Science.gov

Sample records for active region emergence

  1. Active Region Emergence and Remote Flares

    NASA Astrophysics Data System (ADS)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  2. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  3. Pederson Current Dissipation In Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, M. G.

    2011-05-01

    Pederson current dissipation in emerging active regions. Certain regions of the solar atmosphere, such as the photosphere and chromosphere, as well as prominences, contain a significant amount of neutral atoms, and a complete description of the plasma requires including the effects of partial ionization. In the chromosphere the dissipation of Pederson currents is important for the evolution of emerging magnetic fields. Due to the relatively high number density in the chromosphere, the ion-neutral collision time-scale is much smaller than timescales associated with flux emergence. Hence we use a single-fluid approach to model the partially ionized plasma. Looking at both the emergence of large-scale sub-surface structures, and the emergence and reconnection of undulatory fields, we investigate the effect of Pederson current dissipation on the state of the emerging field, on magnetic reconnection and on dissipative heating of the atmosphere. Specifically we examine the effect of motions across fieldlines in the partially ionized regions, and how this can increase the free energy supplied to the corona by flux emergence. We also look at reconnection associated with flux emergence in the partially ionized atmosphere, and how this can account for observed small-scale brightenings (Ellerman Bombs).

  4. Dynamics and evolution of emerging active regions .

    NASA Astrophysics Data System (ADS)

    Battiato, V.; Billotta, S.; Contarino, L.; Romano, P.; Spadaro, D.; Zuccarello, F.

    In the framework of the study on active region emergence, we report the results obtained from the analysis of two ARs (NOAA 10050 and NOAA 10407), characterized by different lifetimes: recurrent the former and short-lived (7 days) the latter. The data used were acquired during two observational campaigns carried out at THEMIS telescope in IPM mode, coordinated with other instruments (IOACT, DOT, BBSO, MDI/SOHO, EIT/SOHO, TRACE). The results obtained have provided indications on the atmospheric layers where the first manifestations of the emerging AR are evidenced, on the rate of emergence of magnetic flux, on the upward velocity of AFS, on asymmetries in downward motions in the AFS legs.

  5. SDO/HMI survey of emerging active regions for helioseismology

    NASA Astrophysics Data System (ADS)

    Schunker, H.; Braun, D. C.; Birch, A. C.; Burston, R. B.; Gizon, L.

    2016-11-01

    Context. Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which would enable us to perform statistical analyses. Aims: Our goal is to collate a uniform data set of emerging active regions observed by the SDO/HMI instrument suitable for helioseismic analysis, where each active region is centred on a 60° × 60° area and can be observed up to seven days before emergence. Methods: We restricted the sample to active regions that were visible in the continuum and emerged into quiet Sun largely avoiding pre-existing magnetic regions. As a reference data set we paired a control region (CR), with the same latitude and distance from central meridian, with each emerging active region (EAR). The control regions do not have any strong emerging flux within 10° of the centre of the map. Each region was tracked at the Carrington rotation rate as it crossed the solar disk, within approximately 65° from the central meridian and up to seven days before, and seven days after, emergence. The mapped and tracked data, consisting of line-of-sight velocity, line-of-sight magnetic field, and intensity as observed by SDO/HMI, are stored in datacubes that are 410 min in duration and spaced 320 min apart. We call this data set, which is currently comprised of 105 emerging active regions observed between May 2010 and November 2012, the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. Results: To demonstrate the utility of a data set of a large number of emerging active regions, we measure the relative east-west velocity of the leading and trailing polarities from the line-of-sight magnetogram maps during the first day after emergence. The latitudinally averaged line-of-sight magnetic field of all the EARs shows that, on average, the leading (trailing) polarity moves in a prograde (retrograde) direction with a speed of 121 ± 22 m s-1 (-70 ± 13 m s-1) relative to the

  6. Helioseismology of pre-emerging active regions. III. Statistical analysis

    SciTech Connect

    Barnes, G.; Leka, K. D.; Braun, D. C.; Birch, A. C.

    2014-05-01

    The subsurface properties of active regions (ARs) prior to their appearance at the solar surface may shed light on the process of AR formation. Helioseismic holography has been applied to samples taken from two populations of regions on the Sun (pre-emergence and without emergence), each sample having over 100 members, that were selected to minimize systematic bias, as described in Paper I. Paper II showed that there are statistically significant signatures in the average helioseismic properties that precede the formation of an AR. This paper describes a more detailed analysis of the samples of pre-emergence regions and regions without emergence based on discriminant analysis. The property that is best able to distinguish the populations is found to be the surface magnetic field, even a day before the emergence time. However, after accounting for the correlations between the surface field and the quantities derived from helioseismology, there is still evidence of a helioseismic precursor to AR emergence that is present for at least a day prior to emergence, although the analysis presented cannot definitively determine the subsurface properties prior to emergence due to the small sample sizes.

  7. HELIOSEISMOLOGY OF PRE-EMERGING ACTIVE REGIONS. II. AVERAGE EMERGENCE PROPERTIES

    SciTech Connect

    Birch, A. C.; Braun, D. C.; Leka, K. D.; Barnes, G.; Javornik, B.

    2013-01-10

    We report on average subsurface properties of pre-emerging active regions as compared to areas where no active region emergence was detected. Helioseismic holography is applied to samples of the two populations (pre-emergence and without emergence), each sample having over 100 members, which were selected to minimize systematic bias, as described in Leka et al. We find that there are statistically significant signatures (i.e., difference in the means of more than a few standard errors) in the average subsurface flows and the apparent wave speed that precede the formation of an active region. The measurements here rule out spatially extended flows of more than about 15 m s{sup -1} in the top 20 Mm below the photosphere over the course of the day preceding the start of visible emergence. These measurements place strong constraints on models of active region formation.

  8. Evidence of Twisted Flux-Tube Emergence in Active Regions

    NASA Astrophysics Data System (ADS)

    Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.

    2015-03-01

    Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

  9. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  10. A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Centeno, R.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Orozco Suárez, D.; Berkefeld, T.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    In 2013 June, the two scientific instruments on board the second Sunrise mission witnessed, in detail, a small-scale magnetic flux emergence event as part of the birth of an active region. The Imaging Magnetograph Experiment (IMaX) recorded two small (∼ 5\\prime\\prime ) emerging flux patches in the polarized filtergrams of a photospheric Fe i spectral line. Meanwhile, the Sunrise Filter Imager (SuFI) captured the highly dynamic chromospheric response to the magnetic fields pushing their way through the lower solar atmosphere. The serendipitous capture of this event offers a closer look at the inner workings of active region emergence sites. In particular, it reveals in meticulous detail how the rising magnetic fields interact with the granulation as they push through the Sun’s surface, dragging photospheric plasma in their upward travel. The plasma that is burdening the rising field slides along the field lines, creating fast downflowing channels at the footpoints. The weight of this material anchors this field to the surface at semi-regular spatial intervals, shaping it in an undulatory fashion. Finally, magnetic reconnection enables the field to release itself from its photospheric anchors, allowing it to continue its voyage up to higher layers. This process releases energy that lights up the arch-filament systems and heats the surrounding chromosphere.

  11. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  12. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  13. MAGNETIC ENERGY AND HELICITY IN TWO EMERGING ACTIVE REGIONS IN THE SUN

    SciTech Connect

    Liu, Y.; Schuck, P. W.

    2012-12-20

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158, are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term, (2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and (4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course. We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  14. On the Origin of the Asymmetric Helicity Injection in Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Alexander, D.; Tian, L.

    2009-12-01

    To explore the possible causes of the observed asymmetric helicity flux in emerging active regions between the leading and following polarities reported in a recent study by Tian & Alexander, we examine the subsurface evolution of buoyantly rising Ω-shaped flux tubes using three-dimensional, spherical-shell anelastic MHD simulations. We find that due to the asymmetric stretching of the Ω-shaped tube by the Coriolis force, the leading side of the emerging tube has a greater field strength, is more buoyant, and remains more cohesive compared to the following side. As a result, the magnetic field lines in the leading leg show more coherent values of local twist α ≡ (∇ × B) · B/B 2, whereas the values in the following leg show large fluctuations and are of mixed sign. On average, however, the field lines in the leading leg do not show a systematically greater mean twist compared to the following leg. Due to the higher rise velocity of the leading leg, the upward helicity flux through a horizontal cross section at each depth in the upper half of the convection zone is significantly greater in the leading polarity region than that in the following leg. This may contribute to the observed asymmetric helicity flux in emerging active regions. Furthermore, based on a simplified model of active region flux emergence into the corona by Longcope & Welsch, we show that a stronger field strength in the leading tube can result in a faster rotation of the leading polarity sunspot driven by torsional Alfvén waves during flux emergence into the corona, contributing to a greater helicity injection rate in the leading polarity of an emerging active region.

  15. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  16. CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112

    SciTech Connect

    Tarr, Lucas; Longcope, Dana

    2012-04-10

    The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.

  17. Analysis of the Flux Growth Rate in Emerging Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Abramenko, V. I.; Kutsenko, A. S.; Tikhonova, O. I.; Yurchyshyn, V. B.

    2017-04-01

    We studied the emergence process of 42 active regions (ARs) by analyzing the time derivative, R(t), of the total unsigned flux. Line-of-sight magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) were used. A continuous piecewise linear fitting to the R(t)-profile was applied to detect an interval, Δ t2, of nearly constant R(t) covering one or several local maxima. The magnitude of R(t) averaged over Δ t2 was accepted as an estimate of the maximum value of the flux growth rate, R_{MAX}, which varies in a range of (0.5 - 5)×10^{20} Mx hour^{-1} for ARs with a maximum total unsigned flux of (0.5 - 3)× 10^{22} Mx. The normalized flux growth rate, RN, was defined under the assumption that the saturated total unsigned flux, F_{MAX}, equals unity. Out of 42 ARs in our initial list, 36 events were successfully fitted, and they form two subsets (with a small overlap of eight events): the ARs with a short (<13 hours) interval Δ t2 and a high (>0.024 hour^{-1}) normalized flux emergence rate, RN, form the "rapid" emergence event subset. The second subset consists of "gradual" emergence events, and it is characterized by a long (>13 hours) interval Δ t2 and a low RN (<0.024 hour^{-1}). In diagrams of R_{MAX} plotted versus F_{MAX}, the events from different subsets do not overlap, and each subset displays an individual power law. The power-law index derived from the entire ensemble of 36 events is 0.69 ± 0.10. The rapid emergence is consistent with a two-step emergence process of a single twisted flux tube. The gradual emergence is possibly related to a consecutive rising of several flux tubes emerging at nearly the same location in the photosphere.

  18. Statistical analysis of the horizontal divergent flow in emerging solar active regions

    SciTech Connect

    Toriumi, Shin; Hayashi, Keiji; Yokoyama, Takaaki

    2014-10-10

    Solar active regions (ARs) are thought to be formed by magnetic fields from the convection zone. Our flux emergence simulations revealed that a strong horizontal divergent flow (HDF) of unmagnetized plasma appears at the photosphere before the flux begins to emerge. In our earlier study, we analyzed HMI data for a single AR and confirmed presence of this precursor plasma flow in the actual Sun. In this paper, as an extension of our earlier study, we conducted a statistical analysis of the HDFs to further investigate their characteristics and better determine the properties. From SDO/HMI data, we picked up 23 flux emergence events over a period of 14 months, the total flux of which ranges from 10{sup 20} to 10{sup 22} Mx. Out of 23 selected events, 6 clear HDFs were detected by the method we developed in our earlier study, and 7 HDFs detected by visual inspection were added to this statistic analysis. We found that the duration of the HDF is on average 61 minutes and the maximum HDF speed is on average 3.1 km s{sup –1}. We also estimated the rising speed of the subsurface magnetic flux to be 0.6-1.4 km s{sup –1}. These values are highly consistent with our previous one-event analysis as well as our simulation results. The observation results lead us to the conclusion that the HDF is a rather common feature in the earliest phase of AR emergence. Moreover, our HDF analysis has the capability of determining the subsurface properties of emerging fields that cannot be directly measured.

  19. δ-SUNSPOT FORMATION IN SIMULATION OF ACTIVE-REGION-SCALE FLUX EMERGENCE

    SciTech Connect

    Fang, Fang; Fan, Yuhong

    2015-06-10

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  20. δ-Sunspot Formation in Simulation of Active-region-scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Fan, Yuhong

    2015-06-01

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope, following the approach of Toriumi et al. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g., the inverted polarity against Hale's law, the curvilinear motion of the spot, and strong transverse field with highly sheared magnetic and velocity fields at the polarity inversion line (PIL). Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the δ-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  1. Formation of δ-Sunspot in Simulations of Active-Region-Scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Fan, Yuhong

    2015-04-01

    δ-sunspots, with highly complex magnetic structures, are very productive in energetic eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region-scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact δ-sunspot with a sharp polarity inversion line. The formation of the δ-sunspot in such a realistic-scale domain produces emerging pattherns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the -spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  2. EFFECT OF ION-NEUTRAL COLLISIONS IN SIMULATIONS OF EMERGING ACTIVE REGIONS

    SciTech Connect

    Leake, James E.; Linton, Mark G.

    2013-02-10

    We present results of 2.5D numerical simulations of the emergence of sub-surface magnetic flux into the solar atmosphere, with emerging flux regions ranging from 10{sup 18} to 10{sup 21} Mx, representing both ephemeral and active regions. We include the presence of neutral hydrogen in the governing equations, improve upon previous models by including the ionization in the equation of state, and use a more realistic convection zone model. We find that ionization and recombination of plasma during the rise of a convection zone flux tube reduces the rise speed of the tube's axis. The presence of neutral hydrogen allows the effective flow of mass across field lines, by the addition of a Pedersen resistivity to the generalized Ohm's law, which dissipates current perpendicular to the magnetic field. This causes an increase of up to 10% in the amount of magnetic in-plane flux supplied to the corona and a reduction of up to 89% in the amount of sub-surface plasma brought up into the corona. However, it also reduces the amount of free magnetic energy supplied to the corona, and thus does not positively affect the likelihood of creating unstable coronal structures.

  3. HELIOSEISMOLOGY OF PRE-EMERGING ACTIVE REGIONS. I. OVERVIEW, DATA, AND TARGET SELECTION CRITERIA

    SciTech Connect

    Leka, K. D.; Barnes, G.; Birch, A. C.; Dunn, T.; Javornik, B.; Braun, D. C.; Gonzalez-Hernandez, I.

    2013-01-10

    This first paper in a series describes the design of a study testing whether pre-appearance signatures of solar magnetic active regions were detectable using various tools of local helioseismology. The ultimate goal is to understand flux-emergence mechanisms by setting observational constraints on pre-appearance subsurface changes, for comparison with results from simulation efforts. This first paper provides details of the data selection and preparation of the samples, each containing over 100 members, of two populations: regions on the Sun that produced a numbered NOAA active region, and a 'control' sample of areas that did not. The seismology is performed on data from the GONG network; accompanying magnetic data from SOHO/MDI are used for co-temporal analysis of the surface magnetic field. Samples are drawn from 2001-2007, and each target is analyzed for 27.7 hr prior to an objectively determined time of emergence. The results of two analysis approaches are published separately: one based on averages of the seismology- and magnetic-derived signals over the samples, another based on Discriminant Analysis of these signals, for a statistical test of detectable differences between the two populations. We include here descriptions of a new potential-field calculation approach and the algorithm for matching sample distributions over multiple variables. We describe known sources of bias and the approaches used to mitigate them. We also describe unexpected bias sources uncovered during the course of the study and include a discussion of refinements that should be included in future work on this topic.

  4. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    SciTech Connect

    Vemareddy, P.

    2015-06-20

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity flux has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.

  5. Numerical simulations of active region scale flux emergence: From spot formation to decay

    SciTech Connect

    Rempel, M.; Cheung, M. C. M.

    2014-04-20

    We present numerical simulations of active region scale flux emergence covering a time span of up to 6 days. Flux emergence is driven by a bottom boundary condition that advects a semi-torus of magnetic field with 1.7 × 10{sup 22} Mx flux into the computational domain. The simulations show that, even in the absence of twist, the magnetic flux is able the rise through the upper 15.5 Mm of the convection zone and emerge into the photosphere to form spots. We find that spot formation is sensitive to the persistence of upflows at the bottom boundary footpoints, i.e., a continuing upflow would prevent spot formation. In addition, the presence of a torus-aligned flow (such flow into the retrograde direction is expected from angular momentum conservation during the rise of flux ropes through the convection zone) leads to a significant asymmetry between the pair of spots, with the spot corresponding to the leading spot on the Sun being more axisymmetric and coherent, but also forming with a delay relative to the following spot. The spot formation phase transitions directly into a decay phase. Subsurface flows fragment the magnetic field and lead to intrusions of almost field free plasma underneath the photosphere. When such intrusions reach photospheric layers, the spot fragments. The timescale for spot decay is comparable to the longest convective timescales present in the simulation domain. We find that the dispersal of flux from a simulated spot in the first two days of the decay phase is consistent with self-similar decay by turbulent diffusion.

  6. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  7. THE NAKED EMERGENCE OF SOLAR ACTIVE REGIONS OBSERVED WITH SDO/HMI

    SciTech Connect

    Centeno, Rebecca

    2012-11-01

    We take advantage of the HMI/SDO instrument to study the naked emergence of active regions (ARs) from the first imprints of the magnetic field on the solar surface. To this end, we followed the first 24 hr in the life of two rather isolated ARs that appeared on the surface when they were about to cross the central meridian. We analyze the correlations between Doppler velocities and the orientation of the vector magnetic field, consistent finding that the horizontal fields connecting the main polarities are dragged to the surface by relatively strong upflows and are associated with elongated granulation that is, on average, brighter than its surroundings. The main magnetic footpoints, on the other hand, are dominated by vertical fields and downflowing plasma. The appearance of moving dipolar features (MDFs, of opposite polarity to that of the AR) in between the main footpoints is a rather common occurrence once the AR reaches a certain size. The buoyancy of the fields is insufficient to lift up the magnetic arcade as a whole. Instead, weighted by the plasma that it carries, the field is pinned down to the photosphere at several places in between the main footpoints, giving life to the MDFs and enabling channels of downflowing plasma. MDF poles tend to drift toward each other, merge and disappear. This is likely to be the signature of a reconnection process in the dipped field lines, which relieves some of the weight allowing the magnetic arcade to finally rise beyond the detection layer of the Helioseismic and Magnetic Imager spectral line.

  8. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption

    PubMed Central

    Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang

    2016-01-01

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling. PMID:27181846

  9. Formation of sunspots and active regions through the emergence of magnetic flux generated in a solar convective dynamo

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Rempel, Matthias D.; Fan, Yuhong

    2016-05-01

    We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the near surface layer radiation MHD simulations of magneto-convection and flux emergence with the MURaM code. The latter code simulates the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere.The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries come most probably from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted and the leading sides of the emerging flux tubes are usually up against the downdraft lanes of the giant cells. It is also found that penumbrae with numerous filamentary structures form in regions of strong horizontal magnetic fields that naturally comes from the ongoing flux emergence. In contrast to previous models, the penumbrae and umbrae are divided by very sharp boarders, which is highly consistent with observations.

  10. Horizontal flow fields in and around a small active region. The transition period between flux emergence and decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Kneer, F.; Lagg, A.; Löhner-Böttcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.

    2016-11-01

    Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims: Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods: The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Pérot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results: The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s-1 is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns

  11. High-resolution digital movies of emerging flux and horizontal flows in active regions on the sun

    NASA Technical Reports Server (NTRS)

    Topka, K.; Ferguson, S.; Frank, Z.; Tarbell, T.; Title, A.

    1988-01-01

    High-resolution observations of active regions in many wavelength bands obtained at the Vacuum Tower Telescope of NSO/Sunspot (Sacramento Peak) are presented. The SOUP tunable filter, HRSO 1024 x 1024 CCD camera, and a sunspot tracker for image stabilization were used. Subarrays of 512 x 512 pixels were processed digitally and recorded on videodisk in movie format. The movies with 0.5 to 1 arcsecond resolution of the following simultaneous observations were shown: green continuum, longitudinal magnetogram, Doppler velocity, Fe I 5576 A line center, H alpha wings, and H alpha line center. The best set of movies show a 90 x 90 arcsecond field-of-view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Flux emergence is most easily discovered in line center movies: an elongated dark feature appears first, followed soon after by bright points at one or both ends. A brief, strong upflow is seen when the dark feature first appears; downflow in the bright points persists much longer. The magnetic flux appears to increase gradually over this extended period. Some of the flux emergence events were studied in detail, with measurements of horizontal and vertical velocities and magnetic flux versus time within one footpoint of the loop.

  12. Light Bridge in a Developing Active Region. II. Numerical Simulation of Flux Emergence and Light Bridge Formation

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Cheung, Mark C. M.; Katsukawa, Yukio

    2015-10-01

    Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.

  13. LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. II. NUMERICAL SIMULATION OF FLUX EMERGENCE AND LIGHT BRIDGE FORMATION

    SciTech Connect

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structure dividing umbrae in sunspot regions, show various activity events. In Paper I, we reported on an analysis of multi-wavelength observations of a light bridge in a developing active region (AR) and concluded that the activity events are caused by magnetic reconnection driven by magnetconvective evolution. The aim of this second paper is to investigate the detailed magnetic and velocity structures and the formation mechanism of light bridges. For this purpose, we analyze numerical simulation data from a radiative magnetohydrodynamics model of an emerging AR. We find that a weakly magnetized plasma upflow in the near-surface layers of the convection zone is entrained between the emerging magnetic bundles that appear as pores at the solar surface. This convective upflow continuously transports horizontal fields to the surface layer and creates a light bridge structure. Due to the magnetic shear between the horizontal fields of the bridge and the vertical fields of the ambient pores, an elongated cusp-shaped current layer is formed above the bridge, which may be favorable for magnetic reconnection. The striking correspondence between the observational results of Paper I and the numerical results of this paper provides a consistent physical picture of light bridges. The dynamic activity phenomena occur as a natural result of the bridge formation and its convective nature, which has much in common with those of umbral dots and penumbral filaments.

  14. CORONAL HEATING BY THE INTERACTION BETWEEN EMERGING ACTIVE REGIONS AND THE QUIET SUN OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zhang, Jun; Zhang, Bin; Li, Ting; Yang, Shuhong; Zhang, Yuzong; Li, Leping; Chen, Feng; Peter, Hardi E-mail: liting@nao.cas.cn E-mail: yuzong@nao.cas.cn E-mail: chen@mps.mpg.de

    2015-02-01

    The question of what heats the solar corona remains one of the most important puzzles in solar physics and astrophysics. Here we report Solar Dynamics Observatory Atmospheric Imaging Assembly observations of coronal heating by the interaction between emerging active regions (EARs) and the surrounding quiet Sun (QS). The EARs continuously interact with the surrounding QS, resulting in dark ribbons which appear at the boundary of the EARs and the QS. The dark ribbons visible in extreme-ultraviolet wavelengths propagate away from the EARs with speeds of a few km s{sup −1}. The regions swept by the dark ribbons are brightening afterward, with the mean temperature increasing by one quarter. The observational findings demonstrate that uninterrupted magnetic reconnection between EARs and the QS occurs. When the EARs develop, the reconnection continues. The dark ribbons may be the track of the interface between the reconnected magnetic fields and the undisturbed QS’s fields. The propagating speed of the dark ribbons reflects the reconnection rate and is consistent with our numerical simulation. A long-term coronal heating which occurs in turn from nearby the EARs to far away from the EARs is proposed.

  15. Magnetic topology of emerging flux regions

    NASA Astrophysics Data System (ADS)

    Pariat, Etienne

    Coronal magnetic fields structure and governs the dynamics of the solar atmosphere. These magnetic fields are often complex, composed of multiples domains of magnetic-field-lines connectivity. The topology of the magnetic field allows a synthetic description of these complex magnetic field by highlighting the structural elements that are important for the dynamic and the activity of the corona. Topology identifies the key elements where magnetic reconnection will preferentially occurs, and allows to explain and predict the evolution of the coronal plasma. However the topological elements - such as null points, separatrices, separators - do not appear out of thin air. Along with energy, and helicity, the magnetic topology of an active region is build up as the consequence of flux emergence. Some topological elements, such as bald-patches, are even fully part of the mechanism of flux emergence mechanism and drive the evolution and the structuration of the coronal magnetic field as it crosses the lower layer of the solar atmosphere. In the present talk I will therefore review our current understanding of the formation of active region in terms of magnetic topology. I will speak on how the topological structures which are key to solar activity are formed. Meanwhile I'll also discus the topological properties of emerging active region and how topology influences the very process of flux emergence.

  16. Emergency Medicine in Remote Regions.

    PubMed

    Renouf, Tia; Pollard, Megan

    2016-09-09

    Rural and remote places like Sable Island (Nova Scotia) or François (Newfoundland) pose a challenge in delivering both health care and appropriate education that today's learners need to practice in a rural setting. This education can be difficult to deliver to students far from academic centers. This is especially true for learners and practitioners at offshore locations like ships, oil installations, or in the air when patients are transported via fixed wing aircraft or helicopter. The following editorial provides a snapshot of the setting and the challenges faced while working as a physician on a ship, in remote regions.

  17. Emergency Medicine in Remote Regions

    PubMed Central

    Pollard, Megan

    2016-01-01

    Rural and remote places like Sable Island (Nova Scotia) or François (Newfoundland) pose a challenge in delivering both health care and appropriate education that today’s learners need to practice in a rural setting. This education can be difficult to deliver to students far from academic centers. This is especially true for learners and practitioners at offshore locations like ships, oil installations, or in the air when patients are transported via fixed wing aircraft or helicopter. The following editorial provides a snapshot of the setting and the challenges faced while working as a physician on a ship, in remote regions. PMID:27738573

  18. Emergent Agendas in Collaborative Activity.

    ERIC Educational Resources Information Center

    Lemke, J. L.

    This paper discusses a cognitive model of how action agendas and goals emerge through the dynamics of self-organization in collaborative activities. While machines are designed to perform a function, or goal, humans are self-organizing systems that set their own goals and produce order without having external order imposed on them, or, more…

  19. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  20. Transportation Emergency Preparedness Program Plan, U.S. Department of Energy Region 6

    SciTech Connect

    Marsha Keister

    2010-04-01

    The United States Department of Energy (DOE) Region 6 Transportation Emergency Preparedness Program Plan (TEPP Plan) operates within the framework of the DOE emergency management system for developing, coordinating, and directing emergency planning, preparedness, and readiness assurance activities for radiological transportation incidents. The DOE Region 6 TEPP Plan is a narrative description of the DOE Transportation Emergency Preparedness Program activities, training and technical assistance provided to states and tribes along DOE's transportation corridors in DOE Region 6.

  1. Detection of emerging sunspot regions in the solar interior.

    PubMed

    Ilonidis, Stathis; Zhao, Junwei; Kosovichev, Alexander

    2011-08-19

    Sunspots are regions where strong magnetic fields emerge from the solar interior and where major eruptive events occur. These energetic events can cause power outages, interrupt telecommunication and navigation services, and pose hazards to astronauts. We detected subsurface signatures of emerging sunspot regions before they appeared on the solar disc. Strong acoustic travel-time anomalies of an order of 12 to 16 seconds were detected as deep as 65,000 kilometers. These anomalies were associated with magnetic structures that emerged with an average speed of 0.3 to 0.6 kilometer per second and caused high peaks in the photospheric magnetic flux rate 1 to 2 days after the detection of the anomalies. Thus, synoptic imaging of subsurface magnetic activity may allow anticipation of large sunspot regions before they become visible, improving space weather forecast.

  2. Detection of Emerging Sunspot Regions in the Solar Interior

    NASA Astrophysics Data System (ADS)

    Ilonidis, Stathis; Zhao, Junwei; Kosovichev, Alexander

    2011-08-01

    Sunspots are regions where strong magnetic fields emerge from the solar interior and where major eruptive events occur. These energetic events can cause power outages, interrupt telecommunication and navigation services, and pose hazards to astronauts. We detected subsurface signatures of emerging sunspot regions before they appeared on the solar disc. Strong acoustic travel-time anomalies of an order of 12 to 16 seconds were detected as deep as 65,000 kilometers. These anomalies were associated with magnetic structures that emerged with an average speed of 0.3 to 0.6 kilometer per second and caused high peaks in the photospheric magnetic flux rate 1 to 2 days after the detection of the anomalies. Thus, synoptic imaging of subsurface magnetic activity may allow anticipation of large sunspot regions before they become visible, improving space weather forecast.

  3. Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region

    NASA Technical Reports Server (NTRS)

    Nordon, R.; Behar, E.; Drake, S. A.

    2013-01-01

    Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.

  4. A regional experience with emergency liver transplantation.

    PubMed

    Washburn, W K; Bradley, J; Cosimi, A B; Freeman, R B; Hull, D; Jenkins, R L; Lewis, W D; Lorber, M I; Schweizer, R T; Vacanti, J P; Rohrer, R J

    1996-01-27

    Liver transplantation for patients requiring life-support results in the lowest survival and highest costs. A ten year (1983-1993) regional experience with liver transplantation for critically ill patients was undertaken to ascertain the fate of several subgroups of patients. Of the 828 liver transplants performed at six transplant centers within the region over this period, 168 (20%) were done in patients who met today's criteria for a United Network of Organ Sharing (UNOS) status 1 (emergency) liver transplant candidate. Recipients were classified according to chronicity of disease and transplant number (primary-acute, primary-chronic, reTx-acute, reTx-chronic). Overall one-year survival was 50% for all status 1 recipients. The primary-acute subgroup (n = 63) experienced a 57% one-year survival compared with 50% for the primary-chronic (n = 51) subgroup (P = 0.07). Of the reTx-acute recipients (n = 43), 44% were alive at one year in comparison with 20% for the reTx-chronic (n = 11) group (P = 0.18). There was no significant difference in survival for the following: transplant center, blood group compatibility with donors, age, preservation solution, or graft size. For patients retransplanted for acute reasons (primary graft nonfunction (PGNF) or hepatic artery thrombosis [HAT]), survival was significantly better if a second donor was found within 3 days of relisting (52% vs. 20%; P = 0.012). Over the study period progressively fewer donor organs came from outside the region. No strong survival-based argument can be made for separating, in allocation priority, acute and chronic disease patients facing the first transplant as a status 1 recipient. Clearly patients suffering from PGNF or HAT do far better if retransplanted within 3 days. Establishing an even higher status for recipients with PGNF, perhaps drawing from a supraregional donor pool, would allow surgeons to accept more marginal donors, thus potentially expanding the pool, without significantly

  5. The Twist Limit for Bipolar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  6. Active region seismology

    NASA Technical Reports Server (NTRS)

    Bogdan, Tom; Braun, D. C.

    1995-01-01

    Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.

  7. Emergency Response and Management Activities

    EPA Pesticide Factsheets

    This quarterly report, highlighting accomplishments over the past several months, showcases EPA’s unique emergency response capabilities through the use of cutting-edge technologies and innovative cleanup strategies.

  8. Depth of origin of solar active regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    Observations show that the individual bipolar magnetic regions on the sun remain confined during their decay phase, with much of the magnetic field pulling back under the surface, in reverse of the earlier emergence. This suggests that the magnetic field is held on a short rein by subsurface forces, for otherwise the region would decay entirely by dispersing across the face of the sun. With the simple assumption that the fields at the surface are controlled from well-defined anchor points at a depth h, it is possible to relate the length l of the bipolar region at the surface to the depth h, with h about equal to l. The observed dimensions l about equal to 100,000 km for normal active regions, and l about equal to 10,000 km for the ephemeral active regions, indicate comparable depths of origin. More detailed observational studies of the active regions may be expected to shed further light on the problem.

  9. Magnetic Bipoles in Emerging Flux Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Barth, C. S.; Livi, S. H. B.

    1990-11-01

    ABSTRACT. We analyse magnetograms and H-alpha filtergrams of an Emerging Flux Region. Small bipoles have been observed on the magnetograms emerging between opposite polarities. Separation velocities of the opposite poles for 45 bipoles observed on June 9, 1985 have been measured and are in the range 0.5 < Vs < 3.5 km/s. A significant magnetic flux increase in the region was observed due to contributions from the emerging bipoles. RESUMEN. Se analizan magnetogramas y filtrogramas en H-alfa de una region de flujo emergente. Se observan pequenos dipolos en los magnetogramas emergiendo entre polaridades opuestas. Se midieron velocidades de separacion de polos opuestos para 45 bipolos observados en junio 9 de 1985 y estan en el intervalo 0.5 < Vs < 3.5 km/s. Se observo un aumento significativo del flujo magnetico en la region debido a contribuciones de los bipolos emergentes. Key words: SUN-CHROMOSPHERE - SUN-MAGNETIC FIELDS

  10. Regional Activities Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures…

  11. Emerging infectious diseases in southeast Asia: regional challenges to control.

    PubMed

    Coker, Richard J; Hunter, Benjamin M; Rudge, James W; Liverani, Marco; Hanvoravongchai, Piya

    2011-02-12

    Southeast Asia is a hotspot for emerging infectious diseases, including those with pandemic potential. Emerging infectious diseases have exacted heavy public health and economic tolls. Severe acute respiratory syndrome rapidly decimated the region's tourist industry. Influenza A H5N1 has had a profound effect on the poultry industry. The reasons why southeast Asia is at risk from emerging infectious diseases are complex. The region is home to dynamic systems in which biological, social, ecological, and technological processes interconnect in ways that enable microbes to exploit new ecological niches. These processes include population growth and movement, urbanisation, changes in food production, agriculture and land use, water and sanitation, and the effect of health systems through generation of drug resistance. Southeast Asia is home to about 600 million people residing in countries as diverse as Singapore, a city state with a gross domestic product (GDP) of US$37,500 per head, and Laos, until recently an overwhelmingly rural economy, with a GDP of US$890 per head. The regional challenges in control of emerging infectious diseases are formidable and range from influencing the factors that drive disease emergence, to making surveillance systems fit for purpose, and ensuring that regional governance mechanisms work effectively to improve control interventions.

  12. Time of emergence for regional sea-level change

    NASA Astrophysics Data System (ADS)

    Lyu, Kewei; Zhang, Xuebin; Church, John A.; Slangen, Aimée B. A.; Hu, Jianyu

    2014-11-01

    Determining the time when the climate change signal from increasing greenhouse gases exceeds and thus emerges from natural climate variability (referred to as the time of emergence, ToE) is an important climate change issue. Previous ToE studies were mainly focused on atmospheric variables. Here, based on three regional sea-level projection products available to 2100, which have increasing complexity in terms of included processes, we estimate the ToE for sea-level changes relative to the reference period 1986-2005. The dynamic sea level derived from ocean density and circulation changes alone leads to emergence over only limited regions. By adding the global-ocean thermal expansion effect, 50% of the ocean area will show emergence with rising sea level by the early-to-middle 2040s. Including additional contributions from land ice mass loss, land water storage change and glacial isostatic adjustment generally enhances the signal of regional sea-level rise (except in some regions with decreasing total sea levels), which leads to emergence over more than 50% of the ocean area by 2020. The ToE for total sea level is substantially earlier than that for surface air temperature and exhibits little dependence on the emission scenarios, which means that our society will face detectable sea-level change and its potential impacts earlier than surface air warming.

  13. Active Region Release Two CMEs

    NASA Video Gallery

    Solar material can be seen blowing off the sun in this video captured by NASA’s Solar Dynamics Observatory (SDO) on the night of Feb. 5, 2013. This active region on the sun sent out two coronal ...

  14. RTSTEP regional transportation simulation tool for emergency planning - final report.

    SciTech Connect

    Ley, H.; Sokolov, V.; Hope, M.; Auld, J.; Zhang, K.; Park, Y.; Kang, X.

    2012-01-20

    Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the accommodation of emergency evacuation traffic throughout a very large area; the planning of resources to respond appropriately to the needs of the affected population; the placement of medical supplies and decontamination equipment; and the assessment and determination of primary escape routes, as well as routes for incoming emergency responders. Compared to events with advance notice, such as evacuations based on hurricanes approaching an affected area, the response to no-notice events relies exclusively on pre-planning and general regional emergency preparedness. Another unique issue is the lack of a full and immediate understanding of the underlying threats to the population, making it even more essential to gain extensive knowledge of the available resources, the chain of command, and established procedures. Given the size of the area affected, an advanced understanding of the regional transportation systems is essential to help with the planning for such events. The objectives of the work described here (carried out by Argonne National Laboratory) is the development of a multi-modal regional transportation model that allows for the analysis of different evacuation scenarios and emergency response strategies to build a wealth of knowledge that can be used to develop appropriate regional emergency response plans. The focus of this work is on the effects of no-notice evacuations on the regional transportation network, as well as the response of the transportation network to the sudden and unusual demand. The effects are dynamic in nature, with scenarios changing potentially from minute to minute. The response to a radiological or chemical hazard will be based on the time-delayed dispersion of

  15. Tilt of Emerging Bipolar Magnetic Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Stenflo, J. O.

    2008-12-01

    Magnetic fields emerging from the Sun's interior carry information about the physical processes of magnetic field generation and transport in the convection zone. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence, observed from SOHO MDI, shows that the systematic tilt with respect to the equator (Joy's law) is established by the middle of the emergence period. This suggests that the tilt is most likely generated below the surface. However, the data do not show evidence of a dependence of the tilt angle on the amount of flux or a relaxation of the bipolar orientation toward the east-west direction, in contrast to the predictions of the rising magnetic flux rope theories.

  16. Epidemiology of La Crosse Virus Emergence, Appalachia Region, United States

    PubMed Central

    Agusto, Folashade; Calabrese, Justin M.; Muturi, Ephantus J.; Fagan, William F.

    2016-01-01

    La Crosse encephalitis is a viral disease that has emerged in new locations across the Appalachian region of the United States. Conventional wisdom suggests that ongoing emergence of La Crosse virus (LACV) could stem from the invasive Asian tiger (Aedes albopictus) mosquito. Efforts to prove this, however, are complicated by the numerous transmission routes and species interactions involved in LACV dynamics. To analyze LACV transmission by Asian tiger mosquitoes, we constructed epidemiologic models. These models accurately predict empirical infection rates. They do not, however, support the hypothesis that Asian tiger mosquitoes are responsible for the recent emergence of LACV at new foci. Consequently, we conclude that other factors, including different invasive mosquitoes, changes in climate variables, or changes in wildlife densities, should be considered as alternative explanations for recent increases in La Crosse encephalitis. PMID:27767009

  17. Regionalization of services improves access to emergency vascular surgical care.

    PubMed

    Roche-Nagle, G; Bachynski, K; Nathens, A B; Angoulvant, D; Rubin, B B

    2013-04-01

    Management of vascular surgical emergencies requires rapid access to a vascular surgeon and hospital with the infrastructure necessary to manage vascular emergencies. The purpose of this study was to assess the impact of regionalization of vascular surgery services in Toronto to University Health Network (UHN) and St Michael's Hospital (SMH) on the ability of CritiCall Ontario to transfer patients with life- and limb-threatening vascular emergencies for definitive care. A retrospective review of the CritiCall Ontario database was used to assess the outcome of all calls to CritiCall regarding patients with vascular disease from April 2003 to March 2010. The number of patients with vascular emergencies referred via CritiCall and accepted in transfer by the vascular centers at UHN or SMH increased 500% between 1 April 2003-31 December 2005 and 1 January 2006-31 March 2010. Together, the vascular centers at UHN and SMH accepted 94.8% of the 1002 vascular surgery patients referred via CritiCall from other hospitals between 1 January 2006 and 31 March 2010, and 72% of these patients originated in hospitals outside of the Toronto Central Local Health Integration Network. Across Ontario, the number of physicians contacted before a patient was accepted in transfer fell from 2.9 ± 0.4 before to 1.7 ± 0.3 after the vascular centers opened. In conclusion, the vascular surgery centers at UHN and SMH have become provincial resources that enable the efficient transfer of patients with vascular surgical emergencies from across Ontario. Regionalization of services is a viable model to increase access to emergent care.

  18. Properties of solar ephemeral regions at the emergence stage

    SciTech Connect

    Yang, Shuhong; Zhang, Jun E-mail: zjun@nao.cas.cn

    2014-01-20

    For the first time, we statistically study the properties of ephemeral regions (ERs) and quantitatively determine their parameters at the emergence stage based on a sample of 2988 ERs observed by the Solar Dynamics Observatory. During the emergence process, there are three kinds of kinematic performances, i.e., separation of dipolar patches, shift of the ER's magnetic centroid, and rotation of the ER's axis. The average emergence duration, flux emergence rate, separation velocity, shift velocity, and angular speed are 49.3 minutes, 2.6 × 10{sup 15} Mx s{sup –1}, 1.1 km s{sup –1}, 0.9 km s{sup –1}, and 0.°6 minute{sup –1}, respectively. At the end of emergence, the mean magnetic flux, separation distance, shift distance, and rotation angle are 9.3 × 10{sup 18} Mx, 4.7 Mm, 1.1 Mm, and 12.°9, respectively. We also find that the higher the ER magnetic flux is, (1) the longer the emergence lasts, (2) the higher the flux emergence rate is, (3) the further the two polarities separate, (4) the lower the separation velocity is, (5) the larger the shift distance is, (6) the slower the ER shifts, and (7) the lower the rotation speed is. However, the rotation angle seems not to depend on the magnetic flux. Not only at the start time, but also at the end time, the ERs are randomly oriented in both the northern and the southern hemispheres. Finally, neither the anti-clockwise-rotated ERs nor the clockwise rotated ones dominate the northern or the southern hemisphere.

  19. Asian Transnational Security Challenge: Emerging Trends, Regional Visions

    DTIC Science & Technology

    2010-10-01

    Taylor, 2006), while the volume of poppy production has increased by 150%. Afghanistan Asian Transnational Security Challenges: Emerging Trends...eastern and southern regions of Afghanistan are regarded as the centre of the poppy cultivation. Recently, poppy cultivation has spread to areas...which were not previously growing poppy , such as Badakhshan and Takkhar. However, the cultivation level has also dropped signifi cantly due to drug

  20. SDO Sees Active Region Outbursts

    NASA Video Gallery

    This close up video by NASA’s Solar Dynamics Observatory shows an active region near the right-hand edge of the sun’s disk, which erupted with at least a dozen minor events over a 30-hour period fr...

  1. Dynamics and Emergent Structures in Active Fluids

    NASA Astrophysics Data System (ADS)

    Baskaran, Aparna

    2014-03-01

    In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. Support from NSF through DMR-1149266 and DMR-0820492.

  2. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  3. Synaptic activity: An emerging player in schizophrenia.

    PubMed

    Sarkar, Anindita; Marchetto, Maria C; Gage, Fred H

    2017-02-01

    Schizophrenia is a polygenic disorder with a complex etiology. While the genetic and molecular underpinnings of the disease are poorly understood, variations in genes encoding synaptic pathways are consistently implicated. Although its impact is still an open question, a deficit in synaptic activity provides an attractive model to explain the cognitive etiology of schizophrenia. Recent advances in high-throughput imaging and functional studies bring new hope for the application of in vitro disease modeling with patient-derived neurons to empirically ascertain the extent to which these synaptic pathways are involved in the disease. In addition, the emergent avenue of research targeted to probe neuronal connections is revealing critical insight into circuitry and may influence how we think about psychiatric disorders in the near future. This article is part of a Special Issue entitled SI: Exploiting human neurons.

  4. Emergent order in ensembles of active spinners

    NASA Astrophysics Data System (ADS)

    van Zuiden, Benjamin C.; Paulose, Jayson; Irvine, William T. M.; Bartolo, Denis; Vitelli, Vincenzo

    Interacting self-propelled particles is proxy to model many living systems from cytoskeletal motors to bird flocks, while also providing a framework to investigate fundamental questions in non equilibrium statistical mechanics. A surge of recent studies have shown that self-propulsion significantly modifies the phase behavior of particles interacting via potential interactions. A prototypical example is the so-called Motility Induced Phase Separation occurring in ensembles of self-propelled hard spheres. In stark contrast, our understanding of active spinning, as opposed to self-propulsion, remains very scarce. Here, we study a system of self-spinning dimers, interacting via soft repulsive forces. Upon varying the density and activity, we observe a range of emergent phases characterized by different degrees of spatiotemporal order in the position and orientation of the dimers. Changes in bulk properties, including crystallization, melting, and freezing, are reflected in the collective motion of the particles. We rationalize our numerical findings theoretically and demonstrate some of these concepts in a active granular experiment.

  5. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  6. Hepatitis E: An Underdiagnosed, Emerging Infection in Nonendemic Regions

    PubMed Central

    De Keukeleire, Steven; Reynders, Marijke

    2015-01-01

    Although hepatitis E virus (HEV) is the primary cause of enterically transmitted acute hepatitis and jaundice in developing countries, locally acquired HEV infections are increasing in nonendemic countries. As such, HEV is emerging as an underdiagnosed cause of infection. This report describes three clinically variable cases of HEV infection with unusual clinical presentations. These cases highlight the fact that HEV should be considered in the differential diagnosis of patients with unexplained hepatitis (acute or chronic) with or without extrahepatic manifestations. HEV should also be considered in patients with persistently elevated liver enzymes who have not travelled to known HEV-endemic regions. Lack of knowledge among physicians and an absence of standardized diagnostic tests may result in increased morbidity and mortality from HEV infection. PMID:26807386

  7. [Medical emergency teams are activated less than expected].

    PubMed

    Frydshou, Andreas; Gillesberg, Inger

    2013-02-18

    Medical emergency teams (MET) are established at several Danish hospitals. We report experiences from 2010-2011 at a university hospital with 73,360 admissions in 2011. MET is activated less than expected as a systematic track and trigger system is not implemented yet. The most common trigger of MET is respiratory problems. MET have an important role of limitations of therapy or do not resuscitate orders in patients with critical irreversible illness. One in five patients seen by MET were admitted to the intensive care unit. Currently the Capital Region of Denmark covering 12 hospitals is implementing a full rapid response system at all hospitals.

