic diplegic cerebral palsy.

    PubMed

    Mu, Xuetao; Wang, Zhiqun; Nie, Binbin; Duan, Shaofeng; Ma, Qiaozhi; Dai, Guanghui; Wu, Chunnan; Dong, Yuru; Shan, Baoci; Ma, Lin

    2017-10-07

    Very few studies have been made to investigate functional activity changes in occult spastic diplegic cerebral palsy (SDCP). The purpose of this study was to analyze whole-brain resting state regional brain activity and functional connectivity (FC) changes in patients with SDCP. We examined 12 occult SDCP and 14 healthy control subjects using resting-state functional magnetic resonance imaging. The data were analyzed using Resting-State fMRI Data Analysis Toolkit (REST) software. The regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and whole brain FC of the motor cortex and thalamus were analyzed and compared between the occult SDCP and control groups. Compared with the control group, the occult SDCP group showed decreased ReHo regions, including the bilateral frontal, parietal, and temporal lobes, the cerebellum, right cingulate gyrus, and right lenticular nucleus, whereas an increased ReHo value was observed in the left precuneus, calcarine, fusiform gyrus, and right precuneus. Compared with the control group, no significant differences in ALFF were noted in the occult SDCP group. With the motor cortex as the region of interest, the occult SDCP group showed decreased connectivity regions in the bilateral fusiform and lingual gyrus, but increased connectivity regions in the contralateral precentral and postcentral gyrus, supplementary motor area, and the ipsilateral postcentral gyrus. With the thalamus being regarded as the region of interest, the occult SDCP group showed decreased connectivity regions in the bilateral basal ganglia, cingulate, and prefrontal cortex, but increased connectivity regions in the bilateral precentral gyrus, the contralateral cerebellum, and inferior temporal gyrus. Resting-state regional brain activities and FC changes in the patients with occult SDCP exhibited a special distribution pattern, which is consistent with the pathology of the disease. Copyright © 2017. Published by Elsevier B.V.

  6. New Active Region Sputtering with Small Flares

    NASA Image and Video Library

    2018-05-29

    An active region rotated into view and sputtered with numerous small flares and towering magnetic field lines that stretched out many times the diameter of Earth (May 23-25, 2018). Active regions are areas of intense magnetic energy. The field lines are illuminated by charged particles spiraling along them and easiest to discern when viewed in profile. The colorized images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22461

  7. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  8. Static and Impulsive Models of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, James A.

    2008-01-01

    The physical modeling of active regions (ARs) and of the global coronal is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright EUV warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, repetition time) of the impulsive heating.

  9. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  10. Chromospheric Evolution and the Flare Activity of Super-Active Region NOAA 6555

    NASA Technical Reports Server (NTRS)

    PrasadC, Debi; Ambastha, Ashok; Srivastava, Nandita; Tripathy, Sushanta C.; Hagyard, Mona J.

    1997-01-01

    Super-active region NOAA 6555 was highly flare productive during the period March 21st - 27th, 1991 of its disk passage. We have studied its chromospheric activity using high spatial resolution H alpha filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.

  11. The Smad3 linker region contains a transcriptional activation domain

    PubMed Central

    2004-01-01

    Transforming growth factor-β (TGF-β)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-β/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-β transcriptional activation responses, although it can be phosphorylated by the TGF-β receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-β. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control. PMID:15588252

  12. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  13. MAG4 versus alternative techniques for forecasting active region flare productivity.

    PubMed

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-05-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux.

  14. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  15. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  16. Consistency of aerosols above clouds characterization from A-Train active and passive measurements

    NASA Astrophysics Data System (ADS)

    Deaconu, Lucia T.; Waquet, Fabien; Josset, Damien; Ferlay, Nicolas; Peers, Fanny; Thieuleux, François; Ducos, Fabrice; Pascal, Nicolas; Tanré, Didier; Pelon, Jacques; Goloub, Philippe

    2017-09-01

    This study presents a comparison between the retrieval of optical properties of aerosol above clouds (AAC) from different techniques developed for the A-Train sensors CALIOP/CALIPSO and POLDER/PARASOL. The main objective is to analyse the consistency between the results derived from the active and the passive measurements. We compare the aerosol optical thickness (AOT) above optically thick clouds (cloud optical thickness (COT) larger than 3) and their Ångström exponent (AE). These parameters are retrieved with the CALIOP operational method, the POLDER operational polarization method and the CALIOP-based depolarization ratio method (DRM) - for which we also propose a calibrated version (denominated DRMSODA, where SODA is the Synergized Optical Depth of Aerosols). We analyse 6 months of data over three distinctive regions characterized by different types of aerosols and clouds. Additionally, for these regions, we select three case studies: a biomass-burning event over the South Atlantic Ocean, a Saharan dust case over the North Atlantic Ocean and a Siberian biomass-burning event over the North Pacific Ocean. Four and a half years of data are studied over the entire globe for distinct situations where aerosol and cloud layers are in contact or vertically separated. Overall, the regional analysis shows a good correlation between the POLDER and the DRMSODA AOTs when the microphysics of aerosols is dominated by fine-mode particles of biomass-burning aerosols from southern Africa (correlation coefficient (R2) of 0.83) or coarse-mode aerosols of Saharan dust (R2 of 0.82). A good correlation between these methods (R2 of 0.68) is also observed in the global treatment, when the aerosol and cloud layers are separated well. The analysis of detached layers also shows a mean difference in AOT of 0.07 at 532 nm between POLDER and DRMSODA at a global scale. The correlation between the retrievals decreases when a complex mixture of aerosols is expected (R2 of 0.37) - as in the

  17. Generalized query-based active learning to identify differentially methylated regions in DNA.

    PubMed

    Haque, Md Muksitul; Holder, Lawrence B; Skinner, Michael K; Cook, Diane J

    2013-01-01

    Active learning is a supervised learning technique that reduces the number of examples required for building a successful classifier, because it can choose the data it learns from. This technique holds promise for many biological domains in which classified examples are expensive and time-consuming to obtain. Most traditional active learning methods ask very specific queries to the Oracle (e.g., a human expert) to label an unlabeled example. The example may consist of numerous features, many of which are irrelevant. Removing such features will create a shorter query with only relevant features, and it will be easier for the Oracle to answer. We propose a generalized query-based active learning (GQAL) approach that constructs generalized queries based on multiple instances. By constructing appropriately generalized queries, we can achieve higher accuracy compared to traditional active learning methods. We apply our active learning method to find differentially DNA methylated regions (DMRs). DMRs are DNA locations in the genome that are known to be involved in tissue differentiation, epigenetic regulation, and disease. We also apply our method on 13 other data sets and show that our method is better than another popular active learning technique.

  18. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    PubMed

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were

  19. Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Fursyak, Yu. A.; Abramenko, V. I.

    2017-12-01

    Part of the "free" magnetic energy associated with electrical current systems in the active region (AR) is released during solar flares. This proposition is widely accepted and it has stimulated interest in detecting electrical currents in active regions. The vertical component of an electric current in the photosphere can be found by observing the transverse magnetic field. At present, however, there are no direct methods for calculating transverse electric currents based on these observations. These calculations require information on the field vector measured simultaneously at several levels in the photosphere, which has not yet been done with solar instrumentation. In this paper we examine an approach to calculating the structure of the square of the density of a transverse electrical current based on a magnetogram of the vertical component of the magnetic field in the AR. Data obtained with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) for the AR of NOAA AR 11283 are used. It is shown that (1) the observed variations in the magnetic field of a sunspot and the proposed estimate of the density of an annular horizontal current around the spot are consistent with Faraday's law and (2) the resulting estimates of the magnitude of the square of the density of the horizontal current {j}_{\\perp}^2 = (0.002- 0.004) A2/m4 are consistent with previously obtained values of the density of a vertical current in the photosphere. Thus, the proposed estimate is physically significant and this method can be used to estimate the density and structure of transverse electrical currents in the photosphere.

  20. Consistent radiative transfer modeling of active and passive observations of precipitation

    NASA Astrophysics Data System (ADS)

    Adams, Ian

    2016-04-01

    Spaceborne platforms such as the Tropical Rainfall Measurement Mission (TRMM) and the Global Precipitation Measurement (GPM) mission exploit a combination of active and passive sensors to provide a greater understanding of the three-dimensional structure of precipitation. While "operationalized" retrieval algorithms require fast forward models, the ability to perform higher fidelity simulations is necessary in order to understand the physics of remote sensing problems by testing assumptions and developing parameterizations for the fast models. To ensure proper synergy between active and passive modeling, forward models must be consistent when modeling the responses of radars and radiometers. This work presents a self-consistent transfer model for simulating radar reflectivities and millimeter wave brightness temperatures for precipitating scenes. To accomplish this, we extended the Atmospheric Radiative Transfer Simulator (ARTS) version 2.3 to solve the radiative transfer equation for active sensors and multiple scattering conditions. Early versions of ARTS (1.1) included a passive Monte Carlo solver, and ARTS is capable of handling atmospheres of up to three dimensions with ellipsoidal planetary geometries. The modular nature of ARTS facilitates extensibility, and the well-developed ray-tracing tools are suited for implementation of Monte Carlo algorithms. Finally, since ARTS handles the full Stokes vector, co- and cross-polarized reflectivity products are possible for scenarios that include nonspherical particles, with or without preferential alignment. The accuracy of the forward model will be demonstrated with precipitation events observed by TRMM and GPM, and the effects of multiple scattering will be detailed. The three-dimensional nature of the radiative transfer model will be useful for understanding the effects of nonuniform beamfill and multiple scattering for spatially heterogeneous precipitation events. The targets of this forward model are GPM (the

  1. MAG4 versus alternative techniques for forecasting active region flare productivity

    PubMed Central

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  2. The Structure of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Bastian, T. S.

    1992-05-01

    In past years, x-ray observations of solar active regions have lead to the expectation of greater brightness temperatures at radio wavelengths than those typically observed. It has been suggested that cool plasma in the corona along the line of sight attenuates radio emission via free-free absorption. If such plasma is present, it has consequences for both the microwave spectrum and its polarization properties. In order to test these ideas, high quality radio and x-ray maps are required. We present a comprehensive set of observations of a large solar active region (NOAO/USAF number 5131) made during the IAU sanctioned International Solar Month in September, 1988. The VLA was used to image the Sun in the 90, 20, 6 and 3.6 cm bands between 1--4 September. To improve the image quality we used the technique of frequency synthesis at 3.6, 6 and 20 cm. The final maps are among the best in dynamic range yet obtained. In addition to the radio maps, the data base includes images from the SMM XRP in Fe XVII, magnetograms, and Hα observations. We reconcile the x-ray and radio observations with a simple model which differs somewhat from past models. Rather than relying on a screen of cool plasma between the source and the observer, we take explicit account of the highly inhomogeneous structure of solar active regions. We briefly compare and contrast the consequences of this model with existing models.

  3. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  4. Regional differences in rat conjunctival ion transport activities.

    PubMed

    Yu, Dongfang; Thelin, William R; Rogers, Troy D; Stutts, M Jackson; Randell, Scott H; Grubb, Barbara R; Boucher, Richard C

    2012-10-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na(+) transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface.

  5. On Heating the Sun's Corona by Magnetic Explosions: Feasibility in Active Regions and prospects for Quiet Regions and Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1999-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal

  6. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  7. Sports participation, physical activity, and health in the European regions.

    PubMed

    Lera-López, Fernando; Marco, Rocio

    2018-08-01

    In a context of stagnation of the level of health-enhancing physical activity in Europe, this study examines the geographical stratification of sports participation and physical activity (PA) at the regional level in 28 European countries. While previous research has focused on the national approach, this study considers the regional level across 208 European regions. Individual survey data from the Eurobarometer 80.2 is combined with a regional-level approach to the 208 regions to quantify sports participation and PA at the regional level. The results show important differences and a geographical stratification of sports participation and PA among the European regions, albeit following different patterns. In particular, a north-south gap is identified in terms of PA rates and an east-west gap is detected in terms of sports participation levels. Applying the cluster technique, a taxonomy of four different European regions is developed considering both types of indicators. Finally, the existence of sports spatial spillovers among regions is verified, obtaining a positive autocorrelation among neighbouring regions for being involved in PA and sporting activities. The results may have significant implications in terms of policy measures to improve health through PA and sports participation at the regional level in Europe.

  8. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  9. The gross energy balance of solar active regions

    NASA Technical Reports Server (NTRS)

    Evans, K. D.; Pye, J. P.; Hutcheon, R. J.; Gerassimenko, M.; Krieger, A. S.; Davis, J. M.; Vesecky, J. F.

    1977-01-01

    Parker's (1974) model in which sunspots denote regions of increased heat transport from the convection zone is briefly described. The amount of excess mechanically transported power supposed to be delivered to the atmosphere is estimated for a typical active region, and the total radiative power output of the active-region atmosphere is computed. It is found that only a very small fraction (about 0.001) of the sunspot 'missing flux' can be accounted for by radiative emission from the atmosphere above a spot group in the manner suggested by Parker. The power-loss mechanism associated with mass loss to the solar wind is briefly considered and shown not to be sufficient to account for the sunspot missing flux.

  10. Neural activity in the posterior superior temporal region during eye contact perception correlates with autistic traits.

    PubMed

    Hasegawa, Naoya; Kitamura, Hideaki; Murakami, Hiroatsu; Kameyama, Shigeki; Sasagawa, Mutsuo; Egawa, Jun; Endo, Taro; Someya, Toshiyuki

    2013-08-09

    The present study investigated the relationship between neural activity associated with gaze processing and autistic traits in typically developed subjects using magnetoencephalography. Autistic traits in 24 typically developed college students with normal intelligence were assessed using the Autism Spectrum Quotient (AQ). The Minimum Current Estimates method was applied to estimate the cortical sources of magnetic responses to gaze stimuli. These stimuli consisted of apparent motion of the eyes, displaying direct or averted gaze motion. Results revealed gaze-related brain activations in the 150-250 ms time window in the right posterior superior temporal sulcus (pSTS), and in the 150-450 ms time window in medial prefrontal regions. In addition, the mean amplitude in the 150-250 ms time window in the right pSTS region was modulated by gaze direction, and its activity in response to direct gaze stimuli correlated with AQ score. pSTS activation in response to direct gaze is thought to be related to higher-order social processes. Thus, these results suggest that brain activity linking eye contact and social signals is associated with autistic traits in a typical population. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Regional sociocultural differences as important correlate of physical activity and sedentary behaviour in Swiss preschool children.

    PubMed

    Leeger-Aschmann, Claudia S; Schmutz, Einat A; Radtke, Thomas; Kakebeeke, Tanja H; Zysset, Annina E; Messerli-Bürgy, Nadine; Stülb, Kerstin; Arhab, Amar; Meyer, Andrea H; Munsch, Simone; Jenni, Oskar G; Puder, Jardena J; Kriemler, Susi

    2016-01-01

    Regional differences in physical activity in school-aged children and adults even within one country with the same political and health care system have been observed and could not be explained by sociodemographic or individual variables. We analysed whether such differences were already present in preschool children. Swiss children from 84 childcare centres in five cantons (Aargau, Bern, Fribourg, Vaud, Zurich) comprising about 50% of the population of the country participated. Physical activity was quantified with accelerometers (ActiGraph, wGT3X-BT) and potential correlates were assessed with measurements at the childcare centre or questionnaires. Mixed regression models were used to test associations between potential correlates of total physical activity (TPA), moderate-to-vigorous physical activity (MVPA), light physical activity (LPA) or sedentary behaviour with a special focus on regional differences. 394 of 476 children (83%) provided valid physical activity data (at least 2 weekdays and 1 weekend day with 10 h recording; mean age 3.9 ± 0.7 years, 54% boys) with 26% and 74% living in the French- and German-speaking parts of Switzerland, respectively. Days consisted of (mean ± standard deviation) 1.5 ± 0.5 h MVPA, 5.0 ± 0.6 h LPA, and 6.3 ± 0.8 h sedentary behaviour with an average of 624 ± 150 counts/min TPA. TPA and MVPA (but not sedentary behaviour or LPA) increased with age, were higher in boys and children with better motor skills. Despite controlling for individual characteristics, familial factors and childcare exposure, children from the French-speaking part of Switzerland showed 13% less TPA, 14% less MVPA, 6% less LPA and 8% more sedentary behaviour than German-speaking children. Beside motor skills and non-modifiable individual factors, the regional sociocultural difference was the most important correlate of phyical activity and sedentary behaviour. Therefore, regionally adapted public health strategies may be needed.

  12. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions

    NASA Astrophysics Data System (ADS)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank

    2018-01-01

    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  13. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    PubMed

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  14. Thoughts on the development of active regional public health systems.

    PubMed

    Reis, Ademar Arthur Chioro Dos; Sóter, Ana Paula Menezes; Furtado, Lumena Almeida Castro; Pereira, Silvana Souza da Silva

    2017-04-01

    Decentralization and regionalization are strategic themes for reforms in the health system. This paper analyzes the complex process of health regionalization being developed in Brazil. This paper identifies that the normative framework from the Brazilian National Health System, SUS has made advances with respect to its institutionalization and overcoming the initial centrality involved in municipalization. This has strengthened the development of regionalization and the intergovernmental agreement on health but the evidence points to the need to promote a revision. Based on document analysis, literature review and the views given by the authors involved in management in SUS as well as generating radically different views, the challenges for the construction of a regionalization that is active, is debated. We also discuss: its relations with planning and the dimensioning of service networks, the production of active care networks and shared management spaces, the inter-federative agreements and regional regulations, the capacity to coordinate regional systems and financing and the impact of the political dimension and electoral cycles. Regionalization (and SUS itself) is an open book, therefore ways and possibilities on how to maintain an active form of regionalization can be recommended.

  15. Medium-scale gravity wave activity in the bottomside F region in tropical regions

    NASA Astrophysics Data System (ADS)

    Liu, Huixin; Pedatella, Nicholas; Hocke, Klemens

    2017-07-01

    Thermospheric gravity waves (GWs) in the bottomside F region have been proposed to play a key role in the generation of equatorial plasma bubbles (EPBs). However, direct observations of such waves are scarce. This study provides a systematic survey of medium-scale (<620 km) neutral atmosphere perturbations at this critical altitude in the tropics, using 4 years of in situ Gravity Field and Steady-State Ocean Circulation Explorer satellite measurements of thermospheric density and zonal wind. The analysis reveals pronounced features on their global distribution and seasonal variability: (1) A prominent three-peak longitudinal structure exists in all seasons, with stronger perturbations over continents than over oceans. (2) Their seasonal variation consists of a primary semiannual oscillations (SAO) and a secondary annual oscillation (AO). The SAO component maximizes around solstices and minimizes around equinoxes, while the AO component maximizes around June solstice. These GW features resemble those of EPBs in spatial distribution but show opposite trend in climatological variations. This may imply that stronger medium-scale GW activity does not always lead to more EPBs. Possible origins of the bottomside GWs are discussed, among which tropical deep convection appears to be most plausible.

  16. Regional synchrony in full-scale activated sludge bioreactors due to deterministic microbial community assembly

    PubMed Central

    Griffin, James S; Wells, George F

    2017-01-01

    Seasonal community structure and regionally synchronous population dynamics have been observed in natural microbial ecosystems, but have not been well documented in wastewater treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems facing similar meteorological conditions have been done to compare the importance of deterministic and neutral community assembly mechanisms. We subjected weekly activated sludge samples from six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All samples derived from reactors treating primarily municipal wastewater. Despite variation in operational characteristics and location, communities displayed temporal synchrony at the individual operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale. Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes, but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass migration driven by direct biomass transfers between reactors was investigated, but had no significant effect on community similarity or diversity in the sink community. Our results show that population dynamics in activated sludge bioreactors are consistent with niche-driven assembly guided by seasonal temperature fluctuations. PMID:27996980

  17. Differential effects of orthographic and phonological consistency in cortex for children with and without reading impairment

    PubMed Central

    Bolger, Donald J.; Minas, Jennifer; Burman, Douglas D.; Booth, James R.

    2009-01-01

    One of the central challenges in mastering English is becoming sensitive to consistency from spelling to sound (i.e. phonological consistency) and from sound to spelling (i.e. orthographic consistency). Using functional magnetic resonance imaging (fMRI), we examined the neural correlates of consistency in 9-15-year-old Normal and Impaired Readers during a rhyming task in the visual modality. In line with our previous study, for Normal Readers, lower phonological and orthographic consistency were associated with greater activation in several regions including bilateral inferior/middle frontal gyri, bilateral anterior cingulate cortex as well as left fusiform gyrus. Impaired Readers activated only bilateral anterior cingulate cortex in response to decreasing consistency. Group comparisons revealed that, relative to Impaired Readers, Normal Readers exhibited a larger response in this network for lower phonological consistency whereas orthographic consistency differences were limited. Lastly, brain-behavior correlations revealed a significant relationship between skill (i.e. Phonological Awareness and non-word decoding) and cortical consistency effects for Impaired Readers in left inferior/middle frontal gyri and left fusiform gyrus. Impaired Readers with higher skill showed greater activation for higher consistency. This relationship was reliably different from that of Normal Readers in which higher skill was associated with greater activation for lower consistency. According to single-route or connectionist models, these results suggest that Impaired Readers with higher skill devote neural resources to representing the mapping between orthography and phonology for higher consistency words, and therefore do not robustly activate this network for lower consistency words. PMID:18725239

  18. 50 CFR 217.220 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Specified activity and specified geographical region. 217.220 Section 217.220 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Elliott Bay Seawall Project § 217.220 Specified activity and specified geographical region. (a...

  19. Regional brain activity that determines successful and unsuccessful working memory formation.

    PubMed

    Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie

    2016-08-01

    Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.

  20. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Specified activity and specified geographical region. 217.170 Section 217.170 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune...

  1. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Specified activity and specified geographical region. 217.170 Section 217.170 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune...

  2. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Specified activity and specified geographical region. 217.170 Section 217.170 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune...

  3. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Specified activity and specified geographical region. 217.170 Section 217.170 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune...

  4. 50 CFR 216.250 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Specified activity and specified geographical region. 216.250 Section 216.250 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Weapon Missions in the Gulf of Mexico § 216.250 Specified activity and specified geographical region. (a...

  5. ON THE ACTIVE REGION BRIGHT GRAINS OBSERVED IN THE TRANSITION REGION IMAGING CHANNELS OF IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skogsrud, H.; Voort, L. Rouppe van der; Pontieu, B. De

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute)more » bright roundish small patches of sizes 0.″5–1.″7 that generally move limbward with velocities up to about 30 km s{sup −1}. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.« less

  6. Dynamic Precursors of Flares in Active Region NOAA 10486

    NASA Astrophysics Data System (ADS)

    Korsós, M. B.; Gyenge, N.; Baranyi, T.; Ludmány, A.

    2015-03-01

    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted hori- zontal gradient W G M , is the generalized form of the horizontal gradient of the magnetic field, G M ; the other is the sum of the horizontal gradient of the magnetic field, G S , for all sunspot pairs). W G M is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, S l- f , considers the overall morphology. Further, G S and S l- f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.

  7. The Role of Small-Scale Processes in Solar Active Region Decay

    NASA Astrophysics Data System (ADS)

    Meyer, Karen; Mackay, Duncan

    2017-08-01

    Active regions are locations of intense magnetic activity on the Sun, whose evolution can result in highly energetic eruptive phenomena such as solar flares and coronal mass ejections (CMEs). Therefore, fast and accurate simulation of their evolution and decay is essential in the prediction of Space Weather events. In this talk we present initial results from our new model for the photospheric evolution of active region magnetic fields. Observations show that small-scale processes appear to play a role in the dispersal and decay of solar active regions, for example through cancellation at the boundary of sunspot outflows and erosion of flux by surrounding convective cells. Our active region model is coupled to our existing model for the evolution of small-scale photospheric magnetic features. Focusing first on the active region decay phase, we consider the evolution of its magnetic field due to both large-scale (e.g. differential rotation) and small-scale processes, such as its interaction with surrounding small-scale magnetic features and convective flows.This project is funded by The Carnegie Trust for the Universities of Scotland, through their Research Incentives Grant scheme.

  8. Asia Section. Regional Activities Division. Paper.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Two papers on library and information activities in developing nations, particularly in India and other Asian countries, were presented at the 1983 International Federation of Library Associations (IFLA) conference. In "IFLA in Asia: A Review of the Work of the Regional Section for Asia," Edward Lim Huck Tee (Malaysia) describes the low…

  9. Exoplanet Transits of Stellar Active Regions

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano

    2018-01-01

    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  10. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  11. Extreme Trust Region Policy Optimization for Active Object Recognition.

    PubMed

    Liu, Huaping; Wu, Yupei; Sun, Fuchun; Huaping Liu; Yupei Wu; Fuchun Sun; Sun, Fuchun; Liu, Huaping; Wu, Yupei

    2018-06-01

    In this brief, we develop a deep reinforcement learning method to actively recognize objects by choosing a sequence of actions for an active camera that helps to discriminate between the objects. The method is realized using trust region policy optimization, in which the policy is realized by an extreme learning machine and, therefore, leads to efficient optimization algorithm. The experimental results on the publicly available data set show the advantages of the developed extreme trust region optimization method.

  12. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients

    NASA Astrophysics Data System (ADS)

    Can, Nuri; Okur, Serdal; Monavarian, Morteza; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Teke, Ali; Özgür, Ümit

    2015-03-01

    Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 - 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.

  13. Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Pierdominici, S.; Montone, P.; Mariucci, M. T.

    2009-04-01

    The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated

  14. Consistently high sports/exercise activity is associated with better sleep quality, continuity and depth in midlife women: the SWAN sleep study.

    PubMed

    Kline, Christopher E; Irish, Leah A; Krafty, Robert T; Sternfeld, Barbara; Kravitz, Howard M; Buysse, Daniel J; Bromberger, Joyce T; Dugan, Sheila A; Hall, Martica H

    2013-09-01

    To examine relationships between different physical activity (PA) domains and sleep, and the influence of consistent PA on sleep, in midlife women. Cross-sectional. Community-based. 339 women in the Study of Women's Health Across the Nation Sleep Study (52.1 ± 2.1 y). None. Sleep was examined using questionnaires, diaries and in-home polysomnography (PSG). PA was assessed in three domains (Active Living, Household/Caregiving, Sports/Exercise) using the Kaiser Physical Activity Survey (KPAS) up to 4 times over 6 years preceding the sleep assessments. The association between recent PA and sleep was evaluated using KPAS scores immediately preceding the sleep assessments. The association between the historical PA pattern and sleep was examined by categorizing PA in each KPAS domain according to its pattern over the 6 years preceding sleep assessments (consistently low, inconsistent/consistently moderate, or consistently high). Greater recent Sports/Exercise activity was associated with better sleep quality (diary "restedness" [P < 0.01]), greater sleep continuity (diary sleep efficiency [SE; P = 0.02]) and depth (higher NREM delta electroencephalographic [EEG] power [P = 0.04], lower NREM beta EEG power [P < 0.05]), and lower odds of insomnia diagnosis (P < 0.05). Consistently high Sports/Exercise activity was also associated with better Pittsburgh Sleep Quality Index scores (P = 0.02) and higher PSG-assessed SE (P < 0.01). Few associations between sleep and Active Living or Household/Caregiving activity (either recent or historical pattern) were noted. Consistently high levels of recreational physical activity, but not lifestyle- or household-related activity, are associated with better sleep in midlife women. Increasing recreational physical activity early in midlife may protect against sleep disturbance in this population.

  15. New Insights on Mt. Etna's Crust and Relationship with the Regional Tectonic Framework from Joint Active and Passive P-Wave Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Barberi, G.; Cocina, O.; Koulakov, I.; Scarfì, L.; Zuccarello, L.; Prudencio, J.; García-Yeguas, A.; Álvarez, I.; García, L.; Ibáñez, J. M.

    2018-01-01

    In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel `Sarmiento de Gamboa'. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan-southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW-SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian-Tindari-Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.

  16. Consistently High Sports/Exercise Activity Is Associated with Better Sleep Quality, Continuity and Depth in Midlife Women: The SWAN Sleep Study

    PubMed Central

    Kline, Christopher E.; Irish, Leah A.; Krafty, Robert T.; Sternfeld, Barbara; Kravitz, Howard M.; Buysse, Daniel J.; Bromberger, Joyce T.; Dugan, Sheila A.; Hall, Martica H.

    2013-01-01

    Study Objectives: To examine relationships between different physical activity (PA) domains and sleep, and the influence of consistent PA on sleep, in midlife women. Design: Cross-sectional. Setting: Community-based. Participants: 339 women in the Study of Women's Health Across the Nation Sleep Study (52.1 ± 2.1 y). Interventions: None. Measurements and Results: Sleep was examined using questionnaires, diaries and in-home polysomnography (PSG). PA was assessed in three domains (Active Living, Household/Caregiving, Sports/Exercise) using the Kaiser Physical Activity Survey (KPAS) up to 4 times over 6 years preceding the sleep assessments. The association between recent PA and sleep was evaluated using KPAS scores immediately preceding the sleep assessments. The association between the historical PA pattern and sleep was examined by categorizing PA in each KPAS domain according to its pattern over the 6 years preceding sleep assessments (consistently low, inconsistent/consistently moderate, or consistently high). Greater recent Sports/Exercise activity was associated with better sleep quality (diary “restedness” [P < 0.01]), greater sleep continuity (diary sleep efficiency [SE; P = 0.02]) and depth (higher NREM delta electroencephalographic [EEG] power [P = 0.04], lower NREM beta EEG power [P < 0.05]), and lower odds of insomnia diagnosis (P < 0.05). Consistently high Sports/Exercise activity was also associated with better Pittsburgh Sleep Quality Index scores (P = 0.02) and higher PSG-assessed SE (P < 0.01). Few associations between sleep and Active Living or Household/Caregiving activity (either recent or historical pattern) were noted. Conclusion: Consistently high levels of recreational physical activity, but not lifestyle- or household-related activity, are associated with better sleep in midlife women. Increasing recreational physical activity early in midlife may protect against sleep disturbance in this population. Citation: Kline CE; Irish LA; Krafty

  17. Active tectonics in Southern Portugal (SW Iberia) inferred from GPS data. Implications on the regional geodynamics

    NASA Astrophysics Data System (ADS)

    Cabral, João; Mendes, Virgílio Brito; Figueiredo, Paula; Silveira, António Brum da; Pagarete, Joaquim; Ribeiro, António; Dias, Ruben; Ressurreição, Ricardo

    2017-12-01

    A GPS-based crustal velocity field for the SW Portuguese territory (Algarve region, SW Iberia) was estimated from the analysis of data from a network of campaign-style GPS stations set up in the region since 1998, complemented with permanent stations, covering an overall period of 16.5 years. The GPS monitoring sites were chosen attending to the display of the regional active faults, in an attempt to detect and monitor any related crustal straining. The residual horizontal velocities relative to Eurasia unveil a relatively consistent pattern towards WNW, with magnitudes that noticeably increase from NNE to SSW. Although the obtained velocity field does not evidence a sharp velocity gradient it suggests the presence of a NW-SE trending crustal shear zone separating two domains, which may be slowly accumulating a slightly transtensional right-lateral shear strain. Based on the WNW velocity differential between the northeastern block and the southwestern block, a shear strain rate accumulation across the shear zone is estimated. This ongoing crustal deformation is taken as evidence that a nearby major active structure, the São Marcos - Quarteira fault, may be presently accumulating strain, therefore being potentially loaded for seismic rupture and the generation of a large magnitude earthquake. Further inferences are made concerning the interseismic dynamic loading of other major onshore and offshore active structures located to the west.

  18. Flare rates and the McIntosh active-region classifications

    NASA Technical Reports Server (NTRS)

    Bornmann, P. L.; Shaw, D.

    1994-01-01

    Multiple linear regression analysis was used to derive the effective solar flare contributions of each of the McIntosh classification parameters. The best fits to the combined average number of M- and X-class X-ray flares per day were found when the flare contributions were assumed to be multiplicative rather than additive. This suggests that nonlinear processes may amplify the effects of the following different active-region properties encoded in the McIntosh classifications: the length of the sunspot group, the size and shape of the largest spot, and the distribution of spots within the group. Since many of these active-region properties are correlated with magnetic field strengths and fluxes, we suggest that the derived correlations reflect a more fundamental relationship between flare production and the magnetic properties of the region. The derived flare contributions for the individual McIntosh parameters can be used to derive a flare rate for each of the three-parameter McIntosh classes. These derived flare rates can be interpreted as smoothed values that may provide better estimates of an active region's expected flare rate when rare classes are reported or when the multiple observing sites report slightly different classifications.

  19. A gigantic coronal jet ejected from a compact active region in a coronal hole

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Nitta, N.; Strong, K. T.; Matsumoto, R.; Yokoyama, T.; Hirayama, T.; Hudson, H.; Ogawara, Y.

    1994-01-01

    A gigantic coronal jet greater than 3 x 10(exp 5) km long (nearly half the solar radius) has been found with the soft X-ray telescope (SXT) on board the solar X-ray satellite, Yohkoh. The jet was ejected on 1992 January 11 from an 'anemone-type' active region (AR) appearing in a coronal hole and is one of the largest coronal X-ray jets observed so far by SXT. This gigantic jet is the best observed example of many other smaller X-ray jets, because the spatial structures of both the jet and the AR located at its base are more easily resolved. The range of apparent translational velocities of the bulk of the jet was between 90 and 240 km s(exp -1), with the corresponding kinetic energy estimated to be of order of 10(exp 28) ergs. A detailed analysis reveals that the jet was associated with a loop brightening (a small flare) that occurred in the active region. Several features of this observation suggest and are consistent with a magnetic reconnection mechanism for the production of such a 'jet-loop-brightening' event.

  20. MR-Consistent Simultaneous Reconstruction of Attenuation and Activity for Non-TOF PET/MR

    NASA Astrophysics Data System (ADS)

    Heußer, Thorsten; Rank, Christopher M.; Freitag, Martin T.; Dimitrakopoulou-Strauss, Antonia; Schlemmer, Heinz-Peter; Beyer, Thomas; Kachelrieß, Marc

    2016-10-01

    Attenuation correction (AC) is required for accurate quantification of the reconstructed activity distribution in positron emission tomography (PET). For simultaneous PET/magnetic resonance (MR), however, AC is challenging, since the MR images do not provide direct information on the attenuating properties of the underlying tissue. Standard MR-based AC does not account for the presence of bone and thus leads to an underestimation of the activity distribution. To improve quantification for non-time-of-flight PET/MR, we propose an algorithm which simultaneously reconstructs activity and attenuation distribution from the PET emission data using available MR images as anatomical prior information. The MR information is used to derive voxel-dependent expectations on the attenuation coefficients. The expectations are modeled using Gaussian-like probability functions. An iterative reconstruction scheme incorporating the prior information on the attenuation coefficients is used to update attenuation and activity distribution in an alternating manner. We tested and evaluated the proposed algorithm for simulated 3D PET data of the head and the pelvis region. Activity deviations were below 5% in soft tissue and lesions compared to the ground truth whereas standard MR-based AC resulted in activity underestimation values of up to 12%.

  1. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions havemore » significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.« less

  2. Regional Similarities and Consistent Patterns of Local Variation in Beach Sand Bacterial Communities throughout the Northern Hemisphere

    PubMed Central

    Staley, Christopher

    2016-01-01

    sands. While previous studies have evaluated how environmental factors influence bacterial community composition, few have evaluated bacterial communities in freshwater sands. Furthermore, the use of a consistent methodology to characterize bacterial communities here allowed a novel comparison of communities across geographic regions. We reveal that while the community composition in sands at individual beaches is distinct, beach sands within the same region harbor similar assemblages of bacteria and these assemblages differ greatly between regions. In addition, moisture, associated with distance from the shoreline, strongly influences the bacteria present in sands and more strongly influences the bacteria present than sample depth does. Thus, the data presented here offer an important basis for a broader characterization of the ecology of bacteria in sands, which may also be relevant to public health and resource management initiatives. PMID:26921429

  3. Assessment of effects of atomoxetine in adult patients with ADHD: consistency among three geographic regions in a response maintenance study.

    PubMed

    Tanaka, Yoko; Escobar, Rodrigo; Upadhyaya, Himanshu P

    2017-06-01

    A previous study (Upadhyaya et al. in Eur J Psychiatry 2013b; 27:185-205) reported that adults with attention-deficit/hyperactivity disorder (ADHD) demonstrated maintenance of response for up to 25 weeks after initially responding to atomoxetine treatment. In the present report, the consistency of treatment effect across three geographic regions (Europe, United States/Canada [US/Can], and Latin America [Latin Am]) was explored. Data were analyzed from a phase 3, multicenter, randomized, double-blind, maintenance-of-response (randomized withdrawal) trial of atomoxetine versus placebo in adults with ADHD. Patients were randomized to atomoxetine (N = 266) or placebo (N = 258) for 25 weeks. Consistency assessments included the interaction test, pairwise t tests, noninferiority, and the criteria from Basic Principles on Global Clinical Trials (Ministry of Health, Labour and Welfare of Japan 2007). Atomoxetine-treated patients maintained the improved ADHD symptoms relative to placebo-treated patients on the Conners' Adult ADHD Rating Scale Investigator-Rated: Screening Version 18-Item (CAARS-Inv:SV) total score in all three regions (atomoxetine-placebo mean difference = -4.55, -3.18, and -0.07 for Europe, US/Can, and Latin Am, respectively). For the Latin Am region, the mean change in total score (0.41) was notably smaller for the placebo group than for Europe (5.87) and US/Can (4.39). Similar results were observed for the CAARS-Inv:SV hyperactivity/impulsivity and inattention subscale scores. Overall, patients maintained the response with atomoxetine treatment compared to placebo; however, the magnitude of treatment effect differed among the regions studied, being numerically higher in the EU and US/Can than Latin Am. Trial registration http://www.clinicaltrials.gov/(NCT00700427 ).

  4. RSV Hospitalizations in Comparison With Regional RSV Activity and Inpatient Palivizumab Administration, 2010-2013.

    PubMed

    Glick, Alexander F; Kjelleren, Stephanie; Hofstetter, Annika M; Subramony, Anupama

    2017-05-01

    To compare pediatric respiratory syncytial virus (RSV) hospitalizations in the United States to regional RSV activity and inpatient palivizumab administration. We characterized inpatients, excluding newborns, with RSV from the Pediatric Health Information System (July 2010-June 2013). RSV regional activity timing was defined by the National Respiratory and Enteric Virus Surveillance System. RSV hospitalization season (defined by at least 3 SDs more than the mean regional baseline number of RSV hospitalizations for 3 consecutive weeks) was compared with RSV regional activity season (2 consecutive weeks with ≥10% RSV-positive testing). Logistic regression was used to determine predictors of hospitalization timing (ie, during or outside of regional activity season). We also assessed the timing of inpatient palivizumab administration. There were 50 157 RSV hospitalizations. Mean RSV hospitalization season onset (early November) was 3.3 (SD 2.1) weeks before regional activity season onset (early December). Hospitalization season offset (early May) was 4.4 (SD 2.4) weeks after activity season offset (mid-April). RSV hospitalization and activity seasons lasted 18 to 32 and 13 to 23 weeks, respectively. Nearly 10% of hospitalizations occurred outside of regional activity season (regional ranges: 5.6%-22.4%). Children with chronic conditions were more likely to be hospitalized after regional activity season, whereas African American children were more likely to be hospitalized before. Inpatient palivizumab dosing was typically initiated before the start of RSV hospitalizations. There is regional variation in RSV hospitalization and activity patterns. Many RSV hospitalizations occur before regional activity season; high-risk infants may require RSV immunoprophylaxis sooner. Copyright © 2017 by the American Academy of Pediatrics.

  5. An EEG Finger-Print of fMRI deep regional activation.

    PubMed

    Meir-Hasson, Yehudit; Kinreich, Sivan; Podlipsky, Ilana; Hendler, Talma; Intrator, Nathan

    2014-11-15

    This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Mood-dependent integration in discourse comprehension: happy and sad moods affect consistency processing via different brain networks.

    PubMed

    Egidi, Giovanna; Caramazza, Alfonso

    2014-12-01

    According to recent research on language comprehension, the semantic features of a text are not the only determinants of whether incoming information is understood as consistent. Listeners' pre-existing affective states play a crucial role as well. The current fMRI experiment examines the effects of happy and sad moods during comprehension of consistent and inconsistent story endings, focusing on brain regions previously linked to two integration processes: inconsistency detection, evident in stronger responses to inconsistent endings, and fluent processing (accumulation), evident in stronger responses to consistent endings. The analysis evaluated whether differences in the BOLD response for consistent and inconsistent story endings correlated with self-reported mood scores after a mood induction procedure. Mood strongly affected regions previously associated with inconsistency detection. Happy mood increased sensitivity to inconsistency in regions specific for inconsistency detection (e.g., left IFG, left STS), whereas sad mood increased sensitivity to inconsistency in regions less specific for language processing (e.g., right med FG, right SFG). Mood affected more weakly regions involved in accumulation of information. These results show that mood can influence activity in areas mediating well-defined language processes, and highlight that integration is the result of context-dependent mechanisms. The finding that language comprehension can involve different networks depending on people's mood highlights the brain's ability to reorganize its functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. THz quantum cascade lasers with wafer bonded active regions.

    PubMed

    Brandstetter, M; Deutsch, C; Benz, A; Cole, G D; Detz, H; Andrews, A M; Schrenk, W; Strasser, G; Unterrainer, K

    2012-10-08

    We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.

  8. Waste production and regional growth of marine activities an econometric model.

    PubMed

    Bramati, Maria Caterina

    2016-11-15

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. 44 CFR 206.349 - Consistency determinations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... FEMA shall modify actions by means of practicable mitigation measures to minimize adverse effects of... evaluation must result in a finding of consistency with CBRA by the Regional Administrator before funding may...

  10. 44 CFR 206.349 - Consistency determinations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... FEMA shall modify actions by means of practicable mitigation measures to minimize adverse effects of... evaluation must result in a finding of consistency with CBRA by the Regional Administrator before funding may...

  11. Self-consistent simulation of CdTe solar cells with active defects

    DOE PAGES

    Brinkman, Daniel; Guo, Da; Akis, Richard; ...

    2015-07-21

    We demonstrate a self-consistent numerical scheme for simulating an electronic device which contains active defects. As a specific case, we consider copper defects in cadmium telluride solar cells. The presence of copper has been shown experimentally to play a crucial role in predicting device performance. The primary source of this copper is migration away from the back contact during annealing, which likely occurs predominantly along grain boundaries. We introduce a mathematical scheme for simulating this effect in 2D and explain the numerical implementation of the system. Lastly, we will give numerical results comparing our results to known 1D simulations tomore » demonstrate the accuracy of the solver and then show results unique to the 2D case.« less

  12. Structure-activity relationship of HP (2-20) analog peptide: enhanced antimicrobial activity by N-terminal random coil region deletion.

    PubMed

    Park, Yoonkyung; Park, Seong-Cheol; Park, Hae-Kyun; Shin, Song Yub; Kim, Yangmee; Hahm, Kyung-Soo

    2007-01-01

    HP (2-20) (AKKVFKRLEKLFSKIQNDK) is a 19-aa antimicrobial peptide derived from N-terminus of Helicobacter pylori Ribosomal protein L1 (RpL1). In the previous study, several analogs with amino acid substitutions were designed to increase or decrease only the net hydrophobicity. In particular, substitutions of Gln(16) and Asp(18) with Trp (Anal 3) for hydrophobic amino acid caused a dramatic increase in antibiotic activity without a hemolytic effect. HP-A3 is a potent antimicrobial peptide that forms, in a hydrophobic medium, an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and extended C-terminal regular alpha-helical region (residues 6-20). To obtain the short and potent alpha-helical antimicrobial peptide, we synthesized a N-terminal random coil deleted HP-A3 (A3-NT) and examined their antimicrobial activity and mechanism of action. The resulting 15mer peptide showed increased antibacterial and antifungal activity to 2- and 4-fold, respectively, without hemolysis. Confocal fluorescence microscopy studies showed that A3-NT was accumulated in the plasma membrane. Flow cytometric analysis revealed that A3-NT acted in salt- and energy-independent manner. Furthermore, A3-NT causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy. Circular dichroism (CD) analysis revealed that A3-NT showed higher alpha-helical contents than the HP-A3 peptide in 50% TFE solution. Therefore, the cell-lytic efficiency of HP-A3, which depended on the alpha-helical content of peptide, correlated linearly with their antimicrobial potency.

  13. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  14. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources, for...

  15. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources, for...

  16. Photospheric electric current and transition region brightness within an active region

    NASA Technical Reports Server (NTRS)

    Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.

    1984-01-01

    Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.

  17. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions.

    PubMed

    Stice, Eric; Burger, Kyle S; Yokum, Sonja

    2013-12-01

    Although the intake of high-fat and high-sugar food activates mesolimbic reward, gustatory, and oral somatosensory brain regions, contributing to overeating, few studies have examined the relative role of fat and sugar in the activation of these brain regions, which would inform policy, prevention, and treatment interventions designed to reduce obesity. We evaluated the effect of a high-fat or high-sugar equicaloric chocolate milkshake and increasing fat or sugar milkshake content on the activation of these regions. Functional magnetic resonance imaging was used to assess the neural response to the intake of high-fat/high-sugar, high-fat/low-sugar, low-fat/high-sugar, and low-fat/low-sugar chocolate milkshakes and a tasteless solution in 106 lean adolescents (mean ± SD age = 15.00 ± 0.88 y). Analyses contrasted the activation to the various milkshakes. High-fat compared with high-sugar equicaloric milkshakes caused greater activation in the bilateral caudate, postcentral gyrus, hippocampus, and inferior frontal gyrus. High-sugar compared with high-fat equicaloric milkshakes caused greater activation in the bilateral insula extending into the putamen, the Rolandic operculum, and thalamus, which produced large activation regions. Increasing sugar in low-fat milkshakes caused greater activation in the bilateral insula and Rolandic operculum; increasing fat content did not elicit greater activation in any region. Fat caused greater activation of the caudate and oral somatosensory regions than did sugar, sugar caused greater activation in the putamen and gustatory regions than did fat, increasing sugar caused greater activity in gustatory regions, and increasing fat did not affect the activation. Results imply that sugar more effectively recruits reward and gustatory regions, suggesting that policy, prevention, and treatment interventions should prioritize reductions in sugar intake. This trial was registered at clinicaltrials.gov as DK092468.

  18. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry.

    PubMed

    Dufour, Franck; Koning, Estelle; Nehlig, Astrid

    2003-08-01

    The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.

  19. Observations of the Growth of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    2017-04-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. Hαobservations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  20. OBSERVATIONS OF THE GROWTH OF AN ACTIVE REGION FILAMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to themore » disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. H {sub α} observations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.« less

  1. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  2. Earthquake Activity in the North Greenland Region

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Dahl-Jensen, Trine; Voss, Peter H.

    2017-04-01

    Many local and regional earthquakes are recorded on a daily basis in northern Greenland. The majority of the earthquakes originate at the Arctic plate boundary between the Eurasian and the North American plates. Particularly active regions away from the plate boundary are found in NE Greenland and in northern Baffin Bay. The seismograph coverage in the region is sparse with the main seismograph stations located at the military outpost, Stations Nord (NOR), the weather station outpost Danmarkshavn (DAG), Thule Airbase (TULEG), and the former ice core drilling camp (NEEM) in the middle of the Greenland ice sheet. Furthermore, data is available from Alert (ALE), Resolute (RES), and other seismographs in northern Canada as well as from a temporary deployment of BroadBand seismographs along the north coast of Greenland from 2004 to 2007. The recorded earthquakes range in magnitude from less than 2 to a 4.8 event, the largest in NE Greenland, and a 5.7 event, the largest recorded in northern Baffin Bay. The larger events are recorded widely in the region allowing for focal mechanisms to be calculated. Only a few existing focal mechanisms for the region can be found in the ISC bulletin. Two in NE Greenland representing primarily normal faulting and one in Baffin Bay resulting from reverse faulting. New calculations of focal mechanisms for the region will be presented as well as improved hypocenters resulting from analysis involving temporary stations and regional stations that are not included in routine processing.

  3. OUTFLOW AND METALLICITY IN THE BROAD-LINE REGION OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Nagao, Tohru

    2017-01-20

    Outflows in active galactic nuclei (AGNs) are crucial to understand in investigating the co-evolution of supermassive black holes (SMBHs) and their host galaxies since outflows may play an important role as an AGN feedback mechanism. Based on archival UV spectra obtained with the Hubble Space Telescope and IUE , we investigate outflows in the broad-line region (BLR) in low-redshift AGNs ( z < 0.4) through detailed analysis of the velocity profile of the C iv emission line. We find a dependence of the outflow strength on the Eddington ratio and the BLR metallicity in our low-redshift AGN sample, which ismore » consistent with earlier results obtained for high-redshift quasars. These results suggest that BLR outflows, gas accretion onto SMBHs, and past star formation activity in host galaxies are physically related in low-redshift AGNs as in powerful high-redshift quasars.« less

  4. IFLA General Conference, 1985. Division on Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on regional library activities which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Importance of Information Resources in National Development with Particular Reference to the Asian Scene" (Yogendra P. Dubey, India); (2) "Report of the Activities of the Regional…

  5. Male and female voices activate distinct regions in the male brain.

    PubMed

    Sokhi, Dilraj S; Hunter, Michael D; Wilkinson, Iain D; Woodruff, Peter W R

    2005-09-01

    In schizophrenia, auditory verbal hallucinations (AVHs) are likely to be perceived as gender-specific. Given that functional neuro-imaging correlates of AVHs involve multiple brain regions principally including auditory cortex, it is likely that those brain regions responsible for attribution of gender to speech are invoked during AVHs. We used functional magnetic resonance imaging (fMRI) and a paradigm utilising 'gender-apparent' (unaltered) and 'gender-ambiguous' (pitch-scaled) male and female voice stimuli to test the hypothesis that male and female voices activate distinct brain areas during gender attribution. The perception of female voices, when compared with male voices, affected greater activation of the right anterior superior temporal gyrus, near the superior temporal sulcus. Similarly, male voice perception activated the mesio-parietal precuneus area. These different gender associations could not be explained by either simple pitch perception or behavioural response because the activations that we observed were conjointly activated by both 'gender-apparent' and 'gender-ambiguous' voices. The results of this study demonstrate that, in the male brain, the perception of male and female voices activates distinct brain regions.

  6. Active Travel Behavior in a Border Region of Texas and New Mexico: Motivators, Deterrents, and Characteristics.

    PubMed

    Sener, Ipek N; Lee, Richard J

    2017-08-01

    Active travel has been linked with improved transportation and health outcomes, such as reduced traffic congestion and air pollution, improved mobility, accessibility, and equity, and increased physical and mental health. The purpose of this study was to better understand active travel characteristics, motivators, and deterrents in the El Paso, TX, region. A multimodal transportation survey brought together elements of transportation and health, with a focus on attitudinal characteristics. The analysis consisted of an initial descriptive analysis, spatial analysis, and multivariate binary and ordered-response models of walking and bicycling behavior. The motivators and deterrents of active travel differed for walkers, bicyclists, and noncyclists interested in bicycling. The link between active travel and life satisfaction was moderated by age, with a negative association for older travelers. This effect was stronger for bicycling than it was for walking. Based on the findings, several interventions to encourage walking and bicycling were suggested. These included infrastructure and built environment enhancements, workplace programs, and interventions targeting specific subpopulations.

  7. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Seasonal Variation of Wave Activities near the Mesopause Region Observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.; Won, Y.; Wu, D. L.

    2012-12-01

    We have analyzed neutral wind data obtained from a VHF meteor radar at King Sejong Station (KSS), Antarctica to investigate wave activities in the altitude region of 80 - 100 km over the Antarctic vortex boundary. The seasonal behavior of semidiurnal tides is generally consistent with the prediction of GSWM (Global Scale Wave Model) except for the altitude region above ~96 km. The gravity wave activities inferred from variances of neutral winds show very similar seasonal characteristics to the semidiurnal tides, implying that there is a close interaction between the gravity wave and tide. Although the seasonal behaviors of the wind variance as an indicator of the gravity wave activity are consistent with those observed at the adjacent Rothera station, the magnitude of the variances at KSS is much larger above the mesopause, especially from May through September, than those at Rothera. The Aura Microwave Limb Sounder (MLS) satellite observations also confirmed the enhancement of gravity wave activity during the same period near the tip of Antarctic Peninsula, where KSS is located. The observed large wind variances at KSS may imply that the atmospheric conditions near the Antarctic vortex are very effective for generation of the gravity waves that propagate to the upper atmosphere.

  9. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4 : XCO2 retrievals, 2010-2014

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Palmer, Paul I.; Bösch, Hartmut; Parker, Robert J.; Webb, Alex J.; Correia, Caio S. C.; Deutscher, Nicholas M.; Domingues, Lucas G.; Feist, Dietrich G.; Gatti, Luciana V.; Gloor, Emanuel; Hase, Frank; Kivi, Rigel; Liu, Yi; Miller, John B.; Morino, Isamu; Sussmann, Ralf; Strong, Kimberly; Uchino, Osamu; Wang, Jing; Zahn, Andreas

    2017-04-01

    We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4 : XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. This work builds on the previously reported theory that takes into account that (1) these ratios are less prone to systematic error than either the full-physics data products or the proxy CH4 data products; and (2) the resulting CH4 and CO2 fluxes are self-consistent. We show that a posteriori fluxes inferred from the GOSAT data generally outperform the fluxes inferred only from in situ data, as expected. GOSAT CH4 and CO2 fluxes are consistent with global growth rates for CO2 and CH4 reported by NOAA and have a range of independent data including new profile measurements (0-7 km) over the Amazon Basin that were collected specifically to help validate GOSAT over this geographical region. We find that large-scale multi-year annual a posteriori CO2 fluxes inferred from GOSAT data are similar to those inferred from the in situ surface data but with smaller uncertainties, particularly over the tropics. GOSAT data are consistent with smaller peak-to-peak seasonal amplitudes of CO2 than either the a priori or in situ inversion, particularly over the tropics and the southern extratropics. Over the northern extratropics, GOSAT data show larger uptake than the a priori but less than the in situ inversion, resulting in small net emissions over the year. We also find evidence that the carbon balance of tropical South America was perturbed following the droughts of 2010 and 2012 with net annual fluxes not returning to an approximate annual balance until 2013. In contrast, GOSAT data significantly changed the a priori spatial distribution of CH4 emission with a 40 % increase over tropical South America and tropical Asia and a smaller decrease over Eurasia and temperate

  10. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations.

    PubMed

    Stark, David E; Margulies, Daniel S; Shehzad, Zarrar E; Reiss, Philip; Kelly, A M Clare; Uddin, Lucina Q; Gee, Dylan G; Roy, Amy K; Banich, Marie T; Castellanos, F Xavier; Milham, Michael P

    2008-12-17

    Electrophysiological studies have long demonstrated a high degree of correlated activity between the left and right hemispheres, however little is known about regional variation in this interhemispheric coordination. Whereas cognitive models and neuroanatomical evidence suggest differences in coordination across primary sensory-motor cortices versus higher-order association areas, these have not been characterized. Here, we used resting-state functional magnetic resonance imaging data acquired from 62 healthy volunteers to examine interregional correlation in spontaneous low-frequency hemodynamic fluctuations. Using a probabilistic atlas, we correlated probability-weighted time series from 112 regions comprising the entire cerebrum. We then examined regional variation in correlated activity between homotopic regions, contrasting primary sensory-motor cortices, unimodal association areas, and heteromodal association areas. Consistent with previous studies, robustly correlated spontaneous activity was noted between all homotopic regions, which was significantly higher than that between nonhomotopic (heterotopic and intrahemispheric) regions. We further demonstrated substantial regional variation in homotopic interhemispheric correlations that was highly consistent across subjects. Specifically, there was a gradient of interhemispheric correlation, with highest correlations across primary sensory-motor cortices (0.758, SD=0.152), significantly lower correlations across unimodal association areas (0.597, SD=0.230) and still lower correlations across heteromodal association areas (0.517, SD=0.226). These results demonstrate functional differences in interhemispheric coordination related to the brain's hierarchical subdivisions. Synchrony across primary cortices may reflect networks engaged in bilateral sensory integration and motor coordination, whereas lower coordination across heteromodal association areas is consistent with functional lateralization of these regions

  11. Brain region-specific activity patterns after recent or remote memory retrieval of auditory conditioned fear.

    PubMed

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-09-19

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or retrieval. To investigate this possibility, we systematically imaged the brain activity patterns in the lateral amygdala, MGm/PIN, and AuV/TeA using activity-dependent induction of immediate early gene zif268 after recent and remote memory retrieval of auditory conditioned fear. Consistent with the critical role of the amygdala in fear memory, the zif268 activity in the lateral amygdala was significantly increased after both recent and remote memory retrieval. Interesting, however, the density of zif268 (+) neurons in both MGm/PIN and AuV/TeA, particularly in layers IV and VI, was increased only after remote but not recent fear memory retrieval compared to control groups. Further analysis of zif268 signals in AuV/TeA revealed that conditioned tone induced stronger zif268 induction compared to familiar tone in each individual zif268 (+) neuron after recent memory retrieval. Taken together, our results support that the lateral amygdala is a key brain site for permanent fear memory storage and suggest that MGm/PIN and AuV/TeA might play a role for remote memory storage or retrieval of auditory conditioned fear, or, alternatively, that these auditory brain regions might have a different way of processing for familiar or conditioned tone information at recent and remote time phases.

  12. Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region

    NASA Technical Reports Server (NTRS)

    Nordon, R.; Behar, E.; Drake, S. A.

    2013-01-01

    Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.

  13. 50 CFR 216.211 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and gas structure removal activities in areas within state and Federal waters in the U.S. Gulf of.... Gulf of Mexico § 216.211 Specified activity and specified geographical region. (a) Regulations in this...

  14. Regional brain activation/deactivation during word generation in schizophrenia: fMRI study.

    PubMed

    John, John P; Halahalli, Harsha N; Vasudev, Mandapati K; Jayakumar, Peruvumba N; Jain, Sanjeev

    2011-03-01

    Examination of the brain regions that show aberrant activations and/or deactivations during semantic word generation could pave the way for a better understanding of the neurobiology of cognitive dysfunction in schizophrenia. To examine the pattern of functional magnetic resonance imaging blood oxygen level dependent activations and deactivations during semantic word generation in schizophrenia. Functional magnetic resonance imaging was performed on 24 participants with schizophrenia and 24 matched healthy controls during an overt, paced, 'semantic category word generation' condition and a baseline 'word repetition' condition that modelled all the lead-in/associated processes involved in the performance of the generation task. The brain regions activated during word generation in healthy individuals were replicated with minimal redundancies in participants with schizophrenia. The individuals with schizophrenia showed additional activations of temporo-parieto-occipital cortical regions as well as subcortical regions, despite significantly poorer behavioural performance than the healthy participants. Importantly, the extensive deactivations in other brain regions during word generation in healthy individuals could not be replicated in those with schizophrenia. More widespread activations and deficient deactivations in the poorly performing participants with schizophrenia may reflect an inability to inhibit competing cognitive processes, which in turn could constitute the core information-processing deficit underlying impaired word generation in schizophrenia.

  15. 50 CFR 216.211 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Specified activity and specified... Activities Conducted During Offshore Structure Removal Operations on the Outer Continental Shelf in the U.S. Gulf of Mexico § 216.211 Specified activity and specified geographical region. (a) Regulations in this...

  16. 50 CFR 216.211 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Specified activity and specified... Activities Conducted During Offshore Structure Removal Operations on the Outer Continental Shelf in the U.S. Gulf of Mexico § 216.211 Specified activity and specified geographical region. (a) Regulations in this...

  17. Is Active Tectonics on Madagascar Consistent with Somalian Plate Kinematics?

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Kreemer, C.; Rajaonarison, T. A.

    2017-12-01

    The East African Rift System (EARS) actively breaks apart the Nubian and Somalian tectonic plates. Madagascar finds itself at the easternmost boundary of the EARS, between the Rovuma block, Lwandle plate, and the Somalian plate. Earthquake focal mechanisms and N-S oriented fault structures on the continental island suggest that Madagascar is experiencing east-west oriented extension. However, some previous plate kinematic studies indicate minor compressional strains across Madagascar. This inconsistency may be due to uncertainties in Somalian plate rotation. Past estimates of the rotation of the Somalian plate suffered from a poor coverage of GPS stations, but some important new stations are now available for a re-evaluation. In this work, we revise the kinematics of the Somalian plate. We first calculate a new GPS velocity solution and perform block kinematic modeling to evaluate the Somalian plate rotation. We then estimate new Somalia-Rovuma and Somalia-Lwandle relative motions across Madagascar and evaluate whether they are consistent with GPS measurements made on the island itself, as well as with other kinematic indicators.

  18. Phytochemical composition, antioxidant activity and HPLC fingerprinting profiles of three Pyrola species from different regions.

    PubMed

    Wang, Dongmei; He, Fengyuan; Lv, Zhenjiang; Li, Dengwu

    2014-01-01

    The present study was performed to investigate the variation of phytochemical composition, antioxidant activity and High Performance Liquid Chromatography (HPLC) fingerprinting profiles of three Pyrola species. Thirteen samples (eight P. decorata, three P. calliantha and two P. renifolia) were collected from different regions in China. The tannin, hyperoside and quercetin contents of all samples were determined by reverse-phase HPLC and varied within the range 9.77-34.75, 0.34-2.16 and 0.062-0.147 mg/g dry weigh, respectively. Total flavonoid content was evaluated and varied within the range 16.22-37.82 mg/g dry weight. Antioxidant activity was determined by DPPH assay, with IC50 ranging from 7.96 to 50.33 µg/ml, ABTS•+ and FRAP assay, within the range 612.66-1021.05 and 219.64-398.12 µmol equiv. Trolox/g, respectively. These results revealed that there were significant variations in phytochemical profiles and antioxidant activity among all samples. Due to the higher phytochemical content and significant antioxidant activity, P. calliantha was selected as the most valuable species, and the P. calliantha sample from Left banner of Alxa even possessed the strongest antioxidant activity among all the thirteen samples. Futhermore, Emei Mountain was proved to be the most suitable region for producing P. decorata. Moreover, in order to further evaluate the diversities and quality of Pyrola, HPLC fingerprint analysis coupled with hierarchical cluster and discrimination analyses were introduced to establish a simple, rapid and effective method for accurate identification, classification and quality assessment of Pyrola. Thirteen samples were divided into three groups consistent with their morphological classification. Two types of discriminant functions were generated and the ratio of discrimination was 100%. This method can identify different species of Pyrola and the same species from different regions of origin. Also, it can be used to compare and control the

  19. Phytochemical Composition, Antioxidant Activity and HPLC Fingerprinting Profiles of Three Pyrola Species from Different Regions

    PubMed Central

    Wang, Dongmei; He, Fengyuan; Lv, Zhenjiang; Li, Dengwu

    2014-01-01

    The present study was performed to investigate the variation of phytochemical composition, antioxidant activity and High Performance Liquid Chromatography (HPLC) fingerprinting profiles of three Pyrola species. Thirteen samples (eight P. decorata, three P. calliantha and two P. renifolia) were collected from different regions in China. The tannin, hyperoside and quercetin contents of all samples were determined by reverse-phase HPLC and varied within the range 9.77–34.75, 0.34–2.16 and 0.062–0.147 mg/g dry weigh, respectively. Total flavonoid content was evaluated and varied within the range 16.22–37.82 mg/g dry weight. Antioxidant activity was determined by DPPH assay, with IC50 ranging from 7.96 to 50.33 µg/ml, ABTS•+ and FRAP assay, within the range 612.66–1021.05 and 219.64–398.12 µmol equiv. Trolox/g, respectively. These results revealed that there were significant variations in phytochemical profiles and antioxidant activity among all samples. Due to the higher phytochemical content and significant antioxidant activity, P. calliantha was selected as the most valuable species, and the P. calliantha sample from Left banner of Alxa even possessed the strongest antioxidant activity among all the thirteen samples. Futhermore, Emei Mountain was proved to be the most suitable region for producing P. decorata. Moreover, in order to further evaluate the diversities and quality of Pyrola, HPLC fingerprint analysis coupled with hierarchical cluster and discrimination analyses were introduced to establish a simple, rapid and effective method for accurate identification, classification and quality assessment of Pyrola. Thirteen samples were divided into three groups consistent with their morphological classification. Two types of discriminant functions were generated and the ratio of discrimination was 100%. This method can identify different species of Pyrola and the same species from different regions of origin. Also, it can be used to compare and

  20. The Effect of "Rogue" Active Regions on the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  1. Interaction between physostigmine and soman on brain regional cholinesterase activity and /sup 3/H-physostigmine distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallak, M.E.; Woodruff, E.; Giacobini, E.

    1986-03-05

    Physostigmine (Phy) concentrations (as radioactivity) were studied in various brain areas after /sup 3/H-Phy administration as a function of time. Five min after 500 ..mu..g/kg i.m., cortex (CX) and total brain showed similar concentrations (370 ng/g) which were 50-90% higher than those of other brain regions (striatum, hippocampus, and medulla oblongata). Soman did not affect Phy levels in whole brain after pretreatment with Phy (100 or 500 ..mu..g/kg), however, the regional distribution of Phy was altered by soman as was ChE inhibition. A significant increase in Phy concentration was seen in HC (22 and 45% at 5 and 30 min,more » respectively) and CX (21% at 30 min). ChE activity in total brain was 12, 30, and 24% (5, 15 and 30 min after soman administration) lower than after Phy alone. If the pretreatment dose of Phy was increased to 500 ..mu..g/kg /sup 3/H-Phy, ChE activity was further reduced to 4, 13 and 19%. This might indicate that higher doses of Phy provide more protection of the enzyme from soman than lower doses. The protective role of Phy seen in total brain was not consistent for all brain regions. Soman alone produced a 95% ChE inhibition and there were no differences in its effect between total brain or brain areas. Pretreatment of the rat with Phy produced a protective effect upon ChE activity up to 30 min. However, no protective effect on survival was observed.« less

  2. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  3. 50 CFR 216.110 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... geographical region. 216.110 Section 216.110 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Displays at Monterey Bay National Marine Sanctuary, CA § 216.110 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine mammal...

  4. 50 CFR 217.11 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... geographical region. 217.11 Section 217.11 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Coastal Commercial Fireworks Displays at Monterey Bay National Marine Sanctuary, CA § 217.11 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to the Monterey Bay...

  5. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  6. 50 CFR 217.11 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... geographical region. 217.11 Section 217.11 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Coastal Commercial Fireworks Displays at Monterey Bay National Marine Sanctuary, CA § 217.11 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to the Monterey Bay...

  7. 50 CFR 217.11 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... geographical region. 217.11 Section 217.11 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Coastal Commercial Fireworks Displays at Monterey Bay National Marine Sanctuary, CA § 217.11 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to the Monterey Bay...

  8. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  9. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  10. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  11. Magnetic helicity in emerging solar active regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Hoeksema, J. T.; Bobra, M.

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferredmore » in a sample of 23 emerging ARs with a bipolar magnetic field configuration.« less

  12. Universities and Economic Development Activities: A UK Regional Comparison

    ERIC Educational Resources Information Center

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.

    2011-01-01

    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  13. Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: Evidence for nanoflare heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosius, Jeffrey W.; Daw, Adrian N.; Rabin, D. M., E-mail: Jeffrey.W.Brosius@nasa.gov

    2014-08-01

    We present spatially resolved EUV spectroscopic measurements of pervasive, faint Fe XIX 592.2 Å line emission in an active region observed during the 2013 April 23 flight of the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectral resolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 Å (formed at temperature T ≈ 8.9 MK) and Fe XII at 592.6 Å (T ≈ 1.6 MK). The Fe XIX line emission, observed over an area in excess of 4920 arcsec{sup 2} (2.58 × 10{sup 9} km{sup 2}, more than 60% of themore » active region), provides strong evidence for the nanoflare heating model of the solar corona. No GOES events occurred in the region less than 2 hr before the rocket flight, but a microflare was observed north and east of the region with RHESSI and EUNIS during the flight. The absence of significant upward velocities anywhere in the region, particularly the microflare, indicates that the pervasive Fe XIX emission is not propelled outward from the microflare site, but is most likely attributed to localized heating (not necessarily due to reconnection) consistent with the nanoflare heating model of the solar corona. Assuming ionization equilibrium we estimate Fe XIX/Fe XII emission measure ratios of ∼0.076 just outside the AR core and ∼0.59 in the core.« less

  14. T111. PANSS NEGATIVE SYMPTOM DIMENSIONS ACROSS GEOGRAPHICAL REGIONS: IMPLICATIONS FOR SOCIAL, LINGUISTIC AND CULTURAL CONSISTENCY

    PubMed Central

    Khan, Anzalee; Liharska, Lora; Harvey, Philip; Atkins, Alexandra; Keefe, Richard; Ulshen, Danny

    2018-01-01

    large DIF for all items: Austria-Germany, Nordic, France, and Poland. Of all the items, N3 Poor Rapport showed the most moderate and large DIF (n = 13; 86.67%) across countries, with 7 countries reporting large DIF. Similarly, N6 Lack of Spontaneity and Flow of Conversation showed moderate and large DIF for 66.67% countries (n=10). Experiential Deficit: Item G16 Active Social Avoidance reported negligible DIF for 14 of the 15 countries investigated (93.33%). Large DIF was observed for N2 Emotional Withdrawal and N4 Passive Apathetic Social Withdrawal for Brazil and India. Seven regions demonstrated no DIF across all items of the PANSS experiential deficit factor (South America-Mexico, Belgium-Netherlands, Nordic, Great Britain, Eastern Europe, Russia, and Spain). Overall, there were many fewer observed items with large DIF for PANSS experiential domain. Discussion These results suggest that the PANSS Negative Symptoms Factor can be better represented by a two-factor model than by a single-factor model. Additionally, the results show significant differences in ratings on the PANSS expressive items, but not the experiential items, across regions. This could be due to a lack of equivalence between the original and translated versions, cultural differences in the interpretation of items, rater training, or understanding of scoring anchors. Knowing which items are challenging for raters across regions can help guide PANSS training to improve results of international clinical trials aimed at negative symptoms.