  8. Evolution of active region outflows throughout an active region lifetime

    NASA Astrophysics Data System (ADS)

    Zangrilli, L.; Poletto, G.

    2016-10-01

    Context. We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Aims: Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Methods: Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R⊙, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H i Lyα line and the O vi doublet lines at 1031.9 and 1037.6 Å. Results: Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two types of outflows at different latitudes, both possibly originating in the same negative polarity area of the AR. We also analyzed the behavior of the Si xii 520 Å line along the UVCS slit in an attempt to reveal changes in the Si abundance when different regions are traversed. Although we found some evidence for a Si enrichment in the AR outflows, alternative interpretations are also plausible. Conclusions: Our results demonstrate that outflows from ARs are detectable in the intermediate corona throughout the whole AR lifetime. This confirms that outflows contribute to the slow wind.

  9. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  10. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  11. 50 CFR 404.8 - Emergencies and law enforcement activities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A... prohibitions in this part do not apply to activities necessary to respond to emergencies threatening...

  12. 50 CFR 404.8 - Emergencies and law enforcement activities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A NORTHWESTERN... prohibitions in this part do not apply to activities necessary to respond to emergencies threatening...

  13. 50 CFR 404.8 - Emergencies and law enforcement activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A NORTHWESTERN... prohibitions in this part do not apply to activities necessary to respond to emergencies threatening...

  14. New Intervention Model of Regional Transfer Network System to Alleviate Crowding of Regional Emergency Medical Center

    PubMed Central

    2016-01-01

    Emergency department (ED) crowding is a serious problem in most tertiary hospitals in Korea. Although several intervention models have been established to alleviate ED crowding, they are limited to a single hospital-based approach. This study was conducted to determine whether the new regional intervention model could alleviate ED crowding in a regional emergency medical center. This study was designed as a “before and after study” and included patients who visited the tertiary hospital ED from November 2011 to October 2013. One tertiary hospital and 32 secondary hospitals were included in the study. A transfer coordinator conducted inter-hospital transfers from a tertiary hospital to a secondary hospital for suitable patients. A total of 1,607 and 2,591 patients transferred from a tertiary hospital before and after the study, respectively (P < 0.001). We found that the median ED length of stay (LOS) decreased significantly from 3.68 hours (interquartile range [IQR], 1.85 to 9.73) to 3.20 hours (IQR, 1.62 to 8.33) in the patient group after implementation of the Regional Transfer Network System (RTNS) (P < 0.001). The results of multivariate analysis showed a negative association between implementation of the RTNS and ED LOS (beta coefficient -0.743; 95% confidence interval -0.914 to -0.572; P < 0.001). In conclusion, the ED LOS in the tertiary hospital decreased after implementation of the RTNS. PMID:27134506

  15. EMERGE - ESnet/MREN Regional Science Grid Experimental NGI Testbed

    SciTech Connect

    Mambretti, Joe; DeFanti, Tom; Brown, Maxine

    2001-07-31

    This document is the final report on the EMERGE Science Grid testbed research project from the perspective of the International Center for Advanced Internet Research (iCAIR) at Northwestern University, which was a subcontractor to this UIC project. This report is a compilation of information gathered from a variety of materials related to this project produced by multiple EMERGE participants, especially those at Electronic Visualization Lab (EVL) at the University of Illinois at Chicago (UIC), Argonne National Lab and iCAIR. The EMERGE Science Grid project was managed by Tom DeFanti, PI from EVL at UIC.

  16. CME Productivity of Active Regions.

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, Y.; Wang, J.; Shen, C.; Ye, P.; Zhang, Q.; Liu, R.; Wang, S.

    2015-12-01

    Solar active regions (ARs) are the major sources of two kinds of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). Although they are believed to be two phenomena in the same eruptive process, the productivity of them could be quiet different for various ARs. Why is an AR productive? And why is a flare-rich AR CME-poor? To answer these questions, we compared the recent super flare-rich but CME-poor AR 12192, with other four ARs; two were productive in both flares and CMEs and the other two were inert to produce any M-class or intenser flares or CMEs. By investigating the photospheric parameters based on the SDO/HMI vector magnetogram, we find the three productive ARs have larger magnetic flux, current and free magnetic energy than the inert ARs. Furthermore, the two ARs productive in both flares and CMEs contain higher current helicity, concentrating along both sides of the flaring neutral lines, indicating the presence of a seed magnetic structure( that is highly sheared or twisted) of a CME; they also have higher decay index in the low corona, showing weak constraint. The results suggest that productive ARs are always large and have strong current system and sufficient free energy to power flares, and more importantly whether or not a flare is accompanied by a CME is seemingly related to (1) if there is significant sheared or twisted core field serving as the seed of the CME and (2) if the constraint of the overlying arcades is weak enough. Moreover, some productive ARs may frequently produce more than one CME. How does this happen? We do a statistical investigation of waiting times of quasi-homologous CMEs ( CME ssuccessive originating from the same ARs within short intervals) from super ARs in solar cycle 23 to answer this question. The waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hours, the first component peaks at 7 hours. The correlation analysis among CME waiting times

  17. The Effect of Firm Strategy and Corporate Performance on Software Market Growth in Emerging Regions

    ERIC Educational Resources Information Center

    Mertz, Sharon A.

    2013-01-01

    The purpose of this research is to evaluate the impact of firm strategies and corporate performance on enterprise software market growth in emerging regions. The emerging regions of Asia Pacific, Eastern Europe, the Middle East and Africa, and Latin America, currently represent smaller overall markets for software vendors, but exhibit high growth…

  18. Vegetable viruses emerging in Florida and the Caribbean region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato chlorotic spot virus (TCSV) and a natural Groundnut ringspot virus (GRSV) reassortant (LGMTSG) with GRSV S and L RNAs and a TCSV M RNA have recently emerged and joined previously established Tomato spotted wilt virus (TSWV) as economically important vegetable pathogens in south Florida. TCSV...

  19. On the Formation of a Stable Penumbra in a Region of Flux Emergence in the Sun

    NASA Astrophysics Data System (ADS)

    Murabito, M.; Romano, P.; Guglielmino, S. L.; Zuccarello, F.

    2017-01-01

    We studied the formation of the first penumbral sector around a pore in the following polarity of the NOAA Active Region (AR) 11490. We used a high spatial, spectral, and temporal resolution data set acquired by the Interferometric BIdimensional Spectrometer operating at the NSO/Dunn Solar Telescope, as well as data taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite. On the side toward the leading polarity, elongated granules in the photosphere and an arch filament system (AFS) in the chromosphere are present, while the magnetic field shows a sea-serpent configuration, indicating a region of magnetic flux emergence. We found that the formation of a stable penumbra in the following polarity of the AR begins in the area facing the opposite polarity located below the AFS in the flux emergence region, different from what was found by Schlichenmaier and colleagues. Moreover, during the formation of the first penumbral sector, the area characterized by magnetic flux density larger than 900 G and the area of the umbra increase.

  20. Facilities and regionalization--emergency medical services systems.

    PubMed

    Stewart, R D

    1990-02-01

    Advanced life support and the modern EMS system were born out of the hope that by extending hospital emergency facilities outside the bounds of the hospital, earlier and more intensive care could be provided to those patients requiring it. EMS systems have since left the nest and only recently, following a turbulent adolescence, is prehospital care returning as a partner with the medical facilities and physicians that presided over their modern origins. The next decade will see the continuing trend toward hospitals and practitioners regaining some influence in the design and direction of prehospital care.

  1. CDC's Emergency Management Program activities - worldwide, 2003-2012.

    PubMed

    2013-09-06

    In 2003, recognizing the increasing frequency and complexity of disease outbreaks and disasters and a greater risk for terrorism, CDC established the Emergency Operations Center (EOC), bringing together CDC staff members who respond to public health emergencies to enhance communication and coordination. To complement the physical EOC environment, CDC implemented the Incident Management System (IMS), a staffing structure and set of standard operational protocols and services to support and monitor CDC program-led responses to complex public health emergencies. The EOC and IMS are key components of CDC's Emergency Management Program (EMP), which applies emergency management principles to public health practice. To enumerate activities conducted by the EMP during 2003-2012, CDC analyzed data from daily reports and activity logs. The results of this analysis determined that, during 2003-2012, the EMP fully activated the EOC and IMS on 55 occasions to support responses to infectious disease outbreaks, natural disasters, national security events (e.g., conventions, presidential addresses, and international summits), mass gatherings (e.g., large sports and social events), and man-made disasters. On 109 other occasions, the EMP was used to support emergency responses that did not require full EOC activation, and the EMP also conducted 30 exercises and drills. This report provides an overview of those 194 EMP activities.

  2. Emergency preparedness for genetics centers, laboratories, and patients: the Southeast Region Genetics Collaborative strategic plan.

    PubMed

    Andersson, Hans C; Perry, William; Bowdish, Bruce; Floyd-Browning, Phaidra

    2011-10-01

    Emergencies occur unpredictably and interrupt routine genetic care. The events after hurricanes Katrina and Rita have led to the recognition that a coherent plan is necessary to ensure continuity of operations for genetic centers and laboratories, including newborn screening. No geographic region is protected from the effects of a variety of potential emergencies. Regional and national efforts have begun to address the need for such preparedness, but a plan for ensuring continuity of operations by creating an emergency preparedness plan must be developed for each genetic center and laboratory, with attention to the interests of patients. This article describes the first steps in development of an emergency preparedness plan for individual centers.

  3. Regionalization and emergency care: the institute of medicine reports and a federal government update.

    PubMed

    Carr, Brendan G; Asplin, Brent R

    2010-12-01

    The 2010 Academic Emergency Medicine consensus conference on regionalization in emergency care began with an update on the Institute of Medicine (IOM) reports on the Future of Emergency Care. This was followed by two presentations from federal officials, focusing on regionalization from the perspective of the White House National Security Staff and the Emergency Care Coordination Center. This article summarizes the content of these presentations. It should be noted that this summary is the perspective of the authors and does not represent the official policy of the U.S. government.

  4. The Emergence of Trans-Regional Educational Exchange Schemes (TREES) in Europe, North America, and the Asia-Pacific Region.

    ERIC Educational Resources Information Center

    Denman, Brian D.

    2001-01-01

    Explores how salient aspects of globalization, such as free trade zones, have led to emergence of trans-regional educational exchange schemes (TREES) in higher education. Discusses how these schemes are set apart from others by the proliferation of international university organizations that go beyond region and infiltrate other parts of the globe…

  5. EMERGING SCIENCE: EPA'S ORD SUPPORTS REGIONAL HAZE PROGRAM

    EPA Science Inventory

    A series of presentations from EPA's Board of Science Councilors review in April 2005 and the Science Forum in May 2005 are being made available to the Regional Planning Organization conference on June 9-10, 2005. Attendees will be able to review the materials during the confere...

  6. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  7. Sustaining a Regional Emerging Infectious Disease Research Network: A Trust-Based Approach

    PubMed Central

    Silkavute, Pornpit; Tung, Dinh Xuan; Jongudomsuk, Pongpisut

    2013-01-01

    The Asia Partnership on Emerging Infectious Diseases Research (APEIR) was initiated in 2006 to promote regional collaboration in avian influenza research. In 2009, the partnership expanded its scope to include all emerging infectious diseases. APEIR partners include public health and animal researchers, officials and practitioners from Cambodia, China, Lao PDR, Indonesia, Thailand and Vietnam. APEIR has accomplished several major achievements in three key areas of activity: (i) knowledge generation (i.e., through research); (ii) research capacity building (e.g., by developing high-quality research proposals, by planning and conducting joint research projects, by adopting a broader Ecohealth/OneHealth approach); and (iii) policy advocacy (e.g., by disseminating research results to policy makers). This paper describes these achievements, with a focus on the partnership's five major areas of emerging infectious disease research: wild migratory birds, backyard poultry systems, socio-economic impact, policy analysis, and control measures. We highlight two case studies illustrating how the partnership's research results are being used to inform policy. We also highlight lessons learned after five years of working hard to build our partnership and the value added by a multi-country, multi-sectoral, multi-disciplinary research partnership like APEIR. PMID:23362419

  8. Knowledge Levels Regarding Crimean-Congo Hemorrhagic Fever Among Emergency Healthcare Workers in an Endemic Region

    PubMed Central

    Yolcu, Sadiye; Kader, Cigdem; Kayipmaz, Afsin Emre; Ozbay, Sedat; Erbay, Ayse

    2014-01-01

    Background In this study, we aimed to determine knowledge levels regarding Crimean-Congo hemorrhagic fever (CCHF) among emergency healthcare workers (HCWs) in an endemic region. Methods A questionnaire form consisting of questions about CCHF was applied to the participants. Results The mean age was 29.6 ± 6.5 years (range 19 - 45). Fifty-four (49.5%) participants were physicians, 39 (35.8%) were nurses and 16 (14.7%) were paramedics. All of the participants were aware of CCHF, and 48 (44%) of them had previously followed CCHF patients. Rates of the use of protective equipment (masks and gloves) during interventions for patients who were admitted to the emergency service with active hemorrhage were 100% among paramedics, 76.9% among nurses and 61.1% among physicians (P = 0.003). Among 86 (78.9%) HCWs who believed that their knowledge regarding CCHF was adequate, 62 (56.9%) declared that they would prefer not to care for patients with CCHF (P = 0.608). Conclusions The use of techniques to prevent transmission of this disease, including gloves, face masks, face visors and box coats, should be explained to emergency room HCWs, and encouragement should be provided for using these techniques. PMID:24734146

  9. Sustaining a regional emerging infectious disease research network: a trust-based approach.

    PubMed

    Silkavute, Pornpit; Tung, Dinh Xuan; Jongudomsuk, Pongpisut

    2013-01-01

    The Asia Partnership on Emerging Infectious Diseases Research (APEIR) was initiated in 2006 to promote regional collaboration in avian influenza research. In 2009, the partnership expanded its scope to include all emerging infectious diseases. APEIR partners include public health and animal researchers, officials and practitioners from Cambodia, China, Lao PDR, Indonesia, Thailand and Vietnam. APEIR has accomplished several major achievements in three key areas of activity: (i) knowledge generation (i.e., through research); (ii) research capacity building (e.g., by developing high-quality research proposals, by planning and conducting joint research projects, by adopting a broader Ecohealth/OneHealth approach); and (iii) policy advocacy (e.g., by disseminating research results to policy makers). This paper describes these achievements, with a focus on the partnership's five major areas of emerging infectious disease research: wild migratory birds, backyard poultry systems, socio-economic impact, policy analysis, and control measures. We highlight two case studies illustrating how the partnership's research results are being used to inform policy. We also highlight lessons learned after five years of working hard to build our partnership and the value added by a multi-country, multi-sectoral, multi-disciplinary research partnership like APEIR.

  10. Suppression of Active-Region CME Production by the Presence of Other Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor

    2009-01-01

    From the SOHO mission s data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region s total magnetic flux), and (2) a gauge of the active region s free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region s expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region s flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

  11. Urban adaptation can roll back warming of emerging megapolitan regions.

    PubMed

    Georgescu, Matei; Morefield, Philip E; Bierwagen, Britta G; Weaver, Christopher P

    2014-02-25

    Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1-2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions.

  12. Urban adaptation can roll back warming of emerging megapolitan regions

    PubMed Central

    Georgescu, Matei; Morefield, Philip E.; Bierwagen, Britta G.; Weaver, Christopher P.

    2014-01-01

    Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions. PMID:24516126

  13. AFS dynamics in a short-lived active region

    NASA Astrophysics Data System (ADS)

    Zuccarello, F.; Battiato, V.; Contarino, L.; Romano, P.; Spadaro, D.; Vlahos, L.

    2005-11-01

    In the framework of the study on active region emergence, we report the results obtained from the analysis of the short-lived (7 days) active region NOAA 10407. The data used were acquired during an observational campaign carried out with the THEMIS telescope in IPM mode in July 2003, coordinated with other ground- and space-based instruments (INAF-OACT, DOT, BBSO, MDI/SOHO, EIT/SOHO, TRACE). We determined the morphological and magnetic evolution of NOAA 10407, as well as the velocity fields associated with its magnetic structures. Within the limits imposed by the spatial and temporal resolution of the images analyzed, the first evidence of the active region formation is initially observed in the transition region and lower corona, and later on (i.e. after about 7 h) in the inner layers, as found in a previous analysis concerning a long-lived, recurrent active region. The results also indicate that the AFS formed in the active region shows typical upward motion at the AFS's tops and downward motion at the footpoints. The velocity values relevant to the upward motions decrease over the evolution of the region, similarly to the case of the recurrent active region, while we notice an increasing trend in the downflow velocity during the early phases of the time interval analyzed by THEMIS. On the other hand, the AFS preceding legs show a higher downflow than the following ones, a result in contrast with that found in the long-lived active region. The chromospheric area overhanging the sunspot umbra shows an upward motion of ˜ 2 km s-1, while that above the pores shows a downward motion of ~4 km s-1.

  14. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  15. Quantifying emerging local anthropogenic emissions in the Arctic region: the ACCESS aircraft campaign experiment

    NASA Astrophysics Data System (ADS)

    Roiger, Anke; Thomas, Jennie L.; Schlager, Hans; Law, Kathy; Kim, Jin; Reiter, Anja; Schäfler, Andreas; Weinzierl, Bernadett; Rose, Maximilian; Raut, Jean-Christophe; Marelle, Louis

    2014-05-01

    Arctic change has opened the region to new industrial activities, most notably transit shipping and resource extraction. The impacts that Arctic industrialization will have on pollutants and Arctic climate are not well understood. In order to understand how shipping and offshore oil/gas extraction impact on Arctic tropospheric chemistry and composition, we conducted the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign. The campaign was conducted in July 2012 using the DLR Falcon research aircraft, based in Andenes, Norway. The Falcon was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species) to characterize these emissions and their atmospheric chemistry. The Falcon performed nine scientific flights to study emissions from different ships (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) off the Norwegian Coast. Distinct differences in chemical and aerosol composition were found in emissions from these increasing pollution sources. We also studied the composition of biomass burning plumes imported from Siberian wildfires to put the emerging local pollution within a broader context. In addition to our measurements, we used a regional chemical transport model to study the influence of emerging pollution sources on gas and aerosol concentrations in the region. We will present an overview on the measured trace gas and aerosol properties of the different emission sources and discuss the impact of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.

  16. Notification: Audit of Region 6's Emergency and Rapid Response Services Contracts

    EPA Pesticide Factsheets

    Project #OA-FY13-0046, March 20, 2013. The Office of Inspector General plans to begin the fieldwork phase of our audit of Region 6’s management of the Emergency and Rapid Response Services contracts.

  17. Flare Size Distributions and Active Region Types

    NASA Astrophysics Data System (ADS)

    Bai, Taeil

    2007-05-01

    Size distributions of solar flares measured by various size indicators follow a power law with a negative index of about 1.8. On the basis of general appearance of power-law distributions, Lu and his collegues proposed an avalenche model. According to this model, the power-law index should be independent of active region size, but the cutoff size above which the size distribution steepens rapidly is expected to depend on the active region size. I have analyzed the size distribution of flares, using GOES soft X-ray observations for 2004 and 2005. For flares observed by GOES during these years, their locations are almost completely identified even for C-class flares. This enable us to study the dependence of size distribution on active region type. Comparing the power-law portion of size distributions below the high-end cutoff, I have found that the size distribution index depends on active region type. Flares from prolific active regions exhibit a flatter distribution, while flares from non-prolific active regions exhibit a steeper distribution. I plan to discuss a plausible mechanism for such behavior.

  18. 76 FR 71991 - Agency Information Collection Activities: Proposed Collection; Comment Request, Emergency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... SECURITY Federal Emergency Management Agency Agency Information Collection Activities: Proposed Collection; Comment Request, Emergency Management Institute Course Evaluation Form AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: The Federal Emergency Management Agency, as part of...

  19. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-07-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  20. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  1. 76 FR 17978 - Agency Information Collection Activities: Emergency Clearance Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... From the Federal Register Online via the Government Publishing Office SOCIAL SECURITY ADMINISTRATION Agency Information Collection Activities: Emergency Clearance Request The Social Security Administration (SSA) publishes a list of information collection packages requiring clearance by the Office of Management and Budget (OMB) in compliance...

  2. Psychological Benefits of Regular Physical Activity: Evidence from Emerging Adults

    ERIC Educational Resources Information Center

    Cekin, Resul

    2015-01-01

    Emerging adulthood is a transitional stage between late adolescence and young adulthood in life-span development that requires significant changes in people's lives. Therefore, identifying protective factors for this population is crucial. This study investigated the effects of regular physical activity on self-esteem, optimism, and happiness in…

  3. 75 FR 70341 - Agency Information Collection Activities: Emergency Clearance Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... ADMINISTRATION Agency Information Collection Activities: Emergency Clearance Request The Social Security Administration (SSA) publishes a list of information collection packages requiring clearance by the Office of... Desk Officer and SSA Reports Clearance Officer to the following addresses or fax numbers. (OMB),...

  4. 75 FR 37518 - Agency Information Collection Activities: Emergency Clearance Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... ADMINISTRATION Agency Information Collection Activities: Emergency Clearance Request The Social Security Administration (SSA) publishes a list of information collection packages requiring clearance by the Office of... Desk Officer and SSA Reports Clearance Officer to the following addresses or fax numbers. (OMB),...

  5. Fluxon Modeling of Active Region Evolution

    NASA Astrophysics Data System (ADS)

    Deforest, C. E.; Kankelborg, C. C.; Davey, A. R.; Rachmeler, L.

    2006-12-01

    We present current results and status on fluxon modeling of free energy buildup and release in active regions. Our publicly available code, FLUX, has the unique ability to track magnetic energy buildup with a truly constrained topology in evolving, nonlinear force-free conditions. Recent work includes validation of the model against Low &Lou force-free field solutions, initial evolution studies of idealized active regions, and inclusion of locally parameterized reconnection into the model. FLUX is uniquely able to simulate complete active regions in 3-D on a single workstation; we estimate that a parallelized fluxon model, together with computer vision code to ingest solar data, could run faster than real time on a cluster of \\textasciitilde 30 CPUs and hence provide a true predictive space weather model in the style of predictive simulations of terrestrial weather.

  6. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  7. Active Region Segmentation Based on Stokes Asymmetries

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Harker-Lundberg, B.

    2011-01-01

    During the Stokes inversion process, we would ideally use a distinct model for each structure in an active region which addresses the differences in the physical conditions of these regions. While the Milne-Eddington model of the atmosphere---a frequently-used ideal model that assumes all local thermodynamic equilibrium (LTE) conditions are satisfied---is a sufficient approximation for the description of the solar photosphere, we almost always observe deviations from this model. It is thus of interest to devise a method to systematically and accurately identify the active regions based on their spectra, such that we could use a more sophisticated model catered to each structure in an active region during the actual Stokes inversion process. We present a classification scheme for different active region structures using Stokes asymmetries and line core depths as discriminators. The data used for this investigation were obtained from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) facility using the Vector Spectromagnetograph (VSM), observed in a 3 A bandpass around Fe I 6302.5 A, from March 27, 2008 to March 29, 2008. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  8. ON THE FORMATION OF ACTIVE REGIONS

    SciTech Connect

    Stein, Robert F.; Nordlund, Ake E-mail: aake@nbi.dk

    2012-07-01

    Magnetoconvection can produce an active region without an initial coherent flux tube. A simulation was performed where a uniform, untwisted, horizontal magnetic field of 1 kG strength was advected into the bottom of a computational domain 48 Mm wide by 20 Mm deep. The up and down convective motions produce a hierarchy of magnetic loops with a wide range of scales, with smaller loops riding 'piggy-back' in a serpentine fashion on larger loops. When a large loop approaches the surface, it produces a small active region with a compact leading spot and more diffuse following spots.

  9. Quantifying emerging local anthropogenic emissions in the Arctic region: the ACCESS aircraft campaign experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Roiger, A.; Thomas, J. L.; Schlager, H.; Law, K.; Kim, J.; Reiter, A.; Schaefler, A.; Weinzierl, B.; Rose, M.; Raut, J.; Marelle, L.

    2013-12-01

    Arctic sea ice has decreased dramatically in the past few decades, which has opened the Arctic Ocean to transit shipping and hydrocarbon extraction. These anthropogenic activities are expected to increase emissions of air pollutants and climate forcers (e.g. aerosols, ozone) in the Arctic troposphere significantly in the future. However, large knowledge gaps exist how these emissions influence regional air pollution and Arctic climate. Here we present an overview on the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign, which primarily focused on studying emissions from emerging Arctic pollution sources. During the ACCESS campaign in July 2012, the DLR Falcon was based in Andenes, Norway, and was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species). During nine scientific flights, emissions from different ship types (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) were probed off the Norwegian Coast. The emissions from these increasing pollution sources showed distinct differences in chemical and aerosol composition. To put the emerging local pollution within a broader context, we also measured sulfur-rich emissions originating from industrial activities on the Kola Peninsula and black carbon containing biomass burning plumes imported from Siberian wildfires. We will present an overview on the trace gas and aerosol properties of the different emission sources, and discuss the influence of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.

  10. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-04-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. Using NSO Kitt Peak synoptic magnetograms, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed lagging-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with lagging-polarity flux located poleward of leading-polarity flux. This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  11. Influence of natural and technological emergency situations on tourism and sustainable development in St.Petersburg and Leningrad region (Russia)

    NASA Astrophysics Data System (ADS)

    Shnyparkov, A. L.; Petrova, E. G.; Vashchalova, T. V.; Gavrilova, S. A.; Danilina, A. V.; Gryaznova, V. V.

    2012-04-01

    St.Petersburg and Leningrad region belong to the most populated and tourist-active regions in the European part of Russia. St.Petersburg is a second important transportation connection point in Russia, there are many industrial and infrastructure facilities in Leningrad region such as chemical plants, mechanic engineering, power stations including a nuclear power station, etc. That is why a lot of technical objects and people can be influenced or damaged by natural hazards and various types of technological accidents can be triggered by natural phenomena that have place in the region. According to the Russian Ministry of Emergency Situation, Leningrad region has a medium level of frequency of emergency situations caused by natural triggers (two to four cases a year). The climatic and orographic conditions of the area contribute to the development of many different types of dangerous natural processes such as floods, storms, strong winds, extreme heat and frost, snowfalls, heavy rains, hale, etc. Hydro-meteorological phenomena are the most often among all natural triggers of emergency situations in the region; about 50% of them are caused by storms and strong winds and 25% by floods. The biggest number of natural emergency situations happens in St.Petersburg. Storms make the marine navigation more difficult and even block the port sometimes. In Leningrad region, 5-10 villages and cities (including St.Petersburg) are at risk to be flooded. In November 1999, the work of Leningradskaya nuclear power station was partly blocked due to the increasing in water level. The federal road Moscow-St.Petersburg is often under influence of heavy snowfalls that cause many problems for transport system of the region during the winter. The majority of technological emergency situations are caused by fires in industrial facilities and residential sector, trafic accidents and shipcrashes. Sometimes natural phenomena can also trigger technological accidents. However, their frequency is

  12. Important historical efforts at emergency department categorization in the United States and implications for regionalization.

    PubMed

    Mehrotra, Abhishek; Sklar, David P; Tayal, Vivek S; Kocher, Keith E; Handel, Daniel A; Myles Riner, R

    2010-12-01

    This article is drawn from a report created for the American College of Emergency Physicians (ACEP) Emergency Department (ED) Categorization Task Force and also reflects the proceedings of a breakout session, "Beyond ED Categorization-Matching Networks to Patient Needs," at the 2010 Academic Emergency Medicine consensus conference, "Beyond Regionalization: Integrated Networks of Emergency Care." The authors describe a brief history of the significant national and state efforts at categorization and suggest reasons why many of these efforts failed to persevere or gain wider implementation. The history of efforts to categorize hospital (and ED) emergency services demonstrates recognition of the potential benefits of categorization, but reflects repeated failures to implement full categorization systems or limited excursions into categorization through licensing of EDs or designation of receiving and referral facilities. An understanding of the history of hospital and ED categorization could better inform current efforts to develop categorization schemes and processes.

  13. Gainful Activity and Intimate Partner Aggression in Emerging Adulthood*

    PubMed Central

    Alvira-Hammond, Marta; Longmore, Monica A.; Manning, Wendy D.; Giordano, Peggy C.

    2014-01-01

    Although intimate partner aggression crosses social class boundaries, education and income are important predictors. Yet given that emerging adulthood is a transitional period, completed education and employment, as single measures, are not ideal indicators of socioeconomic status for young people. We examined associations between self-reports of gainful activity, defined as enrollment in school or full-time employment, and intimate partner aggression among young adults in dating, cohabiting, or married relationships (N=648). Both men and women's participation in gainful activity was negatively associated with aggression. We found that when neither partner was gainfully active, individuals reported higher frequency of physical aggression. In cases of gainful activity asymmetry, the gender of the gainfully active partner did not predict intimate partner aggression. Additionally, we found no evidence that the association between gainful activity and frequency of intimate partner aggression differed by union type. PMID:25309829

  14. Modeling the Subsurface Evolution of Active-Region Flux Tubes

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2009-12-01

    I present results from a set of 3-D spherical-shell MHD simulations of the buoyant rise of active region flux tubes in the solar interior that put new constraints on the initial twist of the subsurface tubes in order for them to emerge with tilt angles consistent with the observed Joy's law for the mean tilt of solar active regions. Due to asymmetric stretching of the Ω-shaped tube by the Coriolis force, a field strength asymmetry develops with the leading side having a greater field strength and thus being more cohesive compared to the following side. Furthermore, the magnetic flux in the leading leg shows more coherent values of local twist α ≡ JB / B2, whereas the values in the following leg show large fluctuations and are of mixed signs.

  15. Ocular Pathology: Role of Emerging Viruses in the Asia-Pacific Region-A Review.

    PubMed

    Ranjan, Ratnesh; Ranjan, Shikha

    2014-01-01

    The role of viral infections in ocular pathology varies greatly, involving all the components of the eye. Some viruses like herpes simplex, herpes zoster, adenovirus, enterovirus 70, influenza virus, human immunodeficiency virus, and cytomegalovirus are well-known for their role in ocular pathology. In recent years, emerging and resurging viral infections represent an important public health problem. The Asia-Pacific region has witnessed a number of pandemic and epidemic outbreaks caused by these viruses during the last 2 decades. The number of ocular complications being reported in patients of these viral infections has also increased significantly during this period. Ophthalmologists and physicians should be aware of ocular manifestations of newly emerging or resurging viral diseases. We conducted a review of the literature published during the last 20 years with the objectives of finding out outbreaks of emerging and reemerging viruses in the Asia-Pacific region and finding out any ocular involvement in these viral infections. An iterative search of the MEDLINE and the Google databases was made using the search terms emerging virus, ocular manifestations, ocular complications, Chikungunya, Dengue, Japanese encephalitis, West Nile fever, Kyasanur forest disease, Rift valley fever, Hantavirus, Henipavirus, Influenza virus, Enterovirus 71, and Asia-Pacific region, separately and with reported ocular involvement in combination. This review article discusses the epidemiology and the systemic and ocular manifestations of all emerging viral infections with reported ocular involvement in the Asia-Pacific region.

  16. Development of Real-Time Frame Selector 2 and the Characteristic Convective Structure in the Emerging Flux Region

    NASA Astrophysics Data System (ADS)

    Kozu, Hiromichi; Kitai, Reizaburo; Funakoshi, Yasuhiro

    2005-02-01

    A new image-grabbing system, Real-Time Frame Selector 2 (RTFS2), was developed and installed in the Domeless Solar Telescope at Hida Observatory. The purpose of this system is to acquire high-quality images in ground-based observations. We observed the emerging flux region NOAA 8582 in the G-band wavelengths from 20:59 UT to 23:32 UT on 1999 June 11 with RTFS2. Simultaneous Hα line center and wing wavelength observations with a Lyot filter system showed emerging flux loops and surge activities in this region. We applied a Local Correlation Tracking Method to the G-band data set in order to derive the horizontal convective structure in the upper convective zone. In addition to a meso-scale convective structure, we found divergent-flow structures under emerging flux loops, which were stable during the whole observation period, and located at the middle of the foot points of each flux loop. We suggest that the divergent-flow structure is a newly found characteristic of emerging flux regions.

  17. Time-Driven Activity-Based Costing in Emergency Medicine.

    PubMed

    Yun, Brian J; Prabhakar, Anand M; Warsh, Jonathan; Kaplan, Robert; Brennan, John; Dempsey, Kyle E; Raja, Ali S

    2016-06-01

    Value in emergency medicine is determined by both patient-important outcomes and the costs associated with achieving them. However, measuring true costs is challenging. Without an understanding of costs, emergency department (ED) leaders will be unable to determine which interventions might improve value for their patients. Although ongoing research may determine which outcomes are meaningful, an accurate costing system is also needed. This article reviews current costing mechanisms in the ED and their pitfalls. It then describes how time-driven activity-based costing may be superior to these current costing systems. Time-driven activity-based costing, in addition to being a more accurate costing system, can be used for process improvements in the ED.

  18. Assessing subject privacy and data confidentiality in an emerging region for clinical trials: United Arab Emirates.

    PubMed

    Nair, Satish Chandrasekhar; Ibrahim, Halah

    2015-01-01

    Pharmaceutical sponsored clinical trials, formerly conducted predominantly in the United States and Europe, have expanded to emerging regions, including the Middle East. Our study explores factors influencing clinical trial privacy and confidentiality in the United Arab Emirates. Factors including concept familiarity, informed consent compliance, data access, and preservation, were analyzed to assess current practices in the Arab world. As the UAE is an emerging region for clinical trials, there is a growing need for regulations related to data confidentiality and subject privacy. Informational and decisional privacy should be viewed within the realms of Arab culture and religious background.

  19. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  20. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  1. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  2. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  3. The birthplaces of active regions and X-ray bright points. [on sun

    NASA Technical Reports Server (NTRS)

    Howard, R.; Fritzova-Svestkova, L.; Svestka, Z.

    1979-01-01

    A comparison of soft X-ray pictures of the Sun (S-054 experiment of Skylab) with K-line spectroheliograms (Mount Wilson) shows that the X-ray bright points tend to emerge randomly throughout the Ca network pattern. However, all those bright points that developed into active regions emerged at the boundaries of network cells. This suggests that the magnetic flux of active regions comes from greater depths in the convection zone that the shallow flux that gives rise to the random emergence of bright points.

  4. Supergranule Diffusion and Active Region Decay

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2004-01-01

    Models of the Sun's magnetic dynamo include turbulent diffusion to parameterize the effects of convective motions on the evolution of the Sun's magnetic field. Supergranules are known to dominate the evolution of the surface magnetic field structure as evidenced by the structure of both the active and quiet magnetic network. However, estimates for the dif hivity attributed to su perymules differ by an order of magnitude from about 100 km sup2/s to more than 1000 km sup2/s. We examine this question of the e i v i t y using three merent approaches. 1) We study the decay of more than 30,000 active regions by determining the rate of change in the sunspot area of each active region from day-to-day. 2) We study the decay of a single isolated active region near the time of solar minimum by examining the magnetic field evolution over five solar rotations fiom SOHOMDI magnetograms obtained at 96-minute intervals. 3) We study the characteristics of supergranules that influence the estimates of their diffusive properties - flow speeds and lifetimes as functions of size - fiom SOHO/MDI Dopplergrams.

  5. Emerging activity in bilayered dispersions with wake-mediated interactions

    NASA Astrophysics Data System (ADS)

    Bartnick, Jörg; Kaiser, Andreas; Löwen, Hartmut; Ivlev, Alexei V.

    2016-06-01

    In a bilayered system of particles with wake-mediated interactions, the action-reaction symmetry for the effective forces between particles of different layers is broken. Under quite general conditions we show that, if the interaction nonreciprocity exceeds a certain threshold, this creates an active dispersion of self-propelled clusters of Brownian particles. The emerging activity promotes unusual melting scenarios and an enormous diffusivity in the dense fluid. Our results are obtained by computer simulation and analytical theory and can be verified in experiments with colloidal dispersions and complex plasmas.

  6. Patterns of helicity in solar active regions

    NASA Technical Reports Server (NTRS)

    Pevtsov, Alexei A.; Canfield, Richard C.; Metcalf, Thomas R.

    1994-01-01

    Using 46 vector magnetograms from the Stokes Polarimeter of Mees Solar Observatory (MSO), we studied patterns of local helicity in three diverse solar active regions. From these magnetograms we computed maps of the local helicity parameter alpha = J(sub z)/B(sub z). Although such maps are noisy, we found patterns at the level approximately 2 to 3 sigma(sub J(sub z)), which repeat in successive magnetograms for up to several days. Typically, the alpha maps of any given active region contain identifiable patches with both positive and negative values of alpha. Even within a single sunspot complex, several such alpha patches can often be seen. We followed 68 alpha patches that could be identified on at least two successive alpha maps. We found that the persistence fraction of such patches decrease exponentially, with a characteristic time approximately 27 hr.

  7. Confronting Emergent Nuclear-Armed Regional Adversaries: Prospects for Neutralization, Strategies for Escalation Management

    DTIC Science & Technology

    2015-01-01

    C O R P O R A T I O N Research Report Confronting Emergent Nuclear-Armed Regional Adversaries Prospects for Neutralization, Strategies for...Armed Regional Adversaries: Prospects for Neutralization, Strategies for Escalation Management 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...states with small nuclear arsenals. It examines prospects for neutralizing their nuclear capabilities via combinations of offensive and defensive

  8. Emerging Persistent Organic Pollutants in Chinese Bohai Sea and Its Coastal Regions

    PubMed Central

    Wang, Yawei; Pan, Yuanyuan

    2014-01-01

    Emerging persistent organic pollutants (POPs) have widely aroused public concern in recent years. Polybrominated diphenyl ethers (PBDEs) and perfluorooctane sulfonyl fluoride/perfluorooctane sulfonic acid (POSF/PFOS) had been newly listed in Stockholm Convention in 2009, and short chain chlorinated paraffins (SCCPs) and hexabromocyclododecanes (HBCDs) were listed as candidate POPs. Bohai Sea is located in the arms of numbers of industrial cities, the semienclosed location of which makes it an ideal sink of emerging pollutants. In the present paper, latest contamination status of emerging POPs in Bohai Sea was reviewed. According to the literature data, Bohai Sea areas are not heavily contaminated by emerging POPs (PBDE: 0.01–720 ng/g; perfluorinated compounds: 0.1–304 ng/g; SCCPs: 64.9–5510 ng/g; HBCDs: nd-634 ng/g). Therefore, humans are not likely to be under serious risk of emerging POPs exposure through consuming seafood from Bohai Sea. However, the ubiquitous occurrence of emerging POPs in Bohai Sea region might indicate that more work should be done to expand the knowledge about potential risk of emerging POPs pollution. PMID:24688410

  9. THE MAGNETIC CLASSIFICATION OF SOLAR ACTIVE REGIONS 1992–2015

    SciTech Connect

    Jaeggli, S. A.; Norton, A. A.

    2016-03-20

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity; however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  10. Emergence of reproducible spatiotemporal activity during motor learning.

    PubMed

    Peters, Andrew J; Chen, Simon X; Komiyama, Takaki

    2014-06-12

    The motor cortex is capable of reliably driving complex movements yet exhibits considerable plasticity during motor learning. These observations suggest that the fundamental relationship between motor cortex activity and movement may not be fixed but is instead shaped by learning; however, to what extent and how motor learning shapes this relationship are not fully understood. Here we addressed this issue by using in vivo two-photon calcium imaging to monitor the activity of the same population of hundreds of layer 2/3 neurons while mice learned a forelimb lever-press task over two weeks. Excitatory and inhibitory neurons were identified by transgenic labelling. Inhibitory neuron activity was relatively stable and balanced local excitatory neuron activity on a movement-by-movement basis, whereas excitatory neuron activity showed higher dynamism during the initial phase of learning. The dynamics of excitatory neurons during the initial phase involved the expansion of the movement-related population which explored various activity patterns even during similar movements. This was followed by a refinement into a smaller population exhibiting reproducible spatiotemporal sequences of activity. This pattern of activity associated with the learned movement was unique to expert animals and not observed during similar movements made during the naive phase, and the relationship between neuronal activity and individual movements became more consistent with learning. These changes in population activity coincided with a transient increase in dendritic spine turnover in these neurons. Our results indicate that a novel and reproducible activity-movement relationship develops as a result of motor learning, and we speculate that synaptic plasticity within the motor cortex underlies the emergence of reproducible spatiotemporal activity patterns for learned movements. These results underscore the profound influence of learning on the way that the cortex produces movements.

  11. THE EVOLUTION OF DARK CANOPIES AROUND ACTIVE REGIONS

    SciTech Connect

    Wang, Y.-M.; Robbrecht, E.; Muglach, K. E-mail: eva.robbrecht@oma.be

    2011-05-20

    As observed in spectral lines originating from the chromosphere, transition region, and low corona, active regions are surrounded by an extensive 'circumfacular' area which is darker than the quiet Sun. We examine the properties of these dark moat- or canopy-like areas using Fe IX 17.1 nm images and line-of-sight magnetograms from the Solar Dynamics Observatory. The 17.1 nm canopies consist of fibrils (horizontal fields containing extreme-ultraviolet-absorbing chromospheric material) clumped into featherlike structures. The dark fibrils initially form a quasiradial or vortical pattern as the low-lying field lines fanning out from the emerging active region connect to surrounding network and intranetwork elements of opposite polarity. The area occupied by the 17.1 nm fibrils expands as supergranular convection causes the active-region flux to spread into the background medium; the outer boundary of the dark canopy stabilizes where the diffusing flux encounters a unipolar region of opposite sign. The dark fibrils tend to accumulate in regions of weak longitudinal field and to become rooted in mixed-polarity flux. To explain the latter observation, we note that the low-lying fibrils are more likely to interact with small loops associated with weak, opposite-polarity flux elements in close proximity, than with high loops anchored inside strong unipolar network flux. As a result, the 17.1 nm fibrils gradually become concentrated around the large-scale polarity inversion lines (PILs), where most of the mixed-polarity flux is located. Systematic flux cancellation, assisted by rotational shearing, removes the field component transverse to the PIL and causes the fibrils to coalesce into long PIL-aligned filaments.

  12. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Hill, F. E-mail: stripathy@nso.edu

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  13. Emergence of collective dynamical chirality for achiral active particles.

    PubMed

    Jiang, Huijun; Ding, Huai; Pu, Mingfeng; Hou, Zhonghuai

    2017-01-25

    Emergence of collective dynamical chirality (CDC) at mesoscopic scales plays a key role in many formation processes of chiral structures in nature, which may also provide possible routines for people to fabricate complex chiral architectures. So far, most of the reported CDCs have been found in systems of active objects with individual structure chirality or/and dynamical chirality, and whether CDC can arise from simple and achiral units is still an attractive mystery. Here, we report a spontaneous formation of CDC in a system of both dynamically and structurally achiral particles motivated by active motion of cells adhered onto a substrate. Active motion, confinement and hydrodynamic interaction are found to be the three key factors. Detailed analysis shows that the system can support abundant collective dynamical behaviors, including rotating droplets, rotating bubbles, CDC oscillations, arrays of collective rotations, and interesting transitions such as chirality transition, structure transition and state reentrance.

  14. Recurrent Jets Occurred Nearby Active Region NOAA 11931

    NASA Astrophysics Data System (ADS)

    Yu-kun, Hu; Zhi, Xu; Zhi-ke, Xue; Xiao-li, Yan; Yuan-deng, Shen; Ning, Wu; Jun, Lin

    2016-10-01

    According to the 171 Å observation of Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) in 2013 December 25∼26, a series of homologous jets were continuously found in the southwestern area of the active region NOAA 11931, from which 12 typical jets were selected and studied in this paper. The magnetic field structures in most jets had an obviously untwisting motion in the ejection process, though a few of them didn't have. The process of some jets was divided into two phases: the slow ejection without untwisting, and the rapid untwisting ejection. Before some jets started, a bright point grew along the bottom of magnetic arcade, and extended from the end remote from the jet to the end proximate to the jet, and there were two parts of magnetic structures near the bottom of magnetic arcade untwisted simultaneously in the ejection process. During the final one jet, two magnetic arcades appeared successively in the southeastern end of the magnetic structure on the jet bottom, while a small magnetic loop emerged in the northwestern end. Compared with the line-of-sight magnetogram of SDO/Helioseismic and Magnetic Imager (SDO/HMI), in about 4 h before the first jet appeared, a pair of magnetic dipoles emerged from the bottom of magnetic structure, and continuously lifted during the whole jet event. Although overall the bottom magnetic field emerged before and after the 12 jets, but for each individual jet, the variation of the bottom magnetic field was different from one another: in some jets, the magnetic field near the magnetic arcade on the jet bottom exhibited both magnetic emergence and cancellation; but in other jets, the magnetic field near the jet bottom exhibited only an obvious emergence or cancellation.