  15. Active region flows

    NASA Technical Reports Server (NTRS)

    Foukal, Peter

    1987-01-01

    A wide range of observations has shown that active region phenomena in the photospheric, chromospheric and coronal temperature regimes are dynamical in nature. At the photosphere, recent observations of full line profiles place an upper limit of about + or - 20/msec on any downflows at supergranule cell edges. Observations of the full Stokes 5 profiles in the network show no evidence for downflows in magnetic flux tubes. In the area of chromospheric dynamics, several models were put forward recently to reproduce the observed behavior of spicules. However, it is pointed out that these adiabatic models do not include the powerful radiative dissipation which tend to damp out the large amplitude disturbances that produce the spicular acceleration in the models. In the corona, loop flows along field lines clearly transport mass and energy at rates important for the dynamics of these structures. However, advances in understanding the heating and mass balance of the loop structures seem to require new kinds of observations. Some results are presented using a remote sensing diagnostic of the intensity and orientation of macroscopic plasma electric fields predicted by models of reconnective heating and also wave heating.

  16. Consistent Selection towards Low Activity Phenotypes When Catchability Depends on Encounters among Human Predators and Fish

    PubMed Central

    Alós, Josep; Palmer, Miquel; Arlinghaus, Robert

    2012-01-01

    Together with life-history and underlying physiology, the behavioural variability among fish is one of the three main trait axes that determines the vulnerability to fishing. However, there are only a few studies that have systematically investigated the strength and direction of selection acting on behavioural traits. Using in situ fish behaviour revealed by telemetry techniques as input, we developed an individual-based model (IBM) that simulated the Lagrangian trajectory of prey (fish) moving within a confined home range (HR). Fishers exhibiting various prototypical fishing styles targeted these fish in the model. We initially hypothesised that more active and more explorative individuals would be systematically removed under all fished conditions, in turn creating negative selection differentials on low activity phenotypes and maybe on small HR. Our results partly supported these general predictions. Standardised selection differentials were, on average, more negative on HR than on activity. However, in many simulation runs, positive selection pressures on HR were also identified, which resulted from the stochastic properties of the fishes’ movement and its interaction with the human predator. In contrast, there was a consistent negative selection on activity under all types of fishing styles. Therefore, in situations where catchability depends on spatial encounters between human predators and fish, we would predict a consistent selection towards low activity phenotypes and have less faith in the direction of the selection on HR size. Our study is the first theoretical investigation on the direction of fishery-induced selection of behaviour using passive fishing gears. The few empirical studies where catchability of fish was measured in relation to passive fishing techniques, such as gill-nets, traps or recreational fishing, support our predictions that fish in highly exploited situations are, on average, characterised by low swimming activity, stemming, in

  17. Analysis of X-ray observations of the 15 June 1973 flare in active region NOAA 131

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Reichmann, E. J.; Wilson, R. M.; Henze, W., Jr.; Smith, J. B., Jr.

    1978-01-01

    Observations and analyses of the 1B/M3 flare of 15 June, 1973 in active region NOAA 131 (McMath 12379) are presented. The X-ray observations, consisting of broadband photographs and proportional counter data from the Skylab/ATM NASA-MSFC/Aerospace S-056 experiment, are used to infer temperatures, emission measures, and densities for the flaring plasma. The peak temperature from the spatially resolved photographs is 25,000,000 K, while the temperature from the full-disk proportional counter data is approximately 15,000,000 K. The density is 3 times 10 to the 10th/cu cm. The X-ray flare emission appears to come primarily from two low-lying curvilinear features lying perpendicular to and centered on the line where the photospheric longitudinal magnetic field is zero. Similarities in the preflare and postflare X-ray emission patterns indicate that no large-scale relaxation of the coronal magnetic configuration was observed. Also discussed are H-alpha and magnetic field observations of the flare and the active region. Finally, results of numerical calculations, including thermal conduction, radiative loss, and chromospheric evaporation, are in qualitative agreement with the decay phase observations.

  18. The Atlantic Canada-New England Region and Environment. A Learning Activity Packet.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.

    In this Learning Activity Packet (LAP) students examine the geographic and ecological bases of the Eastern international region. The overall objective of activities is to help students comprehend the man-earth relationship concept. By studying this familiar relevant region students gain geographic knowledge and skills applicable to other areas.…

  19. Myostatin inhibitory region of fish (Paralichthys olivaceus) myostatin-1 propeptide.

    PubMed

    Lee, Sang Beum; Kim, Jeong Hwan; Jin, Deuk-Hee; Jin, Hyung-Joo; Kim, Yong Soo

    2016-01-01

    Myostatin (MSTN) is a potent negative regulator of skeletal muscle growth, and its activity is suppressed by MSTN propeptide (MSTNpro), the N-terminal part of MSTN precursor cleaved during post-translational MSTN processing. The current study examined which region of flatfish (Paralichthys olivaceus) MSTN-1 propeptide (MSTN1pro) is critical for MSTN inhibition. Six different truncated forms of MSTN1pro containing N-terminal maltose binding protein (MBP) as a fusion partner were expressed in Escherichia coli, and partially purified by an affinity chromatography for MSTN-inhibitory activity examination. Peptides covering different regions of flatfish MSTN1pro were also synthesized for MSTN-inhibitory activity examination. A MBP-fused MSTN1pro region consisting of residues 45-100 had the same MSTN-inhibitory potency as the full sequence flatfish MSTN1pro (residues 23-265), indicating that the region of flatfish MSTN1pro consisting of residues 45-100 is sufficient to maintain the full MSTN-inhibitory capacity. A MBP-fused MSTN1pro region consisting of residues 45-80 (Pro45-80) also showed MSTN-inhibitory activity with a lower potency, and the Pro45-80 demonstrated its MSTN binding capacity in a pull-down assay, indicating that the MSTN-inhibitory capacity of Pro45-80 is due to its binding to MSTN. Flatfish MSTN1pro synthetic peptides covering residues 45-65, 45-70, and 45-80 demonstrated MSTN-inhibitory activities, but not the synthetic peptide covering residues 45-54, indicating that residues 45-65 of flatfish MSTN1pro are essential for MSTN inhibition. In conclusion, current study show that like the mammalian MSTNpro, the MSTN-inhibitory region of flatfish MSTN1pro resides near its N-terminus, and imply that smaller sizes of MSTNpro can be effectively used in various applications designed for MSTN inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. "Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen

    2016-05-01

    We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.

  1. X-ray variability and the inner region in active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, P.; Mangalam, A., E-mail: prashanth@iiap.res.in, E-mail: mangalam@iiap.res.in

    2014-08-20

    We present theoretical models of X-ray variability attributable to orbital signatures from an accretion disk including emission region size, quasi-periodic oscillations (QPOs), and its quality factor Q, and the emergence of a break frequency in the power spectral density shape. We find a fractional variability amplitude of F{sub var}∝M{sub ∙}{sup −0.4}. We conduct a time series analysis on X-ray light curves (0.3-10 keV) of a sample of active galactic nuclei (AGNs). A statistically significant bend frequency is inferred in 9 of 58 light curves (16%) from 3 AGNs for which the break timescale is consistent with the reported BH spinmore » but not with the reported BH mass. Upper limits of 2.85 × 10{sup 7} M {sub ☉} in NGC 4051, 8.02 × 10{sup 7} M {sub ☉} in MRK 766, and 4.68 × 10{sup 7} M {sub ☉} in MCG-6-30-15 are inferred for maximally spinning BHs. For REJ 1034+396 where a QPO at 3733 s was reported, we obtain an emission region size of (6-6.5) M and a BH spin of a ≲ 0.08. The relativistic inner region of a thin disk, dominated by radiation pressure and electron scattering, is likely to host the orbital features as the simulated Q ranges from 6.3 × 10{sup –2} to 4.25 × 10{sup 6}, containing the observed Q. The derived value of Q ∼ 32 for REJ 1034+396 therefore suggests that the AGN hosts a thin disk.« less

  2. The Current Driven Kink Instability and its Relationship to Delta-Spot Active Regions

    NASA Astrophysics Data System (ADS)

    Linton, Mark George

    The current driven kink instability may be the cause of both the unusual morphology of solar δ-spot active regions and the tendency of these regions to be significantly more flare active than most active regions. We investigate the current driven kink instability of flux tubes in the solar interior both with a linear stability analysis and with nonlinear MHD simulations. The linear analysis shows that there is a critical twist, which depends on the axial magnetic field profile, that a flux tube needs to become kink unstable. This critical twist decreases as the tube expands, so twisted flux tubes will become increasingly unstable as they rise through the convection zone. The nonlinear simulations show that a twisted tube excited by a single unstable kink mode will evolve to a helical equilibrium state. The emergence through the photosphere of such a kinked tube would create an active region which was tilted with respect to Hale's law and which would rotate as it evolved, as δ-spots are observed to do. We then find that, when excited by multiple unstable kink modes, highly twisted flux tubes develop concentrated kinks. These concentrated kinks would produce more of the observed characteristics of δ-spot active regions. They would create active regions which, in addition to emerging tilted and then rotating, would remain compact as they evolved, and develop strong shear along their magnetic neutral line. Finally, we find that a strong concentrated kink develops a current sheet at which the magnetic field reconnects, which may be the cause of the high flare activity of δ-spots.

  3. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions.

    PubMed

    Habib, Hosam M; Al Meqbali, Fatima T; Kamal, Hina; Souka, Usama D; Ibrahim, Wissam H

    2014-06-15

    Honey serves as a good source of natural antioxidants, which are effective in reducing the risk of occurrence of several diseases. This study was undertaken to address the limited knowledge regarding the polyphenolic content, antioxidant and DNA damage inhibitory activities of honeys produced in arid regions and compare them with well-recognized honeys from non-arid regions. Different types of honey were assessed for their contents of total phenolics, total flavonoids, and certain types of phenolic compounds. The antioxidant capacity of honey was evaluated by ferric-reducing/antioxidant power assay (FRAP), free radical-scavenging activity (DPPH), nitric oxide (NO) radical-scavenging assay, total antioxidant activity, and DNA damage. Results clearly showed significant differences among honeys with all the evaluated parameters. Results also showed that one or more types of honey from arid regions contained higher levels of phenolic compounds, free radical-scavenging activities, or DNA damage inhibitory activities compared with the evaluated honeys from non-arid regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Armenia as a Regional Centre for Astronomy for Development activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  5. THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.

    2015-08-15

    To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspotmore » with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.« less

  6. Study of the consistency of climatological products of Nimbus-7

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1988-01-01

    The study, in addition to investigating the consistency of climatological products from Nimbus-7 Earth Radiation Budget and Temperature Humidity Infrared Radiometer experiments, focussed on the climatological analysis of the specified regions of the Earth. The climatological study consisted of the effects of various types of clouds on the net radiation, albedos, and emitted radiation. In addition to a correlational study for determining consistency level of data, a population study of the regions was formulated and conducted. The regions under this study were formed by clustering the target areas using the criteria of climatological conditions such as geography, ocean, and land. Research is limited to tropics from 18 deg north to 18 deg south. A correlational study indicates that there is high positive correlation between high clouds and albedo, and a reduced negative correlation between albedo and net radiation.

  7. Forecasting the Solar Drivers of Severe Space Weather from Active-Region Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region s magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, and (2) an active region s rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region s present measured value of the free-energy proxy give the active region s expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region s recent productivity of major flares; specifically, whether the active region has produced a major flare (GOES class M or X) during the past 24 hours before the time of the measured magnetogram. By empirically determining the conversion of the value of free-energy proxy measured from a GONG or HMI magnetogram to that which would be measured from an MDI magnetogram, we have made GONG and HMI magnetograms useable with

  8. Radio-derived three-dimensional structure of a solar active region

    NASA Astrophysics Data System (ADS)

    Tun, Samuel D.

    Solar active regions are the source of the most violent events observed on the Sun, some of which have a direct impact to modern civilization. Efforts to understand and predict such events require determination of the three-dimensional distributions of density, temperature, and magnetic fields above such active regions. This thesis presents the structure of the solar atmosphere above active region AR 10923, observed on 2006 Nov 10, as deduced from multi-wavelength studies including combined microwave observations from the Very Large Array (VLA) and the Owens Valley Solar Array (OVSA). The VLA observations provide excellent image quality at a few widely spaced frequencies while the OVSA data provide information at many intermediate frequencies to fill in the spectral coverage. In order to optimize the OVSA data for spectroscopic studies, the L1 method of self-calibration was implemented at this observatory, producing the best single frequency maps produced to date. Images at the 25 distinct, available frequencies are used to provide spatially resolved spectra along many lines of sight in the active region, from which microwave spectral diagnostics are obtained for deducing two-dimensional maps of temperature, magnetic field strength, and column density. The derived quantities are compared with multi-wavelength observations from SoHO and Hinode spacecraft, and with a standard potential magnetic field extrapolation. It is found that a two component temperature model is required to fit the data, in which a hot (> 2 MK) lower corona above the strong-field plage and sunspot regions (emitting via the gyroresonance process) is overlaid with somewhat cooler (˜ 1 MK) coronal loops that partially absorb the gyroresonance emission through the free-free (Bremsstrahlung) process. It is also found that the potential magnetic field extrapolation model can quantitatively account for the observed gyroresonance emission over most of the active region, but in a few areas a higher

  9. Amygdala atrophy affects emotion-related activity in face-responsive regions in frontotemporal degeneration.

    PubMed

    De Winter, François-Laurent; Van den Stock, Jan; de Gelder, Beatrice; Peeters, Ronald; Jastorff, Jan; Sunaert, Stefan; Vanduffel, Wim; Vandenberghe, Rik; Vandenbulcke, Mathieu

    2016-09-01

    In the healthy brain, modulatory influences from the amygdala commonly explain enhanced activation in face-responsive areas by emotional facial expressions relative to neutral expressions. In the behavioral variant frontotemporal dementia (bvFTD) facial emotion recognition is impaired and has been associated with atrophy of the amygdala. By combining structural and functional MRI in 19 patients with bvFTD and 20 controls we investigated the neural effects of emotion in face-responsive cortex and its relationship with amygdalar gray matter (GM) volume in neurodegeneration. Voxel-based morphometry revealed decreased GM volume in anterior medio-temporal regions including amygdala in patients compared to controls. During fMRI, we presented dynamic facial expressions (fear and chewing) and their spatiotemporally scrambled versions. We found enhanced activation for fearful compared to neutral faces in ventral temporal cortex and superior temporal sulcus in controls, but not in patients. In the bvFTD group left amygdalar GM volume correlated positively with emotion-related activity in left fusiform face area (FFA). This correlation was amygdala-specific and driven by GM in superficial and basolateral (BLA) subnuclei, consistent with reported amygdalar-cortical networks. The data suggests that anterior medio-temporal atrophy in bvFTD affects emotion processing in distant posterior areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Telomere maintenance through recruitment of internal genomic regions.

    PubMed

    Seo, Beomseok; Kim, Chuna; Hills, Mark; Sung, Sanghyun; Kim, Hyesook; Kim, Eunkyeong; Lim, Daisy S; Oh, Hyun-Seok; Choi, Rachael Mi Jung; Chun, Jongsik; Shim, Jaegal; Lee, Junho

    2015-09-18

    Cells surviving crisis are often tumorigenic and their telomeres are commonly maintained through the reactivation of telomerase. However, surviving cells occasionally activate a recombination-based mechanism called alternative lengthening of telomeres (ALT). Here we establish stably maintained survivors in telomerase-deleted Caenorhabditis elegans that escape from sterility by activating ALT. ALT survivors trans-duplicate an internal genomic region, which is already cis-duplicated to chromosome ends, across the telomeres of all chromosomes. These 'Template for ALT' (TALT) regions consist of a block of genomic DNA flanked by telomere-like sequences, and are different between two genetic background. We establish a model that an ancestral duplication of a donor TALT region to a proximal telomere region forms a genomic reservoir ready to be incorporated into telomeres on ALT activation.

  11. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, D.G.; Weinberger, D.R.; Jones, D.W.

    1991-07-01

    To explore the role of monoamines on cerebral function during specific prefrontal cognitive activation, we conducted a double-blind placebo-controlled crossover study of the effects of 0.25 mg/kg oral dextroamphetamine on regional cerebral blood flow (rCBF) as determined by 133Xe dynamic single-photon emission-computed tomography (SPECT) during performance of the Wisconsin Card Sorting Test (WCST) and a sensorimotor control task. Ten patients with chronic schizophrenia who had been stabilized for at least 6 weeks on 0.4 mg/kg haloperidol participated. Amphetamine produced a modest, nonsignificant, task-independent, global reduction in rCBF. However, the effect of amphetamine on task-dependent activation of rCBF (i.e., WCST minusmore » control task) was striking. Whereas on placebo no significant activation of rCBF was seen during the WCST compared with the control task, on amphetamine significant activation of the left dorsolateral prefrontal cortex (DLPFC) occurred (p = 0.0006). Both the mean number of correct responses and the mean conceptual level increased (p less than 0.05) with amphetamine relative to placebo. In addition, with amphetamine, but not with placebo, a significant correlation (p = -0.71; p less than 0.05) emerged between activation of DLPFC rCBF and performance of the WCST task. These findings are consistent with animal models in which mesocortical catecholaminergic activity modulates and enhances the signal-to-noise ratio of evoked cortical activity.« less

  12. Inferring consistent functional interaction patterns from natural stimulus FMRI data

    PubMed Central

    Sun, Jiehuan; Hu, Xintao; Huang, Xiu; Liu, Yang; Li, Kaiming; Li, Xiang; Han, Junwei; Guo, Lei

    2014-01-01

    There has been increasing interest in how the human brain responds to natural stimulus such as video watching in the neuroimaging field. Along this direction, this paper presents our effort in inferring consistent and reproducible functional interaction patterns under natural stimulus of video watching among known functional brain regions identified by task-based fMRI. Then, we applied and compared four statistical approaches, including Bayesian network modeling with searching algorithms: greedy equivalence search (GES), Peter and Clark (PC) analysis, independent multiple greedy equivalence search (IMaGES), and the commonly used Granger causality analysis (GCA), to infer consistent and reproducible functional interaction patterns among these brain regions. It is interesting that a number of reliable and consistent functional interaction patterns were identified by the GES, PC and IMaGES algorithms in different participating subjects when they watched multiple video shots of the same semantic category. These interaction patterns are meaningful given current neuroscience knowledge and are reasonably reproducible across different brains and video shots. In particular, these consistent functional interaction patterns are supported by structural connections derived from diffusion tensor imaging (DTI) data, suggesting the structural underpinnings of consistent functional interactions. Our work demonstrates that specific consistent patterns of functional interactions among relevant brain regions might reflect the brain's fundamental mechanisms of online processing and comprehension of video messages. PMID:22440644

  13. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.; Qiu, J.; Lindsey, C.

    2017-10-01

    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  14. Frequent ultraviolet brightenings observed in a solar active region with solar maximum mission

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Toomre, J.; Gebbie, K. B.

    1984-01-01

    Observations of the temporal behavior of ultraviolet emission from bright points within an active region of the sun are reported. Frequent and rapid brightenings in Si IV and O IV line emission are seen. The observations suggest that intermittent heating events of modest amplitude are occurring at many sites within an active region. By selecting the brightest site at any given time within an active region and then sampling its behavior in detail within a 120 s interval, it is found that about two-thirds of the samples show variations of the Si IV line intensity. The brightenings typically last about 40-60 s; intensity increases of about 20-100 percent are frequently observed. The results suggest that heating due to magnetic field reconnection within an active region is proceeding almost stochastically. Events involving only a modest release of energy occur the most frequently.

  15. Observations of solar active regions and solar flares by OSO-7

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1977-01-01

    Contributions made to the physics of coronal active regions and flares by the extreme ultraviolet and soft X-ray spectroheliograph on OSO-7 were discussed. Coronal structures above active regions were discussed from the point of view of their morphology and physical properties, including their relationship to photospheric and coronal magnetic fields. OSO-7 also recorded flares with sufficient spatial and temporal resolution to record, in some instances for the first time, the extreme ultraviolet and soft X-ray emission associated with such chromospheric phenomena as filament activation and the emergence of satellite sunspots. Flare phenomena were reviewed in terms of the several stages of evolution typically associated with the event.

  16. UVCS Observations of Slow Plasma Flow in the Corona Above Active Regions

    NASA Astrophysics Data System (ADS)

    Woo, R.; Habbal, S. R.

    2005-05-01

    The elusive source of slow solar wind has been the subject of ongoing discussion and debate. Observations of solar wind speed near the Earth orbit, first with IPS (interplanetary scintillation) and later with Ulysses in situ measurements, have suggested that some slow solar wind may be associated with active regions (Kojima & Kakinuma 1987; Woo, Habbal & Feldman 2004). The ability of SOHO UVCS Doppler dimming measurements to provide estimates of solar wind speed in the corona (Kohl et al. 1995) has made it possible to investigate the distribution of flow near the Sun. In this paper, we will present results confirming that active regions are one of the sources of slow wind. Insight into the relationship between coronal streamers, active regions and plasma flow will also be discussed.

  17. A Combined Study of Photospheric Magnetic and Current Helicities and Subsurface Kinetic Helicities of Solar Active Regions during 2006-2012

    NASA Astrophysics Data System (ADS)

    Seligman, Darryl; Petrie, G.; Komm, R.

    2014-01-01

    We compare the average photospheric current helicity H_c, photospheric twist parameter α (a well-known proxy for the full relative magnetic helicity), and subsurface kinetic helicity K_h for 128 active regions observed between 2006-2012. We use 1436 Hinode photospheric vector magnetograms and subsurface fluid velocity data from GONG Dopplergrams. We find a significant hemispheric bias in all three parameters. The K_h parameter is preferentially positive/negative in the southern/northern hemisphere. The H_c and α parameters have the same bias for strong fields |{B}|>1000 G). We examine the temporal variability of each parameter for each active region and identify a significant subset of regions whose three helicity parameters all exhibit clear increasing or decreasing trends. The temporal profiles of these regions have the same bias: positive/negative helicity in the northern/southern hemisphere. The results are consistent with Longcope et al.'s Σ-effect. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the NSF REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  18. Oscillations In Emerging Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.; Muglach, K.

    2017-12-01

    Active regions (ARs) on the Sun are directly related to space weather phenomena like flares and coronal mass ejections (CMEs). It is well known that both can have impacts not only on Earth, but also on nearby orbits and beyond. Predicting when and where active regions will emerge at the surface of the Sun would strengthen space weather forecasting abilities. In this study, data from the Solar Dynamics Observatory (SDO) are used to produce images of the magnetic field and Doppler Velocity at the photosphere of the Sun. This data is used to study the emergence of ARs at the surface of the Sun. Since global oscillations that travel through the solar interior are modified by the magnetic field, the oscillation patterns in and around ARs should be different from the oscillation patterns in the quiet, non-active Sun. Thus, a change in oscillation patterns can be determined before an AR is visible at the Sun's surface. Using Fast Fourier Transforms, the oscillation patterns can be calculated from the SDO Dopplergrams. Magnetograms provide the time when the magnetic field of the active region reaches the solar surface. Thus, both the calculated oscillation frequencies and power can be compared to the information of an AR's emergence in the magnetograms. In particular, it can be determined if there is any time delay between the change of oscillation power and magnetic field emergence. For this particular AR studied, it was found that the 5-min oscillation power starts to decrease at the time the AR emerges. The 3-min oscillation power also decreases first but increases again a few hours after the start of the emergence. This observation is probably due to 3-min oscillation power halos around the AR and has been observed before. A few hours before the AR starts to emerge, an increase was found in both 5-min and 3-min oscillation power. This effect is promising, however, it has not been observed before and has to be verified with additional observations.

  19. Internal Consistency of the NVAP Water Vapor Dataset

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The NVAP (NASA Water Vapor Project) dataset is a global dataset at 1 x 1 degree spatial resolution consisting of daily, pentad, and monthly atmospheric precipitable water (PW) products. The analysis blends measurements from the Television and Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS), the Special Sensor Microwave/Imager (SSM/I), and radiosonde observations into a daily collage of PW. The original dataset consisted of five years of data from 1988 to 1992. Recent updates have added three additional years (1993-1995) and incorporated procedural and algorithm changes from the original methodology. Since each of the PW sources (TOVS, SSM/I, and radiosonde) do not provide global coverage, each of these sources compliment one another by providing spatial coverage over regions and during times where the other is not available. For this type of spatial and temporal blending to be successful, each of the source components should have similar or compatible accuracies. If this is not the case, regional and time varying biases may be manifested in the NVAP dataset. This study examines the consistency of the NVAP source data by comparing daily collocated TOVS and SSM/I PW retrievals with collocated radiosonde PW observations. The daily PW intercomparisons are performed over the time period of the dataset and for various regions.

  20. Spontaneous cortical activity alternates between motifs defined by regional axonal projections

    PubMed Central

    Mohajerani, Majid H.; Chan, Allen W.; Mohsenvand, Mostafa; LeDue, Jeffrey; Liu, Rui; McVea, David A.; Boyd, Jamie D.; Wang, Yu Tian; Reimers, Mark; Murphy, Timothy H.

    2014-01-01

    In lightly anaesthetized or awake adult mice using millisecond timescale voltage sensitive dye imaging, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing including vision, audition, and touch. Similar cortical networks were found with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality specific sources such as primary sensory areas, and a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area, and a secondary anterior medial sink within the cingulate/secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range mono-synaptic connections between cortical regions. Maps of intracortical mono-synaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity. PMID:23974708

  1. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox.

    PubMed

    Yamanishi, Mamoru; Ito, Yoichiro; Kintaka, Reiko; Imamura, Chie; Katahira, Satoshi; Ikeuchi, Akinori; Moriya, Hisao; Matsuyama, Takashi

    2013-06-21

    The terminator regions of eukaryotes encode functional elements in the 3' untranslated region (3'-UTR) that influence the 3'-end processing of mRNA, mRNA stability, and translational efficiency, which can modulate protein production. However, the contribution of these terminator regions to gene expression remains unclear, and therefore their utilization in metabolic engineering or synthetic genetic circuits has been limited. Here, we comprehensively evaluated the activity of 5302 terminator regions from a total of 5880 genes in the budding yeast Saccharomyces cerevisiae by inserting each terminator region downstream of the P TDH3 - green fluorescent protein (GFP) reporter gene and measuring the fluorescent intensity of GFP. Terminator region activities relative to that of the PGK1 standard terminator ranged from 0.036 to 2.52, with a mean of 0.87. We thus could isolate the most and least active terminator regions. The activities of the terminator regions showed a positive correlation with mRNA abundance, indicating that the terminator region is a determinant of mRNA abundance. The least active terminator regions tended to encode longer 3'-UTRs, suggesting the existence of active degradation mechanisms for those mRNAs. The terminator regions of ribosomal protein genes tended to be the most active, suggesting the existence of a common regulator of those genes. The ″terminatome″ (the genome-wide set of terminator regions) thus not only provides valuable information to understand the modulatory roles of terminator regions on gene expression but also serves as a useful toolbox for the development of metabolically and genetically engineered yeast.

  2. Australia's regional innovation systems: inter-industry interaction in innovative activities in three Australian territories

    PubMed Central

    Schütz, Marlies H.

    2017-01-01

    ABSTRACT Regional specifics reveal in differences in economic activity and structure, the institutional, socio-economic and cultural environment and not least in the capability of regions to create new knowledge and to generate innovations. Focusing on the regional level, this paper for three Australian territories (New South Wales, Victoria and Queensland) explores patterns of innovative activities in their private business sectors. Furthermore, these patterns are compared to specifics of each region's economic structure. We make use of input–output-based innovation flow networks, which are directed and weighted instead of binary. The value added of the proposed analysis is that we are able to trace a variety of different aspects related to the structure of innovative activities for each territory. It gets evident that mostly innovative activities in each territory are not strong in ‘niche’ branches but in fields of intense economic activity, signalising the high path-dependency of innovative activities in a specific geographical environment. PMID:29097849

  3. Australia's regional innovation systems: inter-industry interaction in innovative activities in three Australian territories.

    PubMed

    Schütz, Marlies H

    2017-07-03

    Regional specifics reveal in differences in economic activity and structure, the institutional, socio-economic and cultural environment and not least in the capability of regions to create new knowledge and to generate innovations. Focusing on the regional level, this paper for three Australian territories (New South Wales, Victoria and Queensland) explores patterns of innovative activities in their private business sectors. Furthermore, these patterns are compared to specifics of each region's economic structure. We make use of input-output-based innovation flow networks, which are directed and weighted instead of binary. The value added of the proposed analysis is that we are able to trace a variety of different aspects related to the structure of innovative activities for each territory. It gets evident that mostly innovative activities in each territory are not strong in 'niche' branches but in fields of intense economic activity, signalising the high path-dependency of innovative activities in a specific geographical environment.

  4. Potentially active regions on Titan: New processing of Cassini/VIMS data

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Hirtzig, M.; Bratsolis, E.; Bampasidis, G.; Coustenis, A.; Kyriakopoulos, K.; Le Mouélic, S.; Stephan, K.; Jaumann, R.; Drossart, P.; Sotin, C.; St. Seymour, K.; Moussas, X.

    2012-04-01

    The Cassini Visual and Infrared Mapping Spectrometer (VIMS) obtained data of Titan's surface from flybys performed during the last seven years. In the 0.8-5.2 µm range, these spectro-imaging data showed that the surface consists of a multivariable geological terrain hosting complex geological processes. The data from the seven narrow methane spectral "windows" centered at 0.93, 1.08, 1.27, 1.59, 2.03, 2.8 and 5 µm provide some information on the lower atmospheric context and the surface parameters that we want to determine. Atmospheric scattering and absorption need to be clearly evaluated before we can extract the surface properties. We apply here a statistical method [1, 2] and a radiative transfer method [3, 1] on three potentially "active" regions on Titan, i.e. regions possibly subject to change over time (in brightness and/or in color etc) [4]: Tui Regio (20°S, 130°W) [5], a 1,500-km long flow-like figure, Hotei Regio (26°S, 78°W) [6], a 700-km wide volcanic-like terrain, and Sotra Facula (15°S, 42°W) [7], a 235-km in diameter area. With our method of Principal Component Analysis (PCA) we have managed to isolate specific regions of distinct and diverse chemical composition. We have tested this method on the previously studied Sinlap crater [8], delimitating compositional heterogeneous areas compatible with the published conclusions by Le Mouélic et al. (2008). Our follow-up method focuses on retrieving the surface albedo of the three areas and of the surrounding terrains with different spectral response by applying a radiative transfer (RT) code. We have used as input most of the Cassini HASI and DISR measurements, as well as new methane absorption coefficients [9], which are important to evaluate the atmospheric contribution and to allow us to better constrain the real surface alterations, by comparing the spectra of these regions. By superposing these results onto the PCA maps, we can correlate composition and morphology. As a test case, we used

  5. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  6. A TEST OF THE FORMATION MECHANISM OF THE BROAD LINE REGION IN ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerny, Bozena; Du, Pu; Wang, Jian-Min

    2016-11-20

    The origin of the broad line region (BLR) in active galaxies remains unknown. It seems to be related to the underlying accretion disk, but an efficient mechanism is required to raise the material from the disk surface without giving signatures of the outflow that are too strong in the case of the low ionization lines. We discuss in detail two proposed mechanisms: (1) radiation pressure acting on dust in the disk atmosphere creating a failed wind and (2) the gravitational instability of the underlying disk. We compare the predicted location of the inner radius of the BLR in those two scenarios withmore » the observed position obtained from the reverberation studies of several active galaxies. The failed dusty outflow model well represents the observational data while the predictions of the self-gravitational instability are not consistent with observations. The issue that remains is why do we not see any imprints of the underlying disk instability in the BLR properties.« less

  7. Identification of a Region in the Stalk Domain of the Nipah Virus Receptor Binding Protein That Is Critical for Fusion Activation

    PubMed Central

    Talekar, Aparna; DeVito, Ilaria; Salah, Zuhair; Palmer, Samantha G.; Chattopadhyay, Anasuya; Rose, John K.; Xu, Rui; Wilson, Ian A.; Moscona, Anne

    2013-01-01

    Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal. PMID:23903846

  8. Caffeine restores regional brain activation in acute hypoglycaemia in healthy volunteers.

    PubMed

    Rosenthal, M J; Smith, D; Yaguez, L; Giampietro, V; Kerr, D; Bullmore, E; Brammer, M; Williams, S C R; Amiel, S A

    2007-07-01

    Caffeine enhances counterregulatory responses to acute hypoglycaemia. Our aim was to explore its effects on cortical function, which are not known at present. Regional brain activation during performance of the four-choice reaction time (4CRT) at different levels of complexity was measured using functional magnetic resonance imaging (fMRI) at euglycaemia (5 mmol/l) and hypoglycaemia (2.6 mmol/l) in the presence and absence of caffeine in six healthy right-handed men. During hypoglycaemia, caffeine enhanced adrenaline responses to hypoglycaemia (2.5 +/- 0.7 nmol/l to 4.0 +/- 1.0 nmol/l, P = 0.01) and restored the brain activation response to the non-cued 4CRT, the linear increases in regional brain activation associated with increased task complexity and the ability to respond to a cue that were lost in hypoglycaemia alone. Caffeine can sustain regional brain activation patterns lost in acute hypoglycaemia, with some restoration of cortical function and enhanced adrenaline responsiveness. A methodology has been established that may help in the development of therapies to protect against severe hypoglycaemia in insulin therapy for patients with diabetes and problematic hypoglycaemia.

  9. Urban, Rural, and Regional Variations in Physical Activity

    ERIC Educational Resources Information Center

    Martin, Sarah Levin; Kirkner, Gregory J.; Mayo, Kelly; Matthews, Charles E.; Durstine, Larry; Hebert, James R.

    2005-01-01

    Purpose: There is some speculation about geographic differences in physical activity (PA) levels. We examined the prevalence of physical inactivity (PIA) and whether US citizens met the recommended levels of PA across the United States. In addition, the association between PIA/PA and degree of urbanization in the 4 main US regions (Northeast,…

  10. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis; Georgoulis, Manolis K.; Park, Sung-Hong; Guerra, Jordan A.

    2017-11-01

    We explore the association of non-neutralized currents with solar flare occurrence in a sizable sample of observations, aiming to show the potential of such currents in solar flare prediction. We used the high-quality vector magnetograms that are regularly produced by the Helioseismic Magnetic Imager, and more specifically, the Space weather HMI Active Region Patches (SHARP). Through a newly established method that incorporates detailed error analysis, we calculated the non-neutralized currents contained in active regions (AR). Two predictors were produced, namely the total and the maximum unsigned non-neutralized current. Both were tested in AR time-series and a representative sample of point-in-time observations during the interval 2012 - 2016. The average values of non-neutralized currents in flaring active regions are higher by more than an order of magnitude than in non-flaring regions and correlate very well with the corresponding flare index. The temporal evolution of these parameters appears to be connected to physical processes, such as flux emergence and/or magnetic polarity inversion line formation, that are associated with increased solar flare activity. Using Bayesian inference of flaring probabilities, we show that the total unsigned non-neutralized current significantly outperforms the total unsigned magnetic flux and other well-established current-related predictors. It therefore shows good prospects for inclusion in an operational flare-forecasting service. We plan to use the new predictor in the framework of the FLARECAST project along with other highly performing predictors.

  11. Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome

    PubMed Central

    Stolc, Viktor; Deng, Wei; He, Hang; Korbel, Jan; Chen, Xuewei; Tongprasit, Waraporn; Ronald, Pamela; Chen, Runsheng; Gerstein, Mark; Wang Deng, Xing

    2007-01-01

    Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome. PMID:17372628

  12. CO2, NOx, and particle emissions from aircraft and support activities at a regional airport.

    PubMed

    Klapmeyer, Michael E; Marr, Linsey C

    2012-10-16

    The goal of this research was to quantify emissions of carbon dioxide (CO(2)), nitrogen oxides (NO(x)), particle number, and black carbon (BC) from in-use aircraft and related activity at a regional airport. Pollutant concentrations were measured adjacent to the airfield and passenger terminal at the Roanoke Regional Airport in Virginia. Observed NO(x) emission indices (EIs) for jet-powered, commuter aircraft were generally lower than those contained in the International Civil Aviation Organization databank for both taxi (same as idle) and takeoff engine settings. NO(x) EIs ranged from 1.9 to 3.7 g (kg fuel)(-1) across five types of aircraft during taxiing, whereas EIs were consistently higher, 8.8-20.6 g (kg fuel)(-1), during takeoff. Particle number EIs ranged from 1.4 × 10(16) to 7.1 × 10(16) (kg fuel)(-1) and were slightly higher in taxi mode than in takeoff mode for four of the five types of aircraft. Diurnal patterns in CO(2) and NO(x) concentrations were influenced mainly by atmospheric conditions, while patterns in particle number concentrations were attributable mainly to patterns in aircraft activity. CO(2) and NO(x) fluxes measured by eddy covariance were higher at the terminal than at the airfield and were lower than found in urban areas.

  13. X-ray and microwave observations of active regions

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Davis, J. M.; Kundu, M. R.; Velusamy, T.

    1983-01-01

    Coordinated high-resolution (1-3 arcsec) observations of two active solar regions (H 421 and H 419) on November 16, 1979, are reported: soft-X-ray filtergrams from a sounding rocket flight, VLA total-intensity and circular-polarization microwave (6-cm) radio maps, KPNO full-disk photospheric magnetograms, and BBSO H-alpha data. The images were converted to 4.8-arcsec/mm-scale transparencies and coaligned on the basis of sunspot positions for comparison. The two active regions are characterized in detail, and intensity, size, and polarization data for the brightest microwave components (BMC) are listed. It is found that 19 of the 32 BMC are farther than 5 arcsec from any sunspot, and that X-ray-emitting structures only rarely correspond to sunspots, or BMC. About one third of the BMC are located at the feet or legs of coronal loops smaller than about 50,000 km. The limitations implied by these obervations for proposed thermal-bremsstrahlung, thermal-gyro-resonance, and nonthermal microwave-emission mechanisms are discussed.

  14. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  15. Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions

    USGS Publications Warehouse

    Barbour, Andrew J.

    2015-01-01

    Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength

  16. Constraining the common properties of active region formation using the SDO/HEAR dataset

    NASA Astrophysics Data System (ADS)

    Schunker, H.; Braun, D. C.; Birch, A. C.

    2016-10-01

    Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which enable us to perform statistical analyses. We collated a uniform data set of emerging active regions (EARs) observed by the SDO/HMI instrument suitable for helioseismic analysis, where each active region can be observed up to 7 days before emergence. We call this dataset the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. We have used this dataset to to understand the nature of active region emergence. The latitudinally averaged line-of-sight magnetic field of all the EARs shows that the leading (trailing) polarity moves in a prograde (retrograde) direction with a speed of 110 ± 15 m/s (-60 ± 10 m/s) relative to the Carrington rotation rate in the first day after emergence. However, relative to the differential rotation of the surface plasma the East-West velocity is symmetric, with a mean of 90 ± 10 m/s. We have also compared the surface flows associated with the EARs at the time of emergence with surface flows from numerical simulations of flux emergence with different rise speeds. We found that the surface flows in simulations of emerging flux with a low rise speed of 70 m/s best match the observations.

  17. Towards standardization of 18F-FET PET imaging: do we need a consistent method of background activity assessment?

    PubMed

    Unterrainer, Marcus; Vettermann, Franziska; Brendel, Matthias; Holzgreve, Adrien; Lifschitz, Michael; Zähringer, Matthias; Suchorska, Bogdana; Wenter, Vera; Illigens, Ben M; Bartenstein, Peter; Albert, Nathalie L

    2017-12-01

    PET with O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) has reached increasing clinical significance for patients with brain neoplasms. For quantification of standard PET-derived parameters such as the tumor-to-background ratio, the background activity is assessed using a region of interest (ROI) or volume of interest (VOI) in unaffected brain tissue. However, there is no standardized approach regarding the assessment of the background reference. Therefore, we evaluated the intra- and inter-reader variability of commonly applied approaches for clinical 18 F-FET PET reading. The background activity of 20 18 F-FET PET scans was independently evaluated by 6 readers using a (i) simple 2D-ROI, (ii) spherical VOI with 3.0 cm diameter, and (iii) VOI consisting of crescent-shaped ROIs; each in the contralateral, non-affected hemisphere including white and gray matter in line with the European Association of Nuclear Medicine (EANM) and German guidelines. To assess intra-reader variability, each scan was evaluated 10 times by each reader. The coefficient of variation (CoV) was assessed for determination of intra- and inter-reader variability. In a second step, the best method was refined by instructions for a guided background activity assessment and validated by 10 further scans. Compared to the other approaches, the crescent-shaped VOIs revealed most stable results with the lowest intra-reader variabilities (median CoV 1.52%, spherical VOI 4.20%, 2D-ROI 3.69%; p < 0.001) and inter-reader variabilities (median CoV 2.14%, spherical VOI 4.02%, 2D-ROI 3.83%; p = 0.001). Using the guided background assessment, both intra-reader variabilities (median CoV 1.10%) and inter-reader variabilities (median CoV 1.19%) could be reduced even more. The commonly applied methods for background activity assessment show different variability which might hamper 18 F-FET PET quantification and comparability in multicenter settings. The proposed background activity assessment using a

  18. Ride-sharing activities in the Richmond regional planning district.

    DOT National Transportation Integrated Search

    1977-01-01

    This report gives the results of a survey made of industries in the Richmond Regional Planning District to determine the current and expected ride-sharing activities there and the type of information deemed most useful in planning ride-sharing progra...

  19. Spatial taxation effects on regional coal economic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.W.; Labys, W.C.

    1982-01-01

    Taxation effects on resource production, consumption and prices are seldom evaluated especially in the field of spatial commodity modeling. The most commonly employed linear programming model has fixed-point estimated demands and capacity constraints; hence it makes taxation effects difficult to be modeled. The second type of resource allocation model, the interregional input-output models does not include a direct and explicit price mechanism. Therefore, it is not suitable for analyzing taxation effects. The third type or spatial commodity model has been econometric in nature. While such an approach has a good deal of flexibility in modeling political and non-economic variables, itmore » treats taxation (or tariff) effects loosely using only dummy variables, and, in many cases, must sacrifice the consistency criterion important for spatial commodity modeling. This leaves model builders only one legitimate choice for analyzing taxation effects: the quadratic programming model which explicitly allows the interplay of regional demand and supply relations via a continuous spatial price constructed by the authors related to the regional demand for and supply of coal from Appalachian markets.« less

  20. Propagating wave in active region-loops, located over the solar disk observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Hou, Y. J.; Zhang, J.

    2018-03-01

    Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org

  1. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMaken, Tyler C.; Petrie, Gordon J. D., E-mail: tmcmaken@gmail.com, E-mail: gpetrie@noao.edu

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference ofmore » helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.« less

  2. Responses of Solar Irradiance and the Ionosphere to an Intense Activity Region

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2018-03-01

    Solar rotation (SR) variation dominates solar extremely ultraviolet (EUV) changes on the timescale of days. The F10.7 index is usually used as an indicator for solar EUV. The SR variation of F10.7 significantly enhanced during the 2008th-2009th Carrington rotations (CRs) owing to an intense active region; F10.7 increased about 180 units during that SR period. That was the most prominent SR variation of F10.7 during solar cycle 23. In this paper, global electron content (GEC) is used to investigate ionospheric response to that strong variation of solar irradiance indicated by F10.7. The variation of GEC with F10.7 was anomalous (GEC-F10.7 slope significantly decreased) during the 2008th-2009th CRs; however, GEC versus EUV variation during that period was consistent with that during adjacent time intervals when using Solar Heliospheric Observatory/Solar EUV Monitor 26-34 nm EUV measurements. The reason is that F10.7 response to that intense active region was much stronger than EUV response; thus, the EUV-F10.7 slope decreased. We confirmed decreased EUV-F10.7 slope during the 2008th-2009th CRs for different wavelengths within 27-120 nm using Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Solar EUV Experiment high spectral resolution EUV measurements. And on the basis of Solar Heliospheric Observatory/Solar EUV Monitor EUV measurements during solar cycle 23, we further presented that EUV-F10.7 slope statistically tends to decrease when the SR variation of F10.7 significantly enhances. Moreover, we found that ionospheric time lag effect to EUV is exaggerated when using F10.7, owing to the time lag effect of EUV to F10.7.

  3. Regional assessment of energy-producing metabolic activity in the endothelium of donor corneas.

    PubMed

    Greiner, Mark A; Burckart, Kimberlee A; Wagoner, Michael D; Schmidt, Gregory A; Reed, Cynthia R; Liaboe, Chase A; Flamme-Wiese, Miles J; Zimmerman, M Bridget; Mullins, Robert F; Kardon, Randy H; Goins, Kenneth M; Aldrich, Benjamin T

    2015-05-01

    We characterized mitochondrial respiration and glycolysis activity of human corneal endothelium, and compared metabolic activity between central and peripheral regions. Endothelial keratoplasty-suitable corneas were obtained from donors aged 50 to 75 years. The endothelium-Descemet membrane complex (EDM) was isolated, and 3-mm punches were obtained from central and peripheral regions. Endothelium-Descemet membrane punches were assayed for mitochondrial respiration (oxygen consumption) and glycolysis (extracellular acidification) using an extracellular flux analyzer. Enzymatic (citrate synthase, glucose hexokinase) and mitochondrial density (MitoTracker) assays also were performed. Ten corneas were analyzed per assay. Metabolic activity for mitochondrial respiration and glycolysis showed expected changes to assay compounds (P < 0.01, all pairwise comparisons). Basal mitochondrial respiration and glycolysis activity did not differ between regions (P > 0.99). Similarly, central versus peripheral activity after assay compound treatment showed no significant differences (P > 0.99, all time points). The intracorneal coefficient of variation for basal readings between two and four peripheral punches was 18.5% of the mean. Although peripheral samples displayed greater enzymatic activity than central samples (P < 0.05), similar to extracellular flux results, mitochondrial density did not differ between regions (P = 0.78). Extracellular flux analysis of oxygen and pH is a valid technique for characterizing metabolic activity of human corneal endothelium. This technique demonstrates high reproducibility, allows quantification of metabolic parameters using small quantities of live cells, and permits estimation of overall metabolic output. Neither oxygen consumption nor extracellular acidification differed between central and peripheral regions of transplant suitable corneas in this series. Our results show that endothelial cell health can be quantified biochemically in

  4. Spatial taxation effects on regional coal economic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.W.; Labys, W.C.

    1980-01-01

    Spatial taxation effects related to economic activities at the regional level can be directly evaluated using the Kuhn-Tucker system of equations based on a commodity model. In particular, the impacts of a specific tax are predictable within a given set of trade patterns. However, the impacts of an ad valorem tax are difficult to evaluate analytically, mainly because of nonlinearity in the associated response surface. The aspect of spatial-taxation analysis of present relevance for the coal industry related to coal policy, i.e., the share of tax burdens coal producers and consumers are able to bear. Each supplier in a givenmore » market boundary shares the same amount of tax burden, which may eliminate the weakest coal producers, i.e., Southern West Virginia coal mines. The same analogy also applies to the weakest demand region, i.e., Illinois, Wisconsin, and Minnesota utilities. Consequently, a proper policy requires that some preferential tax treatment be given to these regions. Since the taxation effects depend critically on the trade patterns and market boundaries, the successful policy application of present regional energy models will not be possible unless effects of this type are included in the evaluation.« less

  5. Chimeras of the integrin beta subunit mid-region reveal regions required for heterodimer formation and for activation.

    PubMed

    Hyland, R H; Douglass, W A; Tan, S M; Law, S K

    2001-01-01

    A central region of the beta2 integrin subunit, RN (residues D300 to C459), was replaced by the equivalent sequences from beta1 and beta7 to give the chimeras beta2RN1 and beta2RN7. Whilst the former construct failed to form heterodimer at the cell surface with alphaL, the later of these could be expressed together with the alphaL subunit to form a variant LFA-1. Based on recent modelling work, the RN region consists of two parts, one is the C-terminal end of the putative A-domain (RB, residues D300 to A359), and the other the mid-region (BN, residues Y360 to C459). Chimeras exchanging the two component regions were made. Of the four resultant chimeras, only the beta2RB1 chimera failed to support LFA-1 expression. Thus the beta1 specific residues of this region affect the interaction with the alphaL subunit. Whereas the alphaL/beta2RB7 LFA-1 variant is wildtype like with respect to ICAM-1 adhesion, the alphaLbeta2BN1 and alphaLbeta2BN7, as well as the alphaLbeta2RN7, variants are more adhesive than the wildtype. These results suggest that an authentic beta2 mid-region is, in part, required for maintaining the LFA-1 in a resting state.

  6. A model to calculate consistent atmospheric emission projections and its application to Spain

    NASA Astrophysics Data System (ADS)

    Lumbreras, Julio; Borge, Rafael; de Andrés, Juan Manuel; Rodríguez, Encarnación

    Global warming and air quality are headline environmental issues of our time and policy must preempt negative international effects with forward-looking strategies. As part of the revision of the European National Emission Ceilings Directive, atmospheric emission projections for European Union countries are being calculated. These projections are useful to drive European air quality analyses and to support wide-scale decision-making. However, when evaluating specific policies and measures at sectoral level, a more detailed approach is needed. This paper presents an original methodology to evaluate emission projections. Emission projections are calculated for each emitting activity that has emissions under three scenarios: without measures (business as usual), with measures (baseline) and with additional measures (target). The methodology developed allows the estimation of highly disaggregated multi-pollutant, consistent emissions for a whole country or region. In order to assure consistency with past emissions included in atmospheric emission inventories and coherence among the individual activities, the consistent emission projection (CEP) model incorporates harmonization and integration criteria as well as quality assurance/quality check (QA/QC) procedures. This study includes a sensitivity analysis as a first approach to uncertainty evaluation. The aim of the model presented in this contribution is to support decision-making process through the assessment of future emission scenarios taking into account the effect of different detailed technical and non-technical measures and it may also constitute the basis for air quality modelling. The system is designed to produce the information and formats related to international reporting requirements and it allows performing a comparison of national results with lower resolution models such as RAINS/GAINS. The methodology has been successfully applied and tested to evaluate Spanish emission projections up to 2020 for 26

  7. A Correlation Between Length of Strong-Shear Neutral Lines and Total X-Ray Brightness in Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.

    1997-01-01

    From a sample of 7 MSFC vector magnetograms,of active regions and 17 Yohkoh SXT soft X-ray images of these active regions, we have found that the total x-ray brightness of an entire active region is correlated with the total length of neutral lines on which the magnetic field is both strong (less than 250 G) and strongly sheared (shear angle greater than 75 deg) in the same active region. This correlation, if not fortuitous, is additional evidence of the importance of strong-shear strong-field neutral lines to strong heating in active regions.

  8. Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition.

    PubMed

    Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio

    2018-04-24

    Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.

  9. Simulating flaring events in complex active regions driven by observed magnetograms

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M. K.

    2011-05-01

    Context. We interpret solar flares as events originating in active regions that have reached the self organized critical state, by using a refined cellular automaton model with initial conditions derived from observations. Aims: We investigate whether the system, with its imposed physical elements, reaches a self organized critical state and whether well-known statistical properties of flares, such as scaling laws observed in the distribution functions of characteristic parameters, are reproduced after this state has been reached. Methods: To investigate whether the distribution functions of total energy, peak energy and event duration follow the expected scaling laws, we first applied a nonlinear force-free extrapolation that reconstructs the three-dimensional magnetic fields from two-dimensional vector magnetograms. We then locate magnetic discontinuities exceeding a threshold in the Laplacian of the magnetic field. These discontinuities are relaxed in local diffusion events, implemented in the form of cellular automaton evolution rules. Subsequent loading and relaxation steps lead the system to self organized criticality, after which the statistical properties of the simulated events are examined. Physical requirements, such as the divergence-free condition for the magnetic field vector, are approximately imposed on all elements of the model. Results: Our results show that self organized criticality is indeed reached when applying specific loading and relaxation rules. Power-law indices obtained from the distribution functions of the modeled flaring events are in good agreement with observations. Single power laws (peak and total flare energy) are obtained, as are power laws with exponential cutoff and double power laws (flare duration). The results are also compared with observational X-ray data from the GOES satellite for our active-region sample. Conclusions: We conclude that well-known statistical properties of flares are reproduced after the system has

  10. ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowingmore » a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity.« less

  11. ACTIVE REGION FILAMENTS MIGHT HARBOR WEAK MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A., E-mail: cdiazbas@iac.es

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between themmore » being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.« less

  12. A long-duration active region: Evolution and quadrature observations of ejective events

    NASA Astrophysics Data System (ADS)

    Cremades, H.; Mandrini, C. H.; Fuentes, M. C. López; Merenda, L.; Cabello, I.; López, F. M.; Poisson, M.

    2017-10-01

    Unknown aspects of the initiation, evolution, and associated phenomena of coronal mass ejections (CMEs), together with their capability of perturbing the fragile technological equilibrium on which nowadays society depends, turn them a compelling subject of study. While space weather forecasts are thus far not able to predict when and where in the Sun will the next CME take place, various CME triggering mechanisms have been proposed, without reaching consensus on which is the predominant one. To improve our knowledge in these respects, we investigate a long-duration active region throughout its life, from birth until decay along five solar rotations, in connection with its production of ejective events. We benefit from the wealth of solar remote-sensing data with improved temporal, spatial, and spectral resolution provided by the ground-breaking space missions STEREO, SDO, and SOHO. During the investigated time interval, which covers the months July - November 2010, the STEREO spacecraft were nearly 180 degrees apart, allowing for the uninterrupted tracking of the active region and its ensuing CMEs. The ejective aspect is examined from multi-viewpoint coronagraphic images, while the dynamics of the active region photospheric magnetic field are inspected by means of SDO/HMI data for specific subintervals of interest. The ultimate goal of this work in progress is to identify common patterns in the ejective aspect that can be connected with the active region characteristics.

  13. How Much Energy Can Be Stored in Solar Active Region Magnetic Fields?

    NASA Astrophysics Data System (ADS)

    Linker, J.; Downs, C.; Torok, T.; Titov, V. S.; Lionello, R.; Mikic, Z.; Riley, P.

    2015-12-01

    Major solar eruptions such as X-class flares and very fast coronal mass ejections usually originate in active regions on the Sun. The energy that powers these events is believed to be stored as free magnetic energy (energy above the potential field state) prior to eruption. While coronal magnetic fields are not in general force-free, active regions have very strong magnetic fields and at low coronal heights the plasma beta is therefore very small, making the field (in equilibrium) essentially force-free. The Aly-Sturrock theorem shows that the energy of a fully force-free field cannot exceed the energy of the so-called open field. If the theorem holds, this places an upper limit on the amount of free energy that can be stored: the maximum free energy (MFE) is the difference between the open field energy and the potential field energy of the active region. In thermodynamic MHD simulations of a major eruption (the July 14, 2000 'Bastille' day event) and a modest event (February 13, 2009, we have found that the MFE indeed bounds the energy stored prior to eruption. We compute the MFE for major eruptive events in cycles 23 and 24 to investigate the maximum amount of energy that can be stored in solar active regions.Research supported by AFOSR, NASA, and NSF.

  14. Activity concentrations of (137)Caesium and (210)Polonium in seafood from fishing regions of New Zealand and the dose assessment for seafood consumers.

    PubMed

    Pearson, Andrew J; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N

    2016-01-01

    A study was undertaken to determine activity concentrations for (134)Caesium, (137)Caesium and (210)Polonium in New Zealand seafood, and establish if activity concentrations varied with respect to species/ecological niche and coastal region. Thirty seafood samples were obtained from six fishing regions of New Zealand along with a further six samples of two commercially important species (hoki and arrow squid) with well-defined fisheries. (134)Caesium was not detected in any sample. (137)Caesium was detected in 47% of samples, predominantly in pelagic fish species, with most activities at a trace level. Detections of (137)Caesium were evenly distributed across all regions. Activity concentrations were consistent with those expected from the oceanic inventory representing residual fallout from global nuclear testing. (210)Polonium was detected above the minimum detectable concentration in 33 (92%) of the analysed samples. Molluscs displayed significantly elevated activity concentrations relative to all other species groups. No significant regional variation in activity concentrations were determined. Two dose assessment models for high seafood consumers were undertaken. Dose contribution from (137)Caesium was minimal and far below the dose exemption limit of 1 mSv/year. Exposure to (210)Polonium was significant in high seafood consumers at 0.44-0.77 mSv/year (5th-95th percentile). (137)Caesium is concluded to be a valuable sentinel radionuclide for monitoring anthropogenic releases, such as global fallout and reactor releases, in the marine environment. (210)Polonium is of importance as a natural radionuclide sentinel due to its high contribution to dietary committed dose in seafood consumers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. The cellodextrinase from Pseudomonas fluorescens subsp. cellulosa consists of multiple functional domains.

    PubMed Central

    Ferreira, L M; Hazlewood, G P; Barker, P J; Gilbert, H J

    1991-01-01

    A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA was constructed in pUC18 and Escherichia coli recombinants expressing 4-methylumbelliferyl beta-D-cellobioside-hydrolysing activity (MUCase) were isolated. Enzyme produced by MUCase-positive clones did not hydrolyse either cellobiose or cellotriose but converted cellotetraose into cellobiose and cleaved cellopentaose and cellohexaose, producing a mixture of cellobiose and cellotriose. There was no activity against CM-cellulose, insoluble cellulose or xylan. On this basis, the enzyme is identified as an endo-acting cellodextrinase and is designated cellodextrinase C (CELC). Nucleotide sequencing of the gene (celC) which directs the synthesis of CELC revealed an open reading frame of 2153 bp, encoding a protein of Mr 80,189. The deduced primary sequence of CELC was confirmed by the Mr of purified CELC (77,000) and by the experimentally determined N-terminus of the enzyme which was identical with residues 38-47 of the translated sequence. The N-terminal region of CELC showed strong homology with endoglucanase, xylanases and an arabinofuranosidase of Ps. fluorescens subsp. cellulosa; homologous sequences included highly conserved serine-rich regions. Full-length CELC bound tightly to crystalline cellulose. Truncated forms of celC from which the DNA sequence encoding the conserved domain had been deleted, directed the synthesis of a functional cellodextrinase that did not bind to crystalline cellulose. This is consistent with the N-terminal region of CELC comprising a non-catalytic cellulose-binding domain which is distinct from the catalytic domain. The role of the cellulose-binding region is discussed. Images Fig. 2. Fig. 6. PMID:1953673

  16. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.

    2015-12-20

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infermore » the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.« less

  17. Constraints on active region coronal heating properties from observations and modeling of chromospheric, transition region, and coronal emission

    NASA Astrophysics Data System (ADS)

    Testa, P.; Polito, V.; De Pontieu, B.; Carlsson, M.; Reale, F.; Allred, J. C.; Hansteen, V. H.

    2017-12-01

    We investigate coronal heating properties in active region cores in non-flaring conditions, using high spatial, spectral, and temporal resolution chromospheric/transition region/coronal observations coupled with detailed modeling. We will focus, in particular, on observations with the Interface Region Imaging Spectrograph (IRIS), joint with observations with Hinode (XRT and EIS) and SDO/AIA. We will discuss how these observations and models (1D HD and 3D MHD, with the RADYN and Bifrost codes) provide useful diagnostics of the coronal heating processes and mechanisms of energy transport.

  18. Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity.

    PubMed

    Adu-Gyamfi, Emmanuel; Kim, Lori S; Jardetzky, Theodore S; Lamb, Robert A

    2016-09-01

    Paramyxoviridae consist of a large family of enveloped, negative-sense, nonsegmented single-stranded RNA viruses that account for a significant number of human and animal diseases. The fusion process for nearly all paramyxoviruses involves the mixing of the host cell plasma membrane and the virus envelope in a pH-independent fashion. Fusion is orchestrated via the concerted action of two surface glycoproteins: an attachment protein called hemagglutinin-neuraminidase (HN [also called H or G depending on virus type and substrate]), which acts as a receptor binding protein, and a fusion (F) protein, which undergoes a major irreversible refolding process to merge the two membranes. Recent biochemical evidence suggests that receptor binding by HN is dispensable for cell-cell fusion. However, factors that influence the stability and/or conformation of the HN 4-helix bundle (4HB) stalk have not been studied. Here, we used oxidative cross-linking as well as functional assays to investigate the role of the structurally unresolved membrane-proximal stalk region (MPSR) (residues 37 to 58) of HN in the context of headless and full-length HN membrane fusion promotion. Our data suggest that the receptor binding head serves to stabilize the stalk to regulate fusion. Moreover, we found that the MPSR of HN modulates receptor binding and neuraminidase activity without a corresponding regulation of F triggering. Paramyxoviruses require two viral membrane glycoproteins, the attachment protein variously called HN, H, or G and the fusion protein (F), to couple host receptor recognition to virus-cell fusion. The HN protein has a globular head that is attached to a membrane-anchored flexible stalk of ∼80 residues and has three activities: receptor binding, neuraminidase, and fusion activation. In this report, we have identified the functional significance of the membrane-proximal stalk region (MPSR) (HN, residues 37 to 56) of the paramyxovirus parainfluenza virus (PIV5), a region of the

  19. RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr

    Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions ofmore » compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.« less

  20. The origin of consistent protein structure refinement from structural averaging.

    PubMed

    Park, Hahnbeom; DiMaio, Frank; Baker, David

    2015-06-02

    Recent studies have shown that explicit solvent molecular dynamics (MD) simulation followed by structural averaging can consistently improve protein structure models. We find that improvement upon averaging is not limited to explicit water MD simulation, as consistent improvements are also observed for more efficient implicit solvent MD or Monte Carlo minimization simulations. To determine the origin of these improvements, we examine the changes in model accuracy brought about by averaging at the individual residue level. We find that the improvement in model quality from averaging results from the superposition of two effects: a dampening of deviations from the correct structure in the least well modeled regions, and a reinforcement of consistent movements towards the correct structure in better modeled regions. These observations are consistent with an energy landscape model in which the magnitude of the energy gradient toward the native structure decreases with increasing distance from the native state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. UNDS Phase II Batch One: National Consistency Determination

    EPA Pesticide Factsheets

    Under the Coastal Zone Management Act, federal actions that are national or regional in scope must issue an accompanying National Consistency Determination, to ensure that the action does not overly conflict with state/territory-level coastal programs.

  2. Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps) - A multivariate modeling approach

    NASA Astrophysics Data System (ADS)

    Messenzehl, Karoline; Meyer, Hanna; Otto, Jan-Christoph; Hoffmann, Thomas; Dikau, Richard

    2017-06-01

    In mountain geosystems, rockfalls are among the most effective sediment transfer processes, reflected in the regional-scale distribution of talus slopes. However, the understanding of the key controlling factors seems to decrease with increasing spatial scale, due to emergent and complex system behavior and not least to recent methodological shortcomings in rockfall modeling research. In this study, we aim (i) to develop a new approach to identify major regional-scale rockfall controls and (ii) to quantify the relative importance of these controls. Using a talus slope inventory in the Turtmann Valley (Swiss Alps), we applied for the first time the decision-tree based random forest algorithm (RF) in combination with a principal component logistic regression (PCLR) to evaluate the spatial distribution of rockfall activity. This study presents new insights into the discussion on whether periglacial rockfall events are controlled more by topo-climatic, cryospheric, paraglacial or/and rock mechanical properties. Both models explain the spatial rockfall pattern very well, given the high areas under the Receiver Operating Characteristic (ROC) curves of > 0.83. Highest accuracy was obtained by the RF, correctly predicting 88% of the rockfall source areas. The RF appears to have a great potential in geomorphic research involving multicollinear data. The regional permafrost distribution, coupled to the bedrock curvature and valley topography, was detected to be the primary rockfall control. Rockfall source areas cluster within a low-radiation elevation belt (2900-3300 m a.s.l,) consistent with a permafrost probability of > 90%. The second most important factor is the time since deglaciation, reflected by the high abundance of rockfalls along recently deglaciated (< 100 years), north-facing slopes. However, our findings also indicate a strong rock mechanical control on the paraglacial rockfall activity, declining either exponentially or linearly since deglaciation. The study

  3. Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions

    USGS Publications Warehouse

    Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.

    1983-01-01

    The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.

  4. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    PubMed

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  5. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  6. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  7. 50 CFR 216.250 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Weapon Missions in the Gulf of Mexico § 216.250 Specified activity and specified geographical region. (a... within the Eglin Air Force Base Gulf Test and Training Range within the northern Gulf of Mexico. The...

  8. Specificity of regional brain activity in anxiety types during emotion processing.

    PubMed

    Engels, Anna S; Heller, Wendy; Mohanty, Aprajita; Herrington, John D; Banich, Marie T; Webb, Andrew G; Miller, Gregory A

    2007-05-01

    The present study tested the hypothesis that anxious apprehension involves more left- than right-hemisphere activity and that anxious arousal is associated with the opposite pattern. Behavioral and fMRI responses to threat stimuli in an emotional Stroop task were examined in nonpatient groups reporting anxious apprehension, anxious arousal, or neither. Reaction times were longer for negative than for neutral words. As predicted, brain activation distinguished anxious groups in a left inferior frontal region associated with speech production and in a right-hemisphere inferior temporal area. Addressing a second hypothesis about left-frontal involvement in emotion, distinct left frontal regions were associated with anxious apprehension versus processing of positive information. Results support the proposed distinction between the two types of anxiety and resolve an inconsistency about the role of left-frontal activation in emotion and psychopathology.

  9. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  10. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  11. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  12. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    NASA Astrophysics Data System (ADS)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  13. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  14. IFLA General Conference, 1987. Division of Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Six of the seven papers in this collection focus on regional library activities in Africa, Asia and Oceania, and Latin America and the Caribbean: (1) "Libraries and Information Services in a Changing World: The Challenges African Information Services Face at the End of the 1980s" (Dejen Abate, Ethiopia); (2) "The Computer and…

  15. Consistent transport coefficients in astrophysics

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Rovira, M.; Ferrofontan, C.

    1986-01-01

    A consistent theory for dealing with transport phenomena in stellar atmospheres starting with the kinetic equations and introducing three cases (LTE, partial LTE, and non-LTE) was developed. The consistent hydrodynamical equations were presented for partial-LTE, the transport coefficients defined, and a method shown to calculate them. The method is based on the numerical solution of kinetic equations considering Landau, Boltzmann, and Focker-Planck collision terms. Finally a set of results for the transport coefficients derived for a partially ionized hydrogen gas with radiation was shown, considering ionization and recombination as well as elastic collisions. The results obtained imply major changes is some types of theoretical model calculations and can resolve some important current problems concerning energy and mass balance in the solar atmosphere. It is shown that energy balance in the lower solar transition region can be fully explained by means of radiation losses and conductive flux.

  16. Magnetic flux transport of decaying active regions and enhanced magnetic network. [of solar supergranulation

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1991-01-01

    Several series of coordinated observations on decaying active regions and enhanced magnetic network regions on the sun were carried out jointly at Big Bear Solar Observatory and at the Huairou Solar Observing Station of the Bejing Astronomical Observatory in China. The magnetic field evolution in several regions was followed closely for three to seven days. The magnetic flux transport from the remnants of decayed active regions was studied, along with the evolution and lifetime of the magnetic network which defines the boundaries of supergranules. The magnetic flux transport in an enhanced network region was studied in detail and found to be negative. Also briefly described are some properties of moving magnetic features around a sunspot. Results of all of the above studies are presented.

  17. Tactile interactions activate mirror system regions in the human brain.

    PubMed

    McKyton, Ayelet

    2011-12-07

    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  18. Large-scale patterns formed by solar active regions during the ascending phase of cycle 21

    NASA Astrophysics Data System (ADS)

    Gaizauskas, V.; Harvey, K. L.; Harvey, J. W.; Zwaan, C.

    1983-02-01

    Synoptic maps of photospheric magnetic fields prepared at the Kitt Peak National Observatory are used in investigating large-scale patterns in the spatial and temporal distribution of solar active regions for 27 solar rotations between 1977 and 1979. The active regions are found to be distributed in 'complexes of activity' (Bumba and Howard, 1965). With the working definition of a complex of activity based on continuity and proximity of the constituent active regions, the phenomenology of complexes is explored. It is found that complexes of activity form within one month and that they are typically maintained for 3 to 6 solar rotations by fresh injections of magnetic flux. During the active lifetime of a complex of activity, the total magnetic flux in the complex remains steady to within a factor of 2. The magnetic polarities are closely balanced, and each complex rotates about the sun at its own special, constant rate. In certain cases, the complexes form two diverging branches.

  19. Effects of polio eradication activities on routine immunization: lessons from the 2013 outbreak response in Somali region of Ethiopia.

    PubMed

    Tafesse, Belete; Tekle, Ephrem; Wondwossen, Liya; Bogale, Mengistu; Fiona, Braka; Nsubuga, Peter; Tomas, Karengera; Kassahun, Aron; Kathleen, Gallagher; Teka, Aschalew

    2017-01-01

    Ethiopia experienced several WPV importations with a total of 10 WPV1 cases confirmed during the 2013 outbreak alone before it is closed in 2015. We evaluated supplemental immunization activities (SIAs), including lessons learned for their effect on the routine immunization program during the 2013 polio outbreak in Somali regional state. We used descriptive study to review documents and analyse routine health information system reports from the polio outbreak affected Somali regional state. All data and technical reports of the 15 rounds of polio SIAs from June 2013 through June 2015 and routine immunization coverages for DPT-Hib-HepB 3 and measles were observed. More than 93% of the SIAs were having administrative coverage above 95%. The trend of routine immunization for the two antigens, over the five years (2011 through 2015) did not show a consistent pattern against the number of SIAs. Documentations showed qualitative positive impacts of the SIAs strengthening the routine immunization during all courses of the campaigns. The quantitative impact of polio SIAs on routine immunization remained not so impressive in this study. Clear planning, data consistencies and completeness issues need to be cleared for the impact assessment in quantitative terms, in polio legacy planning as well as for the introduction of injectable polio vaccine through the routine immunization.

  20. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  1. Physical activity and its relationship with perceived environment among adults living in a region of low socioeconomic level.

    PubMed

    Florindo, Alex Antonio; Salvador, Emanuel Péricles; Reis, Rodrigo Siqueira

    2013-05-01

    The environment has a great influence on people's lifestyles and their capacity to choose healthy habits. The aim of this study was to investigate the association between perceived environment and physical activity among adults living in the city of São Paulo, Brazil. This was a cross-sectional population-based study conducted with 890 people age 18 years or over. Physical activity was measured through the International Physical Activity Questionnaire (IPAQ; long version) and perceived environment was evaluated using the Neighborhood Walkability Scale (NEWS) adapted. Poisson's regression was used for statistical analyses and prevalence ratios were calculated. The outcome variable was the attainment of at least 150 minutes per week of physical activities. The independent variables consisted of perceived environment variables and control variables (sex, age, schooling, time living in the home, and number of cars per household). The perceived environment variables that explained physical activity were: receiving invitations from friends for activities (P = .012), low environmental pollution scores (p trend = 0.030) and high general safety scores (P-trend = 0.039). These results suggest that physical activity promotion in regions like this should be envisaged as a complex phenomenon and investments in public safety, prevention and combating of environmental pollution and social support networks are needed.