  15. Spatiotemporal order and emergent edge currents in active spinner materials

    PubMed Central

    van Zuiden, Benjamin C.; Paulose, Jayson; Irvine, William T. M.; Bartolo, Denis; Vitelli, Vincenzo

    2016-01-01

    Collections of interacting, self-propelled particles have been extensively studied as minimal models of many living and synthetic systems from bird flocks to active colloids. However, the influence of active rotations in the absence of self-propulsion (i.e., spinning without walking) remains less explored. Here, we numerically and theoretically investigate the behavior of ensembles of self-spinning dimers. We find that geometric frustration of dimer rotation by interactions yields spatiotemporal order and active melting with no equilibrium counterparts. At low density, the spinning dimers self-assemble into a triangular lattice with their orientations phase-locked into spatially periodic phases. The phase-locked patterns form dynamical analogs of the ground states of various spin models, transitioning from the three-state Potts antiferromagnet at low densities to the striped herringbone phase of planar quadrupoles at higher densities. As the density is raised further, the competition between active rotations and interactions leads to melting of the active spinner crystal. Emergent edge currents, whose direction is set by the chirality of the active spinning, arise as a nonequilibrium signature of the transition to the active spinner liquid and vanish when the system eventually undergoes kinetic arrest at very high densities. Our findings may be realized in systems ranging from liquid crystal and colloidal experiments to tabletop realizations using macroscopic chiral grains. PMID:27803323

  16. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  17. The evolution of active region loop plasma

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Antiochos, S. K.

    1980-01-01

    The adjustment of coronal active-region loops to changes in their heating rate is investigated numerically. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux is dissipated by a static chromosphere, and (2) the method by which the chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates.

  18. Utilization of Functional Exercises to Build Regional Emergency Preparedness among Rural Health Organizations in the US.

    PubMed

    Obaid, Jannah M; Bailey, Ginger; Wheeler, Heidi; Meyers, Laura; Medcalf, Sharon J; Hansen, Keith F; Sanger, Kristine K; Lowe, John J

    2017-01-30

    Rural communities face barriers to disaster preparedness and considerable risk of disasters. Emergency preparedness among rural communities has improved with funding from federal programs and implementation of a National Incident Management System. The objective of this project was to design and implement disaster exercises to test decision making by rural response partners to improve regional planning, collaboration, and readiness. Six functional exercises were developed and conducted among three rural Nebraska (USA) regions by the Center for Preparedness Education (CPE) at the University of Nebraska Medical Center (Omaha, Nebraska USA). A total of 83 command centers participated. Six functional exercises were designed to test regional response and command-level decision making, and each 3-hour exercise was followed by a 3-hour regional after action conference. Participant feedback, single agency debriefing feedback, and regional After Action Reports were analyzed. Functional exercises were able to test command-level decision making and operations at multiple agencies simultaneously with limited funding. Observations included emergency management jurisdiction barriers to utilization of unified command and establishment of joint information centers, limited utilization of documentation necessary for reimbursement, and the need to develop coordinated public messaging. Functional exercises are a key tool for testing command-level decision making and response at a higher level than what is typically achieved in tabletop or short, full-scale exercises. Functional exercises enable evaluation of command staff, identification of areas for improvement, and advancing regional collaboration among diverse response partners. Obaid JM , Bailey G , Wheeler H , Meyers L , Medcalf SJ , Hansen KF , Sanger KK , Lowe JJ . Utilization of functional exercises to build regional emergency preparedness among rural health organizations in the US. Prehosp Disaster Med. 2017;32(2):1-7.

  19. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Dalmasse, K.; Kliem, B.; Török, T.

    2015-09-01

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

  20. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Technical Reports Server (NTRS)

    Martinez, Francisco; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2016-01-01

    Solar coronal jets are transient (frequently of lifetime approx.10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Cirtain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called "minifilaments" erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancelation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted, and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sites of magnetic-field cancelation.

  1. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  2. Public Health Emergencies of International Concern: Global, Regional, and Local Responses to Risk.

    PubMed

    Bennett, Belinda; Carney, Terry

    2017-03-31

    The declaration in 2009 that the H1N1 pandemic constituted a public health emergency of international concern (PHEIC) was the first such declaration under the revised International Health Regulations that were adopted in 2005. In the period since then PHEIC have been declared in relation to polio, Ebola, and Zika. This article evaluates initiatives that have been introduced globally, within the Asia-Pacific region, and within Australia, to strengthen preparedness for public health emergencies. Through analysis of evolving conceptualisations of risk, surveillance of zoonotic diseases, and development of public health capacities, the article argues that to date the global community has failed to make the necessary investments in health system strengthening, and that without these investments, global public health emergencies will continue to be an ongoing challenge.

  3. The 2009 L'Aquila earthquake sequence: technical and scientific activities during the emergency and post-emergency phases

    NASA Astrophysics Data System (ADS)

    Cardinali, Mauro

    2010-05-01

    The Central Apennines of Italy is an area characterized by significant seismic activity. In this area, individual earthquakes and prolonged seismic sequences produce a variety of ground effects, including landslides. The L'Aquila area, in the Abruzzo Region, was affected by an earthquake sequence that started on December 2008, and continued for several months. The main shock occurred on April 6, 2009, with local magnitude m = 6.3, and was followed by two separate earthquakes on April 7 and April 9, each with a local magnitude m > 5.0. The main shocks caused 308 fatalities, injured more than 1500 people, and left in excess of 65,000 people homeless. Damage to the cultural heritage was also severe, with tens of churches and historical buildings severely damaged or destroyed. The main shocks and some of the most severe aftershocks triggered landslides, chiefly rock falls and minor rock slides that caused damage to towns, individual houses, and the transportation network. Beginning in the immediate aftermath of the event, and continuing during the emergency and post-emergency phases, we assisted the Italian national Department for Civil Protection in the evaluation of local landslide and hydrological risk conditions. Technical and scientific activities focused on: (i) mapping the location, type, and severity of the main ground effects produced by the earthquake shaking, (ii) evaluating and selecting sites for potential new settlements and individual buildings, including a preliminary assessment of the local geomorphological and hydrological conditions; (iii) evaluating rock fall hazard at individual sites, (iv) monitoring slope and ground deformations, and (v) designing and implementing a prototype system for the forecast of the possible occurrence of rainfall-induced landslides. To execute these activates, we exploited a wide range of methods, techniques, and technologies, and we performed repeated field surveys, the interpretation of ground and aerial photographs

  4. 7 CFR Exhibit J to Subpart G of... - Locations and Telephone Numbers of Federal Emergency Management Administration's Regional Offices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Management Administration's Regional Offices J Exhibit J to Subpart G of Part 1940 Agriculture Regulations of... Part 1940—Locations and Telephone Numbers of Federal Emergency Management Administration's Regional... floodplain information, ask for the Natural and Technological Hazards Division....

  5. Active region coronal loops - Structural and variability

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.; Strong, Keith T.; Harrison, Richard A.; Gary, G. A.

    1988-01-01

    X-ray images of a pair of active region loops are studied which show significant, short time-scale variability in the line fluxes of O VIII, Ne IX, and Mg XI and in the 3.5-11.5 keV soft X-ray bands. Vector magnetograms and high-resolution UV images were used to model the three-dimensional characteristics of the loops. X-ray light curves were generated spanning four consecutive orbits for both loops individually, and light curves of the loop tops and brightest points were also generated. The largest variations involve flux changes of up to several hundred percent on time scales of 10 minutes. No significant H-alpha flare activity is reported, and loop temperatures remain in the four to six million K range. The decay phases of the light curves indicate radiative cooling, inhibition of conduction, and some type of 'continued heating' due to ongoing, underlying activity at the microflare level.

  6. Active Region Transient Brightenings : EIT Versus SXT

    NASA Astrophysics Data System (ADS)

    Berghmans, D.; McKenzie, D.; Clette, F.

    1999-10-01

    On May 13, 1998, the Extreme-Ultraviolet Imaging Telescope (EIT, on board SOHO) has produced a unique image sequence operating in 'shutterless mode' (SOHO JOP 80). In JOP 80, EIT is the leading instrument, followed by several space born instruments (SXT, TRACE, MDI, CDS, SUMER), as well as two observatories on the ground (in La Palma and Sac Peak). The target of the campaign was a relatively small but rapidly evolving active region (AR 8218). For the EIT contribution, a 15 s cadence was achieved in the Fe XII bandpass at 195 deg by leaving EIT's shutter open for 1 hour and operating the CCD in frame transfer mode. We have started the analysis of the huge data set, by making an inventory of the transients observed in the EIT image sequence. These transients range from a B3.5 flare producing a large plasma flow along pre-existing loops, to smaller EUV brightenings of active region loops. In addition, a new class of weaker footpoint brightenings was discovered that produce wave-like disturbances propagating along quasi-open field lines (see the presentation by Eva Robbrecht at this workshop). In this paper we take the opportunity provided by JOP 80, to investigate the correspondence of the transient brightenings observed by EIT in this active region, with the ARTB previously observed by SXT and studied by Shimizu (1992). Within the simultaneous high cadence SOHO JOP 80 image sequences, both EIT and SXT accummulated a few tens of brightening events. At the time of the writing of this abstract, we can say that most of the SXT events have indeed 1 or more EIT counterparts. Typically the SXT events are somewhat bigger than the EIT events where the latter are ussualy located toward the point of origin of the SXT events. Whereas a few brightenings exist in one dataset without any trace in the other dataset (in both directions), we have additionally for a few brightenings in the SXT data, a corresponding EIT darkening as if the plasma is suddenly heated and dissappears from

  7. FIP bias in a sigmoidal active region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, Lidia; Green, L. M.; Steed, K.; Carlyle, J.

    2014-01-01

    We investigate first ionization potential (FIP) bias levels in an anemone active region (AR) - coronal hole (CH) complex using an abundance map derived from Hinode/EIS spectra. The detailed, spatially resolved abundance map has a large field of view covering 359'' × 485''. Plasma with high FIP bias, or coronal abundances, is concentrated at the footpoints of the AR loops whereas the surrounding CH has a low FIP bias, ~1, i.e. photospheric abundances. A channel of low FIP bias is located along the AR's main polarity inversion line containing a filament where ongoing flux cancellation is observed, indicating a bald patch magnetic topology characteristic of a sigmoid/flux rope configuration.

  8. EUV Observations of Active Region Dynamics

    NASA Astrophysics Data System (ADS)

    Deluca, E. E.; Cirtain, J. W.; del Zanna, G.; Mason, H. E.; Martens, P. C.; Schmelz, J.; Golub, L.

    2005-05-01

    Data collected during SoHO JOP 146, in collaboration with TRACE, is used to investigate the physical characteristics of coronal active region loops as a function of time and position along and across loop structures. These data include TRACE images in all three EUV passbands, and simultaneous CDS spectroscopic observations. Preliminary measurements of the loop temperature both along the loop half-length and loop cross-section are presented as a function of time. We will show the temperature and density profiles of several structures as a function of position, show changes in temperature and density with time and characterize the coronal background emission. Questions raised by these results will be greatly advanced with the high resolution spectra available from the EIS on Solar-B.

  9. Active region helicity evolution and related coronal mass ejection activity.

    NASA Astrophysics Data System (ADS)

    Green, L.; Mandrini, C.; van Driel-Gesztelyi, L.; Demoulin, P.

    The computation of magnetic helicity has become increasingly important in the studies of solar activity. Observations of helical structures in the solar atmosphere, and their subsequent ejection into the interplanetary medium, have resulted in considerable interest to find the link between the amount of helicity in the coronal magnetic field and the origin of coronal mass ejections (CMEs). This is reinforced by theory which shows magnetic helicity to be a well preserved quantity (Berger, 1984), and so with a continued injection into the corona an endless accumulation will occur. CMEs therefore provide a natural method to remove helicity from the corona. Recent works (DeVore, 2000, Chae, 2001, Chae et al., 2001, Demoulin et al., 2002, Green et al., 2002) have endeavoured to find the source of helicity in the corona to explain the observed CME activity in specific cases. The main candidates being differential rotation, shear motions or a transfer of helicity from below the photosphere into the corona. In order to establish a confident relation between CMEs and helicity, these works needs to be expanded to include CME source regions with different characteristics. A study of a very different active region will be presented and the relationship between helicity content and CME activity will be discussed in the framework of the previous studies.

  10. The Emergence of Regional Immigrant Concentrations in USA and Australia: A Spatial Relatedness Approach

    PubMed Central

    Novotny, Josef; Hasman, Jiri

    2015-01-01

    This paper examines the patterns of the US and Australian immigration geography and the process of regional population diversification and the emergence of new immigrant concentrations at the regional level. It presents a new approach in the context of human migration studies, focusing on spatial relatedness between individual foreign-born groups as revealed from the analysis of their joint spatial concentrations. The approach employs a simple assumption that the more frequently the members of two population groups concentrate in the same locations the higher is the probability that these two groups can be related. Based on detailed data on the spatial distribution of foreign-born groups in US counties (2000–2010) and Australian postal areas (2006–2011) we firstly quantify the spatial relatedness between all pairs of foreign-born groups and model the aggregate patterns of US and Australian immigration systems conceptualized as the undirected networks of foreign-born groups linked by their spatial relatedness. Secondly, adopting a more dynamic perspective, we assume that immigrant groups with higher spatial relatedness to those groups already concentrated in a region are also more likely to settle in this region in future. As the ultimate goal of the paper, we examine the power of spatial relatedness measures in projecting the emergence of new immigrant concentrations in the US and Australian regions. The results corroborate that the spatial relatedness measures can serve as useful instruments in the analysis of the patterns of population structure and prediction of regional population change. More generally, this paper demonstrates that information contained in spatial patterns (relatedness in space) of population composition has yet to be fully utilized in population forecasting. PMID:25966371

  11. The emergence of regional immigrant concentrations in USA and Australia: a spatial relatedness approach.

    PubMed

    Novotny, Josef; Hasman, Jiri

    2015-01-01

    This paper examines the patterns of the US and Australian immigration geography and the process of regional population diversification and the emergence of new immigrant concentrations at the regional level. It presents a new approach in the context of human migration studies, focusing on spatial relatedness between individual foreign-born groups as revealed from the analysis of their joint spatial concentrations. The approach employs a simple assumption that the more frequently the members of two population groups concentrate in the same locations the higher is the probability that these two groups can be related. Based on detailed data on the spatial distribution of foreign-born groups in US counties (2000-2010) and Australian postal areas (2006-2011) we firstly quantify the spatial relatedness between all pairs of foreign-born groups and model the aggregate patterns of US and Australian immigration systems conceptualized as the undirected networks of foreign-born groups linked by their spatial relatedness. Secondly, adopting a more dynamic perspective, we assume that immigrant groups with higher spatial relatedness to those groups already concentrated in a region are also more likely to settle in this region in future. As the ultimate goal of the paper, we examine the power of spatial relatedness measures in projecting the emergence of new immigrant concentrations in the US and Australian regions. The results corroborate that the spatial relatedness measures can serve as useful instruments in the analysis of the patterns of population structure and prediction of regional population change. More generally, this paper demonstrates that information contained in spatial patterns (relatedness in space) of population composition has yet to be fully utilized in population forecasting.

  12. LOW-LATITUDE CORONAL HOLES, DECAYING ACTIVE REGIONS, AND GLOBAL CORONAL MAGNETIC STRUCTURE

    SciTech Connect

    Petrie, G. J. D.; Haislmaier, K. J.

    2013-10-01

    We study the relationship between decaying active-region magnetic fields, coronal holes, and the global coronal magnetic structure using Global Oscillations Network Group synoptic magnetograms, Solar TErrestrial RElations Observatory extreme-ultraviolet synoptic maps, and coronal potential-field source-surface models. We analyze 14 decaying regions and associated coronal holes occurring between early 2007 and late 2010, 4 from cycle 23 and 10 from cycle 24. We investigate the relationship between asymmetries in active regions' positive and negative magnetic intensities, asymmetric magnetic decay rates, flux imbalances, global field structure, and coronal hole formation. Whereas new emerging active regions caused changes in the large-scale coronal field, the coronal fields of the 14 decaying active regions only opened under the condition that the global coronal structure remained almost unchanged. This was because the dominant slowly varying, low-order multipoles prevented opposing-polarity fields from opening and the remnant active-region flux preserved the regions' low-order multipole moments long after the regions had decayed. Thus, the polarity of each coronal hole necessarily matched the polar field on the side of the streamer belt where the corresponding active region decayed. For magnetically isolated active regions initially located within the streamer belt, the more intense polarity generally survived to form the hole. For non-isolated regions, flux imbalance and topological asymmetry prompted the opposite to occur in some cases.

  13. 77 FR 9952 - Agency Information Collection Activities: Proposed Collection; Comment Request, Emergency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Course Evaluation Form. Type of Information Collection: Revision of a currently approved information... SECURITY Federal Emergency Management Agency Agency Information Collection Activities: Proposed Collection; Comment Request, Emergency Management Institute Course Evaluation Form AGENCY: Federal...

  14. Detecting Emergence of Acidification and Warming as Stressors for Coral Reef Regions using Earth System Models

    NASA Astrophysics Data System (ADS)

    Menendez, A. T.

    2015-12-01

    Coral reef ecosystems rely on complex interactions between biological, biogeochemical, and physical processes to ensure their survival and resilience. However, both human interaction and anthropogenic climate change have negatively impacted the prosperity of these regions, resulting in a crucial need to understand and predict the future of important biogeochemical and physical stressors. Contemporary changes to these relationships and environmental conditions in coral reef ecosystems are a mixture of anthropogenic contributions and natural variability (e.g. ENSO) of the climate system. To better quantify the uncertainty in future projections, it is exceedingly necessary to differentiate between these two contributors. In this study we look at acidification and warming stressors in the Galapagos, Coral Triangle, and Hawaiian islands regions. We use a suite of hindcast simulations (a 30-member large initial condition ensemble) done with an Earth Systems Model (GFDL-ESM2M) in order quantify the degree to which natural variability alters the emergence time-scales of anthropogenically-induced changes to ecosystem drivers such as pH, ΩArag, and SST. A comparison of output from a suit of CMIP5 models will be used to evaluate model uncertainty for the same regions. Simulated trends and variability in these ecosystem drivers were then compared to observed trends over the three Pacific regions. Evidently the models and observed trends proved invaluable for testing the hypothesis addressing the presence of a temporal hierarchy between emergence, defined by a signal-to-noise ratio, of acidification stressors and temperature as a stressor. Furthermore, challenges in deconvolving anthropogenic and natural contributions to stressor trends will be discussed for each of the three sites.

  15. Teaching Activities for Defensive Living and Emergency Preparedness. Education Modules.

    ERIC Educational Resources Information Center

    Peterson, Grit, Ed.; And Others

    Designed for teaching a generalized program in emergency preparedness education, the eight units of the manual can be used together or alone in any course that teaches human response to emergency preparedness or in physical education, recreation, health, biology, physiology, or science classes. The guide includes an introduction and seven major…

  16. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  17. A regional atmospheric dispersion model for emergency response and air quality applications

    SciTech Connect

    Allwine, K.J.; Bian, X.; Fosmire, C.J.; Fast, J.D.

    1996-12-31

    PGEMS is an atmospheric transport and diffusion model for emergency response applications in regions of non-uniform terrain. It is fully documented and operationally tested, runs on personal computers, and has been validated using tracer and meteorological data from experiments conducted in a complex terrain region near San Luis Obispo, California. The model is currently being installed as the emergency response model at the Diablo Canyon Power Plant. A three-dimensional diagnostic wind module is used in PGEMS to specify the time- and space-varying winds over the modeling domain. A special feature of the wind module is that it accounts for flow channeling and blocking from major terrain features during stable atmospheric conditions. PGEMS predicts ground-level concentrations and deposition and radioactive decay of the released material can be treated. A Lagrangian puff formulation is used to describe the concentration fields. PGEMS is applicable at source-to-receptor transport distances from a few hundred meters to a few hundred kilometers.

  18. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats

    PubMed Central

    Shukla, Charu; Koch, Lauren G.; Britton, Steven L.; Cai, Minying; Hruby, Victor J.; Bednarek, Maria; Novak, Colleen M.

    2015-01-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of melanocortin peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. PMID:26404873

  19. FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION

    SciTech Connect

    Baker, D.; Yardley, S. L.; Driel-Gesztelyi, L. van; Long, D. M.; Green, L. M.; Brooks, D. H.; Démoulin, P.

    2015-04-01

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4–6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.

  20. Polio eradication in the African Region on course despite public health emergencies.

    PubMed

    Okeibunor, Joseph C; Ota, Martin C; Akanmori, Bartholomew D; Gumede, Nicksy; Shaba, Keith; Kouadio, Koffi I; Poy, Alain; Mihigo, Richard; Salla, Mbaye; Moeti, Matshidiso R

    2017-03-01

    The World Health Organization, African Region is heading toward eradication of the three types of wild polio virus, from the Region. Cases of wild poliovirus (WPV) types 2 and 3 (WPV2 and WPV3) were last reported in 1998 and 2012, respectively, and WPV1 reported in Nigeria since July 2014 has been the last in the entire Region. This scenario in Nigeria, the only endemic country, marks a remarkable progress. This significant progress is as a result of commitment of key partners in providing the much needed resources, better implementation of strategies, accountability, and innovative approaches. This is taking place in the face of public emergencies and challenges, which overburden health systems of countries and threaten sustainability of health programmes. Outbreak of Ebola and other diseases, insecurity, civil strife and political instability led to displacement of populations and severely affected health service delivery. The goal of eradication is now within reach more than ever before and countries of the region should not relent in their efforts on polio eradication. WHO and partners will redouble their efforts and introduce better approaches to sustain the current momentum and to complete the job. The carefully planned withdrawal of oral polio vaccine type II (OPV2) with an earlier introduction of one dose of inactivated poliovirus vaccine (IPV), in routine immunization, will boost immunity of populations and stop cVDPVs. Environmental surveillance for polio viruses will supplement surveillance for AFP and improve sensitivity of detection of polio viruses.

  1. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  2. A new perspective on solar active regions

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Bruner, M. E.

    1996-01-01

    A flood of new observations of the solar corona have been made with high spatial resolution, good temporal coverage and resolution, and large linear dynamic range by the Soft X-ray Telescope (SXT) on Yohkoh. These data are changing our fundamental understanding of how solar magnetic fields emerge, interact, and dissipate. This paper reviews some of the results from Yohkoh in the context of earlier results from the Solar Maximum Mission (SMM) and in comjunction with ground-based optical and radio observations.

  3. Health Departments’ Engagement in Emergency Preparedness Activities: The Influence of Health Informatics Capacity

    PubMed Central

    Shah, Gulzar H.; Newell, Bobbie; Whitworth, Ruth E.

    2016-01-01

    Background: Local health departments (LHDs) operate in a complex and dynamic public health landscape, with changing demands on their emergency response capacities. Informatics capacities might play an instrumental role in aiding LHDs emergency preparedness. This study aimed to explore the extent to which LHDs’ informatics capacities are associated with their activity level in emergency preparedness and to identify which health informatics capacities are associated with improved emergency preparedness. Methods: We used the 2013 National Profile of LHDs study to perform Poisson regression of emergency preparedness activities. Results: Only 38.3% of LHDs participated in full-scale exercises or drills for an emergency in the 12 months period prior to the survey, but a much larger proportion provided emergency preparedness training to staff (84.3%), and/or participated in tabletop exercises (76.4%). Our multivariable analysis showed that after adjusting for several resource-related LHD characteristics, LHDs with more of the 6 information systems still tend to have slightly more preparedness activities. In addition, having a designated emergency preparedness coordinator, and having one or more emergency preparedness staff were among the most significant factors associated with LHDs performing more emergency preparedness activities. Conclusion: LHDs might want to utilize better health information systems and information technology tools to improve their activity level in emergency preparedness, through improved information dissemination, and evidence collection. PMID:27694648

  4. Regional and international approaches on prevention and control of animal transboundary and emerging diseases.

    PubMed

    Domenech, J; Lubroth, J; Eddi, C; Martin, V; Roger, F

    2006-10-01

    Transboundary animal diseases pose a serious risk to the world animal agriculture and food security and jeopardize international trade. The world has been facing devastating economic losses from major outbreaks of transboundary animal diseases (TADs) such as foot-and-mouth disease, classical swine fever, rinderpest, peste des petits ruminants (PPR), and Rift Valley fever. Lately the highly pathogenic avian influenza (HPAI) due to H5N1 virus, has become an international crisis as all regions around the world can be considered at risk. In the past decades, public health authorities within industrialized countries have been faced with an increasing number of food safety issues. The situation is equally serious in developing countries. The globalization of food (and feed) trade, facilitated by the liberalization of world trade, while offering many benefits and opportunities, also represents new risks. The GF-TADs Global Secretariat has carried out several regional consultations for the identification of priority diseases and best ways for their administration, prevention and control. In the questionnaires carried out and through the consultative process, it was noted that globally, FMD was ranked as the first and foremost priority. Rift Valley fever, and today highly pathogenic avian influenza, are defined as major animal diseases which also affect human health. PPR and CBPP, a disease which is particularly serious in Africa and finally, African swine fever (ASF) and classical swine fever (CSF) are also regionally recognised as top priorities on which the Framework is determined to work. The FAO philosophy--shared by the OIE--embraces the need to prevent and control TADs and emerging diseases at their source, which is most of the time in developing countries. Regional and international approaches have to be followed, and the FAO and OIE GF-TADs initiative provides the appropriate concepts and objectives as well as an organizational framework to link international and

  5. Neonatal and pediatric regionalized systems in pediatric emergency mass critical care

    PubMed Central

    Barfield, Wanda D.; Krug, Steven E.; Kanter, Robert K.; Gausche-Hill, Marianne; Brantley, Mary D.; Chung, Sarita; Kissoon, Niranjan

    2015-01-01

    Introduction Improved health outcomes are associated with neonatal and pediatric critical care in well-organized, cohesive, regionalized systems that are prepared to support and rehabilitate critically ill victims of a mass casualty event. However, present systems lack adequate surge capacity for neonatal and pediatric mass critical care. In this document, we outline the present reality and suggest alternative approaches. Methods In May 2008, the Task Force for Mass Critical Care published guidance on provision of mass critical care to adults. Acknowledging that the critical care needs of children during disasters were unaddressed by this effort, a 17-member Steering Committee, assembled by the Oak Ridge Institute for Science and Education with guidance from members of the American Academy of Pediatrics, convened in April 2009 to determine priority topic areas for pediatric emergency mass critical care recommendations. Steering Committee members established subcommittees by topic area and performed literature reviews of MEDLINE and Ovid databases. The Steering Committee produced draft outlines through consensus-based study of the literature and convened October 6–7, 2009, in New York, NY, to review and revise each outline. Eight draft documents were subsequently developed from the revised outlines as well as through searches of MEDLINE updated through March 2010. The Pediatric Emergency Mass Critical Care Task Force, composed of 36 experts from diverse public health, medical, and disaster response fields, convened in Atlanta, GA, on March 29–30, 2010. Feedback on each manuscript was compiled and the Steering Committee revised each document to reflect expert input in addition to the most current medical literature. Task Force Recommendations States and regions (facilitated by federal partners) should review current emergency operations and devise appropriate plans to address the population-based needs of infants and children in large-scale disasters. Action at

  6. The Opportunities of Crises and Emergency Risk Communication in Activities of Serbian Public Health Workforce in Emergencies

    PubMed Central

    Radović, V; Ćurčić, L

    2012-01-01

    Background: The aim of the study was a recommendation and establishment the concept of the appropriate communication between public health, other competent services and population in emergency as the corner stone which guarantee that all goals which are important for community life will be achieved. Methods: We used methodology appropriate for social science: analyses of documents, historical approach and comparative analysis. Results: The finding shows the urgent need for accepting of crises and emergency risk communication principles, or some similar concepts, in Serbia, and implementing effective two way communication especially in multiethnic region. The pragmatic value of the paper lays in information about the recent improvement of health workforce and emergency services in emergencies using new concept of communication and as source of numerous useful documents published in USA and few recent Serbian examples. Conclusion: Health workforce has significant role in the process of protection of population in emergencies. Policy makers should work on finding a way to improve their coordination and communication, creating new academic programs, providing of adequate training, and financial means in order to give them different role in society and provide visibility. From other side health workforce should build back to the citizen trust in what they are doing for society welfare using all their skills and abilities. PMID:23308348

  7. An insight into the emerging role of regional medical advisor in the pharmaceutical industry.

    PubMed

    Gupta, Sandeep Kumar; Nayak, Roopa P

    2013-07-01

    The position of regional medical advisor (RMA) is relatively new in the pharmaceutical industry and its roles and responsibility are still evolving. The RMA is a field based position whose main mission is to foster collaborative relationships with the key opinion leaders (KOLs) and to facilitate the exchange of unbiased scientific information between the medical community and the company. Field-based medical liaison teams are expanding world-wide as part of the pharmaceutical industry's increased focus on global operations including emerging markets. Now, the position of the RMA has evolved into comprehensive, complex, highly interactive, targeted, highly strategic, innovative, and independent role since its inception by the Upjohn Company in 1967. The major objective of the RMA is to develop the professional relationships with the health-care community, particularly KOLs, through peer-to-peer contact. The RMA can facilitate investigator-initiated clinical research proposals from approval until completion, presentation, and publication. It is possible for a RMA to have valuable access to KOLs through his expertise in the clinical research. The RMA can assist in the development, review, and follow-up of the clinical studies initiated within the relevant therapeutic area at the regional/local level. The RMA can lead regional/local clinical projects to ensure that all clinical trials are conducted in compliance with the International Conference of Harmonisation Good Clinical Practice (ICH GCP) guidelines.

  8. An insight into the emerging role of regional medical advisor in the pharmaceutical industry

    PubMed Central

    Gupta, Sandeep Kumar; Nayak, Roopa P.

    2013-01-01

    The position of regional medical advisor (RMA) is relatively new in the pharmaceutical industry and its roles and responsibility are still evolving. The RMA is a field based position whose main mission is to foster collaborative relationships with the key opinion leaders (KOLs) and to facilitate the exchange of unbiased scientific information between the medical community and the company. Field-based medical liaison teams are expanding world-wide as part of the pharmaceutical industry's increased focus on global operations including emerging markets. Now, the position of the RMA has evolved into comprehensive, complex, highly interactive, targeted, highly strategic, innovative, and independent role since its inception by the Upjohn Company in 1967. The major objective of the RMA is to develop the professional relationships with the health-care community, particularly KOLs, through peer-to-peer contact. The RMA can facilitate investigator-initiated clinical research proposals from approval until completion, presentation, and publication. It is possible for a RMA to have valuable access to KOLs through his expertise in the clinical research. The RMA can assist in the development, review, and follow-up of the clinical studies initiated within the relevant therapeutic area at the regional/local level. The RMA can lead regional/local clinical projects to ensure that all clinical trials are conducted in compliance with the International Conference of Harmonisation Good Clinical Practice (ICH GCP) guidelines. PMID:24010061

  9. Technique for inferring sizes of stellar-active regions

    SciTech Connect

    Dobson-Hockey, A.K.; Radick, R.R.

    1986-01-01

    Inspection of spectroheliograms showing large, well-developed active regions generally show the sunspots to lead the associated plage, in the sense of the solar rotation. Measurements have been made from spectroheliograms of spot-plage offsets and compared with nearly contemporaneous integrated disk observations. Larger active regions generally show larger spot leads; however, information regarding active-region sizes and spot-plage offsets is not readily obtainable form stellar-type observations of the Sun.

  10. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  11. A Fractal Dimension Survey of Active Region Complexity

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  12. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  13. A low upper limit on the subsurface rise speed of solar active regions

    PubMed Central

    Birch, Aaron C.; Schunker, Hannah; Braun, Douglas C.; Cameron, Robert; Gizon, Laurent; Löptien, Björn; Rempel, Matthias

    2016-01-01

    Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube; it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface around emerging active regions, in combination with numerical simulations of solar magnetoconvection, can constrain the subsurface rise speed of emerging magnetic flux. The observed flows imply that the rise speed of the magnetic field is no larger than 150 m/s at a depth of 20 Mm, that is, well below the prediction of the (standard) thin flux tube model but in the range expected for convective velocities at this depth. We conclude that convective flows control the dynamics of rising flux tubes in the upper layers of the Sun and cannot be neglected in models of flux emergence. PMID:27453947

  14. A low upper limit on the subsurface rise speed of solar active regions.

    PubMed

    Birch, Aaron C; Schunker, Hannah; Braun, Douglas C; Cameron, Robert; Gizon, Laurent; Löptien, Björn; Rempel, Matthias

    2016-07-01

    Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube; it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface around emerging active regions, in combination with numerical simulations of solar magnetoconvection, can constrain the subsurface rise speed of emerging magnetic flux. The observed flows imply that the rise speed of the magnetic field is no larger than 150 m/s at a depth of 20 Mm, that is, well below the prediction of the (standard) thin flux tube model but in the range expected for convective velocities at this depth. We conclude that convective flows control the dynamics of rising flux tubes in the upper layers of the Sun and cannot be neglected in models of flux emergence.

  15. Sociotechnical Cultural Activity: Expanding an Understanding of Emergent Technology Practices

    ERIC Educational Resources Information Center

    Degennaro, Donna

    2008-01-01

    This paper examines the evolving participation of instructors and learners in an after-school web page-design course intended to improve technology practices. Defined here as technology fluency, these practices emerge through a highly fluctuating dance among social interactions with others and with the technology. In this digital divide…

  16. An Emerging Wine Region in Nova Scotia, Canada: Terroir Trials and Tribulations

    NASA Astrophysics Data System (ADS)

    Cameron, B. I.; Ketter, B. S.; Karakis, S.

    2012-12-01

    Nova Scotia, strategically located on Canada's east coast, is an emerging wine region, whose distinctive wines are garnering international acclaim. Nova Scotia has a long and rich tradition of growing grapes for wine dating back as far as 1611. Nova Scotia's mesoclimates, glacial soils, and proximity to the Atlantic Ocean form a complex alliance to create a unique and expressive terroir. Tidal Bay is a new appellation wine for Nova Scotia stylistically defined as a fresh, crisp and high-acid blend of white grapes. There are four main wine-growing regions in Nova Scotia, all influenced by the warming effects of the Bay of Fundy and Atlantic Ocean: Malagash Peninsula, Annapolis Valley, Bear River Valley and the South Shore. Nova Scotia currently has 14 producing wineries with many more in the development stage. Nova Scotia grape growers not only have had success developing mature and consistent hybrids, but in recent years several vinifera have flourished in this cool climate area. The white hybrids include L'Acadie Blanc, New York Muscat, Seyval Blanc, and Vidal Blanc. The white vinifera include chardonnay, riesling, pinot gris, and sauvignon blanc. Red hybrids are Baco Noir, Leon Millet, Lucie Kuhlmann, and Marechal Foch, whereas the only red vinifera is pinot noir. Nova Scotia has nearly perfect climatic conditions for making world class icewines and sparkling wines. A preliminary GIS analysis of climate, topographic, geology and soil data helps to define Nova Scotia's terroir. Annual precipiatation varies from 10 to 21.6 cm/year with a vast majority of the wineries located in regions with the lowest rainfall. Daily average temperature ranges from 5.5 to 7.5°C, degree growing days above 5°C from 1382 to 1991, and mean August temperature from 15.6 to 19.3 °C. Wineries cluster in the warmest regions based on these temperature measures to assist grape ripening. Soils in these diverse wine regions can range from silty, sandy and clay loams to more gravel-rich sandy

  17. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  18. Emergent ultra-long-range interactions between active particles in hybrid active-inactive systems

    NASA Astrophysics Data System (ADS)

    Steimel, Joshua P.; Aragones, Juan L.; Hu, Helen; Qureshi, Naser

    2016-04-01

    Particle-particle interactions determine the state of a system. Control over the range of such interactions as well as their magnitude has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Very recently, effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our systems are 2D colloidal monolayers composed primarily of passive (inactive) colloids, and a very small fraction of active (spinning) ferromagnetic colloids. We find an emergent ultra-long-range attractive interaction induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation timescale below which no attraction is observed. Overall, these results clearly show that, in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials.

  19. Software Displays Data on Active Regions of the Sun

    NASA Technical Reports Server (NTRS)

    Golightly, Mike; Weyland, Mark; Raben, Vern

    2011-01-01

    The Solar Active Region Display System is a computer program that generates, in near real time, a graphical display of parameters indicative of the spatial and temporal variations of activity on the Sun. These parameters include histories and distributions of solar flares, active region growth, coronal mass ejections, size, and magnetic configuration. By presenting solar-activity data in graphical form, this program accelerates, facilitates, and partly automates what had previously been a time-consuming mental process of interpretation of solar-activity data presented in tabular and textual formats. Intended for original use in predicting space weather in order to minimize the exposure of astronauts to ionizing radiation, the program might also be useful on Earth for predicting solar-wind-induced ionospheric effects, electric currents, and potentials that could affect radio-communication systems, navigation systems, pipelines, and long electric-power lines. Raw data for the display are obtained automatically from the Space Environment Center (SEC) of the National Oceanic and Atmospheric Administration (NOAA). Other data must be obtained from the NOAA SEC by verbal communication and entered manually. The Solar Active Region Display System automatically accounts for the latitude dependence of the rate of rotation of the Sun, by use of a mathematical model that is corrected with NOAA SEC active-region position data once every 24 hours. The display includes the date, time, and an image of the Sun in H light overlaid with latitude and longitude coordinate lines, dots that mark locations of active regions identified by NOAA, identifying numbers assigned by NOAA to such regions, and solar-region visual summary (SRVS) indicators associated with some of the active regions. Each SRVS indicator is a small pie chart containing five equal sectors, each of which is color-coded to provide a semiquantitative indication of the degree of hazard posed by one aspect of the activity at

  20. Reading cinnamon activates olfactory brain regions.

    PubMed

    González, Julio; Barros-Loscertales, Alfonso; Pulvermüller, Friedemann; Meseguer, Vanessa; Sanjuán, Ana; Belloch, Vicente; Avila, César

    2006-08-15

    Some words immediately and automatically remind us of odours, smells and scents, whereas other language items do not evoke such associations. This study investigated, for the first time, the abstract linking of linguistic and odour information using modern neuroimaging techniques (functional MRI). Subjects passively read odour-related words ('garlic', 'cinnamon', 'jasmine') and neutral language items. The odour-related terms elicited activation in the primary olfactory cortex, which include the piriform cortex and the amygdala. Our results suggest the activation of widely distributed cortical cell assemblies in the processing of olfactory words. These distributed neuron populations extend into language areas but also reach some parts of the olfactory system. These distributed neural systems may be the basis of the processing of language elements, their related conceptual and semantic information and the associated sensory information.

  1. Subjective visual perception: from local processing to emergent phenomena of brain activity.

    PubMed

    Panagiotaropoulos, Theofanis I; Kapoor, Vishal; Logothetis, Nikos K

    2014-05-05

    The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.

  2. NUMERICAL STUDY ON THE EMERGENCE OF KINKED FLUX TUBE FOR UNDERSTANDING OF POSSIBLE ORIGIN OF δ-SPOT REGIONS

    SciTech Connect

    Takasao, Shinsuke; Shibata, Kazunari; Fan, Yuhong; Cheung, Mark C. M.

    2015-11-10

    We carried out an magnetohydrodynamic simulation where a subsurface twisted kink-unstable flux tube emerges from the solar interior to the corona. Unlike the previous expectations based on the bodily emergence of a knotted tube, we found that the kinked tube can spontaneously form a complex quadrupole structure at the photosphere. Due to the development of the kink instability before the emergence, the magnetic twist at the kinked apex of the tube is greatly reduced, although the other parts of the tube are still strongly twisted. This leads to the formation of a complex quadrupole structure: a pair of the coherent, strongly twisted spots and a narrow complex bipolar pair between it. The quadrupole is formed by the submergence of a portion of emerged magnetic fields. This result is relevant for understanding the origin of the complex multipolar δ-spot regions that have a strong magnetic shear and emerge with polarity orientations not following Hale-Nicholson and Joy Laws.

  3. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  4. Emergence of Granular-sized Magnetic Bubbles Through the Solar Atmosphere. III. The Path to the Transition Region

    NASA Astrophysics Data System (ADS)

    Ortiz, Ada; Hansteen, Viggo H.; Bellot Rubio, Luis Ramón; de la Cruz Rodríguez, Jaime; De Pontieu, Bart; Carlsson, Mats; Rouppe van der Voort, Luc

    2016-07-01

    We study, for the first time, the ascent of granular-sized magnetic bubbles from the solar photosphere through the chromosphere into the transition region and above. Such events occurred in a flux emerging region in NOAA 11850 on 2013 September 25. During that time, the first co-observing campaign between the Swedish 1-m Solar Telescope (SST) and the Interface Region Imaging Spectrograph (IRIS) spacecraft was carried out. Simultaneous observations of the chromospheric Hα 656.28 nm and Ca II 854.2 nm lines, plus the photospheric Fe i 630.25 nm line, were made with the CRISP spectropolarimeter at the Spitzer Space Telescope (SST) reaching a spatial resolution of 0.″14. At the same time, IRIS was performing a four-step dense raster of the emerging flux region, taking slit jaw images at 133 (C II, transition region), 140 (Si IV, transition region), 279.6 (Mg II k, core, upper chromosphere), and 283.2 nm (Mg II k, wing, photosphere). Spectroscopy of several lines was performed by the IRIS spectrograph in the far- and near-ultraviolet, of which we have used the Si IV 140.3 and the Mg II k 279.6 nm lines. Coronal images from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory were used to investigate the possible coronal signatures of the flux emergence events. The photospheric and chromospheric properties of small-scale emerging magnetic bubbles have been described in detail in Ortiz et al. Here we are able to follow such structures up to the transition region. We describe the properties, including temporal delays, of the observed flux emergence in all layers. We believe this may be an important mechanism of transporting energy and magnetic flux from subsurface layers to the transition region and corona.

  5. Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Zhao, Junwei; Schuck, P. W.

    2012-01-01

    We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the sunspot umbra and outward flows surrounding the sunspot. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the sunspot penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding sunspots. On the other hand, most well-documented flux-emergence-related flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.

  6. rf-activated emergency locating and illuminating devices

    NASA Astrophysics Data System (ADS)

    Strong, Maurice L., III

    1995-05-01

    Law enforcement officials and medical personnel are, with increasing regularity, becoming involved in accident or hostage situations requiring transport of individuals by air. At the present time there are few acceptable or portable means for identification and demarcation of appropriate landing areas for inbound emergency aircraft in unprepared areas. The following paper describes a low cost, portable, and light weight solution to the problem of how to effectively demarcate a temporary landing zone as well as any hazards for use to assist pilots landing in unprepared areas.

  7. Emergence of FY*Anull in a Plasmodium vivax-endemic region of Papua New Guinea

    PubMed Central

    Zimmerman, Peter A.; Woolley, Ian; Masinde, Godfred L.; Miller, Stephanie M.; McNamara, David T.; Hazlett, Fred; Mgone, Charles S.; Alpers, Michael P.; Genton, Blaise; Boatin, B. A.; Kazura, James W.

    1999-01-01

    In Papua New Guinea (PNG), numerous blood group polymorphisms and hemoglobinopathies characterize the human population. Human genetic polymorphisms of this nature are common in malarious regions, and all four human malaria parasites are holoendemic below 1500 meters in PNG. At this elevation, a prominent condition characterizing Melanesians is α+-thalassemia. Interestingly, recent epidemiological surveys have demonstrated that α+-thalassemia is associated with increased susceptibility to uncomplicated malaria among young children. It is further proposed that α+-thalassemia may facilitate so-called “benign” Plasmodium vivax infection to act later in life as a “natural vaccine” against severe Plasmodium falciparum malaria. Here, in a P. vivax-endemic region of PNG where the resident Abelam-speaking population is characterized by a frequency of α+-thalassemia ≥0.98, we have discovered the mutation responsible for erythrocyte Duffy antigen-negativity (Fy[a−b−]) on the FY*A allele. In this study population there were 23 heterozygous and no homozygous individuals bearing this new allele (allele frequency, 23/1062 = 0.022). Flow cytometric analysis illustrated a 2-fold difference in erythroid-specific Fy-antigen expression between heterozygous (FY*A/FY*Anull) and homozygous (FY*A/FY*A) individuals, suggesting a gene-dosage effect. In further comparisons, we observed a higher prevalence of P. vivax infection in FY*A/FY*A (83/508 = 0.163) compared with FY*A/FY*Anull (2/23 = 0.087) individuals (odds ratio = 2.05, 95% confidence interval = 0.47–8.91). Emergence of FY*Anull in this population suggests that P. vivax is involved in selection of this erythroid polymorphism. This mutation would ultimately compromise α+-thalassemia/P. vivax-mediated protection against severe P. falciparum malaria. PMID:10570183

  8. ACTIVE REGION MORPHOLOGIES SELECTED FROM NEAR-SIDE HELIOSEISMIC DATA

    SciTech Connect

    MacDonald, G. A.; McAteer, R. T. J.; Henney, C. J.; Arge, C. N.; Díaz Alfaro, M.; González Hernández, I.; Lindsey, C.

    2015-07-01

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, Air Force Data Assimilative Photospheric flux Transport synchronic maps and Global Oscillation Network Group near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can be decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.

  9. Active Region Morphologies Selected From Near-side Helioseismic Data

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon Andrew; Henney, Carl; Diaz Alfaro, Manuel; Gonzalez Hernandez, Irene; Arge, Nick; Lindsey, Charles; McAteer, James

    2015-04-01

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, ADAPT synchronic maps and GONG near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can be decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.

  10. Active Region Morphologies Selected from Near-side Helioseismic Data

    NASA Astrophysics Data System (ADS)

    MacDonald, G. A.; Henney, C. J.; Díaz Alfaro, M.; González Hernández, I.; Arge, C. N.; Lindsey, C.; McAteer, R. T. J.

    2015-07-01

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, Air Force Data Assimilative Photospheric flux Transport synchronic maps and Global Oscillation Network Group near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can be decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.

  11. A Multi Wavelength Study of Active Region Development

    NASA Astrophysics Data System (ADS)

    Lara, A.; Gopalswamy, N.; Kundu, M. R.; Perez-Enriquez, R.; Koshiishi, H.; Enome, S.

    1996-05-01

    We report on a study of the evolution of several active regions during 1993 April 17-28 using data obtained at multiple wavelengths that probe various heights of the active region corona. We use simultaneous microwave (1.5 and 17 GHz) and Soft X-ray images obtained by the Very Large Array (VLA), the Nobeyama Radio Heliograph (NRH) and the Soft X-ray Telescope (SXT) on board the Yohkoh spacecraft. We also use photospheric magnetograms from Kitt Peak National Observatory to study the development of Solar Active Regions. We have followed the development of various observed parameters such as brightness temperature and polarization using radio images. The X-ray data were used to track the development of density and temperature of active regions. Using the fact that the quiet active region radiation is thermal and adopting proper emission mechanism at each frequency domain, we construct a consistent picture for the three dimensional structure of the active regions. Particular attention has been paid to the mode coupling observed at 17 GHz while the active regions crossed the solar disk.

  12. Effect of photoperiod change on chronobiology of cercarial emergence of Schistosoma japonicum derived from hilly and marshy regions of China.

    PubMed

    Wang, Su-Rong; Zhu, Yuan-Jian; Ge, Qing-Peng; Yang, Meng-Jia; Huang, Ji-Lei; Huang, Wen-Qiao; Zhuge, Hong-Xiang; Lu, Da-Bing

    2015-12-01

    The chronobiology of cercarial emergence appeared to be a genetically controlled behavior, adapted to definitive host species, for schistosome. However, a few physiological and ecological factors, for example the change of photoperiod, were reported to affect the rhythmic emergence of cercariae. Therefore, the effect of photoperiod change on cercarial emergence of two Schistosoma japonicum isolates, the hilly and the marshland, was investigated. Four shedding experiments each under a different photoperiod were conducted. Under a natural photoperiod, two distinct shedding modes, one from the hilly region and one from the marshland, were observed. Under a reversed photoperiod, the regular pattern (i.e. under a natural photoperiod) of S. japonicum cercarial emergence was reversed for the marshland isolate and disappeared for the hilly isolate. With an input of a 2 h darkness from 7am to 9am, the cercarial emergence peak were delayed for the two isolates; whereas with an input of a 2 h darkness from 5pm to 7pm, neither effect on the cercarial emergence rhythm was observed. The total cercariae emerged for both parasite isolates varied with a different photoperiod. The results indicate that the change of photoperiod could affect the chronobiology of S japonicum cercarial emergence.

  13. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    PubMed Central

    Bojak, Ingo; Stoyanov, Zhivko V.; Liley, David T. J.

    2015-01-01

    Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex. PMID:25767438

  14. Emergence of Hepatitis B Virus Genotype F in Aligarh Region of North India

    PubMed Central

    Sami, Hiba; Rizvi, Meher; Azam, Mohd; Mukherjee, Rathindra M.; Shukla, Indu; Ajmal, M. R.; Malik, Abida

    2013-01-01

    Introduction. HBV genotypes and subtypes are useful clinical and epidemiological markers. In this study prevalent HBV genotypes were assessed in relation to serological profile and clinical status. Material & Methods. 107 cases of HBV were genotyped. Detailed clinical history was elicited from them. HBsAg, HBeAg, anti-HBs, anti-HBe, and anti-HBc-IgM were assessed. HBV genotyping was performed using Kirschberg's type specific primers (TSP-PCR), heminested PCR, and Naito's monoplex PCR. Nucleotide sequencing was performed. Results. A total of 97 (91%) were genotyped following the methods of Kirschberg et al./Naito et al. Genotype D was by far the most prevalent genotype 91 (85.04%) in this region. A surprising finding was the detection of genotype F in 5 (4.67%) of our patients. Genotype A strangely was observed only in one case. In 85.7% genotype D was associated with moderate to severe liver disease, 43.9% HBeAg, and 18.7% anti-HBc-IgM positivity. Majority of genotype F (80%) was seen in mild to moderate liver disease. It was strongly associated with HBeAg 60% and 20% anti-HBc-IgM positivity. Conclusion. Emergence of genotype F in India merits further study regarding its clinical implications and treatment modalities. Knowledge about HBV genotypes can direct a clinician towards more informed management of HBV patients. PMID:24381592

  15. Chest pain prevalence, causes, and disposition in the emergency department of a regional hospital in Pretoria

    PubMed Central

    2016-01-01

    Background Chest pain is a common clinical syndrome. However, there is a paucity of African studies describing the causes, prevalence, aetiology, and disposition of patients with chest pain presenting in the emergency department (ED). Aim The aim of this retrospective descriptive study was to determine the prevalence, causes, demographics, and disposition of all adult patients with the main complaint of chest pain presenting at the ED of a regional hospital in South Africa. Methods Records of all patients 18 years and older presenting with the complaint of chest pain from 1 December 2011 through 10 April 2012 were assessed. A data collection sheet capturing patient demographics and disposition from the ED was used. The diagnosis was subdivided into groups: cardiovascular, respiratory, gastrointestinal, musculoskeletal, psychiatric/psychogenic, other, and unknown. Results Of the 312 patients presenting with chest pain, 210 patient files were retrieved. The prevalence of non-traumatic chest pain was 1.66%. Respiratory disease was the most common cause (36.19%), with pneumonia the most common diagnosis (24.40%). Logistic regression showed diagnoses of acute cardiovascular disease or respiratory disease, older age, and transport by ambulance as being associated with admission. Conclusion The main cause of acute chest pain was found to be respiratory disease, followed by musculoskeletal disorders. In the African context, the aetiology of acute chest pain differs from that in first world countries. Health workers should therefore pay special attention to respiratory conditions during diagnosis and management in African patients with acute chest pain. PMID:27380782

  16. High resolution studies of complex solar active regions

    NASA Astrophysics Data System (ADS)

    Deng, Na

    Flares and Coronal Mass Ejections (CMEs) are energetic events, which can even impact the near-Earth environment and are the principal source of space weather. Most of them originate in solar active regions. The most violent events are produced in sunspots with a complex magnetic field topology. Studying their morphology and dynamics is helpful in understanding the energy accumulation and release mechanisms for flares and CMEs, which are intriguing problems in solar physics. The study of complex active regions is based on high-resolution observations from space missions and new instruments at the Big Bear Solar Observatory (BBSO). Adaptive optics (AO) in combination with image restoration techniques (speckle masking imaging) can achieve improved image quality and a spatial resolution (about 100 km on the solar surface) close to the diffraction limit of BBSO's 65 cm vacuum telescope. Dopplergrams obtained with a two-dimensional imaging spectrometer combined with horizontal flow maps derived with Local Correlation Tracking (LCT) provide precise measurements of the three-dimensional velocity field in sunspots. Magnetic field measurements from ground- and space-based instruments complement these data. At the outset of this study, the evolution and morphology of a typical round sunspot are described in some detail. The sunspot was followed from disk center to the limb, thus providing some insight into the geometry of the magnetic flux system. Having established a benchmark for a stable sunspot, the attention is turned to changes of the sunspot structure associated with flares and CMEs. Rapid penumbral decay and the strengthening of sunspot umbrae are manifestations of photospheric magnetic field changes after a flare. These sudden intensity changes are interpreted as a result of magnetic reconnection during the flare, which causes the magnetic field lines to be turned from more inclined to more vertical. Strong photospheric shear flows along the flaring magnetic

  17. Developing an active emergency medical service system based on WiMAX technology.

    PubMed

    Li, Shing-Han; Cheng, Kai-An; Lu, Wen-Hui; Lin, Te-Chang

    2012-10-01

    The population structure has changed with the aging of population. In the present, elders account for 10.63% of the domestic population and the percentage is still gradually climbing. In other words, the demand for emergency services among elders in home environment is expected to grow in the future. In order to improve the efficiency and quality of emergency care, information technology should be effectively utilized to integrate medical systems and facilities, strengthen human-centered operation designs, and maximize the overall performance. The improvement in the quality and survival rate of emergency care is an important basis for better life and health of all people. Through integrated application of medical information systems and information communication technology, this study proposes a WiMAX-based emergency care system addressing the public demands for convenience, speed, safety, and human-centered operation of emergency care. This system consists of a healthcare service center, emergency medical service hospitals, and emergency ambulances. Using the wireless transmission capability of WiMAX, patients' physiological data can be transmitted from medical measurement facilities to the emergency room and emergency room doctors can provide immediate online instructions on emergency treatment via video and audio transmission. WiMAX technology enables the establishment of active emergency medical services.

  18. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  19. The unmet need for Emergency Obstetric Care in Tanga Region, Tanzania

    PubMed Central

    Prytherch, Helen; Massawe, Siriel; Kuelker, Rainer; Hunger, Claudia; Mtatifikolo, Ferdinand; Jahn, Albrecht

    2007-01-01

    Background Improving maternal health by reducing maternal mortality constitutes the fifth Millennium Development Goal and represents a key public health challenge in the United Republic of Tanzania. In response to the need to evaluate and monitor safe motherhood interventions, this study aims at assessing the coverage of obstetric care according to the Unmet Obstetric Need (UON) concept by obtaining information on indications for, and outcomes of, major obstetric interventions. Furthermore, we explore whether this concept can be operationalised at district level. Methods A two year study using the Unmet Obstetric Need concept was carried out in three districts in Tanga Region, Tanzania. Data was collected prospectively at all four hospitals in the region for every woman undergoing a major obstetric intervention, including indication and outcome. The concept was adapted to address differentials in access to emergency obstetric care between districts and between rural and urban areas. Based upon literature and expert consensus, a threshold of 2% of all deliveries was used to define the expected minimum requirement of major obstetric interventions performed for absolute maternal indications. Results Protocols covering 1,260 complicated deliveries were analysed. The percentage of major obstetric interventions carried out in response to an absolute maternal indication was only 71%; most major obstetric interventions (97%) were caesarean sections. The most frequent indication was cephalo-pelvic-disproportion (51%). The proportion of major obstetric interventions for absolute maternal indications performed amongst women living in urban areas was 1.8% of all deliveries, while in rural areas it was only 0.7%. The high proportion (8.3%) of negative maternal outcomes in terms of morbidity and mortality, as well as the high perinatal mortality of 9.1% (still birth 6.9%, dying within 24 hours 1.7%, dying after 24 hours 0.5%) raise concern about the quality of care being

  20. Forecasting the Solar Drivers of Severe Space Weather from Active-Region Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Solar drivers of severe space weather can be predicted from line-of-sight magnetograms, via a free-energy proxy measured from the neutral lines. This can be done in near real time. In addition to depending strongly on the free magnetic energy, an active region's chance of having a major eruption depends strongly on other aspects of the evolving magnetic field (e.g., its complexity and flux emergence).

  1. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  2. Emergent Literacy Activities, Instructional Adaptations and School Absence of Children with Cerebral Palsy in Special Education

    ERIC Educational Resources Information Center

    Peeters, Marieke; de Moor, Jan; Verhoeven, Ludo

    2011-01-01

    The goal of the present study was to get an overview of the emergent literacy activities, instructional adaptations and school absence of children with cerebral palsy (CP) compared to normally developing peers. The results showed that there were differences between the groups regarding the amount of emergent literacy instruction. While time…

  3. Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396

    NASA Astrophysics Data System (ADS)

    Verma, M.; Denker, C.; Böhm, F.; Balthasar, H.; Fischer, C. E.; Kuckein, C.; Bello González, N.; Berkefeld, T.; Collados, M.; Diercke, A.; Feller, A.; González Manrique, S. J.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pator Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.

    2016-11-01

    Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si I λ1082.7 nm line, the chromospheric He I λ1083.0 nm triplet, and the photospheric Ca I λ1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the ``Stokes Inversions based on Response functions'' (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots.

  4. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  5. Observed Helicity of Active Regions in Solar Cycle 21

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Pevtsov, A. A.; Blehm, Z.; Smith, J. E.; Six, Frank (Technical Monitor)

    2003-01-01

    We report the results of a study of helicity in solar active regions during the peak of activity in solar cycle 21 from observations with the Marshall Space Flight Center's solar vector magnetograph. Using the force-free parameter alpha as the proxy for helicity, we calculated an average value of alpha for each of 60 active regions from a total of 449 vector magnetograms that were obtained during the period 1980 March to November. The signs of these average values of alpha were correlated with the latitude of the active regions to test the hemispheric rule of helicity that has been proposed for solar magnetic fields: negative helicity predominant in northern latitudes, positive in the southern ones. We have found that of the 60 regions that were observed, 30 obey the hemispheric rule and 30 do not.

  6. Photospheric Magnetic Free Energy Density of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi

    2016-12-01

    We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity 1/4π{B}n\\cdot{B}p is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (Bp) and the non-potential magnetic field (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.

  7. Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations

    NASA Astrophysics Data System (ADS)

    Poisson, Mariano; López Fuentes, Marcelo; Mandrini, Cristina H.; Démoulin, Pascal

    2015-11-01

    The main aim of this study is to compare the amount of twist present in emerging active regions (ARs) from photospheric and coronal data. We use linear force-free field models of the observed coronal structure of ARs to determine the global twist. The coronal twist is derived, on one hand, from the force-free parameter [α] of the model and, on the other, from the computed coronal magnetic helicity normalized by the magnetic flux squared. We compare our results, for the same set of ARs, with those of Poisson et al. ( Solar Phys. 290, 727, 2015), in which the twist was estimated using the so-called magnetic tongues observed in line-of-sight magnetograms during AR emergence. We corroborate the agreement between the photospheric and coronal twist-sign and the presence of magnetic tongues as an early proxy of the AR non-potentiality. We find a globally linear relationship between the coronal twist and the one previously deduced for the emerging AR flux rope at the photospheric level. The coronal-twist value is typically lower by a factor of six than the one deduced for the emerging flux rope. We interpret this result as due to the partial emergence of the flux rope that forms the region.

  8. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    SciTech Connect

    Schmelz, J. T.; Pathak, S.

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescales less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.

  9. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    PubMed Central

    Haque, Md. Nuruzzaman

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p < 0.001)). Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP), containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons' active ageing level in Thailand. PMID:27375903

  10. Emerging liquid crystal waveguide technology for low SWaP active short-wave infrared imagers

    NASA Astrophysics Data System (ADS)

    Keller, Sean D.; Uyeno, Gerald P.; Lynch, Ted; Davis, Scott R.; Rommel, Scott D.; Pino, Juan

    2015-03-01

    Raytheon's innovative active short wave infrared (SWIR) imager uses Vescent Photonic's emerging liquid crystal waveguide (LCWG) technology to continuously steer the illumination laser beam over the imager field of view (FOV). This approach instantly illuminates a very small fraction of the FOV, which significantly reduces the laser power compared to flash illumination. This reduced laser power directly leads to a reduction in the size, weight and power (SWaP) of the laser. The reduction in laser power reduces the input power and thermal rejection, which leads to additional reduction in the SWaP of the power supplies and thermal control. The high-speed steering capability of the LCWG enables the imager's SWaP reduction. The SWaP reduction is possible using either global or rolling shutter detectors. In both cases, the LCWG steers the laser beam over the entire FOV while the detector is integrating. For a rolling shutter detector, the LCWG synchronizes the steering with the rolling shutter to illuminate only regions currently integrating. Raytheon's approach enables low SWaP active SWIR imagers without compromising image quality. This paper presents the results of Raytheon's active SWIR imager demonstration including steering control and synchronization with the detector integration.

  11. An Examination of Hurricane Emergency Preparedness Planning at Institutions of Higher Learning of the Gulf South Region Post Hurricane Katrina

    ERIC Educational Resources Information Center

    Ventura, Caterina Gulli

    2010-01-01

    The purpose of the study was to examine hurricane emergency preparedness planning at institutions of higher learning of the Gulf South region following Hurricane Katrina. The problem addressed the impact of Hurricane Katrina on decision-making and policy planning processes. The focus was on individuals that administer the hurricane emergency…

  12. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  13. Technology Learning Activities: Columbus Sailed the Ocean Blue, the Cellular Connection, Emergency Shelter.

    ERIC Educational Resources Information Center

    Etchison, Cindy; Deal, Walter F., III

    1992-01-01

    Presents learning activities such as planning and building a sailboat, manufacturing cellular phone cases, and designing and building emergency shelters. Includes the context, the challenge, resources used, objectives, materials needed, and an evaluation. (JOW)

  14. Patient experience of different regional models of urgent and emergency care: a cross-sectional survey study

    PubMed Central

    Foley, Conor; Droog, Elsa; Boyce, Maria; Healy, Orla; Browne, John

    2017-01-01

    Objectives To compare user experiences of 8 regional urgent and emergency care systems in the Republic of Ireland, and explore potential avenues for improvement. Design A cross-sectional survey. Setting Several distinct models of urgent and emergency care operate in Ireland, as system reconfiguration has been implemented in some regions but not others. The Urgent Care System Questionnaire was used to explore service users' experiences with urgent and emergency care. Linear regression and logistic regression were used to detect regional variation in each of the 3 domains and overall ratings of care. Participants A nationally representative sample (N=8002) of the general population was contacted by telephone, yielding 1205 participants who self-identified as having used urgent and emergency care services in the previous 3 months. Main outcome measures Patient experience was assessed across 3 domains: entry into the system, progress through the system and patient convenience of the system. Participants were also asked to provide an overall rating of the care they received. Results Service users in Dublin North East gave lower ratings on the entry into the system scale than those in Dublin South (adjusted mean difference=−0.18; 95% CI −0.35 to −0.10; p=0.038). For overall ratings of care, service users in the Mid-West were less likely than those in Dublin North East to give an excellent rating (adjusted OR 0.57; 95% CI 0.35 to 0.92; p=0.022). Survey items relating to communication, and consideration of patients' needs were comparatively poorly rated. The use of public emergency departments and out-of-hours general practice care was associated with poorer patient experiences. Conclusions No consistent relationship was found between the type of urgent and emergency care model in different regions and patient experience. Scale-level data may not offer a useful metric for exploring the impact of system-level service change. PMID:28320790

  15. The nature of chromospheric active regions on V410 Tauri

    NASA Astrophysics Data System (ADS)

    Mekkaden, M. V.; Pukalenthi, S.; Muneer, S.; Bastian, Anju Barbara

    2005-12-01

    We present spectroscopic observations in the region of H alpha and Li I lines of the weak emission T Tauri star V410 Tau obtained over 1999/2000, 2002/2003 and 2003/2004 seasons. The emission strength showed rotational modulation during the 1999/2000 season in such a way that the emis- sion strength is maximum at light minimum and vice versa. This indicates that the photospheric and chromospheric active regions overlap over shorter dura- tions of time and the lifetimes of chromospheric active regions are far shorter than the photospheric active regions. But the observations obtained during the 2003/2004 season do not follow the trend observed at earlier seasons. This can be due to the change in the location of chromospheric active regions. Another possibility is the occurrence of a major change in the photospheric active re- gions that have caused a redistribution of photospheric as well as chromospheric active regions. The Li I EW does not show any appreciable change over the four-year period.

  16. Test and calibration of rainfall thresholds for use in a regional civil defense emergency management system

    NASA Astrophysics Data System (ADS)

    Ponziani, F.; Pandolfo, C.; Stelluti, M.; Berni, N.; Brocca, L.

    2009-04-01

    With regard to the evaluation of hydrogeological risk in Italy, the Italian Civil Defence Emergency Management System has a national hydrometeorological alert office (called Chief Functional Center) and a network of 21 Regional Centers (Decentrate Functional Centers, CFD) whose main purpose is the monitoring and evaluation of critical hydraulic and hydrogeological events, mainly caused by heavy rainfall. The national alert procedure, in use at the CFD in Umbria , is based on a 3-level scale, and the main instrument for the choice of landslide hazard level is the rainfall thresholds, as heavy rainfall is the most important factor in the triggering of landslides. The current thresholds have been established by a wide rainfall dataset for a large area of Central Italy; up to now they have been seen to work well with regard to the hydraulic risk, but in order to cope with the hydrogeological risk we need more investigation. Therefore a statistical and comparative study between the rainfall thresholds and the landslide datasets occurring in past rainfall events was performed, in order to measure their performance in terms of false and missed alarms; the main goal of this goal was to try to tune the thresholds to the complex and varying geomorphologic conditions in Umbria. In fact subsequent compressive and extensional tectonic phases produced in this area chains, lakes, intermontane valleys and river grabens, with complex lithostratigraphy. Moreover, due to its importance in the triggering of landslides, a method to evaluate moisture content in soil was implemented. About 20 temporal windows (5-10days wide), apparent (in terms of events recorded with several landslides) in the historical landslide datasets available from 1991 to 2001 were analyzed, plus a severe hydrometeorological event which occurred in December 2008. IDW spatial estimate of cumulative rainfall, moisture content, and local rainfall threshold for every landslide site, using the data from the regional

  17. The Emergent Terrains of "Higher Education Regionalism": How and Why Higher Education Is an Interesting Case for Comparative Regionalism

    ERIC Educational Resources Information Center

    Chou, Meng-Hsuan; Ravinet, Pauline

    2016-01-01

    The introduction of regional political initiatives in the higher education sector symbolizes one of the many aspects of the changing global higher education landscape. Remarkably, these processes have generally escaped comparative scrutiny by scholars researching higher education policy cooperation or regional integration. In this article, we…

  18. Twist of Magnetic Fields in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi; Bao, Shudong; Kuzanyan, Kirill M.

    2002-05-01

    We study the twist properties of photospheric magnetic fields in solar active regions using magnetographic data on 422 active regions obtained at the Huairou Solar Observing Station in 1988 1997. We calculate the mean twist (force-free field αf) of the active regions and compare it with the mean current-helicity density of these same active regions, h c =B ∥·(∇×B)∥. The latitude and longitude distributions and time dependence of these quantities is analyzed. These parameters represent two different tracers of the α effect in dynamo theory, so we might expect them to possess similar properties. However, apart from differences in their definitions, they also display differences associated with the technique used to recalculate the magnetographic data and with their different physical meanings. The distributions of the mean αf and h c both show hemispherical asymmetry—negative (positive) values in the northern (southern) hemisphere—although this tendency is stronger for h c. One reason for these differences may be the averaging procedure, when twists of opposite sign in regions with weak fields make a small contribution to the mean current-helicity density. Such transequatorial regularity is in agreement with the expectations of dynamo theory. In some active regions, the average αf and h c do not obey this transequatorial rule. As a whole, the mean twist of the magnetic fields αf of active regions does not vary significantly with the solar cycle. Active regions that do not follow the general behavior for αf do not show any appreciable tendency to cluster at certain longitudes, in contrast to results for h c noted in previous studies. We analyze similarities and differences in the distributions of these two quantities. We conclude that using only one of these tracers, such as αf, to search for signatures of the α effect can have disadvantages, which should be taken into account in future studies.

  19. Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention.

    PubMed

    Simpson, Gregory V; Weber, Darren L; Dale, Corby L; Pantazis, Dimitrios; Bressler, Steven L; Leahy, Richard M; Luks, Tracy L

    2011-09-28

    Although it is well established that multiple frontal, parietal, and occipital regions in humans are involved in anticipatory deployment of visual spatial attention, less is known about the electrophysiological signals in each region across multiple subsecond periods of attentional deployment. We used MEG measures of cortical stimulus-locked, signal-averaged (event-related field) activity during a task in which a symbolic cue directed covert attention to the relevant location on each trial. Direction-specific attention effects occurred in different cortical regions for each of multiple time periods during the delay between the cue and imperative stimulus. A sequence of activation from V1/V2 to extrastriate, parietal, and frontal regions occurred within 110 ms after cue, possibly related to extraction of cue meaning. Direction-specific activations ∼300 ms after cue in frontal eye field (FEF), lateral intraparietal area (LIP), and cuneus support early covert targeting of the cued location. This was followed by coactivation of a frontal-parietal system [superior frontal gyrus (SFG), middle frontal gyrus (MFG), LIP, anterior intraparietal sulcus (IPSa)] that may coordinate the transition from targeting the cued location to sustained deployment of attention to both space and feature in the last period. The last period involved direction-specific activity in parietal regions and both dorsal and ventral sensory regions [LIP, IPSa, ventral IPS, lateral occipital region, and fusiform gyrus], which was accompanied by activation that was not direction specific in right hemisphere frontal regions (FEF, SFG, MFG). Behavioral performance corresponded with the magnitude of attention-related activity in different brain regions at each time period during deployment. The results add to the emerging electrophysiological characterization of different cortical networks that operate during anticipatory deployment of visual spatial attention.

  20. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  1. Valles caldera region, New Mexico, and the emerging continental scientific drilling program

    SciTech Connect

    Goff, F.; Gardner, J.N.

    1988-06-10

    Valles caldera is best known in recent years as an excellent example of a resurgent caldera and as the site of a high-temperature geothermal system. However, Valles caldera and the surrounding Jemez Mountains volcanic field possess a rich history of geologic research that dates back to the late 1880s. Through the years, the research focus has changed as different economic and scientific factors have exerted their influence. Early work emphasized mining activity, while modern work has stressed volcanology and, later, geothermal development. Only in the last 5 years has it been possible to view the region as a dynamic, integrated magma-hydrothermal system having a complex evolution lasting more than 13 m.y.

  2. Failure to activate the in-hospital emergency team: causes and outcomes

    PubMed Central

    Barbosa, Vera; Gomes, Ernestina; Vaz, Senio; Azevedo, Gustavo; Fernandes, Gonçalo; Ferreira, Amélia; Araujo, Rui

    2016-01-01

    Objective To determine the incidence of afferent limb failure of the in-hospital Medical Emergency Team, characterizing it and comparing the mortality between the population experiencing afferent limb failure and the population not experiencing afferent limb failure. Methods A total of 478 activations of the Medical Emergency Team of Hospital Pedro Hispano occurred from January 2013 to July 2015. A sample of 285 activations was obtained after excluding incomplete records and activations for patients with less than 6 hours of hospitalization. The sample was divided into two groups: the group experiencing afferent limb failure and the group not experiencing afferent limb failure of the Medical Emergency Team. Both populations were characterized and compared. Statistical significance was set at p ≤ 0.05. Result Afferent limb failure was observed in 22.1% of activations. The causal analysis revealed significant differences in Medical Emergency Team activation criteria (p = 0.003) in the group experiencing afferent limb failure, with higher rates of Medical Emergency Team activation for cardiac arrest and cardiovascular dysfunction. Regarding patient outcomes, the group experiencing afferent limb failure had higher immediate mortality rates and higher mortality rates at hospital discharge, with no significant differences. No significant differences were found for the other parameters. Conclusion The incidence of cardiac arrest and the mortality rate were higher in patients experiencing failure of the afferent limb of the Medical Emergency Team. This study highlights the need for health units to invest in the training of all healthcare professionals regarding the Medical Emergency Team activation criteria and emergency medical response system operations. PMID:28099639

  3. Predictions of active region flaring probability using subsurface helicity measurements

    NASA Astrophysics Data System (ADS)

    Reinard, A. A.; Komm, R.; Hill, F.

    2010-12-01

    Solar flares are responsible for a number of hazardous effects on the earth such as disabling high-frequency radio communications, interfering with GPS measurements, and disrupting satellites. However, forecasting flare occurrence is currently very difficult. One possible means for predicting flare occurrence lies in helioseismology, i.e. analysis of the region below the active region for signs of an impending flare. Time series helioseismic data collected by the Global Oscillation Network Group (GONG) has been analyzed for a subset of active regions that produce large flares and a subset with very high magnetic field strength that produce no flares. A predictive parameter has been developed and analyzed using discriminant analysis as well as traditional forecasting tools such as the Heidke skill score. Preliminary results show that this parameter predicts the flaring probability of an active region 2-3 days in advance with a relatively high degree of success.

  4. Emergent patterns from probabilistic generalizations of lateral activation and inhibition

    PubMed Central

    Kabla, Alexandre

    2016-01-01

    The combination of laterally activating and inhibiting feedbacks is well known to spontaneously generate spatial organization. It was introduced by Gierer and Meinhardt as an extension of Turing's great insight that two reacting and diffusing chemicals can spontaneously drive spatial morphogenesis per se. In this study, we develop an accessible nonlinear and discrete probabilistic model to study simple generalizations of lateral activation and inhibition. By doing so, we identify a range of modes of morphogenesis beyond the familiar Turing-type modes; notably, beyond stripes, hexagonal nets, pores and labyrinths, we identify labyrinthine highways, Kagome lattices, gyrating labyrinths and multi-colour travelling waves and spirals. The results are discussed within the context of Turing's original motivating interest: the mechanisms which underpin the morphogenesis of living organisms. PMID:27170648

  5. Activation of AhR-mediated toxicity pathway by emerging ...

    EPA Pesticide Factsheets

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eighteen PCDPSs were tested in the H4IIE-luc transactivation assay, with 13/18 causing concentration-dependent AhR activation. Potencies of several congeners were similar to those of mono-ortho substituted polychlorinated biphenyls. A RNA sequencing (RNA-seq)-based transcriptomic analysis was performed on H4IIE cells treated with two PCDPS congeners, 2,2',3,3',4,5,6-hepta-CDPS, and 2,4,4',5-tetra-CDPS. Results of RNA-seq revealed a remarkable modulation on a relatively short gene list by exposure to the tested concentrations of PCDPSs, among which, Cyp1 responded with the greatest fold up-regulation. Both the identities of the modulated transcripts and the associated pathways were consistent with targets and pathways known to be modulated by other types of AhR agonists and there was little evidence for significant off-target effects within the cellular context of the H4IIE bioassay. The results suggest AhR activation as a toxicologically relevant mode of action for PCDPSs suggests the utility of AhR-related toxicity pathways for predicting potential hazards associated with PCDPS exposure in mammals and potentially other vertebrates. Polychlorinated diphenyl sulfides (PCDPSs) are a group of en

  6. Helium Line Formation and Abundance in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Mauas, P. J. D.; Andretta, V.; Falchi, A.; Falciani, R.; Teriaca, L.; Cauzzi, G.

    2005-01-01

    An observing campaign (SOHO JOP 139), coordinated between ground-based and Solar and Heliospheric Observatory (SOHO) instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines Ca II K, Hα, and Na I D, as well as He I 10830, 5876, 584, and He II 304 Å lines have been observed. The EUV radiation in the range λ<500 Å and in the range 260<λ<340 Å has also been measured at the same time. These simultaneous observations allow us to build semiempirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it is of fundamental importance for the D3 and 10830 Å lines. Finally, we build two more models, assuming values of He abundance [He]=0.07 and 1.5, only in the region where temperatures are >1×104 K. This region, between the chromosphere and transition region, has been indicated as a good candidate for processes that might be responsible for strong variations of [He]. The set of our observables can still be well reproduced in both cases, changing the atmospheric structure mainly in the low transition region. This implies that, to choose between different values of [He], it is necessary to constrain the transition region with different observables, independent of the He lines.

  7. Universities and Economic Development Activities: A UK Regional Comparison

    ERIC Educational Resources Information Center

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.

    2011-01-01

    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  8. IFLA General Conference, 1985. Division on Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on regional library activities which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Importance of Information Resources in National Development with Particular Reference to the Asian Scene" (Yogendra P. Dubey, India); (2) "Report of the Activities of the Regional…

  9. Emergent Structures in an Active Polar Fluid: Dynamics of Shape, Scattering, and Merger

    NASA Astrophysics Data System (ADS)

    Husain, Kabir; Rao, Madan

    2017-02-01

    Spatially localized defect structures emerge spontaneously in a hydrodynamic description of an active polar fluid comprising polar "actin" filaments and "myosin" motor proteins that (un)bind to filaments and exert active contractile stresses. These emergent defect structures are characterized by distinct textures and can be either static or mobile—we derive effective equations of motion for these "extended particles" and analyze their shape, kinetics, interactions, and scattering. Depending on the impact parameter and propulsion speed, these active defects undergo elastic scattering or merger. Our results are relevant for the dynamics of actomyosin-dense structures at the cell cortex, reconstituted actomyosin complexes, and 2D active colloidal gels.

  10. Emergent Literacy Activities in the Final Preschool Year in the German Federal States of Bavaria and Hesse

    ERIC Educational Resources Information Center

    Smidt, Wilfried K.; Lehrl, Simone; Anders, Yvonne; Pohlmann-Rother, Sanna; Kluczniok, Katharina

    2012-01-01

    Emergent literacy activities are considered to be important for promoting children's emergent literacy skills. However, little research exists, especially in Germany, regarding how often such activities occur and in what context. The purpose of this study was to determine the extent of emergent literacy activities occurring in the final preschool…

  11. Activated region fitting: a robust high-power method for fMRI analysis using parameterized regions of activation.

    PubMed

    Weeda, Wouter D; Waldorp, Lourens J; Christoffels, Ingrid; Huizenga, Hilde M

    2009-08-01

    An important issue in the analysis of fMRI is how to account for the spatial smoothness of activated regions. In this article a method is proposed to accomplish this by modeling activated regions with Gaussian shapes. Hypothesis tests on the location, spatial extent, and amplitude of these regions are performed instead of hypothesis tests of individual voxels. This increases power and eases interpretation. Simulation studies show robust hypothesis tests under misspecification of the shape model, and increased power over standard techniques especially at low signal-to-noise ratios. An application to real single-subject data also indicates that the method has increased power over standard methods.

  12. Dynamics of active regions observed with Hinode XRT

    NASA Astrophysics Data System (ADS)

    Sakao, Taro

    We present dynamics of active regions observed with the X-Ray Telescope (XRT) aboard Hinode. XRT is a grazing-incidence imager with a Walter Type-I-like mirror of 34 cm diameter with a back-illuminated CCD device. The XRT can image the X-ray corona of the Sun with angular resolution consistent with 1 arcsec CCD pixel size. In addition to this unprecedentedly-high angular resolution ever achieved as a solar X-ray telescope, enhanced sensitivity of the CCD towards longer X-ray wavelengths (particularly beyond 50 Angstroms) enables XRT to image, and perform temperature diagnostics on, a wide range of coronal plasmas from those as low as 1 MK to high-temperature plasmas even exceeding 10 MK. This adds a notable advantage to the XRT such that it can observe most, if not all, active phenomena taking place in and around active regions. Since the beginning of observations with XRT on 23 October 2006, the XRT has so far made various interesting observations regarding active regions. These include (1) continuous outflow of plasmas from the edge of a solar active region that is likely to be a source of (slow) solar wind, (2) clear signature of eruptions for activities even down to GOES B-level, (3) detailed structure and evolution of flaring loops, (4) formation of large-scale hot loops around active regions, and so on. Dynamic phenomena in and around active regions observed with Hinode XRT will be presented and their possible implications to the Sun-Earth connection investigation will be discussed.

  13. Dynamics in Restructuring Active Regions Observed During Soho/Yohkoh/Gbo Campaigns

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Deng, Y.; Mandrini, C. H.; Rudawy, P.; Nitta, N.; Mason, H.; Fletcher, L.; Martens, P.; Brynildsen, N.

    JOP17 and JOP 33 are SOHO Joint Observing Programs in collaboration with Yohkoh/SXT and ground based observatories (GBO's), dedicated to observe dynamical events through the atmosphere. During runs of these programs we observed in restructuring active regions (ARs), surges, subflares, bright knots, but not large flares and jets. From these observations we have been able to derive some of the responses of the coronal and chromospheric plasma to the evolution of the photospheric magnetic field. Emerging flux in an AR led to the formation of Arch Filament Systems in the chromosphere, hot loops and knots in the transition region, and X-ray loops. Frequent surges have been observed in relation to parasitic or mixed polarities, but coronal jets have not yet been found. We discuss the possible mechanisms acting during the restructuring of the active regions (reconnection or ``sea-serpent'' geometries)

  14. EVIDENCE OF IMPULSIVE HEATING IN ACTIVE REGION CORE LOOPS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2010-11-01

    Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained emission measure EM(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely, static equilibrium, strong condensation, and strong evaporation from Klimchuk et al. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log T[K] = 5.15-6.3. Using photospheric abundances, we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the strong condensation case (EM{sub con}), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3-5 MK) seen in the core of active regions are heated by nanoflares.

  15. [Substantial experience in organisation of around-the-clock angioplasty emergency care in regional clinical hospital].

    PubMed

    Iavors'kyĭ, M I; Khryponiuk, V I; Vasyliuk, Ia I; Pyptiuk, O V; Shabat, I P; Freĭshyn, M M; Semak, A O; Hrushets'kyĭ, M M; Bohak, V M

    2002-01-01

    The submitted indices by separate nozological entities over the period 1996-2000 permit representing patterns of acute disorders and injuries of the great vessels in 779 patients, which fact can be used as a criterion for assessment of quality of work of the angiosurgeon making emergency calls on sick persons in the above category. It will also, we believe, be helpful in developing standards for examination and treatment in order that emergency surgery might be delivered to such patients.

  16. Water Security, Climate Forcings and Public Health Impacts in Emerging Regions

    NASA Astrophysics Data System (ADS)

    Serman, E. A.; Akanda, A. S.; Craver, V.; Boving, T. B.

    2014-12-01

    Our world is rapidly urbanizing, with more than 80% of world's population is expected to be living in a city by the end of the century. A majority of these nations are rapidly urbanizing due to massive rural-to-urban migratory trends, with rapid development of unplanned urban settlements, or slums, with lack of adequate water or sanitation facilities and other municipal amenities. With global environmental change, natural disasters will expose millions more to drought, floods, and disease epidemics, and existing vulnerabilities will worsen. At the same time, rapid urbanization and fast changing land-use leads to widespread damage of infrastructure by stormwater, especially in lowlands and economically poor areas. The factor that consistently stands out among different cities from both the developed and the developing worlds is that the slums are typically the most vulnerable to water related natural hazards and climatic threats, such as water scarcity and quality issues in drought conditions, or water and sanitation breakdown and stormwater contamination problems. Onsite or decentralized water, wastewater and stormwater treatment as well as point-of-use water treatment options can be an economic, safe, and reliable alternative to conventional large-scale treatment especially, in urban fringes as well as rural areas. These systems can be designed to fit communities in terms of their economic, cultural, environmental, and demographic resources. As part of this study, we develop a database of urban water quality and quantity indices such as with urban land-use, water usage, climate, and socio-economic characteristics in various emerging regions in the world. We analyze past and current data to identify and quantify long-term trends and the impacts of large-scale climatic and anthropogenic changes on urban hydrology and health impacts. We specifically focus on five major cities from distinct groups of countries and geographies: Providence, RI, USA from the developed

  17. Emergent smectic order in simple active particle models

    NASA Astrophysics Data System (ADS)

    Romanczuk, Pawel; Chaté, Hugues; Chen, Leiming; Ngo, Sandrine; Toner, John

    2016-06-01

    Novel ‘smectic-P’ behavior, in which self-propelled particles form rows and move on average along them, occurs generically within the orientationally ordered phase of simple models that we simulate. Both apolar (head-tail symmetric) and polar (head-tail asymmetric) models with aligning and repulsive interactions exhibit slow algebraic decay of smectic order with system size up to some finite length scale, after which faster decay occurs. In the apolar case, this scale is that of an undulation instability of the rows. In the polar case, this instability is absent, but traveling fluctuations disrupt the rows in large systems and motion and smectic order may spontaneously globally rotate. These observations agree with a new hydrodynamic theory which we present here. Variants of our models also exhibit active smectic ‘A’ and ‘C’ order, with motion orthogonal and oblique to the layers respectively.

  18. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  19. Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia.

    PubMed

    Hight, Darren F; Voss, Logan J; García, Paul S; Sleigh, Jamie W

    2016-07-21

    During emergence from anesthesia patients regain their muscle tone (EMG). In a typical population of surgical patients the actual volatile gas anesthetic concentrations in the brain (CeMAC) at which EMG activation occurs remains unknown, as is whether EMG activation at higher CeMACs is correlated with subsequent severe pain, or with cortical activation. Electroencephalographic (EEG) and EMG activity was recorded from the forehead of 273 patients emerging from general anesthesia following surgery. We determined CeMAC at time of EMG activation and at return of consciousness. Pain was assessed immediately after return of consciousness using an 11 point numerical rating scale. The onset of EMG activation during emergence was associated with neither discernible muscle movement nor with the presence of exogenous stimulation in half the patients. EMG activation could be modelled as two distinct processes; termed high- and low-CeMAC (occurring higher or lower than 0.07 CeMAC). Low-CeMAC activation was typically associated with simultaneous EMG activation and consciousness, and the presence of a laryngeal mask. In contrast, high-CeMAC EMG activation occurred independently of return of consciousness, and was not associated with severe post-operative pain, but was more common in the presence of an endotracheal tube. Patients emerging from general anesthesia with an endotracheal tube in place are more likely to have an EMG activation at higher CeMAC concentrations. These activations are not associated with subsequent high-pain, nor with cortical arousal, as evidenced by continuing delta waves in the EEG. Conversely, patients emerging from general anesthesia with a laryngeal mask demonstrate marked neural inertia-EMG activation occurs at a low CeMAC, and is closely temporally associated with return of consciousness.

  20. Factors impacting on the activation and approach times of helicopter emergency medical services in four Alpine countries

    PubMed Central

    2012-01-01

    Background The outcome of severely injured or ill patients can be time dependent. Short activation and approach times for emergency medical service (EMS) units are widely recognized to be important quality indicators. The use of a helicopter emergency medical service (HEMS) can significantly shorten rescue missions especially in mountainous areas. We aimed to analyze the HEMS characteristics that influence the activation and approach times. Methods In a multi-centre retrospective study, we analyzed 6121 rescue missions from nine HEMS bases situated in mountainous regions of four European countries. Results We found large differences in mean activation and approach times among HEMS bases. The shortest mean activation time was 2.9 minutes; the longest 17.0 minutes. The shortest mean approach time was 10.4 minutes; the longest 45.0 minutes. Short times are linked (p < 0.001) to the following conditions: helicopter operator is not state owned; HEMS is integrated in EMS; all crew members are at the same location; doctors come from state or private health institutions; organization performing HEMS is privately owned; helicopters are only for HEMS; operation area is around 10.000 km2; HEMS activation is by a dispatching centre of regional government who is in charge of making decisions; there is only one intermediator in the emergency call; helicopter is equipped with hoist or fixed line; HEMS has more than one base with helicopters, and one team per base; closest neighboring base is 90 km away; HEMS is about 20 years old and has more than 650 missions per year; and modern helicopters are used. Conclusions An improvement in HEMS activation and approach times is possible. We found 17 factors associated with shorter times. PMID:22905968

  1. The Importance of Improving the Quality of Emergency Surgery for a Regional Quality Collaborative

    PubMed Central

    Smith, Margaret; Hussain, Adnan; Xiao, Jane; Scheidler, William; Reddy, Haritha; Olugbade, Kola; Cummings, Dustin; Terjimanian, Michael; Krapohl, Greta; Waits, Seth A.; Campbell, Darrell; Englesbe, Michael J.

    2013-01-01

    INTRODUCTION Within a large, statewide collaborative, significant improvement in surgical quality have been appreciated (9.0% reduction in morbidity for elective general and vascular surgery). Our group has not noted such quality improvement in the care of patients who had emergency operations. With this work, we aim to describe the scope of emergency surgical care within the Michigan Surgical Quality Collaborative (MSQC), variations in outcomes among hospitals, and variations in adherence to evidence based process measures. Overall, these data will form a basis for a broad based quality improvement initiative within Michigan. METHODS We report morbidity, mortality, and costs of emergency and elective general and vascular surgery cases (n= 190,826) within 34 hospitals participating in the MSQC from 2005 to 2010. Adjusted hospital specific outcomes were calculated using a step-wise multivariable logistic regression model. Adjustment covariates included patient specific co-morbidities and case complexity. Hospitals were also compared based on their adherence to evidence based process measures (measures at the patient level for each case – SCIP 1 and 2 compliance). RESULTS Emergency procedures account for approximately 11% of total cases, yet they represented 47% of mortalities and 28% of surgical complications. The complication-specific cost to payers was $126 million for emergency cases and $329 million for elective cases. Adjusted patient outcomes varied widely within MSQC hospitals; morbidity and mortality rates ranged from 16.3% to 33.9% and 4.0% to 12.4%, respectively. The variation among hospitals was not correlated with volume of emergency cases and case complexity. Hospital performance in emergency surgery was found to not depend on its share of emergent cases, but rather was found to directly correlate with its performance in elective surgery. For emergency colectomies, there was wide variation in compliance with SCIP 1 and 2 measures, and overall

  2. Interplanetary planar magnetic structures associated with expanding active regions

    NASA Technical Reports Server (NTRS)

    Nakagawa, Tomoko; Uchida, Yutaka

    1995-01-01

    Planar magnetic structures are interplanetary objects whose magnetic field cannot be explained by Parker's solar wind model. They are characterized by two-dimensional structure of magnetic field that are highly variable and parallel to a plane which is inclined to the ecliptic plane. They appeared independently of interplanetary compression, solar flares, active prominences nor filament disappearances, but the sources often coincided with active regions. On the other hand, it has been discovered by the Yohkoh Soft X-ray telescope that active-region corona expand outwards at speeds of a few to a few tens of km/s near the Sun. The expansions occurred repeatedly, almost continually, even in the absence of any sizable flares. In the Yohkoh Soft X-ray images, the active-region corona seems to expand out into interplanetary space. Solar sources of interplanetary planar magnetic structures observed by Sakigake were examined by Yohkoh soft X-ray telescope. During a quiet period of the Sun from January 6 to November 11, 1993, there found 5 planar magnetic structures according to the criteria (absolute value of Bn)/(absolute value of B) less than 0.1 for planarity and (dB)/(absolute value of B) greater than 0.7 for variability of magnetic field, where Bn, dB, and the absolute value of B are field component normal to a plane, standard deviation, and average of the magnitude of the magnetic field, respectively. Sources of 4 events were on low-latitude (less than 5 degrees) active regions from which loop-like structures were expanding. The coincidence, 80%, is extremely high with respect to accidental coincidence, 7%, of Sakigake windows of solar wind observation with active regions. The last source was on loop-like features which seemed to be related with a mid-latitude (20 degrees) active region.