  2. The linker region of AraC protein.

    PubMed Central

    Eustance, R J; Schleif, R F

    1996-01-01

    AraC protein, a transcriptional regulator of the L-arabinose operon in Escherichia coli, is dimeric. Each monomer consists of a domain for DNA binding plus transcription activation and a domain for dimerization plus arabinose binding. These are connected to one another by a linker region of at least 5 amino acids. Here we have addressed the question of whether any of the amino acids in the linker region play active, specific, and crucial structural roles or whether these amino acids merely serve as passive spacers between the functional domains. We found that all but one of the linker amino acids can be changed to other amino acids individually and in small groups without substantially affecting the ability of AraC protein to activate transcription when arabinose is present. When, however, the entire linker region is replaced with linker sequences from other proteins, the functioning of AraC is impaired. PMID:8955380

  3. 50 CFR 217.151 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... geographical region. 217.151 Section 217.151 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKE OF MARINE MAMMALS INCIDENTAL TO SPECIFIED ACTIVITIES Taking Marine Mammals Incidental to...

  4. 50 CFR 217.151 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... geographical region. 217.151 Section 217.151 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKE OF MARINE MAMMALS INCIDENTAL TO SPECIFIED ACTIVITIES Taking Marine Mammals Incidental to...

  5. The coronal structure of active regions

    NASA Technical Reports Server (NTRS)

    Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.

    1975-01-01

    A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.

  6. Signatures of coronal rain observed in the chromosphere of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Pillet, V. M.; McAteer, J.

    2016-12-01

    Using He 10830A spectropolarimetric data from the Tenerife Infrared Polarimeter (TIP) in a rather compact active region neutral line, we observe a persistent chromospheric downflow on both sides of the neutral line that we interpret as the signature of rain from the Corona. The photospheric Si I line also present in this spectral region allows studying the continuation of the chromospheric downflow into the deeper areas dominated by granulation. Full reconstruction of the photospheric and chromospheric vector magnetic field showed that the active region filament was the central, axial, part of a magnetic flux rope. These observations demonstrate the potential of this spectral region to monitor the magnetic field and plasma motions in solar filaments. NMSU and NSO are teaming to start a synoptic program at the DST (Sac Peak) that uses this spectral region to track the evolution of magnetic fields and flows in solar filaments. We briefly present the characteristics of the synoptic program.

  7. Widespread Nanoflare Variability Detected with Hinode/XRT in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Reale, Fabio; Terzo, Sergio; Miceli, Marco; Klimchuk, James A.; Kano, Ryouhei; Tsuneta, Saku

    2011-01-01

    It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun s hot corona, but whether they are the explanation for most of the multi-million degree plasma has been a matter of ongoing debate. We here present evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on-board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multi-pixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using Monte Carlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable with a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced, e.g., from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.

  8. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  9. LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. I. OBSERVATION OF LIGHT BRIDGE AND ITS DYNAMIC ACTIVITY PHENOMENA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M., E-mail: shin.toriumi@nao.ac.jp

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, andmore » the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.« less

  10. Entrepreneurial Regions: Do Macro-Psychological Cultural Characteristics of Regions Help Solve the "Knowledge Paradox" of Economics?

    PubMed

    Obschonka, Martin; Stuetzer, Michael; Gosling, Samuel D; Rentfrow, Peter J; Lamb, Michael E; Potter, Jeff; Audretsch, David B

    2015-01-01

    In recent years, modern economies have shifted away from being based on physical capital and towards being based on new knowledge (e.g., new ideas and inventions). Consequently, contemporary economic theorizing and key public policies have been based on the assumption that resources for generating knowledge (e.g., education, diversity of industries) are essential for regional economic vitality. However, policy makers and scholars have discovered that, contrary to expectations, the mere presence of, and investments in, new knowledge does not guarantee a high level of regional economic performance (e.g., high entrepreneurship rates). To date, this "knowledge paradox" has resisted resolution. We take an interdisciplinary perspective to offer a new explanation, hypothesizing that "hidden" regional culture differences serve as a crucial factor that is missing from conventional economic analyses and public policy strategies. Focusing on entrepreneurial activity, we hypothesize that the statistical relation between knowledge resources and entrepreneurial vitality (i.e., high entrepreneurship rates) in a region will depend on "hidden" regional differences in entrepreneurial culture. To capture such "hidden" regional differences, we derive measures of entrepreneurship-prone culture from two large personality datasets from the United States (N = 935,858) and Great Britain (N = 417,217). In both countries, the findings were consistent with the knowledge-culture-interaction hypothesis. A series of nine additional robustness checks underscored the robustness of these results. Naturally, these purely correlational findings cannot provide direct evidence for causal processes, but the results nonetheless yield a remarkably consistent and robust picture in the two countries. In doing so, the findings raise the idea of regional culture serving as a new causal candidate, potentially driving the knowledge paradox; such an explanation would be consistent with research on the

  11. Domain-General Brain Regions Do Not Track Linguistic Input as Closely as Language-Selective Regions

    PubMed Central

    Fedorenko, Evelina

    2017-01-01

    Language comprehension engages a cortical network of left frontal and temporal regions. Activity in this network is language-selective, showing virtually no modulation by nonlinguistic tasks. In addition, language comprehension engages a second network consisting of bilateral frontal, parietal, cingulate, and insular regions. Activity in this “multiple demand” (MD) network scales with comprehension difficulty, but also with cognitive effort across a wide range of nonlinguistic tasks in a domain-general fashion. Given the functional dissociation between the language and MD networks, their respective contributions to comprehension are likely distinct, yet such differences remain elusive. Prior neuroimaging studies have suggested that activity in each network covaries with some linguistic features that, behaviorally, influence on-line processing and comprehension. This sensitivity of the language and MD networks to local input characteristics has often been interpreted, implicitly or explicitly, as evidence that both networks track linguistic input closely, and in a manner consistent across individuals. Here, we used fMRI to directly test this assumption by comparing the BOLD signal time courses in each network across different people (n = 45, men and women) listening to the same story. Language network activity showed fewer individual differences, indicative of closer input tracking, whereas MD network activity was more idiosyncratic and, moreover, showed lower reliability within an individual across repetitions of a story. These findings constrain cognitive models of language comprehension by suggesting a novel distinction between the processes implemented in the language and MD networks. SIGNIFICANCE STATEMENT Language comprehension recruits both language-specific mechanisms and domain-general mechanisms that are engaged in many cognitive processes. In the human cortex, language-selective mechanisms are implemented in the left-lateralized “core language

  12. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  13. Space-weather Parameters for 1,000 Active Regions Observed by SDO/HMI

    NASA Astrophysics Data System (ADS)

    Bobra, M.; Liu, Y.; Hoeksema, J. T.; Sun, X.

    2013-12-01

    We present statistical studies of several space-weather parameters, derived from observations of the photospheric vector magnetic field by the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory, for a thousand active regions. Each active region has been observed every twelve minutes during the entirety of its disk passage. Some of these parameters, such as energy density and shear angle, indicate the deviation of the photospheric magnetic field from that of a potential field. Other parameters include flux, helicity, field gradients, polarity inversion line properties, and measures of complexity. We show that some of these parameters are useful for event prediction.

  14. Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Sun, Xudong; Török, Tibor

    The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here, we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs: two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL shear between these two groups is much less pronounced, which suggests that themore » degree of current neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.« less

  15. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Helioseismology of pre-emerging active regions. III. Statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, G.; Leka, K. D.; Braun, D. C.

    The subsurface properties of active regions (ARs) prior to their appearance at the solar surface may shed light on the process of AR formation. Helioseismic holography has been applied to samples taken from two populations of regions on the Sun (pre-emergence and without emergence), each sample having over 100 members, that were selected to minimize systematic bias, as described in Paper I. Paper II showed that there are statistically significant signatures in the average helioseismic properties that precede the formation of an AR. This paper describes a more detailed analysis of the samples of pre-emergence regions and regions without emergencemore » based on discriminant analysis. The property that is best able to distinguish the populations is found to be the surface magnetic field, even a day before the emergence time. However, after accounting for the correlations between the surface field and the quantities derived from helioseismology, there is still evidence of a helioseismic precursor to AR emergence that is present for at least a day prior to emergence, although the analysis presented cannot definitively determine the subsurface properties prior to emergence due to the small sample sizes.« less

  17. Velocity Measurements for a Solar Active Region Fan Loop from Hinode/EIS Observations

    NASA Astrophysics Data System (ADS)

    Young, P. R.; O'Dwyer, B.; Mason, H. E.

    2012-01-01

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s-1 up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of "strands"—one cooler and downflowing, the other hotter and stationary—is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 × 109 cm-3 at the loop base, to 5.0 × 108 cm-3 at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s-1 in Fe XII λ195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s-1 at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.

  18. VELOCITY MEASUREMENTS FOR A SOLAR ACTIVE REGION FAN LOOP FROM HINODE/EIS OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, P. R.; O'Dwyer, B.; Mason, H. E.

    2012-01-01

    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned toward the observer's line of sight and shows downflows (redshifts) of around 15 km s{sup -1} up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physicallymore » disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of 'strands'-one cooler and downflowing, the other hotter and stationary-is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 Multiplication-Sign 10{sup 9} cm{sup -3} at the loop base, to 5.0 Multiplication-Sign 10{sup 8} cm{sup -3} at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called outflow region that displays low intensity and blueshifts of up to 25 km s{sup -1} in Fe XII {lambda}195.12 (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km s{sup -1} at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point-spread function, that affects velocity measurements is identified.« less

  19. Regionalization and dependence of coda Q on frequency and lapse time in the seismically active Peloritani region (northeastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Giampiccolo, Elisabetta; Tuvè, Tiziana

    2018-05-01

    The Peloritani region is one of the most seismically active regions in Italy and, consequently, the quantification of attenuation of the medium plays an important role for seismic risk evaluation. Moreover, it is necessary for the prediction of earth ground motion and future seismic source studies. An in depth analysis has been made here to understand the frequency and lapse time dependence of attenuation characteristics of the region by using the coda of local earthquakes. A regionalization is likewise performed in order to investigate the spatial variation of coda Q across the whole region. Finally, our results are jointly interpreted with those obtained from recently published 3D velocity tomographies for further insights.

  20. Modification of "Pressed" Atmospheres in Active Regions of Ultracool Stars

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2017-12-01

    Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly "pressed" against the star surface, and the plasma frequency is much lower than the electron gyrofrequency ( f L ≪ f B) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition f L ≫ f B, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.

  1. Spontaneous alterations of regional brain activity in patients with adult generalized anxiety disorder

    PubMed Central

    Xia, Likun; Li, Shumei; Wang, Tianyue; Guo, Yaping; Meng, Lihong; Feng, Yunping; Cui, Yu; Wang, Fan; Ma, Jian; Jiang, Guihua

    2017-01-01

    Objective We aimed to examine how spontaneous brain activity might be related to the pathophysiology of generalized anxiety disorder (GAD). Patients and methods Using resting-state functional MRI, we examined spontaneous regional brain activity in 31 GAD patients (mean age, 36.87±9.16 years) and 36 healthy control participants (mean age, 39.53±8.83 years) matched for age, education, and sex from December 2014 to October 2015. We performed a two-sample t-test on the voxel-based analysis of the regional homogeneity (ReHo) maps. We used Pearson correlation analysis to compare scores from the Hamilton Anxiety Rating Scale, Hamilton Depression Rating Scale, State–Trait Anxiety Scale-Trait Scale, and mean ReHo values. Results We found abnormal spontaneous activity in multiple regions of brain in GAD patients, especially in the sensorimotor cortex and emotional regions. GAD patients showed decreased ReHo values in the right orbital middle frontal gyrus, left anterior cingulate cortex, right middle frontal gyrus, and bilateral supplementary motor areas, with increased ReHo values in the left middle temporal gyrus, left superior temporal gyrus, and right superior occipital gyrus. The ReHo value of the left middle temporal gyrus correlated positively with the Hamilton Anxiety Rating Scale scores. Conclusion These results suggest that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of GAD. PMID:28790831

  2. Regional planning acceptance by residents of Northern New York, USA

    NASA Astrophysics Data System (ADS)

    Bobrow, Patricia; Gaige, Barbara; Harris, Glenn; Kennedy, Joyce; King, Leslie; Raymond, William; Werbitsky, Darrin

    1984-01-01

    This study compares the effectiveness of two regional planning agencies in terms of public support for various planning activities. The Adirondack Park Agency and the Temporary State Commission on Tug Hill have fundamentally different approaches to planning. The Adirondack Park Agency has implemented a restrictive regulatory program with little citizen participation by Adirondack residents. The Tug Hill Commission has implemented an advisory and coordinating program with an emphasis on public input. Residents of two towns in each region were surveyed to determine environmental concern and support for regional planning activities. Respondents from both regions favored a planning agency that incorporates citizen input; controls air, water, and toxic waste pollution; and develops recreation areas. They strongly opposed an agency that regulates private land-use. Basic demographic characteristics and levels of environmental concern were similar in all four towns, but receptivity to various planning activities was consistently greater among residents of the Tug Hill Region. Paired comparisons of the four towns demonstrated no differences between towns of the same region and significant differences between towns of different regions. Public support for regional planning is greater in the Tug Hill Region than in the Adirondack Park.

  3. Regional cholinesterase activity in white-throated sparrow brain is differentially affected by acephate (Orthene®)

    USGS Publications Warehouse

    Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Romo, G.A.; Komaragiri, M.V.S.

    1996-01-01

    Effects of a 14-day dietary exposure to an organophosphorus pesticide, acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), were determined on cholinesterase activity in three regions (basal ganglia, hippocampus, and hypothalamus) of the white-throated sparrow, Zonotrichia albicollis, brain. All three regions experienced depressed cholinesterase activity between 0.5–2 ppm acephate. The regions exhibited cholinesterase recovery at 2–16 ppm acephate; however, cholinesterase activity dropped and showed no recovery at higher dietary levels (>16 ppm acephate). Evidence indicates that the recovery is initiated by the magnitude of depression, not the duration. In general, as acephate concentration increased, differences in ChE activity among brain regions decreased. Three terms are introduced to describe ChE response to acephate exposure: 1) ChE resistance threshold, 2) ChE compensation threshold, and 3) ChE depression threshold. It is hypothesized that adverse effects to birds in the field may occur at pesticide exposure levels customarily considered negligible.

  4. Magnetic Characteristics of Active Region Heating Observed with TRACE, SOHO/EIT, and Yohkoh/SXT

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Falconer, D. A.; Moore, R. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Over the past several years, we have reported results from studies that have compared the magnetic structure and heating of the transition region and corona (both in active regions and in the quiet Sun) by combining X-ray and EUV images from Yohkoh and Solar and Heliospheric Observatory (SOHO) with photospheric magnetograms from ground-based observatories. Our findings have led us to the hypothesis that most heating throughout the corona is driven from near and below the base of the corona by eruptive microflares occurring in compact low-lying "core magnetic fields (i.e., fields rooted along and closely enveloping polarity inversion lines in the photospheric magnetic flux). We now extend these studies, comparing sequences of UV images from Transition Region and Coronal Explorer (TRACE) with longitudinal magnetograms from Kitt Peak and vector magnetograms from MUSIC. These comparisons confirm the previous results regarding the importance of core-field activity to active region heating. Activity in fields associated with satellite polarity inclusions and/or magnetically sheared configurations is especially prominent. This work is funded by NASA's Office of Space Science through the Sun-Earth Connection Guest Investigator Program and the Solar Physics Supporting Research and Technology Program.

  5. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography.

    PubMed

    Hegyi, A; Péter, A; Finni, T; Cronin, N J

    2018-03-01

    Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: II. Surficial deposits and their origins

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Hansen, C. J.; Portyankina, G.; Russell, P. S.

    2010-01-01

    The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes and, in particular, the jet-like activity which may result from the process described by Kieffer (JGR, 112, E08005, doi:10.1029/2006JE002816, 2007) involving translucent CO 2 ice. In this work, we mostly concentrate on observations of the Inca City (81°S, 296°E) and Manhattan (86°S, 99°E) regions in the southern spring of 2007. Two companion papers, [Hansen et al. this issue] and [Portyankina et al. this issue], discuss the surface features in these regions and specific models of the behaviour of CO 2 slab ice, respectively. The observations indicate rapid on-set of activity in late winter initiating before HiRISE can obtain adequately illuminated images (Ls < 174° at Inca City). Most sources become active within the subsequent 8 weeks. Activity is indicated by the production of dark deposits surrounded by brighter bluer deposits which probably arise from the freezing out of vented CO 2 [ Titus et al., 2007. AGU (abstract P41A-0188)]. These deposits originate from araneiform structures (spiders), boulders on ridges, cracks on slopes, and along linear cracks in the slab ice on flatter surfaces. The type of activity observed can often be explained qualitatively by considering the local topography. Some dark fans are observed to shorten enormously in length on a timescale of 18 days. We consider this to be strong evidence that outgassing was in progress at the time of HiRISE image acquisition and estimate a total particulate emission rate of >30 g s -1 from a single typical jet feature. Brighter deposits at Inca City become increasingly hard to detect after Ls = 210°. In the Inca City region, the orientations of surficial deposits are topographically controlled. The deposition of dark material also appears to be influenced by local topography suggesting that the ejection

  7. INTERSTITIAL PLASMIN ACTIVITY WITH EPSILON AMINOCAPROIC ACID: TEMPORAL AND REGIONAL HETEROGENEITY

    PubMed Central

    Reust, Daryl L.; Reeves, Scott T.; Abernathy, James H.; Dixon, Jennifer A.; Gaillard, William F.; Mukherjee, Rupak; Koval, Christine N.; Stroud, Robert E.; Spinale, Francis G.

    2010-01-01

    Background Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in-vivo region specific temporal changes in PLact following EACA administration. Methods Pigs (25-35kg) received EACA (75mg/kg, n=7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney and quadricep muscle. The microdialysate contained a plasmin specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90 and 120 minutes following EACA/vehicle infusion. Results EACA caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes and at 30, 60, 120 minutes respectively (p<0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p<0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes post infusion, and were 5-fold higher in the renal compartment and 4-fold higher in the myocardium, when compared to the liver or muscle (p<0.05). Conclusions Using a large animal model and in-vivo microdialysis measurements of plasmin activity, the unique findings from this study were 2-fold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period. PMID:20417774

  8. Interstitial plasmin activity with epsilon aminocaproic acid: temporal and regional heterogeneity.

    PubMed

    Reust, Daryl L; Reeves, Scott T; Abernathy, James H; Dixon, Jennifer A; Gaillard, William F; Mukherjee, Rupak; Koval, Christine N; Stroud, Robert E; Spinale, Francis G

    2010-05-01

    Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in vivo region specific temporal changes in PLact after EACA administration. Pigs (25 to 35 kg) received EACA (75 mg/kg, n = 7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney, and quadricep muscle. The microdialysate contained a plasmin-specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90, and 120 minutes after EACA/vehicle infusion. Epsilon aminocaproic acid caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes, and at 30, 60, and 120 minutes, respectively (p < 0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p < 0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes after infusion, and were fivefold higher in the renal compartment and fourfold higher in the myocardium, when compared with the liver or muscle (p < 0.05). Using a large animal model and in vivo microdialysis measurements of plasmin activity, the unique findings from this study were twofold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region-specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period. Copyright (c) 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Left ventricular lead placement in the latest activated region guided by coronary venous electroanatomic mapping.

    PubMed

    Rad, Masih Mafi; Blaauw, Yuri; Dinh, Trang; Pison, Laurent; Crijns, Harry J; Prinzen, Frits W; Vernooy, Kevin

    2015-01-01

    Left ventricular (LV) lead placement in the latest activated region is an important determinant of response to cardiac resynchronization therapy (CRT). We investigated the feasibility of coronary venous electroanatomic mapping (EAM) to guide LV lead placement to the latest activated region. Twenty-five consecutive CRT candidates with left bundle-branch block underwent intra-procedural coronary venous EAM using EnSite NavX. A guidewire was used to map the coronary veins during intrinsic activation, and to test for phrenic nerve stimulation (PNS). The latest activated region, defined as the region with an electrical delay >75% of total QRS duration, was located anterolaterally in 18 (basal, n = 10; mid, n = 8) and inferolaterally in 6 (basal, n = 3; mid, n = 3). In one patient, identification of the latest activated region was impeded by limited coronary venous anatomy. In patients with >1 target vein (n = 12), the anatomically targeted inferolateral vein was rarely the vein with maximal electrical delay (n = 3). A concordant LV lead position was achieved in 18 of 25 patients. In six patients, this was hampered by PNS (n = 4), lead instability (n = 1), and coronary vein stenosis (n = 1). Coronary venous EAM can be used intraprocedurally to guide LV lead placement to the latest activated region free of PNS. This approach especially contributes to optimization of LV lead electrical delay in patients with multiple target veins. Conventional anatomical LV lead placement strategy does not target the vein with maximal electrical delay in many of these patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. Entrepreneurial Regions: Do Macro-Psychological Cultural Characteristics of Regions Help Solve the “Knowledge Paradox” of Economics?

    PubMed Central

    Obschonka, Martin; Stuetzer, Michael; Gosling, Samuel D.; Rentfrow, Peter J.; Lamb, Michael E.; Potter, Jeff; Audretsch, David B.

    2015-01-01

    In recent years, modern economies have shifted away from being based on physical capital and towards being based on new knowledge (e.g., new ideas and inventions). Consequently, contemporary economic theorizing and key public policies have been based on the assumption that resources for generating knowledge (e.g., education, diversity of industries) are essential for regional economic vitality. However, policy makers and scholars have discovered that, contrary to expectations, the mere presence of, and investments in, new knowledge does not guarantee a high level of regional economic performance (e.g., high entrepreneurship rates). To date, this “knowledge paradox” has resisted resolution. We take an interdisciplinary perspective to offer a new explanation, hypothesizing that “hidden” regional culture differences serve as a crucial factor that is missing from conventional economic analyses and public policy strategies. Focusing on entrepreneurial activity, we hypothesize that the statistical relation between knowledge resources and entrepreneurial vitality (i.e., high entrepreneurship rates) in a region will depend on “hidden” regional differences in entrepreneurial culture. To capture such “hidden” regional differences, we derive measures of entrepreneurship-prone culture from two large personality datasets from the United States (N = 935,858) and Great Britain (N = 417,217). In both countries, the findings were consistent with the knowledge-culture-interaction hypothesis. A series of nine additional robustness checks underscored the robustness of these results. Naturally, these purely correlational findings cannot provide direct evidence for causal processes, but the results nonetheless yield a remarkably consistent and robust picture in the two countries. In doing so, the findings raise the idea of regional culture serving as a new causal candidate, potentially driving the knowledge paradox; such an explanation would be consistent with research

  11. Development of a Homogenous Database of Bipolar Active Regions Spanning Four Cycles

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, A.; Werginz, Z. A.; Vargas-Acosta, J. P.; DeLuca, M. D.; Vargas-Dominguez, S.; Lamb, D. A.; DeForest, C. E.; Longcope, D. W.; Martens, P.

    2016-12-01

    The solar cycle can be understood as a process that alternates the large-scale magnetic field of the Sun between poloidal and toroidal configurations. Although the process that transitions the solar cycle between toroidal and poloidal phases is still not fully understood, theoretical studies, and observational evidence, suggest that this process is driven by the emergence and decay of bipolar magnetic regions (BMRs) at the photosphere. Furthermore, the emergence of BMRs at the photosphere is the main driver behind solar variability and solar activity in general; making the study of their properties doubly important for heliospheric physics. However, in spite of their critical role, there is still no unified catalog of BMRs spanning multiple instruments and covering the entire period of systematic measurement of the solar magnetic field (i.e. 1975 to present).In this presentation we discuss an ongoing project to address this deficiency by applying our Bipolar Active Region Detection (BARD) code on full disk magnetograms measured by the 512 (1975-1993) and SPMG (1992-2003) instruments at the Kitt Peak Vacuum Telescope (KPVT), SOHO/MDI (1996-2011) and SDO/HMI (2010-present). First we will discuss the results of our revitalization of 512 and SPMG KPVT data, then we will discuss how our BARD code operates, and finally report the results of our cross-callibration across instruments.The corrected and improved KPVT magnetograms will be made available through the National Solar Observatory (NSO) and Virtual Solar Observatory (VSO), including updated synoptic maps produced by running the corrected KPVT magnetograms though the SOLIS pipeline. The homogeneous active region database will be made public by the end of 2017 once it has reached a satisfactory level of quality and maturity. The Figure shows all bipolar active regions present in our database (as of Aug 2016) colored according to the instrument where they were detected. The image also includes the names of the NSF

  12. Styles and timing of volatile-driven activity in the eastern Hellas region of Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Bleamaster, Leslie F.; Mest, Scott C.

    2005-12-01

    Recent analyses of Mars Global Surveyor and Mars Odyssey data sets provide new insights into the geologic evolution of the eastern Hellas region of Mars, in particular, the role of volatiles. Here, we present results of our recent work and integrate these with previous studies by various investigators to provide a synthesis of the history of volatile-driven activity of the region. We utilize high-resolution images from the Mars Orbiter Camera and Thermal Emission Imaging System combined with Mars Orbiter Laser Altimeter digital elevation models and profiles to examine fluvial systems that dissect the circum-Hellas highlands, to characterize stages in the development of the Dao, Niger, Harmakhis, and Reull Valles canyon systems, and to evaluate evidence for ancient lakes in Hellas Planitia. The occurrence of valley networks, dissected highland crater rims, and crater interior deposits such as layered plateaus suggests widespread ancient degradation of the circum-Hellas highlands. Canyon development, which represents subsequent more localized activity, may have included an early fluvial phase followed by the collapse and sapping dominated stages that, along with recent wall erosion and floor resurfacing, produced the currently observed morphologies. The prominent role of collapse and sapping along the east rim of Hellas, along with the presence of numerous channels extending toward the basin and sequences of finely layered deposits along the basin rim, suggests a volatile-rich substrate across a broad depositional shelf. The east rim of the basin was an accumulation zone for atmospheric volatiles and/or the edge of volatile-rich deposits associated with the basin floor. This evidence combined with topographic data and cratered terrain preservation around the basin is consistent with a lacustrine period or periods in early Martian history. The style, magnitude, and spatial extent of volatile-driven activity in eastern Hellas have varied considerably with time, and

  13. High-resolution observations of active region moss and its dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R. J.; McLaughlin, J. A., E-mail: richard.morton@northumbria.ac.uk

    2014-07-10

    The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases alongmore » the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s{sup –1} for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.« less

  14. Recurrent flares in active region NOAA 11283

    NASA Astrophysics Data System (ADS)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.

    2015-10-01

    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  15. Statistical Analysis of Acoustic Wave Power and Flows around Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2018-05-01

    We analyze the effect of a sunspot in its quiet surroundings applying a helioseismic technique on almost three years of Helioseismic and Magnetic Imager (HMI) observations obtained during solar cycle 24 to further study the sunspot structure below the solar surface. The attenuation of acoustic waves with frequencies lower than 4.2 mHz depends more strongly on the wave direction at a distance of 6°–7° from the sunspot center. The amplification of higher frequency waves is highest 6° away from the active region and is largely independent of the wave’s direction. We observe a mean clockwise flow around active regions, the angular speed of which decreases exponentially with distance and has a coefficient close to ‑0.7 degree‑1. The observed horizontal flow in the direction of the nearby active region agrees with a large-scale circulation around the sunspot in the shape of cylindrical shell. The center of the shell seems to be centered around 7° from the sunspot center, where we observe an inflow close to the surface down to ∼2 Mm, followed by an outflow at deeper layers until at least 7 Mm.

  16. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics.

    PubMed

    Ji, Zhengchao; Sun, Wanyang; Sun, Guoxiang; Zhang, Jin

    2016-08-01

    A fast micellar electrokinetic chromatography fingerprint method combined with quantification was developed and validated to evaluate the quality of Fufang Danshen Pills, a traditional Chinese Medicine, which has been used in the treatment of cardiovascular system diseases, in which the tetrahedron optimization method was first used to optimize the background electrolyte solution. Subsequently, the index of the fingerprint information amount of I was performed as an excellent objective indictor to investigate the experimental conditions. In addition, a systematical quantified fingerprint method was constructed for evaluating the quality consistency of 20 batches of test samples obtained from the same drug manufacturer. The fingerprint analysis combined with quantitative determination of two components showed that the quality consistency of the test samples was quite good within the same commercial brand. Furthermore, the partial least squares model analysis was used to explore the fingerprint-efficacy relationship between active components and antioxidant activity in vitro, which can be applied for the assessment of anti-oxidant activity of Fufang Danshen pills and provide valuable medicinal information for quality control. The result illustrated that the present study provided a reliable and reasonable method for monitoring the quality consistency of Fufang Danshen pills. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Forward modeling transient brightenings and microflares around an active region observed with Hi-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobelski, Adam R.; McKenzie, David E., E-mail: kobelski@solar.physics.montana.edu

    Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C)more » sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.« less

  18. Tracking Organs Composed of One or Multiple Regions Using Geodesic Active Region Models

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Jiménez, J. J.

    In radiotherapy treatment it is very important to find out the target organs on the medical image sequence in order to determine and apply the proper dose. The techniques to achieve this goal can be classified into extrinsic and intrinsic. Intrinsic techniques only use image processing with medical images associated to the radiotherapy treatment, as we deal in this chapter. To accurately perform this organ tracking it is necessary to find out segmentation and tracking models that were able to be applied to several image modalities involved on a radiotherapy session (CT See Modality , MRI , etc.). The movements of the organs are mainly affected by two factors: breathing and involuntary movements associated with the internal organs or patient positioning. Among the several alternatives to track the organs of interest, a model based on geodesic active regions is proposed. This model has been tested over CT images from the pelvic, cardiac, and thoracic area. A new model for the segmentation of organs composed by more than one region is proposed.

  19. The analytical approach to optimization of active region structure of quantum dot laser

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-10-01

    Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value.

  20. FIP bias in a sigmoidal active region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, Lidia; Green, L. M.; Steed, K.; Carlyle, J.

    2014-01-01

    We investigate first ionization potential (FIP) bias levels in an anemone active region (AR) - coronal hole (CH) complex using an abundance map derived from Hinode/EIS spectra. The detailed, spatially resolved abundance map has a large field of view covering 359'' × 485''. Plasma with high FIP bias, or coronal abundances, is concentrated at the footpoints of the AR loops whereas the surrounding CH has a low FIP bias, ~1, i.e. photospheric abundances. A channel of low FIP bias is located along the AR's main polarity inversion line containing a filament where ongoing flux cancellation is observed, indicating a bald patch magnetic topology characteristic of a sigmoid/flux rope configuration.

  1. The evolution of active region loop plasma

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Antiochos, S. K.

    1980-01-01

    The adjustment of coronal active-region loops to changes in their heating rate is investigated numerically. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux is dissipated by a static chromosphere, and (2) the method by which the chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates.

  2. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    PubMed

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  3. Beta-globin locus activation regions: conservation of organization, structure, and function.

    PubMed Central

    Li, Q L; Zhou, B; Powers, P; Enver, T; Stamatoyannopoulos, G

    1990-01-01

    The human beta-globin locus activation region (LAR) comprises four erythroid-specific DNase I hypersensitive sites (I-IV) thought to be largely responsible for activating the beta-globin domain and facilitating high-level erythroid-specific globin gene expression. We identified the goat beta-globin LAR, determined 10.2 kilobases of its sequence, and demonstrated its function in transgenic mice. The human and goat LARs share 6.5 kilobases of homologous sequences that are as highly conserved as the epsilon-globin gene promoters. Furthermore, the overall spatial organization of the two LARs has been conserved. These results suggest that the functionally relevant regions of the LAR are large and that in addition to their primary structure, the spatial relationship of the conserved elements is important for LAR function. Images PMID:2236034

  4. 50 CFR 217.110 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Specified activity and specified geographical region. 217.110 Section 217.110 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKE OF MARINE MAMMALS INCIDENTAL TO...

  5. Magnetic structure of an activated filament in a flaring active region

    NASA Astrophysics Data System (ADS)

    Sasso, C.; Lagg, A.; Solanki, S. K.

    2014-01-01

    Aims: While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We report observational results on the magnetic field structure of an activated filament in a flaring active region. In particular, we studied its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displayed signs of rotation. Methods: We inverted the Stokes profiles of the chromospheric He i 10 830 Å triplet and the photospheric Si i 10 827 Å line observed in this filament by the Vacuum Tower Telescope on Tenerife. Using these inversion results, we present and interpret the first maps of the velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Results: Up to five different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of the filament, while the downflows are concentrated along its periphery. Moreover, the upflowing gas is associated with an opposite-polarity magnetic configuration with respect to the photosphere, while the downflowing gas is associated with a same-polarity configuration. Conclusions: The activated filament has a very complex structure. Nonetheless, it is compatible with a flux rope, albeit a distorted one, in the normal configuration. The observations are best explained by a rising flux rope in which part of the filament material is still stably stored (upflowing material, rising with the field), while the rest is no longer stably stored and flows down along the field lines. The movie is available in electronic form at http://www.aanda.org

  6. Regional Socioeconomic Inequalities in Physical Activity and Sedentary Behavior Among Brazilian Adolescents.

    PubMed

    Werneck, André O; Oyeyemi, Adewale L; Fernandes, Rômulo A; Romanzini, Marcelo; Ronque, Enio R V; Cyrino, Edilson S; Sardinha, Luís B; Silva, Danilo R

    2018-05-01

    This study aims to describe the regional prevalence and patterns of physical activity (PA) and sedentary behavior among Brazilian adolescents. Data from the Brazilian Scholar Health Survey, a nationally representative survey of ninth-grade adolescents [mean age: 14.29 y (14.27-14.29)] conducted in 2015 (n = 101,445), were used. Outcomes were television viewing, sitting time (ST), total PA, and active traveling collected via self-administered questionnaire. Information on frequency of physical education classes and type of school was collected from the school's director. Frequencies with 95% confidence intervals were used to determine the prevalence and patterns of outcomes. Higher prevalence of PA (≥300 min/wk) and ST (>4 h/d) was found in Midwest (PA = 38.0%; ST = 44.5%), South (PA = 37.6%; ST = 50.1%), and Southeast (PA = 36.1%; ST = 49.3%) compared with Northeast (PA = 29.7%; ST = 36.9%) and North (PA = 34.4%; ST = 34.8%) regions of Brazil. ST was higher among adolescents from private schools (51.5%) than public schools (42.9%), whereas active traveling was greater among students of public schools than private schools (62.0% vs 34.4%). Most inequalities in outcomes between capital and interior cities were in the poorest regions. The results indicate that national plans targeting regional inequalities are needed to improve PA and to reduce sedentary behavior among Brazilian adolescents.

  7. Altered spontaneous activity in antisocial personality disorder revealed by regional homogeneity.

    PubMed

    Tang, Yan; Liu, Wangyong; Chen, Jingang; Liao, Jian; Hu, Dewen; Wang, Wei

    2013-08-07

    There is increasing evidence that antisocial personality disorder (ASPD) stems from brain abnormalities. However, there are only a few studies investigating brain structure in ASPD. The aim of this study was to find regional coherence abnormalities in resting-state functional MRI of ASPD. Thirty-two ASPD individuals and 34 controls underwent a resting-state functional MRI scan. The regional homogeneity (ReHo) approach was used to examine whether ASPD was related to alterations in resting-state neural activity. Support vector machine discriminant analysis was used to evaluate the sensitivity/specificity characteristics of the ReHo index in discriminating between the ASPD individuals and controls. The results showed that, compared with controls, ASPD individuals show lower ReHo in the right cerebellum posterior lobe (Crus1) and the right middle frontal gyrus, as well as higher ReHo in the right middle occipital gyrus (BA 19), left inferior temporal gyrus (BA 37), and right inferior occipital gyrus (cuneus, BA 18). All alternation regions reported a predictive accuracy above 70%. To our knowledge, this study was the first to study the change in regional activity coherence in the resting brain of ASPD individuals. These results not only elucidated the pathological mechanism of ASPD from a resting-state functional viewpoint but also showed that these alterations in ReHo may serve as potential markers for the detection of ASPD.

  8. Acoustic holograms of active regions

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2008-10-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  9. Active Faults and Seismic Sources of the Middle East Region: Earthquake Model of the Middle East (EMME) Project

    NASA Astrophysics Data System (ADS)

    Gulen, L.; EMME WP2 Team*

    2011-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the GEM (Global Earthquake Model) project (http://www.emme-gem.org/). The EMME project covers Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project consists of three main modules: hazard, risk, and socio-economic modules. The EMME project uses PSHA approach for earthquake hazard and the existing source models have been revised or modified by the incorporation of newly acquired data. The most distinguishing aspect of the EMME project from the previous ones is its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that permits continuous update, refinement, and analysis. An up-to-date earthquake catalog of the Middle East region has been prepared and declustered by the WP1 team. EMME WP2 team has prepared a digital active fault map of the Middle East region in ArcGIS format. We have constructed a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. The EMME project database includes information on the geometry and rates of movement of faults in a "Fault Section Database", which contains 36 entries for each fault section. The "Fault Section" concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far 6,991 Fault Sections have been defined and 83,402 km of faults are fully parameterized in the Middle East region. A separate "Paleo-Sites Database" includes information on the timing and amounts of fault

  10. 50 CFR 217.60 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... geographical region. (a) Regulations in this subpart apply only to the 30th Space Wing, United States Air Force... that occurs incidental to: (1) Launching up to 15 space and each year from Vandenberg Air Force Base.... Air Force Launches, Aircraft and Helicopter Operations, and Harbor Activities Related to Launch...

  11. Inference of Heating Properties from "Hot" Non-flaring Plasmas in Active Region Cores. I. Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, W. T.; Cargill, P. J.; Bradshaw, S. J.

    2016-09-01

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 106.6 and 107 K. Signatures of the actual heating may be detectable in some instances.

  12. Seasonal variation of wave activities near the mesopause region observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Changsup; Kim, Yong Ha; Kim, Jeong-Han; Jee, Geonhwa; Won, Young-In; Wu, Dong L.

    2013-12-01

    We analyzed the neutral wind data at altitudes of 80-100 km obtained from a VHF meteor radar at King Sejong Station (KSS, 62.22°S, 58.78°W), a key location to study wave activities above the stratospheric vortex near the Antarctic Peninsula. The seasonal behavior of the semidiurnal tides is generally consistent with the prediction of Global Scale Wave Model (GSWM02) except in the altitude region above ~96 km. Gravity wave (GW) activities inferred from the neutral wind variances show a seasonal variation very similar to the semidiurnal tide amplitudes, suggesting a strong interaction between gravity waves and the tide. Despite the consistent seasonal variations of the GW wind variances observed at the adjacent Rothera station, the magnitudes of the wind variance obtained at KSS are much larger than those at Rothera, especially during May-September. The enhanced GW activity at KSS is also observed by Aura Microwave Limb Sounder (MLS) from space in its temperature variance. The observed large wind variances at KSS imply that the Antarctic vortex in the stratosphere may act as an effective filter and source for the GWs in the upper atmosphere.

  13. Physics of the Solar Active Regions from Radio Observations

    NASA Astrophysics Data System (ADS)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  14. Star formation activity in the southern Galactic H II region G351.63-1.25

    NASA Astrophysics Data System (ADS)

    Vig, S.; Ghosh, S. K.; Ojha, D. K.; Verma, R. P.; Tamura, M.

    2014-06-01

    The southern Galactic high-mass star-forming region, G351.63-1.25, is an H II region-molecular cloud complex with a luminosity of ˜2.0 × 105 L⊙, located at a distance of 2.4 kpc from the Sun. In this paper, we focus on the investigation of the associated H II region, embedded cluster and the interstellar medium in the vicinity of G351.63-1.25. We address the identification of exciting source(s) as well as the census of the stellar populations, in an attempt to unfold star formation activity in this region. The ionized gas distribution has been mapped using the Giant Metrewave Radio Telescope, India, at three frequencies: 1280, 610 and 325 MHz. The H II region shows an elongated morphology and the 1280 MHz map comprises six resolved high-density regions encompassed by diffuse emission spanning 1.4 × 1.0 pc2. Based on the measurements of flux densities at multiple radio frequencies, the brightest ultracompact core has electron temperature Te˜7647 {±} 153 K and emission measure, EM˜2.0 {±} 0.8×107 cm-6 pc. The zero-age main-sequence spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS camera on the 1.4 m Infrared Survey Facility telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be ˜0.27 ± 0.03, and the fraction of the near-infrared excess stars is estimated to be 43 per cent. These indicate that the age of the cluster is consistent with ˜1 Myr. Other available data of this region show that the warm (mid-infrared) and cold (millimetre) dust emission peak at different locations indicating progressive stages of star formation process. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.

  15. Activation of the subthalamic region during emotional processing in Parkinson disease.

    PubMed

    Kühn, A A; Hariz, M I; Silberstein, P; Tisch, S; Kupsch, A; Schneider, G-H; Limousin-Dowsey, P; Yarrow, K; Brown, P

    2005-09-13

    To elucidate the involvement of the human subthalamic nucleus (STN) region in the processing or transmission of emotional information. Local field potentials (LFPs) were recorded from this region in 10 patients with Parkinson disease (PD) undergoing bilateral implantation of the STN for high-frequency stimulation. LFP recordings were made while patients viewed pleasant and unpleasant emotionally arousing and neutral pictures. A significant decrease (event-related desynchronization [ERD]) in the local alpha power (8 to 12 Hz) was found for all stimulus categories starting at about 0.5 seconds after stimulus presentation. However, 1 to 2 seconds poststimulus, the ERD was larger in trials of pleasant (mean ERD: 21.6 +/- 2.8%; p < 0.009) and unpleasant (mean ERD: 15.0 +/- 4.2%; p = 0.018) stimuli compared with neutral stimuli (mean ERD: 4.4 +/- 4.2%). The delayed modulation of alpha activity recorded from the area of the subthalamic nucleus in PD may reflect the processing or transmission of information related to emotional stimuli. "Limbic" activation in the region of the subthalamic nucleus may explain why high-frequency stimulation of the subthalamic nucleus alters affect in some patients with PD.

  16. Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG

    NASA Astrophysics Data System (ADS)

    Henri, P.; Vallières, X.; Hajra, R.; Goetz, C.; Richter, I.; Glassmeier, K.-H.; Galand, M.; Rubin, M.; Eriksson, A. I.; Nemeth, Z.; Vigren, E.; Beth, A.; Burch, J. L.; Carr, C.; Nilsson, H.; Tsurutani, B.; Wattieaux, G.

    2017-07-01

    The ESA's comet chaser Rosetta has monitored the evolution of the ionized atmosphere of comet 67P/Churyumov-Gerasimenko (67P/CG) and its interaction with the solar wind, during more than 2 yr. Around perihelion, while the cometary outgassing rate was highest, Rosetta crossed hundreds of unmagnetized regions, but did not seem to have crossed a large-scale diamagnetic cavity as anticipated. Using in situ Rosetta observations, we characterize the structure of the unmagnetized plasma found around comet 67P/CG. Plasma density measurements from RPC-MIP are analysed in the unmagnetized regions identified with RPC-MAG. The plasma observations are discussed in the context of the cometary escaping neutral atmosphere, observed by ROSINA/COPS. The plasma density in the different diamagnetic regions crossed by Rosetta ranges from ˜100 to ˜1500 cm-3. They exhibit a remarkably systematic behaviour that essentially depends on the comet activity and the cometary ionosphere expansion. An effective total ionization frequency is obtained from in situ observations during the high outgassing activity phase of comet 67P/CG. Although several diamagnetic regions have been crossed over a large range of distances to the comet nucleus (from 50 to 400 km) and to the Sun (1.25-2.4 au), in situ observations give strong evidence for a single diamagnetic region, located close to the electron exobase. Moreover, the observations are consistent with an unstable contact surface that can locally extend up to about 10 times the electron exobase.

  17. 49 CFR Appendix C to Part 241 - Geographical Boundaries of FRA's Regions and Addresses of FRA's Regional Headquarters

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) address of the Regional Administrator for Region 1 is: [email protected]gov. (2) Region 2 consists of....dot.gov. (3) Region 3 consists of Kentucky, Tennessee, North Carolina, South Carolina, Georgia... E-mail address of the Regional Administrator for Region 3 is: [email protected]gov. (4) Region 4...

  18. 49 CFR Appendix C to Part 241 - Geographical Boundaries of FRA's Regions and Addresses of FRA's Regional Headquarters

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) address of the Regional Administrator for Region 1 is: [email protected]gov. (2) Region 2 consists of....dot.gov. (3) Region 3 consists of Kentucky, Tennessee, North Carolina, South Carolina, Georgia... E-mail address of the Regional Administrator for Region 3 is: [email protected]gov. (4) Region 4...

  19. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  20. INTERMITTENCY AND MULTIFRACTALITY SPECTRA OF THE MAGNETIC FIELD IN SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    We present the results of a study of intermittency and multifractality of magnetic structures in solar active regions (ARs). Line-of-sight magnetograms for 214 ARs of different flare productivity observed at the center of the solar disk from 1997 January until 2006 December are utilized. Data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory operating in the high resolution mode, the Big Bear Solar Observatory digital magnetograph, and the Hinode SOT/SP instrument were used. Intermittency spectra were derived from high-order structure functions and flatness functions. The flatness function exponent is a measure of the degreemore » of intermittency. We found that the flatness function exponent at scales below approximately 10 Mm is correlated with flare productivity (the correlation coefficient is -0.63). The Hinode data show that the intermittency regime is extended toward small scales (below 2 Mm) as compared to the MDI data. The spectra of multifractality, derived from the structure functions and flatness functions, are found to be broader for ARs of higher flare productivity as compared to those of low flare productivity. The magnetic structure of high-flaring ARs consists of a voluminous set of monofractals, and this set is much richer than that for low-flaring ARs. The results indicate the relevance of the multifractal organization of the photospheric magnetic fields to the flaring activity. The strong intermittency observed in complex and high-flaring ARs is a hint that we observe a photospheric imprint of enhanced sub-photospheric dynamics.« less

  1. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  2. Does regional disadvantage affect health-related sport and physical activity level? A multi-level analysis of individual behaviour.

    PubMed

    Wicker, Pamela; Downward, Paul; Lera-López, Fernando

    2017-11-01

    This study examines the role of regional government quality in health-related participation in sport and physical activity among adults (18-64 years) in 28 European countries. The importance of the analysis rests in the relative autonomy that regional and local governments have over policy decisions connected with sport and physical activity. While existing studies have focussed on economic and infrastructural investment and expenditure, this research investigates the quality of regional governments across 208 regions within 28 European countries. The individual-level data stem from the 2013 Eurobarometer 80.2 (n = 18,675) and were combined with regional-level data from Eurostat. An individual's level of participation in sport and physical activity was measured by three variables reflecting whether an individual's activity level is below, meets, or exceeds the recommendations of the World Health Organization. The results of multi-level analyses reveal that regional government quality has a significant and positive association with individual participation in sport and physical activity at a level meeting or exceeding the guidelines. The impact is much larger than that of regional gross domestic product per capita, indicating that regional disadvantage in terms of political quality is more relevant than being disadvantaged in terms of economic wealth.

  3. 15 CFR 930.39 - Content of a consistency determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency for Federal... include a detailed description of the activity, its associated facilities, and their coastal effects, and...

  4. 15 CFR 930.39 - Content of a consistency determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency for Federal... include a detailed description of the activity, its associated facilities, and their coastal effects, and...

  5. 15 CFR 930.39 - Content of a consistency determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency for Federal... include a detailed description of the activity, its associated facilities, and their coastal effects, and...

  6. 15 CFR 930.39 - Content of a consistency determination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Consistency for Federal... include a detailed description of the activity, its associated facilities, and their coastal effects, and...

  7. Intra-regional and inter-regional abnormalities and cognitive control deficits in young adult smokers.

    PubMed

    Feng, Dan; Yuan, Kai; Li, Yangding; Cai, Chenxi; Yin, Junsen; Bi, Yanzhi; Cheng, Jiadong; Guan, Yanyan; Shi, Sha; Yu, Dahua; Jin, Chenwang; Lu, Xiaoqi; Qin, Wei; Tian, Jie

    2016-06-01

    Tobacco use during later adolescence and young adulthood may cause serious neurophysiological changes; rationally, it is extremely important to study the relationship between brain dysfunction and behavioral performances in young adult smokers. Previous resting state studies investigated the neural mechanisms in smokers. Unfortunately, few studies focused on spontaneous activity differences between young adult smokers and nonsmokers from both intra-regional and inter-regional levels, less is known about the association between resting state abnormalities and behavioral deficits. Therefore, we used fractional amplitude of low frequency fluctuation (fALFF) and resting state functional connectivity (RSFC) to investigate the resting state spontaneous activity differences between young adult smokers and nonsmokers. A correlation analysis was carried out to assess the relationship between neuroimaging findings and clinical information (pack-years, cigarette dependence, age of onset and craving score) as well as cognitive control deficits measured by the Stroop task. Consistent with previous addiction findings, our results revealed the resting state abnormalities within frontostriatal circuits, i.e., enhanced spontaneous activity of the caudate and reduced functional strength between the caudate and anterior cingulate cortex (ACC) in young adult smokers. Moreover, the fALFF values of the caudate were correlated with craving and RSFC strength between the caudate and ACC was associated with the cognitive control impairments in young adult smokers. Our findings could lead to a better understanding of intrinsic functional architecture of baseline brain activity in young smokers by providing regional and brain circuit spontaneous neuronal activity properties as well as their association with cognitive control impairments.

  8. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  9. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world

    PubMed Central

    Dowdy, Andrew J.

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  10. Domain-General Brain Regions Do Not Track Linguistic Input as Closely as Language-Selective Regions.

    PubMed

    Blank, Idan A; Fedorenko, Evelina

    2017-10-11

    Language comprehension engages a cortical network of left frontal and temporal regions. Activity in this network is language-selective, showing virtually no modulation by nonlinguistic tasks. In addition, language comprehension engages a second network consisting of bilateral frontal, parietal, cingulate, and insular regions. Activity in this "multiple demand" (MD) network scales with comprehension difficulty, but also with cognitive effort across a wide range of nonlinguistic tasks in a domain-general fashion. Given the functional dissociation between the language and MD networks, their respective contributions to comprehension are likely distinct, yet such differences remain elusive. Prior neuroimaging studies have suggested that activity in each network covaries with some linguistic features that, behaviorally, influence on-line processing and comprehension. This sensitivity of the language and MD networks to local input characteristics has often been interpreted, implicitly or explicitly, as evidence that both networks track linguistic input closely, and in a manner consistent across individuals. Here, we used fMRI to directly test this assumption by comparing the BOLD signal time courses in each network across different people ( n = 45, men and women) listening to the same story. Language network activity showed fewer individual differences, indicative of closer input tracking, whereas MD network activity was more idiosyncratic and, moreover, showed lower reliability within an individual across repetitions of a story. These findings constrain cognitive models of language comprehension by suggesting a novel distinction between the processes implemented in the language and MD networks. SIGNIFICANCE STATEMENT Language comprehension recruits both language-specific mechanisms and domain-general mechanisms that are engaged in many cognitive processes. In the human cortex, language-selective mechanisms are implemented in the left-lateralized "core language network

  11. Region-Specific Responses of Adductor Longus Muscle to Gravitational Load-Dependent Activity in Wistar Hannover Rats

    PubMed Central

    Ohira, Takashi; Terada, Masahiro; Kawano, Fuminori; Nakai, Naoya; Ogura, Akihiko; Ohira, Yoshinobu

    2011-01-01

    Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive. PMID:21731645

  12. WHY IS A FLARE-RICH ACTIVE REGION CME-POOR?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lijuan; Wang, Yuming; Shen, Chenglong

    Solar active regions (ARs) are the major sources of two of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). The largest AR in the past 24 years, NOAA AR 12192, which crossed the visible disk from 2014 October 17 to 30, unusually produced more than one hundred flares, including 32 M-class and 6 X-class ones, but only one small CME. Flares and CMEs are believed to be two phenomena in the same eruptive process. Why is such a flare-rich AR so CME-poor? We compared this AR with other four ARs; two were productive in both andmore » two were inert. The investigation of the photospheric parameters based on the SDO /HMI vector magnetogram reveals that the flare-rich AR 12192, as with the other two productive ARs, has larger magnetic flux, current, and free magnetic energy than the two inert ARs but, in contrast to the two productive ARs, it has no strong, concentrated current helicity along both sides of the flaring neutral line, indicating the absence of a mature magnetic structure consisting of highly sheared or twisted field lines. Furthermore, the decay index above the AR 12192 is relatively low, showing strong constraint. These results suggest that productive ARs are always large and have enough current and free energy to power flares, but whether or not a flare is accompanied by a CME is seemingly related to (1) the presence of a mature sheared or twisted core field serving as the seed of the CME, or (2) a weak enough constraint of the overlying arcades.« less

  13. Systematic Regional Variations in Purkinje Cell Spiking Patterns

    PubMed Central

    Xiao, Jianqiang; Cerminara, Nadia L.; Kotsurovskyy, Yuriy; Aoki, Hanako; Burroughs, Amelia; Wise, Andrew K.; Luo, Yuanjun; Marshall, Sarah P.; Sugihara, Izumi; Apps, Richard; Lang, Eric J.

    2014-01-01

    In contrast to the uniform anatomy of the cerebellar cortex, molecular and physiological studies indicate that significant differences exist between cortical regions, suggesting that the spiking activity of Purkinje cells (PCs) in different regions could also show distinct characteristics. To investigate this possibility we obtained extracellular recordings from PCs in different zebrin bands in crus IIa and vermis lobules VIII and IX in anesthetized rats in order to compare PC firing characteristics between zebrin positive (Z+) and negative (Z−) bands. In addition, we analyzed recordings from PCs in the A2 and C1 zones of several lobules in the posterior lobe, which largely contain Z+ and Z− PCs, respectively. In both datasets significant differences in simple spike (SS) activity were observed between cortical regions. Specifically, Z− and C1 PCs had higher SS firing rates than Z+ and A2 PCs, respectively. The irregularity of SS firing (as assessed by measures of interspike interval distribution) was greater in Z+ bands in both absolute and relative terms. The results regarding systematic variations in complex spike (CS) activity were less consistent, suggesting that while real differences can exist, they may be sensitive to other factors than the cortical location of the PC. However, differences in the interactions between SSs and CSs, including the post-CS pause in SSs and post-pause modulation of SSs, were also consistently observed between bands. Similar, though less strong trends were observed in the zonal recordings. These systematic variations in spontaneous firing characteristics of PCs between zebrin bands in vivo, raises the possibility that fundamental differences in information encoding exist between cerebellar cortical regions. PMID:25144311

  14. Consistent inter-individual differences in common marmosets (Callithrix jacchus) in Boldness-Shyness, Stress-Activity, and Exploration-Avoidance.

    PubMed

    Šlipogor, Vedrana; Gunhold-de Oliveira, Tina; Tadić, Zoran; Massen, Jorg J M; Bugnyar, Thomas

    2016-09-01

    The study of animal personality, defined as consistent inter-individual differences in correlated behavioral traits stable throughout time and/or contexts, has recently become one of the fastest growing areas in animal biology, with study species ranging from insects to non-human primates. The latter have, however, only occasionally been tested with standardized experiments. Instead their personality has usually been assessed using questionnaires. Therefore, this study aimed to test 21 common marmosets (Callithrix jacchus) living in three family groups, in five different experiments, and their corresponding controls. We found that behavioral differences between our animals were not only consistent over time, but also across different contexts. Moreover, the consistent behaviors formed a construct of four major non-social personality components: Boldness-Shyness in Foraging, Boldness-Shyness in Predation, Stress-Activity, and Exploration-Avoidance. We found no sex or age differences in these components, but our results did reveal differences in Exploration-Avoidance between the three family groups. As social environment can have a large influence on behavior of individuals, our results may suggest group-level similarity in personality (i.e., "group personality") in common marmosets, a species living in highly cohesive social groups. Am. J. Primatol. 78:961-973, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Activation of retinal stem cells in the proliferating marginal region of RCS rats during development of retinitis pigmentosa.

    PubMed

    Jian, Qian; Xu, Haiwei; Xie, Hanping; Tian, Chunyu; Zhao, Tongtao; Yin, ZhengQin

    2009-11-06

    Retinal stem cells (RSCs) have been demonstrated at the proliferating marginal regions from the pars plana of ciliary body to the ciliary marginal zone (CMZ) in adult lower vertebrates and mammals. Investigations in the lower vertebrates have provided some evidence that RSCs can proliferate following retinal damage; however, the evidence that this occurs in mammals is not clear. In this study, we explored RSCs proliferation potential of adult mammalian in proliferating marginal regions of Royal College of Surgeons (RCS) rats, an animal model for retinitis pigmentosa (RP). The proliferation was evaluated using BrdU labeling, and Chx-10 as markers to discern progenitor cell of CMZ in Long-Evan's and RCS rats at different postnatal day (PND) after eye opening. We found that few Chx-10 and BrdU labeled cells in the proliferating marginal regions of Long-Evan's rats, which significantly increased in RCS rats at PND30 and PND60. Consistent with this, Chx-10/Vimentin double staining cells in the center retina of RCS rats increased significantly at PND30 after eye opening. In addition, mRNA expression of Shh, Ptch1 and Smo was up-regulated in RCS rats at PND60 compared to age-matched Long-Evan's rats, which revealed Shh/ptc pathway involving in the activation of RSCs. These results suggest that RSCs in the mammalian retinal proliferating marginal regions has the potential to regenerate following degeneration.

  16. 36 CFR 241.22 - Consistency determinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FISH AND WILDLIFE Conservation of Fish, Wildlife, and Their Habitat, Chugach National Forest, Alaska... conservation of fish, wildlife, and their habitat. A use or activity may be determined to be consistent if it will not materially interfere with or detract from the conservation of fish, wildlife and their habitat...

  17. 36 CFR 241.22 - Consistency determinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FISH AND WILDLIFE Conservation of Fish, Wildlife, and Their Habitat, Chugach National Forest, Alaska... conservation of fish, wildlife, and their habitat. A use or activity may be determined to be consistent if it will not materially interfere with or detract from the conservation of fish, wildlife and their habitat...

  18. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder.

    PubMed

    Wu, Ping; Yu, Huan; Peng, Shichun; Dauvilliers, Yves; Wang, Jian; Ge, Jingjie; Zhang, Huiwei; Eidelberg, David; Ma, Yilong; Zuo, Chuantao

    2014-12-01

    Rapid eye movement sleep behaviour disorder has been evaluated using Parkinson's disease-related metabolic network. It is unknown whether this disorder is itself associated with a unique metabolic network. 18F-fluorodeoxyglucose positron emission tomography was performed in 21 patients (age 65.0±5.6 years) with idiopathic rapid eye movement sleep behaviour disorder and 21 age/gender-matched healthy control subjects (age 62.5±7.5 years) to identify a disease-related pattern and examine its evolution in 21 hemi-parkinsonian patients (age 62.6±5.0 years) and 16 moderate parkinsonian patients (age 56.9±12.2 years). We identified a rapid eye movement sleep behaviour disorder-related metabolic network characterized by increased activity in pons, thalamus, medial frontal and sensorimotor areas, hippocampus, supramarginal and inferior temporal gyri, and posterior cerebellum, with decreased activity in occipital and superior temporal regions. Compared to the healthy control subjects, network expressions were elevated (P<0.0001) in the patients with this disorder and in the parkinsonian cohorts but decreased with disease progression. Parkinson's disease-related network activity was also elevated (P<0.0001) in the patients with rapid eye movement sleep behaviour disorder but lower than in the hemi-parkinsonian cohort. Abnormal metabolic networks may provide markers of idiopathic rapid eye movement sleep behaviour disorder to identify those at higher risk to develop neurodegenerative parkinsonism. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Individual Functional ROI Optimization via Maximization of Group-wise Consistency of Structural and Functional Profiles

    PubMed Central

    Li, Kaiming; Guo, Lei; Zhu, Dajiang; Hu, Xintao; Han, Junwei; Liu, Tianming

    2013-01-01

    Studying connectivities among functional brain regions and the functional dynamics on brain networks has drawn increasing interest. A fundamental issue that affects functional connectivity and dynamics studies is how to determine the best possible functional brain regions or ROIs (regions of interest) for a group of individuals, since the connectivity measurements are heavily dependent on ROI locations. Essentially, identification of accurate, reliable and consistent corresponding ROIs is challenging due to the unclear boundaries between brain regions, variability across individuals, and nonlinearity of the ROIs. In response to these challenges, this paper presents a novel methodology to computationally optimize ROIs locations derived from task-based fMRI data for individuals so that the optimized ROIs are more consistent, reproducible and predictable across brains. Our computational strategy is to formulate the individual ROI location optimization as a group variance minimization problem, in which group-wise consistencies in functional/structural connectivity patterns and anatomic profiles are defined as optimization constraints. Our experimental results from multimodal fMRI and DTI data show that the optimized ROIs have significantly improved consistency in structural and functional profiles across individuals. These improved functional ROIs with better consistency could contribute to further study of functional interaction and dynamics in the human brain. PMID:22281931

  20. Detection of recurrent activation patterns across focal seizures: Application to seizure onset zone identification.

    PubMed

    Vila-Vidal, Manel; Principe, Alessandro; Ley, Miguel; Deco, Gustavo; Tauste Campo, Adrià; Rocamora, Rodrigo

    2017-06-01

    We introduce a method that quantifies the consistent involvement of intracranially monitored regions in recurrent focal seizures. We evaluated the consistency of two ictal spectral activation patterns (mean power change and power change onset time) in intracranial recordings across focal seizures from seven patients with clinically marked seizure onset zone (SOZ). We examined SOZ discrimination using both patterns in different frequency bands and periods of interest. Activation patterns were proved to be consistent across more than 80% of recurrent ictal epochs. In all patients, whole-seizure mean activations were significantly higher for SOZ than non-SOZ regions (P<0.05) while activation onset times were significantly lower for SOZ than for non-SOZ regions (P<0.001) in six patients. Alpha-beta bands (8-20Hz) achieved the highest patient-average effect size on the whole-seizure period while gamma band (20-70Hz) achieved the highest discrimination values between SOZ and non-SOZ sites near seizure onset (0-5s). Consistent spectral activation patterns in focal epilepsies discriminate the SOZ with high effect sizes upon appropriate selection of frequency bands and activation periods. The present method may be used to improve epileptogenic identification as well as pinpoint additional regions that are functionally altered during ictal events. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  1. Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism.

    PubMed

    Boivin, M J; Giordani, B; Berent, S; Amato, D A; Lehtinen, S; Koeppe, R A; Buchtel, H A; Foster, N L; Kuhl, D E

    1992-06-01

    Impairment in verbal fluency (VF) has been a consistently reported clinical feature of focal cerebral deficits in frontal and temporal regions. More recent behavioral activation studies with healthy control subjects using positron emission tomography (PET), however, have noted a negative correlation between performance on verbal fluency tasks and regional cortical activity. To see if this negative relationship extends to steady-state non-activation PET measures, thirty-three healthy adults were given a VF task within a day of their 18F-2-fluoro-2-deoxy-D-glucose PET scan. VF was found to correlate positively with left temporal cortical region metabolic activity but to correlate negatively with right and left frontal activity. VF was not correlated significantly with right temporal cortical metabolic activity. Some previous studies with normals using behavioral activation paradigms and PET have reported negative correlations between metabolic activity and cognitive performance similar to that reported here. An explanation for the disparate relationships that were observed between frontal and temporal brain areas and VF might be found in the mediation of different task demands by these separate locations, i.e., task planning and/or initiation by frontal regions and verbal memory by the left temporal area.

  2. Activity in Face-Responsive Brain Regions is Modulated by Invisible, Attended Faces: Evidence from Masked Priming

    PubMed Central

    Eger, Evelyn; Dolan, Raymond; Henson, Richard N.

    2009-01-01

    It is often assumed that neural activity in face-responsive regions of primate cortex correlates with conscious perception of faces. However, whether such activity occurs without awareness is still debated. Using functional magnetic resonance imaging (fMRI) in conjunction with a novel masked face priming paradigm, we observed neural modulations that could not be attributed to perceptual awareness. More specifically, we found reduced activity in several classic face-processing regions, including the “fusiform face area,” “occipital face area,” and superior temporal sulcus, when a face was preceded by a briefly flashed image of the same face, relative to a different face, even when 2 images of the same face differed. Importantly, unlike most previous studies, which have minimized awareness by using conditions of inattention, the present results occurred when the stimuli (the primes) were attended. By contrast, when primes were perceived consciously, in a long-lag priming paradigm, we found repetition-related activity increases in additional frontal and parietal regions. These data not only demonstrate that fMRI activity in face-responsive regions can be modulated independently of perceptual awareness, but also document where such subliminal face-processing occurs (i.e., restricted to face-responsive regions of occipital and temporal cortex) and to what extent (i.e., independent of the specific image). PMID:18400791

  3. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Kazuue, E-mail: kfujita@crl.hpk.co.jp; Hitaka, Masahiro; Ito, Akio

    2015-06-22

    We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2}more » at room temperature.« less

  4. A Cryptosporidium parvum genomic region encoding hemolytic activity.

    PubMed Central

    Steele, M I; Kuhls, T L; Nida, K; Meka, C S; Halabi, I M; Mosier, D A; Elliott, W; Crawford, D L; Greenfield, R A

    1995-01-01

    Successful parasitization by Cryptosporidium parvum requires multiple disruptions in both host and protozoan cell membranes as cryptosporidial sporozoites invade intestinal epithelial cells and subsequently develop into asexual and sexual life stages. To identify cryptosporidial proteins which may play a role in these membrane alterations, hemolytic activity was used as a marker to screen a C. parvum genomic expression library. A stable hemolytic clone (H4) containing a 5.5-kb cryptosporidial genomic fragment was identified. The hemolytic activity encoded on H4 was mapped to a 1-kb region that contained a complete 690-bp open reading frame (hemA) ending in a common stop codon. A 21-kDa plasmid-encoded recombinant protein was expressed in maxicells containing H4. Subclones of H4 which contained only a portion of hemA did not induce hemolysis on blood agar or promote expression of the recombinant protein in maxicells. Reverse transcriptase-mediated PCR analysis of total RNA isolated from excysted sporozoites and the intestines of infected adult mice with severe combined immunodeficiency demonstrated that hemA is actively transcribed during the cryptosporidial life cycle. PMID:7558289

  5. 77 FR 50520 - Agency Information Collection Activities: Application for Regional Center Under the Immigrant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ...-0061] Agency Information Collection Activities: Application for Regional Center Under the Immigrant... collection. (2) Title of the Form/Collection: Application for Regional Center under the Immigrant Investor... behalf of an entity under the Immigrant Investor Pilot Program. (5) An estimate of the total number of...

  6. Posterior consistency in conditional distribution estimation

    PubMed Central

    Pati, Debdeep; Dunson, David B.; Tokdar, Surya T.

    2014-01-01

    A wide variety of priors have been proposed for nonparametric Bayesian estimation of conditional distributions, and there is a clear need for theorems providing conditions on the prior for large support, as well as posterior consistency. Estimation of an uncountable collection of conditional distributions across different regions of the predictor space is a challenging problem, which differs in some important ways from density and mean regression estimation problems. Defining various topologies on the space of conditional distributions, we provide sufficient conditions for posterior consistency focusing on a broad class of priors formulated as predictor-dependent mixtures of Gaussian kernels. This theory is illustrated by showing that the conditions are satisfied for a class of generalized stick-breaking process mixtures in which the stick-breaking lengths are monotone, differentiable functions of a continuous stochastic process. We also provide a set of sufficient conditions for the case where stick-breaking lengths are predictor independent, such as those arising from a fixed Dirichlet process prior. PMID:25067858

  7. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some ofmore » these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.« less

  8. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity

    NASA Astrophysics Data System (ADS)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.

    2013-04-01

    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  9. Detailed correlation of type III radio bursts with H alpha activity. I - Active region of 22 May 1970.

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Pasachoff, J. M.

    1973-01-01

    Comparison of observations of type III impulsive radio bursts made at the Clark Lake Radio Observatory with high-spatial-resolution cinematographic observations taken at the Big Bear Solar Observatory. Use of the log-periodic radio interferometer makes it possible to localize the radio emission uniquely. This study concentrates on the particularly active region close to the limb on May 22, 1970. Sixteen of the 17 groups were associated with some H alpha activity, 11 of them with the start of such activity.

  10. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. III - NOAA active region 6233 (1990 August)

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.

    1993-01-01

    We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.

  11. Consistent earthquake catalog derived from changing network configurations: Application to the Rawil Depression in the southwestern Helvetic Alps

    NASA Astrophysics Data System (ADS)

    Lee, Timothy; Diehl, Tobias; Kissling, Edi; Wiemer, Stefan

    2017-04-01

    Earthquake catalogs derived from several decades of observations are often biased by network geometries, location procedures, and data quality changing with time. To study the long-term spatio-temporal behavior of seismogenic fault zones at high-resolution, a consistent homogenization and improvement of earthquake catalogs is required. Assuming that data quality and network density generally improves with time, procedures are needed, which use the best available data to homogeneously solve the coupled hypocenter - velocity structure problem and can be as well applied to earlier network configurations in the same region. A common approach to uniformly relocate earthquake catalogs is the calculation of a so-called "minimum 1D" model, which is derived from the simultaneous inversion for hypocenters and 1D velocity structure, including station specific delay-time corrections. In this work, we will present strategies using the principles of the "minimum 1D" model to consistently relocate hypocenters recorded by the Swiss Seismological Service (SED) in the Swiss Alps over a period of 17 years in a region, which is characterized by significant changes in network configurations. The target region of this study is the Rawil depression, which is located between the Aar and Mont Blanc massifs in southwestern Switzerland. The Rhone-Simplon Fault is located to the south of the Rawil depression and is considered as a dextral strike-slip fault representing the dominant tectonic boundary between Helvetic nappes to the north and Penninic nappes to the south. Current strike-slip earthquakes, however, occur predominantly in a narrow, east-west striking cluster located in the Rawil depression north of the Rhone-Simplon Fault. Recent earthquake swarms near Sion and Sierre in 2011 and 2016, on the other hand, indicate seismically active dextral faults close to the Rhone valley. The region north and south of the Rhone-Simplon Fault is one of the most seismically active regions in

  12. Consistency.

    PubMed

    Levin, Roger

    2005-09-01

    Consistency is a reflection of having the right model, the right systems and the right implementation. As Vince Lombardi, the legendary coach of the Green Bay Packers, once said, "You don't do things right once in a while. You do them right all the time." To provide the ultimate level of patient care, reduce stress for the dentist and staff members and ensure high practice profitability, consistency is key.

  13. Coronal Magnetography of Solar Active Regions Using Coordinated SOHO/CDS and VLA Observations

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1999-01-01

    The purpose of this project is to apply the coronal magnetographic technique to SOHO (Solar Heliospheric Observatory) /CDS (Coronal Diagnostic Spectrometer) EUV (Extreme Ultraviolet Radiation) and coordinated VLA microwave observations of solar active regions to derive the strength and structure of the coronal magnetic field. A CDS observing plan was developed for obtaining spectra needed to derive active region differential emission measures (DEMs) required for coronal magnetography. VLA observations were proposed and obtained. SOHO JOP 100 was developed, tested, approved, and implemented to obtain coordinated CDS (Coronal Diagnostic Spectrometer)/EIT (Ultraviolet Imaging Telescope)/ VLA (Very Large Array)/ TRACE (Transition Region and Coronal Explorer)/ SXT (Solar X Ray Telescope) observations of active regions on April 12, May 9, May 13, and May 23. Analysis of all four data sets began, with heaviest concentration on COS data. It is found that 200-pixel (14 A in NIS1) wavelength windows are appropriate for extracting broadened Gaussian line profile fit parameters for lines including Fe XIV at 334.2, Fe XVI at 335.4, Fe XVI at 360.8, and Mg IX at 368.1 over the 4 arcmin by 4 arcmin CDS field of view. Extensive efforts were focused on learning and applying were focused on learning and applying CDS software, and including it in new IDL procedures to carry out calculations relating to coronal magnetography. An important step is to extract Gaussian profile fits to all the lines needed to derive the DEM in each spatial pixel of any given active region. The standard CDS absolute intensity calibration software was applied to derived intensity images, revealing that ratios between density-insensitive lines like Fe XVI 360.8/335.4 yield good agreement with theory. However, the resulting absolute intensities of those lines are very high, indicating that revisions to the CDS absolute intensity calibrations remain to be included in the CDS software, an essential step to

  14. OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, J. T.; Martens, P. C. H.; Tarr, L.

    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for daysmore » and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.« less

  15. Tracking Photospheric Energy Transport in Active Regions with SDO

    NASA Astrophysics Data System (ADS)

    Attié, R.; Thompson, B. J.

    2017-12-01

    The solar photosphere presents flow fields at all observable scales. Where energy-bearing magnetic active regions break through the photosphere these flows are particularly strong, as sheared and twisted magnetic fields come into equilibrium with their surroundings while transporting magnetic energy into the corona. A part of this magnetic energy - the so-called `free energy' stored in the magnetic field in the form of "twisted" and shear of the field - is released in flares and eruptions. We can quantify the energy arrival and build-up in the corona by tracking flow fields and magnetic features at the photosphere as magnetic flux emerges and evolves before and after a flare or eruption.To do this reliably requires two things: a long series of photospheric observations at high sensitivity, spatial and temporal resolution, and an efficient, reliable and robust framework that tracks the photospheric plasma flows and magnetic evolution in both the quiet sun and active regions. SDO/HMI provides the observations, and we present here an innovative high resolution tracking framework that involves the `Balltracking' and `Magnetic Balltracking' algorithms. We show the first results of a systematic, quantitative and comprehensive measurements of the flows and transport of magnetic energy into the solar atmosphere and investigate whether this dynamic view can improve predictions of flares and Coronal Mass Ejections (CMEs).

  16. Particle acceleration in solar active regions being in the state of self-organized criticality.

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  17. Tracking Organs Composed of One or Multiple Regions Using Geodesic Active Region Models

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Jiménez, J. J.

    In radiotherapy treatment it is very important to find out the target organs on the medical image sequence in order to determine and apply the proper dose. The techniques to achieve this goal can be classified into extrinsic and intrinsic. Intrinsic techniques only use image processing with medical images associated to the radiotherapy Radiotherapy treatment, as we deal in this chapter. To accurately perform this organ tracking it is necessary to find out segmentation and tracking models that were able to be applied to several image modalities involved on a radiotherapy session (CT CT See Modality , MRI Magnetic resoance imaging , etc.). The movements of the organs are mainly affected by two factors: breathing and involuntary movements associated with the internal organs or patient positioning. Among the several alternatives to track the organs of interest, a model based on geodesic active regions is proposed. This model has been tested over CT Computed tomography images from the pelvic, cardiac, and thoracic area. A new model for the segmentation of organs composed by more than one region is proposed.

  18. Predicting Consistency of Meningioma by Magnetic Resonance Imaging

    PubMed Central

    Smith, Kyle A.; Leever, John D.; Chamoun, Roukoz B.

    2015-01-01

    Objective Meningioma consistency is important because it affects the difficulty of surgery. To predict preoperative consistency, several methods have been proposed; however, they lack objectivity and reproducibility. We propose a new method for prediction based on tumor to cerebellar peduncle T2-weighted imaging intensity (TCTI) ratios. Design The magnetic resonance (MR) images of 20 consecutive patients were evaluated preoperatively. An intraoperative consistency scale was applied to these lesions prospectively by the operating surgeon based on Cavitron Ultrasonic Surgical Aspirator (Valleylab, Boulder, Colorado, United States) intensity. Tumors were classified as A, very soft; B, soft/intermediate; or C, fibrous. Using T2-weighted MR sequence, the TCTI ratio was calculated. Tumor consistency grades and TCTI ratios were then correlated. Results Of the 20 tumors evaluated prospectively, 7 were classified as very soft, 9 as soft/intermediate, and 4 as fibrous. TCTI ratios for fibrous tumors were all ≤ 1; very soft tumors were ≥ 1.8, except for one outlier of 1.66; and soft/intermediate tumors were > 1 to < 1.8. Conclusion We propose a method using quantifiable region-of-interest TCTIs as a uniform and reproducible way to predict tumor consistency. The intraoperative consistency was graded in an objective and clinically significant way and could lead to more efficient tumor resection. PMID:26225306

  19. Particle Acceleration in a Statistically Modeled Solar Active-Region Corona

    NASA Astrophysics Data System (ADS)

    Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.

    2013-09-01

    Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  20. A study on biological activity of marine fungi from different habitats in coastal regions.

    PubMed

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  1. The cancellation of magnetic flux. II - In a decaying active region. [of sun

    NASA Technical Reports Server (NTRS)

    Martin, S. F.; Livi, S. H. B.; Wang, J.

    1985-01-01

    H-alpha filtergrams and videomagnetograms are used to study an active region during its period of decay on August 3-8, 1984; the decay had been initiated by a fragmentation process in which very small knots of magnetic flux separated from larger concentration of flux. The disappearance of magnetic flux was always observed when the small fragments of flux encountered other small fragments or concentrations of flux of opposite polarity. Such 'cancellations' are shared by both polarities of magnetic field, and it is deduced that the disappearance of flux occurred either at or within 5 arcsec of the apparent dividing line between the opposite polarities. All of the 22 flares observed during the decay of this region were initiated around sites where magnetic flux was cancelling or was deduced to be cancelling during the flares. It is hypothesized that cancellation was one of the necessary conditions for flaring in this active region.

  2. Probing the N-5 region of the indoloquinoline alkaloid, cryptolepine for anticryptococcal activity.

    PubMed

    Ablordeppey, S Y; Fan, P; Clark, A M; Nimrod, A

    1999-02-01

    N-5 Alkylated analogues of cryptolepine were synthesized and tested for anticryptococcal activity. Evidence provided in this study suggests that the active form of cryptolepine consists of the flat tetracyclic aromatic ring with the methyl group on the N-5 atom. It was also found that changes in the electronic density around the N-5 atom do not appear to affect activity. Steric hindrance of the N-5 substituents seems to decrease activity. Through systematic modification of the N-5 alkyl groups, o-phenylpentyl group was shown to possess the highest potency thus far.

  3. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  4. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  5. Semiannual and solar activity variations of daytime plasma observed by DEMETER in the ionosphere-plasmasphere transition region

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Cao, J. B.; Yang, J. Y.; Berthelier, J. J.; Lebreton, J.-P.

    2015-12-01

    Using the plasma data of Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite and the NRLMSISE-00 atmospheric model, we examined the semiannual and solar activity variations of the daytime plasma and neutral composition densities in the ionosphere-plasmasphere transition region (~670-710 km). The results demonstrate that the semiannually latitudinal variation of the daytime oxygen ions (O+) is basically controlled by that of neutral atomic oxygen (O), whereas the latitude distributions of the helium and hydrogen ions (He+ and H+) do not fully depend on the neutral atomic helium (He) and hydrogen (H). The summer enhancement of the heavy oxygen ions is consistent with the neutral O enhancement in the summer hemisphere, and the oxygen ion density has significantly the summer-dense and winter-tenuous hemispheric asymmetry with respect to the dip equator. Although the winter enhancements of the lighter He+ and H+ ions are also associated with the neutral He and H enhancements in the winter hemisphere, the high-density light ions (He+ and H+) and electrons (e-) mainly appear at the low and middle magnetic latitudes (|λ| < 50°). The equatorial accumulations of the light plasma species indicate that the light charged particles (He+, H+, and e-) are easily transported by some equatorward forces (e.g., the magnetic mirror force and centrifugal force). The frequent Coulomb collisions between the charged particles probably lead to the particle trappings at different latitudes. Moreover, the neutral composition densities also influence their ion concentrations during different solar activities. From the low-F10.7 year (2007-2008) to the high-F10.7 year (2004-2005), the daytime oxygen ions and electrons increase with the increasing neutral atomic oxygen, whereas the daytime hydrogen ions tend to decrease with the decreasing neutral atomic hydrogen. The helium ion density has no obvious solar activity variation, suggesting that the

  6. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  7. Regionalizing muscle activity causes changes to the magnitude and direction of the force from whole muscles-a modeling study.

    PubMed

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M

    2014-01-01

    Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active.

  8. Regional Kendall test for trend

    USGS Publications Warehouse

    Helsel, D.R.; Frans, L.M.

    2006-01-01

    Trends in environmental variables are often investigated within a study region at more than one site. At each site, a trend analysis determines whether a trend has occurred. Yet often also of interest is whether a consistent trend is evident throughout the entire region. This paper adapts the Seasonal Kendall trend test to determine whether a consistent regional trend occurs in environmental variables.

  9. MAGNETIC PROPERTIES OF SOLAR ACTIVE REGIONS THAT GOVERN LARGE SOLAR FLARES AND ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise K.

    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim of understanding the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with Geostationary Orbiting Environmental Satellite levels of ≥M5.0 within 45° from disk center between 2010 May and 2016 April. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory . More than 80% of the 29 ARs are found to exhibit δ -sunspots, and at least three ARs violatemore » Hale’s polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization shows that even X-class events do not require δ -sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2 × 10{sup 23} Mx, might be able to produce “superflares” with energies of the order of 10{sup 34} erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.« less

  10. Triggering Process of the X1.0 Three-ribbon Flare in the Great Active Region NOAA 12192

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Yumi; Inoue, Satoshi; Kusano, Kanya

    The solar magnetic field in a flare-producing active region (AR) is much more complicated than theoretical models, which assume a very simple magnetic field structure. The X1.0 flare, which occurred in AR 12192 on 2014 October 25, showed a complicated three-ribbon structure. To clarify the trigger process of the flare and to evaluate the applicability of a simple theoretical model, we analyzed the data from Hinode /Solar Optical Telescope and the Solar Dynamics Observatory /Helioseismic and Magnetic Imager, Atmospheric Imaging Assembly. We investigated the spatio-temporal correlation between the magnetic field structures, especially the non-potentiality of the horizontal field, and themore » bright structures in the solar atmosphere. As a result, we determined that the western side of the positive polarity, which is intruding on a negative polarity region, is the location where the flare was triggered. This is due to the fact that the sign of the magnetic shear in that region was opposite that of the major shear of the AR, and the significant brightenings were observed over the polarity inversion line (PIL) in that region before flare onset. These features are consistent with the recently proposed flare-trigger model that suggests that small reversed shear (RS) magnetic disturbances can trigger solar flares. Moreover, we found that the RS field was located slightly off the flaring PIL, contrary to the theoretical prediction. We discuss the possibility of an extension of the RS model based on an extra numerical simulation. Our result suggests that the RS field has a certain flexibility for displacement from a highly sheared PIL, and that the RS field triggers more flares than we expected.« less

  11. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.).

    PubMed

    Yin, Tao; Wu, Hanying; Zhang, Shanglong; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming; Liu, Jingmei

    2009-01-01

    A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.

  12. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.)

    PubMed Central

    Yin, Tao; Wu, Hanying; Zhang, Shanglong; Liu, Jingmei; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming

    2009-01-01

    A 1.8 kb 5′-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from –986 to –959 and from –472 to –424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative β-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were ∼10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves. PMID:19073962

  13. Photonic crystal lasers using wavelength-scale embedded active region

    NASA Astrophysics Data System (ADS)

    Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya; Fujii, Takuro; Hasebe, Koichi; Kakitsuka, Takaaki

    2014-01-01

    Lasers with ultra-low operating energy are desired for use in chip-to-chip and on-chip optical interconnects. If we are to reduce the operating energy, we must reduce the active volume. Therefore, a photonic crystal (PhC) laser with a wavelength-scale cavity has attracted a lot of attention because a PhC provides a large Q-factor with a small volume. To improve this device's performance, we employ an embedded active region structure in which the wavelength-scale active region is buried with an InP PhC slab. This structure enables us to achieve effective confinement of both carriers and photons, and to improve the thermal resistance of the device. Thus, we have obtained a large external differential quantum efficiency of 55% and an output power of -10 dBm by optical pumping. For electrical pumping, we use a lateral p-i-n structure that employs Zn diffusion and Si ion implantation for p-type and n-type doping, respectively. We have achieved room-temperature continuous-wave operation with a threshold current of 7.8 µA and a maximum 3 dB bandwidth of 16.2 GHz. The results of an experimental bit error rate measurement with a 10 Gbit s-1 NRZ signal reveal the minimum operating energy for transferring a single bit of 5.5 fJ. These results show the potential of this laser to be used for very short reach interconnects. We also describe the optimal design of cavity quality (Q) factor in terms of achieving a large output power with a low operating energy using a calculation based on rate equations. When we assume an internal absorption loss of 20 cm-1, the optimized coupling Q-factor is 2000.

  14. A consistent time frame for Chaucer's Canterbury Pilgrimage

    NASA Astrophysics Data System (ADS)

    Kummerer, K. R.

    2001-08-01

    A consistent time frame for the pilgrimage that Geoffrey Chaucer describes in The Canterbury Tales can be established if the seven celestial assertions related to the journey mentioned in the text can be reconciled with each other and the date of April 18 that is also mentioned. Past attempts to establish such a consistency for all seven celestial assertions have not been successful. The analysis herein, however, indicates that in The Canterbury Tales Chaucer accurately describes the celestial conditions he observed in the April sky above the London(Canterbury region of England in the latter half of the fourteenth century. All seven celestial assertions are in agreement with each other and consistent with the April 18 date. The actual words of Chaucer indicate that the Canterbury journey began during the 'seson' he defines in the General Prologue and ends under the light of the full Moon on the night of April 18, 1391.

  15. Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: Preliminary results

    PubMed Central

    Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.

    2013-01-01

    Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535

  16. Non-homeodomain regions of Hox proteins mediate activation versus repression of Six2 via a single enhancer site in vivo

    PubMed Central

    Yallowitz, Alisha R.; Gong, Ke-Qin; Swinehart, Ilea T.; Nelson, Lisa T.; Wellik, Deneen M.

    2009-01-01

    Summary Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity is poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins. PMID:19716816

  17. Active tectonics and earthquake potential of the Myanmar region

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  18. >100% output differential efficiency 1.55-μm VCSELs using submonolayer superlattices digital-alloy multiple-active-regions grown by MBE on InP

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Koda, R.; Huntington, A. S.; Gossard, A. C.; Coldren, L. A.

    2005-04-01

    High-quality InAlGaAs digital-alloy active regions using submonolayer superlattices were developed and employed in a 3-stage bipolar cascade multiple-active-region vertical cavity surface emitting laser (VCSEL) design. The photoluminescence intensity and linewidth of these active regions were optimized by varying the substrate temperature and digitization period. These active regions exhibit considerable improvement over previously developed digital-alloy active regions and are comparable to analog-alloy active regions. Multiple-active-region VCSELs, grown all-epitaxially by MBE on InP, demonstrate greater than 100% output differential efficiency at 1.55-μm emission. A record high 104% output differential efficiency was achieved for a 3-stage long-wavelength VCSEL.

  19. Song and speech: brain regions involved with perception and covert production.

    PubMed

    Callan, Daniel E; Tsytsarev, Vassiliy; Hanakawa, Takashi; Callan, Akiko M; Katsuhara, Maya; Fukuyama, Hidenao; Turner, Robert

    2006-07-01

    This 3-T fMRI study investigates brain regions similarly and differentially involved with listening and covert production of singing relative to speech. Given the greater use of auditory-motor self-monitoring and imagery with respect to consonance in singing, brain regions involved with these processes are predicted to be differentially active for singing more than for speech. The stimuli consisted of six Japanese songs. A block design was employed in which the tasks for the subject were to listen passively to singing of the song lyrics, passively listen to speaking of the song lyrics, covertly sing the song lyrics visually presented, covertly speak the song lyrics visually presented, and to rest. The conjunction of passive listening and covert production tasks used in this study allow for general neural processes underlying both perception and production to be discerned that are not exclusively a result of stimulus induced auditory processing nor to low level articulatory motor control. Brain regions involved with both perception and production for singing as well as speech were found to include the left planum temporale/superior temporal parietal region, as well as left and right premotor cortex, lateral aspect of the VI lobule of posterior cerebellum, anterior superior temporal gyrus, and planum polare. Greater activity for the singing over the speech condition for both the listening and covert production tasks was found in the right planum temporale. Greater activity in brain regions involved with consonance, orbitofrontal cortex (listening task), subcallosal cingulate (covert production task) were also present for singing over speech. The results are consistent with the PT mediating representational transformation across auditory and motor domains in response to consonance for singing over that of speech. Hemispheric laterality was assessed by paired t tests between active voxels in the contrast of interest relative to the left-right flipped contrast of

  20. Eastern region represents a worrying cluster of active hepatitis C in Algeria in 2012.

    PubMed

    Bensalem, Aïcha; Selmani, Karima; Hihi, Narjes; Bencherifa, Nesrine; Mostefaoui, Fatma; Kerioui, Cherif; Pineau, Pascal; Debzi, Nabil; Berkane, Saadi

    2016-08-01

    Algeria is the largest country of Africa, peopled with populations living a range of traditional/rural and modern/urban lifestyles. The variations of prevalence of chronic active hepatitis care poorly known on the Algerian territory. We conducted a retrospective survey on all patients (n = 998) referred to our institution in 2012 and confirmed by us for an active hepatitis C. Half of the hepatitis C virus (HCV) isolates were genotyped. Forty Algerian regions out of the 48 were represented in our study. Three geographical clusters (Aïn-Temouchent/SidiBelAbbes, Algiers, and a large Eastern region) with an excess of active hepatitis C were observed. Patients coming from the Eastern cluster (Batna, Khenchela, Oum el Bouaghi, and Tebessa) were strongly over-represented (49% of cases, OR = 14.5, P < 0.0001). The hallmarks of Eastern region were an excess of women (65% vs. 46% in the remaining population, P < 0.0001) and the almost exclusive presence of HCV genotype 1 (93% vs. 63%, P = 0.0001). The core of the epidemics was apparently located in Khenchela (odds ratio = 24.6, P < 0.0001). This situation is plausibly connected with nosocomial transmission or traditional practices as scarification (Hijama), piercing or tattooing, very lively in this region. Distinct hepatitis C epidemics are currently affecting Algerian population. The most worrying situation is observed in rural regions located east of Algeria. J. Med. Virol. 88:1394-1403, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Alteration of lysine 178 in the hinge region of the Escherichia coli ada protein interferes with activation of ada, but not alkA, transcription.

    PubMed

    Saget, B M; Shevell, D E; Walker, G C

    1995-03-01

    The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosphotriester lesion converts Ada into a transcriptional activator of the ada and alkA genes. Activation of ada, but not alkA, requires elements contained within the carboxyl-terminal domain of Ada. In addition, physiologically relevant concentrations of the unmethylated form of Ada specifically inhibit methylated Ada-promoted ada transcription both in vitro and in vivo and it has been suggested that this phenomenon plays a pivotal role in the down-regulation of the adaptive response. A set of site-directed mutations were generated within the hinge region, changing the lysine residue at position 178 to leucine, valine, glycine, tyrosine, arginine, cysteine, proline, and serine. All eight mutant proteins have deficiencies in their ability to activate ada transcription in the presence or absence of a methylating agent but are proficient in alkA activation. AdaK178P (lysine 178 changed to proline) is completely defective for the transcriptional activation function of ada while it is completely proficient for transcriptional activation of alkA. In addition, AdaK178P possesses both classes of DNA repair activities both in vitro and in vivo. Transcriptional activation of ada does not occur if both the amino- and carboxyl-terminal domains are produced separately within the same cell. The mutation at position 178 might interfere with activation of ada transcription by changing a critical contact with RNA polymerase, by causing a conformational change of Ada, or by interfering with the

  2. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    PubMed

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  3. Forced precession of the cometary nucleus with randomly placed active regions

    NASA Technical Reports Server (NTRS)

    Szutowicz, Slawomira

    1992-01-01

    The cometary nucleus is assumed to be triaxial or axisymmetric spheroid rotating about its axis of maximum moment of inertia and is forced to precess due to jets of ejected material. Randomly placed regions of exposed ice on the surface of the nucleus are assumed to produce gas and dust. The solution of the heat conduction equation for each active region is used to find the gas sublimation rate and the jet acceleration. Precession of the comet nucleus is followed numerically using a phase-averaged system of equations. The gas production curves and the variation of the spin axis during the orbital motion of the comet are presented.

  4. Brain noise is task dependent and region specific.

    PubMed

    Misić, Bratislav; Mills, Travis; Taylor, Margot J; McIntosh, Anthony R

    2010-11-01

    The emerging organization of anatomical and functional connections during human brain development is thought to facilitate global integration of information. Recent empirical and computational studies have shown that this enhanced capacity for information processing enables a diversified dynamic repertoire that manifests in neural activity as irregularity and noise. However, transient functional networks unfold over multiple time, scales and the embedding of a particular region depends not only on development, but also on the manner in which sensory and cognitive systems are engaged. Here we show that noise is a facet of neural activity that is also sensitive to the task context and is highly region specific. Children (6-16 yr) and adults (20-41 yr) performed a one-back face recognition task with inverted and upright faces. Neuromagnetic activity was estimated at several hundred sources in the brain by applying a beamforming technique to the magnetoencephalogram (MEG). During development, neural activity became more variable across the whole brain, with most robust increases in medial parietal regions, such as the precuneus and posterior cingulate cortex. For young children and adults, activity evoked by upright faces was more variable and noisy compared with inverted faces, and this effect was reliable only in the right fusiform gyrus. These results are consistent with the notion that upright faces engender a variety of integrative neural computations, such as the relations among facial features and their holistic constitution. This study shows that transient changes in functional integration modulated by task demand are evident in the variability of regional neural activity.

  5. Socioeconomic and regional differences in active transportation in Brazil.

    PubMed

    Sá, Thiago Hérick de; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-06-27

    To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. By using data from the Health section of 2008's Pesquisa Nacional por Amostra de Domicílio (Brazil's National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making. Apresentar estimativas nacionais sobre o deslocamento a pé ou de bicicleta no trajeto casa-trabalho no Brasil e em 10 de suas regiões metropolitanas. Utilizando dados do Suplemento sobre Saúde da Pesquisa Nacional por Amostra de Domicílios de 2008, estimamos a frequência de pessoas empregadas que se deslocam a pé ou de bicicleta no trajeto casa-trabalho estratificada por sexo, e segundo faixa etária, escolaridade, renda domiciliar per capita, residência em área urbana ou rural, regiões metropolitanas e macrorregiões do país. Adicionalmente, estimamos a distribuição da mesma frequ

  6. Guided color consistency optimization for image mosaicking

    NASA Astrophysics Data System (ADS)

    Xie, Renping; Xia, Menghan; Yao, Jian; Li, Li

    2018-01-01

    This paper studies the problem of color consistency correction for sequential images with diverse color characteristics. Existing algorithms try to adjust all images to minimize color differences among images under a unified energy framework, however, the results are prone to presenting a consistent but unnatural appearance when the color difference between images is large and diverse. In our approach, this problem is addressed effectively by providing a guided initial solution for the global consistency optimization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable intensity correspondences in overlapping regions between image pairs, we creatively propose the histogram extreme point matching algorithm which is robust to image geometrical misalignment to some extents. In the absence of the extra reference information, the guided initial solution is learned from the major tone of the original images by searching some image subset as the reference, whose color characteristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global adjustment will take on a consistent color similar to the appearance of the reference image subset. Several groups of convincing experiments on both the synthetic dataset and the challenging real ones sufficiently demonstrate that the proposed approach can achieve as good or even better results compared with the state-of-the-art approaches.

  7. Regional Variation in Geniohyoid Muscle Strain During Suckling in the Infant Pig

    PubMed Central

    HOLMAN, SHAINA DEVI; KONOW, NICOLAI; LUKASIK, STACEY L.; GERMAN, REBECCA Z.

    2014-01-01

    The geniohyoid muscle (GH) is a critical suprahyoid muscle in most mammalian oropharyngeal motor activities. We used sonomicrometry to evaluate regional strain (i.e., changes in length) in the muscle origin, belly, and insertion during suckling in infant pigs, and compared the results to existing information on strain heterogeneity in the hyoid musculature. We tested the hypothesis that during rhythmic activity, the GH shows regional variation in muscle strain. We used sonomicrometry transducer pairs to divide the muscle into three regions from anterior to posterior. The results showed differences in strain among the regions within a feeding cycle; however, no region consistently shortened or lengthened over the course of a cycle. Moreover, regional strain patterns were not correlated with timing of the suck cycles, neither (1) relative to a swallow cycle (before or after) nor (2) to the time in feeding sequence (early or late). We also found a tight relationship between muscle activity and muscle strain, however, the relative timing of muscle activity and muscle strain was different in some muscle regions and between individuals. A dissection of the C1 innervations of the geniohyoid showed that there are between one and three branches entering the muscle, possibly explaining the variation seen in regional activity and strain. In combination, our findings suggest that regional heterogeneity in muscle strain during patterned suckling behavior functions to stabilize the hyoid bone, whereas the predictable regional strain differences in reflexive behaviors may be necessary for faster and higher amplitude movements of the hyoid bone. PMID:22549885

  8. CB1 Cannabinoid Receptor Activation Dose-Dependently Modulates Neuronal Activity within Caudal but not Rostral Song Control Regions of Adult Zebra Finch Telencephalon

    PubMed Central

    Soderstrom, Ken; Tian, Qiyu

    2008-01-01

    CB1 cannabinoid receptors are distinctly expressed at high density within several regions of zebra finch telencephalon including those known to be involved in song learning (lMAN and Area X) and production (HVC and RA). Because: (1) exposure to cannabinoid agonists during developmental periods of auditory and sensory-motor song learning alters song patterns produced later in adulthood and; (2) densities of song region expression of CB1 waxes-and-wanes during song learning, it is becoming clear that CB1 receptor-mediated signaling is important to normal processes of vocal development. To better understand mechanisms involved in cannabinoid modulation of vocal behavior we have investigated the dose-response relationship between systemic cannabinoid exposure and changes in neuronal activity (as indicated by expression of the transcription factor, c-Fos) within telencephalic brain regions with established involvement in song learning and/or control. In adults we have found that low doses (0.1 mg/kg) of the cannabinoid agonist WIN-55212-2 decrease neuronal activity (as indicated by densities of c-fos-expressing nuclei) within vocal motor regions of caudal telencephalon (HVC and RA) while higher doses (3 mg/kg) stimulate activity. Both effects were reversed by pretreatment with the CB1-selective antagonist rimonabant. Interestingly, no effects of cannabinoid treatment were observed within the rostral song regions lMAN and Area X, despite distinct and dense CB1 receptor expression within these areas. Overall, our results demonstrate that, depending on dosage, CB1 agonism can both inhibit and stimulate neuronal activity within brain regions controlling adult vocal motor output, implicating involvement of multiple CB1-sensitive neuronal circuits. PMID:18509622

  9. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation.

    PubMed

    Fehr, Thorsten; Code, Chris; Herrmann, Manfred

    2007-10-03

    The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.

  10. Distortion in the spacer region of Pm during activation of middle transcription of phage Mu.

    PubMed Central

    Artsimovitch, I; Kahmeyer-Gabbe, M; Howe, M M

    1996-01-01

    Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point. Images Fig. 2 Fig. 3 Fig. 4 PMID:8790343

  11. Regional homogeneity of the resting-state brain activity correlates with individual intelligence.

    PubMed

    Wang, Leiqiong; Song, Ming; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2011-01-25

    Resting-state functional magnetic resonance imaging has confirmed that the strengths of the long distance functional connectivity between different brain areas are correlated with individual differences in intelligence. However, the association between the local connectivity within a specific brain region and intelligence during rest remains largely unknown. The aim of this study is to investigate the relationship between local connectivity and intelligence. Fifty-nine right-handed healthy adults participated in the study. The regional homogeneity (ReHo) was used to assess the strength of local connectivity. The associations between ReHo and full-scale intelligence quotient (FSIQ) scores were studied in a voxel-wise manner using partial correlation analysis controlling for age and sex. We found that the FSIQ scores were positively correlated with the ReHo values of the bilateral inferior parietal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule. The main findings are consistent with the parieto-frontal integration theory (P-FIT) of intelligence, supporting the view that general intelligence involves multiple brain regions throughout the brain. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Observations of vector magnetic fields in flaring active regions

    NASA Technical Reports Server (NTRS)

    Chen, Jimin; Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1994-01-01

    We present vector magnetograph data of 6 active regions, all of which produced major flares. Of the 20 M-class (or above) flares, 7 satisfy the flare conditions prescribed by Hagyard (high shear and strong transverse fields). Strong photospheric shear, however, is not necessarily a condition for a flare. We find an increase in the shear for two flares, a 6-deg shear increase along the neutral line after a X-2 flare and a 13-deg increase after a M-1.9 flare. For other flares, we did not detect substantial shear changes.

  13. Biological activities of polyphenols-enriched propolis from Argentina arid regions.

    PubMed

    Salas, Ana Lilia; Alberto, María Rosa; Zampini, Iris Catiana; Cuello, Ana Soledad; Maldonado, Luis; Ríos, José Luis; Schmeda-Hirschmann, Guillermo; Isla, María Inés

    2016-01-15

    Propolis is a bioactive natural product collected by honeybees (Apis mellifera) from plant sources. This study was undertaken to determine the effect of propolis extracts from arid region of Argentina, on the activity/expression of pro-inflammatory enzymes, and as potential free radical scavenger, antifungal and anthelmintic agent as well as to get a first insight into the polyphenolic profile of the active fractions. Two propolis samples were collected in different time from hives located in Tucumán, Argentina. They are representative of the collection time of the raw material for phytotherapeutical purposes. Ethanolic extracts from both propolis were obtained. The PEEs were analyzed for total polyphenol (TP), non-flavonoid phenols (NFP) and flavonoid (FP) content followed by HPLC-DAD analysis and identification of components by HPLC-MS/MS(n). The potentiality as anti-inflammatory (LOX, COX, iNOS enzymes), antioxidant, antifungal and nematicidal was determined. PEEs contain high levels of TP, NFP and FP, including cinnamic acid, caffeic acid prenyl ester, caffeoyl dihydrocaffeate and caffeic acid 3,4-dihydroxyphenethyl ester, liquiritigenin, 2',4'-dihydroxychalcone and 2',4'-dihydroxy-3'-methoxychalcone. The PEEs in vitro reduced the activity of LOX and COX-2. Pretreatment of RAW 264.7 cells with PEEs before the induction of inflammatory state, inhibited NO overproduction and the iNOS protein expression was significantly decreased. The PEEs exhibited antioxidant, antifungal (Candida sp.) and nematicidal effect (C. elegans). These findings show the potential use of characterized PEEs from arid regions of Argentina as phytomedicine. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Methods for regionalization of impacts of non-toxic air pollutants in life-cycle assessments often tell a consistent story

    NASA Astrophysics Data System (ADS)

    Djomo, S. Njakou; Knudsen, M. T.; Andersen, M. S.; Hermansen, J. E.

    2017-11-01

    There is an ongoing debate regarding the influence of the source location of pollution on the fate of pollutants and their subsequent impacts. Several methods have been developed to derive site-dependent characterization factors (CFs) for use in life-cycle assessment (LCA). Consistent, precise, and accurate estimates of CFs are crucial for establishing long-term, sustainable air pollution abatement policies. We reviewed currently available studies on the regionalization of non-toxic air pollutants in LCA. We also extracted and converted data into indices for analysis. We showed that CFs can distinguish between emissions occurring in different locations, and that the different methods used to derive CFs map locations consistently from very sensitive to less sensitive. Seasonal variations are less important for the computation of CFs for acidification and eutrophication, but they are relevant for the calculation of CFs for tropospheric ozone formation. Large intra-country differences in estimated CFs suggest that an abatement policy relying on quantitative estimates based upon a single method may have undesirable outcomes. Within country differences in estimates of CFs for acidification and eutrophication are the results of the models used, category definitions, soil sensitivity factors, background emission concentration, critical loads database, and input data. Striking features in these studies were the lack of CFs for countries outside Europe, the USA, Japan, and Canada, the lack of quantification of uncertainties. Parameter and input data uncertainties are well quantified, but the uncertainty associated with the choice of category indicator is rarely quantified and this can be significant. Although CFs are scientifically robust, further refinements are needed before they can be integrated in LCA. Future research should include uncertainty analyses, and should develop a consensus model for CFs. CFs for countries outside Europe, Japan, Canada and the USA are

  15. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions

    PubMed Central

    Laufs, Helmut; Hamandi, Khalid; Salek-Haddadi, Afraim; Kleinschmidt, Andreas K; Duncan, John S; Lemieux, Louis

    2007-01-01

    A cerebral network comprising precuneus, medial frontal, and temporoparietal cortices is less active both during goal-directed behavior and states of reduced consciousness than during conscious rest. We tested the hypothesis that the interictal epileptic discharges affect activity in these brain regions in patients with temporal lobe epilepsy who have complex partial seizures. At the group level, using electroencephalography-correlated functional magnetic resonance imaging in 19 consecutive patients with focal epilepsy, we found common decreases of resting state activity in 9 patients with temporal lobe epilepsy (TLE) but not in 10 patients with extra-TLE. We infer that the functional consequences of TLE interictal epileptic discharges are different from those in extra-TLE and affect ongoing brain function. Activity increases were detected in the ipsilateral hippocampus in patients with TLE, and in subthalamic, bilateral superior temporal and medial frontal brain regions in patients with extra-TLE, possibly indicating effects of different interictal epileptic discharge propagation. PMID:17133385

  16. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    PubMed

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  18. Simulating Coronal Loop Implosion and Compressible Wave Modes in a Flare Hit Active Region

    NASA Astrophysics Data System (ADS)

    Sarkar, Aveek; Vaidya, Bhargav; Hazra, Soumitra; Bhattacharyya, Jishnu

    2017-12-01

    There is considerable observational evidence of implosion of magnetic loop systems inside solar coronal active regions following high-energy events like solar flares. In this work, we propose that such collapse can be modeled in three dimensions quite accurately within the framework of ideal magnetohydrodynamics. We furthermore argue that the dynamics of loop implosion is only sensitive to the transmitted disturbance of one or more of the system variables, e.g., velocity generated at the event site. This indicates that to understand loop implosion, it is sensible to leave the event site out of the simulated active region. Toward our goal, a velocity pulse is introduced to model the transmitted disturbance generated at the event site. Magnetic field lines inside our simulated active region are traced in real time, and it is demonstrated that the subsequent dynamics of the simulated loops closely resemble observed imploding loops. Our work highlights the role of plasma β in regards to the rigidity of the loop systems and how that might affect the imploding loops’ dynamics. Compressible magnetohydrodynamic modes such as kink and sausage are also shown to be generated during such processes, in accordance with observations.

  19. Correlation of the Coronal Mass Ejection Productivity of Solar Active Regions with Measures of their Global Nonpotentiality from Vector Magnetograms: Baseline Results

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2002-01-01

    Conventional magnetograms and chromospheric and coronal images show qualitatively that the fastest coronal mass ejections (CMEs) are magnetic explosions from sunspot active regions where the magnetic field is globally strongly sheared and twisted from its minimum-energy potential configuration. We present measurements from active region vector magnetograms that start to quantify the dependence of an active region's CME productivity on the global nonpotentiality of its magnetic field. From each of 17 magnetograms of 12 bipolar active regions, we measured the size of the active region (the magnetic flux content, phi) and three separate measures of the global nonpotentiality (L(sub SS), the length of strong-shear, strong-field main neutral line: I(sub N), the net electric current connecting one polarity to the other; and alpha = (mu)I(sub N)/phi), a flux normalized measure of the field twist). From these measurements and the observed CME productivity of the active regions, we find that: (1) All three measures of global nonpotentiality are statistically correlated with the active region flux content and with each other; (2) All three measures of global nonpotentiality are significantly correlated with CME productivity. The flux content correlates with CME productivity, but at a lower statistically significant confidence level (less than 95%); (3) The net current is less closely correlated with CME productivity than alpha and the correlation of CME productivity with flux content is even weaker. If these differences in correlation strength, and a significant correlation of alpha with flux content, persist to larger active regions, this would imply that the size of active regions does not affect CME productivity except through global nonpotentiality; and (4) For each of the four global magnetic quantities, the correlation with CME productivity is stronger for a two-day time window for the CME production than for windows half as wide or twice as wide. This plausibly is a

  20. Simultaneous Solar Maximum Mission and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1985-01-01

    Simultaneous observations of solar active regions with the Solar Maximum Mission (SMM) Satellite and the Very Large Array (VLA) have been obtained and analyzed. Combined results enhance the scientific return for beyond that expeted from using either SMM or VLA alone. A total of two weeks of simultaneous SMM/VLA data were obtained. The multiple wavelength VLA observations were used to determine the temperature and magnetic structure at different heights within coronal loops. These data are compared with simultaneous SMM observations. Several papers on the subject are in progress. They include VLA observations of compact, transient sources in the transition region; simultaneous SMM/VLA observations of the coronal loops in one active region and the evolution of another one; and sampling of the coronal plasma using thermal cyclotron lines (magnetic field - VLA) and soft X ray spectral lines (electron density and electron temperaure-SMM).

  1. Coherent activity between brain regions that code for value is linked to the malleability of human behavior

    PubMed Central

    Cooper, Nicole; Bassett, Danielle S.; Falk, Emily B.

    2017-01-01

    Brain activity in medial prefrontal cortex (MPFC) during exposure to persuasive messages can predict health behavior change. This brain-behavior relationship has been linked to areas of MPFC previously associated with self-related processing; however, the mechanism underlying this relationship is unclear. We explore two components of self-related processing – self-reflection and subjective valuation – and examine coherent activity between relevant networks of brain regions during exposure to health messages encouraging exercise and discouraging sedentary behaviors. We find that objectively logged reductions in sedentary behavior in the following month are linked to functional connectivity within brain regions associated with positive valuation, but not within regions associated with self-reflection on personality traits. Furthermore, functional connectivity between valuation regions contributes additional information compared to average brain activation within single brain regions. These data support an account in which MPFC integrates the value of messages to the self during persuasive health messaging and speak to broader questions of how humans make decisions about how to behave. PMID:28240271

  2. Formation and Eruption Process of a Filament in Active Region NOAA 12241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jincheng; Yan, Xiaoli; Qu, ZhongQuan

    In order to better understand active-region filaments, we present an intensive study on the formation and eruption of a filament in active region NOAA 12241 during the period from 2014 December 18 to 19. Using observations from the Helioseismic and Magnetic Imager (HMI) vector magnetograms, we investigate the helicity injection rate, Lorentz force, and vertical electric current in the entire region associated with the filament. The helicity injection rate before eruption is found to be larger than that after eruption, while the vertical electric current undergoes an increase at first and then a gradual decrease, similar to what the magneticmore » flux undergoes. Meanwhile, we find that the right part of the filament is formed by magnetic reconnection between two bundles of magnetic field lines while the left part originated from shearing motion. The interaction of the two parts causes the eruption of this filament. The mean horizontal magnetic fields in the vicinity of the magnetic polarity inversion line (PIL) enhance rapidly during the eruption. Another striking phenomenon, where the vertical electric currents close to the magnetic PIL suddenly expand toward two sides during the eruption, is found. We propose that this fascinating feature is associated with the release of energy during the eruption.« less

  3. Development Programs and Activities for Southeast Asia Regional Office of Astronomy for Development

    NASA Astrophysics Data System (ADS)

    Insiri, Wichan

    2015-08-01

    In recent years, since the establishment of SEA-ROAD in 2012, the office has seen an exponential progress as it has proved to be one of the prominent regional hubs for IAU-OAD. Recent activities over the past years ranging from Winter and Summer Schools Trainings to Astronomy Technology Transfer Camp for high school students to Internship at NARIT are some examples of what promises to be a good sign of progressive leap in astronomy for the entire region. SEA-ROAD will continue to make an impact on astronomy education, popularization and public outreach as the office is vital and imperative to the capacity building of astronomy of the entire region.

  4. EVOLUTION OF MAGNETIC FIELD AND ENERGY IN A MAJOR ERUPTIVE ACTIVE REGION BASED ON SDO/HMI OBSERVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Xudong; Hoeksema, J. Todd; Liu, Yang

    We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magneticmore » free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.« less

  5. Peptides of the Constant Region of Antibodies Display Fungicidal Activity

    PubMed Central

    Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C.; Pinto, Marcia R.; Travassos, Luiz R.; Pertinhez, Thelma A.; Spisni, Alberto; Conti, Stefania

    2012-01-01

    Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523

  6. Test of High-resolution Global and Regional Climate Model Projections

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy; Nikulin, Grigory; Hansson, Ulf; Kjellström, Erik; Raj, Jerry; Bangalath, Hamza; Osipov, Sergey

    2014-05-01

    In scope of CORDEX project we have simulated the past (1975-2005) and future (2006-2050) climates using the GFDL global high-resolution atmospheric model (HIRAM) and the Rossby Center nested regional model RCA4 for the Middle East and North Africa (MENA) region. Both global and nested runs were performed with roughly the same spatial resolution of 25 km in latitude and longitude, and were driven by the 2°x2.5°-resolution fields from GFDL ESM2M IPCC AR5 runs. The global HIRAM simulations could naturally account for interaction of regional processes with the larger-scale circulation features like Indian Summer Monsoon, which is lacking from regional model setup. Therefore in this study we specifically address the consistency of "global" and "regional" downscalings. The performance of RCA4, HIRAM, and ESM2M is tested based on mean, extreme, trends, seasonal and inter-annual variability of surface temperature, precipitation, and winds. The impact of climate change on dust storm activity, extreme precipitation and water resources is specifically addressed. We found that the global and regional climate projections appear to be quite consistent for the modeled period and differ more significantly from ESM2M than between each other.

  7. DNA methylation in an enhancer region of the FADS cluster is associated with FADS activity in human liver.

    PubMed

    Howard, Timothy D; Mathias, Rasika A; Seeds, Michael C; Herrington, David M; Hixson, James E; Shimmin, Lawrence C; Hawkins, Greg A; Sellers, Matthew; Ainsworth, Hannah C; Sergeant, Susan; Miller, Leslie R; Chilton, Floyd H

    2014-01-01

    Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20:4, n-6), eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18:2, n-6) to AA and α-linolenic acid (ALA, 18:3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids). FADS1 and FADS2 lie head-to-head (5' to 5') in a cluster configuration on chromosome 11 (11q12.2). There is considerable linkage disequilibrium (LD) in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼ 15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95 × 10(-46)) in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM) with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.

  8. A restricted parabrachial pontine region is active during non-REM sleep

    PubMed Central

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H.

    2011-01-01

    The principal site that generates both REM sleep and wakefulness is located in the mesopontine reticular formation, whereas non-REM sleep (NREM) is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase or GABA. During NREM, only a few Fos immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral peribrachial region (CLPB). The number of the Fos+ neurons in the CLPB during NREM was significantly greater (67.9 ± 10.9, P < 0.0001) compared to QW (8.0 ± 6.7), AW (5.2 ± 4.2) or REM-carbachol (8.0 ± 4.7). In addition, there was a positive correlation (R = 0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of

  9. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study

    PubMed Central

    Riedner, Brady A.; Goldstein, Michael R.; Plante, David T.; Rumble, Meredith E.; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). Methods: All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. Results: The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4–8 Hz) and alpha (8–12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. Conclusions: These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. Citation: Riedner BA, Goldstein MR, Plante DT, Rumble ME, Ferrarelli F, Tononi G, Benca RM. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: a pilot study. SLEEP 2016;39(4):801–812. PMID:26943465

  10. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  11. Transition region fluxes in A-F Dwarfs: Basal fluxes and dynamo activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Schrijver, Carolus J.; Boyd, William

    1988-01-01

    The transition region spectra of 87 late A and early F dwarfs and subgiants were analyzed. The emission line fluxes are uniformly strong in the early F stars, and drop off rapidly among the late A stars. The basal flux level in the F stars is consistent with an extrapolation of that observed among the G stars, while the magnetic component displays the same flux-flux relations seen among solar-like stars. Despite the steep decrease in transition region emission flux for B-V less than 0.28, C II emission is detected in alpha Aql (B-V = 0.22). The dropoff in emission is inconsistent with models of the mechanically generated acoustic flux available. It is concluded that, although the nonmagnetic basal heating is an increasingly important source of atmospheric heating among the early F stars, magnetic heating occurs in any star which has a sufficiently thick convective zone to generate acoustic heating.

  12. Origin of the CMS gene locus in rapeseed cybrid mitochondria: active and inactive recombination produces the complex CMS gene region in the mitochondrial genomes of Brassicaceae.

    PubMed

    Oshima, Masao; Kikuchi, Rie; Imamura, Jun; Handa, Hirokazu

    2010-01-01

    CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.

  13. Consistency between Sweat Rate and Wet Bulb Globe Temperature for the Assessment of Heat Stress of People Working Outdoor in Arid and Semi-arid Regions.

    PubMed

    Heidari, Hamidreza; Golbabaei, Farideh; Shamsipour, Aliakbar; Rahimi Forushani, Abbas; Gaeini, Abbasali

    2018-01-01

    Heat stress is common among workers in arid and semi-arid areas. In order to take every preventive measure to protect exposed workers against heat-related disorders, it is crucial to choose an appropriate index that accurately relates environmental parameters to physiological responses. To investigate the consistency between 2 heat stress and strain indices, ie , sweat rate and wet bulb globe temperature (WBGT), for the assessment of heat stress of people working outdoor in arid and semi-arid regions in Iran. During spring and summer, 136 randomly selected outdoor workers were enrolled in this study. Using a defined protocol, the sweat rate of these workers was measured 3 times a day. Simultaneously, the environmental parameters including WBGT index were recorded for each working station. The level of agreement between sweat rate and WBGT was poor ( κ <0.2). Based on sweat rate, no case exceeding the reference value was observed during the study. WBGT overestimated the heat stress in outdoor workers compared to sweat rate. It seems that the sweat rate standards may need some modifications related to real condition of work in arid and semi-arid regions in Iran. Moreover, it seems that judging workers solely based on monitoring their sweat rate in such regions, can probably result in underestimation of heat stress.

  14. Correlation of the CME Productivity of Solar Active Regions with Measures of their Global Nonpotentiality from Vector Magnetograms: Baseline Results

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ron L.; Gary, G. Allen; Six, N. Frank (Technical Monitor)

    2001-01-01

    From conventional magnetograms and chromospheric and coronal images, it is known qualitatively that the fastest coronal mass ejections (CMEs) are magnetic explosions from sunspot active regions in which the magnetic field is globally strongly sheared and twisted from its minimum-energy potential configuration. In this paper, we present measurements from active-region vector magnetograms that begin to quantify the dependence of the CME productivity of an active region on the global nonpotentiality of its magnetic field. From each of 17 magnetograms of 12 bipolar active regions, we obtain a measure of the size of the active region (the magnetic flux content, phi) and three different measures of the global nonpotentiality (L(sub SS), the length of strong-shear, strong-field main neutral line; I(sub N), the net electric current arching from one polarity to the other; and alpha = muI(subN/phi), a flux-normalized measure of the field twist).

  15. The Geomorphological Evolution of a Landscape in a Tectonically Active Region: the Sennwald Landslide

    NASA Astrophysics Data System (ADS)

    Aksay, Selçuk; Ivy-Ochs, Susan; Hippe, Kristina; Graemiger, Lorenz; Vockenhuber, Christof

    2016-04-01

    The Säntis nappe is a fold-and-thrust structure in eastern Switzerland consisting of numerous tectonic discontinuities that make rocks vulnerable to rock failure. The Sennwald landslide is one of those events that occurred due to the failure of Lower Cretaceous Helvetic limestones. This study reveals the surface exposure age of the event in relation to geological and tectonic setting, earthquake frequency of the Central Alps, and regional scale climate/weather influence. Our study comprises detailed mapping of landform features, thin section analysis of landslide boulder lithologies, landslide volume estimation, numerical DAN-3D run-out modelling, and the spatial and temporal relationship of the event. In the Sennwald landslide, 92 million m3 of limestones detached from the south-eastern wall of the Säntis nappe and slid with a maximum travel distance of ~4'500 m and a "fahrboeschung" angle of 15° along the SE-dipping sliding plane almost parallel to the orientation of the bedding plane. Numerical run-out modelling results match the extent and the thickness of landslide deposits as observed in the field. The original bedrock stratigraphy was preserved as geologically the top layer in the bedrock package travelled the farthest and the bottom layer came to rest closest to the release bedrock wall during the landslide. Velocities of maximum 90 m/s were obtained from the numerical run-out modelling. Total Cl and 36Cl were determined at ETH AMS facility with isotope dilution methods defined in the literature (Ivy-Ochs et al., 2004). Surface exposure ages of landslide deposits in the accumulation area are revealed from twelve boulders. The distribution of limestone boulders in the accumulation area, the exposure ages, and the numerical run-out modelling support the hypothesis that the Sennwald landslide was a single catastrophic event. The event is likely to have been triggered by at least light to moderate earthquakes (Mw=4.0-6.0). The historical and the last 40-year

  16. Evolution of the Active Region NOAA 12443 based on magnetic field extrapolations: preliminary results

    NASA Astrophysics Data System (ADS)

    Chicrala, André; Dallaqua, Renato Sergio; Antunes Vieira, Luis Eduardo; Dal Lago, Alisson; Rodríguez Gómez, Jenny Marcela; Palacios, Judith; Coelho Stekel, Tardelli Ronan; Rezende Costa, Joaquim Eduardo; da Silva Rockenbach, Marlos

    2017-10-01

    The behavior of Active Regions (ARs) is directly related to the occurrence of some remarkable phenomena in the Sun such as solar flares or coronal mass ejections (CME). In this sense, changes in the magnetic field of the region can be used to uncover other relevant features like the evolution of the ARs magnetic structure and the plasma flow related to it. In this work we describe the evolution of the magnetic structure of the active region AR NOAA12443 observed from 2015/10/30 to 2015/11/10, which may be associated with several X-ray flares of classes C and M. The analysis is based on observations of the solar surface and atmosphere provided by HMI and AIA instruments on board of the SDO spacecraft. In order to investigate the magnetic energy buildup and release of the ARs, we shall employ potential and linear force free extrapolations based on the solar surface magnetic field distribution and the photospheric velocity fields.

  17. HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.

    2015-06-20

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) andmore » the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.« less

  18. Design of a potent antibiotic peptide based on the active region of human defensin 5.

    PubMed

    Wang, Cheng; Shen, Mingqiang; Gohain, Neelakshi; Tolbert, William D; Chen, Fang; Zhang, Naixin; Yang, Ke; Wang, Aiping; Su, Yongping; Cheng, Tianmin; Zhao, Jinghong; Pazgier, Marzena; Wang, Junping

    2015-04-09

    Human defensin 5 (HD5) is a broad-spectrum antibacterial peptide with a C-terminal active region. To promote the development of this peptide into an antibiotic, we initially substituted Glu21 with Arg because it is an electronegative residue located around the active region. Although detrimental to dimer formation, the E21R substitution markedly enhanced the antibacterial activity of HD5 and increased its ability to penetrate cell membranes, demonstrating that increasing the electropositive charge compensated for the effect of dimer disruption. Subsequently, a partial Arg scanning mutagenesis was performed, and Thr7 was selected for replacement with Arg to further strengthen the antibacterial activity. The newly designed peptide, T7E21R-HD5, exhibited potent antibacterial activity, even in saline and serum solutions. In contrast to monomeric E21R-HD5, T7E21R-HD5 assembled into an atypical dimer with parallel β strands, thus expanding the role of increasing electropositive charge in bactericidal activity and providing a useful guide for further defensin-derived antibiotic design.

  19. On Consistency Test Method of Expert Opinion in Ecological Security Assessment

    PubMed Central

    Wang, Lihong

    2017-01-01

    To reflect the initiative design and initiative of human security management and safety warning, ecological safety assessment is of great value. In the comprehensive evaluation of regional ecological security with the participation of experts, the expert’s individual judgment level, ability and the consistency of the expert’s overall opinion will have a very important influence on the evaluation result. This paper studies the consistency measure and consensus measure based on the multiplicative and additive consistency property of fuzzy preference relation (FPR). We firstly propose the optimization methods to obtain the optimal multiplicative consistent and additively consistent FPRs of individual and group judgments, respectively. Then, we put forward a consistency measure by computing the distance between the original individual judgment and the optimal individual estimation, along with a consensus measure by computing the distance between the original collective judgment and the optimal collective estimation. In the end, we make a case study on ecological security for five cities. Result shows that the optimal FPRs are helpful in measuring the consistency degree of individual judgment and the consensus degree of collective judgment. PMID:28869570

  20. On Consistency Test Method of Expert Opinion in Ecological Security Assessment.

    PubMed

    Gong, Zaiwu; Wang, Lihong

    2017-09-04

    To reflect the initiative design and initiative of human security management and safety warning, ecological safety assessment is of great value. In the comprehensive evaluation of regional ecological security with the participation of experts, the expert's individual judgment level, ability and the consistency of the expert's overall opinion will have a very important influence on the evaluation result. This paper studies the consistency measure and consensus measure based on the multiplicative and additive consistency property of fuzzy preference relation (FPR). We firstly propose the optimization methods to obtain the optimal multiplicative consistent and additively consistent FPRs of individual and group judgments, respectively. Then, we put forward a consistency measure by computing the distance between the original individual judgment and the optimal individual estimation, along with a consensus measure by computing the distance between the original collective judgment and the optimal collective estimation. In the end, we make a case study on ecological security for five cities. Result shows that the optimal FPRs are helpful in measuring the consistency degree of individual judgment and the consensus degree of collective judgment.

  1. Physical activity and associated socio-demographic factors in adolescents from the eastern region of Poland

    PubMed

    Wasilewska, Małgorzata; Bergier, Józef

    The introduction and maintenance of healthy habits in the field of physical activity at the early stage of life is particularly important for public health. With increasing of public awareness in physical activity, researchers are increasingly questioning its determinants in different age groups. In this paper we focus on variables such as age, sex and place of residence. To determine what selected socio-demographic factors influence the level of physical activity of school youth from the eastern region of Poland in different domains of daily life. A random sample of 916 Polish school youth from Secondary Schools from Eastern Region of Poland aged 16-18 was interviewed in spring 2016 by diagnostic survey method with the use of the official Polish long version of the International Physical Activity Questionnaire (IPAQ). Analysing the relationship between gender and the level of physical activity statistically significant differences were found in all domains in favour of boys. The level of total physical activity in girls was 5345.5 MET-min./week, whereas in boys – 6556.6 MET-min./week. In the area of total physical activity, the highest values were observed in pupils from small towns and villages, with lower values in the youth living in large and medium-sized cities. When the relationship of age with the level of physical activity in particular domains was examined, only the activity in the work/ school domain (p = 0.0129) spoke in favour of the youngest pupils (2578.7 MET-min./week) when compared to the oldest ones (2226.4 MET-min./week). The level of physical activity in young people from the Eastern region of Poland is decreasing with age, both in girls and boys. It is therefore important, especially for the group emerging adulthood, to offer a wide variety of updated, involving, age and gender-oriented school physical activity classes that could be easily practised outside the school environment to improve the level of physical activity in leisure domain

  2. Year-round West Nile virus activity, Gulf Coast region, Texas and Louisiana.

    PubMed

    Tesh, Robert B; Parsons, Ray; Siirin, Marina; Randle, Yvonne; Sargent, Chris; Guzman, Hilda; Wuithiranyagool, Taweesak; Higgs, Stephen; Vanlandingham, Dana L; Bala, Adil A; Haas, Keith; Zerinque, Brian

    2004-09-01

    West Nile virus (WNV) was detected in 11 dead birds and two mosquito pools collected in east Texas and southern Louisiana during surveillance studies in the winter of 2003 to 2004. These findings suggest that WNV is active throughout the year in this region of the United States.

  3. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    PubMed

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region

    USGS Publications Warehouse

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.

    2003-01-01

    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  5. Earthquake cluster activity beneath the Tanzawa Mountains region, Japan: Migration of hypocenters and low stress drop

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Yukutake, Y.

    2013-12-01

    An earthquake cluster activity was observed beneath the Tanzawa Mountains region, Japan with a depth of 20 km in the end of January, 2012. Japan Meteorological Agency (JMA) determined hypocenters of 76 earthquakes with M > 2 in the area within 50 hours. Five of them had magnitudes greater than 4 and the largest one was 5.4. Four out of the five earthquakes had the reverse-type focal mechanisms with the P axis in the NW-SE direction. First we relocated hypocenters of the activity following the method of Yukutake et al. (2012). We estimated relative arrival times of P and S waves by calculating the coefficients of the cross correlation and relocated hypocenters with the double-difference relocation method (Waldhauser and Ellsworth, 2000). We found that the cluster activity showed a migration from the first earthquake of the activity. The parabolic migration speed was consistent with the migration speed of the deep tremor sources (Ide et al., 2010) for which the fluid activity would play an important role. We then analyzed stress drops of 17 earthquakes with M > 3.5 that occurred from January, 2000 to June, 2012 in the area of the cluster activity. We calculated empirical Green's functions from waveforms of earthquakes with magnitudes of 3.0 to 3.2 and estimated stress drops of the earthquakes assuming that the source spectra can be expressed as the omega-squared model. We found that earthquakes of the cluster activity had smaller stress drops by an order of magnitude than the values of earthquakes that occurred in the same area before the cluster activity. These results suggest that the fluid played an important role for the earthquake cluster activity. That is, the fluid increased the pore pressure, decreased the effective normal stress and triggered the cluster activity. The difference of the rupture speed and the change of the rigidity might also be candidates that account for our results. They, however, can hardly explain the results quantitatively. Fig

  6. Material Supply and Magnetic Configuration of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda

    2016-11-01

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  7. THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeggli, S. A.; Norton, A. A., E-mail: sarah.jaeggli@nasa.gov

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction ismore » relatively constant during high levels of activity; however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.« less

  8. Joint NuSTAR and IRIS observation of a microflaring active region

    NASA Astrophysics Data System (ADS)

    Hannah, I. G.; Kleint, L.; Krucker, S.; Glesener, L.; Grefenstette, B.

    2017-12-01

    We present observations of a weakly microflaring active region observed in X-rays with NuSTAR, UV with IRIS and EUV with SDO/AIA. NuSTAR was pointed at this unnamed active region near the East limb between 23:27UT and 23:37UT 26-July-2016, finding mostly quiescent emission except for a small microflare about 23:35UT. The NuSTAR spectrum for the pre-microflare time (23:27UT to 23:34UT) is well fitted by a single thermal component of about 3MK and combined with SDO/AIA we can determine the differential emission measure (DEM), finding it, as expected, drops very sharply to higher temperatures. During the subsequent microflare, the increase in NuSTAR counts matches a little brightening loop observed with IRIS SJI 1400Å and SDO/AIA. Fortuitously the IRIS slit crosses this microflaring loop and we find an increased emission in Si IV 1394Å, Si IV 1403Å and O IV 1402Å but only average line widths and velocities. The NuSTAR microflare spectrum shows heating to higher temperatures and also allows us to investigate the energetics of this event.

  9. Inter-Calibration of EIS, XRT and AIA using Active Region and Bright Point Data

    NASA Technical Reports Server (NTRS)

    Mulu-Moore, Fana M.; Winebarger, Amy R.; Winebarger, Amy R.; Farid, Samaiyah I.

    2012-01-01

    Certain limitations in our solar instruments have created the need to use several instruments together for long term and/or large field of view studies. We will, therefore, present an intercalibration study of the EIS, XRT and AIA instruments using active region and bright point data. We will use the DEMs calculated from EIS bright point observations to determine the expected AIA and XRT intensities. We will them compare to the observed intensities and calculate a correction factor. We will consider data taken over a year to see if there is a time dependence to the correction factor. We will then determine if the correction factors are valid for active region observations.

  10. Using regional homogeneity to reveal altered spontaneous activity in patients with mild cognitive impairment.

    PubMed

    Wang, Yumei; Zhao, Xiaochuan; Xu, Shunjiang; Yu, Lulu; Wang, Lan; Song, Mei; Yang, Linlin; Wang, Xueyi

    2015-01-01

    Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer's disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI.

  11. Using Regional Homogeneity to Reveal Altered Spontaneous Activity in Patients with Mild Cognitive Impairment

    PubMed Central

    Wang, Yumei; Zhao, Xiaochuan; Xu, Shunjiang; Yu, Lulu; Wang, Lan; Song, Mei; Yang, Linlin; Wang, Xueyi

    2015-01-01

    Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer's disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI. PMID:25738156

  12. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, itmore » transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.« less

  13. Integrating perspectives on vocal performance and consistency

    PubMed Central

    Sakata, Jon T.; Vehrencamp, Sandra L.

    2012-01-01

    SUMMARY Recent experiments in divergent fields of birdsong have revealed that vocal performance is important for reproductive success and under active control by distinct neural circuits. Vocal consistency, the degree to which the spectral properties (e.g. dominant or fundamental frequency) of song elements are produced consistently from rendition to rendition, has been highlighted as a biologically important aspect of vocal performance. Here, we synthesize functional, developmental and mechanistic (neurophysiological) perspectives to generate an integrated understanding of this facet of vocal performance. Behavioral studies in the field and laboratory have found that vocal consistency is affected by social context, season and development, and, moreover, positively correlated with reproductive success. Mechanistic investigations have revealed a contribution of forebrain and basal ganglia circuits and sex steroid hormones to the control of vocal consistency. Across behavioral, developmental and mechanistic studies, a convergent theme regarding the importance of vocal practice in juvenile and adult songbirds emerges, providing a basis for linking these levels of analysis. By understanding vocal consistency at these levels, we gain an appreciation for the various dimensions of song control and plasticity and argue that genes regulating the function of basal ganglia circuits and sex steroid hormones could be sculpted by sexual selection. PMID:22189763

  14. Mekong Land Cover Dasboard: Regional Land Cover Mointoring Systems

    NASA Astrophysics Data System (ADS)

    Saah, D. S.; Towashiraporn, P.; Aekakkararungroj, A.; Phongsapan, K.; Triepke, J.; Maus, P.; Tenneson, K.; Cutter, P. G.; Ganz, D.; Anderson, E.

    2016-12-01

    SERVIR-Mekong, a USAID-NASA partnership, helps decision makers in the Lower Mekong Region utilize GIS and Remote Sensing information to inform climate related activities. In 2015, SERVIR-Mekong conducted a geospatial needs assessment for the Lower Mekong countries which included individual country consultations. The team found that many countries were dependent on land cover and land use maps for land resource planning, quantifying ecosystem services, including resilience to climate change, biodiversity conservation, and other critical social issues. Many of the Lower Mekong countries have developed national scale land cover maps derived in part from remote sensing products and geospatial technologies. However, updates are infrequent and classification systems do not always meet the needs of key user groups. In addition, data products stop at political boundaries and are often not accessible making the data unusable across country boundaries and with resource management partners. Many of these countries rely on global land cover products to fill the gaps of their national efforts, compromising consistency between data and policies. These gaps in national efforts can be filled by a flexible regional land cover monitoring system that is co-developed by regional partners with the specific intention of meeting national transboundary needs, for example including consistent forest definitions in transboundary watersheds. Based on these facts, key regional stakeholders identified a need for a land cover monitoring system that will produce frequent, high quality land cover maps using a consistent regional classification scheme that is compatible with national country needs. SERVIR-Mekong is currently developing a solution that leverages recent developments in remote sensing science and technology, such as Google Earth Engine (GEE), and working together with production partners to develop a system that will use a common set of input data sources to generate high

  15. The stretching of magnetic flux tubes in the convective overshoot region

    NASA Technical Reports Server (NTRS)

    Fisher, George H.; Mcclymont, Alexander N.; Chou, Dean-Yi

    1991-01-01

    The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.

  16. Expert athletes activate somatosensory and motor planning regions of the brain when passively listening to familiar sports sounds.

    PubMed

    Woods, Elizabeth A; Hernandez, Arturo E; Wagner, Victoria E; Beilock, Sian L

    2014-06-01

    The present functional magnetic resonance imaging study examined the neural response to familiar and unfamiliar, sport and non-sport environmental sounds in expert and novice athletes. Results revealed differential neural responses dependent on sports expertise. Experts had greater neural activation than novices in focal sensorimotor areas such as the supplementary motor area, and pre- and postcentral gyri. Novices showed greater activation than experts in widespread areas involved in perception (i.e. supramarginal, middle occipital, and calcarine gyri; precuneus; inferior and superior parietal lobules), and motor planning and processing (i.e. inferior frontal, middle frontal, and middle temporal gyri). These between-group neural differences also appeared as an expertise effect within specific conditions. Experts showed greater activation than novices during the sport familiar condition in regions responsible for auditory and motor planning, including the inferior frontal gyrus and the parietal operculum. Novices only showed greater activation than experts in the supramarginal gyrus and pons during the non-sport unfamiliar condition, and in the middle frontal gyrus during the sport unfamiliar condition. These results are consistent with the view that expert athletes are attuned to only the most familiar, highly relevant sounds and tune out unfamiliar, irrelevant sounds. Furthermore, these findings that athletes show activation in areas known to be involved in action planning when passively listening to sounds suggests that auditory perception of action can lead to the re-instantiation of neural areas involved in producing these actions, especially if someone has expertise performing the actions. Copyright © 2014. Published by Elsevier Inc.

  17. Joint penalized-likelihood reconstruction of time-activity curves and regions-of-interest from projection data in brain PET

    NASA Astrophysics Data System (ADS)

    Krestyannikov, E.; Tohka, J.; Ruotsalainen, U.

    2008-06-01

    This paper presents a novel statistical approach for joint estimation of regions-of-interest (ROIs) and the corresponding time-activity curves (TACs) from dynamic positron emission tomography (PET) brain projection data. It is based on optimizing the joint objective function that consists of a data log-likelihood term and two penalty terms reflecting the available a priori information about the human brain anatomy. The developed local optimization strategy iteratively updates both the ROI and TAC parameters and is guaranteed to monotonically increase the objective function. The quantitative evaluation of the algorithm is performed with numerically and Monte Carlo-simulated dynamic PET brain data of the 11C-Raclopride and 18F-FDG tracers. The results demonstrate that the method outperforms the existing sequential ROI quantification approaches in terms of accuracy, and can noticeably reduce the errors in TACs arising due to the finite spatial resolution and ROI delineation.

  18. Coma Morphology Due to an Extended Active Region and Implications for the Spin State of Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.

    2000-01-01

    We show that the circular character of continuum structures observed in the coma of comet Hale-Bopp around the perihelion passage is most likely due to a dust jet from a large extended active region on the surface. Coma morphology due to a wide jet is different from that due to a narrow jet. The latter shows foreshortening effects due to observing geometry, wider jet produces more circular features. This circularization effect provides a self-consistent explanation for the evolution of near-perihelion coma morphology. No changes in the direction of the rotational angular momentum vector are required during this period in contrast to the models of Schleicher et al. This circularization effect also enables us to produce near-circular coma features in the S-E quadrant during 1997 late February and therefore questions the basic premise on which Sekanina bases his morphological arguments for a gravitationally bound satellite nucleus.

  19. Active tectonics of the Qom region, Central Iran

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J.; Fattahi, M.; Jackson, J. A.; Talebian, M.; Nazari, H.; Bahroudi, A.

    2009-12-01

    balanced cross section indicates ~18% shortening (1.5 km) in a period bracketed by the Upper Red Fmtn (<18 Ma) and the Pliocene (>5.3 Ma), yielding shortening rates of 0.1-0.3 mm/yr. The right-lateral Kashan fault lies SE of the Qom region, and appears to be kinematically linked to the thrust faults around Qom, which probably represent thrust terminations. Historical earthquakes have occurred on the Kashan fault, and clear evidence for recent movement is seen in the Quaternary geomorphology. Reconstruction of the geology across the Kashan fault indicates ~45 km of total right-lateral motion, which suggests it has played a significant role in the accommodation of regional shortening. Late Cenozoic estimates of N-S shortening in the Qom region are 0.03-0.5 mm/yr. The difference in GPS velocities north and south of Qom indicates 1.1±1.9 mm/yr shortening across this region. This study suggests that Central Iran plays an important role in accommodating Arabia-Eurasia shortening over Quaternary to geological timescales. Efforts should be made to better constrain the seismic hazard posed by active faults to large populations in the Central Iran region.

  20. Reduction, analysis, and properties of electric current systems in solar active regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.