  3. Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami

    NASA Astrophysics Data System (ADS)

    Wilson, Rick I.; Dengler, Lori A.; Goltz, James D.; Legg, Mark R.; Miller, Kevin M.; Ritchie, Andy; Whitmore, Paul M.

    2011-07-01

    State geoscientists (geologists, geophysicists, seismologists, and engineers) in California work closely with federal, state and local government emergency managers to help prepare coastal communities for potential impacts from a tsunami before, during, and after an event. For teletsunamis, as scientific information (forecast model wave heights, first-wave arrival times, etc.) from NOAA's West Coast and Alaska Tsunami Warning Center is made available, federal- and state-level emergency managers must help convey this information in a concise, comprehensible and timely manner to local officials who ultimately determine the appropriate response activities for their jurisdictions. During the September 29, 2009 Tsunami Advisory for California, government geoscientists assisted the California Emergency Management Agency by providing technical assistance during teleconference meetings with NOAA and other state and local emergency managers prior to the arrival of the tsunami. This technical assistance included background information on anticipated tidal conditions when the tsunami was set to arrive, wave height estimates from state-modeled scenarios for areas not covered by NOAA's forecast models, and clarifying which regions of the state were at greatest risk. Over the last year, state geoscientists have started to provide additional assistance: 1) working closely with NOAA to simplify their tsunami alert messaging and expand their forecast modeling coverage; 2) creating "playbooks" containing information from existing tsunami scenarios for local emergency managers to reference during an event; and, 3) developing a state-level information "clearinghouse" and pre-tsunami field response team to assist local officials as well as observe and report tsunami effects. Activities of geoscientists were expanded during the more recent Tsunami Advisory on February 27, 2010, including deploying a geologist from the California Geological Survey as a field observer who provided

  4. Bimanual passive movement: functional activation and inter-regional coupling.

    PubMed

    Macaluso, Emiliano; Cherubini, Andrea; Sabatini, Umberto

    2007-01-01

    The aim of this study was to investigate intra-regional activation and inter-regional connectivity during passive movement. During fMRI, a mechanic device was used to move the subject's index and middle fingers. We assessed four movement conditions (unimanual left/right, bimanual symmetric/asymmetric), plus Rest. A conventional intra-regional analysis identified the passive stimulation network, including motor cortex, primary and secondary somatosensory cortex, plus the cerebellum. The posterior (sensory) part of the sensory-motor activation around the central sulcus showed a significant modulation according to the symmetry of the bimanual movement, with greater activation for asymmetric compared to symmetric movements. A second set of fMRI analyses assessed condition-dependent changes of coupling between sensory-motor regions around the superior central sulcus and the rest of the brain. These analyses showed a high inter-regional covariation within the entire network activated by passive movement. However, the specific experimental conditions modulated these patterns of connectivity. Highest coupling was observed during the Rest condition, and the coupling between homologous sensory-motor regions around the left and right central sulcus was higher in bimanual than unimanual conditions. These findings demonstrate that passive movement can affect the connectivity within the sensory-motor network. We conclude that implicit detection of asymmetry during bimanual movement relies on associative somatosensory region in post-central areas, and that passive stimulation reduces the functional connectivity within the passive movement network. Our findings open the possibility to combine passive movement and inter-regional connectivity as a tool to investigate the functionality of the sensory-motor system in patients with very poor mobility.

  5. Advancements in Micrometeorological Technique for Monitoring CH4 Release from Remote Permafrost Regions: Principles, Emerging Research, and Latest Updates

    NASA Astrophysics Data System (ADS)

    Burba, George; Budishchev, Artem; Gioli, Beniamino; Haapanala, Sami; Helbig, Manuel; Losacco, Salvatore; Mammarella, Ivan; Moreaux, Virginie; Murphy, Patrick; Oechel, Walter; Peltola, Olli; Rinne, Janne; Sonnentag, Oliver; Sturtevant, Cove; Vesala, Timo; Zona, Donatella; Zulueta, Rommel

    2014-05-01

    in permafrost regions have mostly been made with static chamber techniques, and few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active soil layer. Closed-path gas analyzers for measuring CH4 eddy fluxes require climate control, employ high-power pumps, and generally require grid power and infrastructure. As a result, spatial coverage of eddy covariance CH4 flux measurements in cold regions remains limited. Existing stations are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into manpower and infrastructure. In this presentation, basic principles of eddy covariance flux measurements are explained, along with details on the CH4, CO2 and H2O exchange measurements using low-power flux stations. Also included are latest updates on the emerging research utilizing such stations in remote permafrost regions, and on the 2013-2014 development of fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CH4 release rates.

  6. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  7. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  8. Active region moss. Basic physical parameters and their temporal variation

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Mason, H. E.; Del Zanna, G.; Young, P. R.

    2010-07-01

    Context. Active region moss are transition region phenomena, first noted in the images recorded by the Transition Region and Coronal Explorer (TRACE) in λ171. Moss regions are thought to be the footpoints of hot loops (3-5 MK) seen in the core of active regions. These hot loops appear “fuzzy” (unresolved). Therefore, it is difficult to study the physical plasma parameters in individual hot core loops and hence their heating mechanisms. Moss regions provide an excellent opportunity to study the physics of hot loops. In addition, they allow us to study the transition region dynamics in the footpoint regions. Aims: To derive the physical plasma parameters such as temperature, electron density, and filling factors in moss regions and to study their variation over a short (an hour) and a long time period (5 consecutive days). Methods: Primarily, we have analyzed spectroscopic observations recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard Hinode. In addition we have used supplementary observations taken from TRACE and the X-Ray Telescope (XRT) aboard Hinode. Results: The moss emission is strongest in the Fe XII and Fe XIII lines. Based on analyses using line ratios and emission measure we found that moss regions have a characteristic temperature of log T[K] = 6.2. The temperature structure in moss region remains almost identical from one region to another and it does not change with time. The electron densities measured at different locations in the moss regions using Fe XII ratios are about 1-3 × 1010 cm-3 and about 2-4 × 109 cm-3 using Fe XIII and Fe XIV. The densities in the moss regions are similar in different places and show very little variation over short and long time scales. The derived electron density substantially increased (by a factor of about 3-4 or even more in some cases) when a background subtraction was performed. The filling factor of the moss plasma can vary between 0.1-1 and the path length along which the emission

  9. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region.

    PubMed

    McFarlane, Ro; Sleigh, Adrian; McMichael, Tony

    2012-03-01

    Humans create ecologically simplified landscapes that favour some wildlife species, but not others. Here, we explore the possibility that those species that tolerate or do well in human-modified environments, or 'synanthropic' species, are predominantly the hosts of zoonotic emerging and re-emerging infectious diseases (EIDs). We do this using global wildlife conservation data and wildlife host information extracted from systematically reviewed emerging infectious disease literature. The evidence for this relationship is examined with special emphasis on the Australasian, South East Asian and East Asian regions. We find that synanthropic wildlife hosts are approximately 15 times more likely than other wildlife in this region to be the source of emerging infectious diseases, and this association is essentially independent of the taxonomy of the species. A significant positive association with EIDs is also evident for those wildlife species of low conservation risk. Since the increase and spread of native and introduced species able to adapt to human-induced landscape change is at the expense of those species most vulnerable to habitat loss, our findings suggest a mechanism linking land conversion, global decline in biodiversity and a rise in EIDs of wildlife origin.

  10. Minifilament Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-05-01

    Solar coronal jets are common in both coronal holes and in active regions. Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism, such as the hitherto popular ``emerging flux'' model for jets. We present observations of an on-disk active region that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale ~20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode.

  11. OBSERVATION OF A NON-RADIAL PENUMBRA IN A FLUX EMERGING REGION UNDER CHROMOSPHERIC CANOPY FIELDS

    SciTech Connect

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip; Cho, Kyung-Suk

    2013-05-20

    The presence of a penumbra is one of the main properties of a mature sunspot, but its formation mechanism has been elusive due to a lack of observations that fully cover the formation process. Utilizing the New Solar Telescope at the Big Bear Solar Observatory, we observed the formation of a partial penumbra for about 7 hr simultaneously at the photospheric (TiO; 7057 A) and the chromospheric (H{alpha} - 1 A) spectral lines with high spatial and temporal resolution. From this uninterrupted, long observing sequence, we found that the formation of the observed penumbra was closely associated with flux emergence under the pre-existing chromospheric canopy fields. Based on this finding, we suggest a possible scenario for penumbra formation in which a penumbra forms when the emerging flux is constrained from continuing to emerge, but rather is trapped at the photospheric level by the overlying chromospheric canopy fields.

  12. Demographics, Management Strategies, and Problems in ST-Elevation Myocardial Infarction from the Standpoint of Emergency Medicine Specialists: A Survey-Based Study from Seven Geographical Regions of Turkey

    PubMed Central

    Kayipmaz, Afsin Emre; Karacaglar, Emir; Muderrisoglu, Haldun

    2016-01-01

    Background This study aimed to explore the ST segment elevation myocardial infarction (STEMI) management practices of emergency medicine specialists working in various healthcare institutions of seven different geographical regions of Turkey, and to examine the characteristics of STEMI presentation and patient admissions in these regions. Methods We included 225 emergency medicine specialists working in all geographical regions of Turkey. We e-mailed them a 20-item questionnaire comprising questions related to their STEMI management practices and characteristics of STEMI presentation and patient admissions. Results The regions were not significantly different with respect to primary percutaneous coronary intervention (PCI) resources (p = 0.286). Sixty six point two percent (66.2%) of emergency specialists stated that patients presented to emergency within 2 hours of symptom onset. Forty three point six percent (43.6%) of them contacted cardiology department within 10 minutes and 47.1% within 30 minutes. In addition, 68.3% of the participants improved themselves through various educational activities. The Southeastern Anatolian region had the longest time from symptom onset to emergency department admission and the least favorable hospital admission properties, not originating from physicians or 112 emergency healthcare services. Conclusion Seventy point seven percent (70.7%) of the emergency specialists working in all geographical regions of Turkey comply with the latest guidelines and current knowledge about STEMI care; they also try to improve themselves, and receive adequate support from 112 emergency healthcare services and cardiologists. While inter-regional gaps between the number of primary PCI capable centers and quality of STEMI care progressively narrow, there are still issues to address, such as delayed patient presentation after symptoms onset and difficulties in patient admission. PMID:27760229

  13. THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2011-11-01

    We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial latitudes ranging from 1{sup 0} to 40{sup 0} with a total flux of 10{sup 22} Mx. We find that the dynamic evolution of the flux tube changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from 15 kG to 100 kG. At 100 kG, the development of {Omega}-shaped rising loops is mainly controlled by the growth of the magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising {Omega}-shaped loops is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy's law for initial field strengths of {approx}>40 kG. We also examine other asymmetries that develop between the leading and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of {approx}40-50 kG produce emerging loops that best match the observed properties of solar active regions.

  14. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions

    PubMed Central

    Makendi, Carine; Page, Andrew J.; Wren, Brendan W.; Le Thi Phuong, Tu; Clare, Simon; Hale, Christine; Goulding, David; Klemm, Elizabeth J.; Pickard, Derek; Okoro, Chinyere; Hunt, Martin; Thompson, Corinne N.; Phu Huong Lan, Nguyen; Tran Do Hoang, Nhu; Thwaites, Guy E.; Le Hello, Simon; Brisabois, Anne; Weill, François-Xavier; Baker, Stephen; Dougan, Gordon

    2016-01-01

    Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies. PMID:26867150

  15. On the Active Region Bright Grains Observed in the Transition Region Imaging Channels of IRIS

    NASA Astrophysics Data System (ADS)

    Skogsrud, H.; Rouppe van der Voort, L.; De Pontieu, B.

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5-1.″7 that generally move limbward with velocities up to about 30 km s-1. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  16. ON THE ACTIVE REGION BRIGHT GRAINS OBSERVED IN THE TRANSITION REGION IMAGING CHANNELS OF IRIS

    SciTech Connect

    Skogsrud, H.; Voort, L. Rouppe van der; Pontieu, B. De

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5–1.″7 that generally move limbward with velocities up to about 30 km s{sup −1}. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  17. CALCULATING SEPARATE MAGNETIC FREE ENERGY ESTIMATES FOR ACTIVE REGIONS PRODUCING MULTIPLE FLARES: NOAA AR11158

    SciTech Connect

    Tarr, Lucas; Longcope, Dana; Millhouse, Margaret

    2013-06-10

    It is well known that photospheric flux emergence is an important process for stressing coronal fields and storing magnetic free energy, which may then be released during a flare. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) captured the entire emergence of NOAA AR 11158. This region emerged as two distinct bipoles, possibly connected underneath the photosphere, yet characterized by different photospheric field evolutions and fluxes. The combined active region complex produced 15 GOES C-class, two M-class, and the X2.2 Valentine's Day Flare during the four days after initial emergence on 2011 February 12. The M and X class flares are of particular interest because they are nonhomologous, involving different subregions of the active region. We use a Magnetic Charge Topology together with the Minimum Current Corona model of the coronal field to model field evolution of the complex. Combining this with observations of flare ribbons in the 1600 A channel of the Atmospheric Imaging Assembly on board SDO, we propose a minimization algorithm for estimating the amount of reconnected flux and resulting drop in magnetic free energy during a flare. For the M6.6, M2.2, and X2.2 flares, we find a flux exchange of 4.2 Multiplication-Sign 10{sup 20} Mx, 2.0 Multiplication-Sign 10{sup 20} Mx, and 21.0 Multiplication-Sign 10{sup 20} Mx, respectively, resulting in free energy drops of 3.89 Multiplication-Sign 10{sup 30} erg, 2.62 Multiplication-Sign 10{sup 30} erg, and 1.68 Multiplication-Sign 10{sup 32} erg.

  18. Successive injection of opposite magnetic helicity in solar active region NOAA 11928

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Démoulin, P.

    2017-01-01

    Aims: Understanding the nature and evolution of the photospheric helicity flux transfer is crucial to revealing the role of magnetic helicity in coronal dynamics of solar active regions. Methods: We computed the boundary-driven helicity flux with a 12-min cadence during the emergence of the AR 11928 using SDO/HMI photospheric vector magnetograms and the derived flow velocity field. Accounting for the footpoint connectivity defined by nonlinear, force-free magnetic extrapolations, we derived and analyzed the corrected distribution of helicity flux maps. Results: The photospheric helicity flux injection is found to change sign during the steady emergence of the AR. This reversal is confirmed with the evolution of the photospheric electric currents and with the coronal connectivity as observed in EUV wavelengths with SDO/AIA. During approximately the three first days of emergence, the AR coronal helicity is positive while later on the field configuration is close to a potential field. As theoretically expected, the magnetic helicity cancellation is associated with enhanced coronal activity. Conclusions: The study suggests a boundary driven transformation of the chirality in the global AR magnetic structure. This may be the result of the emergence of a flux rope with positive twist around its apex while it has negative twist in its legs. The origin of such mixed helicity flux rope in the convective zone is challenging for models.

  19. Knowledge Recontextualisation in Academic Development: An Empirical Exploration of an Emerging Academic Region

    ERIC Educational Resources Information Center

    Buyl, Ernst

    2017-01-01

    As an emerging field within higher education, academic development remains fragmented, both as a field of theory and practice. In the vibrant, on-going debate about the theoretical foundations and directions of academic development as a nascent field, some relatively wide-ranging claims which have been made seem to be lacking in supporting…

  20. The Social Consequences of Natural and Man-Made Emergency: The Regional Aspect

    ERIC Educational Resources Information Center

    Abdikerova, Gulnapis; Omarova, Assem

    2016-01-01

    To investigate the causes of natural and social disasters of the extraordinary character, show the importance of preventive measures at the level of the state and public organizations, and suggest ways to improve the quality of training and emergencies is the purpose of the proposed work. With particular emphasis on the study of emergencies…

  1. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  2. Urban, Rural, and Regional Variations in Physical Activity

    ERIC Educational Resources Information Center

    Martin, Sarah Levin; Kirkner, Gregory J.; Mayo, Kelly; Matthews, Charles E.; Durstine, Larry; Hebert, James R.

    2005-01-01

    Purpose: There is some speculation about geographic differences in physical activity (PA) levels. We examined the prevalence of physical inactivity (PIA) and whether US citizens met the recommended levels of PA across the United States. In addition, the association between PIA/PA and degree of urbanization in the 4 main US regions (Northeast,…

  3. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  4. IFLA General Conference, 1987. Division of Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Six of the seven papers in this collection focus on regional library activities in Africa, Asia and Oceania, and Latin America and the Caribbean: (1) "Libraries and Information Services in a Changing World: The Challenges African Information Services Face at the End of the 1980s" (Dejen Abate, Ethiopia); (2) "The Computer and…

  5. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  6. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  7. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  8. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  9. Time of emergence of anthropogenic warming signals in the Northeast Asia assessed from multi-regional climate models

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Min, Seung-Ki; Park, Changyong; Suh, Myoung-Seok; Ahn, Joong-Bae; Cha, Dong-Hyun; Lee, Dong-Kyou; Hong, Song-You; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    Time of Emergence (ToE) is the time at which the signal of climate change emerges from the background noise of natural climate variability, and can provide useful information for climate change impacts and adaptations. This study examines future ToEs for daily maximum and minimum temperatures over the Northeast Asia using five Regional Climate Models (RCMs) simulations driven by single Global Climate Model (GCM) under two Representative Concentration Pathways (RCP) emission scenarios. Noise is defined based on the interannual variability during the present-day period (1981-2010) and warming signals in the future years (2021-2100) are compared against the noise in order to identify ToEs. Results show that ToEs of annual mean temperatures occur between 2030s and 2040s in RCMs, which essentially follow those of the driving GCM. This represents the dominant influence of GCM boundary forcing on RCM results in this region. ToEs of seasonal temperatures exhibit larger ranges from 2030s to 2090s. The seasonality of ToE is found to be determined majorly by noise amplitudes. The earliest ToE appears in autumn when the noise is smallest while the latest ToE occurs in winter when the noise is largest. The RCP4.5 scenario exhibits later emergence years than the RCP8.5 scenario by 5-35 years. The significant delay in ToEs by taking the lower emission scenario provides an important implication for climate change mitigation. Daily minimum temperatures tend to have earlier emergence than daily maximum temperature but with low confidence. It is also found that noise thresholds can strongly affect ToE years, i.e. larger noise threshold induces later emergence, indicating the importance of noise estimation in the ToE assessment.

  10. Doppler Shifts in Active Region Moss Using SOHO/SUMER

    NASA Astrophysics Data System (ADS)

    Winebarger, Amy; Tripathi, Durgesh; Mason, Helen E.; Del Zanna, Giulio

    2013-04-01

    The velocity of the plasma at the footpoint of hot loops in active region cores can be used to discriminate between different heating frequencies. Velocities on the order of a few kilometers per second would indicate low-frequency heating on sub-resolution strands, while velocities close to zero would indicate high-frequency (steady) heating. To discriminate between these two values requires accurate velocity measurements; previous velocity measurements suffer from large uncertainties, mainly due to the lack of an absolute wavelength reference scale. In this paper, we determine the velocity in the loop footpoints using observations from Solar Ultraviolet Measurements of Emitted Radiation (SUMER) on Solar and Heliospheric Observatory. We use neutral spectral lines to determine the wavelength scale of the observations with an uncertainty in the absolute velocity of <3.5 km s-1 and co-aligned Transition Region and Coronal Explorer (TRACE) images to identify footpoint regions. We studied three different active regions and found average redshifts in the Ne VIII 770 Å emission line (formed at 6 × 105 K) of 5.17 ± 5.37 km s-1 and average redshifts in the C IV 1548 and 1550 Å emission lines (formed at 1 × 105 K) of 13.94 ± 4.93 km s-1 and 14.91 ± 6.09 km s-1, respectively. We find no correlation between the brightness in the spectral line and the measured velocity, nor do we find correlation between the Ne VIII and C IV velocities measured co-spatially and co-temporally. SUMER scanned two of the active regions twice; in those active regions we find positive correlation between the co-spatial velocities measured during the first and second scans. These results provide definitive and quantitative measurements for comparisons with simulations of different coronal heating mechanisms.

  11. Relationship between the photospheric Poynting flux and the active region luminosity

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Canfield, Richard C.; Fisher, George H.; Hudson, Hugh S.; Welsch, Brian

    2014-06-01

    How does energy radiated by active regions compare with magnetic energy that propagates lower across the photosphere? This is a fundamental question for energy storage and release in active regions, yet it is presently poorly understood. In this work we quantify and compare both energy terms using SDO observations of the active region (AR) 11520. To quantify the magnetic energy crossing the photosphere, or the Poynting flux, we need to know both the magnetic field vector B and electric field vector E as well. Our current electric field inversion technique, PDFI, combines the Poloidal-Toroidal-Decomposition method with information from Doppler measurements, Fourier local correlation tracking (FLCT) results, and the ideal MHD constraint, to determine the electric field from vector magnetic field and Doppler data. We apply the PDFI method to a sequence of Helioseismic and Magnetic Imager (HMI/SDO) vector magnetogram data, to find the electric-field and hence the Poynting-flux evolution in AR 11520. We find that most of the magnetic energy in this AR is injected in the range of $10^7$ to $10^8$ $ergs/{cm^2 s}$, with the largest fluxes reaching $10^{10}$ $ergs/{cm^2 s}$. Integrating over the active region this yields a total energy of order $10^{28}$ ergs/s. To quantify the active region luminosity, we use EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA) spectrally resolved observations. We find the active region luminosity of order $10^{28}$ ergs/s. We compare derived magnetic and radiated energy fluxes on different temporal and spatial scales and estimate their uncertainties. We also discuss the roles that potential/non-potential and emerging/shearing terms play in the total magnetic energy budget.

  12. Regional, Continental, and Global Mobility to an Emerging Economy: The Case of South Africa

    ERIC Educational Resources Information Center

    Lee, Jenny J.; Sehoole, Chika

    2015-01-01

    This study examined mobility within the understudied region of southern Africa and particularly, the factors that drive and shape educational migration toward South Africa as a regional, continental, and global destination. Based on a survey administered to international students across seven South African universities, the findings revealed…

  13. Regional differences in rat conjunctival ion transport activities.

    PubMed

    Yu, Dongfang; Thelin, William R; Rogers, Troy D; Stutts, M Jackson; Randell, Scott H; Grubb, Barbara R; Boucher, Richard C

    2012-10-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na(+) transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface.

  14. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  15. The enduring role of the Emergency Medical Treatment and Active Labor Act.

    PubMed

    Rosenbaum, Sara

    2013-12-01

    The Emergency Medical Treatment and Active Labor Act (EMTALA) is a seminal law that imposes screening, stabilization, and transfer duties on all Medicare-participating hospitals that have emergency departments. More than twenty-five years after its enactment, EMTALA continues to generate controversy over the scope and depth of its obligations on issues ranging from the nature of the screening obligation and rules regarding on-call specialists to whether EMTALA's stabilization protections exclude emergency inpatients. Despite ongoing questions that flow from its detailed provisions, EMTALA is an enduring testament to society's evolving views that hospitals must provide emergency care not only to their established patients but to the broader communities they serve.

  16. Emergent literacy activities, instructional adaptations and school absence of children with cerebral palsy in special education.

    PubMed

    Peeters, Marieke; de Moor, Jan; Verhoeven, Ludo

    2011-01-01

    The goal of the present study was to get an overview of the emergent literacy activities, instructional adaptations and school absence of children with cerebral palsy (CP) compared to normally developing peers. The results showed that there were differences between the groups regarding the amount of emergent literacy instruction. While time dedicated to storybook reading and independent picture-book reading was comparable, the children with CP received fewer opportunities to work with educational software and more time was dedicated to rhyming games and singing. For the children with CP, the level of speech, intellectual, and physical impairments were all related to the amount of time in emergent literacy instruction. Additionally, the amount of time reading precursors is trained and the number of specific reading precursors that is trained is all related to skills of emergent literacy.

  17. Active sonar, beaked whales and European regional policy.

    PubMed

    Dolman, Sarah J; Evans, Peter G H; Notarbartolo-di-Sciara, Giuseppe; Frisch, Heidrun

    2011-01-01

    Various reviews, resolutions and guidance from international and regional fora have been produced in recent years that acknowledge the significance of marine noise and its potential impacts on cetaceans. Within Europe, ACCOBAMS and ASCOBANS have shown increasing attention to the issue. The literature highlights concerns surrounding the negative impacts of active sonar on beaked whales in particular, where concerns primarily relate to the use of mid-frequency active sonar (1-10kHz), as used particularly in military exercises. The authors review the efforts that European regional policies have undertaken to acknowledge and manage possible negative impacts of active sonar and how these might assist the transition from scientific research to policy implementation, including effective management and mitigation measures at a national level.

  18. Transcriptionally active genome regions are preferred targets for retrovirus integration.

    PubMed Central

    Scherdin, U; Rhodes, K; Breindl, M

    1990-01-01

    We have analyzed the transcriptional activity of cellular target sequences for Moloney murine leukemia virus integration in mouse fibroblasts. At least five of the nine random, unselected integration target sequences studied showed direct evidence for transcriptional activity by hybridization to nuclear run-on transcripts prepared from uninfected cells. At least four of the sequences contained multiple recognition sites for several restriction enzymes that cut preferentially in CpG-rich islands, indicating integration into 5' or 3' ends or flanking regions of genes. Assuming that only a minor fraction (less than 20%) of the genome is transcribed in mammalian cells, we calculated the probability that this association of retroviral integration sites with transcribed sequences is due to chance to be very low (1.6 x 10(-2]. Thus, our results strongly suggest that transcriptionally active genome regions are preferred targets for retrovirus integration. Images PMID:2296087

  19. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants.

    PubMed

    Fernandez, M E; Ledesma, B; Román, S; Bonelli, P R; Cukierman, A L

    2015-05-01

    Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ∼620 m(2)/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents.

  20. High-resolution imaging spectroscopy of two micro-pores and an arch filament system in a small emerging-flux region

    NASA Astrophysics Data System (ADS)

    González Manrique, S. J.; Bello González, N.; Denker, C.

    2017-03-01

    Context. Emerging flux regions mark the first stage in the accumulation of magnetic flux eventually leading to pores, sunspots, and (complex) active regions. These flux regions are highly dynamic, show a variety of fine structure, and in many cases live only for a short time (less than a day) before dissolving quickly into the ubiquitous quiet-Sun magnetic field. Aims: The purpose of this investigation is to characterize the temporal evolution of a minute emerging flux region, the associated photospheric and chromospheric flow fields, and the properties of the accompanying arch filament system. We aim to explore flux emergence and decay processes and investigate if they scale with structure size and magnetic flux contents. Methods: This study is based on imaging spectroscopy with the Göttingen Fabry-Pérot Interferometer at the Vacuum Tower Telescope, Observatorio del Teide, Tenerife, Spain on 2008 August 7. Photospheric horizontal proper motions were measured with Local correlation tracking using broadband images restored with multi-object multi-frame blind deconvolution. Cloud model (CM) inversions of line scans in the strong chromospheric absorption Hαλ656.28 nm line yielded CM parameters (Doppler velocity, Doppler width, optical thickness, and source function), which describe the cool plasma contained in the arch filament system. Results: The high-resolution observations cover the decay and convergence of two micro-pores with diameters of less than one arcsecond and provide decay rates for intensity and area. The photospheric horizontal flow speed is suppressed near the two micro-pores indicating that the magnetic field is already sufficiently strong to affect the convective energy transport. The micro-pores are accompanied by a small arch filament system as seen in Hα, where small-scale loops connect two regions with Hα line-core brightenings containing an emerging flux region with opposite polarities. The Doppler width, optical thickness, and source

  1. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    PubMed

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  2. Static and Dynamic Modeling of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.

    2007-09-01

    Recent hydrostatic simulations of solar active regions have shown that it is possible to reproduce both the total intensity and the general morphology of the high-temperature emission observed at soft X-ray wavelengths using static heating models. These static models, however, cannot account for the lower temperature emission. In addition, there is ample observational evidence that the solar corona is highly variable, indicating a significant role for dynamical processes in coronal heating. Because they are computationally demanding, full hydrodynamic simulations of solar active regions have not been considered previously. In this paper we make first application of an impulsive heating model to the simulation of an entire active region, AR 8156 observed on 1998 February 16. We model this region by coupling potential field extrapolations to full solutions of the time-dependent hydrodynamic loop equations. To make the problem more tractable we begin with a static heating model that reproduces the emission observed in four different Yohkoh Soft X-Ray Telescope (SXT) filters and consider impulsive heating scenarios that yield time-averaged SXT intensities that are consistent with the static case. We find that it is possible to reproduce the total observed soft X-ray emission in all of the SXT filters with a dynamical heating model, indicating that nanoflare heating is consistent with the observational properties of the high-temperature solar corona. At EUV wavelengths the simulated emission shows more coronal loops, but the agreement between the simulation and the observation is still not acceptable.

  3. Structural variations among monocot emergent and amphibious species from lakes of the semi-arid region of Bahia, Brazil.

    PubMed

    Leite, K R B; França, F; Scatena, V I

    2012-02-01

    Temporary lakes are common in the semi-arid region of the State of Bahia and form water mirrors in the rainy season. In this period, various vegetal species appear having different life forms adapted to the seasonality conditions of the rainfall regime. This work surveyed the adaptive anatomical structures of some emergent and amphibious monocot species occurring in these lakes. We studied the anatomy of roots, rhizomes, leaves and scapes of Cyperus odoratus, Oxycaryum cubense, Pycreus macrostachyos (Cyperaceae) - amphibious species; and of Echinodorus grandiflorus (Alismataceae), Eichhornia paniculata (Pontederiaceae) and Habenaria repens (Orchidaceae) - emergent species. The anatomical features of the dermal, fundamental and vascular systems confirming the tendency of the adaptive convergence of these plants to temporary lacustrine the environment include: single layered epidermal cells with a thin cuticle layer in the aerial organs; the presence of air canals in all the organs; few or no supporting tissues; and less numerous conducting elements and thinner cell walls in the xylem. The reduction of the supporting tissues, the number of stomata, which can even be absent, and the number of conducting elements and the degree of cell wall lignification in the xylem of the emergent species is more accentuated than that of the amphibious species. The pattern of distribution of aerenchyma in the roots of the studied species was considered important to distinguish between amphibious and emergent life forms.

  4. EUV analysis of an active region. [of solar corona in limb region

    NASA Technical Reports Server (NTRS)

    Raghavan, N.; Withbroe, G. L.

    1975-01-01

    A sequence of extreme-ultraviolet (EUV) spectroheliograms of McMath region No. 10283 were obtained by OSO-6. The lines O VI (1032 A) Mg X (625 A), Si XII (499 A), and Fe XVI (335 A) were used to determine coronal temperatures and densities above the active region. A comparison of theoretical and observed line ratios yielded coronal temperatures of 2.2 to 2.3 million K above the active region and 2.0 to 2.1 million K in the surrounding area. The temperatures derived from ratios involving the O VI intensities are systematically higher than the others. This is attributed to an error in the theoretical O VI intensities. The intensities observed above the limb are compared with intensities predicted by a simple model based on cylindrical geometry. The overall agreement shows that the assumption of an isothermal corona in hydrostatic equilibrium above the active region is a resonable working hypothesis and that the adopted geometrical model for the electron density distribution is adequate.

  5. The evolution and orientation of early cycle 22 active regions

    NASA Technical Reports Server (NTRS)

    Cannon, Anne T.; Marquette, William H.

    1991-01-01

    The evolution of six major active regions which appeared during the first phase of the present solar cycle (cycle 22) has been studied. It was found that the northern hemisphere regions exhibited a broad range of evolutionary behavior in which the commonly accepted 'normal pattern' (whereby the follower flux moves preferentially polewards ahead of the leader flux) is represented at one end of the range. At the other end of the range, the leader flux is displaced polewards of the follower flux. In the latter cases equatorward extensions of the polar coronal hole are noted.

  6. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  7. PATTERNS OF ACTIVITY IN A GLOBAL MODEL OF A SOLAR ACTIVE REGION

    SciTech Connect

    Bradshaw, S. J.; Viall, N. M. E-mail: Nicholeen.M.Viall@nasa.gov

    2016-04-10

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  8. Armenia as a Regional Centre for Astronomy for Development activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  9. Longitudinal Study of the Emerging Functional Connectivity Asymmetry of Primary Language Regions during Infancy.

    PubMed

    Emerson, Robert W; Gao, Wei; Lin, Weili

    2016-10-19

    Asymmetry in the form of left-hemisphere lateralization is a striking characteristic of the cerebral regions involved in the adult language network. In this study, we leverage a large sample of typically developing human infants with longitudinal resting-state functional magnetic resonance imaging scans to delineate the trajectory of interhemispheric functional asymmetry in language-related regions during the first 2 years of life. We derived the trajectory of interhemispheric functional symmetry of the inferior frontal gyrus (IFG) and superior temporal gyrus (STG), the sensory and visual cortices, and two higher-order regions within the intraparietal sulcus and dorsolateral prefrontal cortex. Longitudinal models revealed a best fit with quadratic age terms and showed significant estimated coefficients of determination for both the IFG (r(2) = 0.261, p < 0.001) and the STG (r(2) = 0.142, p < 0.001) regions while all other regions were best modeled by log-linear increases. These inverse-U-shaped functions of the language regions peaked at ∼11.5 months of age, indicating that a transition toward asymmetry began in the second year. This shift was accompanied by an increase in the functional connectivity of these regions within the left hemisphere. Finally, we detected an association between the trajectory of the IFG and language outcomes at 4 years of age (χ(2) = 10.986, p = 0.011). Our results capture the developmental timeline of the transition toward interhemispheric functional asymmetry during the first 2 years of life. More generally, our findings suggest that increasing interhemispheric functional symmetry in the first year might be a general principle of the developing brain, governing different functional systems, including those that will eventually become lateralized in adulthood.

  10. Modeling the emergence of language as an embodied collective cognitive activity.

    PubMed

    Hutchins, Edwin; Johnson, Christine M

    2009-07-01

    Two decades of attempts to model the emergence of language as a collective cognitive activity have demonstrated a number of principles that might have been part of the historical process that led to language. Several models have demonstrated the emergence of structure in a symbolic medium, but none has demonstrated the emergence of the capacity for symbolic representation. The current shift in cognitive science toward theoretical frameworks based on embodiment is already furnishing computational models with additional mechanisms relevant to the emergence of symbolic language. An analysis of embodied interaction among captive, but not human-enculturated, bonobo chimpanzees reveals a number of additional features of embodiment that are relevant to the emergence of symbolic language, but that have not yet been explored in computational simulation models; for example, complementarity of action in addition to imitation, iconic in addition to indexical gesture, coordination among multiple sensory and perceptual modalities, and the orchestration of intra- and inter-individual motor coordination. The bonobos provide an evolutionarily plausible intermediate stage in the development of symbolic expression that can inform efforts to model the emergence of symbolic language.

  11. 75 FR 48553 - Supplement to Commission Procedures During Periods of Emergency Operations Requiring Activation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission 18 CFR Part 376 Supplement to Commission Procedures During Periods of Emergency Operations Requiring Activation of Continuity of Operations Plan Issued August 5, 2010....

  12. Processes and Outcomes of Joint Activity with E-Books for Promoting Kindergarteners' Emergent Literacy

    ERIC Educational Resources Information Center

    Shamir, Adina

    2009-01-01

    This research investigated the effects of an educational electronic book (e-book) on low socioeconomic status (SES) kindergarteners' emergent literacy while focusing on the relationship between process and outcomes during joint learning. The sample (96 kindergarteners, aged five to six) was randomly assigned to experimental (e-book activation) and…

  13. Emergency Medical Services for Children: Abstracts of Active Projects FY 1995.

    ERIC Educational Resources Information Center

    National Center for Education in Maternal and Child Health, Arlington, VA.

    This publication provides abstracts of 43 active and 34 completed projects designed to improve pediatric emergency care. The projects were funded by the United States Department of Health and Human Services' Maternal and Child Health Bureau, in collaboration with the United States Department of Transportation's National Highway Traffic Safety…

  14. Emergency Medical Services for Children: Abstracts of Active Projects FY 1994.

    ERIC Educational Resources Information Center

    National Center for Education in Maternal and Child Health, Washington, DC.

    This publication provides abstracts of 32 active and 18 completed projects designed to improve pediatric emergency care. These projects are funded by the U.S. Department of Health and Human Services' Maternal and Child Health Bureau, in collaboration with the U.S. Department of Transportation's National Highway Traffic Safety Administration.…

  15. Emergency Medical Services for Children: Abstracts of Active Projects FY 1996.

    ERIC Educational Resources Information Center

    National Center for Education in Maternal and Child Health, Arlington, VA.

    This publication provides abstracts of 58 active and 42 completed projects designed to improve emergency medical services for children (EMSC). The projects were funded by the United States Department of Health and Human Services' Maternal and Child Health Bureau, in collaboration with the United States Department of Transportation's National…

  16. A New "Principal Principle" (#14) of Physical Activity Education Is Emerging

    ERIC Educational Resources Information Center

    Zeigler, Earle F.

    2011-01-01

    There is every reason to believe that a new "principal principle" of physical activity education is emerging. In this article, the author talks about the new "principal principle"(#14) of physical education. Revisiting a historical milestone in the field's history to explain the origin of the term "principal principle," Dr. Arthur H. Steinhaus,…

  17. A Comparison of Activity-Based Intervention and Embedded Direct Instruction When Teaching Emergent Literacy Skills

    ERIC Educational Resources Information Center

    Botts, Dawn C.; Losardo, Angela S.; Tillery, Christina Y.; Werts, Margaret G.

    2014-01-01

    This replication study focused on the effectiveness of two different intervention approaches, activity-based intervention and embedded direct instruction, on the acquisition, generalization, and maintenance of phonological awareness, a key area of emergent literacy, by preschool children with language delays. Five male preschool participants with…

  18. Teacher Language Scaffolds the Development of Independent Strategic Reading Activities and Metacognitive Awareness in Emergent Readers

    ERIC Educational Resources Information Center

    Lee, Polly A.; Schmitt, Maribeth Cassidy

    2014-01-01

    This study investigated the influence of teacher language related to a specific network of strategies for problem solving, self-monitoring, and self-correcting on (a) the development and use of independent strategic activities and (b) metacognitive awareness variables in emergent readers. Descriptive analyses of 120 individual lessons conducted…

  19. Federal Emergency Management Agency

    MedlinePlus

    ... Updates Emergency Management Agencies Emergency Management Institute El Niño Environmental Planning and Historic Preservation Program Exercise Fact ... Local, State, Tribal and Non-Profit Recovery Resources Region I Region II Region III Region IV Region ...

  20. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  1. Physical Properties of Cooling Plasma in Quiescent Active Region Loops

    NASA Astrophysics Data System (ADS)

    Landi, E.; Miralles, M. P.; Curdt, W.; Hara, H.

    2009-04-01

    In the present work, we use SOHO/SUMER, SOHO/UVCS, SOHO/EIT, SOHO/LASCO, STEREO/EUVI, and Hinode/EIS coordinated observations of an active region (AR 10989) at the west limb taken on 2008 April 8 to study the cooling of coronal loops. The cooling plasma is identified using the intensities of SUMER spectral lines emitted at temperatures in the 4.15 <= log T <= 5.45 range. EIS and SUMER spectral observations are used to measure the physical properties of the loops. We found that before cooling took place these loops were filled with coronal hole-like plasma, with temperatures in the 5.6 <= log T <= 5.9 range. SUMER spectra also allowed us to determine the plasma temperature, density, emission measure, element abundances, and dynamic status during the cooling process. The ability of EUVI to observe the emitting region from a different direction allowed us to measure the volume of the emitting region and estimate its emission measure. Comparison with values measured from line intensities provided us with an estimate of the filling factor. UVCS observations of the coronal emission above the active region showed no streamer structure associated with AR 10989 at position angles between 242°and 253fdg EIT, LASCO, and EUVI-A narrowband images and UVCS spectral observations were used to discriminate between different scenarios and monitor the behavior of the active region in time. The present study provides the first detailed measurements of the physical properties of cooling loops, a very important benchmark for theoretical models of loop cooling and condensation.

  2. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  3. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  4. Magnetic Flux Transport and the Long-term Evolution of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-01

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  5. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.; Hathaway, David H.

    2015-12-20

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infer the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.

  6. Regional Blood-Brain Barrier Responses to Central Cholinergic Activity

    DTIC Science & Technology

    1989-07-30

    regions were of particular interest because they show the largest decreases in glucose metabolism following limbic seizures ( Ben - Ari et al., 1981). It is...following seizures ( Ben - Ari et. al., 1981). The piriform cortex-amygdala also appears to be a generator of epileptiform activity in a variety of seizure...produced by PTZ. Such studies are ongoing and the results will be given in subsequent reports. 11 REFERENCES Ben - Ari , Y., D. Richie, E. Tremblay and G

  7. Multi-wavelength Observations of Microflares Near an Active Region

    NASA Astrophysics Data System (ADS)

    Bein, B.; Veronig, A.; Rybak, J.; Gömöry, P.; Berkebile-Stoiser, S.; Sütterlin, P.

    We study the multi-wavelength characteristics of a microflaring active region (AR 10898) near disc centre. The analysed data were from the 4^{th} of July 2006, and were recorded by DOT (Hα, Ca II H), RHESSI (X-rays), TRACE (EUV) and SOHO/MDI (magnetograms). The identified microflare events were studied with respect to their magnetic field configuration and their multi-wavelength time evolution.

  8. Magnetic field configuration in a flaring active region

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Balmaceda, L. A.; Vieira, L. E.

    2015-10-01

    The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides continuous monitoring of the Sun's vector magnetic field through full-disk photospheric data with both high cadence and high spatial resolution. Here we investigate the evolution of AR 11249 from March 6 to March 7, 2012. We make use of HMI Stokes imaging, SDO/SHARPs, the HMI magnetic field line-of-sight (LOS) maps and the transverse components of the magnetic field as well as LOS velocity maps in order to detect regions with significant flux emergence and/or cancellation. In addition, we apply the Local Correlation Tracking (LCT) technique to the total and signed magnetic flux data and derive maps of horizontal velocity. From this analysis, we were able to pinpoint localized shear regions (and a shear channel) where penumbrae and pore formation areas, with strong linear polarization signals, are stretched and squeezed, showing also important downflows and upflows. We have also utilized Hinode/SP data and compared them to the HMI-SHARPs and the HMI-Stokes spectrograms. The aforementioned shear channel seems to correspond well with the X-class flare main channel of March 7 2012, as observed in AIA/SDO 171, 304 and 1600 Å.

  9. A Survey of Nanoflare Properties in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Klimchuk, J. A.

    2013-12-01

    We investigate coronal heating using a systematic technique to analyze the properties of nanoflares in active regions (AR). Our technique computes cooling times, or time-lags, on a pixel-by-pixel basis using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique has the advantage that it allows us to analyze all of the coronal AR emission, including the so-called diffuse emission. We recently presented results using this time-lag analysis on NOAA AR 11082 (Viall & Klimchuk 2012) and found that the majority of the pixels contained cooling plasma along their line of sight, consistent with impulsive coronal nanoflare heating. Additionally, our results showed that the nanoflare energy is stronger in the AR core and weaker in the active region periphery. Are these results representative of the nanoflare properties exhibited in the majority of ARs, or is AR 11082 unique? Here we present the time-lag results for a survey of ARs and show that these nanoflare patterns are born out in other active regions, for a range of ages, magnetic complexity, and total unsigned magnetic flux. Other aspects of the nanoflare properties, however, turn out to be dependent on certain AR characteristics.

  10. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ˜ 700-1200 km s-1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ˜{10}11.5 cm-3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  11. EMERGING SCIENCE: EPA'S ORD SUPPORTS REGIONAL HAZE PROGRAM; POSTERS FROM BOSC REVIEW AND SCIENCE FORUM

    EPA Science Inventory

    A series of presentations from EPA's Board of Science Councilors review in April 2005 and the Science Forum in May 2005 are being made available to the Regional Planning Organization conference on June 9-10, 2005. Attendees will be able to review the materials during the confere...

  12. 75 FR 32855 - Safety Zone; Pierce County, WA, Department of Emergency Management, Regional Water Exercise

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... Management, Regional Water Exercise AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The... Exercise in the waters of East Passage near Browns Point. A safety zone is necessary to ensure the safety... yards of the exercise area, and restricting deep draft vessels from creating a wake near the...

  13. The Emergence of a Regional Hub: Comparing International Student Choices and Experiences in South Korea

    ERIC Educational Resources Information Center

    Jon, Jae-Eun; Lee, Jenny J.; Byun, Kiyong

    2014-01-01

    As the demand for international education increases, middle-income non-English speaking countries, such as South Korea, play an increasing role in hosting the world's students. This mixed-methods study compares the different motivations and experiences of international students within and outside the East Asian region. Based on findings, this…

  14. Regionalizing muscle activity causes changes to the magnitude and direction of the force from whole muscles—a modeling study

    PubMed Central

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M.

    2014-01-01

    Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active. PMID:25232341

  15. Regionalizing muscle activity causes changes to the magnitude and direction of the force from whole muscles-a modeling study.

    PubMed

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M

    2014-01-01

    Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active.

  16. [Nurses and burnout: a survey in an Emergency Department in the Lazio Region].

    PubMed

    Aleandri, Angela; Sansoni, Julita

    2006-01-01

    Nowadays, burnout represents a growing phenomenon in technologically advanced countries, so much so that there is now abundant literature available on this topic. The aim of our study was to assess the level of burnout in a group of 108 nurses working in an Emergency Department by means of the Maslach Burnout Inventory. This instrument is based on the concept that burnout presents 3 basic features: Emotional Exhaustion (EE), Depersonalization (DP) and Personal Achievement (PA). Results showed that a significant relationship exists between EE and DP, the working environment and the same social-demographic features, while the PA sub-scale was not found to be dependent on any of the social-demographic characteristics.

  17. The Role of the Kink Instability of a Long-Lived Active Region AR 9604

    NASA Astrophysics Data System (ADS)

    Tian, Lirong; Liu, Yang; Yang, Jing; Alexander, David

    2005-07-01

    We have traced the long-term evolution of a non-Hale active region composed of NOAA 9604 9632 9672 9704 9738, which displayed strong transient activity with associated geomagnetic effects from September to December, 2001. By studying the development of spot-group and line-of-sight magnetic field together with the evolution of Hα filaments, the EUV and X-ray corona (TRACE 171 Å, Yohkoh/SXT), we have found that the magnetic structure of the active region exhibited a continuous clockwise rotation throughout its entire life. Vector magnetic data obtained from Huairou Solar Observing Station (HSOS) and full-disk line-of-sight magnetograms from SOHO/MDI allowed the determination of the best-fit force-free parameter (proxy of twist), αbest, and the systematic tilt angle (proxy of writhe) which were both found to take positive values. Soft X-ray coronal loops from Yohkoh/SXT displayed a pronounced forward-sigmoid structure in period of NOAA 9704. These observations imply that the magnetic flux tube (loops) with the same handedness (right) of the writhe and the twist rotated clockwise in the solar atmosphere for a long time. We argue that the continuous clockwise rotation of the long-lived active region may be a manifestation that a highly right-hand twisted and kinked flux tube was emerging through the photosphere and chromosphere into the corona.

  18. A Review of Emerging Analytical Techniques for Objective Physical Activity Measurement in Humans.

    PubMed

    Clark, Cain C T; Barnes, Claire M; Stratton, Gareth; McNarry, Melitta A; Mackintosh, Kelly A; Summers, Huw D

    2017-03-01

    Physical inactivity is one of the most prevalent risk factors for non-communicable diseases in the world. A fundamental barrier to enhancing physical activity levels and decreasing sedentary behavior is limited by our understanding of associated measurement and analytical techniques. The number of analytical techniques for physical activity measurement has grown significantly, and although emerging techniques may advance analyses, little consensus is presently available and further synthesis is therefore required. The objective of this review was to identify the accuracy of emerging analytical techniques used for physical activity measurement in humans. We conducted a search of electronic databases using Web of Science, PubMed, and Google Scholar. This review included studies written in English and published between January 2010 and December 2014 that assessed physical activity using emerging analytical techniques and reported technique accuracy. A total of 2064 papers were initially retrieved from three databases. After duplicates were removed and remaining articles screened, 50 full-text articles were reviewed, resulting in the inclusion of 11 articles that met the eligibility criteria. Despite the diverse nature and the range in accuracy associated with some of the analytic techniques, the rapid development of analytics has demonstrated that more sensitive information about physical activity may be attained. However, further refinement of these techniques is needed.

  19. Holocene fire activity in the Carpathian region: regional climate vs. local controls

    NASA Astrophysics Data System (ADS)

    Florescu, Gabriela; Feurdean, Angelica

    2015-04-01

    Introduction. Fire drives significant changes in ecosystem structure and function, diversity, species evolution, biomass dynamics and atmospheric composition. Palaeodata and model-based studies have pointed towards a strong connection between fire activity, climate, vegetation and people. Nevertheless, the relative importance of these factors appears to be strongly variable and a better understanding of these factors and their interaction needs a thorough investigation over multiple spatial (local to global) and temporal (years to millennia) scales. In this respect, sedimentary charcoal, associated with other proxies of climate, vegetation and human impact, represents a powerful tool of investigating changes in past fire activity, especially in regions with scarce fire dataset such as the CE Europe. Aim. To increase the spatial and temporal coverage of charcoal records and facilitate a more critical examination of the patterns, drivers and consequences of biomass burning over multiple spatial and temporal scales in CE Europe, we have investigated 6 fossil sequences in the Carpathian region (northern Romania). These are located in different geographical settings, in terms of elevation, vegetation composition, topography and land-use. Specific questions are: i) determine trends in timing and magnitude of fire activity, as well as similarities and differences between elevations; ii) disentangle the importance of regional from local controls in fire activity; iii) evaluate ecological consequences of fire on landscape composition, structure and diversity. Methods. We first determine the recent trends in fire activity (the last 150 years) from charcoal data and compare them with instrumental records of temperature, precipitation, site history and topography for a better understanding of the relationship between sedimentary charcoal and historical fire activity. We then statistically quantify centennial to millennial trends in fire activity (frequency, magnitude) based on

  20. Model for the Coupled Evolution of Subsurface and Coronal Magnetic Fields in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.; Mackay, D. H.

    2007-04-01

    According to Babcock's theory of the solar dynamo, bipolar active regions are Ω-shaped loops emerging from a toroidal field located near the base of the convection zone. In this paper, a mean field model for the evolution of a twisted Ω-loop is developed. The model describes the coupled evolution of the magnetic field in the convection zone and the corona after the loop has fully emerged into the solar atmosphere. Such a coupled evolution is required to fully understand what happens to the coronal and subsurface fields as magnetic flux cancels at polarity inversion lines on the photosphere. The jump conditions for the magnetic field at the photosphere are derived from the magnetic stress balance between the convection zone and corona. The model reproduces the observed spreading of active region magnetic flux over the solar surface. At polarity inversion lines, magnetic flux submerges below the photosphere, but the component of magnetic field along the inversion line cannot submerge, because the field in the upper convection zone is nearly radial. Therefore, magnetic shear builds up in the corona above the inversion line, which eventually leads to a loss of equilibrium of the coronal fields and the ``lift-off'' of a coronal flux rope. Fields that submerge are transported back to the base of the convection zone, leading to the repair of the toroidal flux rope. Following Martens and Zwaan, interactions between bipoles are also considered.

  1. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  2. Density and Temperature Measurements in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  3. FORMATION OF CORONAL HOLES ON THE ASHES OF ACTIVE REGIONS

    SciTech Connect

    Karachik, Nina V.; Pevtsov, Alexei A.; Abramenko, Valentyna I. E-mail: apevtsov@nso.ed

    2010-05-10

    We investigate the formation of isolated non-polar coronal holes (CHs) on the remnants of decaying active regions (ARs) at the minimum/early ascending phase of sunspot activity. We follow the evolution of four bipolar ARs and measure several parameters of their magnetic fields including total flux, imbalance, and compactness. As regions decay, their leading and following polarities exhibit different dissipation rates: loose polarity tends to dissipate faster than compact polarity. As a consequence, we see a gradual increase in flux imbalance inside a dissipating bipolar region, and later a formation of a CH in place of more compact magnetic flux. Out of four cases studied in detail, two CHs had formed at the following polarity of the decaying bipolar AR, and two CHs had developed in place of the leading polarity field. All four CHs contain a significant fraction of magnetic field of their corresponding AR. Using potential field extrapolation, we show that the magnetic field lines of these CHs were closed on the polar CH at the North, which at the time of the events was in imbalance with the polar CH at the South. This topology suggests that the observed phenomenon may play an important role in transformation of toroidal magnetic field to poloidal field, which is a key step in transitioning from an old solar cycle to a new one. The timing of this observed transition may indicate the end of solar cycle 23 and the beginning of cycle 24.

  4. Active Region Oscillations: Results from SOHO JOP 097

    NASA Astrophysics Data System (ADS)

    O'Shea, E.; Fleck, B.; Muglach, K.; Sütterlin, P.

    2001-05-01

    We present here an analysis of data obtained in a sunspot region, using the Coronal Diagnostic Spectrometer (CDS) on SOHO. These data were obtained in the context of the Joint Observing Program (JOP) 97 which, together with CDS, included the Michelson Doppler Imaging (MDI) instrument on SOHO, the TRACE satellite and various ground based observatories, e.g. the DOT on La Palma. Using the lines of Fe XVI 335, Mg IX 368, He I 584, O III 599, Mg X 624 and O V 624 of CDS time series data were obtained in the pore and plage regions of sunspots associated with active regions AR 9166, 9166 and 9169 between September 19-29 2000. In addition to the time series datasets we also obtained 240 arcsec x 240 arcsec raster images of the sunspot regions examined. Using different time series analysis techniques we analyse the different periods of oscillation found in time series datasets and present the results here. This research is part of the European Solar Magnetometry Network supported by the EC through the TMR programme.

  5. Photometric observations of the energetics of small solar active regions

    SciTech Connect

    Lawrence, J.K.; Chapman, G.A. )

    1990-10-01

    The energetics of small solar active regions was investigated using for the analysis the photometric solar images taken from July 29 to September 6, 1984 with the San Fernando Observatory's 28-cm vacuum telescope, vacuum spectroheliograph, and dual 512 element Reticon linear diode arrays. Ten small newly formed regions were observed, whose entire sunspot evolution apparently occurred within the observed disk crossing. Seven of these showed a net energy excess of a few times 10 to the 33th ergs during this time. These results are discussed in connection with the 0.1 percent decline in solar irradiance observed by the SMM/ACRIM and Nimbus 7/ERB radiometers between 1980 and 1986. 35 refs.

  6. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  7. Influence of the Cardiac Myosin Hinge Region on Contractile Activity

    NASA Astrophysics Data System (ADS)

    Margossian, Sarkis S.; Krueger, John W.; Sellers, James R.; Cuda, Giovanni; Caulfield, James B.; Norton, Paul; Slayter, Henry S.

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the antihinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  8. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s-1) as well as modest non-thermal velocities (with an average of ˜24 km s-1 and the peak of the distribution at ˜15 km s-1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  9. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect

    Morgan, Huw; Jeska, Lauren; Leonard, Drew

    2013-06-01

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  10. Implications of Special Regions to Conducting Human Activities on Mars

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Barlow, N. G.; Beaty, D. W.; Jones, M. A.; Hipkin, V.

    2014-12-01

    A MEPAG Science Analysis Group (SAG) has undertaken an analysis of Special Regions (SR) on Mars—regions where indigenous martian life could exist or where Earth microbes, if introduced, could survive and reproduce. The SR-SAG has considered the impact of SR on future human activities on the martian surface. Human exploration requires access to in-situ resources, some of which may be found in SR. Water and oxygen for ISRU are found in the atmosphere, surface/near-surface ice, hydrated minerals, and perchlorates. Water ice is most abundant at latitudes poleward of ~60 degrees, but polar darkness, cold temperatures, and CO2 degassing present hazards to human operations in these regions. Accessible water is more limited toward the equator, though temperature and solar energy conditions become more favorable. The possible presence of liquid water in Recurring Slope Lineae and active gullies leads to their treatment as SR. Fuel for surface operations and propellants for crew ascent could be manufactured from the martian atmosphere and surface materials, but dust in the atmosphere may clog ISRU equipment and perchlorate is toxic to humans. Power may be produced from solar or nuclear energy. Reliance on solar energy limits operations to the equatorial zone where easily accessible ice resources are limited. Nuclear power allows surface operations at a range of latitudes, but waste heat could convert some non-SR into SR. Radiation shielding is necessary for long-term human operations on Mars and could be obtained by deposition of regolith or by water storage in tanks or as ice around habitats, or the use of underground habitats. SR-SAG recognizes that it will be impossible for all human-associated processes and operations to be conducted within entirely closed systems. Protocols need to be established so (1) human missions to Mars will not contaminate SR nor be contaminated by materials from them, and (2) human activities on Mars will avoid converting areas into SR.

  11. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  12. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  13. Hinode Observations of an Eruption from a Sigmoidal Active Region

    NASA Astrophysics Data System (ADS)

    Green, L. M.; Wallace, A. J.; Kliem, B.

    2012-08-01

    We analyse the evolution of a bipolar active region which produces an eruption during its decay phase. The soft X-ray arcade develops high shear over a time span of two days and transitions to sigmoidal shortly before the eruption. We propose that the continuous sigmoidal soft X-ray threads indicate that a flux rope has formed which is lying low in the solar atmosphere with a bald patch separatrix surface topology. The formation of the flux rope is driven by the photospheric evolution which is dominated by fragmentation of the main polarities, motion due to supergranular flows and cancellation at the polarity inversion line.

  14. SOI/MDI studies of active region seismology and evolution

    NASA Technical Reports Server (NTRS)

    Tarbell, Ted D.; Title, Alan; Hoeksema, J. Todd; Scherrer, Phil; Zweibel, Ellen

    1995-01-01

    The solar oscillations investigation (SOI) will study solar active regions using both helioseismic and conventional observation techniques. The Michelson Doppler imager (MDI) can perform Doppler continuum and line depth imagery and can produce longitudinal magnetograms, showing either the full disk or a high resolution field of view. A dynamics program of continuous full disk Doppler observations for two months per year, campaign programs of eight hours of continuous observation per day, and a synoptic magnetic program of about 15 full disk magnetograms per day, are planned. The scientific plans, measurements and observation programs, are described.

  15. Substrate-emitting semiconductor laser with a trapezoidal active region

    SciTech Connect

    Dikareva, N V; Nekorkin, S M; Karzanova, M V; Zvonkov, B N; Aleshkin, V Ya; Dubinov, A A; Afonenko, A A

    2014-04-28

    Semiconductor lasers with a narrow (∼2°) directional pattern in the planes both parallel and perpendicular to the p–n junction are fabricated. To achieve a low radiation divergence in the p–n junction plane, the active region in this plane was designed in the form of a trapezium. The narrow directional pattern in the plane perpendicular to the p–n junction was ensured by the use of a leaky mode, through which more than 90% of laser power was coupled out. (lasers)

  16. C IV Doppler shifts observed in active region filaments

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.

    1986-01-01

    The Doppler shift properties of 21 active region filaments were studied using C IV Dopplergram data. Most are associated with corridors of weak magnetic field that separate opposite polarity strong fields seen in photospheric magnetograms. A majority of the filaments are relatively blue shifted, although several lie very close to the dividing lines between blue and red shift. Only one filament in the samples is clearly red shifted. A new calibration procedure for Dopplergrams indicates that sizable zero point offsets are often required. The center-to-limb behavior of the resulting absolute Doppler shifts suggests that filament flows are usually quite small. It is possible that they vanish.

  17. Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes

    NASA Astrophysics Data System (ADS)

    Sandersius, S. A.; Weijer, C. J.; Newman, T. J.

    2011-08-01

    Cells and the tissues they form are not passive material bodies. Cells change their behavior in response to external biochemical and biomechanical cues. Behavioral changes, such as morphological deformation, proliferation and migration, are striking in many multicellular processes such as morphogenesis, wound healing and cancer progression. Cell-based modeling of these phenomena requires algorithms that can capture active cell behavior and their emergent tissue-level phenotypes. In this paper, we report on extensions of the subcellular element model to model active biomechanical subcellular processes. These processes lead to emergent cell and tissue level phenotypes at larger scales, including (i) adaptive shape deformations in cells responding to slow stretching, (ii) viscous flow of embryonic tissues, and (iii) streaming patterns of chemotactic cells in epithelial-like sheets. In each case, we connect our simulation results to recent experiments.

  18. Chromospheric Evolution and the Flare Activity of Super-Active Region NOAA 6555

    NASA Technical Reports Server (NTRS)

    PrasadC, Debi; Ambastha, Ashok; Srivastava, Nandita; Tripathy, Sushanta C.; Hagyard, Mona J.

    1997-01-01

    Super-active region NOAA 6555 was highly flare productive during the period March 21st - 27th, 1991 of its disk passage. We have studied its chromospheric activity using high spatial resolution H alpha filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.

  19. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia

    SciTech Connect

    Daniel, D.G.; Weinberger, D.R.; Jones, D.W.; Zigun, J.R.; Coppola, R.; Handel, S.; Bigelow, L.B.; Goldberg, T.E.; Berman, K.F.; Kleinman, J.E. )

    1991-07-01

    To explore the role of monoamines on cerebral function during specific prefrontal cognitive activation, we conducted a double-blind placebo-controlled crossover study of the effects of 0.25 mg/kg oral dextroamphetamine on regional cerebral blood flow (rCBF) as determined by 133Xe dynamic single-photon emission-computed tomography (SPECT) during performance of the Wisconsin Card Sorting Test (WCST) and a sensorimotor control task. Ten patients with chronic schizophrenia who had been stabilized for at least 6 weeks on 0.4 mg/kg haloperidol participated. Amphetamine produced a modest, nonsignificant, task-independent, global reduction in rCBF. However, the effect of amphetamine on task-dependent activation of rCBF (i.e., WCST minus control task) was striking. Whereas on placebo no significant activation of rCBF was seen during the WCST compared with the control task, on amphetamine significant activation of the left dorsolateral prefrontal cortex (DLPFC) occurred (p = 0.0006). Both the mean number of correct responses and the mean conceptual level increased (p less than 0.05) with amphetamine relative to placebo. In addition, with amphetamine, but not with placebo, a significant correlation (p = -0.71; p less than 0.05) emerged between activation of DLPFC rCBF and performance of the WCST task. These findings are consistent with animal models in which mesocortical catecholaminergic activity modulates and enhances the signal-to-noise ratio of evoked cortical activity.

  20. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  1. Behaviour of oscillations in loop structures above active regions

    NASA Astrophysics Data System (ADS)

    Kolobov, D. Y.; Kobanov, N. I.; Chelpanov, A. A.; Kochanov, A. A.; Anfinogentov, S. A.; Chupin, S. A.; Myshyakov, I. I.; Tomin, V. E.

    2015-12-01

    In this study we combine the multiwavelength ultraviolet-optical (Solar Dynamics Observatory, SDO) and radio (Nobeyama Radioheliograph, NoRH) observations to get further insight into space-frequency distribution of oscillations at different atmospheric levels of the Sun. We processed the observational data on NOAA 11711 active region and found oscillations propagating from the photospheric level through the transition region upward into the corona. The power maps of low-frequency (1-2 mHz) oscillations reproduce well the fan-like coronal structures visible in the Fe IX 171 Å line. High frequency oscillations (5-7 mHz) propagate along the vertical magnetic field lines and concentrate inside small-scale elements in the umbra and at the umbra-penumbra boundary. We investigated the dependence of the dominant oscillation frequency upon the distance from the sunspot barycentre to estimate inclination of magnetic tubes in higher levels of sunspots where it cannot be measured directly, and found that this angle is close to 40° above the umbra boundaries in the transition region.

  2. Active Region Magnetic Structure Observed in the Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Metcalf, Thomas R.

    2001-01-01

    The magnetic flux above sunspots and plage in NOAA (National Oceanic and Atmospheric Administration) Active Region 8299 has been measured in the photosphere and the chromosphere. We investigate the vertical magnetic structure above the umbrae, penumbrae and plage regions using quantitative statistical comparisons of the photospheric and chromospheric vector magnetic flux data. The results include: (1) a decrease in flux with height, (2) the direct detection of the superpenumbral canopy in the chromosphere, (3) values for dB/dz which are consistent with earlier investigations when derived from a straight difference between the two datasets but quite low when derived from the delta x B = 0 condition, (4) a monolithic structure in the umbra which extends well into the upper chromosphere with a very complex and varied structure in the penumbra and plage, as evidenced by (5) a uniform magnetic scale height in the umbrae with an abrupt jump to widely varying scale heights in the penumbral and plage regions. Further, we find (6) evidence for a very large (delta z approximately equals 3Mm) height difference between the atmospheric layers sampled in the two magnetograms, almost a factor of three larger than that implied by atmospheric models. We additionally test the apropriateness of using photospheric magnetic flux as a boundary for field-line extrapolations, and find a better agreement with observed coronal structure when the chromospheric flux is used as a boundary.

  3. Photospheric electric current and transition region brightness within an active region

    NASA Technical Reports Server (NTRS)

    Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.

    1984-01-01

    Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.

  4. Emergence of Viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity.

    PubMed

    Thompson, Tarin M; Batts, William N; Faisal, Mohamed; Bowser, Paul; Casey, James W; Phillips, Kenneth; Garver, Kyle A; Winton, James; Kurath, Gael

    2011-08-29

    Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North America. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with previously naive host populations.

  5. Emergence of viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity

    USGS Publications Warehouse

    Thompson, T.M.; Batts, W.N.; Faisal, M.; Bowser, P.; Casey, J.W.; Phillips, K.; Garver, K.A.; Winton, J.; Kurath, G.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North Ame­rica. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from ­individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with ­previously naïve host populations.

  6. Multi-Wavelength Study of Active Region Loop Dynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, D.

    2006-11-01

    Observations have revealed the existence of weak transient disturbances in extended coronal loop systems. These propagating disturbances (PDs) originate from small scale brightenings at the footpoints of the loops and propagate upward along the loops. In all cases observed, the projected propagation speed is close to, but below the expected sound speed in the loops. This suggests that the PDs could be interpreted as slow mode MHD waves. Interpreting the oscillation in terms of different wave modes and/or plasma motions always depend on the line of sight as we observe in the limb or on the center of the disk. The JOP 165 campaign will address some of these questions. MDI and TRACE photospheric and UV imaging of TRACE and SPIRIT have been acquired simultaneously with high temporal and spatial coverage along with the spectroscopic data from CDS. EIT was operated in the shutter-less mode to achieve high Cadence. Some of the off- limb active region dynamics and oscillations observed during this JOP campaign will be focused in this presentation. Plasma condensations and temporal variations in active region loops will be also addressed.

  7. Magnetic field measurements in and above a limb active region

    NASA Astrophysics Data System (ADS)

    Philip, Judge

    2013-07-01

    We analyze spectropolarimetric data of a limb active region (NOAA 11302) obtained on September 22nd 2011 using the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope (DST). Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm were obtained in three scans over a 45"x75" area. Simultaneous narrow band Ca II K and G-band intensity data were acquired with a cadence of 5s at the DST. The He I data show not only typical active region polarization signatures, but also signatures in plumes -- cool post flare loops -- which extend many Mm into the corona across the visible limb. The plumes have remarkably uniform brightness, and the plume plasma is significantly Doppler shifted as it drains from the corona. Using carefully constructed observing and calibration sequences and applying Principal Component Analysis to remove instrumental artifacts, we achieved a polarization sensitivity approaching 0.02%. With this sensitivity we attempt to diagnose the vector magnetic fields and plasma properties of chromospheric and cool coronal material in and above NOAA 11302. Inversions using various radiative transfer models in the HAZEL code are remarkably consistent with the idea that plume spectra are formed in a simple, slab-like geometry, but that the ``disk'' spectra are formed under more traditional models (Milne-Eddington). The inverted magnetic data of He I lines are compared with photospheric inversions of DST Si I and Fe I data from the Solar Dynamics Observatory.

  8. Material Supply and Magnetic Configuration of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda

    2016-11-01

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  9. Systems analysis of the installation, mounting, and activation of emergency locator transmitters in general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Hall, D. S.

    1980-01-01

    A development program was developed to design and improve the Emergency Locator Transmitter (ELT) transmitter and to improve the installation in the aircraft and its activation subsystem. There were 1135 general aviation fixed wing aircraft accident files reviewed. A detailed description of the damage to the aircraft was produced. The search aspects of these accidents were studied. As much information as possible about the ELT units in these cases was collected. The data should assist in establishing installation and mounting criteria, better design standards for activation subsystems, and requirements for the new ELT system design in the area of crashworthiness.

  10. Past Emergencies

    EPA Pesticide Factsheets

    These activities, some of national significance requiring coordination with other agencies, demonstrate the emergency response program and provide valuable experience so that EPA can better prevent, prepare for, and respond to emergencies in the future.

  11. Emergency preparedness activities during an ongoing seismic swarm: the experience of the 2011-2012 Pollino (Southern Italy) sequence

    NASA Astrophysics Data System (ADS)

    Masi, A.; Mucciarelli, M.; Chiauzzi, L.; De Costanzo, G.; Loperte, G.

    2012-04-01

    Facing natural disasters effects can be a very difficult task lacking suitable activities and tools to preventively prepare the involved community (people, authorities, professionals, …) to the expected events. Therefore, a suite of preventive actions should be carried out to mitigate natural risks, in particular working to reduce the territorial vulnerability with respect to the specific natural hazard at hand, and to increase people response capacity. In fact, building social capacity helps to increase the risk perception and the people capacity to adapt to and cope with natural hazards. Since October 2011 a seismic swarm is affecting the Pollino mountain range, Southern Italy. At present the sequence is still ongoing, with more than 500 events with M>1, at least 40 well perceived by the population and a maximum magnitude at 3.6. The area mainly affected by the seismic sequence includes 12 villages, with a total population of about 50.000 inhabitants and, according to the current seismic hazard map it has high seismicity level. Such area was hit by a magnitude Ml=5.7 event in 1998 that produced macroseismic intensity not higher that VII-VIII degree of MCS scale and caused one dead, some injured and widespread damage in at least six municipalities. During the sequence, the National Department of Civil Protection (DPC) and the Civil Protection of Basilicata Region decided to put in action some measures aimed at verifying and enhancing emergency preparedness. These actions have been carried out with a constant and fruitful collaboration among the main stakeholders involved (scientific community, local and national governmental agencies, civil protection volunteers, etc) trough the following main activities: 1. collaboration between scientific community and the local and national offices of Civil Protection especially in the relationship with local authorities (e.g. mayors, which are civil protection authorities in their municipality); 2. interaction between DPC

  12. fNIRS: An Emergent Method to Document Functional Cortical Activity during Infant Movements

    PubMed Central

    Nishiyori, Ryota

    2016-01-01

    The neural basis underlying the emergence of goal-directed actions in infants has been severely understudied, with minimal empirical evidence for hypotheses proposed. This was largely due to the technological constraints of traditional neuroimaging techniques. Recently, functional near-infrared spectroscopy (fNIRS) technology has emerged as a tool developmental scientists are finding useful to examine cortical activity, particularly in young children and infants due to its greater tolerance to movements than other neuroimaging techniques. fNIRS provides an opportunity to finally begin to examine the neural underpinnings as infants develop goal-directed actions. In this methodological paper, I will outline the utility, challenges, and outcomes of using fNIRS to measure the changes in cortical activity as infants reach for an object. I will describe the advantages and limitations of the technology, the setup I used to study primary motor cortex activity during infant reaching, and example steps in the analyses processes. I will present exemplar data to illustrate the feasibility of this technique to quantify changes in hemodynamic activity as infants move. The viability of this research method opens the door to expanding studies of the development of neural activity related to goal-directed actions in infants. I encourage others to share details of techniques used, as well, including analyticals, to help this neuroimaging technology grow as others, such as EEG and fMRI have. PMID:27148141

  13. Photonic crystal lasers using wavelength-scale embedded active region

    NASA Astrophysics Data System (ADS)

    Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya; Fujii, Takuro; Hasebe, Koichi; Kakitsuka, Takaaki

    2014-01-01

    Lasers with ultra-low operating energy are desired for use in chip-to-chip and on-chip optical interconnects. If we are to reduce the operating energy, we must reduce the active volume. Therefore, a photonic crystal (PhC) laser with a wavelength-scale cavity has attracted a lot of attention because a PhC provides a large Q-factor with a small volume. To improve this device's performance, we employ an embedded active region structure in which the wavelength-scale active region is buried with an InP PhC slab. This structure enables us to achieve effective confinement of both carriers and photons, and to improve the thermal resistance of the device. Thus, we have obtained a large external differential quantum efficiency of 55% and an output power of -10 dBm by optical pumping. For electrical pumping, we use a lateral p-i-n structure that employs Zn diffusion and Si ion implantation for p-type and n-type doping, respectively. We have achieved room-temperature continuous-wave operation with a threshold current of 7.8 µA and a maximum 3 dB bandwidth of 16.2 GHz. The results of an experimental bit error rate measurement with a 10 Gbit s-1 NRZ signal reveal the minimum operating energy for transferring a single bit of 5.5 fJ. These results show the potential of this laser to be used for very short reach interconnects. We also describe the optimal design of cavity quality (Q) factor in terms of achieving a large output power with a low operating energy using a calculation based on rate equations. When we assume an internal absorption loss of 20 cm-1, the optimized coupling Q-factor is 2000.

  14. A Revisit of Hale's and Joy's Laws of Active Regions Using SOHO MDI Obsevations

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Zhang, J.

    2011-05-01

    Hale's law of polarity defines the rule of opposite direction of two polarities of solar bipolar Active Regions in the two hemispheres. Another law, Joy's law, governs the tilt of ARs with respect to their heliographic latitudes. Both laws are essential for constraining solar dynamo models. In this study we attempt to examine these laws in great detail using a large sample of ARs. With the help of an automatic AR detection algorithm (based on morphological analysis, Zhang et. al, 2010), we have processed high resolution SOHO/MDI synoptic magnetograms over the entire solar cycle 23, we identified all active regions in a uniform and objective way and determined their physical properties, including locations, fluxes of positive and negative polarities ,as well as the direction angles of these regions. Among 1084 bipolar ARs detected, the majority of them (87%) follow Hale's polarity law, while the other 13% of ARs do not. We attribute this deviation to the complexity of AR emergence from the turbulent convection zone. Regarding the Joy's law, we find that there is only a weak positive trend between AR tilt angles and latitudes. On the other hand, the tilt angle has a broad Gaussian-like distribution, with the peak centered around zero degree, and a width of about 20 degree at half maximum. Implications of these results on solar dynamo theory will be discussed.

  15. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  16. Regional variation in myofilament length-dependent activation.

    PubMed

    Cazorla, Olivier; Lacampagne, Alain

    2011-07-01

    The Frank-Starling law is an important regulatory mechanism of the heart that links the end-diastolic volume with the systolic ejection fraction. This beat-to-beat regulation of the heart, underlined at the cellular level by higher myofilament calcium sensitivity at longer sarcomere length, is known as length-dependent activation or stretch sensitization of activation. However, the heart is structurally and functionally heterogeneous and asymmetrical. Specifically, contractile properties are not uniform within the left ventricle partly due to transmural differences in action potential waveforms and calcium homeostasis. The present review will focus on the role of the contractile machinery in the transmural contractile heterogeneity and its adaptation to changes in muscle strain. The expression of different myosin isoforms, the level of titin-based passive tension, and thin and thick sarcomeric regulatory proteins are considered to explain the regional cellular contractile properties. Finally, the importance of transmural heterogeneity of length-dependent activation and the consequences of its modification on the heart mechanics are discussed. Despite extensive research since the characterization of the Frank-Starling law, the molecular mechanisms by which strain information is transduced to the contractile machinery have not been fully determined yet.

  17. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  18. In-depth survey of sunspot and active region catalogs

    NASA Astrophysics Data System (ADS)

    Lefèvre, Laure; Clette, Frédéric; Baranyi, Tunde

    2011-08-01

    When consulting detailed photospheric catalogs for solar activity studies spanning long time intervals, solar physicists face multiple limitations in the existing catalogs: finite or fragmented time coverage, limited time overlap between catalogs and even more importantly, a mismatch in contents and conventions. In view of a study of new sunspot-based activity indices, we have conducted a comprehensive survey of existing catalogs. In a first approach, we illustrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspot groups. For this, we use the unique Debrecen Photoheliographic Data (DPD), which is already a composite of several ground observatories and SOHO data, and the USAF/Mount Wilson catalog from the Solar Optical Observing Network (SOON). We also describe our semi-interactive cross-identification method, which was needed to match the non-overlapping solar active region nomenclature, the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database collecting all available sunspot group parameters to address future solar cycle studies beyond the traditional sunspot index time series Ri.

  19. Magnetic Structure of Sites of Braiding in Hi-C Active Region

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.

  20. Emergency department syndromic surveillance providing early warning of seasonal respiratory activity in England.

    PubMed

    Hughes, H E; Morbey, R; Hughes, T C; Locker, T E; Pebody, R; Green, H K; Ellis, J; Smith, G E; Elliot, A J

    2016-04-01

    Seasonal respiratory infections place an increased burden on health services annually. We used a sentinel emergency department syndromic surveillance system to understand the factors driving respiratory attendances at emergency departments (EDs) in England. Trends in different respiratory indicators were observed to peak at different points during winter, with further variation observed in the distribution of attendances by age. Multiple linear regression analysis revealed acute respiratory infection and bronchitis/bronchiolitis ED attendances in patients aged 1-4 years were particularly sensitive indicators for increasing respiratory syncytial virus activity. Using near real-time surveillance of respiratory ED attendances may provide early warning of increased winter pressures in EDs, particularly driven by seasonal pathogens. This surveillance may provide additional intelligence about different categories of attendance, highlighting pressures in particular age groups, thereby aiding planning and preparation to respond to acute changes in EDs, and thus the health service in general.

  1. High-wavenumber Solar f-mode Strengthening Prior to Active Region Formation

    NASA Astrophysics Data System (ADS)

    Singh, Nishant K.; Raichur, Harsha; Brandenburg, Axel

    2016-12-01

    We report a systematic strengthening of the local solar surface or fundamental f-mode one to two days prior to the emergence of an active region (AR) in the same (corotating) location. Except for a possibly related increase in the kurtosis of the magnetic field, no indication can be seen in the magnetograms at that time. Our study is motivated by earlier numerical findings of Singh et al., which showed that, in the presence of a nonuniform magnetic field that is concentrated a few scale heights below the surface, the f-mode fans out in the diagnostic kω diagram at high wavenumbers. Here we explore this possibility using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and show for six isolated ARs, 11130, 11158, 11242, 11105, 11072, and 11768, that at large latitudinal wavenumbers (corresponding to horizontal scales of around 3000 {km}), the f-mode displays strengthening about two days prior to AR formation and thus provides a new precursor for AR formation. Furthermore, we study two ARs, 12051 and 11678, apart from a magnetically quiet patch lying next to AR 12529, to demonstrate the challenges in extracting such a precursor signal when a newly forming AR emerges in a patch that lies in close proximity to one or several already existing ARs, which are expected to pollute neighboring patches. We then discuss plausible procedures for extracting precursor signals from regions with crowded environments. The idea that the f-mode is perturbed days before any visible magnetic activity occurs at the surface can be important in constraining dynamo models aimed at understanding the global magnetic activity of the Sun.

  2. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants.

    PubMed

    Oliveira, Halley Caixeta; Stolf-Moreira, Renata; Martinez, Cláudia Bueno Reis; Grillo, Renato; de Jesus, Marcelo Bispo; Fraceto, Leonardo Fernandes

    2015-01-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been recently developed as a modified release system for atrazine, an herbicide that can have harmful effects in the environment. Here, the post-emergence herbicidal activity of PCL nanocapsules containing atrazine was evaluated using mustard (Brassica juncea) as target plant species model. Characterization of atrazine-loaded PCL nanocapsules by nanoparticle tracking analysis indicated a concentration of 7.5 x 10(12) particles mL(-1) and an average size distribution of 240.7 nm. The treatment of mustard plants with nanocapsules carrying atrazine at 1 mg mL(-1) resulted in a decrease of net photosynthesis and PSII maximum quantum yield, and an increase of leaf lipid peroxidation, leading to shoot growth inhibition and the development of severe symptoms. Time course analysis until 72 h after treatments showed that nanoencapsulation of atrazine enhanced the herbicidal activity in comparison with a commercial atrazine formulation. In contrast to the commercial formulation, ten-fold dilution of the atrazine-containing nanocapsules did not compromise the herbicidal activity. No effects were observed when plants were treated with nanocapsules without herbicide compared to control leaves sprayed with water. Overall, these results demonstrated that atrazine-containing PCL nanocapsules provide very effective post-emergence herbicidal activity. More importantly, the use of nanoencapsulated atrazine enables the application of lower dosages of the herbicide, without any loss of efficiency, which could provide environmental benefits.

  3. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants

    PubMed Central

    Oliveira, Halley Caixeta; Stolf-Moreira, Renata; Martinez, Cláudia Bueno Reis; Grillo, Renato; de Jesus, Marcelo Bispo; Fraceto, Leonardo Fernandes

    2015-01-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been recently developed as a modified release system for atrazine, an herbicide that can have harmful effects in the environment. Here, the post-emergence herbicidal activity of PCL nanocapsules containing atrazine was evaluated using mustard (Brassica juncea) as target plant species model. Characterization of atrazine-loaded PCL nanocapsules by nanoparticle tracking analysis indicated a concentration of 7.5 x 1012 particles mL-1 and an average size distribution of 240.7 nm. The treatment of mustard plants with nanocapsules carrying atrazine at 1 mg mL-1 resulted in a decrease of net photosynthesis and PSII maximum quantum yield, and an increase of leaf lipid peroxidation, leading to shoot growth inhibition and the development of severe symptoms. Time course analysis until 72 h after treatments showed that nanoencapsulation of atrazine enhanced the herbicidal activity in comparison with a commercial atrazine formulation. In contrast to the commercial formulation, ten-fold dilution of the atrazine-containing nanocapsules did not compromise the herbicidal activity. No effects were observed when plants were treated with nanocapsules without herbicide compared to control leaves sprayed with water. Overall, these results demonstrated that atrazine-containing PCL nanocapsules provide very effective post-emergence herbicidal activity. More importantly, the use of nanoencapsulated atrazine enables the application of lower dosages of the herbicide, without any loss of efficiency, which could provide environmental benefits. PMID:26186597

  4. Emergence of long-range correlations and bursty activity patterns in online communication

    NASA Astrophysics Data System (ADS)

    Panzarasa, Pietro; Bonaventura, Moreno

    2015-12-01

    Research has suggested that the activity occurring in a variety of social, economic, and technological systems exhibits long-range fluctuations in time. Pronounced levels of rapidly occurring events are typically observed over short periods of time, followed by long periods of inactivity. Relatively few studies, however, have shed light on the degree to which inhomogeneous temporal processes can be detected at, and emerge from, different levels of analysis. Here we investigate patterns of human activity within an online forum in which communication can be assessed at three intertwined levels: the micro level of the individual users; the meso level of discussion groups and continuous sessions; and the macro level of the whole system. To uncover the relation between different levels, we conduct a number of numerical simulations of a zero-crossing model in which users' behavior is constrained by progressively richer and more realistic rules of social interaction. Results indicate that, when users are solipsistic, their bursty behavior is not sufficient for generating heavy-tailed interevent time distributions at a higher level. However, when users are socially interdependent, the power spectra and interevent time distributions of the simulated and real forums are remarkably similar at all levels of analysis. Social interaction is responsible for the aggregation of multiple bursty activities at the micro level into an emergent bursty activity pattern at a higher level. We discuss the implications of the findings for an emergentist account of burstiness in complex systems.

  5. Personnel exposure to violence in hospital emergency wards: a routine activity approach.

    PubMed

    Landau, Simha F; Bendalak, Yehudit

    2008-01-01

    This study analyzes violence against personnel in the emergency wards of all 25 general hospitals in Israel using a self-report questionnaire (N=2,356). Informed by the routine activity theory, the hypotheses related to the major concepts of this approach: exposure, target suitability, guarding and proximity to offenders. A General Exposure to Violence Index (GEVI) was constructed, based on the participants' reports about type and frequency of their victimization to violence during the preceding year. The multiple regression analysis for explaining the GEVI was composed of 15 independent variables relating to participants' professional and personal characteristics as well as to structural features of hospitals. As predicted, higher exposure to violence was related to security or nursing staff and positions of authority; high weekly workload; working in a profession other than that of training; inability of coping with verbal violence; having no access to an emergency button, and working in settings restricting the number of accompanying persons to one only. Unexpectedly, previous training in coping with violence was related to higher victimization. Younger age, male gender and being of European/American origin (mainly from the former Soviet Union) was also related to higher risk of victimization. The results support the utility of the routine activities approach in explaining differences in emergency ward personnel victimization. The findings also indicate, however, the need to add domain-specific contextual analyses to this approach to reach a fuller understanding of the behaviors under discussion. Implications of the finding to coping with violence against emergency ward personnel are discussed, and suggestions are put forward for further study in this field.

  6. State Emergency Response and Field Observation Activities in California (USA) during the March 11, 2011, Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Miller, K. M.; Wilson, R. I.; Goltz, J.; Fenton, J.; Long, K.; Dengler, L.; Rosinski, A.; California Tsunami Program

    2011-12-01

    This poster will present an overview of successes and challenges observed by the authors during this major tsunami response event. The Tohoku, Japan tsunami was the most costly to affect California since the 1964 Alaskan earthquake and ensuing tsunami. The Tohoku tsunami caused at least $50 million in damage to public facilities in harbors and marinas along the coast of California, and resulted in one fatality. It was generated by a magnitude 9.0 earthquake which occurred at 9:46PM PST on Thursday, March 10, 2011 in the sea off northern Japan. The tsunami was recorded at tide gages monitored by the West Coast/Alaska Tsunami Warning Center (WCATWC), which projected tsunami surges would reach California in approximately 10 hours. At 12:51AM on March 11, 2011, based on forecasted tsunami amplitudes, the WCATWC placed the California coast north of Point Conception (Santa Barbara County) in a Tsunami Warning, and the coast south of Point Conception to the Mexican border in a Tsunami Advisory. The California Emergency Management Agency (CalEMA) activated two Regional Emergency Operation Centers (REOCs) and the State Operation Center (SOC). The California Geological Survey (CGS) deployed a field team which collected data before, during and after the event through an information clearinghouse. Conference calls were conducted hourly between the WCATWC and State Warning Center, as well as with emergency managers in the 20 coastal counties. Coordination focused on local response measures, public information messaging, assistance needs, evacuations, emergency shelters, damage, and recovery issues. In the early morning hours, some communities in low lying areas recommended evacuation for their citizens, and the fishing fleet at Crescent City evacuated to sea. The greatest damage occurred in the harbors of Crescent City and Santa Cruz. As with any emergency, there were lessons learned and important successes in managing this event. Forecasts by the WCATWC were highly accurate

  7. CONFINED FLARES IN SOLAR ACTIVE REGION 12192 FROM 2014 OCTOBER 18 TO 29

    SciTech Connect

    Chen, Huadong; Zhang, Jun; Yang, Shuhong; Li, Leping; Huang, Xin; Xiao, Junmin; Ma, Suli

    2015-07-20

    Using the observations from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory, we investigate 6 X-class and 29 M-class flares occurring in solar active region (AR) 12192 from October 18 to 29. Among them, 30 (including 6 X- and 24 M-class) flares originated from the AR core, and the other 5 M-flares appeared at the AR periphery. Four of the X-flares exhibited similar flaring structures, indicating they were homologous flares with an analogous triggering mechanism. The possible scenario is that photospheric motions of emerged magnetic fluxes lead to shearing of the associated coronal magnetic field, which then yields a tether-cutting favorable configuration. Among the five periphery M-flares, four were associated with jet activities. The HMI vertical magnetic field data show that the photospheric fluxes of opposite magnetic polarities emerged, converged, and canceled with each other at the footpoints of the jets before the flares. Only one M-flare from the AR periphery was followed by a coronal mass ejection (CME). From October 20 to 26, the mean decay index of the horizontal background field within the height range of 40–105 Mm is below the typical threshold for torus instability onset. This suggests that a strong confinement from the overlying magnetic field might be responsible for the poor CME production of AR 12192.

  8. On the modified active region design of interband cascade lasers

    SciTech Connect

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J.; Weih, R.; Dallner, M.; Kamp, M.; Höfling, S.

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  9. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  10. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    SciTech Connect

    Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.; Krucker, S.; Welsch, B. T.; Fisher, G. H.; Primavera, L.; Servidio, S.; Lepreti, F.; Carbone, V.; Vecchio, A.

    2015-03-01

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  11. A Method for Measuring Active Region Filling Factors on Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark Steven; Andretta, Vincenzo; Beeck, Benjamin; Reiners, Ansgar; Schussler, Manfred

    2015-04-01

    Radiative diagnostics of “activity” in the Sun and solar-type stars are spatially associated with sites of emergent magnetic flux. The magnetic fields themselves are widely regarded as the surface manifestations of a dynamo mechanism. The further development of both dynamo theory and models of the non-radiative heating of outer stellar atmospheres requires a knowledge of stellar magnetic field properties. In this context, it becomes important to determine the surface distribution, or at least the fractional coverage of, magnetic active regions as one critical constraint for dynamo models. But, while information on the spatial distribution of activity on stellar surfaces can be gathered in some special cases (mostly rapid rotators), such measurements have always been elusive in more solar-like stars. We discuss the challenges and results obtained from a method that relies on the non-linear response of the two principal He I triplet lines (at 1083 nm and 587.6 nm) to infer useful constraints on the fractional area coverage of magnetic active regions on solar-type stars.

  12. Focused ultrasound modulates region-specific brain activity

    PubMed Central

    Yoo, Seung-Schik; Bystritsky, Alexander; Lee, Jong-Hwan; Zhang, Yongzhi; Fischer, Krisztina; Min, Byoung-Kyong; McDannold, Nathan J.; Pascual-Leone, Alvaro; Jolesz, Ferenc A.

    2012-01-01

    We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. PMID:21354315

  13. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  14. The transcriptionally active regions in the genome of Bacillus subtilis

    PubMed Central

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome-wide expression during mid-exponential growth on rich (LB) and minimal (M9) medium. The identified TARs account for 77.3% of the genes as they are currently annotated and additionally we find 84 putative non-coding RNAs (ncRNAs) and 127 antisense transcripts. One ncRNA, ncr22, is predicted to act as a translational control on cstA and an antisense transcript was observed opposite the housekeeping sigma factor sigA. Through this work we have discovered a long conserved 3′ untranslated region (UTR) in a group of membrane-associated genes that is predicted to fold into a large and highly stable secondary structure. One of the genes having this tail is efeN, which encodes a target of the twin-arginine translocase (Tat) protein translocation system. PMID:19682248

  15. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  16. DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry.

    PubMed

    Zmora, Pawel; Blazejewska, Paulina; Moldenhauer, Anna-Sophie; Welsch, Kathrin; Nehlmeier, Inga; Wu, Qingyu; Schneider, Heike; Pöhlmann, Stefan; Bertram, Stephanie

    2014-10-01

    The type II transmembrane serine protease (TTSP) TMPRSS2 cleaves and activates the influenza virus and coronavirus surface proteins. Expression of TMPRSS2 is essential for the spread and pathogenesis of H1N1 influenza viruses in mice. In contrast, H3N2 viruses are less dependent on TMPRSS2 for viral amplification, suggesting that these viruses might employ other TTSPs for their activation. Here, we analyzed TTSPs, reported to be expressed in the respiratory system, for the ability to activate influenza viruses and coronaviruses. We found that MSPL and, to a lesser degree, DESC1 are expressed in human lung tissue and cleave and activate the spike proteins of the Middle East respiratory syndrome and severe acute respiratory syndrome coronaviruses for cell-cell and virus-cell fusion. In addition, we show that these proteases support the spread of all influenza virus subtypes previously pandemic in humans. In sum, we identified two host cell proteases that could promote the amplification of influenza viruses and emerging coronaviruses in humans and might constitute targets for antiviral intervention. Importance: Activation of influenza viruses by host cell proteases is essential for viral infectivity and the enzymes responsible are potential targets for antiviral intervention. The present study demonstrates that two cellular serine proteases, DESC1 and MSPL, activate influenza viruses and emerging coronaviruses in cell culture and, because of their expression in human lung tissue, might promote viral spread in the infected host. Antiviral strategies aiming to prevent viral activation might thus need to encompass inhibitors targeting MSPL and DESC1.

  17. Emergent ultra–long-range interactions between active particles in hybrid active–inactive systems

    PubMed Central

    Steimel, Joshua P.; Aragones, Juan L.; Hu, Helen; Qureshi, Naser; Alexander-Katz, Alfredo

    2016-01-01

    Particle–particle interactions determine the state of a system. Control over the range of such interactions as well as their magnitude has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Very recently, effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our systems are 2D colloidal monolayers composed primarily of passive (inactive) colloids, and a very small fraction of active (spinning) ferromagnetic colloids. We find an emergent ultra–long-range attractive interaction induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation timescale below which no attraction is observed. Overall, these results clearly show that, in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials. PMID:27071096

  18. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    SciTech Connect

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-11-20

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  19. Alcohol and injuries resulting from violence: a comparison of emergency room samples from two regions of the U.S.

    PubMed

    Cherpitel, C J

    1997-01-01

    Data on representative samples of emergency room patients from a wet region of the U.S. (Contra Costa County, California) and a dry region (Jackson, Mississippi) were analyzed to explore the influence of drinking patterns, rates of abstinence, and per capita consumption with respect to alcohol's role in injuries involving violence. In both samples those with violence-related injuries were more likely to have a positive breathalyzer reading, to report drinking within six hours prior to the event and to report drunkenness and alcohol-related problems compared to those with other injuries. A larger proportion of those with violence-related injuries in the Jackson sample reported consuming more drinks prior to injury and a shorter time lapse between drinking and the event than those in Contra Costa. They were no more likely, however, to report feeling drunk at the time or to attribute a causal association between drinking and the event. The data suggest there may be a closer association of alcohol with violence in the Jackson sample compared to Contra Costa.

  20. Active geodynamics of the Marmara Sea region: How to combine all geophysical observations?

    NASA Astrophysics Data System (ADS)

    Karabulut, Hayrullah; Schmittbuhl, Jean; Lengliné, Olivier; Bouchon, Michel

    2016-04-01

    The Marmara Sea region is presently hosting a major seismic gap along the North Anatolian Fault (NAF). The region is located at the western termination of a unique sequence of large earthquakes initiated by the 1939 Mw 7.9 Erzincan earthquake and propagated westwards over 1000 km. Understanding the active geodynamics of the Marmara region is essential to assess the seismic behaviour of the Main Marmara Fault (MMF) and its related structures. We therefore have taken an initiative to give a comprehensive view of the regional lithosphere and the geomechanical response of the fault trying to combine all important geophysical observations. Using the broadband seismic data acquired between 2007-2015, we computed crustal seismic velocity distribution (from ambient noise tomography), crustal thickness map (from receiver function analysis) and uppermost mantle velocity distribution (from Pn tomography). The vast amount of data provides a good spatial coverage of the region and high resolution of images. Along the Main Marmara Fault (MMF), we present the seismicity below the Marmara Sea for the period the 2006-2015 to provide insights on the seismic response of the fault. The analysis shows that the seismic behaviour is varying along the fault. In addition, long term repeating earthquakes are searched along the MMF and found in the western part of the MMF. In the light of accurate and extensive observations, several open questions emerge from this compilation: Is the cumulated seismic moment released by the repeaters comparable to tectonic rate of the fault in the region? Are there any correlations between the rheology of the crust and the seismic response of the fault? Is there an influence of the fault asymmetry on the fault rupture?

  1. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  2. Long-Period ULF Wave Activity in the Cusp Region

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Belakhovsky, V.; Engebretson, M. J.; Kozlovsky, A.

    2013-12-01

    We compare simultaneous observations of long-period ULF wave activity from the Svalbard/IMAGE and Greenland fluxgate magnetometer profiles covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL) and narrow-band Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of the return signal of the SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, and augmented whenever possible by DMSP identification of magnetospheric boundary domains. The meridional spatial structure of IPCL/Pc5 pulsation spectral power has been found to have a localized latitudinal peak, but not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. Possible mechanisms and their relevance to observational data are discussed. The occurrence of IPCL and Pc5 waves in the dayside boundary layers is a challenge to modelers, because so far their mechanism has not been firmly identified.

  3. E region electric field dependence of the solar activity

    NASA Astrophysics Data System (ADS)

    Denardini, C. M.; Moro, J.; Resende, L. C. A.; Chen, S. S.; Schuch, N. J.; Costa, J. E. R.

    2015-10-01

    We have being studying the zonal and vertical E region electric field components inferred from the Doppler shifts of type 2 echoes (gradient drift irregularities) detected with the 50 MHz backscatter coherent radar set at São Luis, Brazil (SLZ, 2.3°S, 44.2°W) during the solar cycle 24. In this report we present the dependence of the vertical and zonal components of this electric field with the solar activity, based on the solar flux F10.7. For this study we consider the geomagnetically quiet days only (Kp ≤ 3+). A magnetic field-aligned-integrated conductivity model was developed for proving the conductivities, using the IRI-2007, the MISIS-2000, and the IGRF-11 models as input parameters for ionosphere, neutral atmosphere, and Earth magnetic field, respectively. The ion-neutron collision frequencies of all the species are combined through the momentum transfer collision frequency equation. The mean zonal component of the electric field, which normally ranged from 0.19 to 0.35 mV/m between the 8 and 18 h (LT) in the Brazilian sector, show a small dependency with the solar activity. Whereas the mean vertical component of the electric field, which normally ranges from 4.65 to 10.12 mV/m, highlights the more pronounced dependency of the solar flux.

  4. Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses

    PubMed Central

    Sali, Tina M.; Pryke, Kara M.; Abraham, Jinu; Liu, Andrew; Archer, Iris; Broeckel, Rebecca; Staverosky, Julia A.; Smith, Jessica L.; Al-Shammari, Ahmed; Amsler, Lisi; Sheridan, Kayla; Nilsen, Aaron; Streblow, Daniel N.; DeFilippis, Victor R.

    2015-01-01

    Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses. PMID:26646986

  5. Model-Informed Risk Assessment and Decision Making for an Emerging Infectious Disease in the Asia-Pacific Region

    PubMed Central

    Moss, Robert; Hickson, Roslyn I.; McVernon, Jodie; McCaw, James M.; Hort, Krishna; Black, Jim; Madden, John R.; Tran, Nhi H.; McBryde, Emma S.

    2016-01-01

    Background Effective response to emerging infectious disease (EID) threats relies on health care systems that can detect and contain localised outbreaks before they reach a national or international scale. The Asia-Pacific region contains low and middle income countries in which the risk of EID outbreaks is elevated and whose health care systems may require international support to effectively detect and respond to such events. The absence of comprehensive data on populations, health care systems and disease characteristics in this region makes risk assessment and decisions about the provision of such support challenging. Methodology/principal findings We describe a mathematical modelling framework that can inform this process by integrating available data sources, systematically explore the effects of uncertainty, and provide estimates of outbreak risk under a range of intervention scenarios. We illustrate the use of this framework in the context of a potential importation of Ebola Virus Disease into the Asia-Pacific region. Results suggest that, across a wide range of plausible scenarios, preemptive interventions supporting the timely detection of early cases provide substantially greater reductions in the probability of large outbreaks than interventions that support health care system capacity after an outbreak has commenced. Conclusions/significance Our study demonstrates how, in the presence of substantial uncertainty about health care system infrastructure and other relevant aspects of disease control, mathematical models can be used to assess the constraints that limited resources place upon the ability of local health care systems to detect and respond to EID outbreaks in a timely and effective fashion. Our framework can help evaluate the relative impact of these constraints to identify resourcing priorities for health care system support, in order to inform principled and quantifiable decision making. PMID:27661978

  6. Evi1 regulates Notch activation to induce zebrafish hematopoietic stem cell emergence.

    PubMed

    Konantz, Martina; Alghisi, Elisa; Müller, Joëlle S; Lenard, Anna; Esain, Virginie; Carroll, Kelli J; Kanz, Lothar; North, Trista E; Lengerke, Claudia

    2016-11-02

    During development, hematopoietic stem cells (HSCs) emerge from aortic endothelial cells (ECs) through an intermediate stage called hemogenic endothelium by a process known as endothelial-to-hematopoietic transition (EHT). While Notch signaling, including its upstream regulator Vegf, is known to regulate this process, the precise molecular control and temporal specificity of Notch activity remain unclear. Here, we identify the zebrafish transcriptional regulator evi1 as critically required for Notch-mediated EHT In vivo live imaging studies indicate that evi1 suppression impairs EC progression to hematopoietic fate and therefore HSC emergence. evi1 is expressed in ECs and induces these effects cell autonomously by activating Notch via pAKT Global or endothelial-specific induction of notch, vegf, or pAKT can restore endothelial Notch and HSC formations in evi1 morphants. Significantly, evi1 overexpression induces Notch independently of Vegf and rescues HSC numbers in embryos treated with a Vegf inhibitor. In sum, our results unravel evi1-pAKT as a novel molecular pathway that, in conjunction with the shh-vegf axis, is essential for activation of Notch signaling in VDA endothelial cells and their subsequent conversion to HSCs.

  7. Surface extra-vehicular activity emergency scenario management: Tools, procedures, and geologically related implications

    NASA Astrophysics Data System (ADS)

    Zea, Luis; Diaz, Alejandro R.; Shepherd, Charles K.; Kumar, Ranganathan

    2010-07-01

    Extra-vehicular activities (EVAs) are an essential part of human space exploration, but involve inherently dangerous procedures which can put crew safety at risk during a space mission. To help mitigate this risk, astronauts' training programs spend substantial attention on preparing for surface EVA emergency scenarios. With the help of two Mars Desert Research Station (MDRS) crews (61 and 65), wearing simulated spacesuits, the most important of these emergency scenarios were examined at three different types of locations that geologically and environmentally resemble lunar and Martian landscapes. These three platforms were analyzed geologically as well as topographically (utilizing a laser range finder with slope estimation capabilities and a slope determination software). Emergency scenarios were separated into four main groups: (1) suit issues, (2) general physiological, (3) attacks and (4) others. Specific tools and procedures were developed to address each scenario. The tools and processes were tested in the field under Mars-analog conditions with the suited subjects for feasibility and speed of execution.

  8. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What rapid response activities are required before a national emergency grant application is submitted? 671.160 Section 671.160 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) NATIONAL EMERGENCY GRANTS...

  9. Contextualizing Solar Cycle 24: Report on the Development of a Homogenous Database of Bipolar Active Regions Spanning Four Cycles

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, A.; Werginz, Z. A.; DeLuca, M. D.; Vargas-Acosta, J. P.; Longcope, D. W.; Harvey, J. W.; Martens, P.; Zhang, J.; Vargas-Dominguez, S.; DeForest, C. E.; Lamb, D. A.

    2015-12-01

    The solar cycle can be understood as a process that alternates the large-scale magnetic field of the Sun between poloidal and toroidal configurations. Although the process that transitions the solar cycle between toroidal and poloidal phases is still not fully understood, theoretical studies, and observational evidence, suggest that this process is driven by the emergence and decay of bipolar magnetic regions (BMRs) at the photosphere. Furthermore, the emergence of BMRs at the photosphere is the main driver behind solar variability and solar activity in general; making the study of their properties doubly important for heliospheric physics. However, in spite of their critical role, there is still no unified catalog of BMRs spanning multiple instruments and covering the entire period of systematic measurement of the solar magnetic field (i.e. 1975 to present).In this presentation we discuss an ongoing project to address this deficiency by applying our Bipolar Active Region Detection (BARD) code on full disk magnetograms measured by the 512 (1975-1993) and SPMG (1992-2003) instruments at the Kitt Peak Vacuum Telescope (KPVT), SOHO/MDI (1996-2011) and SDO/HMI (2010-present). First we will discuss the results of our revitalization of 512 and SPMG KPVT data, then we will discuss how our BARD code operates, and finally report the results of our cross-callibration.The corrected and improved KPVT magnetograms will be made available through the National Solar Observatory (NSO) and Virtual Solar Observatory (VSO), including updated synoptic maps produced by running the corrected KPVT magnetograms though the SOLIS pipeline. The homogeneous active region database will be made public by the end of 2017 once it has reached a satisfactory level of quality and maturity. The Figure shows all bipolar active regions present in our database (as of Aug 2015) colored according to the sign of their leading polarity. Marker size is indicative of the total active region flux. Anti

  10. Building a foundation for 'One Health': an education strategy for enhancing and sustaining national and regional capacity in endemic and emerging zoonotic disease management.

    PubMed

    Vink, W D; McKenzie, Joanna S; Cogger, Naomi; Borman, Barry; Muellner, Petra

    2013-01-01

    The rapid global spread of diseases such as SARS, H5N1, and H1N1 influenza has emphasized the pressing need for trans-disciplinary collaboration and cross-border action, and has also exposed a serious deficit of capacity and coordination in dealing effectively with emerging disease threats. The need for capacity development is particularly acute in the developing world, which is the least well-equipped to respond adequately. Such capacity development can be achieved through education and the implementation of applied 'One Health' activities. This chapter describes the establishment of a 'One Health' capacity development program in South Asia, consisting of two phases. The first phase provides Masters level training for public health doctors and veterinarians, with a focus on epidemiology, and disease control. The second phase reinforces the postgraduate training by establishing a sustainable framework for the implementation of collaborative 'One Health' activities such as the development of multidisciplinary professional networks, implementation of applied zoonotic disease investigation projects, and support for continuing professional development. The objectives are to provide individual skills required to strengthen capacity; to develop an appreciation of the cross-cutting issues which affect human and animal health, set within an institutional context; and to facilitate the development of regional professional networks which will be instrumental in implementing 'One Health' activities.

  11. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. III - NOAA active region 6233 (1990 August)

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.

    1993-01-01

    We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.

  12. Heart failure in patients presenting with dyspnoea to the emergency department in the Asia Pacific region: an observational study

    PubMed Central

    Kelly, Anne-Maree; Cullen, Louise; Klim, Sharon; Craig, Simon; Kuan, Win Sen; Jones, Peter; Holdgate, Anna; Lawoko, Charles; Laribi, Said

    2017-01-01

    Objectives To describe demographic features, assessment, management and outcomes of patients who were diagnosed with heart failure after presenting to an emergency department (ED) with a principal symptom of dyspnoea. Design Planned substudy of the prospective, descriptive cohort study: Asia, Australia and New Zealand Dyspnoea in Emergency Departments (AANZDEM). Setting 46 EDs in Australia, New Zealand, Singapore, Hong Kong and Malaysia collected data over 3 72-hour periods in May, August and October 2014. Participants Patients with an ED diagnosis of heart failure. Outcome measures Outcomes included patient epidemiology, investigations ordered, treatment modalities used and patient outcomes (hospital length of stay (LOS) and mortality). Results 455 (14.9%) of the 3044 patients had an ED diagnosis of heart failure. Median age was 79 years, half were male and 62% arrived via ambulance. 392 (86%) patients were admitted to hospital. ED diagnosis was concordant with hospital discharge diagnosis in 81% of cases. Median hospital LOS was 6 days (IQR 4–9) and in-hospital mortality was 5.1%. Natriuretic peptide levels were ordered in 19%, with lung ultrasound (<1%) and echocardiography (2%) uncommonly performed. Treatment modalities included non-invasive ventilation (12%), diuretics (73%), nitrates (25%), antibiotics (16%), inhaled β-agonists (13%) and corticosteroids (6%). Conclusions In the Asia Pacific region, heart failure is a common diagnosis among patients presenting to the ED with a principal symptom of dyspnoea. Admission rates were high and ED diagnostic accuracy was good. Despite the seemingly suboptimal adherence to investigation and treatment guidelines, patient outcomes were favourable compared with other registries. PMID:28246137

  13. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  14. The dynamic evolution of active-region-scale magnetic flux tubes in the turbulent solar convective envelope

    NASA Astrophysics Data System (ADS)

    Weber, Maria Ann

    2014-12-01

    The Sun exhibits cyclic properties of its large-scale magnetic field on the order of sigma22 years, with a ˜11 year frequency of sunspot occurrence. These sunspots, or active regions, are the centers of magnetically driven phenomena such as flares and coronal mass ejections. Volatile solar magnetic events directed toward the Earth pose a threat to human activities and our increasingly technological society. As such, the origin and nature of solar magnetic flux emergence is a topic of global concern. Sunspots are observable manifestations of solar magnetic fields, thus providing a photospheric link to the deep-seated dynamo mechanism. However, the manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. The convective velocity field interacts with the flux tube through the drag force it experiences as it traverses through the convecting medium. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective

  15. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    SciTech Connect

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  16. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase

    NASA Astrophysics Data System (ADS)

    Obexer, Richard; Godina, Alexei; Garrabou, Xavier; Mittl, Peer R. E.; Baker, David; Griffiths, Andrew D.; Hilvert, Donald

    2017-01-01

    Designing catalysts that achieve the rates and selectivities of natural enzymes is a long-standing goal in protein chemistry. Here, we show that an ultrahigh-throughput droplet-based microfluidic screening platform can be used to improve a previously optimized artificial aldolase by an additional factor of 30 to give a >109 rate enhancement that rivals the efficiency of class I aldolases. The resulting enzyme catalyses a reversible aldol reaction with high stereoselectivity and tolerates a broad range of substrates. Biochemical and structural studies show that catalysis depends on a Lys-Tyr-Asn-Tyr tetrad that emerged adjacent to a computationally designed hydrophobic pocket during directed evolution. This constellation of residues is poised to activate the substrate by Schiff base formation, promote mechanistically important proton transfers and stabilize multiple transition states along a complex reaction coordinate. The emergence of such a sophisticated catalytic centre shows that there is nothing magical about the catalytic activities or mechanisms of naturally occurring enzymes, or the evolutionary process that gave rise to them.

  17. CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning

    PubMed Central

    Modi, Mehrab N; Dhawale, Ashesh K; Bhalla, Upinder S

    2014-01-01

    Animals can learn causal relationships between pairs of stimuli separated in time and this ability depends on the hippocampus. Such learning is believed to emerge from alterations in network connectivity, but large-scale connectivity is difficult to measure directly, especially during learning. Here, we show that area CA1 cells converge to time-locked firing sequences that bridge the two stimuli paired during training, and this phenomenon is coupled to a reorganization of network correlations. Using two-photon calcium imaging of mouse hippocampal neurons we find that co-time-tuned neurons exhibit enhanced spontaneous activity correlations that increase just prior to learning. While time-tuned cells are not spatially organized, spontaneously correlated cells do fall into distinct spatial clusters that change as a result of learning. We propose that the spatial re-organization of correlation clusters reflects global network connectivity changes that are responsible for the emergence of the sequentially-timed activity of cell-groups underlying the learned behavior. DOI: http://dx.doi.org/10.7554/eLife.01982.001 PMID:24668171

  18. Contingency planning and emergency response in construction activities: Training the construction worker

    SciTech Connect

    Jones, E.

    1987-01-01

    Construction activities have the potential for environmental and/or health impacts at Oak Ridge National Laboratory (ORNL) particularly as site cleanup and restoration plans are initiated. ORNL has instituted special training for all construction workers and related contractors. Individuals learn how construction activities at ORNL can potentially have adverse effects on the environment and their health, and to learn how to respond to potential chemical and radiation hazards. Workers are given a review of basic information on radiation and chemicals in a framework that emphasizes the situations in which workers or the environment may be exposed to potential risk. Specific instructions are presented on what to do when contamination is suspected, with identification of emergency procedures and response personnel. 5 refs., 1 fig.

  19. Apparent and Intrinsic Evolution of Active Region Upflows

    NASA Astrophysics Data System (ADS)

    Baker, Deborah; Janvier, Miho; Démoulin, Pascal; Mandrini, Cristina H.

    2017-04-01

    We analyze the evolution of Fe xii coronal plasma upflows from the edges of ten active regions (ARs) as they cross the solar disk using the Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) to do this. Confirming the results of Démoulin et al. ( Sol. Phys. 283, 341, 2013), we find that for each AR there is an observed long-term evolution of the upflows. This evolution is largely due to the solar rotation that progressively changes the viewpoint of dominantly stationary upflows. From this projection effect, we estimate the unprojected upflow velocity and its inclination to the local vertical. AR upflows typically fan away from the AR core by 40° to nearly vertical for the following polarity. The span of inclination angles is more spread out for the leading polarity, with flows angled from -29° (inclined toward the AR center) to 28° (directed away from the AR). In addition to the limb-to-limb apparent evolution, we identify an intrinsic evolution of the upflows that is due to coronal activity, which is AR dependent. Furthermore, line widths are correlated with Doppler velocities only for the few ARs with the highest velocities. We conclude that for the line widths to be affected by the solar rotation, the spatial gradient of the upflow velocities must be large enough such that the line broadening exceeds the thermal line width of Fe xii. Finally, we find that upflows occurring in pairs or multiple pairs are a common feature of ARs observed by Hinode/EIS, with up to four pairs present in AR 11575. This is important for constraining the upflow-driving mechanism as it implies that the mechanism is not local and does not occur over a single polarity. AR upflows originating from reconnection along quasi-separatrix layers between overpressure AR loops and neighboring underpressure loops is consistent with upflows occurring in pairs, unlike other proposed mechanisms that act locally in one polarity.

  20. Seismic activity of the San Francisco Bay region

    USGS Publications Warehouse

    Bakun, W.H.

    1999-01-01

    Moment magnitude M with objective confidence-level uncertainties are estimated for felt San Francisco Bay region earthquakes using Bakun and Wentworth's (1997) analysis strategy for seismic intensity observations. The frequency-magnitude distribution is well described for M ???5.5 events since 1850 by a Gutenberg-Richter relation with a b-value of 0.90. The seismic moment rate ??M0/yr since 1836 is 2.68 X 1018 N-m/yr (95% confidence range = 1.29 X 1018 N-m/yr to 4.07 X 1018 N-m/yr); the seismic moment rate since 1850 is nearly the same. ??M0/yr in the 56 years before 1906 is about 10 times that in the 70 years after 1906. In contrast, ??M0/yr since 1977 is about equal that in the 56 years before 1906. 80% (1?? = 14%) of the plate-motion moment accumulation rate is available for release in earthquakes. The historical ??M0/yr and the portion of the plate-motion moment accumulation rate available for release in earthquakes are used in a seismic cycle model to estimate the rate of seismic activity in the twenty-first century. High and low rates of future seismic activity are both permissible given the range of possible seismic-cycle recurrence times T and the uncertainties in the historical ??M0 and in the percentage of plate motion available for release in earthquakes. If the historical seismic moment rate is not greater than the estimated 2.68 X 1018 N-m/yr and the percentage of the plate-motion moment accumulation available for release in earthquakes is not less than the estimated 80%, then for all T, the rate of seismic moment release from now until the next 1906-sized shock will be comparable to the rate from 1836 to 1905 when M 6 1/2 shocks occurred every 15 to 20 years.

  1. Plasma Composition in a Sigmoidal Anemone Active Region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, L.; Green, L. M.; Steed, K.; Carlyle, J.

    2013-11-01

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  2. Static and Impulsive Models of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, James A.

    2008-01-01

    The physical modeling of active regions (ARs) and of the global coronal is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright EUV warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, repetition time) of the impulsive heating.

  3. Active region emission measure distributions and implications for nanoflare heating

    SciTech Connect

    Cargill, P. J.

    2014-03-20

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ∼ T{sup a} below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (T{sub N} ) and the distribution of nanoflare energies. If T{sub N} is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, T{sub N} must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  4. Active Region Emission Measure Distributions and Implications for Nanoflare Heating

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.

    2014-03-01

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ~ Ta below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (TN ) and the distribution of nanoflare energies. If TN is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, TN must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  5. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  6. Plasma composition in a sigmoidal anemone active region

    SciTech Connect

    Baker, D.; Van Driel-Gesztelyi, L.; Green, L. M.; Carlyle, J.; Brooks, D. H.; Démoulin, P.; Steed, K.

    2013-11-20

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  7. Oscillations in the Flaring Active Region NOAA 11272

    NASA Astrophysics Data System (ADS)

    Conde Cuellar, S. M.; Costa, J. E. R.; Cedeño Montaña, C. E.

    2016-11-01

    We studied waves seen during the class C1.9 flare that occurred in Active Region NOAA 11272 on SOL2011-08-17. We found standing waves with periods in the 9- and 19-minute band in six extreme ultraviolet (EUV) wavelengths of the SDO/AIA instrument. We succeeded in identifying the magnetic arc where the flare started and two neighbour loops that were disturbed in sequence. The analysed standing waves spatially coincide with these observed EUV loops. To study the wave characteristics along the loops, we extrapolated field lines from the line-of-sight magnetograms using the force-free approximation in the linear regime. We used atmosphere models to determine the mass density and temperature at each height of the loop. Then, we calculated the sound and Alfvén speeds using densities 108 ≲ ni ≲ 10^{17} cm^{-3} and temperatures 103 ≲ T ≲ 107 K. The brightness asymmetry in the observed standing waves resembles the Alfvén speed distribution along the loops, but the atmospheric model we used needs higher densities to explain the observed periods.

  8. A REVIEW OF EMERGENCY ROOM STUDIES ON ALCOHOL AND INJURIES CONDUCTED IN LATIN AMERICAN AND THE CARIBBEAN REGION

    PubMed Central

    Andreuccetti, Gabriel; Carvalho, Heraclito B.; Korcha, Rachael; Ye, Yu; Bond, Jason; Cherpitel, Cheryl J.

    2012-01-01

    Issues Alcohol-attributable burden of injury is one of the most serious public health problems in Latin America and the Caribbean region (LAC). Although knowledge on alcohol’s involvement in injuries has progressed along with the implementation of evidenced-based alcohol policies in developed countries, this was not true for the most part of LAC countries for which reducing alcohol-related injuries is an urgent necessity. Approach A systematic review was performed in order to identify the most up-to-date information on alcohol and injuries derived from emergency room (ER) studies conducted in LAC. Key Findings Findings corroborate that alcohol has a high prevalence among injured patients in the ER setting in LAC, with violence-related injuries showing an increased association with alcohol use compared to unintentional injuries. However, a large number of studies did not include all types of injury and the measurement of injury risk associated with alcohol consumption. The amount of alcohol consumed in the event and hazardous drinking patterns seem to be strongly associated with injury occurrence, as well as drinking in public spaces, but a paucity of data relating to social-contextual factors limits the interpretation of the heterogeneity in the magnitude of the association of alcohol and injuries found across studies. Conclusions There is a lack of ER studies able to support strategies to reduce alcohol-related injuries in a region where effective alcohol policies are scant. Future research should focus on understanding how drinking influenced by local contexts and drinking behaviors may affect the risk of injury within each LAC country. PMID:22340601

  9. Magnetic Separatrix as the Source Region of the Plasma Supply for an Active-region Filament

    NASA Astrophysics Data System (ADS)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Cao, Wenda

    2017-02-01

    Solar filaments can be formed via chromospheric evaporation followed by condensation in the corona or by the direct injection of cool plasma from the chromosphere to the corona. We here confirm with high-resolution Hα data observed by the 1.6 m New Solar Telescope of the Big Bear Solar Observatory on 2015 August 21 that an active-region filament is maintained by the continuous injection of cold chromospheric plasma. We find that the filament is rooted along a bright ridge in Hα, which corresponds to the intersection of a magnetic quasi-separatrix layer with the solar surface. This bright ridge consists of many small patches whose sizes are comparable to the width of the filament threads. It is found that upflows originate from the brighter patches of the ridge, whereas the downflows move toward the weaker patches of the ridge. The whole filament is composed of two opposite-direction streams, implying that longitudinal oscillations are not the only cause of the counterstreamings, and unidirectional siphon flows with alternative directions are another possibility.

  10. Development and Psychometric Evaluation of the Treatment-Emergent Activation and Suicidality Assessment Profile

    PubMed Central

    Storch, Eric A.; Murphy, Tanya K.; Bodzin, Danielle; Mutch, P. Jane; Lehmkuhl, Heather; Aman, Michael; Goodman, Wayne K.

    2010-01-01

    Although effective in treating a range of childhood psychiatric conditions, selective serotonin reuptake inhibitors (SSRI) have been implicated in the induction of an “activation syndrome” (characterized by symptoms of irritability, restlessness, emotional labiality, etc.) that may represent an intermediary state change that fosters suicidality. SSRI-induced activation syndrome is well-accepted by many clinicians and thought to be relatively common, particularly in children and teens. However, gaps exist in empirical data on phenomenology and tools for early detection. With this in mind, we report on a recently funded National Institutes of Health grant to develop a measure of behavioral activation to be completed in a clinical setting. We discuss the development of this measure—the Treatment-Emergent Activation and Suicidality Assessment Profile (TE-ASAP)—as well as psychometric results from a sample of youth with internalizing disorders who were at varying stages of SSRI treatment. Overall, psychometric data were quite promising, with the TE-ASAP demonstrating excellent reliability (i.e., internal consistency, inter-rater, short-term test–retest stability) and strong validity properties. Through further evaluation of the TE-ASAP in the context of a controlled multimodal trial in youth with obsessive–compulsive disorder, we hope to augment understanding of activation syndrome and, in turn, mitigate risks through early detection of this potentially lifethreatening adverse effect. PMID:20473344

  11. Development and Psychometric Evaluation of the Treatment-Emergent Activation and Suicidality Assessment Profile.

    PubMed

    Reid, Jeannette M; Storch, Eric A; Murphy, Tanya K; Bodzin, Danielle; Mutch, P Jane; Lehmkuhl, Heather; Aman, Michael; Goodman, Wayne K

    2010-02-04

    Although effective in treating a range of childhood psychiatric conditions, selective serotonin reuptake inhibitors (SSRI) have been implicated in the induction of an "activation syndrome" (characterized by symptoms of irritability, restlessness, emotional labiality, etc.) that may represent an intermediary state change that fosters suicidality. SSRI-induced activation syndrome is well-accepted by many clinicians and thought to be relatively common, particularly in children and teens. However, gaps exist in empirical data on phenomenology and tools for early detection. With this in mind, we report on a recently funded National Institutes of Health grant to develop a measure of behavioral activation to be completed in a clinical setting. We discuss the development of this measure-the Treatment-Emergent Activation and Suicidality Assessment Profile (TE-ASAP)-as well as psychometric results from a sample of youth with internalizing disorders who were at varying stages of SSRI treatment. Overall, psychometric data were quite promising, with the TE-ASAP demonstrating excellent reliability (i.e., internal consistency, inter-rater, short-term test-retest stability) and strong validity properties. Through further evaluation of the TE-ASAP in the context of a controlled multimodal trial in youth with obsessive-compulsive disorder, we hope to augment understanding of activation syndrome and, in turn, mitigate risks through early detection of this potentially lifethreatening adverse effect.

  12. Incidence and Etiology of Surgical Site Infections among Emergency Postoperative Patients in Mbarara Regional Referral Hospital, South Western Uganda

    PubMed Central

    Joel, Bazira; Justina Lucy, Najjuka

    2017-01-01

    Background. This prospective hospital based study was conducted to determine the incidence, risk factors, and causative agents of surgical site infection their susceptibility to among 114 emergency postoperative patients at the Mbarara Regional Referral Hospital between September 2014 and January 2015. Methods. Consented patients were consecutively enrolled and their preoperative, intraoperative, and postoperative data were collected. Follow-ups were done in the surgical outpatient clinics. Wound specimens were collected and processed as per Sops; susceptibility testing was done using the Kirby-Bauer disc diffusion technique. Data was analyzed using STATA 11.0. Results. Overall SSI incidence was 16.4%: 5.9% superficial and 47.1% deep and organ space SSIs each. Klebsiella pneumoniae was the most predominant organism (50%) followed by Staphylococcus aureus (27.8%). E. coli and P. aeruginosa both accounted for 11.1%. Wound class (p = 0.009), anaemia (p = 0.024), low serum albumin (p = 0.046), and property of suture material used (p = 0.006) were significantly associated with SSIs. All organisms had 100% resistance to ampicillin, tetracycline, septrin, and erythromycin. Ciprofloxacin and ceftriaxone are highly sensitive to all organisms. Conclusion. The incidence of SSI in this hospital is very high. Klebsiella pneumoniae is the predominant cause. Ciprofloxacin are very potent antibiotics against organisms that cause SSI. PMID:28168215

  13. Incidence and Etiology of Surgical Site Infections among Emergency Postoperative Patients in Mbarara Regional Referral Hospital, South Western Uganda.

    PubMed

    Lubega, Abubaker; Joel, Bazira; Justina Lucy, Najjuka

    2017-01-01

    Background. This prospective hospital based study was conducted to determine the incidence, risk factors, and causative agents of surgical site infection their susceptibility to among 114 emergency postoperative patients at the Mbarara Regional Referral Hospital between September 2014 and January 2015. Methods. Consented patients were consecutively enrolled and their preoperative, intraoperative, and postoperative data were collected. Follow-ups were done in the surgical outpatient clinics. Wound specimens were collected and processed as per Sops; susceptibility testing was done using the Kirby-Bauer disc diffusion technique. Data was analyzed using STATA 11.0. Results. Overall SSI incidence was 16.4%: 5.9% superficial and 47.1% deep and organ space SSIs each. Klebsiella pneumoniae was the most predominant organism (50%) followed by Staphylococcus aureus (27.8%). E. coli and P. aeruginosa both accounted for 11.1%. Wound class (p = 0.009), anaemia (p = 0.024), low serum albumin (p = 0.046), and property of suture material used (p = 0.006) were significantly associated with SSIs. All organisms had 100% resistance to ampicillin, tetracycline, septrin, and erythromycin. Ciprofloxacin and ceftriaxone are highly sensitive to all organisms. Conclusion. The incidence of SSI in this hospital is very high. Klebsiella pneumoniae is the predominant cause. Ciprofloxacin are very potent antibiotics against organisms that cause SSI.

  14. EDs in the Midwest and South activate disaster plans as deadly tornadoes sweep through the region.

    PubMed

    2012-05-01

    Hospitals in the Midwest and South activated their disaster plans in early March to deal with a phalanx of powerful tornadoes that leveled several small towns and killed at least two dozen people. Some hospitals had to activate plans for both internal and external disasters as their own facilities were threatened. One small critical-access hospital in West Liberty, KY, sustained significant damage and had to evacuate its patients to another facility. All the hospitals credit their disaster plans and practice drills with helping them to manage the crisis as efficiently as possible. Morgan County ARH Hospital in West Liberty, KY, went for several days without an operational lab or radiology department, but staff kept the ED open for absolute emergencies. Margaret Mary Community Hospital (MMCH) in Batesville, IN, received six tornado victims, but it was prepared for many more. Administrators credit advanced warning of the storms with helping them to prepare effectively, as well as to coordinate their response with other hospitals in the area. As a level 1 trauma center, the University of Louisville Hospital in Louisville, KY, received all the most seriously injured patients in the region, even while the facility itself was under a tornado warning. Staff had to route families away from the glassed-in waiting room to the basement until the tornado warning had passed. At one point during the crisis, there were 90 patients in the hospital's ED even though the department is only equipped with 29 beds. Administrators at Huntsville Hospital in Huntsville, AL, encouraged colleagues to take advantage of smaller-scale emergencies to activate parts of their disaster plans, and to focus disaster preparation drills on their hospital's top hazard vulnerabilities.

  15. Development of an Assessment for Entrustable Professional Activity (EPA) 10: Emergent Patient Management

    PubMed Central

    Thompson, Laura R.; Leung, Cynthia G.; Green, Brad; Lipps, Jonathan; Schaffernocker, Troy; Ledford, Cynthia; Davis, John; Way, David P.; Kman, Nicholas E.

    2017-01-01

    Introduction Medical schools in the United States are encouraged to prepare and certify the entrustment of medical students to perform 13 core entrustable professional activities (EPAs) prior to graduation. Entrustment is defined as the informed belief that the learner is qualified to autonomously perform specific patient-care activities. Core EPA-10 is the entrustment of a graduate to care for the emergent patient. The purpose of this project was to design a realistic performance assessment method for evaluating fourth-year medical students on EPA-10. Methods First, we wrote five emergent patient case-scenarios that a medical trainee would likely confront in an acute care setting. Furthermore, we developed high-fidelity simulations to realistically portray these patient case scenarios. Finally, we designed a performance assessment instrument to evaluate the medical student’s performance on executing critical actions related to EPA-10 competencies. Critical actions included the following: triage skills, mustering the medical team, identifying causes of patient decompensation, and initiating care. Up to four students were involved with each case scenario; however, only the team leader was evaluated using the assessment instruments developed for each case. Results A total of 114 students participated in the EPA-10 assessment during their final year of medical school. Most students demonstrated competence in recognizing unstable vital signs (97%), engaging the team (93%), and making appropriate dispositions (92%). Almost 87% of the students were rated as having reached entrustment to manage the care of an emergent patient (99 of 114). Inter-rater reliability varied by case scenario, ranging from moderate to near-perfect agreement. Three of five case-scenario assessment instruments contained items that were internally consistent at measuring student performance. Additionally, the individual item scores for these case scenarios were highly correlated with the global

  16. Dynamics of radon activity due to earthquakes (by the example of Altai seismically active region)

    NASA Astrophysics Data System (ADS)

    Aptikaeva, O. I.; Shitov, A. V.

    2016-12-01

    The results of monitoring radon emanations in the territory of Gorno-Altaisk due to seismic activity and their influence on human health are considered. It is shown that the level of activity of subsoil radon in the vicinity of the fault zone in the territory of Gorno-Altaisk exceeds such a level recorded in Moscow by 3-4 times. There is ambiguity in the behavior of radon as a precursor of a seismic event. Some radon anomalies are synchronous with moments of earthquakes and others correspond to quiet periods. The radon activity is more closely associated with the earthquakes localized in the aftershock zone of the Chuya earthquake. This is assumed to be caused by the network of fluid-conducting channels within the active fault between this region and the observation station.

  17. A major outbreak of asthma associated with a thunderstorm: experience of accident and emergency departments and patients' characteristics. Thames Regions Accident and Emergency Trainees Association.

    PubMed Central

    Davidson, A. C.; Emberlin, J.; Cook, A. D.; Venables, K. M.

    1996-01-01

    OBJECTIVE--To investigate the time course of an epidemic of asthma after a thunderstorm, characteristics of patients affected, and the demand on emergency medical resources. DESIGN--Study of registers and records in accident and emergency departments and questionnaire to staff. SETTING--London area. SUBJECTS--All patients presenting at 12 accident and emergency departments with asthma or other airway disease. MAIN OUTCOME MEASURES--Numbers of patients, clinical features, information on shortage of resources--equipment, drugs and staff. RESULTS--The epidemic had a sudden onset on 24 June 1994; 640 patients with asthma or other airways disease attended during 30 hours from 1800 on 24 June, nearly 10 times the expected number. Over half (365) the patients were aged 21 to 40 years. A history of hay fever was recorded in 403 patients; for 283 patients this was the first known attack of asthma; a history of chronic obstructive airways disease was recorded in 12 patients. In all, 104 patients were admitted (including five to an intensive care unit). Several departments ran out of equipment or drugs, called in additional doctors, or both. CONCLUSIONS--This study supports the view that this epidemic was larger than previously reported epidemics and the hypothesis that "thunderstorm associated asthma' is related to aeroallergens. Demands on resources were considerable; a larger proportion of patients needing intensive care would have caused greater problems. PMID:8595332

  18. Biologically active filters - An advanced water treatment process for contaminants of emerging concern.

    PubMed

    Zhang, Shuangyi; Gitungo, Stephen W; Axe, Lisa; Raczko, Robert F; Dyksen, John E

    2017-05-01

    With the increasing concern of contaminants of emerging concern (CECs) in source water, this study examines the hypothesis that existing filters in water treatment plants can be converted to biologically active filters (BAFs) to treat these compounds. Removals through bench-scale BAFs were evaluated as a function of media, granular activated carbon (GAC) and dual media, empty bed contact time (EBCT), and pre-ozonation. For GAC BAFs, greater oxygen consumption, increased pH drop, and greater dissolved organic carbon removal normalized to adenosine triphosphate (ATP) were observed indicating increased microbial activity as compared to anthracite/sand dual media BAFs. ATP concentrations in the upper portion of the BAFs were as much as four times greater than the middle and lower portions of the dual media and 1.5 times greater in GAC. Sixteen CECs were spiked in the source water. At an EBCT of 18 min (min), GAC BAFs were highly effective with overall removals greater than 80% without pre-ozonation; exceptions included tri(2-chloroethyl) phosphate and iopromide. With a 10 min EBCT, the degree of CECs removal was reduced with less than half of the compounds removed at greater than 80%. The dual media BAFs showed limited CECs removal with only four compounds removed at greater than 80%, and 10 compounds were reduced by less than 50% with either EBCT. This study demonstrated that GAC BAFs with and without pre-ozonation are an effective and advanced technology for treating emerging contaminants. On the other hand, pre-ozonation is needed for dual media BAFs to remove CECs. The most cost effective operating conditions for dual media BAFs were a 10 min EBCT with the application of pre-ozonation.

  19. Multiwavelength study of 20 jets that emanate from the periphery of active regions

    NASA Astrophysics Data System (ADS)

    Mulay, Sargam M.; Tripathi, Durgesh; Del Zanna, Giulio; Mason, Helen

    2016-05-01

    Aims: We present a multiwavelength analysis of 20 EUV jets which occurred at the periphery of active regions close to sunspots. We discuss the physical parameters of the jets and their relation with other phenomena such as Hα surges, nonthermal type-III radio bursts and hard X-ray (HXR) emission. Methods: These jets were observed between August 2010 and June 2013 by the Atmospheric Imaging Assembly (AIA) instrument that is onboard the Solar Dynamic Observatory (SDO). We selected events that were observed on the solar disk within +/-60° latitude. Using AIA wavelength channels that are sensitive to coronal temperatures, we studied the temperature distribution in the jets using the line of sight (LOS) differential emission measure (DEM) technique. We also investigated the role of the photospheric magnetic field using the LOS magnetogram data from the Helioseismic and Magnetic Imager (HMI) onboard SDO. Results: It has been observed that most of the jets originated from the western periphery of active regions. Their lifetimes range from 5 to 39 min with an average of 18 min and their velocities range from 87 to 532 km s-1 with an average of 271 km s-1. All the jets are co-temporally associated with Hα surges. Most of the jets are co-temporal with nonthermal type-III radio bursts observed by the Wind/WAVES spacecraft in the frequency range from 20 kHz to 13 MHz. We confirm the source region of these bursts using the potential field source surface (PFSS) technique. Using Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations, we found that half of the jets produced HXR emission and they often shared the same source region as the HXR emission (6-12 keV). Ten out of 20 events showed that the jets originated in a region of flux cancellation and six jets in a region of flux emergence. Four events showed flux emergence and then cancellation during the jet evolution. DEM analyses showed that for most of the spires of the jets, the DEM peaked at around log

  20. Analysis on sports and recreation activity-related eye injuries presenting to the Emergency Department

    PubMed Central

    Moon, Sungbae; Ryoo, Hyun Wook; Ahn, Jae Yun; Park, Jung Bae; Seo, Kang Suk; Shin, Sang Do; Song, Kyoung Jun; Lee, Kang Hyun; Yoo, In Sool; Cho, Jin Seong; Ryu, Hyun Ho; Jeong, Tae Oh; Yeom, Seok Ran; Kim, Young Taek; Hong, Sung Ok

    2016-01-01

    AIM To investigate the incidence and general characteristics of sports-related eye injuries in patients visiting the Emergency Department. METHODS A cross-sectional, multi-center, observational study. Patients with an injured eye who visited the Emergency Department at one of nine hospitals in Korea were enrolled. All data were prospectively collected between March and September 2010 using a questionnaire. Eye injuries that occurred during risky sports were examined by gender and age. Additionally, the rate of open globe injuries that occurred with and without protective eyewear was examined for each activity. Continuous variables were compared using Student's t-test and categorical variables were compared using Chi-square test. RESULTS A total of 446 patients had sports-related eye injuries. Teenagers (10-19 years old) and young adults (20-29 years old) had the most eye injuries. Eye injuries accounted for 0.2% of Emergency Department patients. Baseball was the most common cause of sports-related eye injuries, followed by soccer and hiking. Protective gear was worn by 9.4% of all patients. Patients that were 30-39 years of age had the highest rate of protective gear use, followed by patients that were 40-49 years of age. The proportion of sports-related eye injuries that were open-globe injuries was highest for soccer and hiking. CONCLUSION Although injuries were most common in patients below the age of 10 years, these patients had the lowest rate of protective eyewear use. Injuries in adults over 40 years of age most commonly occurred during hiking, but the rate of protective eyewear use was low. Young athletes should be educated on and provided with protective eyewear and policies protective gear use should be established. For older adults, eye protection should be encouraged, especially during hiking. PMID:27803871

  1. Parieto-frontal gamma band activity during the perceptual emergence of speech forms.

    PubMed

    Basirat, Anahita; Sato, Marc; Schwartz, Jean-Luc; Kahane, Philippe; Lachaux, Jean-Philippe

    2008-08-01

    The multistable perception of speech refers to the perceptual changes experienced while listening to a speech form cycled in rapid and continuous repetition, the so-called Verbal Transformation Effect. Because distinct interpretations of the same repeated stimulus alternate spontaneously, this effect provides an invaluable tool to examine how speech percepts are formed in the listener's mind. In order to track the temporal dynamics of brain activity specifically linked to perceptual changes, intracerebral EEG activity was recorded from two implanted epileptic patients while performing a verbal transformation task. To this aim, they were asked to carefully listen to a speech sequence played repeatedly and to press a button whenever they perceived a change in the repeated utterance. For both patients, 300-800 ms prior to the reported perceptual transitions, high frequency activity in the gamma band range (>40 Hz) was observed within the left inferior frontal and supramarginal gyri. An additional auditory decision task was used to rule out the possibility that the increased gamma band activity was due to the patients' motor responses. These results suggest that articulatory-based representations play a key part in the endogenously driven emergence of auditory speech percepts. The findings are interpreted in relation to theories assuming a link between perception and action in the human speech processing system.

  2. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Gupta-Ostermann, Disha; Balfer, Jenny; Heikamp, Kathrin; Bajorath, Jürgen

    2014-05-27

    Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics.

  3. High-wavenumber solar f-mode strengthening prior to active region formation

    NASA Astrophysics Data System (ADS)

    Singh, Nishant; Raichur, Harsha; Brandenburg, Axel

    2016-05-01

    We report a systematic strengthening of the local solar surface mode, i.e. the f-mode, 1-2 days prior to the emergence of an active region (AR) in the same (corotating) location while no indication can yet be seen in the magnetograms. Our study is motivated by earlier numerical findings of Singh et al. (2014) which showed that, in the presence of a nonuniform magnetic field that is concentrated a few scale heights below the surface, the f-mode fans out in the diagnostic kΩ diagram at high wavenumbers. Here we explore this possibility using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, and show for four ARs 11130, 11158, 11768, and 12051, that at large latitudinal wavenumbers (corresponding to horizontal scales of around 3000 km), the f-mode displays strengthening about two days prior to AR formation and thus provides a new precursor for AR formation. The idea that the f-mode is perturbed days before any visible magnetic activity occurs on the surface can be important in constraining dynamo models aimed at understanding the global magnetic activity of the Sun.

  4. CONTRACTING AND ERUPTING COMPONENTS OF SIGMOIDAL ACTIVE REGIONS

    SciTech Connect

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Toeroek, Tibor

    2012-10-01

    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  5. Diagnostics of Coronal Heating in Active-region Loops

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Hornsey, C.; Nakariakov, V. M.

    2017-01-01

    Understanding coronal heating remains a central problem in solar physics. Many mechanisms have been proposed to explain how energy is transferred to and deposited in the corona. We summarize past observational studies that attempted to identify the heating mechanism and point out the difficulties in reproducing the observations of the solar corona from the heating models. The aim of this paper is to study whether the observed extreme ultraviolet (EUV) emission in individual coronal loops in solar active regions can provide constraints on the volumetric heating function, and to develop a diagnostic for the heating function for a subset of loops that are found close to static thermal equilibrium. We reconstruct the coronal magnetic field from Solar Dynamics Observatory/HMI data using a nonlinear force-free magnetic field model. We model selected loops using a one-dimensional stationary model, with a heating rate dependent locally on the magnetic field strength along the loop, and we calculate the emission from these loops in various EUV wavelengths for different heating rates. We present a method to measure a power index β defining the dependence of the volumetric heating rate EH on the magnetic field, {E}H\\propto {B}β , and controlling also the shape of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints. The diagnostic is based on the dependence of the electron density on the index β. This method is free from the assumptions of the loop filling factor but requires spectroscopic measurements of the density-sensitive lines. The range of applicability for loops of different length and heating distributions is discussed, and the steps to solving the coronal heating problem are outlined.

  6. The SMM UV observations of Active Region 5395

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Gurman, Joseph B.

    1989-01-01

    The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) spacecraft was used extensively to study the spatial morphology and time variability of solar active regions in the far UV (at approx. wavelength of 1370 A) since July 1985. The normal spatial resolution of UVSP observations in this 2nd-order mode is 10 sec., and the highest temporal resolution is 64 milliseconds. To make a full-field, 4 min. by 4 min. image this wavelength using 5 sec. raster steps takes about 3 minutes. UVSP can also make observations of the Sun at approx. wavelength of 2790 with 3 sec. spatial resolution when operated in its 1st-order mode; a full-field image at this wavelength (a so-called SNEW image) takes about 8 minutes. UVSP made thousands of observations (mostly in 2nd-order) of AR 5395 during its transit across the visible solar hemisphere (from 7 to 19 March, inclusive). During this period, UVSP's duty cycle for observing AR 5395 was roughly 40 percent, with the remaining 60 percent of the time being fairly evenly divided between aeronomy studies of the Earth's atmosphere and dead time due to Earth occultation of the Sun. UVSP observed many of the flares tagged to AR 5395, including 26 GOES M-level flares and 3 X-level flares, one of which produced so much UV emission that the safety software of UVSP turned off the detector to avoid damage due to saturation. Images and light curves of some of the more spectacular of the AR 5395 events are presented.

  7. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio E-mail: yosimura@solar.physics.montana.edu

    2011-12-10

    The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On the fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6

  8. CFU-S(11) activity does not localize solely with the aorta in the aorta-gonad-mesonephros region.

    PubMed

    de Bruijn, M F; Peeters, M C; Luteijn, T; Visser, P; Speck, N A; Dzierzak, E

    2000-10-15

    The aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site in the midgestation mouse conceptus and first contains colony-forming units-spleen day 11 (CFU-S(11)) at embryonic day 10 (E10). Because CFU-S(11) activity is present in the AGM region before the onset of hematopoietic stem cell (HSC) activity, CFU-S(11) activity in the complex developing vascular and urogenital regions of the AGM was localized. From E10 onward, CFU-S(11) activity is associated with the aortic vasculature, and is found also in the urogenital ridges (UGRs). Together with data obtained from organ explant cultures, in which up to a 16-fold increase in CFU-S(11) activity was observed, it was determined that CFU-S(11) can be increased autonomously both in vascular sites and in UGRs. Furthermore, CFU-S(11) activity is present in vitelline and umbilical vessels. This, together with the presence of CFU-S(11) in the UGRs 2 days before HSC activity, suggests both temporally and spatially distinct emergent sources of CFU-S(11). (Blood. 2000;96:2902-2904)

  9. A Model of Emergent Category-specific Activation in the Posterior Fusiform Gyrus of Sighted and Congenitally Blind Populations.

    PubMed

    Chen, Lang; Rogers, Timothy T

    2015-10-01

    Theories about the neural bases of semantic knowledge tend between two poles, one proposing that distinct brain regions are innately dedicated to different conceptual domains and the other suggesting that all concepts are encoded within a single network. Category-sensitive functional activations in the fusiform cortex of the congenitally blind have been taken to support the former view but also raise several puzzles. We use neural network models to assess a hypothesis that spans the two poles: The interesting functional activation patterns reflect the base connectivity of a domain-general semantic network. Both similarities and differences between sighted and congenitally blind groups can emerge through learning in a neural network, but only in architectures adopting real anatomical constraints. Surprisingly, the same constraints suggest a novel account of a quite different phenomenon: the dyspraxia observed in patients with semantic impairments from anterior temporal pathology. From this work, we suggest that the cortical semantic network is wired not to encode knowledge of distinct conceptual domains but to promote learning about both conceptual and affordance structure in the environment.

  10. Observations of photospheric magnetic fields and shear flows in flaring active regions

    NASA Technical Reports Server (NTRS)

    Tarbell, T.; Ferguson, S.; Frank, Z.; Title, A.; Topka, K.

    1988-01-01

    Horizontal flows in the photosphere and subsurface convection zone move the footpoints of coronal magnetic field lines. Magnetic energy to power flares can be stored in the corona if the flows drive the fields far from the potential configuration. Videodisk movies were shown with 0.5 to 1 arcsecond resolution of the following simultaneous observations: green continuum, longitudinal magnetogram, Fe I 5576 A line center (mid-photosphere), H alpha wings, and H alpha line center. The movies show a 90 x 90 arcsecond field of view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Magnetic bipoles are emerging over a large area, and the polarities are systematically flowing apart. The horizontal flows were mapped in detail from the continuum movies, and these may be used to predict the future evolution of the region. The horizontal flows are not discernable in H alpha. The H alpha movies strongly suggest reconnection processes in the fibrils joining opposite polarities. When viewed in combination with the magnetic movies, the cause for this evolution is apparent: opposite polarity fields collide and partially cancel, and the fibrils reconnect above the surface. This type of reconnection, driven by subphotospheric flows, complicates the chromospheric and coronal fields, causing visible braiding and twisting of the fibrils. Some of the transient emission events in the fibrils and adjacent plage may also be related.

  11. Eruption of the magnetic flux rope in a fast decayed active region

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin

    2012-07-01

    An isolated and fast decayed active region was observed when passing through solar disk. There is only one CME related with it that give us a good opportunity to investigate the whole process of the CME. Filament in this active region rises up rapidly and then hesitates and disintegrates into flare loops. The rising filament from EIT images separates into two parts just before eruption. It is interesting that this filament rises up with positive kink which is opposite to the negative helicity according to the inverse S-shaped X-ray sigmoid and accumulated magnetic helicity. A new filament reforms several hours later after CME and the axis of this new one rotates clockwise about 22° comparing with that of the former one. We also observed a bright transient J-shaped X-ray sigmoid immediately appears after filament eruption. It quickly develops into a soft X-ray cusp and rises up firstly then drops down. We propose that field lines underneath bald-patch sparatrix surface (BPSS) where for the formation of a magnetic tangential discontinuity are locally rooted to the photosphere near the bald-patch (BP) inversion line. Field lines above the surface are detached from the photosphere to form this CME and partially open the field which make the filament loses equilibrium to rise quickly and then be drawn back by the tension force of magnetic field after eruption to form a new filament. Two magnetic cancelation regions have been observed clearly just before filament eruption that reflect the existence of BPs. On the other hand, the values of total magnetic helicity to the corona taken by emergence and differential rotation normalized by the square total magnetic flux implies the possibility of upper bound on the total magnetic helicity that a force-free field can contain.

  12. The Role of Reproductive Phenology, Seedling Emergence and Establishment of Perennial Salix gordejevii in Active Sand Dune Fields

    PubMed Central

    Yan, Qiaoling; Liu, Zhimin; Ma, Junling; Jiang, Deming

    2007-01-01

    Background and Aims The function of sexual reproduction of perennials in restoration of vegetation of active dune fields frequently has been underestimated. The objective of this study was to evaluate the role of sexual reproduction of the perennial Salix gordejevii in the revegetation of active dunes. Methods Seedling emergence and establishment of S. gordejevii were examined both in controlled experiments (germination at different burial depths with different watering regimes) and in field observations in three dune slacks. The reproductive phenology and soil seed bank of S. gordejevii, the dynamics of soil moisture, the groundwater table and the landform level of three dune slacks were monitored. Key Results Seeds of S. gordejevii began maturation on 1 May, and seed dispersal lasted from 8 May to 20 May. Seeds on the soil surface germinated significantly faster than those buried in soil (P<0·05). Seedling emergence was negatively correlated with landform level. When most seedlings emerged, there was a significantly positive correlation between soil moisture and seedling emergence (P<0·01). Rainfall was negatively correlated with seedling emergence. Seedling establishment was significantly and positively correlated with seedling emergence (P<0·05), and 72·3 % of the emergent seedlings were established at the end of the growing season. These results indicated that (a) seeds matured and dispersed before the rainy season; (b) seeds germinated as soon as they contacted a moist surface and relied more on soil moisture than on rainfall; and (c) more seedlings emerged at lower sampling points in dune slacks. Conclusions In natural conditions, restoration of active sand dune fields generally commences with revegetation of dune slacks where sexual reproduction of perennials contributes greatly to species encroachment and colonization and hence plays an important role in restoration of active dune fields. Furthermore, aeolian erosion in dune slacks, leading to good

  13. [The expertise evaluation of organization of rendering of acute, emergency and urgent medical care in rural regions of Novosibirsk oblast'].

    PubMed

    Ivaninskiĭ, O I; Sharapov, I V; Sadovoĭ, M A

    2013-01-01

    The most problematic spheres in the resource support of emergency medical care to rural residents are the completeness of staff of physicians in rural medical surgeries, community hospitals and departments of emergency medical care in central district hospitals. The provision of feldsher obstetrics posts with sanitary motor transport and medical equipment is yet another problematic sphere. The main troubles during provision of emergency medical care at feldsher obstetrics posts are related to surgery treatment. The organization of emergency and urgent medical care suffers of many unresolved problems related to informational program support at feldsher obstetrics posts, polyclinics of central district hospitals.

  14. [Integration of activities of regional hospitals and territorial medical institutions].

    PubMed

    Murtazin, Z Ia; Blokhin, A B

    2000-01-01

    Medical and economic efficiency of regional therapeutic and prophylactic institutions is to develop in integration with therapeutic and prophylactic institutions of administrative territories of a subject of the federation, which necessitates modifications in the functions and organizational structure of organization and methodology departments of regional, central, and municipal hospitals.

  15. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  16. [Application of biologically active suture materials in emergency surgery of abdominal cavity organs].

    PubMed

    Mokhov, E M; Chumakov, R Iu; Sergeev, A N

    2012-01-01

    An investigation of specific course of the wound process and near results of operations on 398 patients with emergency abdominal surgical pathology has revealed advantages of using new biologically active suture materials "Nikant" (with doxicyclin) and "Nikant-P" (with doxicyclin and stimulator of regeneration from the group of hermanium-containing organic compounds) in performing surgical interventions. Total number of patients with complications at the early postoperative period, operated using threads "Nikant" (38-29.9%) and "Nikant-P" (30-23.8%) proved to be reliably less than in patients of the control group (71-48.9%). The results of operations improved at the expense of considerable reduction of the number of postoperative local pyo-inflammatory processes.

  17. An upward compatible spectrum sharing architecture for existing, actively planned and emerging mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Azarbar, Bahman

    1990-01-01

    Existing and actively planned mobile satellite systems are competing for a viable share of the spectrum allocated by the International Telecommunications Union (ITU) to the satellite based mobile services in the 1.5/1.6 GHz range. The limited amount of spectrum available worldwide and the sheer number of existing and planned mobile satellite systems dictate the adoption of an architecture which will maximize sharing possibilities. A viable sharing architecture must recognize the operational needs and limitations of the existing systems. Furthermore, recognizing the right of access of the future systems as they will emerge in time, the adopted architecture must allow for additional growth and be amenable to orderly introduction of future systems. An attempt to devise such a sharing architecture is described. A specific example of the application of the basic concept to the existing and planned mobile satellite systems is also discussed.

  18. An upward compatible spectrum sharing architecture for existing, actively planned and emerging mobile satellite systems

    NASA Astrophysics Data System (ADS)

    Azarbar, Bahman

    Existing and actively planned mobile satellite systems are competing for a viable share of the spectrum allocated by the International Telecommunications Union (ITU) to the satellite based mobile services in the 1.5/1.6 GHz range. The limited amount of spectrum available worldwide and the sheer number of existing and planned mobile satellite systems dictate the adoption of an architecture which will maximize sharing possibilities. A viable sharing architecture must recognize the operational needs and limitations of the existing systems. Furthermore, recognizing the right of access of the future systems as they will emerge in time, the adopted architecture must allow for additional growth and be amenable to orderly introduction of future systems. An attempt to devise such a sharing architecture is described. A specific example of the application of the basic concept to the existing and planned mobile satellite systems is also discussed.

  19. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation.

    PubMed

    Secondes, Mona Freda N; Naddeo, Vincenzo; Belgiorno, Vincenzo; Ballesteros, Florencio

    2014-01-15

    Advanced wastewater treatment is necessary to effectively remove emerging contaminants (ECs) with chronic toxicity, endocrine disrupting effects, and the capability to induce the proliferation of highly resistant microbial strains in the environment from before wastewater disposal or reuse. This paper investigates the efficiency of a novel hybrid process that applies membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation simultaneously to remove ECs. Diclofenac, carbamazepine, and amoxicillin are chosen for this investigation because of their assessed significant environmental risks. Removal mechanisms and enhancement effects are analysed in single and combined processes. The influence of adsorbent dose and ultrasonic frequency to EC removal are also investigated. Results suggest that adsorption is probably the main removal mechanism and is affected by the nature of ECs and the presence of other components in the mixture. Almost complete removals are achieved in the hybrid process for all ECs.

  20. Role of State Tsunami Geoscientists during Emergency Response Activities: Example from the State of California (USA) during September 29, 2009, Samoa Tsunami Event

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Dengler, L. A.; Goltz, J. D.; Legg, M.; Miller, K. M.; Parrish, J. G.; Whitmore, P.

    2009-12-01

    California tsunami geoscientists work closely with federal, state and local government emergency managers to help prepare coastal communities for potential impacts from a tsunami before, during, and after an event. For teletsunamis, as scientific information (forecast model wave heights, first-wave arrival times, etc.) from NOAA’s West Coast and Alaska’s Tsunami Warning Center is made available, state-level emergency managers must help convey this information in a concise and comprehendible manner to local officials who ultimately determine the appropriate response activities for their jurisdictions. During the Samoa Tsunami Advisory for California on September 29, 2009, geoscientists from the California Geological Survey and Humboldt State University assisted the California Emergency Management Agency in this information transfer by providing technical assistance during teleconference meetings with NOAA and other state and local emergency managers prior to the arrival of the tsunami. State geoscientists gathered additional background information on anticipated tidal conditions and wave heights for areas not covered by NOAA’s forecast models. The participation of the state geoscientists in the emergency response process resulted in clarifying which regions were potentially at-risk, as well as those having a low risk from the tsunami. Future tsunami response activities for state geoscientists include: 1) working closely with NOAA to simplify their tsunami alert messaging and expand their forecast modeling coverage, 2) creation of “playbooks” containing information from existing tsunami scenarios for local emergency managers to reference during an event, and 3) development of a state-level information “clearinghouse” and pre-tsunami field response team to assist local officials as well as observe and report tsunami effects.

  1. Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, Mark G.; Schuck, Peter W.

    2017-04-01

    Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the development of coronal models which are “data-driven” at the photosphere. We present an investigation to determine the feasibility and accuracy of such methods. Our validation framework uses a simulation of active region (AR) formation, modeling the emergence of magnetic flux from the convection zone to the corona, as a ground-truth data set, to supply both the photospheric information and to perform the validation of the data-driven method. We focus our investigation on how the accuracy of the data-driven model depends on the temporal frequency of the driving data. The Helioseismic and Magnetic Imager on NASA’s Solar Dynamics Observatory produces full-disk vector magnetic field measurements at a 12-minute cadence. Using our framework we show that ARs that emerge over 25 hr can be modeled by the data-driving method with only ∼1% error in the free magnetic energy, assuming the photospheric information is specified every 12 minutes. However, for rapidly evolving features, under-sampling of the dynamics at this cadence leads to a strobe effect, generating large electric currents and incorrect coronal morphology and energies. We derive a sampling condition for the driving cadence based on the evolution of these small-scale features, and show that higher-cadence driving can lead to acceptable errors. Future work will investigate the source of errors associated with deriving plasma variables from the photospheric magnetograms as well as other sources of errors, such as reduced resolution, instrument bias, and noise.

  2. Competence of health workers in emergency obstetric care: an assessment using clinical vignettes in Brong Ahafo region, Ghana

    PubMed Central

    Lohela, Terhi Johanna; Nesbitt, Robin Clark; Manu, Alexander; Vesel, Linda; Okyere, Eunice; Kirkwood, Betty; Gabrysch, Sabine

    2016-01-01

    Objectives To assess health worker competence in emergency obstetric care using clinical vignettes, to link competence to availability of infrastructure in facilities, and to average annual delivery workload in facilities. Design Cross-sectional Health Facility Assessment linked to population-based surveillance data. Setting 7 districts in Brong Ahafo region, Ghana. Participants Most experienced delivery care providers in all 64 delivery facilities in the 7 districts. Primary outcome measures Health worker competence in clinical vignette actions by cadre of delivery care provider and by type of facility. Competence was also compared with availability of relevant drugs and equipment, and to average annual workload per skilled birth attendant. Results Vignette scores were moderate overall, and differed significantly by respondent cadre ranging from a median of 70% correct among doctors, via 55% among midwives, to 25% among other cadres such as health assistants and health extension workers (p<0.001). Competence varied significantly by facility type: hospital respondents, who were mainly doctors and midwives, achieved highest scores (70% correct) and clinic respondents scored lowest (45% correct). There was a lack of inexpensive key drugs and equipment to carry out vignette actions, and more often, lack of competence to use available items in clinical situations. The average annual workload was very unevenly distributed among facilities, ranging from 0 to 184 deliveries per skilled birth attendant, with higher workload associated with higher vignette scores. Conclusions Lack of competence might limit clinical practice even more than lack of relevant drugs and equipment. Cadres other than midwives and doctors might not be able to diagnose and manage delivery complications. Checking clinical competence through vignettes in addition to checklist items could contribute to a more comprehensive approach to evaluate quality of care. Trial registration number NCT00623337

  3. LEPCs and Deliberate Releases: Addressing Terrorist Activities in the Local Emergency Plan

    EPA Pesticide Factsheets

    This fact sheet discusses how local emergency planning committees (LEPCs) can incorporate counter-terrorism issues when they review and update their local plans. Builds on the National Response Team's Hazardous Materials Emergency Planning Guide.

  4. Emergence of hard X-rays at weak nonstationary processes in active regions

    NASA Astrophysics Data System (ADS)

    Vybornov, V. I.; Grigor'eva, I. Yu.; Livshits, M. A.; Ivanov, E. F.

    2015-12-01

    Using Suzaku and Reuven Ramaty High Energy Solar Spectroscopic Image (RHESSI) spacecraft data, we study the characteristics of X-ray emission of weak flares at energies when this emission is generated by fluxes of accelerated electrons. Of the 105 events recorded by a broadband monitor of the entire sky (WAM/Suzaku, with an effective area of ~800 cm2 in the energy range from 50 to 300 keV), we consider 64 B1to C3-class flares. The spectra of these events up to 30 keV are built from RHESSI data. We consider some examples of simultaneous recordings of weak flares occurring from 2005 to 2007. The radiation fluxes measured by WAM/Suzaku at 100 keV have been found to be consistent with those expected from the one-parameter approximation of spectra of the nonthermal radiation recorded by RHESSI at lower energies. The average spectral slope for all events under consideration is 4.30 ± 0.15; i.e., these rare events are significantly stricter than the majority of subflares. This can serve as proof of the fact that the particle acceleration in weak flares is more effective than was previously assumed. As in powerful events, these processes occur in the close vicinity of spots or in places where the neutral line separates hills with a large magnetic field strength.

  5. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2013-01-01

    It has been found previously, by measuring from active ]region magnetograms a proxy of the free energy in the active region fs magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main ]sequence path bordering the free ]energy ]limit line in (flux content, free ]energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free ]energy limit, the ratio of magnetic ]shear free energy to the non ]free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. Evidently, most active regions in which this core ]field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

  6. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Falconer, David; Sterling, Alphonse

    2012-01-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  7. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.

  8. Qualitative Inquiry into Challenges Experienced by Registered General Nurses in the Emergency Department: A Study of Selected Hospitals in the Volta Region of Ghana

    PubMed Central

    Adatara, Peter

    2016-01-01

    Registered General Nurses (RGNs) play crucial roles in emergency departments (EDs). EDs in Ghana are primarily staffed by RGNs who have had no additional formal education in emergency care. Additionally, basic, master's, or doctoral level nursing education programs provide limited content on the complexities of emergency nursing. Nurses in EDs are affected by many challenges such as growing patient population, financial pressures, physical violence, verbal abuse, operational inefficiencies, overcrowding, and work overload. There is a paucity of research on challenges experienced by RGNs in EDs in the Volta Region of Ghana. In this qualitative study, twenty RGNs in EDs from three selected hospitals in the Volta Region of Ghana were interviewed. All recorded interviews were transcribed, reviewed several times by researchers and supervisors, and analyzed using content analysis. Five thematic categories were identified. These thematic categories of challenges were lack of preparation for ED role, verbal abuse from patients relatives, lack of resources in ED, stressful and time consuming nature of ED, and overcrowding in ED. Formal education of RGNs in the advanced role of emergency care, adequate supply of resources, increased hospital management support, and motivations for RGNs working in ED are necessary to improve the practice of emergency care. PMID:27885343

  9. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  10. An observational study of the relationship between precipitating ions and ENAs emerging from the ion/atmosphere interaction region

    NASA Astrophysics Data System (ADS)

    Mackler, David A.

    Plasmasheet particles transported Earthward during times of active magnetospheric convection can interact with thermospheric neutrals through charge exchange. The resulting Energetic Neutral Atoms (ENAs) are free to leave the influence of the magnetosphere and can be remotely detected. ENAs associated with low altitude (300--800 km) ion precipitation in the high latitude atmosphere/ionosphere are termed Low Altitude Emissions (LAEs). Remotely observed LAEs are highly non-isotropic in velocity space such that the pitch angle distribution at the time of charge exchange is near 90 degrees. The Geomagnetic Emission Cone (GEC) of LAEs can be mapped spatially, showing where proton energy is deposited during times of varying geomagnetic activity. In this study we present a statistical look at the correlation between LAE flux (intensity and location) and geomagnetic activity as well as comparisons of LAE signatures with in situ ion precipitation. The LAE data is from the MENA imager on the IMAGE satellite over the declining phase of solar cycle 23 (2000--2005). The SYM-H, AE, and Kp indices are used to describe geomagnetic activity. The in situ data is from the Defense Meteorological Satellite Program (DMSP). The goal of the study is to evaluate properties of LAEs in ENA images and determine if those images can be used to infer properties of ion precipitation. Results indicate a general positive correlation to LAE flux for all three indices, with the SYM-H showing the greatest non-linearity. The MLT distribution of LAEs are centered about midnight and spread with increasing activity. The Invariant Latitude for all indices has a slightly negative correlation. The combined results indicate that both LAE and DMSP data behave similarly to geomagnetic activity. LAEs are more spread out in latitude, possibly due to multiple charge exchange interactions, while the in situ data changes to lower latitudes dramatically with increasing flux. The bulk of the data indicates that the

  11. Engineering application of activated alumina adsorption dams for emergency treatment of arsenic-contaminated rivers.

    PubMed

    Dou, Junfeng; Qin, Wei; Ding, Aizhong; Xie, En; Zheng, Lei; Ding, Wencheng

    2015-01-01

    A batch of lab-based adsorption experiments were performed to investigate the arsenic (As) removal efficacy by activated alumina. Four factors including contact time, pH, initial As concentration and different coexisting ions were examined. The adsorbent made of activated alumina (AA) with particles of 2-4 mm diameter showed a high As removal efficiency and the As concentrations of the samples were below 0.05 mg/L when the hydraulic retention time (HRT) was operated above 5 min. The As concentrations of the samples could remain below 0.05 mg/L for 30 days. A series of AA adsorption dams coupled with several other supporting adsorption techniques were employed for As-contaminated river restoration. The engineering project functioned well, and the effluent As concentration was below 0.05 mg/L when the influent was between 0.2 and 0.7 mg/L, which met the discharge requirement of the Surface Water Quality Standards criteria III in China. The results demonstrated that AA adsorption dams could be applied for emergency treatments of small- or medium-sized rivers contaminated with As.

  12. Abortive Spontaneous Egg Activation: An Emerging Biological Threat for the Existence of Mammals.

    PubMed

    Prasad, Shilpa; Tiwari, Meenakshi; Chaube, Shail K

    2017-03-02

    Mammals are important for balancing the natural ecosystem, but in the past few decades, several species have rapidly been entered under threatened category worldwide. The environmental changes, loss of natural habitats, human activities, and thereby stress are responsible for a gradual decline in reproductive outcome. Stress induces generation of reactive oxygen species (ROS). High physiological level of ROS drives abortive spontaneous egg activation (SEA), while beyond the physiological level causes oxidative stress (OS). The OS induces apoptosis and deteriorates egg quality that limits reproductive outcome. The reduced reproductive outcome is one of the major causes for gradual decline in population size of several mammalian species. Despite having several conservation programs, a gradual decline in species reproductive outcome and their population size is the serious concern for the existence of threatened mammalian species. Thus, it is important to identify and prevent the underlying causes responsible for abortive SEA, which could be an emerging problem for several mammalian species that are threatened or at the verge of extinction.

  13. Organized Emergence of Multiple-Generations of Teeth in Snakes Is Dysregulated by Activation of Wnt/Beta-Catenin Signalling

    PubMed Central

    Gaete, Marcia; Tucker, Abigail S.

    2013-01-01

    In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation) corn snake (Pantherophis guttatus). We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes. PMID:24019968

  14. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (˜200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  15. Demographic and Regional Determinants of Participation in Specific Exercise Activities

    DTIC Science & Technology

    1988-03-28

    Health and Physical Readiness Program. Questionnaires included self-report measures of the frequency and duration of 10 common exercise activities and... exercise behavior was assessed as the estimated frequency and duration of participation in each of ten types of physical activity . The recall method of...acceptable 6 method in the present study (3). The physical activities were aerobic dance/ exercise class, baseball, basketball, bicycling, calisthenics

  16. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  17. EVOLUTION OF RELATIVE MAGNETIC HELICITY AND CURRENT HELICITY IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Jing, Ju; Liu, Chang; Lee, Jeongwoo; Xu, Yan; Deng, Na; Wang, Haimin; Park, Sung-Hong; Wiegelmann, Thomas E-mail: chang.liu@njit.edu E-mail: na.deng@njit.edu E-mail: freemler@kasi.re.kr E-mail: wiegelmann@linmpi.mpg.de

    2012-06-10

    Both magnetic and current helicities are crucial ingredients for describing the complexity of active-region magnetic structure. In this Letter, we present the temporal evolution of these helicities contained in NOAA active region 11158 during five days from 2011 February 12 to 16. The photospheric vector magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory were used as the boundary conditions for the coronal field extrapolation under the assumption of nonlinear force-free field, from which we calculated both relative magnetic helicity and current helicity. We construct a time-altitude diagram in which altitude distribution of the magnitude of current helicity density is displayed as a function of time. This diagram clearly shows a pattern of upwardly propagating current helicity density over two days prior to the X2.2 flare on February 15 with an average propagation speed of {approx}36 m s{sup -1}. The propagation is synchronous with the emergence of magnetic flux into the photosphere, and indicative of a gradual energy buildup for the X2.2 flare. The time profile of the relative magnetic helicity shows a monotonically increasing trend most of the time, but a pattern of increasing and decreasing magnetic helicity above the monotonic variation appears prior to each of two major flares, M6.6 and X2.2, respectively. The physics underlying this bump pattern is not fully understood. However, the fact that this pattern is apparent in the magnetic helicity evolution but not in the magnetic flux evolution makes it a useful indicator in forecasting major flares.

  18. Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning.

    PubMed

    Ma, Liangsuo; Wang, Binquan; Narayana, Shalini; Hazeltine, Eliot; Chen, Xiying; Robin, Donald A; Fox, Peter T; Xiong, Jinhu

    2010-03-08

    Structural equation modeling (SEM) and fMRI were used to test whether changes in the regional activity are accompanied by changes in the inter-regional connectivity as motor practice progresses. Ten healthy subjects were trained to perform finger movement task daily for 4 weeks. Three sessions of fMRI images were acquired within 4 weeks. The changes in inter-regional connectivity were evaluated by measuring the effective connectivity between the primary motor area (M1), supplementary motor area (SMA), dorsal premotor cortex (PMd), basal ganglia (BG), cerebellum (CB), and posterior ventrolateral prefrontal cortex (pVLPFC). The regional activities in M1 and SMA increased from pre-training to week 2 and decreased from week 2 to week 4. The inter-regional connectivity generally increased in strength (with SEM path coefficients becoming more positive or negative) as practice progressed. The increases in the strength of the inter-regional connectivity may reflect long-term reorganization of the skilled motor network. We suggest that the performance gain was achieved by dynamically tuning the inter-regional connectivity in the motor network.

  19. Activation of HLS1 by Mechanical Stress via Ethylene-Stabilized EIN3 Is Crucial for Seedling Soil Emergence.

    PubMed

    Shen, Xing; Li, Yanli; Pan, Ying; Zhong, Shangwei

    2016-01-01

    The seeds of terrestrial flowering plants often start their life cycle in subterranean darkness. To protect the fragile apical meristematic tissues and cotyledons from mechanical injuries during soil penetration, dicotyledonous seedlings form an elegant apical hook at the top of the hypocotyl. The apical hook has been considered as an adaption structure to the subterranean environment. However, the role of the apical hook in seedling emergence and the molecular mechanism of apical hook formation under real-life conditions remain highly speculative. Here, we find that HOOKLESS 1 (HLS1), a critical gene in apical hook formation in Arabidopsis thaliana, is required for seedling emergence from the soil. When grown under soil, hls1 mutant exhibits severe emergence defects. By contrast, HLS1 overexpression in the hls1 background fully restores emergence defects and displays better emergence capacity than that of WT. Our results indicate that HLS1 transcription is stimulated in response to the mechanical stress of soil cover, which is dependent on the function of the transcription factors ETHYLENE INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1). Soil-conferred mechanical stress activates the ethylene signaling pathway to stabilize EIN3 by repressing the activity of the F-box proteins EBF1 and EBF2. These combined results reveal a signaling pathway in which plant seedlings transduce the mechanical pressure of soil cover to correctly modulate apical hook formation during soil emergence.

  20. Activation of HLS1 by Mechanical Stress via Ethylene-Stabilized EIN3 Is Crucial for Seedling Soil Emergence

    PubMed Central

    Shen, Xing; Li, Yanli; Pan, Ying; Zhong, Shangwei

    2016-01-01

    The seeds of terrestrial flowering plants often start their life cycle in subterranean darkness. To protect the fragile apical meristematic tissues and cotyledons from mechanical injuries during soil penetration, dicotyledonous seedlings form an elegant apical hook at the top of the hypocotyl. The apical hook has been considered as an adaption structure to the subterranean environment. However, the role of the apical hook in seedling emergence and the molecular mechanism of apical hook formation under real-life conditions remain highly speculative. Here, we find that HOOKLESS 1 (HLS1), a critical gene in apical hook formation in Arabidopsis thaliana, is required for seedling emergence from the soil. When grown under soil, hls1 mutant exhibits severe emergence defects. By contrast, HLS1 overexpression in the hls1 background fully restores emergence defects and displays better emergence capacity than that of WT. Our results indicate that HLS1 transcription is stimulated in response to the mechanical stress of soil cover, which is dependent on the function of the transcription factors ETHYLENE INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1). Soil-conferred mechanical stress activates the ethylene signaling pathway to stabilize EIN3 by repressing the activity of the F-box proteins EBF1 and EBF2. These combined results reveal a signaling pathway in which plant seedlings transduce the mechanical pressure of soil cover to correctly modulate apical hook formation during soil emergence. PMID:27822221

  1. Lightning activity and aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Kazantzidis, A.

    2016-03-01

    In the framework of this study, the effect of aerosols on lightning activity has been investigated for the first time over the broader Mediterranean Sea. Atmospheric optical depth data retrieved by MODIS on board Aqua satellite and cloud to ground lightning activity data provided by ZEUS network operated by the National Observatory of Athens were analyzed for a time period spanning from 01/01/2005 up to 31/12/2013. The results indicate the importance of aerosols in lightning modulation. The mean aerosol optical depth (AOD) values of the days with lightning activity were found to be higher than the mean seasonal AOD in 90% of the under study domain. Furthermore, the increasing rate of lightning activity with increasing aerosol loading was found to be more pronounced during summertime and for AOD values up to 0.4. Additionally, the spatial analysis showed that the percentage of days with lightning activity during summertime is increasing with increasing AOD. Finally, time series showed similar temporal behavior between AOD seasonal anomalies and days with lightning activity differences. Both the spatial and temporal analysis showed that lightning activity is correlated to AOD, a characteristic consistent for all seasons.

  2. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  3. 50 CFR 216.120 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... over the 5-year period of the regulations in this subpart, (3) Aircraft flight test operations, and (4... Flight Activities § 216.120 Specified activity and specified geographical region. (a) Regulations in...

  4. 50 CFR 216.120 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in this subpart, (3) Aircraft flight test operations, and (4) Helicopter operations from Vandenberg... Flight Activities § 216.120 Specified activity and specified geographical region. (a) Regulations in...

  5. 50 CFR 216.120 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in this subpart, (3) Aircraft flight test operations, and (4) Helicopter operations from Vandenberg... Flight Activities § 216.120 Specified activity and specified geographical region. (a) Regulations in...

  6. 50 CFR 216.120 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... over the 5-year period of the regulations in this subpart, (3) Aircraft flight test operations, and (4... Flight Activities § 216.120 Specified activity and specified geographical region. (a) Regulations in...

  7. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems.

    PubMed

    Bagheri, Ali; Arandiyan, Hamidreza; Boyer, Cyrille; Lim, May

    2016-07-01

    The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR-initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light-based DDSs-NIR offers better tissue penetration depth and a reduced risk of cellular photo-damage caused by exposure to light at high-energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo-responsive materials with red-shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR-initiated DDS, with emphasis on the use of photo-responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted.

  8. Lanthanide‐Doped Upconversion Nanoparticles: Emerging Intelligent Light‐Activated Drug Delivery Systems

    PubMed Central

    Bagheri, Ali; Arandiyan, Hamidreza

    2016-01-01

    The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR‐initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light‐based DDSs—NIR offers better tissue penetration depth and a reduced risk of cellular photo‐damage caused by exposure to light at high‐energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo‐responsive materials with red‐shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR‐initiated DDS, with emphasis on the use of photo‐responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted. PMID:27818904

  9. Adenosine, Ketogenic Diet and Epilepsy: The Emerging Therapeutic Relationship Between Metabolism and Brain Activity

    PubMed Central

    Masino, S.A; Kawamura, M; Wasser, C.D.; Pomeroy, L.T; Ruskin, D.N

    2009-01-01

    For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed. PMID:20190967

  10. Dynamics on Networks: The Role of Local Dynamics and Global Networks on the Emergence of Hypersynchronous Neural Activity

    PubMed Central

    Schmidt, Helmut; Petkov, George; Richardson, Mark P.; Terry, John R.

    2014-01-01

    Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3–6 Hz) and low-alpha (6–9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80 predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people

  11. 76 FR 12127 - Emergency Homeowners' Loan Program: Announcement of Activation of Program and Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Conditions of Emergency Mortgage Relief Payments 1. Declining Balance Loans. The repayment mechanism for the... balance, deferred payment, non- recourse, subordinate loan with zero interest. The declining balance loan... longer receiving emergency mortgage relief payments. If the homeowner meets this requirement, the...

  12. Synthetic Physical Interactions Map Kinetochore-Checkpoint Activation Regions

    PubMed Central

    Ólafsson, Guðjón; Thorpe, Peter H.

    2016-01-01

    The spindle assembly checkpoint (SAC) is a key mechanism to regulate the timing of mitosis and ensure that chromosomes are correctly segregated to daughter cells. The recruitment of the Mad1 and Mad2 proteins to the kinetochore is normally necessary for SAC activation. This recruitment is coordinated by the SAC kinase Mps1, which phosphorylates residues at the kinetochore to facilitate binding of Bub1, Bub3, Mad1, and Mad2. There is evidence that the essential function of Mps1 is to direct recruitment of Mad1/2. To test this model, we have systematically recruited Mad1, Mad2, and Mps1 to most proteins in the yeast kinetochore, and find that, while Mps1 is sufficient for checkpoint activation, recruitment of either Mad1 or Mad2 is not. These data indicate an important role for Mps1 phosphorylation in SAC activation, beyond the direct recruitment of Mad1 and Mad2. PMID:27280788

  13. Solar irradiance modulation by active regions from 1969 through 1980

    SciTech Connect

    Schatten, K.H.; Miller, N.; Sofia, S.; Oster, L.

    1982-01-01

    The solar irradiance variations resulting from sunspot deficits and facular excesses in emission have been calculated from 1969 through 1980. Agreement appears to exist between our calculations and the major features seen with the Nimbus 7 cavity pyrheliometer and with both the major and minor features detected by The Solar Maximum Mission ACRIM experiment. The 12-year irradiance variations we calculate suggest a larger variance with increased solar activity, and little change in the average irradiance with solar activity. The largest excursions over these 12 years show a 0.4% variation. Removal of the activity influences upon solar irradiance during the numerous rocket experiments observing the solar ''constant'' may allow a better value for this quantity to be determined.

  14. Coronal Hole-Active Region-Current Sheet (CHARCS) Association with Intense Interplanetary and Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Gonzalez, W. D.; Tsurutani, B. T.; McIntosh, P. S.; Gonzalez, A. L.

    1996-01-01

    Intense geomagnetic storms (Dstactive regions(flares and/or filament eruptions) ocurring close to the streamer belt and to growing low altitude coronal holes. It is also shown that such type of coronal holes had a dual-peak solar cycle distribution during solar cycle 21, similar to that previously reported for the above mentioned interplanetary and geomagnetic phenomena.

  15. Stem Cell Emergence and Hemopoietic Activity Are Incompatible in Mouse Intraembryonic Sites

    PubMed Central

    Godin, Isabelle; Garcia-Porrero, Juan Antonio; Dieterlen-Lièvre, Françoise; Cumano, Ana

    1999-01-01

    In the mouse embryo, the generation of candidate progenitors for long-lasting hemopoiesis has been reported in the paraaortic splanchnopleura (P-Sp)/aorta-gonad-mesonephros (AGM) region. Here, we address the following question: can the P-Sp/AGM environment support hemopoietic differentiation as well as generate stem cells, and, conversely, are other sites where hemopoietic differentiation occurs capable of generating stem cells? Although P-Sp/AGM generates de novo hemopoietic stem cells between 9.5 and 12.5 days post coitus (dpc), we show here that it does not support hemopoietic differentiation. Among mesoderm-derived sites, spleen and omentum were shown to be colonized by exogenous cells in the same fashion as the fetal liver. Cells colonizing the spleen were multipotent and pursued their evolution to committed progenitors in this organ. In contrast, the omentum, which was colonized by lymphoid-committed progenitors that did not expand, cannot be considered as a hemopoietic organ. From these data, stem cell generation appears incompatible with hemopoietic activity. At the peak of hemopoietic progenitor production in the P-Sp/AGM, between 10.5 and 11.5 dpc, multipotent cells were found at the exceptional frequency of 1 out of 12 total cells and 1 out of 4 AA4.1+ cells. Thus, progenitors within this region constitute a pool of undifferentiated hemopoietic cells readily accessible for characterization. PMID:10429669

  16. Coronal Mass Ejections from the Same Active Region Cluster: Two Different Perspectives

    NASA Astrophysics Data System (ADS)

    Cremades, H.; Mandrini, C. H.; Schmieder, B.; Crescitelli, A. M.

    2015-06-01

    The cluster formed by active regions (ARs) NOAA 11121 and 11123, approximately located on the solar central meridian on 11 November 2010, is of great scientific interest. This complex was the site of violent flux emergence and the source of a series of Earth-directed events on the same day. The onset of the events was nearly simultaneously observed by the Atmospheric Imaging Assembly (AIA) telescope onboard the Solar Dynamics Observatory (SDO) and the Extreme-Ultraviolet Imagers (EUVI) on the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) suite of telescopes onboard the Solar-Terrestrial Relations Observatory (STEREO) twin spacecraft. The progression of these events in the low corona was tracked by the Large Angle Spectroscopic Coronagraphs (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) and the SECCHI/COR coronagraphs on STEREO. SDO and SOHO imagers provided data from the Earth's perspective, whilst the STEREO twin instruments procured images from the orthogonal directions. This spatial configuration of spacecraft allowed optimum simultaneous observations of the AR cluster and the coronal mass ejections that originated in it. Quadrature coronal observations provided by STEREO revealed many more ejective events than were detected from Earth. Furthermore, joint observations by SDO/AIA and STEREO/SECCHI EUVI of the source region indicate that all events classified by GOES as X-ray flares had an ejective coronal counterpart in quadrature observations. These results directly affect current space weather forecasting because alarms might be missed when there is a lack of solar observations in a view direction perpendicular to the Sun-Earth line.

  17. PARALLEL EVOLUTION OF QUASI-SEPARATRIX LAYERS AND ACTIVE REGION UPFLOWS

    SciTech Connect

    Mandrini, C. H.; Cristiani, G. D.; Nuevo, F. A.; Vásquez, A. M.; Baker, D.; Driel-Gesztelyi, L. van; Démoulin, P.; Pick, M.; Vargas Domínguez, S.

    2015-08-10

    Persistent plasma upflows were observed with Hinode’s EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern, which is present in the AR for several days. We propose a scenario in which upflows are observed, provided that a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and lasts as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs; in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support for the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but is also responsible for the continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nançay Radio Heliograph.

  18. 78 FR 23951 - Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... management activities in the Powder River Coal Production Region. DATES: The RCT meeting will begin at 9 a.m... Bureau of Land Management Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: