Sample records for active region generate

  1. Regional brain activation/deactivation during word generation in schizophrenia: fMRI study.

    PubMed

    John, John P; Halahalli, Harsha N; Vasudev, Mandapati K; Jayakumar, Peruvumba N; Jain, Sanjeev

    2011-03-01

    Examination of the brain regions that show aberrant activations and/or deactivations during semantic word generation could pave the way for a better understanding of the neurobiology of cognitive dysfunction in schizophrenia. To examine the pattern of functional magnetic resonance imaging blood oxygen level dependent activations and deactivations during semantic word generation in schizophrenia. Functional magnetic resonance imaging was performed on 24 participants with schizophrenia and 24 matched healthy controls during an overt, paced, 'semantic category word generation' condition and a baseline 'word repetition' condition that modelled all the lead-in/associated processes involved in the performance of the generation task. The brain regions activated during word generation in healthy individuals were replicated with minimal redundancies in participants with schizophrenia. The individuals with schizophrenia showed additional activations of temporo-parieto-occipital cortical regions as well as subcortical regions, despite significantly poorer behavioural performance than the healthy participants. Importantly, the extensive deactivations in other brain regions during word generation in healthy individuals could not be replicated in those with schizophrenia. More widespread activations and deficient deactivations in the poorly performing participants with schizophrenia may reflect an inability to inhibit competing cognitive processes, which in turn could constitute the core information-processing deficit underlying impaired word generation in schizophrenia.

  2. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  3. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Kazuue, E-mail: kfujita@crl.hpk.co.jp; Hitaka, Masahiro; Ito, Akio

    2015-06-22

    We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2}more » at room temperature.« less

  4. Optimization based on benefit of regional energy suppliers of distributed generation in active distribution network

    NASA Astrophysics Data System (ADS)

    Huo, Xianxu; Li, Guodong; Jiang, Ling; Wang, Xudong

    2017-08-01

    With the development of electricity market, distributed generation (DG) technology and related policies, regional energy suppliers are encouraged to build DG. Under this background, the concept of active distribution network (ADN) is put forward. In this paper, a bi-level model of intermittent DG considering benefit of regional energy suppliers is proposed. The objective of the upper level is the maximization of benefit of regional energy suppliers. On this basis, the lower level is optimized for each scene. The uncertainties of DG output and load of users, as well as four active management measures, which include demand-side management, curtailing the output power of DG, regulating reactive power compensation capacity and regulating the on-load tap changer, are considered. Harmony search algorithm and particle swarm optimization are combined as a hybrid strategy to solve the model. This model and strategy are tested with IEEE-33 node system, and results of case study indicate that the model and strategy successfully increase the capacity of DG and benefit of regional energy suppliers.

  5. NGA-West2 Empirical Fourier Model for Active Crustal Regions to Generate Regionally Adjustable Response Spectra

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Cotton, F.; Scherbaum, F.; Kuehn, N. M.

    2016-12-01

    Adjustment of median ground motion prediction equations (GMPEs) from data-rich (host) regions to data-poor regions (target) is one of major challenges that remains with the current practice of engineering seismology and seismic hazard analysis. Fourier spectral representation of ground motion provides a solution to address the problem of adjustment that is physically transparent and consistent with the concepts of linear system theory. Also, it provides a direct interface to appreciate the physically expected behavior of seismological parameters on ground motion. In the present study, we derive an empirical Fourier model for computing regionally adjustable response spectral ordinates based on random vibration theory (RVT) from shallow crustal earthquakes in active tectonic regions, following the approach of Bora et al. (2014, 2015). , For this purpose, we use an expanded NGA-West2 database with M 3.2—7.9 earthquakes at distances ranging from 0 to 300 km. A mixed-effects regression technique is employed to further explore various components of variability. The NGA-West2 database expanded over a wide magnitude range provides a better understanding (and constraint) of source scaling of ground motion. The large global volume of the database also allows investigating regional patterns in distance-dependent attenuation (i.e., geometrical spreading and inelastic attenuation) of ground motion as well as in the source parameters (e.g., magnitude and stress drop). Furthermore, event-wise variability and its correlation with stress parameter are investigated. Finally, application of the derived Fourier model in generating adjustable response spectra will be shown.

  6. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  7. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  8. Estimation of regional building-related C&D debris generation and composition: case study for Florida, US.

    PubMed

    Cochran, Kimberly; Townsend, Timothy; Reinhart, Debra; Heck, Howell

    2007-01-01

    Methodology for the accounting, generation, and composition of building-related construction and demolition (C&D) at a regional level was explored. Six specific categories of debris were examined: residential construction, nonresidential construction, residential demolition, nonresidential demolition, residential renovation, and nonresidential renovation. Debris produced from each activity was calculated as the product of the total area of activity and waste generated per unit area of activity. Similarly, composition was estimated as the product of the total area of activity and the amount of each waste component generated per unit area. The area of activity was calculated using statistical data, and individual site studies were used to assess the average amount of waste generated per unit area. The application of the methodology was illustrated using Florida, US approximately 3,750,000 metric tons of building-related C&D debris were estimated as generated in Florida in 2000. Of that amount, concrete represented 56%, wood 13%, drywall 11%, miscellaneous debris 8%, asphalt roofing materials 7%, metal 3%, cardboard 1%, and plastic 1%. This model differs from others because it accommodates regional construction styles and available data. The resulting generation amount per capita is less than the US estimate - attributable to the high construction, low demolition activity seen in Florida.

  9. Software Displays Data on Active Regions of the Sun

    NASA Technical Reports Server (NTRS)

    Golightly, Mike; Weyland, Mark; Raben, Vern

    2011-01-01

    The Solar Active Region Display System is a computer program that generates, in near real time, a graphical display of parameters indicative of the spatial and temporal variations of activity on the Sun. These parameters include histories and distributions of solar flares, active region growth, coronal mass ejections, size, and magnetic configuration. By presenting solar-activity data in graphical form, this program accelerates, facilitates, and partly automates what had previously been a time-consuming mental process of interpretation of solar-activity data presented in tabular and textual formats. Intended for original use in predicting space weather in order to minimize the exposure of astronauts to ionizing radiation, the program might also be useful on Earth for predicting solar-wind-induced ionospheric effects, electric currents, and potentials that could affect radio-communication systems, navigation systems, pipelines, and long electric-power lines. Raw data for the display are obtained automatically from the Space Environment Center (SEC) of the National Oceanic and Atmospheric Administration (NOAA). Other data must be obtained from the NOAA SEC by verbal communication and entered manually. The Solar Active Region Display System automatically accounts for the latitude dependence of the rate of rotation of the Sun, by use of a mathematical model that is corrected with NOAA SEC active-region position data once every 24 hours. The display includes the date, time, and an image of the Sun in H light overlaid with latitude and longitude coordinate lines, dots that mark locations of active regions identified by NOAA, identifying numbers assigned by NOAA to such regions, and solar-region visual summary (SRVS) indicators associated with some of the active regions. Each SRVS indicator is a small pie chart containing five equal sectors, each of which is color-coded to provide a semiquantitative indication of the degree of hazard posed by one aspect of the activity at

  10. Active Regions Blossoming

    NASA Image and Video Library

    2015-10-28

    As a pair of active regions began to rotate into view, their towering magnetic field lines above them bloomed into a dazzling display of twisting arches (Oct. 27-28, 2015). Some of the lines reached over and connected with the neighboring active region. Active regions are usually the source of solar storms. The images were taken in a wavelength of extreme ultraviolet light. http://photojournal.jpl.nasa.gov/catalog/PIA20048

  11. THz quantum cascade lasers with wafer bonded active regions.

    PubMed

    Brandstetter, M; Deutsch, C; Benz, A; Cole, G D; Detz, H; Andrews, A M; Schrenk, W; Strasser, G; Unterrainer, K

    2012-10-08

    We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.

  12. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  13. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  14. Generating region proposals for histopathological whole slide image retrieval.

    PubMed

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu; Shi, Jun

    2018-06-01

    Content-based image retrieval is an effective method for histopathological image analysis. However, given a database of huge whole slide images (WSIs), acquiring appropriate region-of-interests (ROIs) for training is significant and difficult. Moreover, histopathological images can only be annotated by pathologists, resulting in the lack of labeling information. Therefore, it is an important and challenging task to generate ROIs from WSI and retrieve image with few labels. This paper presents a novel unsupervised region proposing method for histopathological WSI based on Selective Search. Specifically, the WSI is over-segmented into regions which are hierarchically merged until the WSI becomes a single region. Nucleus-oriented similarity measures for region mergence and Nucleus-Cytoplasm color space for histopathological image are specially defined to generate accurate region proposals. Additionally, we propose a new semi-supervised hashing method for image retrieval. The semantic features of images are extracted with Latent Dirichlet Allocation and transformed into binary hashing codes with Supervised Hashing. The methods are tested on a large-scale multi-class database of breast histopathological WSIs. The results demonstrate that for one WSI, our region proposing method can generate 7.3 thousand contoured regions which fit well with 95.8% of the ROIs annotated by pathologists. The proposed hashing method can retrieve a query image among 136 thousand images in 0.29 s and reach precision of 91% with only 10% of images labeled. The unsupervised region proposing method can generate regions as predictions of lesions in histopathological WSI. The region proposals can also serve as the training samples to train machine-learning models for image retrieval. The proposed hashing method can achieve fast and precise image retrieval with small amount of labels. Furthermore, the proposed methods can be potentially applied in online computer-aided-diagnosis systems. Copyright

  15. Thoughts on the development of active regional public health systems.

    PubMed

    Reis, Ademar Arthur Chioro Dos; Sóter, Ana Paula Menezes; Furtado, Lumena Almeida Castro; Pereira, Silvana Souza da Silva

    2017-04-01

    Decentralization and regionalization are strategic themes for reforms in the health system. This paper analyzes the complex process of health regionalization being developed in Brazil. This paper identifies that the normative framework from the Brazilian National Health System, SUS has made advances with respect to its institutionalization and overcoming the initial centrality involved in municipalization. This has strengthened the development of regionalization and the intergovernmental agreement on health but the evidence points to the need to promote a revision. Based on document analysis, literature review and the views given by the authors involved in management in SUS as well as generating radically different views, the challenges for the construction of a regionalization that is active, is debated. We also discuss: its relations with planning and the dimensioning of service networks, the production of active care networks and shared management spaces, the inter-federative agreements and regional regulations, the capacity to coordinate regional systems and financing and the impact of the political dimension and electoral cycles. Regionalization (and SUS itself) is an open book, therefore ways and possibilities on how to maintain an active form of regionalization can be recommended.

  16. Gyrating Active Region

    NASA Image and Video Library

    2017-01-26

    On Jan. 20, 2017, NASA Solar Dynamics Observatory captured a small area of the sun highlighted three active region. Over half a day this active region sent dark swirls of plasma and bright magnetic arches twisting and turning above it. All the activity in the three areas was driven by competing magnetic forces. The dynamic action was observed in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11703

  17. Active Regions' Magnetic Connection

    NASA Image and Video Library

    2017-05-22

    Several bright bands of plasma connect from one active region to another, even though they are tens of thousands of miles away from each other (May 17-18, 2017). Active regions are, by their nature, strong magnetic areas with north and south poles. The plasma consists of charged particles that stream along the magnetic field lines between these two regions. These connecting lines are clearly visible in this wavelength of extreme ultraviolet light. Other loops and strands of bright plasma can be seen rising up and out of smaller active regions as well. The video covers about one day's worth of activity. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21638

  18. Energized Active Regions

    NASA Image and Video Library

    2017-06-02

    A pair of relatively small (but frenetic) active regions rotated into view, spouting off numerous small flares and sweeping loops of plasma (May 31-June 2, 2017). At first, only the one active region was observed, but mid-way though the video clip a second one behind the first can be picked out. The dynamic regions were easily the most remarkable areas on the sun during this 42-hour period. The images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21756

  19. Agitated Active Region

    NASA Image and Video Library

    2016-10-11

    An active region just rotating into view gave us a perfect view of the tussle of magnetic field lines above it (Oct. 10-11, 2016). The particles spiraling along the magnetic field lines become visible in extreme ultraviolet light, helping us to see the struggle going on. There were no eruptions during this period, although active regions are usually the source for solar storms. The video clip covers just one day's worth of activity. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21109

  20. Females and males are highly similar in language performance and cortical activation patterns during verb generation.

    PubMed

    Allendorfer, Jane B; Lindsell, Christopher J; Siegel, Miriam; Banks, Christi L; Vannest, Jennifer; Holland, Scott K; Szaflarski, Jerzy P

    2012-10-01

    To test the existence of sex differences in cortical activation during verb generation when performance is controlled for. Twenty male and 20 female healthy adults underwent functional magnetic resonance imaging (fMRI) using a covert block-design verb generation task (BD-VGT) and its event-related version (ER-VGT) that allowed for intra-scanner recordings of overt responses. Task-specific activations were determined using the following contrasts: BD-VGT covert generation>finger-tapping; ER-VGT overt generation>repetition; ER-VGT overt>covert generation. Lateral cortical regions activated during each contrast were used for calculating language lateralization index scores. Voxelwise regressions were used to determine sex differences in activation, with and without controlling for performance. Each brain region showing male/female activation differences for ER-VGT overt generation>repetition (isolating noun-verb association) was defined as a region of interest (ROI). For each subject, the signal change in each ROI was extracted, and the association between ER-VGT activation related to noun-verb association and performance was assessed separately for each sex. Males and females performed similarly on language assessments, had similar patterns of language lateralization, and exhibited similar activation patterns for each fMRI task contrast. Regression analysis controlling for overt intra-scanner performance either abolished (BD-VGT) or reduced (ER-VGT) the observed differences in activation between sexes. The main difference between sexes occurred during ER-VGT processing of noun-verb associations, where males showed greater activation than females in the right middle/superior frontal gyrus (MFG/SFG) and the right caudate/anterior cingulate gyrus (aCG) after controlling for performance. Better verb generation performance was associated with increased right caudate/aCG activation in males and with increased right MFG/SFG activation in females. Males and females exhibit

  1. The Evolution of Active Regions

    NASA Astrophysics Data System (ADS)

    Green, Lucie

    2016-10-01

    The solar corona is a highly dynamic environment which exhibits the largest releases of energy in the Solar System in the form of solar flares and coronal mass ejections. This activity predominantly originates from active regions, which store and release free magnetic energy and dominate the magnetic face of the Sun. Active regions can be long-lived features, being affected by the Sun's convective flows, differential rotation and meridional flows. The Sun's global coronal field can be seen as the superposed growth and subsequent diffusion of all previously formed active regions. This talk will look at active regions as an observable product of the solar dynamo and will discuss the physical processes that are at play which lead to the storage and release of free magnetic energy. What happens to flux that emerges into the corona so that it goes down an evolutionary path that leads to dynamic activity? And how does this activity vary with active region age? When an active region reaches the end of its lifetime, his much of the magnetic flux is recycled back into subsequent solar cycles? The current status of observations and modelling will be reviewed with a look to the future and fundamental questions that are still be be answered.

  2. Simulating Coronal Loop Implosion and Compressible Wave Modes in a Flare Hit Active Region

    NASA Astrophysics Data System (ADS)

    Sarkar, Aveek; Vaidya, Bhargav; Hazra, Soumitra; Bhattacharyya, Jishnu

    2017-12-01

    There is considerable observational evidence of implosion of magnetic loop systems inside solar coronal active regions following high-energy events like solar flares. In this work, we propose that such collapse can be modeled in three dimensions quite accurately within the framework of ideal magnetohydrodynamics. We furthermore argue that the dynamics of loop implosion is only sensitive to the transmitted disturbance of one or more of the system variables, e.g., velocity generated at the event site. This indicates that to understand loop implosion, it is sensible to leave the event site out of the simulated active region. Toward our goal, a velocity pulse is introduced to model the transmitted disturbance generated at the event site. Magnetic field lines inside our simulated active region are traced in real time, and it is demonstrated that the subsequent dynamics of the simulated loops closely resemble observed imploding loops. Our work highlights the role of plasma β in regards to the rigidity of the loop systems and how that might affect the imploding loops’ dynamics. Compressible magnetohydrodynamic modes such as kink and sausage are also shown to be generated during such processes, in accordance with observations.

  3. Generation of region 1 current by magnetospheric pressure gradients

    NASA Technical Reports Server (NTRS)

    Yang, Y. S.; Spiro, R. W.; Wolf, R. A.

    1994-01-01

    The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.

  4. Jumpy Active Region

    NASA Image and Video Library

    2017-01-03

    A close-up view of one day in the life of a rather small active region shows the agitation and dynamism of its magnetic field (Dec. 21, 2016). This wavelength of extreme ultraviolet light reveals particles as they spin along the cascading arches of magnetic field lines above the active region. Some darker plasma rises up and spins around at the edge of the sun near the end of the video clip also being pulled by unseen magnetic forces. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA15032

  5. Face Generation Using Emotional Regions for Sensibility Robot

    NASA Astrophysics Data System (ADS)

    Gotoh, Minori; Kanoh, Masayoshi; Kato, Shohei; Kunitachi, Tsutomu; Itoh, Hidenori

    We think that psychological interaction is necessary for smooth communication between robots and people. One way to psychologically interact with others is through facial expressions. Facial expressions are very important for communication because they show true emotions and feelings. The ``Ifbot'' robot communicates with people by considering its own ``emotions''. Ifbot has many facial expressions to communicate enjoyment. We developed a method for generating facial expressions based on human subjective judgements mapping Ifbot's facial expressions to its emotions. We first created Ifbot's emotional space to map its facial expressions. We applied a five-layer auto-associative neural network to the space. We then subjectively evaluated the emotional space and created emotional regions based on the results. We generated emotive facial expressions using the emotional regions.

  6. Active Learning Crosses Generations.

    ERIC Educational Resources Information Center

    Woodard, Diane K.

    2002-01-01

    Describes the benefits of intergenerational programs, highlighting a child care program that offers age-appropriate and mutually beneficial activities for children and elders within a nearby retirement community. The program has adopted High/Scope's active learning approach to planning and implementing activities that involve both generations. The…

  7. Open magnetic fields in active regions

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Solodyna, C. V.; Howard, R.; Levine, R. H.

    1977-01-01

    Soft X-ray images and magnetograms of several active regions and coronal holes are examined which support the interpretation that some of the dark X-ray gaps seen between interconnecting loops and inner cores of active regions are foot points of open field lines inside the active regions. Characteristics of the investigated dark gaps are summarized. All the active regions with dark X-ray gaps at the proper place and with the correct polarity predicted by global potential extrapolation of photospheric magnetic fields are shown to be old active regions, indicating that field opening is accomplished only in a late phase of active-region development. It is noted that some of the observed dark gaps probably have nothing in common with open fields, but are either due to the decreased temperature in low-lying portions of interconnecting loops or are the roots of higher and less dense or cooler loops.

  8. Multiscale Aspects of Generation of High-Gamma Activity during Seizures in Human Neocortex123

    PubMed Central

    Marcuccilli, Charles J.; Ben-Mabrouk, Faiza; Lew, Sean M.; Goodman, Robert R.; McKhann, Guy M.; Frim, David M.; Kohrman, Michael H.; Schevon, Catherine A.; van Drongelen, Wim

    2016-01-01

    High-gamma (HG; 80-150 Hz) activity in macroscopic clinical records is considered a marker for critical brain regions involved in seizure initiation; it is correlated with pathological multiunit firing during neocortical seizures in the seizure core, an area identified by correlated multiunit spiking and low frequency seizure activity. However, the effects of the spatiotemporal dynamics of seizure on HG power generation are not well understood. Here, we studied HG generation and propagation, using a three-step, multiscale signal analysis and modeling approach. First, we analyzed concurrent neuronal and microscopic network HG activity in neocortical slices from seven intractable epilepsy patients. We found HG activity in these networks, especially when neurons displayed paroxysmal depolarization shifts and network activity was highly synchronized. Second, we examined HG activity acquired with microelectrode arrays recorded during human seizures (n = 8). We confirmed the presence of synchronized HG power across microelectrode records and the macroscale, both specifically associated with the core region of the seizure. Third, we used volume conduction-based modeling to relate HG activity and network synchrony at different network scales. We showed that local HG oscillations require high levels of synchrony to cross scales, and that this requirement is met at the microscopic scale, but not within macroscopic networks. Instead, we present evidence that HG power at the macroscale may result from harmonics of ongoing seizure activity. Ictal HG power marks the seizure core, but the generating mechanism can differ across spatial scales. PMID:27257623

  9. Australia's regional innovation systems: inter-industry interaction in innovative activities in three Australian territories

    PubMed Central

    Schütz, Marlies H.

    2017-01-01

    ABSTRACT Regional specifics reveal in differences in economic activity and structure, the institutional, socio-economic and cultural environment and not least in the capability of regions to create new knowledge and to generate innovations. Focusing on the regional level, this paper for three Australian territories (New South Wales, Victoria and Queensland) explores patterns of innovative activities in their private business sectors. Furthermore, these patterns are compared to specifics of each region's economic structure. We make use of input–output-based innovation flow networks, which are directed and weighted instead of binary. The value added of the proposed analysis is that we are able to trace a variety of different aspects related to the structure of innovative activities for each territory. It gets evident that mostly innovative activities in each territory are not strong in ‘niche’ branches but in fields of intense economic activity, signalising the high path-dependency of innovative activities in a specific geographical environment. PMID:29097849

  10. Australia's regional innovation systems: inter-industry interaction in innovative activities in three Australian territories.

    PubMed

    Schütz, Marlies H

    2017-07-03

    Regional specifics reveal in differences in economic activity and structure, the institutional, socio-economic and cultural environment and not least in the capability of regions to create new knowledge and to generate innovations. Focusing on the regional level, this paper for three Australian territories (New South Wales, Victoria and Queensland) explores patterns of innovative activities in their private business sectors. Furthermore, these patterns are compared to specifics of each region's economic structure. We make use of input-output-based innovation flow networks, which are directed and weighted instead of binary. The value added of the proposed analysis is that we are able to trace a variety of different aspects related to the structure of innovative activities for each territory. It gets evident that mostly innovative activities in each territory are not strong in 'niche' branches but in fields of intense economic activity, signalising the high path-dependency of innovative activities in a specific geographical environment.

  11. Modification of "Pressed" Atmospheres in Active Regions of Ultracool Stars

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2017-12-01

    Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly "pressed" against the star surface, and the plasma frequency is much lower than the electron gyrofrequency ( f L ≪ f B) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition f L ≫ f B, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.

  12. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is

  13. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Kan, J. R.; Wu, C. S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.

  14. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs).

    PubMed

    Cutts, Josh; Brookhouser, Nicholas; Brafman, David A

    2016-01-01

    Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population capable of long-term expansion and differentiation into a variety of neuronal subtypes. As such, NPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine. Current methods for the generation of NPCs results in cell populations homogenous for pan-neural markers such as SOX1 and SOX2 but heterogeneous with respect to regional identity. In order to use NPCs and their neuronal derivatives to investigate mechanisms of neurological disorders and develop more physiologically relevant disease models, methods for generation of regionally specific NPCs and neurons are needed. Here, we describe a protocol in which exogenous manipulation of WNT signaling, through either activation or inhibition, during neural differentiation of hPSCs, promotes the formation of regionally homogenous NPCs and neuronal cultures. In addition, we provide methods to monitor and characterize the efficiency of hPSC differentiation to these regionally specific cell identities.

  15. Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans.

    PubMed Central

    McCarthy, G; Blamire, A M; Rothman, D L; Gruetter, R; Shulman, R G

    1993-01-01

    Nine subjects were studied by high-speed magnetic resonance imaging while performing language-based tasks. Subjects were asked either to repeat or to generate verbs associated with nouns read by an experimenter while magnetic resonance images were obtained of the left inferior frontal lobe. The echo-planar imaging sequence was used with a gradient echo time of 70 ms to give an apparent transverse relaxation time weighting (T2* that is sensitive to local hemoglobin levels. Images were acquired every 3 s (repetition time) in series of 32. In plane resolution was 6 x 4.5 mm and slice thickness was 10 mm. An increase in signal accompanied performance of the tasks, with significantly more activation for verb generation than for repeating. The activation effect occurred within 3 s after task onset and could be observed in single images from individual subjects. The primary focus of activation appeared in gray matter along a sulcus anterior to the lateral sulcus that included the anterior insula, Brodmann's area 47, and extending to area 10. Little or no activation of this region was found for a passive listening, covert generation, or mouth-movement control tasks. Significant activation was also found for a homologous region in the right frontal cortex but not for control regions in calcarine cortex. These results are consistent with prior studies that have used positron emission tomography imaging with 15O-labeled water as a blood flow tracer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8506340

  16. The Twist Limit for Bipolar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  17. Regional water consumption for hydro and thermal electricity generation in the United States

    DOE PAGES

    Lee, Uisung; Han, Jeongwoo; Elgowainy, Amgad; ...

    2017-05-18

    Water is an essential resource for most electric power generation technologies. Thermal power plants typically require a large amount of cooling water whose evaporation is regarded to be consumed. Hydropower plants result in evaporative water loss from the large surface areas of the storing reservoirs. This paper estimated the regional water consumption factors (WCFs) for thermal and hydro electricity generation in the United States, because the WCFs of these power plants vary by region and water supply and demand balance are of concern in many regions. For hydropower, total WCFs were calculated using a reservoir’s surface area, state-level water evaporation,more » and background evapotranspiration. Then, for a multipurpose reservoir, a fraction of its WCF was allocated to hydropower generation based on the share of the economic valuation of hydroelectricity among benefits from all purposes of the reservoir. For thermal power plants, the variations in WCFs by type of cooling technology, prime mover technology, and by region were addressed. The results show that WCFs for electricity generation vary significantly by region. Finally, the generation-weighted average WCFs of thermoelectricity and hydropower are 1.25 (range of 0.18–2.0) and 16.8 (range of 0.67–1194) L/kWh, respectively, and the generation-weighted average WCF by the U.S. generation mix in 2015 is estimated at 2.18 L/kWh.« less

  18. Regional water consumption for hydro and thermal electricity generation in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Elgowainy, Amgad

    Water is an essential resource for most electric power generation technologies. Thermal power plants typically require a large amount of cooling water whose evaporation is regarded to be consumed. Hydropower plants result in evaporative water loss from the large surface areas of the storing reservoirs. This paper estimated the regional water consumption factors (WCFs) for thermal and hydro electricity generation in the United States, because the WCFs of these power plants vary by region and water supply and demand balance are of concern in many regions. For hydropower, total WCFs were calculated using a reservoir’s surface area, state-level water evaporation,more » and background evapotranspiration. Then, for a multipurpose reservoir, a fraction of its WCF was allocated to hydropower generation based on the share of the economic valuation of hydroelectricity among benefits from all purposes of the reservoir. For thermal power plants, the variations in WCFs by type of cooling technology, prime mover technology, and by region were addressed. The results show that WCFs for electricity generation vary significantly by region. Finally, the generation-weighted average WCFs of thermoelectricity and hydropower are 1.25 (range of 0.18–2.0) and 16.8 (range of 0.67–1194) L/kWh, respectively, and the generation-weighted average WCF by the U.S. generation mix in 2015 is estimated at 2.18 L/kWh.« less

  19. Cortical regions involved in the generation of musical structures during improvisation in pianists.

    PubMed

    Bengtsson, Sara L; Csíkszentmihályi, Mihály; Ullén, Fredrik

    2007-05-01

    Studies on simple pseudorandom motor and cognitive tasks have shown that the dorsolateral prefrontal cortex and rostral premotor areas are involved in free response selection. We used functional magnetic resonance imaging to investigate whether these brain regions are also involved in free generation of responses in a more complex creative behavior: musical improvisation. Eleven professional pianists participated in the study. In one condition, Improvise, the pianist improvised on the basis of a visually displayed melody. In the control condition, Reproduce, the participant reproduced his previous improvisation from memory. Participants were able to reproduce their improvisations with a high level of accuracy, and the contrast Improvise versus Reproduce was thus essentially matched in terms of motor output and sensory feedback. However, the Improvise condition required storage in memory of the improvisation. We therefore also included a condition FreeImp, where the pianist improvised but was instructed not to memorize his performance. To locate brain regions involved in musical creation, we investigated the activations in the Improvise-Reproduce contrast that were also present in FreeImp contrasted with a baseline rest condition. Activated brain regions included the right dorsolateral prefrontal cortex, the presupplementary motor area, the rostral portion of the dorsal premotor cortex, and the left posterior part of the superior temporal gyrus. We suggest that these regions are part of a network involved in musical creation, and discuss their possible functional roles.

  20. Generating High Resolution Climate Scenarios Through Regional Climate Modelling Over Southern Africa

    NASA Astrophysics Data System (ADS)

    Ndhlovu, G. Z.; Woyessa, Y. E.; Vijayaraghavan, S.

    2017-12-01

    limate change has impacted the global environment and the Continent of Africa, especially Southern Africa, regarded as one of the most vulnerable regions in Africa, has not been spared from these impacts. Global Climate Models (GCMs) with coarse horizontal resolutions of 150-300 km do not provide sufficient details at the local basin scale due to mismatch between the size of river basins and the grid cell of the GCM. This makes it difficult to apply the outputs of GCMs directly to impact studies such as hydrological modelling. This necessitates the use of regional climate modelling at high resolutions that provide detailed information at regional and local scales to study both climate change and its impacts. To this end, an experiment was set up and conducted with PRECIS, a regional climate model, to generate climate scenarios at a high resolution of 25km for the local region in Zambezi River basin of Southern Africa. The major input data used included lateral and surface boundary conditions based on the GCMs. The data is processed, analysed and compared with CORDEX climate change project data generated for Africa. This paper, highlights the major differences of the climate scenarios generated by PRECIS Model and CORDEX Project for Africa and further gives recommendations for further research on generation of climate scenarios. The climatic variables such as precipitation and temperatures have been analysed for flood and droughts in the region. The paper also describes the setting up and running of an experiment using a high-resolution PRECIS model. In addition, a description has been made in running the model and generating the output variables on a sub basin scale. Regional climate modelling which provides information on climate change impact may lead to enhanced understanding of adaptive water resources management. Understanding the regional climate modelling results on sub basin scale is the first step in analysing complex hydrological processes and a basis for

  1. Spasmodic Active Region

    NASA Image and Video Library

    2014-04-30

    An active region that was rotating out of view off the sun's western limb, displayed a dazzling variety of dozens of spurts and eruptions in about 2.5 days (Apr. 19-21, 2014). The frames, taken in extreme ultraviolet light, show ionized Helium not far above the Sun's surface. All of the activity near this region was caused by intense magnetic forces in a powerful struggling with each other. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Tangled up Active Region

    NASA Image and Video Library

    2017-12-08

    This close-up image of the sun presents an active region in profile as it rotated out of view. We can observe both the bright arching field lines and smaller pieces of darker matter in their midst being pulled back and forth just above the Sun's surface over about 36 hours (July 20-22, 2011). Both of these physical responses were caused by strong, tangled magnetic forces that are constantly evolving and reorganizing within the active region. Other active regions can be seen in the foreground as well. The image and movie were taken in extreme ultraviolet light of ionized iron heated to one million degrees. To view a hd video of this event go here: www.flickr.com/photos/gsfc/6006013038 Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Kinked Loop Stretching Between Two Active Regions

    NASA Image and Video Library

    2017-07-25

    Numerous arches of magnetic field lines danced and swayed above a large active region over about a 30-hour period (July 17-18, 2017). We can also see the magnetic field lines from the large active region reached out and connected with a smaller active region. Those linked lines then strengthened (become brighter), but soon began to develop a kink in them and rather swiftly faded from view. All of this activity is driven by strong magnetic forces associated with the active regions. The images were taken in a wavelength of extreme ultraviolet light. https://photojournal.jpl.nasa.gov/catalog/PIA21838

  4. Image Patch Analysis of Sunspots and Active Regions

    NASA Astrophysics Data System (ADS)

    Moon, K.; Delouille, V.; Hero, A.

    2017-12-01

    The flare productivity of an active region has been observed to be related to its spatial complexity. Separating active regions that are quiet from potentially eruptive ones is a key issue in space weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature does not use all of the information present in the observations. In our work, we present an image patch analysis for characterizing sunspots and active regions. We first propose fine-scale quantitative descriptors for an active region's complexity such as intrinsic dimension, and we relate them to the Mount Wilson classification. Second, we introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. To obtain this local geometry, we use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches using the singular value decomposition. The resulting factorizations of active regions can be compared via the definition of appropriate metrics on the factors. The distances obtained from these metrics are then used to cluster the active regions. Results. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the R-value.

  5. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.

    PubMed

    Abe, S

    1998-01-01

    In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.

  6. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikic, Zoran

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previousmore » works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.« less

  7. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  8. Influence of air-jet vortex generator diameter on separation region

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard

    2013-08-01

    Control of shock wave and boundary layer interaction continues to attract a lot of attention. In recent decades several methods of interaction control have been investigated. The research has mostly concerned solid (vane type) vortex generators and transpiration methods of suction and blowing. This investigation concerns interaction control using air-jets to generate streamwise vortices. The effectiveness of air-jet vortex generators in controlling separation has been proved in a previous research. The present paper focuses on the influence of the vortex generator diameter on the separation region. It presents the results of experimental investigations and provides new guidelines for the design of air-jet vortex generators to obtain more effective separation control.

  9. Thermal shielding of an emerging active region

    NASA Astrophysics Data System (ADS)

    Régnier, S.

    2012-08-01

    Context. The interaction between emerging active regions and the pre-existing coronal magnetic field is important for better understanding the mechanisms of storage and release of magnetic energy from the convection zone to the high corona. Aims: We describe the first steps of an emerging active region within a pre-existing quiet-Sun corona in terms of the thermal and magnetic structure. Methods: We used unprecedented spatial, temporal and spectral coverage from the Atmospheric Imager Assembly (AIA) and from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Results: Starting on 30 May 2010 at 17:00 UT, we followed the emerging active region AR11076 within a quiet-Sun region for 8 h. Using several SDO/AIA filters that cover temperatures from 50 000 K to 10 MK, we show that the emerging process is characterised by a thermal shield at the interface between the emerging flux and pre-existing quiet-Sun corona. Conclusions: The active region 11076 is a peculiar example of an emerging active region because (i) the polarities emerge in a photospheric quiet-Sun region near a supergranular-like distribution, and (ii) the polarities that form the bipolar emerging structure do not rotate with respect to each other, which indicates a slight twist in the emerging flux bundle. There is a thermal shield at the interface between the emerging active region and the pre-existing quiet-Sun region. The thermal shielding structure deduced from all SDO/AIA channels is strongly asymmetric between the two polarities of the active region, suggesting that the heating mechanism for one polarity is probably magnetic reconnection, whilst it is caused by increasing magnetic pressure for the opposite polarity. Appendix A and two movies are available in electronic form at http://www.aanda.org

  10. Simulation of Ectopic Pacemakers in the Heart: Multiple Ectopic Beats Generated by Reentry inside Fibrotic Regions

    PubMed Central

    Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Alonso, Sergio

    2015-01-01

    The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127

  11. Prediction of household and commercial BMW generation according to socio-economic and other factors for the Dublin region.

    PubMed

    Purcell, M; Magette, W L

    2009-04-01

    Both planning and design of integrated municipal solid waste management systems require accurate prediction of waste generation. This research predicted the quantity and distribution of biodegradable municipal waste (BMW) generation within a diverse 'landscape' of residential areas, as well as from a variety of commercial establishments (restaurants, hotels, hospitals, etc.) in the Dublin (Ireland) region. Socio-economic variables, housing types, and the sizes and main activities of commercial establishments were hypothesized as the key determinants contributing to the spatial variability of BMW generation. A geographical information system (GIS) 'model' of BMW generation was created using ArcMap, a component of ArcGIS 9. Statistical data including socio-economic status and household size were mapped on an electoral district basis. Historical research and data from scientific literature were used to assign BMW generation rates to residential and commercial establishments. These predictions were combined to give overall BMW estimates for the region, which can aid waste planning and policy decisions. This technique will also aid the design of future waste management strategies, leading to policy and practice alterations as a function of demographic changes and development. The household prediction technique gave a more accurate overall estimate of household waste generation than did the social class technique. Both techniques produced estimates that differed from the reported local authority data; however, given that local authority reported figures for the region are below the national average, with some of the waste generated from apartment complexes being reported as commercial waste, predictions arising from this research are believed to be closer to actual waste generation than a comparison to reported data would suggest. By changing the input data, this estimation tool can be adapted for use in other locations. Although focusing on waste in the Dublin region

  12. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  13. Skylab observations of X-ray loops connecting separate active regions. [solar activity

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.

    1976-01-01

    One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.

  14. A Fractal Dimension Survey of Active Region Complexity

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  15. The era of the wandering mind? Twenty-first century research on self-generated mental activity.

    PubMed

    Callard, Felicity; Smallwood, Jonathan; Golchert, Johannes; Margulies, Daniel S

    2013-01-01

    The first decade of the twenty-first century was characterized by renewed scientific interest in self-generated mental activity (activity largely generated by the individual, rather than in direct response to experimenters' instructions or specific external sensory inputs). To understand this renewal of interest, we interrogated the peer-reviewed literature from 2003 to 2012 (i) to explore recent changes in use of terms for self-generated mental activity; (ii) to investigate changes in the topics on which mind wandering research, specifically, focuses; and (iii) to visualize co-citation communities amongst researchers working on self-generated mental activity. Our analyses demonstrated that there has been a dramatic increase in the term "mind wandering" from 2006, and a significant crossing-over of psychological investigations of mind wandering into cognitive neuroscience (particularly in relation to research on the default mode and default mode network). If our article concludes that this might, indeed, be the "era of the wandering mind," it also calls for more explicit reflection to be given by researchers in this field to the terms they use, the topics and brain regions they focus on, and the research literatures that they implicitly foreground or ignore.

  16. The era of the wandering mind? Twenty-first century research on self-generated mental activity

    PubMed Central

    Callard, Felicity; Smallwood, Jonathan; Golchert, Johannes; Margulies, Daniel S.

    2013-01-01

    The first decade of the twenty-first century was characterized by renewed scientific interest in self-generated mental activity (activity largely generated by the individual, rather than in direct response to experimenters’ instructions or specific external sensory inputs). To understand this renewal of interest, we interrogated the peer-reviewed literature from 2003 to 2012 (i) to explore recent changes in use of terms for self-generated mental activity; (ii) to investigate changes in the topics on which mind wandering research, specifically, focuses; and (iii) to visualize co-citation communities amongst researchers working on self-generated mental activity. Our analyses demonstrated that there has been a dramatic increase in the term “mind wandering” from 2006, and a significant crossing-over of psychological investigations of mind wandering into cognitive neuroscience (particularly in relation to research on the default mode and default mode network). If our article concludes that this might, indeed, be the “era of the wandering mind,” it also calls for more explicit reflection to be given by researchers in this field to the terms they use, the topics and brain regions they focus on, and the research literatures that they implicitly foreground or ignore. PMID:24391606

  17. Mapping Active Stream Lengths as a Tool for Understanding Spatial Variations in Runoff Generation

    NASA Astrophysics Data System (ADS)

    Erwin, E. G.; Gannon, J. P.; Zimmer, M. A.

    2016-12-01

    Recent studies have shown temporary stream channels respond in complex ways to precipitation. By investigating how stream networks expand and recede throughout rain events, we may further develop our understanding of runoff generation. This study focused on mapping the expansion and contraction of the stream network in two headwater catchments characterized by differing soil depths and slopes, located in North Carolina, USA. The first is a 43 ha catchment located in the Southern Appalachian region, characterized by incised, steep slopes and soils of varying thickness. The second is a 3.3 ha catchment located in the Piedmont region, characterized as low relief with deep, highly weathered soils. Over a variety of flow conditions, surveys of the entire stream network were conducted at 10 m intervals to determine presence or absence of surface water. These surveys revealed several reaches within the networks that were intermittent, with perennial flow upstream and downstream. Furthermore, in some tributaries, the active stream head moved up the channel in response to precipitation and at others it remained anchored in place. Moreover, when repeat surveys were performed during the same storm, hysteresis was observed in active stream length variations: stream length was not the same on the rising limb and falling limb of the hydrograph. These observations suggest there are different geomorphological controls or runoff generation processes occurring spatially throughout these catchments. Observations of wide spatial and temporal variability of active stream length over a variety of flow conditions suggest runoff dynamics, generation mechanisms, and contributing flowpath depths producing streamflow may be highly variable and not easily predicted from streamflow observations at a fixed point. Finally, the observation of similar patterns in differing geomorphic regions suggests these processes extend beyond unique site characterizations.

  18. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  19. Interactive flare sites within an active region complex

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Gary, G. A.; Machado, M. E.

    1993-01-01

    We examine here a set of images of an active region complex, acquired on June 24-25, 1980, by the Hard X-ray Imaging Spectrometer on SMM, with the purpose of establishing whether there was any interplay between the frequent activity observed at different sites in the activity center and, in such a case, how the interaction was established. By analyzing both quiet and active orbits we show that, as a rule, activity originating in one region triggers the other region's activity. However, we find little unambiguous evidence for the presence of large-scale interconnecting loops. A comparison of X-ray images with magnetic field observations suggested that we interpret the active region behavior in terms of the interaction between different loop systems, in a scenario quite analogous to the interacting bipole representation of individual flares. We conclude that active region interplay provides an easily observable case to study the time-dependent topology and the mechanisms for the spreading of activity in transient events over all energy scales.

  20. Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1989-01-01

    A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.

  1. Patterns of Activity in A Global Model of A Solar Active Region

    NASA Technical Reports Server (NTRS)

    Bradshaw, S. J.; Viall, N. M.

    2016-01-01

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  2. Depth of origin of solar active regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    Observations show that the individual bipolar magnetic regions on the sun remain confined during their decay phase, with much of the magnetic field pulling back under the surface, in reverse of the earlier emergence. This suggests that the magnetic field is held on a short rein by subsurface forces, for otherwise the region would decay entirely by dispersing across the face of the sun. With the simple assumption that the fields at the surface are controlled from well-defined anchor points at a depth h, it is possible to relate the length l of the bipolar region at the surface to the depth h, with h about equal to l. The observed dimensions l about equal to 100,000 km for normal active regions, and l about equal to 10,000 km for the ephemeral active regions, indicate comparable depths of origin. More detailed observational studies of the active regions may be expected to shed further light on the problem.

  3. [Do regional and generational differences in attitudes toward "Luck Resource Belief" exist?].

    PubMed

    Murakami, Koshi

    2016-04-01

    This article examines whether belief in superstitions and folklore differs by age and degree of modernization specifically. This study investigated regional and generational differences in attitudes toward "Luck Resource Belief," a notion regarding luck. The 500 Japanese participants in our sample were stratified by place of residence, age, and income. The results reflected gender differences, but not regional or generational differences with regard to the "Luck Resource Belief" scale scores. Based on these results, the hypothesis that the mass media plays a major role in the dissemination of information about superstitions and folklore is discussed in this context.

  4. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Falconer, David; Sterling, Alphonse

    2012-01-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  5. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2013-01-01

    It has been found previously, by measuring from active ]region magnetograms a proxy of the free energy in the active region fs magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main ]sequence path bordering the free ]energy ]limit line in (flux content, free ]energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free ]energy limit, the ratio of magnetic ]shear free energy to the non ]free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. Evidently, most active regions in which this core ]field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

  6. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Moselle, John R.; Lee, Jinho

    1991-01-01

    Experimental studies were conducted to examine the aerothermal characteristics of shock/shock/boundary layer interaction regions generated by single and multiple incident shocks. The presented experimental studies were conducted over a Mach number range from 6 to 19 for a range of Reynolds numbers to obtain both laminar and turbulent interaction regions. Detailed heat transfer and pressure measurements were made for a range of interaction types and incident shock strengths over a transverse cylinder, with emphasis on the 3 and 4 type interaction regions. The measurements were compared with the simple Edney, Keyes, and Hains models for a range of interaction configurations and freestream conditions. The complex flowfields and aerothermal loads generated by multiple-shock impingement, while not generating as large peak loads, provide important test cases for code prediction. The detailed heat transfer and pressure measurements proved a good basis for evaluating the accuracy of simple prediction methods and detailed numerical solutions for laminar and transitional regions or shock/shock interactions.

  7. Regional variation in contribution of myenteric and intramuscular interstitial cells of Cajal to generation of slow waves in mouse gastric antrum

    PubMed Central

    Hirst, G D S; Beckett, E A H; Sanders, K M; Ward, S M

    2002-01-01

    When intracellular recordings were made from the antral region of murine stomach, cells with three different patterns of electrical activity were detected. One group of cells generated follower potentials, the second group generated pacemaker potentials and the third group generated slow waves that consisted of primary and secondary components. Slow waves recorded in different regions of the gastric antrum had similar amplitudes but different characteristic shapes. At the greater curvature, slow waves had large initial components. Midway between the greater and lesser curvature, the amplitude of the initial component was reduced and at the lesser curvature an initial component was difficult to detect. When the distributions of myenteric (ICC-MY) and intramuscular interstitial cells of Cajal (ICC-IM) were determined, using an antibody to Kit, ICC-MY were found to be present at the greater curvature but were greatly reduced in density at the lesser curvature. In contrast, ICC-IM were found in the circular layer of each region. When recordings were made from the antrum of W/WV mice, which lack ICC-IM, incomplete slow waves were detected and their amplitudes fell from the greater to the lesser curvature. Again, a corresponding fall in the density of ICC-MY was detected. The observations indicate that the contribution of ICC-MY and ICC-IM to the generation of slow waves varies in different regions of the mouse gastric antrum. PMID:11986385

  8. Parameters of oscillation generation regions in open star cluster models

    NASA Astrophysics Data System (ADS)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  9. Regional hospital improves efficiency with co-generation retrofit.

    PubMed

    Knutson, D; Anderson, L

    1999-11-01

    Feasibility analysis of the co-generation retrofit of the Red Deer Regional Hospital pointed to a reasonable payback of capital cost and increased efficiency in operation of the facility. Budget restrictions nearly stopped the project from proceeding. Innovative construction procedures proposed by the Facility Management Group, in particular, Mr Keith Metcalfe, Director of Maintenance, allowed a worthwhile project to reach successful completion. We feel that this model can perhaps be used by similar facilities in the future to achieve their energy efficiency goals.

  10. A restricted parabrachial pontine region is active during non-REM sleep

    PubMed Central

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H.

    2011-01-01

    The principal site that generates both REM sleep and wakefulness is located in the mesopontine reticular formation, whereas non-REM sleep (NREM) is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase or GABA. During NREM, only a few Fos immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral peribrachial region (CLPB). The number of the Fos+ neurons in the CLPB during NREM was significantly greater (67.9 ± 10.9, P < 0.0001) compared to QW (8.0 ± 6.7), AW (5.2 ± 4.2) or REM-carbachol (8.0 ± 4.7). In addition, there was a positive correlation (R = 0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of

  11. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2017-09-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  12. ACTIVE REGION MORPHOLOGIES SELECTED FROM NEAR-SIDE HELIOSEISMIC DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, G. A.; McAteer, R. T. J.; Henney, C. J.

    We estimate the morphology of near-side active regions using near-side helioseismology. Active regions from two data sets, Air Force Data Assimilative Photospheric flux Transport synchronic maps and Global Oscillation Network Group near-side helioseismic maps, were matched and their morphologies compared. Our algorithm recognizes 382 helioseismic active regions between 2002 April 25 and 2005 December 31 and matches them to their corresponding magnetic active regions with 100% success. A magnetic active region occupies 30% of the area of its helioseismic signature. Recovered helioseismic tilt angles are in good agreement with magnetic tilt angles. Approximately 20% of helioseismic active regions can bemore » decomposed into leading and trailing polarity. Leading polarity components show no discernible scaling relationship, but trailing magnetic polarity components occupy approximately 25% of the area of the trailing helioseismic component. A nearside phase-magnetic calibration is in close agreement with a previous far-side helioseismic calibration and provides confidence that these morphological relationships can be used with far-side helioseismic data. Including far-side active region morphology in synchronic maps will have implications for coronal magnetic topology predictions and solar wind forecasts.« less

  13. Coronal loops and active region structure

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Zirin, H.

    1981-01-01

    Synoptic H-alpha Ca K, magnetograph and Skylab soft X-ray and EUV data were compared for the purpose of identifying the basic coronal magnetic structure of loops in a 'typical' active region and studying its evolution. A complex of activity in July 1973, especially McMath 12417, was emphasized. The principal results are: (1) most of the brightest loops connected the bright f plage to either the sunspot penumbra or to p satellite spots; no non-flaring X-ray loops end in umbrae; (2) short, bright loops had one or both ends in regions of emergent flux, strong field or high field gradients; (3) stable, strongly sheared loop arcades formed over filaments; (4) EFRs were always associated with compact X-ray arcades; and (5) loops connecting to other active regions had their bases in outlying plage of weak field strength in McM 417 where H-alpha fibrils marked the direction of the loops

  14. Millimeter wavelength observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1973-01-01

    Polarization properties of active regions at 9 mm are discussed, and the observed degree of polarization is used to obtain an estimate of chromospheric magnetic fields. Also discussed is the polarization structure at 9 mm of an active region that produced a minor flare around 1900 UT on September 28, 1971. Total power observations indicate that new regions develop, or weak regions intensify at millimeter wavelengths as a result of bursts at distant sites. The spectra of the peak flux density of moderately strong bursts observed at 9 mm show a sharp drop toward the shorter millimeter wavelengths. The weak bursts at 3.5 mm are manifest mainly as heating phenomena.

  15. Unleashing creativity: The role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas.

    PubMed

    Mayseless, Naama; Aharon-Peretz, Judith; Shamay-Tsoory, Simone

    2014-11-01

    Human creativity is thought to entail two processes. One is idea generation, whereby ideas emerge in an associative manner, and the other is idea evaluation, whereby generated ideas are evaluated and screened. Thus far, neuroimaging studies have identified several brain regions as being involved in creativity, yet only a handful of studies have examined the neural basis underlying these two processes. We found that an individual with left temporoparietal hemorrhage who had no previous experience as an artist developed remarkable artistic creativity, which diminished as the hemorrhage receded. We thus hypothesized that damage to the evaluation network of creativity during the initial hematoma had a releasing effect on creativity by "freeing" the idea generation system. In line with this hypothesis, we conducted a subsequent fMRI study showing that decreased left temporal and parietal activations among healthy individuals as they evaluated creative ideas selectively predicted higher creativity. The current studies provide converging multi-method evidence suggesting that the left temporoparietal area is part of a neural network involved in evaluating creativity, and that as such may act as inhibitors of creativity. We propose an explanatory model of creativity centered upon the key role of the left temporoparietal regions in evaluating and inhibiting creativity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Does changing from a first generation antipsychotic (perphenazin) to a second generation antipsychotic (risperidone) alter brain activation and motor activity? A case report

    PubMed Central

    2013-01-01

    Background In patients with schizophrenia, altered brain activation and motor activity levels are central features, reflecting cognitive impairments and negative symptoms, respectively. Newer studies using nonlinear methods have addressed the severe disturbances in neurocognitive functioning that is regarded as one of the core features of schizophrenia. Our aim was to compare brain activation and motor activity in a patient during pharmacological treatment that was switched from a first- to a second-generation antipsychotic drug. We hypothesised that this change of medication would increase level of responding in both measures. Case presentation We present the case of a 53-year-old male with onset of severe mental illness in adolescence, ICD-10 diagnosed as schizophrenia of paranoid type, chronic form. We compared brain activation and motor activity in this patient during pharmacological treatment with a first-generation (perphenazin), and later switched to a second-generation (risperidone) antipsychotic drug. We used functional magnetic resonance imaging (fMRI) to measure brain activation and wrist worn actigraphy to measure motor activity. Conclusion Our study showed that brain activation decreased in areas critical for cognitive functioning in this patient, when changing from a first to a second generation antipsychotic drug. However the mean motor activity level was unchanged, although risperidone reduced variability, particularly short-term variability from minute to minute. Compared to the results from previous studies, the present findings indicate that changing to a second-generation antipsychotic alters variability measures towards that seen in a control group, but with reduced brain activation, which was an unexpected finding. PMID:23648137

  17. Does changing from a first generation antipsychotic (perphenazin) to a second generation antipsychotic (risperidone) alter brain activation and motor activity? A case report.

    PubMed

    Berle, Jan Øystein; Løberg, Else-Marie; Fasmer, Ole Bernt

    2013-05-06

    In patients with schizophrenia, altered brain activation and motor activity levels are central features, reflecting cognitive impairments and negative symptoms, respectively. Newer studies using nonlinear methods have addressed the severe disturbances in neurocognitive functioning that is regarded as one of the core features of schizophrenia. Our aim was to compare brain activation and motor activity in a patient during pharmacological treatment that was switched from a first- to a second-generation antipsychotic drug. We hypothesised that this change of medication would increase level of responding in both measures. We present the case of a 53-year-old male with onset of severe mental illness in adolescence, ICD-10 diagnosed as schizophrenia of paranoid type, chronic form. We compared brain activation and motor activity in this patient during pharmacological treatment with a first-generation (perphenazin), and later switched to a second-generation (risperidone) antipsychotic drug. We used functional magnetic resonance imaging (fMRI) to measure brain activation and wrist worn actigraphy to measure motor activity. Our study showed that brain activation decreased in areas critical for cognitive functioning in this patient, when changing from a first to a second generation antipsychotic drug. However the mean motor activity level was unchanged, although risperidone reduced variability, particularly short-term variability from minute to minute. Compared to the results from previous studies, the present findings indicate that changing to a second-generation antipsychotic alters variability measures towards that seen in a control group, but with reduced brain activation, which was an unexpected finding.

  18. Generating new telehealth services using a whole of community approach: experience in regional Queensland.

    PubMed

    Smith, Anthony C; Caffery, Liam J; Saunders, Ruth; Bradford, Natalie K; Gray, Leonard C

    2014-10-01

    We implemented a community telehealth project in the three towns in the Darling Downs area of Queensland over a 2-year period starting in July 2012. The purpose of the project was to generate telehealth activity in hospitals, general practice and selected residential aged care facilities. Telehealth education and training was provided to clinicians in the three towns and a community awareness campaign was delivered using advertisements in newspapers, messages in social media and presentations at community events. A total of 55 stakeholders were engaged with during 61 site visits to health care facilities during the first two years of the project. During the study period, telehealth activity in Queensland increased in the hospital sector by 39% and in the non-hospital sector by 99%. In the Darling Downs region, telehealth activity in the hospital sector increased by 104%, compared to 28% in the rest of Queensland. However, in the non-hospital sector, the increase in telehealth activity in the Darling Downs region was similar to the rest of Queensland. Telehealth services established and/or facilitated by the project included specialist geriatric ward rounds in Dalby, Chinchilla and Miles for patients in the local hospitals and nursing homes; and ad-hoc teleconsultations for children and adults living in these communities, with specialists at Toowoomba and hospitals in Brisbane. An increase in telehealth implies better access to a range of clinical services, which may result in improved clinical outcomes for patients. © The Author(s) 2014 Reprints and permissions:]br]sagepub.co.uk/journalsPermissions.nav.

  19. Emergence of Magnetic Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots and Active Regions, and The Origin of Their Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu

    We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed throughmore » the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.« less

  20. Active Region Coming Around the Bend

    NASA Image and Video Library

    2018-04-23

    A good-sized active region with bright, towering arches began to rotate into view (Apr. 18-19, 2018). The arches consist of charged particles spiraling along magnetic field lines revealed in this wavelength of extreme ultraviolet light. They rise up above the sun's surface many times the size of Earth. The video covers just 16 hours of activity. We will keep our eyes on this region to see if it has the kind of dynamism to produce solar storms. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA22430

  1. Measurement of activated species generated by AC power excited non-equilibrium atmospheric pressure Ar plasma jet with air engulfment

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Kano, Hiroyuki; Sekine, Makoto; Hori, Masaru

    2013-09-01

    Non-equilibrium atmospheric pressure plasma jet (NEAPPJ) is very attractive tool for bio and medical applications. In the plasma treatments, samples are typically located at a far region from main discharge, and treated in open air without purge gases. Influence of air engulfment on generation of activated species in the NEAPPJ in open air is a large issue for the application. In this study, the AC excited argon NEAPPJ with the gas flow rate of 2 slm was generated under the open air condition. The densities of the grand state nitrogen monoxide (NO) and the ground state O atom generated by the NEAPPJ were measured by laser induced fluorescence spectroscopy and vacuum ultraviolet absorption spectroscopy. The length of the plasma jet was around 10 mm. Up to 10 mm, the NO density increased with increasing the distance from plasma head, and then saturated in remote region of plasma. On the other hand, the O atom density decreased from 1014 to 1013 cm-3 with increasing the distance. Especially, the amount of decrease in O atom density became the largest at the plasma edge. We will discuss the generation and loss processes of activated species generated in the NEAPPJ with the measurement results using spectroscopic methods.

  2. Small but Dynamic Active Region

    NASA Image and Video Library

    2018-04-20

    The sun featured just one, rather small active region over the past few days, but it developed rapidly and sported a lot of magnetic activity in just one day (Apr. 11-12, 2018). The activity was observed in a wavelength of extreme ultraviolet light. The loops and twisting arches above it are evidence of magnetic forces tangling with each other. The video clip was produced using Helioviewer software. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA06676

  3. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  4. Solar wind disturbances in th outer heliosphere caused by successive solar flares from the same active region

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.; Hakamada, K.

    1983-01-01

    Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.

  5. Understanding Flash Flood Generation in the Arid Region of the Dead Sea

    NASA Astrophysics Data System (ADS)

    Merz, R.; Hennig, H.; Rödiger, T.; Laronne, J. B.

    2017-12-01

    The arid region of the Dead Sea is prone by flash floods. Such flash floods in (semi-) arid regions are impressive. Generated within minutes, the peak unit discharge can be as high as 25 m³/s km². Floods are the main mechanism supplying water to alluvial aquifers, forming fluvial landscapes including canyons and often causing damage to humans, infrastructure, industry and tourism. Existing hydrological models in this region focus on peak discharges. However, these models are often based on simplified concepts and/or on concepts which were developed for humid regions. To more closely relate such models to local conditions, processes within catchments where floods occur require consideration. Therefore, a measurement network of rain gauges and level loggers to monitor runoff was installed in the beginning of the 2015/16 hydrological season in the tributaries of Wadi Arugot. The Arugot catchment is one of the largest ephemeral Wadis draining to the western shoreline of the Dead Sea at 450 m bsl. Due to the high gradient in elevation, the climate within the basin ranges from semiarid in the Judean Mountains, to hyper-arid near the Dead Sea with respective mean annual rainfall of 650 and 50 mm. The installed rain gauge network in the mountains is more dense compared to the Dead Sea area. Arid to semiarid catchments have different runoff generation processes compared to humid regions due local storm rainfall, low density of vegetation cover as well as patchy and shallow soil. These characteristics limit the contribution of groundwater flow, saturated overland flow and shallow subsurface flow, and therefore Hortonian overland flow is the most important contributor to overland flow. First analyses of the runoff data have shown that the storage capacity in the mountain area is lower compared to the more arid region. This is an evidence of high transmission losses in the coarse gravel wadi bed, therefore having a high permeability. The rain event duration and the amount of

  6. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  7. A Study on Grid-Square Statistics Based Estimation of Regional Electricity Demand and Regional Potential Capacity of Distributed Generators

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo

    We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.

  8. Local Helioseismology of Emerging Active Regions: A Case Study

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis

    2018-04-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation

  9. Estimating evaporative vapor generation from automobiles based on parking activities.

    PubMed

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S

    2015-07-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade-Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5-8% less than calculation without considering parking activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hemisphere Rule in Active Regions with Different Properties

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, X.

    2017-12-01

    Magnetic twist in solar active regions has been found to have a hemispheric preferencein sign (hemisphere rule): negative in the northern hemisphere and positive in the southern.The strength of the preference reported in previous studies ranges greatly, from 58% to 82%.In this presentation, we will show an investigation that examines this hemispheric preference bystudying active regions in Solar Cycle 24 using the vector magnetic field data taken by the Helioseismicand Magnetic Imager (HMI). While in general the strength of the hemisphere preference is wellwithin the range reported by the previous studies, it differs substantially in different groupsof active regions that possess different properties in magnetic helicity: the group with theopposite signs of magnetic twist and writhe has a much stronger preference strength than thegroup with the same signs. This difference becomes even more significant in emerging activeregions. We place here a discussion on possible links between origin of magnetic twist, hemispherepreference, and emergence and evolution of active regions.

  11. Visualization of removal of trapped air from the apical region of the straight root canal models generating 2-phase intermittent counter flow during ultrasonically activated irrigation.

    PubMed

    Peeters, Harry Huiz; Iskandar, Bernard; Suardita, Ketut; Suharto, Djoko

    2014-06-01

    The purpose of this in vitro study was to obtain a better understanding of the mechanism of irrigant traveling apically and generating 2-phase intermittent counter flow in straight root canal models during activation of the irrigant by ultrasonic means in an endodontic procedure. A high-speed imaging system, with high temporal and spatial resolution (FastCam SA5; Photron, Tokyo, Japan) at a frame rate of 100,000 frames per second using a macro lens (60 mm, f/2.8; Nikon, Tokyo, Japan), was used to visualize, in glass models of root canals, an ultrasonically induced acoustic pressure wave in an EDTA solution environment. A 25-mm stainless steel noncutting file #20 driven by an ultrasonic device (P5 Newtron; Satelec Acteon, Mérignac, France) at power settings of 5 and 7 produced disturbances at the solution-air interface. We found that apically directed travel of the irrigant was caused by disruption of the surface tension at the solution-air interface. This disruption caused by ultrasonic activation energy displaced air in the form of bubbles from the apical region toward the solution. The apical movement of the solution may be attributed to ultrasonically induced wave generation at the solution-air interface, resulting in the removal of trapped air from the root canal and allowing the solution to travel apically in the opposite directions (via a 2-phase intermittent counter flow). Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  13. Sensitivity of Regional Hydropower Generation to the Projected Changes in Future Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Kao, S. C.; Naz, B. S.; Gangrade, S.

    2015-12-01

    Hydropower is a key contributor to the renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power systems. With the projected change in the future watershed hydrology, including shift of snowmelt timing, increasing occurrence of extreme precipitation, and change in drought frequencies, there is a need to investigate how the regional hydropower generation may change correspondingly. To evaluate the sensitivity of watershed storage and hydropower generation to future climate change, a lumped Watershed Runoff-Energy Storage (WRES) model is developed to simulate the annual and seasonal hydropower generation at various hydropower areas in the United States. For each hydropower study area, the WRES model use the monthly precipitation and naturalized (unregulated) runoff as inputs to perform a runoff mass balance calculation for the total monthly runoff storage in all reservoirs and retention facilities in the watershed, and simulate the monthly regulated runoff release and hydropower generation through the system. The WRES model is developed and calibrated using the historic (1980-2009) monthly precipitation, runoff, and generation data, and then driven by a large set of dynamically- and statistically-downscaled Coupled Model Intercomparison Project Phase 5 climate projections to simulate the change of watershed storage and hydropower generation under different future climate scenarios. The results among different hydropower regions, storage capacities, emission scenarios, and timescales are compared and discussed in this study.

  14. Generation of Tutorial Dialogues: Discourse Strategies for Active Learning

    DTIC Science & Technology

    1998-05-29

    AND SUBTITLE Generation of Tutorial Dialogues: Discourse Strategies for active Learning AUTHORS Dr. Martha Evens 7. PERFORMING ORGANI2ATION NAME...time the student starts in on a new topic. Michael and Rovick constantly attempt to promote active learning . They regularly use hints and only resort...Controlling active learning : How tutors decide when to generate hints. Proceedings of FLAIRS 󈨣. Melbourne Beach, FL. 157-161. Hume, G., Michael

  15. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  16. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  17. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator

    PubMed Central

    2017-01-01

    Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50–60 Hz “fast trill” song used by males during courtship. We recorded “fictive vocalizations” in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored

  18. Tracking the will to attend: Cortical activity indexes self-generated, voluntary shifts of attention.

    PubMed

    Gmeindl, Leon; Chiu, Yu-Chin; Esterman, Michael S; Greenberg, Adam S; Courtney, Susan M; Yantis, Steven

    2016-10-01

    The neural substrates of volition have long tantalized philosophers and scientists. Over the past few decades, researchers have employed increasingly sophisticated technology to investigate this issue, but many studies have been limited considerably by their reliance on intrusive experimental procedures (e.g., abrupt instructional cues), measures of brain activity contaminated by overt behavior, or introspective self-report techniques of questionable validity. Here, we used multivoxel pattern time-course analysis of functional magnetic resonance imaging data to index voluntary, covert perceptual acts-shifts of visuospatial attention-in the absence of instructional cues, overt behavioral indices, and self-report. We found that these self-generated, voluntary attention shifts were time-locked to activity in the medial superior parietal lobule, supporting the hypothesis that this brain region is engaged in voluntary attentional reconfiguration. Self-generated attention shifts were also time-locked to activity in the basal ganglia, a novel finding that motivates further research into the role of the basal ganglia in acts of volition. Remarkably, prior to self-generated shifts of attention, we observed early and selective increases in the activation of medial frontal (dorsal anterior cingulate) and lateral prefrontal (right middle frontal gyrus) cortex-activity that likely reflects processing related to the intention or preparation to reorient attention. These findings, which extend recent evidence on freely chosen motor movements, suggest that dorsal anterior cingulate and lateral prefrontal cortices play key roles in both overt and covert acts of volition, and may constitute core components of a brain network underlying the will to attend.

  19. Tracking the Will to Attend: Cortical Activity Indexes Self-Generated, Voluntary Shifts of Attention

    PubMed Central

    Gmeindl, Leon; Chiu, Yu-Chin; Esterman, Michael S.; Greenberg, Adam S.; Courtney, Susan M.; Yantis, Steven

    2016-01-01

    The neural substrates of volition have long tantalized philosophers and scientists. Over the past few decades, researchers have employed increasingly sophisticated technology to investigate this issue, but many studies have been limited considerably by their reliance on intrusive experimental procedures (e.g., abrupt instructional cues), measures of brain activity contaminated by overt behavior, or introspective self-report techniques of questionable validity. Here, we used multivoxel-pattern time-course analysis of functional magnetic resonance imaging data to index voluntary, covert perceptual acts—shifts of visuospatial attention—in the absence of instructional cues, overt behavioral indices, and self-report. We found that these self-generated, voluntary attention shifts were time-locked to activity in the medial superior parietal lobule, supporting the hypothesis that this brain region is engaged in voluntary attentional reconfiguration. Self-generated attention shifts were also time-locked to activity in the basal ganglia, a novel finding that motivates further research into the role of the basal ganglia in acts of volition. Remarkably, prior to self-generated shifts of attention we observed early and selective increases in activation of medial frontal (dorsal anterior cingulate) and lateral prefrontal cortex (right middle frontal gyrus)—activity that likely reflects processing related to the intention or preparation to reorient attention. These findings, which extend recent evidence on freely chosen motor movements, suggest that dorsal anterior cingulate and lateral prefrontal cortices play key roles in both overt and covert acts of volition, and may constitute core components of a brain network underlying the will to attend. PMID:27301353

  20. Generator of chemically active low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  1. NMDA receptor antagonist-enhanced high frequency oscillations: are they generated broadly or regionally specific?

    PubMed

    Olszewski, Maciej; Dolowa, Wioleta; Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark J

    2013-12-01

    Systemic administration of NMDA receptor antagonists, used to model schizophrenia, increase the power of high-frequency oscillations (130-180Hz, HFO) in a variety of neuroanatomical and functionally distinct brain regions. However, it is unclear whether HFO are independently and locally generated or instead spread from a distant source. To address this issue, we used local infusion of tetrodotoxin (TTX) to distinct brain areas to determine how accurately HFO recorded after injection of NMDAR antagonists reflect the activity actually generated at the electrode tip. Changes in power were evaluated in local field potentials (LFPs) recorded from the nucleus accumbens (NAc), prefrontal cortex and caudate and in electrocorticograms (ECoGs) from visual and frontal areas. HFO recorded in frontal and visual cortices (ECoGs) or in the prefrontal cortex, caudate (LFPs) co-varied in power and frequency with observed changes in the NAc. TTX infusion to the NAc immediately and profoundly reduced the power of accumbal HFO which correlated with changes in HFO recorded in distant cortical sites. In contrast, TTX infusion to the prefrontal cortex did not change HFO power recorded locally, although gamma power was reduced. A very similar result was found after TTX infusion to the caudate. These findings raise the possibility that the NAc is an important neural generator. Our data also support existing studies challenging the idea that high frequencies recorded in LFPs are necessarily generated at the recording site. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  2. New Active Region Sputtering with Small Flares

    NASA Image and Video Library

    2018-05-29

    An active region rotated into view and sputtered with numerous small flares and towering magnetic field lines that stretched out many times the diameter of Earth (May 23-25, 2018). Active regions are areas of intense magnetic energy. The field lines are illuminated by charged particles spiraling along them and easiest to discern when viewed in profile. The colorized images were taken in a wavelength of extreme ultraviolet light. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22461

  3. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  4. Generation of tunable laser sidebands in the far-infrared region

    NASA Technical Reports Server (NTRS)

    Farhoomand, J.; Frerking, M. A.; Pickett, H. M.; Blake, G. A.

    1985-01-01

    In recent years, several techniques have been developed for the generation of tunable coherent radiation at submillimeter and far-infrared (FIR) wavelengths. The harmonic generation of conventional microwave sources has made it possible to produce spectrometers capable of continuous operation to above 1000 GHz. However, the sensitivity of such instruments drops rapidly with frequency. For this reason, a great deal of attention is given to laser-based methods, which could cover the entire FIR region. Tunable FIR radiation (approximately 100 nW) has been produced by mixing FIR molecular lasers and conventional microwave sources in both open and closed mixer mounts. The present investigation is concerned with improvements in this approach. These improvements provide approximately thirty times more output power than previous results.

  5. Sentinel-1 data exploitation for geohazard activity map generation

    NASA Astrophysics Data System (ADS)

    Barra, Anna; Solari, Lorenzo; Béjar-Pizarro, Marta; Monserrat, Oriol; Herrera, Gerardo; Bianchini, Silvia; Crosetto, Michele; María Mateos, Rosa; Sarro, Roberto; Moretti, Sandro

    2017-04-01

    This work is focused on geohazard mapping and monitoring by exploiting Sentinel-1 (A and B) data and the DInSAR (Differential interferometric SAR (Synthetic Aperture Radar)) techniques. Sometimes the interpretation of the DInSAR derived product (like the velocity map) can be complex, mostly for a final user who do not usually works with radar. The aim of this work is to generate, in a rapid way, a clear product to be easily exploited by the authorities in the geohazard management: intervention planning and prevention activities. Specifically, the presented methodology has been developed in the framework of the European project SAFETY, which is aimed at providing Civil Protection Authorities (CPA) with the capability of periodically evaluating and assessing the potential impact of geohazards (volcanic activity, earthquakes, landslides and subsidence) on urban areas. The methodology has three phases, the interferograms generation, the activity map generation, in terms of velocity and accumulated deformation (with time-series), and the Active Deformation Area (ADA) map generation. The last one is the final product, derived from the original activity map by analyzing the data in a Geographic Information System (GIS) environment, which isolate only the true deformation areas over the noise. This product can be more easily read by the authorities than the original activity map, i.e. can be better exploited to integrate other information and analysis. This product also permit an easy monitoring of the active areas.

  6. Stochastic modeling of the hypothalamic pulse generator activity.

    PubMed

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  7. High-resolution Observation of Moving Magnetic Features in Active Regions

    NASA Astrophysics Data System (ADS)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin

    2017-08-01

    Moving magnetic features (MMFs) are small photospheric magnetic elements that emerge and move outward toward the boundary of moat regions mostly during a sunspot decaying phase, in a serpent wave-like magnetic topology. Studies of MMFs and their classification (e.g., unipolar or bipolar types) strongly rely on the high spatiotemporal-resolution observation of photospheric magnetic field. In this work, we present a detailed observation of a sunspot evolution in NOAA active region (AR) 12565, using exceptionally high resolution Halpha images from the 1.6 New Solar telescope (NST) at Big Bear Solar Observatory (BBSO) and the UV images from the Interface Region Imaging Spectrograph (IRIS). The spectropolarimetric measurements of photospheric magnetic field are obtained from the NST Near InfraRed Imaging Spectropolarimeter (NIRIS) at Fe I 1.56 um line. We investigate the horizontal motion of the classified MMFs and discuss the clustering patterns of the geometry and motion of the MMFs. We estimate the rate of flux generation by appearance of MMFs and the role MMFs play in sunspot decaying phase. We also study the interaction between the MMFs and the existing magnetic field features and its response to Ellerman bombs and IRIS bombs respectively at higher layers.

  8. Photospheric Magnetic Evolution in the WHI Active Regions

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; McTiernan, J. M.; Christe, S.

    2012-01-01

    Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the "proxy Poynting flux," and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.

  9. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  10. Effects of snow persistence on streamflow generation in mountain regions of the western U.S.

    NASA Astrophysics Data System (ADS)

    Hammond, J. C.; Kampf, S. K.

    2015-12-01

    In mountain regions, both snowpack trend analyses and modeling studies suggest that streamflow generation is sensitive to loss of snow, yet we still lack understanding of where the most snow-sensitive regions are located. Snow persistence (SP), defined as the fraction of year that an area is snow-covered, is a useful variable for identifying snow-sensitive regions because it is easily observed globally using remote sensing. SP can affect streamflow generation by shifting the timing and magnitude of water input. All other factors being equal, we hypothesize that declining SP decreases the ratio of streamflow to precipitation (runoff ratio), and the magnitude of this effect is greater in arid climates than in humid climates. To evaluate whether streamflow generation declines with decreasing SP, we used the MODSCAG fractional snow cover product and 68 USGS reference catchments across five mountainous regions of the Western U.S. to compute annual and mean annual SP and discharge for water years 2000 to 2011. We used PRISM precipitation to compute the annual and mean annual runoff ratio for each catchment. Results show strong positive relationships between annual SP and annual runoff ratio in the Northern Rockies, Southern Rockies, and Basin and Range, where annual precipitation ranges from 0.25 m at low elevations in the Basin and Range to 2.5 m at high elevations in the Northern Rockies. Mean annual runoff ratios for these regions range from 0.32-0.53, and they also increase with mean annual SP. No relationships between annual SP and runoff ratios are evident in the wetter North Cascades and Sierra Nevada ranges, where annual precipitation ranges from 0.44 m in the low elevation Sierras to 4.8 m in the high elevation Cascades. Mean annual runoff ratios for these regions are 0.53-0.87 and show no clear dependence on SP. These results suggest that streamflow generation in arid regions may be most sensitive to loss of persistent winter snow.

  11. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  12. Chromospheric Evolution and the Flare Activity of Super-Active Region NOAA 6555

    NASA Technical Reports Server (NTRS)

    PrasadC, Debi; Ambastha, Ashok; Srivastava, Nandita; Tripathy, Sushanta C.; Hagyard, Mona J.

    1997-01-01

    Super-active region NOAA 6555 was highly flare productive during the period March 21st - 27th, 1991 of its disk passage. We have studied its chromospheric activity using high spatial resolution H alpha filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.

  13. The Smad3 linker region contains a transcriptional activation domain

    PubMed Central

    2004-01-01

    Transforming growth factor-β (TGF-β)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-β/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-β transcriptional activation responses, although it can be phosphorylated by the TGF-β receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-β. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control. PMID:15588252

  14. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  15. MAG4 versus alternative techniques for forecasting active region flare productivity.

    PubMed

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-05-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux.

  16. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelz, J. T.; Pathak, S., E-mail: jschmelz@memphis.edu

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescalesmore » less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.« less

  17. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  18. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  19. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  20. HARPs: Tracked Active Region Patch Data Product from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Sun, X.; Bobra, M.

    2012-12-01

    We describe an HMI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated HARPs (HMI Active Region Patches). The HARP data series has been helpful for subsetting individual active regions, for development of near-real-time (NRT) space weather indices for individual active regions, and for defining closed magnetic structures for computationally-intensive algorithms like vector field disambiguation. The data series builds upon the 720s cadence activity masks, which identify large-scale instantaneously-observed magnetic features. Using these masks as a starting point, large spatially-coherent structures are identified using convolution with a longitudinally-extended kernel on a spherical domain. The resulting set of identified regions is then tracked from image to image. The metric for inter-image association is area of overlap between the best current estimate of AR location, as predicted by temporally extrapolating each currently tracked object, and the set of instantaneously-observed magnetic structures. Once completed tracks have been extracted, they are made into a standardized HARP data series by finding the smallest constant-angular-velocity box, of constant width in latitude and longitude, that encompasses all appearances of the active region. This data product is currently available, in definitive and near-real-time forms, with accompanying region-strength, location, and NOAA-AR metadata, on HMI's Joint Science Operations Center (JSOC) data portal.; HARP outlines for three days (2001 February 14, 15, and 16, 00:00 TAI, flipped N-S, selected from the 12-minute cadence original data product). HARPs are shown in the same color (some colors repeated) with a thin white box surrounding each HARP. HARPs are tracked and associated from image to image. HARPs, such as the yellow one in the images above, need not be connected regions. Merges and splits, such as the light blue region, are accounted for automatically.

  1. MAG4 versus alternative techniques for forecasting active region flare productivity

    PubMed Central

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  2. The Structure of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Bastian, T. S.

    1992-05-01

    In past years, x-ray observations of solar active regions have lead to the expectation of greater brightness temperatures at radio wavelengths than those typically observed. It has been suggested that cool plasma in the corona along the line of sight attenuates radio emission via free-free absorption. If such plasma is present, it has consequences for both the microwave spectrum and its polarization properties. In order to test these ideas, high quality radio and x-ray maps are required. We present a comprehensive set of observations of a large solar active region (NOAO/USAF number 5131) made during the IAU sanctioned International Solar Month in September, 1988. The VLA was used to image the Sun in the 90, 20, 6 and 3.6 cm bands between 1--4 September. To improve the image quality we used the technique of frequency synthesis at 3.6, 6 and 20 cm. The final maps are among the best in dynamic range yet obtained. In addition to the radio maps, the data base includes images from the SMM XRP in Fe XVII, magnetograms, and Hα observations. We reconcile the x-ray and radio observations with a simple model which differs somewhat from past models. Rather than relying on a screen of cool plasma between the source and the observer, we take explicit account of the highly inhomogeneous structure of solar active regions. We briefly compare and contrast the consequences of this model with existing models.

  3. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  4. Regional differences in rat conjunctival ion transport activities.

    PubMed

    Yu, Dongfang; Thelin, William R; Rogers, Troy D; Stutts, M Jackson; Randell, Scott H; Grubb, Barbara R; Boucher, Richard C

    2012-10-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na(+) transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface.

  5. NASA/NREN: Next Generation Internet (NGI) Activities

    NASA Technical Reports Server (NTRS)

    desJardins, Richard; Freeman, Ken

    1998-01-01

    Various issues associated with next generation internet (NGI) and the NREN (NASA Research and Education Network) activities are presented in viewgraph form. Specific topics include: 1) NREN architecture; 2) NREN applications; and 3) NREN applied research.

  6. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  7. Nonpotential features observed in the magnetic field of an active region

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Moore, R. L.; Hagyard, M. J.; Haisch, Bernhard M.

    1987-01-01

    A unique coordinated data set consisting of vector magnetograms, H-alpha photographs, and high-resolution ultraviolet images of a solar active region is used, together with mathematical models, to calculate potential and force-free magnetic field lines and to examine the nonpotential nature of the active region structure. It is found that the overall bipolar magnetic field of the active region had a net twist corresponding to net current of order 3 x 10 to the 12th A and average density of order 4 x 10 to the -4th A/sq m flowing antiparallel to the field. There were three regions of enhanced nonpotentiality in the interior of the active region; in one the field had a marked nonpotential twist or shear with height above the photosphere. The measured total nonpotential magnetic energy stored in the entire active region was of order 10 to the 32nd ergs, about 3 sigma above the noise level.

  8. Sports participation, physical activity, and health in the European regions.

    PubMed

    Lera-López, Fernando; Marco, Rocio

    2018-08-01

    In a context of stagnation of the level of health-enhancing physical activity in Europe, this study examines the geographical stratification of sports participation and physical activity (PA) at the regional level in 28 European countries. While previous research has focused on the national approach, this study considers the regional level across 208 European regions. Individual survey data from the Eurobarometer 80.2 is combined with a regional-level approach to the 208 regions to quantify sports participation and PA at the regional level. The results show important differences and a geographical stratification of sports participation and PA among the European regions, albeit following different patterns. In particular, a north-south gap is identified in terms of PA rates and an east-west gap is detected in terms of sports participation levels. Applying the cluster technique, a taxonomy of four different European regions is developed considering both types of indicators. Finally, the existence of sports spatial spillovers among regions is verified, obtaining a positive autocorrelation among neighbouring regions for being involved in PA and sporting activities. The results may have significant implications in terms of policy measures to improve health through PA and sports participation at the regional level in Europe.

  9. The gross energy balance of solar active regions

    NASA Technical Reports Server (NTRS)

    Evans, K. D.; Pye, J. P.; Hutcheon, R. J.; Gerassimenko, M.; Krieger, A. S.; Davis, J. M.; Vesecky, J. F.

    1977-01-01

    Parker's (1974) model in which sunspots denote regions of increased heat transport from the convection zone is briefly described. The amount of excess mechanically transported power supposed to be delivered to the atmosphere is estimated for a typical active region, and the total radiative power output of the active-region atmosphere is computed. It is found that only a very small fraction (about 0.001) of the sunspot 'missing flux' can be accounted for by radiative emission from the atmosphere above a spot group in the manner suggested by Parker. The power-loss mechanism associated with mass loss to the solar wind is briefly considered and shown not to be sufficient to account for the sunspot missing flux.

  10. Statistical downscaling and future scenario generation of temperatures for Pakistan Region

    NASA Astrophysics Data System (ADS)

    Kazmi, Dildar Hussain; Li, Jianping; Rasul, Ghulam; Tong, Jiang; Ali, Gohar; Cheema, Sohail Babar; Liu, Luliu; Gemmer, Marco; Fischer, Thomas

    2015-04-01

    Finer climate change information on spatial scale is required for impact studies than that presently provided by global or regional climate models. It is especially true for regions like South Asia with complex topography, coastal or island locations, and the areas of highly heterogeneous land-cover. To deal with the situation, an inexpensive method (statistical downscaling) has been adopted. Statistical DownScaling Model (SDSM) employed for downscaling of daily minimum and maximum temperature data of 44 national stations for base time (1961-1990) and then the future scenarios generated up to 2099. Observed as well as Predictors (product of National Oceanic and Atmospheric Administration) data were calibrated and tested on individual/multiple basis through linear regression. Future scenario was generated based on HadCM3 daily data for A2 and B2 story lines. The downscaled data has been tested, and it has shown a relatively strong relationship with the observed in comparison to ECHAM5 data. Generally, the southern half of the country is considered vulnerable in terms of increasing temperatures, but the results of this study projects that in future, the northern belt in particular would have a possible threat of increasing tendency in air temperature. Especially, the northern areas (hosting the third largest ice reserves after the Polar Regions), an important feeding source for Indus River, are projected to be vulnerable in terms of increasing temperatures. Consequently, not only the hydro-agricultural sector but also the environmental conditions in the area may be at risk, in future.

  11. Multi-wavelength Observations of Solar Acoustic Waves Near Active Regions

    NASA Astrophysics Data System (ADS)

    Monsue, Teresa; Pesnell, Dean; Hill, Frank

    2018-01-01

    Active region areas on the Sun are abundant with a variety of waves that are both acoustically helioseismic and magnetohydrodynamic in nature. The occurrence of a solar flare can disrupt these waves, through MHD mode-mixing or scattering by the excitation of these waves. We take a multi-wavelength observational approach to understand the source of theses waves by studying active regions where flaring activity occurs. Our approach is to search for signals within a time series of images using a Fast Fourier Transform (FFT) algorithm, by producing multi-frequency power map movies. We study active regions both spatially and temporally and correlate this method over multiple wavelengths using data from NASA’s Solar Dynamics Observatory. By surveying the active regions on multiple wavelengths we are able to observe the behavior of these waves within the Solar atmosphere, from the photosphere up through the corona. We are able to detect enhancements of power around active regions, which could be acoustic power halos and of an MHD-wave propagating outward by the flaring event. We are in the initial stages of this study understanding the behaviors of these waves and could one day contribute to understanding the mechanism responsible for their formation; that has not yet been explained.

  12. Alfvén Wave Heating Model of an Active Region and Comparisons with the EIS Observations

    NASA Astrophysics Data System (ADS)

    Lawless, A. P.; Asgari-Targhi, M.

    2013-12-01

    We study the generation and dissipation of Alfvén waves in open and closed field lines using the images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) (van Ballegouijen et al. 2011; Asgari-Targhi & van Ballegouijen 2012; Asgari et al. 2013). The goal is to search for observational evidence of Alfvén waves in the solar corona and to understand their role in coronal heating. We focus on one particular active region on the 10th of December 2007. Using the MDI magnetogram and the potential field modeling of this region, we create three-dimensional MHD models for several open and closed field lines in different locations in the active region. For each model, we compute the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We then compare these results with the EIS observations. This research is supported by the NSF grant for the Solar physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241) and contract SP02H1701R from Lockheed-Martin to SAO.

  13. Medium-scale gravity wave activity in the bottomside F region in tropical regions

    NASA Astrophysics Data System (ADS)

    Liu, Huixin; Pedatella, Nicholas; Hocke, Klemens

    2017-07-01

    Thermospheric gravity waves (GWs) in the bottomside F region have been proposed to play a key role in the generation of equatorial plasma bubbles (EPBs). However, direct observations of such waves are scarce. This study provides a systematic survey of medium-scale (<620 km) neutral atmosphere perturbations at this critical altitude in the tropics, using 4 years of in situ Gravity Field and Steady-State Ocean Circulation Explorer satellite measurements of thermospheric density and zonal wind. The analysis reveals pronounced features on their global distribution and seasonal variability: (1) A prominent three-peak longitudinal structure exists in all seasons, with stronger perturbations over continents than over oceans. (2) Their seasonal variation consists of a primary semiannual oscillations (SAO) and a secondary annual oscillation (AO). The SAO component maximizes around solstices and minimizes around equinoxes, while the AO component maximizes around June solstice. These GW features resemble those of EPBs in spatial distribution but show opposite trend in climatological variations. This may imply that stronger medium-scale GW activity does not always lead to more EPBs. Possible origins of the bottomside GWs are discussed, among which tropical deep convection appears to be most plausible.

  14. Generation, language, body mass index, and activity patterns in Hispanic children.

    PubMed

    Taverno, Sharon E; Rollins, Brandi Y; Francis, Lori A

    2010-02-01

    The acculturation hypothesis proposes an overall disadvantage in health outcomes for Hispanic immigrants with more time spent living in the U.S., but little is known about how generational status and language may influence Hispanic children's relative weight and activity patterns. To investigate associations among generation and language with relative weight (BMI z-scores), physical activity, screen time, and participation in extracurricular activities (i.e., sports, clubs) in a U.S.-based, nationally representative sample of Hispanic children. Participants included 2012 Hispanic children aged 6-11 years from the cross-sectional 2003 National Survey of Children's Health. Children were grouped according to generational status (first, second, or third), and the primary language spoken in the home (English versus non-English). Primary analyses included adjusted logistic and multinomial logistic regression to examine the relationships among variables; all analyses were conducted between 2008 and 2009. Compared to third-generation, English speakers, first- and second-generation, non-English speakers were more than two times more likely to be obese. Moreover, first-generation, non-English speakers were half as likely to engage in regular physical activity and sports. Both first- and second-generation, non-English speakers were less likely to participate in clubs compared to second- and third-generation, English speakers. Overall, non-English-speaking groups reported less screen time compared to third-generation, English speakers. The hypothesis that Hispanics lose their health protection with more time spent in the U.S. was not supported in this sample of Hispanic children. Copyright 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  16. Demolition waste generation for development of a regional management chain model.

    PubMed

    Bernardo, Miguel; Gomes, Marta Castilho; de Brito, Jorge

    2016-03-01

    Even though construction and demolition waste (CDW) is the bulkiest waste stream, its estimation and composition in specific regions still faces major difficulties. Therefore new methods are required especially when it comes to make predictions limited to small areas, such as counties. This paper proposes one such method, which makes use of data collected from real demolition works and statistical information on the geographical area under study. Based on a correlation analysis between the demolition waste estimates and indicators such as population density, buildings ageing index, buildings density and land occupation type, relationships are established that can be used to determine demolition waste outputs in a given area. The derived models are presented and explained. This methodology is independent from the specific region with which it is exemplified (the Lisbon Metropolitan Area) and can therefore be applied to any region of the world, from the country to the county level. Generation of demolition waste data at the county level is the basis of the design of a systemic model for CDW management in a region. Future developments proposed include a mixed-integer linear programming formulation of such recycling network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Emotion at Work: A Contribution to Third-Generation Cultural-Historical Activity Theory

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2007-01-01

    Second-generation cultural-historical activity theory, which drew its inspiration from Leont'ev's work, constituted an advance over Vygotsky's first-generation theory by explicitly articulating the dialectical relation between individual and collective. As part of an effort to develop third-generation-historical activity theory, I propose in this…

  18. Unwinding motion of a twisted active region filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Kong, D. F.

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament,more » we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.« less

  19. 20 CFR 627.225 - Employment generating activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Employment generating activities. 627.225 Section 627.225 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR GENERAL... chambers of commerce); JTPA staff participation on economic development boards and commissions, and work...

  20. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    PubMed

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-04

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  1. 50 CFR 217.220 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Specified activity and specified geographical region. 217.220 Section 217.220 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Elliott Bay Seawall Project § 217.220 Specified activity and specified geographical region. (a...

  2. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  3. Extended core for motor/generator

    DOEpatents

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  4. Regional brain activity that determines successful and unsuccessful working memory formation.

    PubMed

    Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie

    2016-08-01

    Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.

  5. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Specified activity and specified geographical region. 217.170 Section 217.170 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune...

  6. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Specified activity and specified geographical region. 217.170 Section 217.170 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune...

  7. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Specified activity and specified geographical region. 217.170 Section 217.170 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune...

  8. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Specified activity and specified geographical region. 217.170 Section 217.170 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune...

  9. Generation of field potentials and modulation of their dynamics through volume integration of cortical activity.

    PubMed

    Kajikawa, Yoshinao; Schroeder, Charles E

    2015-01-01

    Field potentials (FPs) recorded within the brain, often called "local field potentials" (LFPs), are useful measures of net synaptic activity in a neuronal ensemble. However, due to volume conduction, FPs spread beyond regions of underlying synaptic activity, and thus an "LFP" signal may not accurately reflect the temporal patterns of synaptic activity in the immediately surrounding neuron population. To better understand the physiological processes reflected in FPs, we explored the relationship between the FP and its membrane current generators using current source density (CSD) analysis in conjunction with a volume conductor model. The model provides a quantitative description of the spatiotemporal summation of immediate local and more distant membrane currents to produce the FP. By applying the model to FPs in the macaque auditory cortex, we have investigated a critical issue that has broad implications for FP research. We have shown that FP responses in particular cortical layers are differentially susceptible to activity in other layers. Activity in the supragranular layers has the strongest contribution to FPs in other cortical layers, and infragranular FPs are most susceptible to contributions from other layers. To define the physiological processes generating FPs recorded in loci of relatively weak synaptic activity, strong effects produced by synaptic events in the vicinity have to be taken into account. While outlining limitations and caveats inherent to FP measurements, our results also suggest specific peak and frequency band components of FPs can be related to activity in specific cortical layers. These results may help improving the interpretability of FPs. Copyright © 2015 the American Physiological Society.

  10. Generation of field potentials and modulation of their dynamics through volume integration of cortical activity

    PubMed Central

    Schroeder, Charles E.

    2014-01-01

    Field potentials (FPs) recorded within the brain, often called “local field potentials” (LFPs), are useful measures of net synaptic activity in a neuronal ensemble. However, due to volume conduction, FPs spread beyond regions of underlying synaptic activity, and thus an “LFP” signal may not accurately reflect the temporal patterns of synaptic activity in the immediately surrounding neuron population. To better understand the physiological processes reflected in FPs, we explored the relationship between the FP and its membrane current generators using current source density (CSD) analysis in conjunction with a volume conductor model. The model provides a quantitative description of the spatiotemporal summation of immediate local and more distant membrane currents to produce the FP. By applying the model to FPs in the macaque auditory cortex, we have investigated a critical issue that has broad implications for FP research. We have shown that FP responses in particular cortical layers are differentially susceptible to activity in other layers. Activity in the supragranular layers has the strongest contribution to FPs in other cortical layers, and infragranular FPs are most susceptible to contributions from other layers. To define the physiological processes generating FPs recorded in loci of relatively weak synaptic activity, strong effects produced by synaptic events in the vicinity have to be taken into account. While outlining limitations and caveats inherent to FP measurements, our results also suggest specific peak and frequency band components of FPs can be related to activity in specific cortical layers. These results may help improving the interpretability of FPs. PMID:25274348

  11. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  12. 50 CFR 216.250 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Specified activity and specified geographical region. 216.250 Section 216.250 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Weapon Missions in the Gulf of Mexico § 216.250 Specified activity and specified geographical region. (a...

  13. ON THE ACTIVE REGION BRIGHT GRAINS OBSERVED IN THE TRANSITION REGION IMAGING CHANNELS OF IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skogsrud, H.; Voort, L. Rouppe van der; Pontieu, B. De

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute)more » bright roundish small patches of sizes 0.″5–1.″7 that generally move limbward with velocities up to about 30 km s{sup −1}. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.« less

  14. Dynamic Precursors of Flares in Active Region NOAA 10486

    NASA Astrophysics Data System (ADS)

    Korsós, M. B.; Gyenge, N.; Baranyi, T.; Ludmány, A.

    2015-03-01

    Four different methods are applied here to study the precursors of flare activity in the Active Region NOAA 10486. Two approaches track the temporal behaviour of suitably chosen features (one, the weighted hori- zontal gradient W G M , is the generalized form of the horizontal gradient of the magnetic field, G M ; the other is the sum of the horizontal gradient of the magnetic field, G S , for all sunspot pairs). W G M is a photospheric indicator, that is a proxy measure of magnetic non-potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one, referred to as the separateness parameter, S l- f , considers the overall morphology. Further, G S and S l- f are photospheric, newly defined quick-look indicators of the polarity mix of the entire active region. The fourth method is tracking the temporal variation of small X-ray flares, their times of succession and their energies observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager instrument. All approaches yield specific pre-cursory signatures for the imminence of flares.

  15. The Role of Small-Scale Processes in Solar Active Region Decay

    NASA Astrophysics Data System (ADS)

    Meyer, Karen; Mackay, Duncan

    2017-08-01

    Active regions are locations of intense magnetic activity on the Sun, whose evolution can result in highly energetic eruptive phenomena such as solar flares and coronal mass ejections (CMEs). Therefore, fast and accurate simulation of their evolution and decay is essential in the prediction of Space Weather events. In this talk we present initial results from our new model for the photospheric evolution of active region magnetic fields. Observations show that small-scale processes appear to play a role in the dispersal and decay of solar active regions, for example through cancellation at the boundary of sunspot outflows and erosion of flux by surrounding convective cells. Our active region model is coupled to our existing model for the evolution of small-scale photospheric magnetic features. Focusing first on the active region decay phase, we consider the evolution of its magnetic field due to both large-scale (e.g. differential rotation) and small-scale processes, such as its interaction with surrounding small-scale magnetic features and convective flows.This project is funded by The Carnegie Trust for the Universities of Scotland, through their Research Incentives Grant scheme.

  16. Generation of Unbiased Ionospheric Corrections in Brazilian Region for GNSS positioning based on SSR concept

    NASA Astrophysics Data System (ADS)

    Monico, J. F. G.; De Oliveira, P. S., Jr.; Morel, L.; Fund, F.; Durand, S.; Durand, F.

    2017-12-01

    Mitigation of ionospheric effects on GNSS (Global Navigation Satellite System) signals is very challenging, especially for GNSS positioning applications based on SSR (State Space Representation) concept, which requires the knowledge of spatial correlated errors with considerable accuracy level (centimeter). The presence of satellite and receiver hardware biases on GNSS measurements difficult the proper estimation of ionospheric corrections, reducing their physical meaning. This problematic can lead to ionospheric corrections biased of several meters and often presenting negative values, which is physically not possible. In this contribution, we discuss a strategy to obtain SSR ionospheric corrections based on GNSS measurements from CORS (Continuous Operation Reference Stations) Networks with minimal presence of hardware biases and consequently physical meaning. Preliminary results are presented on generation and application of such corrections for simulated users located in Brazilian region under high level of ionospheric activity.

  17. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales

    PubMed Central

    Stickler, Claudia M.; Coe, Michael T.; Costa, Marcos H.; Nepstad, Daniel C.; McGrath, David G.; Dias, Livia C. P.; Rodrigues, Hermann O.; Soares-Filho, Britaldo S.

    2013-01-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4–8% and 10–12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6–36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  18. Asia Section. Regional Activities Division. Paper.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Two papers on library and information activities in developing nations, particularly in India and other Asian countries, were presented at the 1983 International Federation of Library Associations (IFLA) conference. In "IFLA in Asia: A Review of the Work of the Regional Section for Asia," Edward Lim Huck Tee (Malaysia) describes the low…

  19. Exoplanet Transits of Stellar Active Regions

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano

    2018-01-01

    We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.

  20. Evidence for magnetic energy storage in coronal active regions

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; De Feiter, L. D.; Vaiana, G. S.

    1976-01-01

    Examination of X-ray images obtained by the S-054 X-ray spectrographic telescope on Skylab shows the presence of some atypical X-ray-emitting coronal structures in active regions which are not consistent with potential extrapolations of photospheric magnetic fields. Analysis of the observed temporal changes in the X-ray-emitting active-region structures demonstrates that the majority of these consist of brightness changes representing temperature (and perhaps density) variations of the material in the loops.

  1. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  2. Extreme Trust Region Policy Optimization for Active Object Recognition.

    PubMed

    Liu, Huaping; Wu, Yupei; Sun, Fuchun; Huaping Liu; Yupei Wu; Fuchun Sun; Sun, Fuchun; Liu, Huaping; Wu, Yupei

    2018-06-01

    In this brief, we develop a deep reinforcement learning method to actively recognize objects by choosing a sequence of actions for an active camera that helps to discriminate between the objects. The method is realized using trust region policy optimization, in which the policy is realized by an extreme learning machine and, therefore, leads to efficient optimization algorithm. The experimental results on the publicly available data set show the advantages of the developed extreme trust region optimization method.

  3. Inertial effects on the stress generation of active fluids

    NASA Astrophysics Data System (ADS)

    Takatori, S. C.; Brady, J. F.

    2017-09-01

    Suspensions of self-propelled bodies generate a unique mechanical stress owing to their motility that impacts their large-scale collective behavior. For microswimmers suspended in a fluid with negligible particle inertia, we have shown that the virial swim stress is a useful quantity to understand the rheology and nonequilibrium behaviors of active soft matter systems. For larger self-propelled organisms such as fish, it is unclear how particle inertia impacts their stress generation and collective movement. Here we analyze the effects of finite particle inertia on the mechanical pressure (or stress) generated by a suspension of self-propelled bodies. We find that swimmers of all scales generate a unique swim stress and Reynolds stress that impact their collective motion. We discover that particle inertia plays a similar role as confinement in overdamped active Brownian systems, where the reduced run length of the swimmers decreases the swim stress and affects the phase behavior. Although the swim and Reynolds stresses vary individually with the magnitude of particle inertia, the sum of the two contributions is independent of particle inertia. This points to an important concept when computing stresses in computer simulations of nonequilibrium systems: The Reynolds and the virial stresses must both be calculated to obtain the overall stress generated by a system.

  4. Active tectonics in Southern Portugal (SW Iberia) inferred from GPS data. Implications on the regional geodynamics

    NASA Astrophysics Data System (ADS)

    Cabral, João; Mendes, Virgílio Brito; Figueiredo, Paula; Silveira, António Brum da; Pagarete, Joaquim; Ribeiro, António; Dias, Ruben; Ressurreição, Ricardo

    2017-12-01

    A GPS-based crustal velocity field for the SW Portuguese territory (Algarve region, SW Iberia) was estimated from the analysis of data from a network of campaign-style GPS stations set up in the region since 1998, complemented with permanent stations, covering an overall period of 16.5 years. The GPS monitoring sites were chosen attending to the display of the regional active faults, in an attempt to detect and monitor any related crustal straining. The residual horizontal velocities relative to Eurasia unveil a relatively consistent pattern towards WNW, with magnitudes that noticeably increase from NNE to SSW. Although the obtained velocity field does not evidence a sharp velocity gradient it suggests the presence of a NW-SE trending crustal shear zone separating two domains, which may be slowly accumulating a slightly transtensional right-lateral shear strain. Based on the WNW velocity differential between the northeastern block and the southwestern block, a shear strain rate accumulation across the shear zone is estimated. This ongoing crustal deformation is taken as evidence that a nearby major active structure, the São Marcos - Quarteira fault, may be presently accumulating strain, therefore being potentially loaded for seismic rupture and the generation of a large magnitude earthquake. Further inferences are made concerning the interseismic dynamic loading of other major onshore and offshore active structures located to the west.

  5. Non-Relative Value Unit-Generating Activities Represent One-Fifth of Academic Neuroradiologist Productivity.

    PubMed

    Wintermark, M; Zeineh, M; Zaharchuk, G; Srivastava, A; Fischbein, N

    2016-07-01

    A neuroradiologist's activity includes many tasks beyond interpreting relative value unit-generating imaging studies. Our aim was to test a simple method to record and quantify the non-relative value unit-generating clinical activity represented by consults and clinical conferences, including tumor boards. Four full-time neuroradiologists, working an average of 50% clinical and 50% academic activity, systematically recorded all the non-relative value unit-generating consults and conferences in which they were involved during 3 months by using a simple, Web-based, computer-based application accessible from smartphones, tablets, or computers. The number and type of imaging studies they interpreted during the same period and the associated relative value units were extracted from our billing system. During 3 months, the 4 neuroradiologists working an average of 50% clinical activity interpreted 4241 relative value unit-generating imaging studies, representing 8152 work relative value units. During the same period, they recorded 792 non-relative value unit-generating study reviews as part of consults and conferences (not including reading room consults), representing 19% of the interpreted relative value unit-generating imaging studies. We propose a simple Web-based smartphone app to record and quantify non-relative value unit-generating activities including consults, clinical conferences, and tumor boards. The quantification of non-relative value unit-generating activities is paramount in this time of a paradigm shift from volume to value. It also represents an important tool for determining staffing levels, which cannot be performed on the basis of relative value unit only, considering the importance of time spent by radiologists on non-relative value unit-generating activities. It may also influence payment models from medical centers to radiology departments or practices. © 2016 by American Journal of Neuroradiology.

  6. Flare rates and the McIntosh active-region classifications

    NASA Technical Reports Server (NTRS)

    Bornmann, P. L.; Shaw, D.

    1994-01-01

    Multiple linear regression analysis was used to derive the effective solar flare contributions of each of the McIntosh classification parameters. The best fits to the combined average number of M- and X-class X-ray flares per day were found when the flare contributions were assumed to be multiplicative rather than additive. This suggests that nonlinear processes may amplify the effects of the following different active-region properties encoded in the McIntosh classifications: the length of the sunspot group, the size and shape of the largest spot, and the distribution of spots within the group. Since many of these active-region properties are correlated with magnetic field strengths and fluxes, we suggest that the derived correlations reflect a more fundamental relationship between flare production and the magnetic properties of the region. The derived flare contributions for the individual McIntosh parameters can be used to derive a flare rate for each of the three-parameter McIntosh classes. These derived flare rates can be interpreted as smoothed values that may provide better estimates of an active region's expected flare rate when rare classes are reported or when the multiple observing sites report slightly different classifications.

  7. Cerebellum engages in automation of verb-generation skill.

    PubMed

    Yang, Zhi; Wu, Paula; Weng, Xuchu; Bandettini, Peter A

    2014-03-01

    Numerous studies have shown cerebellar involvement in item-specific association, a form of explicit learning. However, very few have demonstrated cerebellar participation in automation of non-motor cognitive tasks. Applying fMRI to a repeated verb-generation task, we sought to distinguish cerebellar involvement in learning of item-specific noun-verb association and automation of verb generation skill. The same set of nouns was repeated in six verb-generation blocks so that subjects practiced generating verbs for the nouns. The practice was followed by a novel block with a different set of nouns. The cerebellar vermis (IV/V) and the right cerebellar lobule VI showed decreased activation following practice; activation in the right cerebellar Crus I was significantly lower in the novel challenge than in the initial verb-generation task. Furthermore, activation in this region during well-practiced blocks strongly correlated with improvement of behavioral performance in both the well-practiced and the novel blocks, suggesting its role in the learning of general mental skills not specific to the practiced noun-verb pairs. Therefore, the cerebellum processes both explicit verbal associative learning and automation of cognitive tasks. Different cerebellar regions predominate in this processing: lobule VI during the acquisition of item-specific association, and Crus I during automation of verb-generation skills through practice.

  8. The neural circuits that generate tics in Tourette's syndrome.

    PubMed

    Wang, Zhishun; Maia, Tiago V; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S

    2011-12-01

    The purpose of this study was to examine neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette's syndrome. Functional magnetic resonance imaging data were acquired from 13 individuals with Tourette's syndrome and 21 healthy comparison subjects during spontaneous or simulated tics. Independent component analysis with hierarchical partner matching was used to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. Granger causality was used to investigate causal interactions among these regions. The Tourette's syndrome group exhibited stronger neural activity and interregional causality than healthy comparison subjects throughout all portions of the motor pathway, including the sensorimotor cortex, putamen, pallidum, and substantia nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette's syndrome group was stronger during spontaneous tics than during voluntary tics in the somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette's syndrome group than in the healthy comparison group within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (the caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may result in their failure to control tic behaviors or the premonitory urges that generate them. Our findings, taken together, suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico

  9. Active Generations: An Intergenerational Approach to Preventing Childhood Obesity

    ERIC Educational Resources Information Center

    Werner, Danilea; Teufel, James; Holtgrave, Peter L.; Brown, Stephen L.

    2012-01-01

    Background: Over the last 3 decades, US obesity rates have increased dramatically as more children and more adults become obese. This study explores an innovative program, Active Generations, an intergenerational nutrition education and activity program implemented in out-of-school environments (after school and summer camps). It utilizes older…

  10. Characteristics, location and origin of flare activity in a complex active region

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Gary, G. A.; Hagyard, M. J.; Hernandez, A. M.; Rovira, M. G.

    1986-01-01

    The observational characteristics of series of multiple-loop flares from a complex active region are summarized. The location of the highest observed photospheric magnetic shear is found to be the commonly observed site of flare onset, but not, in many cases, the magnetic region where the largest time-integrated energy release is observed. The observations thus reveal a consistent pattern of energy-release processes related to the magnetic-field topology.

  11. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions havemore » significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.« less

  12. An assessment of a traffic monitoring system for a major traffic generator to improve regional planning : technical report.

    DOT National Transportation Integrated Search

    2009-09-01

    The opening of a major traffic generator in the San Antonio area provided an opportunity to develop and : implement an extensive traffic monitoring system to analyze local, area, and regional traffic impacts from the : generator. Researchers reviewed...

  13. Does High Plasma-β Dynamics ``Load'' Active Regions?

    NASA Astrophysics Data System (ADS)

    McIntosh, Scott W.

    2007-03-01

    Using long-duration observations in the He II 304 Å passband of SOHO EIT, we investigate the spatial and temporal appearance of impulsive intensity fluctuations in the pixel light curves. These passband intensity fluctuations come from plasma emitting in the chromosphere, in the transition region, and in the lowest portions of the corona. We see that they are spatially tied to the supergranular scale and that their rate of occurrence is tied to the unsigned imbalance of the magnetic field in which they are observed. The signature of the fluctuations (in space and time) is consistent with their creation by magnetoconvection-forced reconnection, which is driven by the flow field in the high-β plasma. The signature of the intensity fluctuations around an active region suggests that the bulk of the mass and energy going into the active region complex observed in the hotter coronal plasma is supplied by this process, dynamically forcing the looped structure from beneath.

  14. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation.

    PubMed

    Thomas, Christopher P; Morgan, Lloyd T; Maskrey, Benjamin H; Murphy, Robert C; Kühn, Hartmut; Hazen, Stanley L; Goodall, Alison H; Hamali, Hassan A; Collins, Peter W; O'Donnell, Valerie B

    2010-03-05

    Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 +/- 1.42 (PE) or 18.35 +/- 4.61 (PC), whereas free was 65.5 +/- 17.6 ng/4 x 10(7) cells (n = 5 separate donors, mean +/- S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca(2+) mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease.

  15. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Martinez, F.; Falconer, D. A.; Moore, R. L.

    2016-12-01

    Solar coronal jets are transient (frequently of lifetime 10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Certain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called ``minifilaments,'' erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancellation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted; and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sights of magnetic-field cancelation. Thus our findings support that, at least in many cases, AR coronal jets result from the same physical processes that produce coronal jets in quiet-Sun and coronal-hole regions. FM was supportedby the Research Experience for Undergraduates (REU) program at

  16. Coronal Jets from Minifilament Eruptions in Active Regions

    NASA Technical Reports Server (NTRS)

    Martinez, Francisco; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2016-01-01

    Solar coronal jets are transient (frequently of lifetime approx.10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Cirtain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called "minifilaments" erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancelation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted, and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sites of magnetic-field cancelation.

  17. 3D Magnetic Field Analysis of a Turbine Generator Stator Core-end Region

    NASA Astrophysics Data System (ADS)

    Wakui, Shinichi; Takahashi, Kazuhiko; Ide, Kazumasa; Takahashi, Miyoshi; Watanabe, Takashi

    In this paper we calculated magnetic flux density and eddy current distributions of a 71MVA turbine generator stator core-end using three-dimensional numerical magnetic field analysis. Subsequently, the magnetic flux densities and eddy current densities in the stator core-end region on the no-load and three-phase short circuit conditions obtained by the analysis have good agreements with the measurements. Furthermore, the differences of eddy current and eddy current loss in the stator core-end region for various load conditions are shown numerically. As a result, the facing had an effect that decrease the eddy current loss of the end plate about 84%.

  18. RSV Hospitalizations in Comparison With Regional RSV Activity and Inpatient Palivizumab Administration, 2010-2013.

    PubMed

    Glick, Alexander F; Kjelleren, Stephanie; Hofstetter, Annika M; Subramony, Anupama

    2017-05-01

    To compare pediatric respiratory syncytial virus (RSV) hospitalizations in the United States to regional RSV activity and inpatient palivizumab administration. We characterized inpatients, excluding newborns, with RSV from the Pediatric Health Information System (July 2010-June 2013). RSV regional activity timing was defined by the National Respiratory and Enteric Virus Surveillance System. RSV hospitalization season (defined by at least 3 SDs more than the mean regional baseline number of RSV hospitalizations for 3 consecutive weeks) was compared with RSV regional activity season (2 consecutive weeks with ≥10% RSV-positive testing). Logistic regression was used to determine predictors of hospitalization timing (ie, during or outside of regional activity season). We also assessed the timing of inpatient palivizumab administration. There were 50 157 RSV hospitalizations. Mean RSV hospitalization season onset (early November) was 3.3 (SD 2.1) weeks before regional activity season onset (early December). Hospitalization season offset (early May) was 4.4 (SD 2.4) weeks after activity season offset (mid-April). RSV hospitalization and activity seasons lasted 18 to 32 and 13 to 23 weeks, respectively. Nearly 10% of hospitalizations occurred outside of regional activity season (regional ranges: 5.6%-22.4%). Children with chronic conditions were more likely to be hospitalized after regional activity season, whereas African American children were more likely to be hospitalized before. Inpatient palivizumab dosing was typically initiated before the start of RSV hospitalizations. There is regional variation in RSV hospitalization and activity patterns. Many RSV hospitalizations occur before regional activity season; high-risk infants may require RSV immunoprophylaxis sooner. Copyright © 2017 by the American Academy of Pediatrics.

  19. An EEG Finger-Print of fMRI deep regional activation.

    PubMed

    Meir-Hasson, Yehudit; Kinreich, Sivan; Podlipsky, Ilana; Hendler, Talma; Intrator, Nathan

    2014-11-15

    This work introduces a general framework for producing an EEG Finger-Print (EFP) which can be used to predict specific brain activity as measured by fMRI at a given deep region. This new approach allows for improved EEG spatial resolution based on simultaneous fMRI activity measurements. Advanced signal processing and machine learning methods were applied on EEG data acquired simultaneously with fMRI during relaxation training guided by on-line continuous feedback on changing alpha/theta EEG measure. We focused on demonstrating improved EEG prediction of activation in sub-cortical regions such as the amygdala. Our analysis shows that a ridge regression model that is based on time/frequency representation of EEG data from a single electrode, can predict the amygdala related activity significantly better than a traditional theta/alpha activity sampled from the best electrode and about 1/3 of the times, significantly better than a linear combination of frequencies with a pre-defined delay. The far-reaching goal of our approach is to be able to reduce the need for fMRI scanning for probing specific sub-cortical regions such as the amygdala as the basis for brain-training procedures. On the other hand, activity in those regions can be characterized with higher temporal resolution than is obtained by fMRI alone thus revealing additional information about their processing mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Superoxide radical-generating compounds activate a predicted promoter site for paraquat-inducible genes of the Chromobacterium violaceum bacterium in a dose-dependent manner.

    PubMed

    Gabriel, J E; Guerra-Slompo, E P; de Souza, E M; de Carvalho, F A L; Madeira, H M F; de Vasconcelos, A T R

    2015-08-21

    The purpose of the present study was to functionally evaluate the influence of superoxide radical-generating compounds on the heterologous induction of a predicted promoter region of open reading frames for paraquat-inducible genes (pqi genes) revealed during genome annotation analyses of the Chromobacterium violaceum bacterium. A 388-bp fragment corresponding to a pqi gene promoter of C. violaceum was amplified using specific primers and cloned into a conjugative vector containing the Escherichia coli lacZ gene without a promoter. Assessments of the expression of the β-galactosidase enzyme were performed in the presence of menadione (MEN) and phenazine methosulfate (PMS) compounds at different final concentrations to evaluate the heterologous activation of the predicted promoter region of interest in C. violaceum induced by these substrates. Under these experimental conditions, the MEN reagent promoted highly significant increases in the expression of the β-galactosidase enzyme modulated by activating the promoter region of the pqi genes at all concentrations tested. On the other hand, significantly higher levels in the expression of the β-galactosidase enzyme were detected exclusively in the presence of the PMS reagent at a final concentration of 50 μg/mL. The findings described in the present study demonstrate that superoxide radical-generating compounds can activate a predicted promoter DNA motif for pqi genes of the C. violaceum bacterium in a dose-dependent manner.

  1. Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region

    PubMed Central

    Chaturvedi, Ashutosh; Foutz, Thomas J.; McIntyre, Cameron C.

    2012-01-01

    Deep brain stimulation (DBS) has steadily evolved into an established surgical therapy for numerous neurological disorders, most notably Parkinson’s disease (PD). Traditional DBS technology relies on voltage-controlled stimulation with a single source; however, recent engineering advances are providing current-controlled devices with multiple independent sources. These new stimulators deliver constant current to the brain tissue, irrespective of impedance changes that occur around the electrode, and enable more specific steering of current towards targeted regions of interest. In this study, we examined the impact of current steering between multiple electrode contacts to directly activate three distinct neural populations in the subthalamic region commonly stimulated for the treatment of PD: projection neurons of the subthalamic nucleus (STN), globus pallidus internus (GPi) fibers of the lenticular fasiculus, and internal capsule (IC) fibers of passage. We used three-dimensional finite element electric field models, along with detailed multi-compartment cable models of the three neural populations to determine their activations using a wide range of stimulation parameter settings. Our results indicate that selective activation of neural populations largely depends on the location of the active electrode(s). Greater activation of the GPi and STN populations (without activating any side-effect related IC fibers) was achieved by current steering with multiple independent sources, compared to a single current source. Despite this potential advantage, it remains to be seen if these theoretical predictions result in a measurable clinical effect that outweighs the added complexity of the expanded stimulation parameter search space generated by the more flexible technology. PMID:22277548

  2. Generation of radicals and antimalarial activity of dispiro-1,2,4-trioxolanes

    NASA Astrophysics Data System (ADS)

    Denisov, E. T.; Denisova, T. G.

    2013-01-01

    The kinetic schemes of the intramolecular oxidation of radicals generated from substituted dispiro-1,2,4-trioxolanes (seven compounds) in the presence of Fe2+ and oxygen were built. Each radical reaction was defined in terms of enthalpy, activation energy, and rate constant. The kinetic characteristics were calculated by the intersecting parabolas method. The competition between the radical reactions was considered. The entry of radicals generated by each compound into the volume was calculated. High antimalarial activity was found for 1,2,4-trioxolanes, which generated hydroxyl radicals. The structural features of trioxolanes responsible for the generation of hydroxyl radicals were determined.

  3. Waste production and regional growth of marine activities an econometric model.

    PubMed

    Bramati, Maria Caterina

    2016-11-15

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient,more » rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an

  5. Fusion 2.0: The Next Generation of Fusion in California: Aligning State and Regional Fusion Centers

    DTIC Science & Technology

    2010-03-01

    bible ” for fusion center management, as evidenced by the theme of the 2009 National Fusion Center Conference; appropriately called “Achieving Baseline...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS FUSION 2.0: THE NEXT GENERATION OF FUSION IN CALIFORNIA: ALIGNING STATE AND...Master’s Thesis 4. TITLE AND SUBTITLE Fusion 2.0: The Next Generation of Fusion in California: Aligning State and Regional Fusion

  6. The Contribution of Generative Leisure Activities to Cognitive Function among Sri Lankan Elderly

    PubMed Central

    Maselko, Joanna; Sebranek, Matthew; Mun, Mirna Hodzic; Perera, Bilesha; Ahs, Jill; Østbye, Truls

    2014-01-01

    OBJECTIVES Although a substantive body of research has shown a protective association between leisure activities and cognitive function, consistent evidence is lacking about which specific types of activities should be promoted. The objective of this analysis was to examine the unique contribution of generative leisure activities, defined as activities motivated by “a concern for others and a need to contribute something to the next generation” (Erikson). DESIGN Cross-sectional survey. SETTING Peri-urban and rural area in southern Sri Lanka. PARTICIPANTS Community dwelling adults aged 60+ (n=252). MEASUREMENTS Main predictors were leisure activities grouped into generative, social, or solitary. Main outcome was cognitive function assessed with Montreal Cognitive Assessment (MoCA) and the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). RESULTS We found that more frequent engagement in generative leisure activities was associated with higher levels of cognitive function, independent of the impact of other social and solitary leisure activities. In a fully adjusted model combining all three leisure activities, generative activities independently predicted cognitive function as measured with the MoCA (β =0.47 (0.11 to 0.83) and the IQCODE (β = -0.81 (-1.54 to -0.09)). In this combined model, solitary activities were also independently associated with slower cognitive decline with the MoCA (β =0.40 (0.16, 0.64), but not with IQCODE (β =-0.38 (-0.88, 0.12)); the association with social activities did not reach statistical significance with either measure. These associations did not differ meaningfully by gender. CONCLUSION Generative leisure activities are a promising area for the development of interventions aimed at reducing cognitive decline among the elderly. PMID:25139145

  7. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    PubMed

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Caspase-6 activity in the CA1 region of the hippocampus induces age-dependent memory impairment

    PubMed Central

    LeBlanc, A C; Ramcharitar, J; Afonso, V; Hamel, E; Bennett, D A; Pakavathkumar, P; Albrecht, S

    2014-01-01

    Active Caspase-6 is abundant in the neuropil threads, neuritic plaques and neurofibrillary tangles of Alzheimer disease brains. However, its contribution to the pathophysiology of Alzheimer disease is unclear. Here, we show that higher levels of Caspase-6 activity in the CA1 region of aged human hippocampi correlate with lower cognitive performance. To determine whether Caspase-6 activity, in the absence of plaques and tangles, is sufficient to cause memory deficits, we generated a transgenic knock-in mouse that expresses a self-activated form of human Caspase-6 in the CA1. This Caspase-6 mouse develops age-dependent spatial and episodic memory impairment. Caspase-6 induces neuronal degeneration and inflammation. We conclude that Caspase-6 activation in mouse CA1 neurons is sufficient to induce neuronal degeneration and age-dependent memory impairment. These results indicate that Caspase-6 activity in CA1 could be responsible for the lower cognitive performance of aged humans. Consequently, preventing or inhibiting Caspase-6 activity in the aged may provide an efficient novel therapeutic approach against Alzheimer disease. PMID:24413155

  9. Uppermost synchronized generators of spike-wave activity are localized in limbic cortical areas in late-onset absence status epilepticus.

    PubMed

    Piros, Palma; Puskas, Szilvia; Emri, Miklos; Opposits, Gabor; Spisak, Tamas; Fekete, Istvan; Clemens, Bela

    2014-03-01

    Absence status (AS) epilepticus with generalized spike-wave pattern is frequently found in severely ill patients in whom several disease states co-exist. The cortical generators of the ictal EEG pattern and EEG functional connectivity (EEGfC) of this condition are unknown. The present study investigated the localization of the uppermost synchronized generators of spike-wave activity in AS. Seven patients with late-onset AS were investigated by EEG spectral analysis, LORETA (Low Resolution Electromagnetic Tomography) source imaging, and LSC (LORETA Source Correlation) analysis, which estimates cortico-cortical EEGfC among 23 ROIs (regions of interest) in each hemisphere. All the patients showed generalized ictal EEG activity. Maximum Z-scored spectral power was found in the 1-6 Hz and 12-14 Hz frequency bands. LORETA showed that the uppermost synchronized generators of 1-6 Hz band activity were localized in frontal and temporal cortical areas that are parts of the limbic system. For the 12-14 Hz band, abnormally synchronized generators were found in the antero-medial frontal cortex. Unlike the rather stereotyped spectral and LORETA findings, the individual EEGfC patterns were very dissimilar. The findings are discussed in the context of nonconvulsive seizure types and the role of the underlying cortical areas in late-onset AS. The diversity of the EEGfC patterns remains an enigma. Localizing the cortical generators of the EEG patterns contributes to understanding the neurophysiology of the condition. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  10. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  11. Application of active quenching of second generation wire for current limiting

    DOE PAGES

    Solovyov, Vyacheslav F.; Li, Qiang

    2015-10-19

    Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggersmore » a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.« less

  12. Generation and reactivation of T-cell receptor A joining region pseudogenes in primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiel, C.; Lanchbury, J.S.; Otting, N.

    1996-06-01

    Tandemly duplicated T-cell receptor (Tcr) AJ (J{alpha}) segments contribute significantly to TCRA chain junctional region diversity in mammals. Since only limited data exists on TCRA diversity in nonhuman primates, we examined the TCRAJ regions of 37 chimpanzee and 71 rhesus macaque TCRA cDNA clones derived from inverse polymerase chain reaction on peripheral blood mononuclear cell cDNA of healthy animals. Twenty-five different TCRAJ regions were characterized in the chimpanzee and 36 in the rhesus macaque. Each bears a close structural relationship to an equivalent human TCRAJ region. Conserved amino acid motifs are shared between all three species. There are indications thatmore » differences between nonhuman primates and humans exist in the generation of TCRAJ pseudogenes. The nucleotide and amino acid sequences of the various characterized TCRAJ of each species are reported and we compare our results to the available information on human genomic sequences. Although we provide evidence of dynamic processes modifying TCRAJ segments during primate evolution, their repertoire and primary structure appears to be relatively conserved. 21 refs., 2 figs.« less

  13. On the role of the reticular formation in vocal pattern generation.

    PubMed

    Jürgens, Uwe; Hage, Steffen R

    2007-09-04

    This review is an attempt to localize the brain region responsible for pattern generation of species-specific vocalizations. A catalogue is set up, listing the criteria considered to be essential for a vocal pattern generator. According to this catalogue, a vocal pattern generator should show vocalization-correlated activity, starting before vocal onset and reflecting specific acoustic features of the vocalization. Artificial activation by electrical or glutamatergic stimulation should produce artificially sounding vocalization. Lesioning is expected to have an inhibitory or deteriorating effect on vocalization. Anatomically, a vocal pattern generator can be assumed to have direct or, at least, oligosynaptic connections with all the motoneuron pools involved in phonation. A survey of the literature reveals that the only area meeting all these criteria is a region, reaching from the parvocellular pontine reticular formation just above the superior olive through the lateral reticular formation around the facial nucleus and nucleus ambiguus down to the caudalmost medulla, including the dorsal and ventral reticular nuclei and nucleus retroambiguus. It is proposed that vocal pattern generation takes place within this whole region.

  14. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  15. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources, for...

  16. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources, for...

  17. A selective array activation method for the generation of a focused source considering listening position.

    PubMed

    Song, Min-Ho; Choi, Jung-Woo; Kim, Yang-Hann

    2012-02-01

    A focused source can provide an auditory illusion of a virtual source placed between the loudspeaker array and the listener. When a focused source is generated by time-reversed acoustic focusing solution, its use as a virtual source is limited due to artifacts caused by convergent waves traveling towards the focusing point. This paper proposes an array activation method to reduce the artifacts for a selected listening point inside an array of arbitrary shape. Results show that energy of convergent waves can be reduced up to 60 dB for a large region including the selected listening point. © 2012 Acoustical Society of America

  18. Photospheric electric current and transition region brightness within an active region

    NASA Technical Reports Server (NTRS)

    Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.

    1984-01-01

    Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.

  19. Optically activated switches for the generation of complex electrical waveforms with multigigahertz bandwidth

    NASA Astrophysics Data System (ADS)

    Skeldon, Mark D.; Okishev, Andrey V.; Letzring, Samuel A.; Donaldson, William R.; Green, Kenton; Seka, Wolf D.; Fuller, Lynn F.

    1995-01-01

    An electrical pulse-generation system using two optically activated Si photoconductive switches can generate shaped electrical pulses with multigigahertz bandwidth. The Si switches are activated by an optical pulse whose leading edge is steepened by stimulated Brillouin scattering (SBS) in CCl4. With the bandwidth generated by the SBS process, a laser having a 1- to 3-ns pulse width is used to generate electrical pulses with approximately 80-ps rise times (approximately 4-GHz bandwidth). Variable impedance microstrip lines are used to generate complex electrical waveforms that can be transferred to a matched load with minimal loss of bandwidth.

  20. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry.

    PubMed

    Dufour, Franck; Koning, Estelle; Nehlig, Astrid

    2003-08-01

    The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.

  1. Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions.

    PubMed

    Stice, Eric; Burger, Kyle S; Yokum, Sonja

    2013-12-01

    Although the intake of high-fat and high-sugar food activates mesolimbic reward, gustatory, and oral somatosensory brain regions, contributing to overeating, few studies have examined the relative role of fat and sugar in the activation of these brain regions, which would inform policy, prevention, and treatment interventions designed to reduce obesity. We evaluated the effect of a high-fat or high-sugar equicaloric chocolate milkshake and increasing fat or sugar milkshake content on the activation of these regions. Functional magnetic resonance imaging was used to assess the neural response to the intake of high-fat/high-sugar, high-fat/low-sugar, low-fat/high-sugar, and low-fat/low-sugar chocolate milkshakes and a tasteless solution in 106 lean adolescents (mean ± SD age = 15.00 ± 0.88 y). Analyses contrasted the activation to the various milkshakes. High-fat compared with high-sugar equicaloric milkshakes caused greater activation in the bilateral caudate, postcentral gyrus, hippocampus, and inferior frontal gyrus. High-sugar compared with high-fat equicaloric milkshakes caused greater activation in the bilateral insula extending into the putamen, the Rolandic operculum, and thalamus, which produced large activation regions. Increasing sugar in low-fat milkshakes caused greater activation in the bilateral insula and Rolandic operculum; increasing fat content did not elicit greater activation in any region. Fat caused greater activation of the caudate and oral somatosensory regions than did sugar, sugar caused greater activation in the putamen and gustatory regions than did fat, increasing sugar caused greater activity in gustatory regions, and increasing fat did not affect the activation. Results imply that sugar more effectively recruits reward and gustatory regions, suggesting that policy, prevention, and treatment interventions should prioritize reductions in sugar intake. This trial was registered at clinicaltrials.gov as DK092468.

  2. Air pollution and health implications of regional electricity transfer at generational centre and design of compensation mechanism

    NASA Astrophysics Data System (ADS)

    Relhan, Nemika

    India's electricity generation is primarily from coal. As a result of interconnection of grid and establishment of pithead power plants, there has been increased electricity transfer from one region to the other. This results in imbalance of pollution loads between the communities located in generation vis-a-vis consumption region. There may be some states, which are major power generation centres and hence are facing excessive environmental degradation. On the other hand, electricity importing regions are reaping the benefits without paying proper charges for it because present tariff structure does not include the full externalities in it. The present study investigates the distributional implications in terms of air pollution loads between the electricity generation and consumption regions at the state level. It identifies the major electricity importing and exporting states in India. Next, as a case study, it estimates the health damage as a result of air pollution from thermal power plants (TPPs) located in a critically polluted region that is one of the major generator and exporter of electricity. The methodology used to estimate the health damage is based on impact pathway approach. In this method, air pollution modelling has been performed in order to estimate the gridded Particulate Matter (PM) concentration at various receptor locations in the study domain. The air quality modeling exercise helps to quantify the air pollution concentration in each grid and also apportion the contribution of power plants to the total concentration. The health impacts as a result of PM have been estimated in terms of number of mortality and morbidity cases using Concentration Response Function (CRF's) available in the literature. Mortality has been converted into Years of Life Lost (YOLL) using life expectancy table and age wise death distribution. Morbidity has been estimated in terms of number of cases with respect to various health end points. To convert this health

  3. Deleting the Redundant TSH Receptor C-Peptide Region Permits Generation of the Conformationally Intact Extracellular Domain by Insect Cells.

    PubMed

    Chen, Chun-Rong; Salazar, Larry M; McLachlan, Sandra M; Rapoport, Basil

    2015-07-01

    The TSH receptor (TSHR) extracellular domain (ECD) comprises a N-terminal leucine-rich repeat domain and an hinge region (HR), the latter contributing to ligand binding and critical for receptor activation. The crystal structure of the leucine-rich repeat domain component has been solved, but previous attempts to generate conformationally intact complete ECD or the isolated HR component for structural analysis have failed. The TSHR HR contains a C-peptide segment that is removed during spontaneous TSHR intramolecular cleavage into disulfide linked A- and B-subunits. We hypothesized that deletion of the redundant C-peptide would overcome the obstacle to generating conformationally intact TSHR ECD protein. Indeed, lacking the C-peptide region, the TSHR ECD (termed ECD-D1) and the isolated HR (termed HR-D1) were secreted into medium of insect cells infected with baculoviruses coding for these modified proteins. The identities of TSHR ECD-D1 and HR-D1 were confirmed by ELISA and immunoblotting using TSHR-specific monoclonal antibodies. The TSHR-ECD-D1 in conditioned medium was folded correctly, as demonstrated by its ability to inhibit radiolabeled TSH binding to the TSH holoreceptor. The TSHR ECD-D1 purification was accomplished in a single step using a TSHR monoclonal antibody affinity column, whereas the HR-D1 required a multistep protocol with a low yield. In conclusion, we report a novel approach to generate the TSHR ECD, as well as the isolated HR in insect cells, the former in sufficient amounts for structural studies. However, such studies will require previous complexing of the ECD with a ligand such as TSH or a thyroid-stimulating antibody.

  4. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  5. Earthquake Activity in the North Greenland Region

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Dahl-Jensen, Trine; Voss, Peter H.

    2017-04-01

    Many local and regional earthquakes are recorded on a daily basis in northern Greenland. The majority of the earthquakes originate at the Arctic plate boundary between the Eurasian and the North American plates. Particularly active regions away from the plate boundary are found in NE Greenland and in northern Baffin Bay. The seismograph coverage in the region is sparse with the main seismograph stations located at the military outpost, Stations Nord (NOR), the weather station outpost Danmarkshavn (DAG), Thule Airbase (TULEG), and the former ice core drilling camp (NEEM) in the middle of the Greenland ice sheet. Furthermore, data is available from Alert (ALE), Resolute (RES), and other seismographs in northern Canada as well as from a temporary deployment of BroadBand seismographs along the north coast of Greenland from 2004 to 2007. The recorded earthquakes range in magnitude from less than 2 to a 4.8 event, the largest in NE Greenland, and a 5.7 event, the largest recorded in northern Baffin Bay. The larger events are recorded widely in the region allowing for focal mechanisms to be calculated. Only a few existing focal mechanisms for the region can be found in the ISC bulletin. Two in NE Greenland representing primarily normal faulting and one in Baffin Bay resulting from reverse faulting. New calculations of focal mechanisms for the region will be presented as well as improved hypocenters resulting from analysis involving temporary stations and regional stations that are not included in routine processing.

  6. IFLA General Conference, 1985. Division on Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on regional library activities which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Importance of Information Resources in National Development with Particular Reference to the Asian Scene" (Yogendra P. Dubey, India); (2) "Report of the Activities of the Regional…

  7. Male and female voices activate distinct regions in the male brain.

    PubMed

    Sokhi, Dilraj S; Hunter, Michael D; Wilkinson, Iain D; Woodruff, Peter W R

    2005-09-01

    In schizophrenia, auditory verbal hallucinations (AVHs) are likely to be perceived as gender-specific. Given that functional neuro-imaging correlates of AVHs involve multiple brain regions principally including auditory cortex, it is likely that those brain regions responsible for attribution of gender to speech are invoked during AVHs. We used functional magnetic resonance imaging (fMRI) and a paradigm utilising 'gender-apparent' (unaltered) and 'gender-ambiguous' (pitch-scaled) male and female voice stimuli to test the hypothesis that male and female voices activate distinct brain areas during gender attribution. The perception of female voices, when compared with male voices, affected greater activation of the right anterior superior temporal gyrus, near the superior temporal sulcus. Similarly, male voice perception activated the mesio-parietal precuneus area. These different gender associations could not be explained by either simple pitch perception or behavioural response because the activations that we observed were conjointly activated by both 'gender-apparent' and 'gender-ambiguous' voices. The results of this study demonstrate that, in the male brain, the perception of male and female voices activates distinct brain regions.

  8. Feasibility study on introduction of the bio-fuel power generation in tropical regions

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Study is made on feasibility of introducing the bio-fuel power generation in tropical regions, especially in South East Asia including Okinawa and South America. Biomass promising as bio-fuel is bagasse and palm oil mill dregs; and bagasse is found to be advantageous to the use for large-scaled power generation. Prospective uses of bagasse are a combined use of gasification process and gas turbine power generation, an effective use of gas turbine exhaust heat at sugar cane factories, and a use of the system to be developed which totalizes these two. As to how to carry out the R and D project, since the gasification power generation process itself is a high technology and has partially unknown fields, it is desirable that research and development are conducted in such technologically developed countries as Japan (Okinawa). A developmental plan, therefore, is worked out as such that a pilot plant of approximately 3000kW is to be constructed in Okinawa because the period for bagasse production is at least 3 months there, and a commercial-scale plant is to be constructed and operated in such big bagasse-producing countries as Brazil.

  9. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmasse, K.; Aulanier, G.; Démoulin, P.

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potentialmore » magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.« less

  11. A Survey of Nanoflare Properties in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Klimchuk, J. A.

    2013-12-01

    We investigate coronal heating using a systematic technique to analyze the properties of nanoflares in active regions (AR). Our technique computes cooling times, or time-lags, on a pixel-by-pixel basis using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique has the advantage that it allows us to analyze all of the coronal AR emission, including the so-called diffuse emission. We recently presented results using this time-lag analysis on NOAA AR 11082 (Viall & Klimchuk 2012) and found that the majority of the pixels contained cooling plasma along their line of sight, consistent with impulsive coronal nanoflare heating. Additionally, our results showed that the nanoflare energy is stronger in the AR core and weaker in the active region periphery. Are these results representative of the nanoflare properties exhibited in the majority of ARs, or is AR 11082 unique? Here we present the time-lag results for a survey of ARs and show that these nanoflare patterns are born out in other active regions, for a range of ages, magnetic complexity, and total unsigned magnetic flux. Other aspects of the nanoflare properties, however, turn out to be dependent on certain AR characteristics.

  12. generation of picosecond pulses in solid-state lasers using new active media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsyn, V.N.; Matrosov, V.N.; Pestryakov, E.V.

    Results are reported of investigations aimed at generating nanosecond radiation pulses in solid-state lasers using new active media having broad gain lines. Passive mode locking is accomplished for the first time in a BeLa:Nd/sup 3/ laser at a wavelength 1.354 microm, and in a YAG:Nd/sup 3/ laser on a 1.32-microm transition. The free lasing and mode-locking regimes were investigated in an alexandrite (BeA1/sub 2/O/sub 4/:Cr/sup 3/) laser in the 0.72-0.78-microm range and in a synchronously pumped laser on F/sub 2//sup -/ centers in LiF in the 1.12-1.24-microm region. The features of nonlinear perception of IR radiation by the eye, usingmore » a developed picosecond laser on F/sub 2//sup -/ centers, are investigated for the first time.« less

  13. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90

    PubMed Central

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2017-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 μM. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 μCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  14. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation

    PubMed Central

    Ymer, Susie I.; Greenall, Sameer A.; Cvrljevic, Anna; Cao, Diana X.; Donoghue, Jacqui F.; Epa, V. Chandana; Scott, Andrew M.; Adams, Timothy E.; Johns, Terrance G.

    2011-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation. PMID:24212795

  15. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  16. Derivation of a regional active-optical reflectance sensor corn algorithm

    USDA-ARS?s Scientific Manuscript database

    Active-optical reflectance sensor (AORS) algorithms developed for in-season corn (Zea mays L.) N management have traditionally been derived using sub-regional scale information. However, studies have shown these previously developed AORS algorithms are not consistently accurate when used on a region...

  17. Magnetic Structure of Sites of Braiding in Hi-C Active Region

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.

  18. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102

  19. Fast and robust generation of feature maps for region-based visual attention.

    PubMed

    Aziz, Muhammad Zaheer; Mertsching, Bärbel

    2008-05-01

    Visual attention is one of the important phenomena in biological vision which can be followed to achieve more efficiency, intelligence, and robustness in artificial vision systems. This paper investigates a region-based approach that performs pixel clustering prior to the processes of attention in contrast to late clustering as done by contemporary methods. The foundation steps of feature map construction for the region-based attention model are proposed here. The color contrast map is generated based upon the extended findings from the color theory, the symmetry map is constructed using a novel scanning-based method, and a new algorithm is proposed to compute a size contrast map as a formal feature channel. Eccentricity and orientation are computed using the moments of obtained regions and then saliency is evaluated using the rarity criteria. The efficient design of the proposed algorithms allows incorporating five feature channels while maintaining a processing rate of multiple frames per second. Another salient advantage over the existing techniques is the reusability of the salient regions in the high-level machine vision procedures due to preservation of their shapes and precise locations. The results indicate that the proposed model has the potential to efficiently integrate the phenomenon of attention into the main stream of machine vision and systems with restricted computing resources such as mobile robots can benefit from its advantages.

  20. Phytochemical composition, antioxidant activity and HPLC fingerprinting profiles of three Pyrola species from different regions.

    PubMed

    Wang, Dongmei; He, Fengyuan; Lv, Zhenjiang; Li, Dengwu

    2014-01-01

    The present study was performed to investigate the variation of phytochemical composition, antioxidant activity and High Performance Liquid Chromatography (HPLC) fingerprinting profiles of three Pyrola species. Thirteen samples (eight P. decorata, three P. calliantha and two P. renifolia) were collected from different regions in China. The tannin, hyperoside and quercetin contents of all samples were determined by reverse-phase HPLC and varied within the range 9.77-34.75, 0.34-2.16 and 0.062-0.147 mg/g dry weigh, respectively. Total flavonoid content was evaluated and varied within the range 16.22-37.82 mg/g dry weight. Antioxidant activity was determined by DPPH assay, with IC50 ranging from 7.96 to 50.33 µg/ml, ABTS•+ and FRAP assay, within the range 612.66-1021.05 and 219.64-398.12 µmol equiv. Trolox/g, respectively. These results revealed that there were significant variations in phytochemical profiles and antioxidant activity among all samples. Due to the higher phytochemical content and significant antioxidant activity, P. calliantha was selected as the most valuable species, and the P. calliantha sample from Left banner of Alxa even possessed the strongest antioxidant activity among all the thirteen samples. Futhermore, Emei Mountain was proved to be the most suitable region for producing P. decorata. Moreover, in order to further evaluate the diversities and quality of Pyrola, HPLC fingerprint analysis coupled with hierarchical cluster and discrimination analyses were introduced to establish a simple, rapid and effective method for accurate identification, classification and quality assessment of Pyrola. Thirteen samples were divided into three groups consistent with their morphological classification. Two types of discriminant functions were generated and the ratio of discrimination was 100%. This method can identify different species of Pyrola and the same species from different regions of origin. Also, it can be used to compare and control the

  1. Phytochemical Composition, Antioxidant Activity and HPLC Fingerprinting Profiles of Three Pyrola Species from Different Regions

    PubMed Central

    Wang, Dongmei; He, Fengyuan; Lv, Zhenjiang; Li, Dengwu

    2014-01-01

    The present study was performed to investigate the variation of phytochemical composition, antioxidant activity and High Performance Liquid Chromatography (HPLC) fingerprinting profiles of three Pyrola species. Thirteen samples (eight P. decorata, three P. calliantha and two P. renifolia) were collected from different regions in China. The tannin, hyperoside and quercetin contents of all samples were determined by reverse-phase HPLC and varied within the range 9.77–34.75, 0.34–2.16 and 0.062–0.147 mg/g dry weigh, respectively. Total flavonoid content was evaluated and varied within the range 16.22–37.82 mg/g dry weight. Antioxidant activity was determined by DPPH assay, with IC50 ranging from 7.96 to 50.33 µg/ml, ABTS•+ and FRAP assay, within the range 612.66–1021.05 and 219.64–398.12 µmol equiv. Trolox/g, respectively. These results revealed that there were significant variations in phytochemical profiles and antioxidant activity among all samples. Due to the higher phytochemical content and significant antioxidant activity, P. calliantha was selected as the most valuable species, and the P. calliantha sample from Left banner of Alxa even possessed the strongest antioxidant activity among all the thirteen samples. Futhermore, Emei Mountain was proved to be the most suitable region for producing P. decorata. Moreover, in order to further evaluate the diversities and quality of Pyrola, HPLC fingerprint analysis coupled with hierarchical cluster and discrimination analyses were introduced to establish a simple, rapid and effective method for accurate identification, classification and quality assessment of Pyrola. Thirteen samples were divided into three groups consistent with their morphological classification. Two types of discriminant functions were generated and the ratio of discrimination was 100%. This method can identify different species of Pyrola and the same species from different regions of origin. Also, it can be used to compare and

  2. 50 CFR 216.211 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and gas structure removal activities in areas within state and Federal waters in the U.S. Gulf of.... Gulf of Mexico § 216.211 Specified activity and specified geographical region. (a) Regulations in this...

  3. 50 CFR 216.211 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Specified activity and specified... Activities Conducted During Offshore Structure Removal Operations on the Outer Continental Shelf in the U.S. Gulf of Mexico § 216.211 Specified activity and specified geographical region. (a) Regulations in this...

  4. 50 CFR 216.211 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Specified activity and specified... Activities Conducted During Offshore Structure Removal Operations on the Outer Continental Shelf in the U.S. Gulf of Mexico § 216.211 Specified activity and specified geographical region. (a) Regulations in this...

  5. The Neural Circuits that Generate Tics in Gilles de la Tourette Syndrome

    PubMed Central

    Wang, Zhishun; Maia, Tiago V.; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S.

    2014-01-01

    Objective To study neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette syndrome. Method We acquired fMRI data from 13 participants with Tourette syndrome and 21 controls during spontaneous or simulated tics. We used independent component analysis with hierarchical partner matching to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. We used Granger causality to investigate causal interactions among these regions. Results We found that the Tourette group exhibited stronger neural activity and interregional causality than controls throughout all portions of the motor pathway including sensorimotor cortex, putamen, pallidum, and substania nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette group was stronger during spontaneous tics than during voluntary tics in somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette group than in controls within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may fail to control tic behaviors or the premonitory urges that generate them. Conclusions Our findings taken together suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico-striato-thalamo-cortical circuits. PMID:21955933

  6. The Effect of "Rogue" Active Regions on the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  7. Novel Keto-phospholipids Are Generated by Monocytes and Macrophages, Detected in Cystic Fibrosis, and Activate Peroxisome Proliferator-activated Receptor-γ*

    PubMed Central

    Hammond, Victoria J.; Morgan, Alwena H.; Lauder, Sarah; Thomas, Christopher P.; Brown, Sarah; Freeman, Bruce A.; Lloyd, Clare M.; Davies, Jane; Bush, Andrew; Levonen, Anna-Liisa; Kansanen, Emilia; Villacorta, Luis; Chen, Y. Eugene; Porter, Ned; Garcia-Diaz, Yoel M.; Schopfer, Francisco J.; O'Donnell, Valerie B.

    2012-01-01

    12/15-Lipoxygenases (LOXs) in monocytes and macrophages generate novel phospholipid-esterified eicosanoids. Here, we report the generation of two additional families of related lipids comprising 15-ketoeicosatetraenoic acid (KETE) attached to four phosphatidylethanolamines (PEs). The lipids are generated basally by 15-LOX in IL-4-stimulated monocytes, are elevated on calcium mobilization, and are detected at increased levels in bronchoalveolar lavage fluid from cystic fibrosis patients (3.6 ng/ml of lavage). Murine peritoneal macrophages generate 12-KETE-PEs, which are absent in 12/15-LOX-deficient mice. Inhibition of 15-prostaglandin dehydrogenase prevents their formation from exogenous 15-hydroxyeicosatetraenoic acid-PE in human monocytes. Both human and murine cells also generated analogous hydroperoxyeicosatetraenoic acid-PEs. The electrophilic reactivity of KETE-PEs is shown by their Michael addition to glutathione and cysteine. Lastly, both 15-hydroxyeicosatetraenoic acid-PE and 15-KETE-PE activated peroxisome proliferator-activated receptor-γ reporter activity in macrophages in a dose-dependent manner. In summary, we demonstrate novel peroxisome proliferator-activated receptor-γ-activating oxidized phospholipids generated enzymatically by LOX and 15-prostaglandin dehydrogenase in primary monocytic cells and in a human Th2-related lung disease. The lipids are a new family of bioactive mediators from the 12/15-LOX pathway that may contribute to its known anti-inflammatory actions in vivo. PMID:23060450

  8. Novel keto-phospholipids are generated by monocytes and macrophages, detected in cystic fibrosis, and activate peroxisome proliferator-activated receptor-γ.

    PubMed

    Hammond, Victoria J; Morgan, Alwena H; Lauder, Sarah; Thomas, Christopher P; Brown, Sarah; Freeman, Bruce A; Lloyd, Clare M; Davies, Jane; Bush, Andrew; Levonen, Anna-Liisa; Kansanen, Emilia; Villacorta, Luis; Chen, Y Eugene; Porter, Ned; Garcia-Diaz, Yoel M; Schopfer, Francisco J; O'Donnell, Valerie B

    2012-12-07

    12/15-Lipoxygenases (LOXs) in monocytes and macrophages generate novel phospholipid-esterified eicosanoids. Here, we report the generation of two additional families of related lipids comprising 15-ketoeicosatetraenoic acid (KETE) attached to four phosphatidylethanolamines (PEs). The lipids are generated basally by 15-LOX in IL-4-stimulated monocytes, are elevated on calcium mobilization, and are detected at increased levels in bronchoalveolar lavage fluid from cystic fibrosis patients (3.6 ng/ml of lavage). Murine peritoneal macrophages generate 12-KETE-PEs, which are absent in 12/15-LOX-deficient mice. Inhibition of 15-prostaglandin dehydrogenase prevents their formation from exogenous 15-hydroxyeicosatetraenoic acid-PE in human monocytes. Both human and murine cells also generated analogous hydroperoxyeicosatetraenoic acid-PEs. The electrophilic reactivity of KETE-PEs is shown by their Michael addition to glutathione and cysteine. Lastly, both 15-hydroxyeicosatetraenoic acid-PE and 15-KETE-PE activated peroxisome proliferator-activated receptor-γ reporter activity in macrophages in a dose-dependent manner. In summary, we demonstrate novel peroxisome proliferator-activated receptor-γ-activating oxidized phospholipids generated enzymatically by LOX and 15-prostaglandin dehydrogenase in primary monocytic cells and in a human Th2-related lung disease. The lipids are a new family of bioactive mediators from the 12/15-LOX pathway that may contribute to its known anti-inflammatory actions in vivo.

  9. The Solar Wind and Geomagnetic Activity as a Function of Time Relative to Corotating Interaction Regions

    NASA Technical Reports Server (NTRS)

    McPherron, Robert L.; Weygand, James

    2006-01-01

    Corotating interaction regions during the declining phase of the solar cycle are the cause of recurrent geomagnetic storms and are responsible for the generation of high fluxes of relativistic electrons. These regions are produced by the collision of a high-speed stream of solar wind with a slow-speed stream. The interface between the two streams is easily identified with plasma and field data from a solar wind monitor upstream of the Earth. The properties of the solar wind and interplanetary magnetic field are systematic functions of time relative to the stream interface. Consequently the coupling of the solar wind to the Earth's magnetosphere produces a predictable sequence of events. Because the streams persist for many solar rotations it should be possible to use terrestrial observations of past magnetic activity to predict future activity. Also the high-speed streams are produced by large unipolar magnetic regions on the Sun so that empirical models can be used to predict the velocity profile of a stream expected at the Earth. In either case knowledge of the statistical properties of the solar wind and geomagnetic activity as a function of time relative to a stream interface provides the basis for medium term forecasting of geomagnetic activity. In this report we use lists of stream interfaces identified in solar wind data during the years 1995 and 2004 to develop probability distribution functions for a variety of different variables as a function of time relative to the interface. The results are presented as temporal profiles of the quartiles of the cumulative probability distributions of these variables. We demonstrate that the storms produced by these interaction regions are generally very weak. Despite this the fluxes of relativistic electrons produced during those storms are the highest seen in the solar cycle. We attribute this to the specific sequence of events produced by the organization of the solar wind relative to the stream interfaces. We also

  10. On-Orbit Checkout and Activation of the ISS Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Prokhorov, Kimberlee S.

    2007-01-01

    NASA has developed and; deployed an Oxygen Generation System (OGS) into the Destiny Module of the International Space Station (ISS). The major. assembly; included in this system is the Oxygen Generator Assembly. (OGA) which was developed under NASA contract by Hamilton Sundstrand Space Systems International (HSSSI), Inc. This paper summarizes the installation of the system into the Destiny Module, its initial checkout and periodic preventative maintenance activities, and its operational activation. Trade studies and analyses that were conducted with the goal of mitigating on-orbit operational risks are also discussed.

  11. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  12. 50 CFR 216.110 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... geographical region. 216.110 Section 216.110 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Displays at Monterey Bay National Marine Sanctuary, CA § 216.110 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine mammal...

  13. 50 CFR 217.11 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... geographical region. 217.11 Section 217.11 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Coastal Commercial Fireworks Displays at Monterey Bay National Marine Sanctuary, CA § 217.11 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to the Monterey Bay...

  14. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  15. 50 CFR 217.11 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... geographical region. 217.11 Section 217.11 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Coastal Commercial Fireworks Displays at Monterey Bay National Marine Sanctuary, CA § 217.11 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to the Monterey Bay...

  16. 50 CFR 217.11 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... geographical region. 217.11 Section 217.11 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... Coastal Commercial Fireworks Displays at Monterey Bay National Marine Sanctuary, CA § 217.11 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to the Monterey Bay...

  17. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  18. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  19. 50 CFR 217.200 - Specified activities and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Specified activities and specified geographical region. 217.200 Section 217.200 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL... geographical region. (a) Regulations in this subpart apply only to the incidental taking of those marine...

  20. Regional differences in hyoid muscle activity and length-dynamics during mammalian head-shaking

    PubMed Central

    Wentzel, Sarah E.; Konow, Nicolai; German, Rebecca Z.

    2010-01-01

    The sternohyoid (SH) and geniohyoid (GH) are antagonist strap-muscles that are active during a number of different behaviors, including sucking, intraoral transport, swallowing, breathing, and extension/flexion of the neck. Because these muscles have served different functions through the evolutionary history of vertebrates, it is quite likely they will have complex patterns of electrical activity and muscle fiber contraction. Different regions of the sternohyoid exhibit different contraction and activity patterns during a swallow. We examined the dynamics of the sternohyoid and geniohyoid muscles during an unrestrained, and vigorous head-shake behavior in an animal model of human head, neck and hyolingual movement. A gentle touch to infant pig ears elicited a head shake of several head revolutions. Using sonomicrometry and intramuscular EMG we measured regional (within) muscle strain and activity in SH and GH. We found that EMG was consistent across three regions (anterior, belly and posterior) of each muscle. Changes in muscle length however, were more complex. In the SH, mid-belly length-change occurred out of phase with the anterior and posterior end-regions, but with a zero-lag timing; the anterior region shortened prior to the posterior. In the GH, the anterior region shortened prior to, and out of phase with the mid-belly and posterior regions. Head-shaking is a relatively simple reflex behavior, yet the underlying patterns of muscle length-dynamics and EMG activity are not. The regional complexity in SH and GH, similar to regionalization of SH during swallowing, suggests that these ‘simple hyoid strap muscles’ are more complex than textbooks often suggest. PMID:21370479

  1. Magnetic helicity in emerging solar active regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Hoeksema, J. T.; Bobra, M.

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferredmore » in a sample of 23 emerging ARs with a bipolar magnetic field configuration.« less

  2. Universities and Economic Development Activities: A UK Regional Comparison

    ERIC Educational Resources Information Center

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.

    2011-01-01

    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  3. Estimation of sonodynamic treatment region with sonochemiluminescence in gel phantom

    NASA Astrophysics Data System (ADS)

    Mashiko, Daisaku; Nishitaka, Shinya; Iwasaki, Ryosuke; Lafond, Maxime; Yoshizawa, Shin; Umemura, Shin-ichiro

    2018-07-01

    Sonodynamic treatment is a non-invasive cancer treatment using ultrasound through the generation of reactive oxygen species (ROS) by acoustic cavitation. High-intensity focused ultrasound (HIFU) can generate cavitation bubbles using highly negative pressure in its focal region. When cavitation bubbles are forced to collapse, they generate ROS, which can attack cancer cells, typically assisted by a sonodynamically active antitumor agent. For sonodynamic treatment, both localization and efficiency of generating ROS are important. To improve them, the region of ROS generation was quantitatively estimated in this study using a polyacrylamide gel containing luminol as the target exposed to “Trigger HIFU”, consisting of a highly intense short “trigger pulse” to generate a cavitation cloud followed by a moderate-intensity long “sustaining burst” to keep the cavitation bubbles oscillating. It was found to be important for efficient ROS generation that the focal region of the trigger pulse should be immediately exposed to the sustaining burst.

  4. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P., E-mail: vemareddy@iiap.res.in

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity fluxmore » has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.« less

  5. Improvement of downscaled rainfall and temperature across generations over the Western Himalayan region of India

    NASA Astrophysics Data System (ADS)

    Das, L.; Dutta, M.; Akhter, J.; Meher, J. K.

    2016-12-01

    It is a challenging task to create station level (local scale) climate change information over the mountainous locations of Western Himalayan Region (WHR) in India because of limited data availability and poor data quality. In the present study, missing values of station data were handled through Multiple Imputation Chained Equation (MICE) technique. Finally 22 numbers of rain gauge and 16 number of temperature station data having continuous record during 1901­2005 and 1969­2009 period respectively were considered as reference stations for developing downscaled rainfall and temperature time series from five commonly available GCMs in the IPCC's different generation assessment reports namely 2nd, 3rd, 4th and 5th hereafter known as SAR, TAR, AR4 and AR5 respectively. Downscaled models were developed using the combined data from the ERA-interim reanalysis and GCMs historical runs (in spite of forcing were not identical in different generation) as predictor and station level rainfall and temperature as predictands. Station level downscaled rainfall and temperature time series were constructed for five GCMs available in each generation. Regional averaged downscaled time series comprising of all stations was prepared for each model and generation and the downscaled results were compared with observed time series. Finally an Overall Model Improvement Index (OMII) was developed using the downscaling results, which was used to investigate the model improvement across generations as well as the improvement of downscaling results obtained from the Empirical Statistical Downscaling (ESD) methods. In case of temperature, models have improved from SAR to AR5 over the study area. In all most all the GCMs TAR is showing worst performance over the WHR by considering the different statistical indices used in this study. In case of precipitation, no model has shown gradual improvement from SAR to AR5 both for interpolated and downscaled values.

  6. Towards a versatile active wavelength converter for all-optical networks based on quasi-phase matched intra-cavity difference-frequency generation.

    PubMed

    Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan

    2013-11-18

    The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.

  7. Active region flows

    NASA Technical Reports Server (NTRS)

    Foukal, Peter

    1987-01-01

    A wide range of observations has shown that active region phenomena in the photospheric, chromospheric and coronal temperature regimes are dynamical in nature. At the photosphere, recent observations of full line profiles place an upper limit of about + or - 20/msec on any downflows at supergranule cell edges. Observations of the full Stokes 5 profiles in the network show no evidence for downflows in magnetic flux tubes. In the area of chromospheric dynamics, several models were put forward recently to reproduce the observed behavior of spicules. However, it is pointed out that these adiabatic models do not include the powerful radiative dissipation which tend to damp out the large amplitude disturbances that produce the spicular acceleration in the models. In the corona, loop flows along field lines clearly transport mass and energy at rates important for the dynamics of these structures. However, advances in understanding the heating and mass balance of the loop structures seem to require new kinds of observations. Some results are presented using a remote sensing diagnostic of the intensity and orientation of macroscopic plasma electric fields predicted by models of reconnective heating and also wave heating.

  8. Measuring the Impact of Wildfire on Active Layer Thickness in a Discontinuous Permafrost region using Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Michaelides, R. J.; Schaefer, K. M.; Zebker, H. A.; Liu, L.; Chen, J.; Parsekian, A.

    2017-12-01

    In permafrost regions, the active layer is defined as the uppermost portion of the permafrost table that is subject to annual freeze/thaw cycles. The active layer plays a crucial role in surface processes, surface hydrology, and vegetation succession; furthermore, trapped methane, carbon dioxide, and other greenhouse gases in permafrost are released into the atmosphere as permafrost thaws. A detailed understanding of active layer dynamics is therefore critical towards understanding the interactions between permafrost surface processes, freeze/thaw cycles, and climate-especially in regions across the Arctic subject to long-term permafrost degradation. The Yukon-Kuskokwim (YK) delta in southwestern Alaska is a region of discontinuous permafrost characterized by surface lakes, wetlands, and thermokarst depressions. Furthermore, extensive wildfires have burned across the YK delta in 2006, 2007, and 2015, impacting vegetation cover, surface soil moisture, and the active layer. Using data from the ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-1A/B space borne synthetic aperture radar (SAR) systems, we generate a series of interferograms over a study site in the YK delta spanning 2007-2011, and 2014-present. Using the ReSALT (Remotely-Sensed Active Layer Thickness) technique, we demonstrate that active layer can be characterized over most of the site from the relative interferometric phase difference due to ground subsidence and rebound associated with the seasonal active layer freeze/thaw cycle. Additionally, we show that this technique successfully discriminates between burned and unburned regions, and can resolve increases in active layer thickness in burned regions on the order of 10's of cms. We use the time series of interferograms to discuss permafrost recovery following wildfire burn, and compare our InSAR observations with GPR and active layer probing data from a 2016 summer field campaign to the study site. Finally, we compare the advantages and disadvantages of

  9. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks.

    PubMed

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-04-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons.

  10. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    PubMed Central

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  11. Irregular oscillatory patterns in the early-time region of coherent phonon generation in silicon

    NASA Astrophysics Data System (ADS)

    Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya

    2017-09-01

    Coherent phonon (CP) generation in an undoped Si crystal is theoretically investigated to shed light on unexplored quantum-mechanical effects in the early-time region immediately after the irradiation of ultrashort laser pulses. We examine time signals attributed to an induced charge density of an ionic core, placing the focus on the effects of the Rabi frequency Ω0 c v on the signals; this frequency corresponds to the peak electric-field of the pulse. It is found that at specific Ω0 c v's, where the energy of plasmon caused by photoexcited carriers coincides with the longitudinal-optical phonon energy, the energetically resonant interaction between these two modes leads to striking anticrossings, revealing irregular oscillations with anomalously enhanced amplitudes in the observed time signals. Also, the oscillatory pattern is subject to the Rabi flopping of the excited carrier density that is controlled by Ω0 c v. These findings show that the early-time region is enriched with quantum-mechanical effects inherent in the CP generation, though experimental signals are more or less masked by the so-called coherent artifact due to nonlinear optical effects.

  12. The Atlantic Canada-New England Region and Environment. A Learning Activity Packet.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.

    In this Learning Activity Packet (LAP) students examine the geographic and ecological bases of the Eastern international region. The overall objective of activities is to help students comprehend the man-earth relationship concept. By studying this familiar relevant region students gain geographic knowledge and skills applicable to other areas.…

  13. Generation of double giant pulses in actively Q-switched lasers

    NASA Astrophysics Data System (ADS)

    Korobeynikova, A. P.; Shaikin, I. A.; Shaykin, A. A.; Koryukin, I. V.; Khazanov, E. A.

    2018-04-01

    Generation of a second giant pulse in a longitudinal mode neighbouring to the longitudinal mode possessing minimal losses is theoretically and experimentally studied in actively Q-switched lasers. A mathematical model is suggested for explaining the giant pulse generation in a laser with multiple longitudinal modes. The model makes allowance for not only a standing, but also a running wave for each cavity mode. Results of numerical simulation and data of experiments with a Nd : YLF laser explain the effect of second giant pulse generation in a neighbouring longitudinal mode. After a giant pulse in the mode with minimal losses is generated, the threshold for the neighbouring longitudinal mode is still exceeded due to the effect of burning holes in the population inversion spatial distribution.

  14. Generation of Multivariate Surface Weather Series with Use of the Stochastic Weather Generator Linked to Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Farda, A.; Huth, R.

    2012-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms

  15. The Current Driven Kink Instability and its Relationship to Delta-Spot Active Regions

    NASA Astrophysics Data System (ADS)

    Linton, Mark George

    The current driven kink instability may be the cause of both the unusual morphology of solar δ-spot active regions and the tendency of these regions to be significantly more flare active than most active regions. We investigate the current driven kink instability of flux tubes in the solar interior both with a linear stability analysis and with nonlinear MHD simulations. The linear analysis shows that there is a critical twist, which depends on the axial magnetic field profile, that a flux tube needs to become kink unstable. This critical twist decreases as the tube expands, so twisted flux tubes will become increasingly unstable as they rise through the convection zone. The nonlinear simulations show that a twisted tube excited by a single unstable kink mode will evolve to a helical equilibrium state. The emergence through the photosphere of such a kinked tube would create an active region which was tilted with respect to Hale's law and which would rotate as it evolved, as δ-spots are observed to do. We then find that, when excited by multiple unstable kink modes, highly twisted flux tubes develop concentrated kinks. These concentrated kinks would produce more of the observed characteristics of δ-spot active regions. They would create active regions which, in addition to emerging tilted and then rotating, would remain compact as they evolved, and develop strong shear along their magnetic neutral line. Finally, we find that a strong concentrated kink develops a current sheet at which the magnetic field reconnects, which may be the cause of the high flare activity of δ-spots.

  16. Density of Plutonium Turnings Generated from Machining Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, John Robert; Vigil, Duane M.; Jachimowski, Thomas A.

    The purpose of this project was to determine the density of plutonium (Pu) turnings generated from the range of machining activities, using both surrogate material and machined Pu turnings. Verify that 500 grams (g) of plutonium will fit in a one quart container using a surrogate equivalent volume and that 100 grams of Pu will fit in a one quart Savy container.

  17. Calcium and stretch activation modulate power generation in Drosophila flight muscle.

    PubMed

    Wang, Qian; Zhao, Cuiping; Swank, Douglas M

    2011-11-02

    Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca(2+)]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca(2+)] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca(2+)]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca(2+)] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca(2+)]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca(2+)]. However, calcium tension saturated at slightly lower [Ca(2+)] than stretch-activated tension, such that as [Ca(2+)] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca(2+)] is the main mechanism by which power is varied during flight. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions.

    PubMed

    Habib, Hosam M; Al Meqbali, Fatima T; Kamal, Hina; Souka, Usama D; Ibrahim, Wissam H

    2014-06-15

    Honey serves as a good source of natural antioxidants, which are effective in reducing the risk of occurrence of several diseases. This study was undertaken to address the limited knowledge regarding the polyphenolic content, antioxidant and DNA damage inhibitory activities of honeys produced in arid regions and compare them with well-recognized honeys from non-arid regions. Different types of honey were assessed for their contents of total phenolics, total flavonoids, and certain types of phenolic compounds. The antioxidant capacity of honey was evaluated by ferric-reducing/antioxidant power assay (FRAP), free radical-scavenging activity (DPPH), nitric oxide (NO) radical-scavenging assay, total antioxidant activity, and DNA damage. Results clearly showed significant differences among honeys with all the evaluated parameters. Results also showed that one or more types of honey from arid regions contained higher levels of phenolic compounds, free radical-scavenging activities, or DNA damage inhibitory activities compared with the evaluated honeys from non-arid regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. 15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS AT LEFT, HISTORIC CONTROL PANEL AT RIGHT. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  20. Ocean Pollution as a Result of Onshore Offshore Petroleum Activities in the African Gulf of Guinea Region

    NASA Astrophysics Data System (ADS)

    Abubakar, B.

    2007-05-01

    increasing cases of pollution of farmlands, rivers, wells and the environment in general. Apart from all these, what is even becoming more worrisome is that none of all these oil firms operating in the region is able to account on how it disposes its industrial toxic waste generated as a result of its industrial activities within the region. Finally Geological strata are adversely destroyed by seismographic activities, Sea creatures are destroyed by oil pollution and Means of livelihood of revering dwellers are often threatened by pollution. RECOMMENDATIONS After identifying how the pollution in the Gulf of Guinea region is increasing in relation to the increasing petroleum activities, I have come up with the following suggestions/recommendations. 1. AFRICAN UNION RESOLUTION The Organization of the Petroleum Exporting Countries (OPEC) in conjunction with the International Atomic Energy Agency (IAEA) should use their capacity to be able to influence the African Union (AU) to pass a resolution banning the illegal dumping of radioactive waste, Gas flaring and Costal bunkering in this part of the world. 2. RESEARCH AND INVESTIGATION The Organization of the Petroleum Exporting Countries, in conjunction with the United Nations Environmental Agency, the International Atomic Energy Agency and with the corporation of the African Union should send team of researchers to come and investigate this trend on petroleum pollution in the Gulf of Guinea region and proffer possible solutions in checking the menace.

  1. Armenia as a Regional Centre for Astronomy for Development activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  2. THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.

    2015-08-15

    To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspotmore » with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.« less

  3. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    PubMed

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  4. Perceived built environment and physical activity in U.S. women by sprawl and region.

    PubMed

    Troped, Philip J; Tamura, Kosuke; Whitcomb, Heather A; Laden, Francine

    2011-11-01

    A number of studies have demonstrated relationships between the perceived built environment and physical activity among adults. However, little is known about whether these associations differ by U.S. region and level of urban sprawl. To examine associations between the perceived built environment and physical activity in U.S. women by region and urban sprawl. Nurses' Health Study II participants (N=68,968) completed four perceived neighborhood environment survey items in 2005. Logistic regression was used to estimate associations with meeting physical activity recommendations, adjusting for demographic and weight-status variables, and stratifying by region and sprawl. Data analyses were completed in 2011. Perceived proximity to shops/stores was positively associated with physical activity across regions and levels of sprawl (ORs=1.21-1.46). Perceived access to recreation facilities was also a positive physical activity correlate in most region-sprawl strata, with strongest relationships found in the West (ORs=1.31-1.70). Perceived crime and presence of sidewalks did not show statistically significant associations with physical activity in most region-sprawl strata, although ORs for perceived crime showed a consistent pattern of negative associations (ORs=0.60-0.95). A higher number of positive environmental attributes was associated with a greater odds of meeting physical activity recommendations. Findings indicate that perceived proximity to shops/stores and access to recreation facilities are important correlates of physical activity for women, irrespective of region or sprawl. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Distinct rhythm generators for inspiration and expiration in the juvenile rat

    PubMed Central

    Janczewski, Wiktor A; Feldman, Jack L

    2006-01-01

    Inspiration and active expiration are commonly viewed as antagonistic phases of a unitary oscillator that generates respiratory rhythm. This view conflicts with observations we report here in juvenile rats, where by administration of fentanyl, a selective μ-opiate agonist, and induction of lung reflexes, we separately manipulated the frequency of inspirations and expirations. Moreover, completely transecting the brainstem at the caudal end of the facial nucleus abolished active expirations, while rhythmic inspirations continued. We hypothesize that inspiration and expiration are generated by coupled, anatomically separate rhythm generators, one generating active expiration located close to the facial nucleus in the region of the retrotrapezoid nucleus/parafacial respiratory group, the other generating inspiration located more caudally in the preBötzinger Complex. PMID:16293645

  6. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  7. Forecasting the Solar Drivers of Severe Space Weather from Active-Region Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region s magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, and (2) an active region s rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region s present measured value of the free-energy proxy give the active region s expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region s recent productivity of major flares; specifically, whether the active region has produced a major flare (GOES class M or X) during the past 24 hours before the time of the measured magnetogram. By empirically determining the conversion of the value of free-energy proxy measured from a GONG or HMI magnetogram to that which would be measured from an MDI magnetogram, we have made GONG and HMI magnetograms useable with

  8. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Zhong, Z. H.; Tang, R. X.; Zhou, M.; Deng, X. H.; Pang, Y.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Tobert, R. B.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindquist, P.-A.

    2018-02-01

    Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

  9. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region.

    PubMed

    Zhong, Z H; Tang, R X; Zhou, M; Deng, X H; Pang, Y; Paterson, W R; Giles, B L; Burch, J L; Tobert, R B; Ergun, R E; Khotyaintsev, Y V; Lindquist, P-A

    2018-02-16

    Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

  10. Radio-derived three-dimensional structure of a solar active region

    NASA Astrophysics Data System (ADS)

    Tun, Samuel D.

    Solar active regions are the source of the most violent events observed on the Sun, some of which have a direct impact to modern civilization. Efforts to understand and predict such events require determination of the three-dimensional distributions of density, temperature, and magnetic fields above such active regions. This thesis presents the structure of the solar atmosphere above active region AR 10923, observed on 2006 Nov 10, as deduced from multi-wavelength studies including combined microwave observations from the Very Large Array (VLA) and the Owens Valley Solar Array (OVSA). The VLA observations provide excellent image quality at a few widely spaced frequencies while the OVSA data provide information at many intermediate frequencies to fill in the spectral coverage. In order to optimize the OVSA data for spectroscopic studies, the L1 method of self-calibration was implemented at this observatory, producing the best single frequency maps produced to date. Images at the 25 distinct, available frequencies are used to provide spatially resolved spectra along many lines of sight in the active region, from which microwave spectral diagnostics are obtained for deducing two-dimensional maps of temperature, magnetic field strength, and column density. The derived quantities are compared with multi-wavelength observations from SoHO and Hinode spacecraft, and with a standard potential magnetic field extrapolation. It is found that a two component temperature model is required to fit the data, in which a hot (> 2 MK) lower corona above the strong-field plage and sunspot regions (emitting via the gyroresonance process) is overlaid with somewhat cooler (˜ 1 MK) coronal loops that partially absorb the gyroresonance emission through the free-free (Bremsstrahlung) process. It is also found that the potential magnetic field extrapolation model can quantitatively account for the observed gyroresonance emission over most of the active region, but in a few areas a higher

  11. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight.

    PubMed

    Purohit, Rituraj

    2014-01-01

    KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805-850) by conducting molecular dynamics simulation (∼100 ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.

  12. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.; Qiu, J.; Lindsey, C.

    2017-10-01

    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  13. Frequent ultraviolet brightenings observed in a solar active region with solar maximum mission

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Toomre, J.; Gebbie, K. B.

    1984-01-01

    Observations of the temporal behavior of ultraviolet emission from bright points within an active region of the sun are reported. Frequent and rapid brightenings in Si IV and O IV line emission are seen. The observations suggest that intermittent heating events of modest amplitude are occurring at many sites within an active region. By selecting the brightest site at any given time within an active region and then sampling its behavior in detail within a 120 s interval, it is found that about two-thirds of the samples show variations of the Si IV line intensity. The brightenings typically last about 40-60 s; intensity increases of about 20-100 percent are frequently observed. The results suggest that heating due to magnetic field reconnection within an active region is proceeding almost stochastically. Events involving only a modest release of energy occur the most frequently.

  14. Observations of solar active regions and solar flares by OSO-7

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1977-01-01

    Contributions made to the physics of coronal active regions and flares by the extreme ultraviolet and soft X-ray spectroheliograph on OSO-7 were discussed. Coronal structures above active regions were discussed from the point of view of their morphology and physical properties, including their relationship to photospheric and coronal magnetic fields. OSO-7 also recorded flares with sufficient spatial and temporal resolution to record, in some instances for the first time, the extreme ultraviolet and soft X-ray emission associated with such chromospheric phenomena as filament activation and the emergence of satellite sunspots. Flare phenomena were reviewed in terms of the several stages of evolution typically associated with the event.

  15. UVCS Observations of Slow Plasma Flow in the Corona Above Active Regions

    NASA Astrophysics Data System (ADS)

    Woo, R.; Habbal, S. R.

    2005-05-01

    The elusive source of slow solar wind has been the subject of ongoing discussion and debate. Observations of solar wind speed near the Earth orbit, first with IPS (interplanetary scintillation) and later with Ulysses in situ measurements, have suggested that some slow solar wind may be associated with active regions (Kojima & Kakinuma 1987; Woo, Habbal & Feldman 2004). The ability of SOHO UVCS Doppler dimming measurements to provide estimates of solar wind speed in the corona (Kohl et al. 1995) has made it possible to investigate the distribution of flow near the Sun. In this paper, we will present results confirming that active regions are one of the sources of slow wind. Insight into the relationship between coronal streamers, active regions and plasma flow will also be discussed.

  16. Earthquake Model of the Middle East (EMME) Project: Active Fault Database for the Middle East Region

    NASA Astrophysics Data System (ADS)

    Gülen, L.; Wp2 Team

    2010-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the umbrella GEM (Global Earthquake Model) project (http://www.emme-gem.org/). EMME project region includes Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project will use PSHA approach and the existing source models will be revised or modified by the incorporation of newly acquired data. More importantly the most distinguishing aspect of the EMME project from the previous ones will be its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that will permit continuous update, refinement, and analysis. A digital active fault map of the Middle East region is under construction in ArcGIS format. We are developing a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. Similar to the WGCEP-2007 and UCERF-2 projects, the EMME project database includes information on the geometry and rates of movement of faults in a “Fault Section Database”. The “Fault Section” concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far over 3,000 Fault Sections have been defined and parameterized for the Middle East region. A separate “Paleo-Sites Database” includes information on the timing and amounts of fault displacement for major fault zones. A digital reference library that includes the pdf files of the relevant papers, reports is also being prepared. Another task of the WP-2 of the EMME project is to prepare

  17. Oscillations In Emerging Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.; Muglach, K.

    2017-12-01

    Active regions (ARs) on the Sun are directly related to space weather phenomena like flares and coronal mass ejections (CMEs). It is well known that both can have impacts not only on Earth, but also on nearby orbits and beyond. Predicting when and where active regions will emerge at the surface of the Sun would strengthen space weather forecasting abilities. In this study, data from the Solar Dynamics Observatory (SDO) are used to produce images of the magnetic field and Doppler Velocity at the photosphere of the Sun. This data is used to study the emergence of ARs at the surface of the Sun. Since global oscillations that travel through the solar interior are modified by the magnetic field, the oscillation patterns in and around ARs should be different from the oscillation patterns in the quiet, non-active Sun. Thus, a change in oscillation patterns can be determined before an AR is visible at the Sun's surface. Using Fast Fourier Transforms, the oscillation patterns can be calculated from the SDO Dopplergrams. Magnetograms provide the time when the magnetic field of the active region reaches the solar surface. Thus, both the calculated oscillation frequencies and power can be compared to the information of an AR's emergence in the magnetograms. In particular, it can be determined if there is any time delay between the change of oscillation power and magnetic field emergence. For this particular AR studied, it was found that the 5-min oscillation power starts to decrease at the time the AR emerges. The 3-min oscillation power also decreases first but increases again a few hours after the start of the emergence. This observation is probably due to 3-min oscillation power halos around the AR and has been observed before. A few hours before the AR starts to emerge, an increase was found in both 5-min and 3-min oscillation power. This effect is promising, however, it has not been observed before and has to be verified with additional observations.

  18. Functional overlap of top-down emotion regulation and generation: an fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions.

    PubMed

    Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri

    2014-09-01

    One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.

  19. Spontaneous cortical activity alternates between motifs defined by regional axonal projections

    PubMed Central

    Mohajerani, Majid H.; Chan, Allen W.; Mohsenvand, Mostafa; LeDue, Jeffrey; Liu, Rui; McVea, David A.; Boyd, Jamie D.; Wang, Yu Tian; Reimers, Mark; Murphy, Timothy H.

    2014-01-01

    In lightly anaesthetized or awake adult mice using millisecond timescale voltage sensitive dye imaging, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing including vision, audition, and touch. Similar cortical networks were found with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality specific sources such as primary sensory areas, and a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area, and a secondary anterior medial sink within the cingulate/secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range mono-synaptic connections between cortical regions. Maps of intracortical mono-synaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity. PMID:23974708

  20. A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox.

    PubMed

    Yamanishi, Mamoru; Ito, Yoichiro; Kintaka, Reiko; Imamura, Chie; Katahira, Satoshi; Ikeuchi, Akinori; Moriya, Hisao; Matsuyama, Takashi

    2013-06-21

    The terminator regions of eukaryotes encode functional elements in the 3' untranslated region (3'-UTR) that influence the 3'-end processing of mRNA, mRNA stability, and translational efficiency, which can modulate protein production. However, the contribution of these terminator regions to gene expression remains unclear, and therefore their utilization in metabolic engineering or synthetic genetic circuits has been limited. Here, we comprehensively evaluated the activity of 5302 terminator regions from a total of 5880 genes in the budding yeast Saccharomyces cerevisiae by inserting each terminator region downstream of the P TDH3 - green fluorescent protein (GFP) reporter gene and measuring the fluorescent intensity of GFP. Terminator region activities relative to that of the PGK1 standard terminator ranged from 0.036 to 2.52, with a mean of 0.87. We thus could isolate the most and least active terminator regions. The activities of the terminator regions showed a positive correlation with mRNA abundance, indicating that the terminator region is a determinant of mRNA abundance. The least active terminator regions tended to encode longer 3'-UTRs, suggesting the existence of active degradation mechanisms for those mRNAs. The terminator regions of ribosomal protein genes tended to be the most active, suggesting the existence of a common regulator of those genes. The ″terminatome″ (the genome-wide set of terminator regions) thus not only provides valuable information to understand the modulatory roles of terminator regions on gene expression but also serves as a useful toolbox for the development of metabolically and genetically engineered yeast.

  1. Active faulting in low- to moderate-seismicity regions: the SAFE project

    NASA Astrophysics Data System (ADS)

    Sebrier, M.; Safe Consortium

    2003-04-01

    SAFE (Slow Active Faults in Europe) is an EC-FP5 funded multidisciplinary effort which proposes an integrated European approach in identifying and characterizing active faults as input for evaluating seismic hazard in low- to moderate-seismicity regions. Seismically active western European regions are generally characterized by low hazard but high risk, due to the concentration of human and material properties with high vulnerability. Detecting, and then analysing, tectonic deformations that may lead to destructive earthquakes in such areas has to take into account three major limitations: - the typical climate of western Europe (heavy vegetation cover and/or erosion) ; - the subdued geomorphic signature of slowly deforming faults ; - the heavy modification of landscape by human activity. The main objective of SAFE, i.e., improving the assessment of seismic hazard through understanding of the mechanics and recurrence of active faults in slowly deforming regions, is achieved through four major steps : (1) extending geologic and geomorphic investigations of fault activity beyond the Holocene to take into account various time-windows; (2) developing an expert system that combines diverse lines of geologic, seismologic, geomorphic, and geophysical evidence to diagnose the existence and seismogenic potential of slow active faults; (3) delineating and characterising high seismic risk areas of western Europe, either from historical or geological/geomorphic evidence; (4) demonstrating and discussing the impact of the project results on risk assessment through a seismic scenario in the Basel-Mulhouse pilot area. To take properly into account known differences in source behavior, these goals are pursued both in extensional (Lower and Upper Rhine Graben, Catalan Coast) and compressional tectonic settings (southern Upper Rhine Graben, Po Plain, and Provence). Two arid compressional regions (SE Spain and Moroccan High Atlas) have also been selected to address the limitations

  2. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  3. A Curriculum Activities Guide to Electric Power Generation and the Environment.

    ERIC Educational Resources Information Center

    Tully, Randolph R., Jr., Ed.

    This guide was developed by teachers involved in a workshop on "Electric Power Generation and the Environment." Activity topics are: (1) Energy and the Consumer; (2) Energy and Water Pollution; and (3) Energy and Air Pollution. Within these topics, the activities are classified as awareness level, transitional level, or operational…

  4. Dynamic coupling of regional atmosphere to biosphere in the new generation regional climate system model REMO-iMOVE

    NASA Astrophysics Data System (ADS)

    Wilhelm, C.; Rechid, D.; Jacob, D.

    2013-05-01

    The main objective of this study is the coupling of the regional climate model REMO to a 3rd generation land surface scheme and the evaluation of the new model version of REMO, called REMO with interactive MOsaic-based VEgetation: REMO-iMOVE. Attention is paid to the documentation of the technical aspects of the new model constituents and the coupling mechanism. We compare simulation results of REMO-iMOVE and of the reference version REMO2009, to investigate the sensitivity of the regional model to the new land surface scheme. An 11 yr climate model run (1995-2005), forced with ECMWF ERA-Interim lateral boundary conditions, over Europe in 0.44° resolution of both model versions was carried out, to represent present day European climate. The result of these experiments are compared to multiple temperature, precipitation, heat flux and leaf area index observation data, to determine the differences in the model versions. The new model version has further the ability to model net primary productivity for the given plant functional types. This new feature is thoroughly evaluated by literature values of net primary productivity of different plant species in European climatic regions. The new model version REMO-iMOVE is able to model the European climate in the same quality as the parent model version REMO2009 does. The differences in the results of the two model versions stem from the differences in the dynamics of vegetation cover and density and can be distinct in some regions, due to the influences of these parameters to the surface heat and moisture fluxes. The modeled inter-annual variability in the phenology as well as the net primary productivity lays in the range of observations and literature values for most European regions. This study also reveals the need for a more sophisticated soil moisture representation in the newly developed model version REMO-iMOVE to be able to treat the differences in plant functional types. This gets especially important if the

  5. Caffeine restores regional brain activation in acute hypoglycaemia in healthy volunteers.

    PubMed

    Rosenthal, M J; Smith, D; Yaguez, L; Giampietro, V; Kerr, D; Bullmore, E; Brammer, M; Williams, S C R; Amiel, S A

    2007-07-01

    Caffeine enhances counterregulatory responses to acute hypoglycaemia. Our aim was to explore its effects on cortical function, which are not known at present. Regional brain activation during performance of the four-choice reaction time (4CRT) at different levels of complexity was measured using functional magnetic resonance imaging (fMRI) at euglycaemia (5 mmol/l) and hypoglycaemia (2.6 mmol/l) in the presence and absence of caffeine in six healthy right-handed men. During hypoglycaemia, caffeine enhanced adrenaline responses to hypoglycaemia (2.5 +/- 0.7 nmol/l to 4.0 +/- 1.0 nmol/l, P = 0.01) and restored the brain activation response to the non-cued 4CRT, the linear increases in regional brain activation associated with increased task complexity and the ability to respond to a cue that were lost in hypoglycaemia alone. Caffeine can sustain regional brain activation patterns lost in acute hypoglycaemia, with some restoration of cortical function and enhanced adrenaline responsiveness. A methodology has been established that may help in the development of therapies to protect against severe hypoglycaemia in insulin therapy for patients with diabetes and problematic hypoglycaemia.

  6. In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet procoagulant activity by prasugrel.

    PubMed

    Mazzeffi, Michael; Szlam, Fania; Jakubowski, Joseph A; Tanaka, Kenichi A; Sugidachi, Atsuhiro; Levy, Jerrold H

    2013-07-01

    Prasugrel is a thienopyridyl P2Y12 antagonist with potent antiplatelet effects. At present, little is known about its effects on thrombin generation or what strategies may emergently reverse its anticoagulant effects. In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. PAM reduced maximum platelet aggregation and led to platelet disaggregation. It also decreased peak thrombin, increased lag time, and increased time to peak thrombin. Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. ADP decreased lag time and time to peak thrombin, but had no effect on peak thrombin. When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. PAM also increased thromboelastometric clotting time and clot formation time, but had no effect on maximum clot firmness. Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. Recombinant activated factor VII restores thrombin generation in the presence of PAM. In patients taking prasugrel with life-threatening refractory bleeding it has the potential to be a useful therapeutic approach. Additional clinical studies are needed to validate our findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Macroeconomic dataset for generating macroeconomic volatility among selected countries in the Asia Pacific region.

    PubMed

    Chow, Yee Peng; Muhammad, Junaina; Amin Noordin, Bany Ariffin; Cheng, Fan Fah

    2018-02-01

    This data article provides macroeconomic data that can be used to generate macroeconomic volatility. The data cover a sample of seven selected countries in the Asia Pacific region for the period 2004-2014, including both developing and developed countries. This dataset was generated to enhance our understanding of the sources of macroeconomic volatility affecting the countries in this region. Although the Asia Pacific region continues to remain as the most dynamic part of the world's economy, it is not spared from various sources of macroeconomic volatility through the decades. The reported data cover 15 types of macroeconomic data series, representing three broad categories of indicators that can be used to proxy macroeconomic volatility. They are indicators that account for macroeconomic volatility (i.e. volatility as a macroeconomic outcome), domestic sources of macroeconomic volatility and external sources of macroeconomic volatility. In particular, the selected countries are Malaysia, Thailand, Indonesia and Philippines, which are regarded as developing countries, while Singapore, Japan and Australia are developed countries. Despite the differences in level of economic development, these countries were affected by similar sources of macroeconomic volatility such as the Asian Financial Crisis and the Global Financial Crisis. These countries were also affected by other similar external turbulence arising from factors such as the global economic slowdown, geopolitical risks in the Middle East and volatile commodity prices. Nonetheless, there were also sources of macroeconomic volatility which were peculiar to certain countries only. These were generally domestic sources of volatility such as political instability (for Thailand, Indonesia and Philippines), natural disasters and anomalous weather conditions (for Thailand, Indonesia, Philippines, Japan and Australia) and over-dependence on the electronic sector (for Singapore).

  8. Urban, Rural, and Regional Variations in Physical Activity

    ERIC Educational Resources Information Center

    Martin, Sarah Levin; Kirkner, Gregory J.; Mayo, Kelly; Matthews, Charles E.; Durstine, Larry; Hebert, James R.

    2005-01-01

    Purpose: There is some speculation about geographic differences in physical activity (PA) levels. We examined the prevalence of physical inactivity (PIA) and whether US citizens met the recommended levels of PA across the United States. In addition, the association between PIA/PA and degree of urbanization in the 4 main US regions (Northeast,…

  9. Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis.

    PubMed

    Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P

    2009-06-17

    Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.

  10. Biophysically Based Mathematical Modeling of Interstitial Cells of Cajal Slow Wave Activity Generated from a Discrete Unitary Potential Basis

    PubMed Central

    Faville, R.A.; Pullan, A.J.; Sanders, K.M.; Koh, S.D.; Lloyd, C.M.; Smith, N.P.

    2009-01-01

    Abstract Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations. PMID:19527643

  11. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis; Georgoulis, Manolis K.; Park, Sung-Hong; Guerra, Jordan A.

    2017-11-01

    We explore the association of non-neutralized currents with solar flare occurrence in a sizable sample of observations, aiming to show the potential of such currents in solar flare prediction. We used the high-quality vector magnetograms that are regularly produced by the Helioseismic Magnetic Imager, and more specifically, the Space weather HMI Active Region Patches (SHARP). Through a newly established method that incorporates detailed error analysis, we calculated the non-neutralized currents contained in active regions (AR). Two predictors were produced, namely the total and the maximum unsigned non-neutralized current. Both were tested in AR time-series and a representative sample of point-in-time observations during the interval 2012 - 2016. The average values of non-neutralized currents in flaring active regions are higher by more than an order of magnitude than in non-flaring regions and correlate very well with the corresponding flare index. The temporal evolution of these parameters appears to be connected to physical processes, such as flux emergence and/or magnetic polarity inversion line formation, that are associated with increased solar flare activity. Using Bayesian inference of flaring probabilities, we show that the total unsigned non-neutralized current significantly outperforms the total unsigned magnetic flux and other well-established current-related predictors. It therefore shows good prospects for inclusion in an operational flare-forecasting service. We plan to use the new predictor in the framework of the FLARECAST project along with other highly performing predictors.

  12. X-ray and microwave observations of active regions

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Davis, J. M.; Kundu, M. R.; Velusamy, T.

    1983-01-01

    Coordinated high-resolution (1-3 arcsec) observations of two active solar regions (H 421 and H 419) on November 16, 1979, are reported: soft-X-ray filtergrams from a sounding rocket flight, VLA total-intensity and circular-polarization microwave (6-cm) radio maps, KPNO full-disk photospheric magnetograms, and BBSO H-alpha data. The images were converted to 4.8-arcsec/mm-scale transparencies and coaligned on the basis of sunspot positions for comparison. The two active regions are characterized in detail, and intensity, size, and polarization data for the brightest microwave components (BMC) are listed. It is found that 19 of the 32 BMC are farther than 5 arcsec from any sunspot, and that X-ray-emitting structures only rarely correspond to sunspots, or BMC. About one third of the BMC are located at the feet or legs of coronal loops smaller than about 50,000 km. The limitations implied by these obervations for proposed thermal-bremsstrahlung, thermal-gyro-resonance, and nonthermal microwave-emission mechanisms are discussed.

  13. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  14. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  15. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    DOE PAGES

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; ...

    2014-12-18

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  16. Design and Activation of a LOX/GH Chemical Steam Generator

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  17. Constraining the common properties of active region formation using the SDO/HEAR dataset

    NASA Astrophysics Data System (ADS)

    Schunker, H.; Braun, D. C.; Birch, A. C.

    2016-10-01

    Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which enable us to perform statistical analyses. We collated a uniform data set of emerging active regions (EARs) observed by the SDO/HMI instrument suitable for helioseismic analysis, where each active region can be observed up to 7 days before emergence. We call this dataset the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. We have used this dataset to to understand the nature of active region emergence. The latitudinally averaged line-of-sight magnetic field of all the EARs shows that the leading (trailing) polarity moves in a prograde (retrograde) direction with a speed of 110 ± 15 m/s (-60 ± 10 m/s) relative to the Carrington rotation rate in the first day after emergence. However, relative to the differential rotation of the surface plasma the East-West velocity is symmetric, with a mean of 90 ± 10 m/s. We have also compared the surface flows associated with the EARs at the time of emergence with surface flows from numerical simulations of flux emergence with different rise speeds. We found that the surface flows in simulations of emerging flux with a low rise speed of 70 m/s best match the observations.

  18. Synthesis and antiviral activity of certain second generation methylenecyclopropane nucleosides

    PubMed Central

    Williams, John D.; Khan, Atiyya R.; Harden, Emma A.; Hartline, Caroll B.; Jefferson, Geraldine M.; Keith, Kathy A.; Prichard, Mark N.; Zemlicka, Jiri; Peet, Norton P.; Bowlin, Terry L.

    2012-01-01

    A second-generation series of substituted methylenecyclopropane nucleosides (MCPNs) has been synthesized and evaluated for antiviral activity against a panel of human herpesviruses, and for cytotoxicity. Although alkylated 2,6-diaminopurine analogs showed little antiviral activity, the compounds containing ether and thioether substituents at the 6-position of the purine did demonstrate potent and selective antiviral activity against several different human herpesviruses. In the 6-alkoxy series, antiviral activity depended on the length of the ether carbon chain, with the optimum chain length being about four carbon units long. For the corresponding thioethers, compounds containing secondary thioethers were more potent than those with primary thioethers. PMID:22607883

  19. Numerical simulation of convective generated gravity waves in the stratosphere and MLT regions.

    NASA Astrophysics Data System (ADS)

    Heale, C. J.; Snively, J. B.

    2017-12-01

    Convection is an important source of gravity wave generation, especially in the summer tropics and midlatitudes, and coherent wave fields above convection are now routinely measured in the stratosphere and mesosphere [e.g. Hoffmann et al., JGR, 118, 2013; Gong et al., JGR, 120, 2015; Perwitasari et al., GRL, 42, 22, 2016]. Numerical studies have been performed to investigate the generation mechanisms, source spectra, and their effects on the middle and upper atmosphere [e.g. Fovell et al., AMS, 49,16, 1992; Alexander and Holton, Atmos. Chem. Phys., 4 2004; Vincent et al., JGR, 1118, 2013], however there is still considerable work needed to fully describe these parameters. GCMs currently lack the resolution to explicitly simulate convection generation and rely on simplified parameterizations while full cloud resolving models are computationally expensive and often only extend into the stratosphere. More recent studies have improved the realism of these simulations by using radar derived precipitation rates to drive latent heating in models that simulate convection [Grimsdell et al., AMS, 67, 2010; Stephan and Alexander., J. Adv. Model. Earth. Syst, 7, 2015], however they too only consider wave propagation in the troposphere and stratosphere. We use a 2D nonlinear, fully compressible model [Snively and Pasko., JGR, 113, 2008] to excite convectively generated waves, based on NEXRAD radar data, using the Stephan and Alexander [2015] algorithms. We study the propagation, and spectral evolution of the generated waves up into the MLT region. Ambient atmosphere parameters are derived from observations and MERRA-2 reanalysis data, and stratospheric (AIRS) and mesospheric (Lidar, OH airglow) observations enable comparisons with simulation results.

  20. Ride-sharing activities in the Richmond regional planning district.

    DOT National Transportation Integrated Search

    1977-01-01

    This report gives the results of a survey made of industries in the Richmond Regional Planning District to determine the current and expected ride-sharing activities there and the type of information deemed most useful in planning ride-sharing progra...

  1. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    PubMed

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  2. Propagating wave in active region-loops, located over the solar disk observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Hou, Y. J.; Zhang, J.

    2018-03-01

    Aims: We aim to ascertain the physical parameters of a propagating wave over the solar disk detected by the Interface Region Imaging Spectrograph (IRIS). Methods: Using imaging data from the IRIS and the Solar Dynamic Observatory (SDO), we tracked bright spots to determine the parameters of a propagating transverse wave in active region (AR) loops triggered by activation of a filament. Deriving the Doppler velocity of Si IV line from spectral observations of IRIS, we have determined the rotating directions of active region loops which are relevant to the wave. Results: On 2015 December 19, a filament was located on the polarity inversion line of the NOAA AR 12470. The filament was activated and then caused a C1.1 two-ribbon flare. Between the flare ribbons, two rotation motions of a set of bright loops were observed to appear in turn with opposite directions. Following the end of the second rotation, a propagating wave and an associated transverse oscillation were detected in these bright loops. In 1400 Å channel, there was bright material flowing along the loops in a wave-like manner, with a period of 128 s and a mean amplitude of 880 km. For the transverse oscillation, we tracked a given loop and determine the transverse positions of the tracking loop in a limited longitudinal range. In both of 1400 Å and 171 Å channels, approximately four periods are distinguished during the transverse oscillation. The mean period of the oscillation is estimated as 143 s and the displacement amplitude as between 1370 km and 690 km. We interpret these oscillations as a propagating kink wave and obtain its speed of 1400 km s-1. Conclusions: Our observations reveal that a flare associated with filament activation could trigger a kink propagating wave in active region loops over the solar disk. Movies associated to Figs. 1-4 are available at http://https://www.aanda.org

  3. Beyond participation: the association between school extracurricular activities and involvement in violence across generations of immigration.

    PubMed

    Jiang, Xin; Peterson, Ruth D

    2012-03-01

    Participation in extracurricular activities is purported to protect the broad spectrum of youth from a host of behavioral risks. Yet, empirical research on the extent to which this assumption holds for involvement in violence by immigrant youth is limited. Thus, using data for 13,236 (51.8% female) adolescents from the National Longitudinal Study of Adolescent Health, this study explores how the relationship between extracurricular activities and youth violence varies by type of extracurricular activity profile (sports alone, non-sports alone, and a combination of sports and non-sports) and by generations of immigration (first, second, and third-plus). The sample is composed of 9.3% (n = 1,233) first-generation youth, 15.7% (n = 2,080) second generation, and 74.9% (n = 9,923) third-plus generation. The results reveal that adolescents from the third-plus generation (i.e., non-immigrant youth) who participate in non-sports alone or sports plus non-sports have lower odds of involvement in violence than adolescents from the same generation who do not participate in extracurricular activities. However, for first- and second-generation adolescents, participation in extracurricular activities is associated with higher rather than lower odds of violence compared to their non-participating counterparts. These findings challenge the viewpoint that participation in mainstream extracurricular activities as afforded by US schools is equally beneficial for all youth. They also call for additional research that explores why immigrant youth are less likely than non-immigrant youth to gain violence-reducing benefits when they participate in extracurricular activities.

  4. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  5. Perceived Built Environment and Physical Activity in U.S. Women by Sprawl and Region

    PubMed Central

    Troped, Philip J.; Tamura, Kosuke; Whitcomb, Heather A.; Laden, Francine

    2012-01-01

    Background A number of studies have demonstrated relationships between the perceived built environment and physical activity among adults. However, little is known about whether these associations differ by U.S. region and level of urban sprawl. Purpose To examine associations between the perceived built environment and physical activity in U.S. women by region and urban sprawl. Methods Nurses’ Health Study II participants (N = 68,968) completed four perceived neighborhood environment survey items in 2005. Logistic regression was used to estimate associations with meeting physical activity recommendations, adjusting for demographic and weight-status variables, and stratifying by region and sprawl. Data analyses were completed in 2011. Results Perceived proximity to shops/stores was positively associated with physical activity across regions and levels of sprawl (ORs = 1.21 to 1.46). Perceived access to recreation facilities was also a positive physical activity correlate in most region–sprawl strata with strongest relationships found in the West (ORs = 1.31 to 1.70). Perceived crime and presence of sidewalks did not show statistically significant associations with physical activity in most region–sprawl strata, although ORs for perceived crime showed a consistent pattern of negative associations (ORs from 0.60 to 0.95). A higher number of positive environmental attributes was associated with a greater odds of meeting physical activity recommendations. Conclusions Findings indicate that perceived proximity to shops/stores and access to recreation facilities are important correlates of physical activity for women, irrespective of region or sprawl. PMID:22011417

  6. Transition region fluxes in A-F Dwarfs: Basal fluxes and dynamo activity

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Schrijver, Carolus J.; Boyd, William

    1988-01-01

    The transition region spectra of 87 late A and early F dwarfs and subgiants were analyzed. The emission line fluxes are uniformly strong in the early F stars, and drop off rapidly among the late A stars. The basal flux level in the F stars is consistent with an extrapolation of that observed among the G stars, while the magnetic component displays the same flux-flux relations seen among solar-like stars. Despite the steep decrease in transition region emission flux for B-V less than 0.28, C II emission is detected in alpha Aql (B-V = 0.22). The dropoff in emission is inconsistent with models of the mechanically generated acoustic flux available. It is concluded that, although the nonmagnetic basal heating is an increasingly important source of atmospheric heating among the early F stars, magnetic heating occurs in any star which has a sufficiently thick convective zone to generate acoustic heating.

  7. Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes.

    PubMed

    Crosson, Bruce; Benefield, Hope; Cato, M Allison; Sadek, Joseph R; Moore, Anna Bacon; Wierenga, Christina E; Gopinath, Kaundinya; Soltysik, David; Bauer, Russell M; Auerbach, Edward J; Gökçay, Didem; Leonard, Christiana M; Briggs, Richard W

    2003-11-01

    fMRI was used to determine the frontal, basal ganglia, and thalamic structures engaged by three facets of language generation: lexical status of generated items, the use of semantic vs. phonological information during language generation, and rate of generation. During fMRI, 21 neurologically normal subjects performed four tasks: generation of nonsense syllables given beginning and ending consonant blends, generation of words given a rhyming word, generation of words given a semantic category at a fast rate (matched to the rate of nonsense syllable generation), and generation of words given a semantic category at a slow rate (matched to the rate of generating of rhyming words). Components of a left pre-SMA-dorsal caudate nucleus-ventral anterior thalamic loop were active during word generation from rhyming or category cues but not during nonsense syllable generation. Findings indicate that this loop is involved in retrieving words from pre-existing lexical stores. Relatively diffuse activity in the right basal ganglia (caudate nucleus and putamen) also was found during word-generation tasks but not during nonsense syllable generation. Given the relative absence of right frontal activity during the word generation tasks, we suggest that the right basal ganglia activity serves to suppress right frontal activity, preventing right frontal structures from interfering with language production. Current findings establish roles for the left and the right basal ganglia in word generation. Hypotheses are discussed for future research to help refine our understanding of basal ganglia functions in language generation.

  8. Regional assessment of energy-producing metabolic activity in the endothelium of donor corneas.

    PubMed

    Greiner, Mark A; Burckart, Kimberlee A; Wagoner, Michael D; Schmidt, Gregory A; Reed, Cynthia R; Liaboe, Chase A; Flamme-Wiese, Miles J; Zimmerman, M Bridget; Mullins, Robert F; Kardon, Randy H; Goins, Kenneth M; Aldrich, Benjamin T

    2015-05-01

    We characterized mitochondrial respiration and glycolysis activity of human corneal endothelium, and compared metabolic activity between central and peripheral regions. Endothelial keratoplasty-suitable corneas were obtained from donors aged 50 to 75 years. The endothelium-Descemet membrane complex (EDM) was isolated, and 3-mm punches were obtained from central and peripheral regions. Endothelium-Descemet membrane punches were assayed for mitochondrial respiration (oxygen consumption) and glycolysis (extracellular acidification) using an extracellular flux analyzer. Enzymatic (citrate synthase, glucose hexokinase) and mitochondrial density (MitoTracker) assays also were performed. Ten corneas were analyzed per assay. Metabolic activity for mitochondrial respiration and glycolysis showed expected changes to assay compounds (P < 0.01, all pairwise comparisons). Basal mitochondrial respiration and glycolysis activity did not differ between regions (P > 0.99). Similarly, central versus peripheral activity after assay compound treatment showed no significant differences (P > 0.99, all time points). The intracorneal coefficient of variation for basal readings between two and four peripheral punches was 18.5% of the mean. Although peripheral samples displayed greater enzymatic activity than central samples (P < 0.05), similar to extracellular flux results, mitochondrial density did not differ between regions (P = 0.78). Extracellular flux analysis of oxygen and pH is a valid technique for characterizing metabolic activity of human corneal endothelium. This technique demonstrates high reproducibility, allows quantification of metabolic parameters using small quantities of live cells, and permits estimation of overall metabolic output. Neither oxygen consumption nor extracellular acidification differed between central and peripheral regions of transplant suitable corneas in this series. Our results show that endothelial cell health can be quantified biochemically in

  9. Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.

    Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  10. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    PubMed Central

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  11. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers.

    PubMed

    Inaba, Shusei; Vohra, Varun

    2017-05-09

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED-EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows.

  12. Spatial taxation effects on regional coal economic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.W.; Labys, W.C.

    1980-01-01

    Spatial taxation effects related to economic activities at the regional level can be directly evaluated using the Kuhn-Tucker system of equations based on a commodity model. In particular, the impacts of a specific tax are predictable within a given set of trade patterns. However, the impacts of an ad valorem tax are difficult to evaluate analytically, mainly because of nonlinearity in the associated response surface. The aspect of spatial-taxation analysis of present relevance for the coal industry related to coal policy, i.e., the share of tax burdens coal producers and consumers are able to bear. Each supplier in a givenmore » market boundary shares the same amount of tax burden, which may eliminate the weakest coal producers, i.e., Southern West Virginia coal mines. The same analogy also applies to the weakest demand region, i.e., Illinois, Wisconsin, and Minnesota utilities. Consequently, a proper policy requires that some preferential tax treatment be given to these regions. Since the taxation effects depend critically on the trade patterns and market boundaries, the successful policy application of present regional energy models will not be possible unless effects of this type are included in the evaluation.« less

  13. Micropipette force probe to quantify single-cell force generation: application to T-cell activation

    PubMed Central

    Sawicka, Anna; Babataheri, Avin; Dogniaux, Stéphanie; Barakat, Abdul I.; Gonzalez-Rodriguez, David; Hivroz, Claire; Husson, Julien

    2017-01-01

    In response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell. This technique simultaneously allows tracking the resulting changes in cell morphology and mechanics as well as measuring the forces generated by the cell. To illustrate the power of this technique, we applied it to the study of human primary T lymphocytes (T-cells). It allowed the fine monitoring of pushing and pulling forces generated by T-cells in response to various activating antibodies and bending stiffness of the micropipette. We further dissected the sequence of mechanical and morphological events occurring during T-cell activation to model force generation and to reveal heterogeneity in the cell population studied. We also report the first measurement of the changes in Young’s modulus of T-cells during their activation, showing that T-cells stiffen within the first minutes of the activation process. PMID:28931600

  14. Activation of dormant ovarian follicles to generate mature eggs.

    PubMed

    Li, Jing; Kawamura, Kazuhiro; Cheng, Yuan; Liu, Shuang; Klein, Cynthia; Liu, Shu; Duan, En-Kui; Hsueh, Aaron J W

    2010-06-01

    Although multiple follicles are present in mammalian ovaries, most of them remain dormant for years or decades. During reproductive life, some follicles are activated for development. Genetically modified mouse models with oocyte-specific deletion of genes in the PTEN-PI3K-Akt-Foxo3 pathway exhibited premature activation of all dormant follicles. Using an inhibitor of the Phosphatase with TENsin homology deleted in chromosome 10 (PTEN) phosphatase and a PI3K activating peptide, we found that short-term treatment of neonatal mouse ovaries increased nuclear exclusion of Foxo3 in primordial oocytes. After transplantation under kidney capsules of ovariectomized hosts, treated follicles developed to the preovulatory stage with mature eggs displaying normal epigenetic changes of imprinted genes. After in vitro fertilization and embryo transfer, healthy progeny with proven fertility were delivered. Human ovarian cortical fragments from cancer patients were also treated with the PTEN inhibitor. After xeno-transplantation to immune-deficient mice for 6 months, primordial follicles developed to the preovulatory stage with oocytes capable of undergoing nuclear maturation. Major differences between male and female mammals are unlimited number of sperm and paucity of mature oocytes. Thus, short-term in vitro activation of dormant ovarian follicles after stimulation of the PI3K-Akt pathway allows the generation of a large supply of mature female germ cells for future treatment of infertile women with a diminishing ovarian reserve and for cancer patients with cryo-preserved ovaries. Generation of a large number of human oocytes also facilitates future derivation of embryonic stem cells for regenerative medicine.

  15. Factors affecting trip generation of motorcyclist for the purpose of non-mandatory activities

    NASA Astrophysics Data System (ADS)

    Anggraini, Renni; Sugiarto, Sugiarto; Pramanda, Heru

    2017-11-01

    The inadequate facilities and limited access to public transport reflect many people using private vehicles, in particular, motorcycle. The motorcycle is most widely used in Indonesia, recently, including Aceh Province. As a result, the number of motorcycle ownership is increasing significantly. The increasing number of motorcycles leads to complex traffic problems. Several factors tend to affect the trip generation of the motorcyclist, i.e., the social demographics of individuals and families, accessibility, etc. This study aims to analyze the characteristics of motorcyclists for non-mandatory activities, i.e. activities other than to work and school. It also aims to determine the dominant factors that affect their trips through trip generation models. The required data consist of primary data and secondary data. Primary data consists of a home interview survey that collects individual's daily trips. It is conducted by distributing the questionnaires to 400 families residing in Lhokseumawe City. Modeling the trip generation of the motorcyclist is done by multiple linear regression analysis. Parameters calibration uses OLS (Ordinary Least Square) method. The results showed that the dominant variables that affect the trip generation of motorcyclist for non-mandatory activities are license ownership, housewife, school-age children, middle-income household, and lower education level. It can be concluded that some factors affecting trip generation to non-work activities were female motorcyclists from the middle-income household with lower education level. As their status is mostly as the housewife, escorting children to non-school activities seems to the mother's task, instead of the father. It is clear that, most female ride motorcycle for doing household tasks. However, it should be noted that the use of the motorcycle in long-term does not suit for sustainable transportation.

  16. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    PubMed Central

    2012-01-01

    Background The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process. PMID:22248157

  17. Micrurus snake venoms activate human complement system and generate anaphylatoxins.

    PubMed

    Tanaka, Gabriela D; Pidde-Queiroz, Giselle; de Fátima D Furtado, Maria; van den Berg, Carmen; Tambourgi, Denise V

    2012-01-16

    The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.

  18. Deletion mutants of Harvey ras p21 protein reveal the absolute requirement of at least two distant regions for GTP-binding and transforming activities.

    PubMed Central

    Lacal, J C; Anderson, P S; Aaronson, S A

    1986-01-01

    Deletions of small sequences from the viral Harvey ras gene have been generated, and resulting ras p21 mutants have been expressed in Escherichia coli. Purification of each deleted protein allowed the in vitro characterization of GTP-binding, GTPase and autokinase activity of the proteins. Microinjection of the highly purified proteins into quiescent NIH/3T3 cells, as well as transfection experiments utilizing a long terminal repeat (LTR)-containing vector, were utilized to analyze the biological activity of the deleted proteins. Two small regions located at 6-23 and 152-165 residues are shown to be absolutely required for in vitro and in vivo activities of the ras product. By contrast, the variable region comprising amino acids 165-184 was shown not to be necessary for either in vitro or in vivo activities. Thus, we demonstrate that: (i) amino acid sequences at positions 5-23 and 152-165 of ras p21 protein are probably directly involved in the GTP-binding activity; (ii) GTP-binding is required for the transforming activity of ras p21 and by extension for the normal function of the proto-oncogene product; and (iii) the variable region at the C-terminal end of the ras p21 molecule from amino acids 165 to 184 is not required for transformation. Images Fig.2. Fig.4. PMID:3011420

  19. A Correlation Between Length of Strong-Shear Neutral Lines and Total X-Ray Brightness in Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.

    1997-01-01

    From a sample of 7 MSFC vector magnetograms,of active regions and 17 Yohkoh SXT soft X-ray images of these active regions, we have found that the total x-ray brightness of an entire active region is correlated with the total length of neutral lines on which the magnetic field is both strong (less than 250 G) and strongly sheared (shear angle greater than 75 deg) in the same active region. This correlation, if not fortuitous, is additional evidence of the importance of strong-shear strong-field neutral lines to strong heating in active regions.

  20. Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition.

    PubMed

    Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio

    2018-04-24

    Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.

  1. Outdoor activity and myopia among primary students in rural and urban regions of Beijing.

    PubMed

    Guo, Yin; Liu, Li Juan; Xu, Liang; Lv, Yan Yun; Tang, Ping; Feng, Yi; Meng, Meng; Jonas, Jost B

    2013-02-01

    activity, more indoor studying, older age, maternal myopia, and urban region of habitation were associated with longer ocular axial length and myopia in grade 1 and grade 4 primary school children in Greater Beijing. Remaining outdoors more (e.g., during school) may reduce the high prevalence of myopia in the young generation in Beijing. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  2. The Protease Activated Receptor2 Promotes Rab5a Mediated Generation of Pro-metastatic Microvesicles.

    PubMed

    Das, Kaushik; Prasad, Ramesh; Roy, Sreetama; Mukherjee, Ashis; Sen, Prosenjit

    2018-05-09

    Metastasis, the hallmark of cancer propagation is attributed by the modification of phenotypic/functional behavior of cells to break attachment and migrate to distant body parts. Cancer cell-secreted microvesicles (MVs) contribute immensely in disease propagation. These nano-vesicles, generated from plasma membrane outward budding are taken up by nearby healthy cells thereby inducing phenotypic alterations in those recipient cells. Protease activated receptor 2 (PAR2), activated by trypsin, also contributes to cancer progression by increasing metastasis, angiogenesis etc. Here, we report that PAR2 activation promotes pro-metastatic MVs generation from human breast cancer cell line, MDA-MB-231. Rab5a, located at the plasma membrane plays vital roles in MVs biogenesis. We show that PAR2 stimulation promotes AKT phosphorylation which activates Rab5a by converting inactive Rab5a-GDP to active Rab5a-GTP. Active Rab5a polymerizes actin which critically regulates MVs shedding. Not only MVs generation, has this Rab5a activation also promoted cell migration and invasion. We reveal that Rab5a is over-expressed in human breast tumor specimen and contributes MVs generation in those patients. The involvement of p38 MAPK in MVs-induced cell metastasis has also been highlighted in the present study. Blockade of Rab5a activation can be a potential therapeutic approach to restrict MVs shedding and associated breast cancer metastasis.

  3. ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowingmore » a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity.« less

  4. ACTIVE REGION FILAMENTS MIGHT HARBOR WEAK MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A., E-mail: cdiazbas@iac.es

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between themmore » being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.« less

  5. A long-duration active region: Evolution and quadrature observations of ejective events

    NASA Astrophysics Data System (ADS)

    Cremades, H.; Mandrini, C. H.; Fuentes, M. C. López; Merenda, L.; Cabello, I.; López, F. M.; Poisson, M.

    2017-10-01

    Unknown aspects of the initiation, evolution, and associated phenomena of coronal mass ejections (CMEs), together with their capability of perturbing the fragile technological equilibrium on which nowadays society depends, turn them a compelling subject of study. While space weather forecasts are thus far not able to predict when and where in the Sun will the next CME take place, various CME triggering mechanisms have been proposed, without reaching consensus on which is the predominant one. To improve our knowledge in these respects, we investigate a long-duration active region throughout its life, from birth until decay along five solar rotations, in connection with its production of ejective events. We benefit from the wealth of solar remote-sensing data with improved temporal, spatial, and spectral resolution provided by the ground-breaking space missions STEREO, SDO, and SOHO. During the investigated time interval, which covers the months July - November 2010, the STEREO spacecraft were nearly 180 degrees apart, allowing for the uninterrupted tracking of the active region and its ensuing CMEs. The ejective aspect is examined from multi-viewpoint coronagraphic images, while the dynamics of the active region photospheric magnetic field are inspected by means of SDO/HMI data for specific subintervals of interest. The ultimate goal of this work in progress is to identify common patterns in the ejective aspect that can be connected with the active region characteristics.

  6. How Much Energy Can Be Stored in Solar Active Region Magnetic Fields?

    NASA Astrophysics Data System (ADS)

    Linker, J.; Downs, C.; Torok, T.; Titov, V. S.; Lionello, R.; Mikic, Z.; Riley, P.

    2015-12-01

    Major solar eruptions such as X-class flares and very fast coronal mass ejections usually originate in active regions on the Sun. The energy that powers these events is believed to be stored as free magnetic energy (energy above the potential field state) prior to eruption. While coronal magnetic fields are not in general force-free, active regions have very strong magnetic fields and at low coronal heights the plasma beta is therefore very small, making the field (in equilibrium) essentially force-free. The Aly-Sturrock theorem shows that the energy of a fully force-free field cannot exceed the energy of the so-called open field. If the theorem holds, this places an upper limit on the amount of free energy that can be stored: the maximum free energy (MFE) is the difference between the open field energy and the potential field energy of the active region. In thermodynamic MHD simulations of a major eruption (the July 14, 2000 'Bastille' day event) and a modest event (February 13, 2009, we have found that the MFE indeed bounds the energy stored prior to eruption. We compute the MFE for major eruptive events in cycles 23 and 24 to investigate the maximum amount of energy that can be stored in solar active regions.Research supported by AFOSR, NASA, and NSF.

  7. Generation of spectral clusters in a mixture of noble and Raman-active gases.

    PubMed

    Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  8. Income Generation Activities among Academic Staffs at Malaysian Public Universities

    ERIC Educational Resources Information Center

    Ahmad, Abd Rahman; Soon, Ng Kim; Ting, Ngeoh Pei

    2015-01-01

    Income generation activities have been acquainted among public higher education institutions (HEIs) in Malaysia. Various factors that brought to insufficient of funding caused Higher Education Institutions(HEIs) to seek for additional income as to support the operation expenses. Financial sustainability issues made up the significant impact…

  9. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.

    2015-12-20

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infermore » the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.« less

  10. Constraints on active region coronal heating properties from observations and modeling of chromospheric, transition region, and coronal emission

    NASA Astrophysics Data System (ADS)

    Testa, P.; Polito, V.; De Pontieu, B.; Carlsson, M.; Reale, F.; Allred, J. C.; Hansteen, V. H.

    2017-12-01

    We investigate coronal heating properties in active region cores in non-flaring conditions, using high spatial, spectral, and temporal resolution chromospheric/transition region/coronal observations coupled with detailed modeling. We will focus, in particular, on observations with the Interface Region Imaging Spectrograph (IRIS), joint with observations with Hinode (XRT and EIS) and SDO/AIA. We will discuss how these observations and models (1D HD and 3D MHD, with the RADYN and Bifrost codes) provide useful diagnostics of the coronal heating processes and mechanisms of energy transport.

  11. Magnetic structure of sites of braiding in Hi-C active region

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv Kumar; Alexander, Caroline; Winebarger, Amy R.; Moore, Ronald L.

    2014-06-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood.To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.For this work, SKT and CEA were supported by an

  12. Radial stiffness characteristics of the overlap regions of sarcomeres in isolated skeletal myofibrils in pre-force generating state.

    PubMed

    Miyashiro, Daisuke; Ohtsuki, Misato; Shimamoto, Yuta; Wakayama, Jun'ichi; Kunioka, Yuki; Kobayashi, Takakazu; Ishiwata, Shin'ichi; Yamada, Takenori

    2017-01-01

    We have studied the stiffness of myofilament lattice in sarcomeres in the pre-force generating state, which was realized by a relaxing reagent, BDM (butane dione monoxime). First, the radial stiffness for the overlap regions of sarcomeres of isolated single myofibrils was estimated from the resulting decreases in diameter by osmotic pressure applied with the addition of Dextran. Then, the radial stiffness was also estimated from force-distance curve measurements with AFM technology. The radial stiffness for the overlap regions thus obtained was composed of a soft and a rigid component. The soft component visco-elastically changed in a characteristic fashion depending on the physiological conditions of myofibrils, suggesting that it comes from cross-bridge structures. BDM treatments significantly affected the soft radial component of contracting myofibrils depending on the approach velocity of cantilever: It was nearly equal to that in the contracting state at high approach velocity, whereas as low as that in the relaxing state at low approach velocity. However, comparable BDM treatments greatly suppressed the force production and the axial stiffness in contracting glycerinated muscle fibers and also the sliding velocity of actin filaments in the in vitro motility assay. Considering that BDM shifts the cross-bridge population from force generating to pre-force generating states in contracting muscle, the obtained results strongly suggest that cross-bridges in the pre-force generating state are visco-elastically attached to the thin filaments in such a binding manner that the axial stiffness is low but the radial stiffness significantly high similar to that in force generating state.

  13. Generation of Plasma Density Irregularities in the Midlatitude/Subauroral F Region

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.

    2017-12-01

    A concise review is given of the current state of the theoretical understanding of the creation of small- and meso-scale plasma density irregularities in the midlatitude/subauroral F region during quiet and disturbed periods. The former are discussed in terms of the temperature gradient instability (TGI) in the vicinity of the ionospheric projection of the plasmapause and the Perkins instability. During active conditions some part of the midlatitude ionosphere becomes the subauroral region dominated by enhanced westward flows (SAPS and SAID) driven by poleward electric fields. Their irregular, often nonlinear wave structure leads to the formation of plasma density irregularities in the plasmasphere and conjugate ionosphere. Here, meso-scale irregularities are due to the positive feedback magnetosphere-ionosphere coupling instability, while small scales resulted from the gradient drift instability (GDI), temperature GDI, and the ion frictional heating instability. The theoretical predictions are compared with satellite observations in the perturbed subauroral geospace.

  14. Generating Language Activities in Real-Time for English Learners Using Language Muse

    ERIC Educational Resources Information Center

    Burstein, Jill; Madnani, Nitin; Sabatini, John; McCaffrey, Dan; Biggers, Kietha; Dreier, Kelsey

    2017-01-01

    K-12 education standards in the U.S. require all students to read complex texts across many subject areas. The "Language Muse™ Activity Palette" is a web-based language-instruction application that uses NLP algorithms and lexical resources to automatically generate language activities and support English language learners' content…

  15. The Influence Of Highway Transportation Infrastructure Condition Toward Commodity Production Generation for The Resilience Needs at Regional Internal Zone

    NASA Astrophysics Data System (ADS)

    Akbardin, Juang; Parikesit, Danang; Riyanto, Bambang; Mulyono, Agus Taufik

    2018-02-01

    The poultry commodity consumption and requirement is one of the main commodities that must be fulfilled in a region to maintain the availability of meat from poultry. Poultry commodity production is one of the production sectors that have a clean environment resistance. An increasing of poultry commodity generation production requires a smooth distribution to arrive at the processing. The livestock location as a commodity production is placed at a considerable far distance from residential and market locations. Zones that have poultry commodity production have an excess potential to supply other zones that are lacking in production to the consumption of these commodities. The condition of highway transportation infrastructure that is very diverse with the damage level availability in a zone has an influence in the supply and demand of poultry commodity requirement in the regional internal of Central Java province. In order to know the effect of highway transportation infrastructure condition toward the poultry commodity movement, demography factor and availability of freight vehicles will be reviewed to estimate the amount of poultry commodity movement generation production. Thus the poultry commodity consumption requirement that located in the internal - regional zone of central java province can be adequated from the zone. So it can be minimized the negative impacts that affect the environment at the zone in terms of comparison of the movement attraction and generation production at poultry commodity in Central Java.

  16. Precision control of eluted activity from a Sr/Rb generator for cardiac positron emission tomography.

    PubMed

    Klein, R; Adler, A; Beanlands, R S; deKemp, R A

    2004-01-01

    A rubidium-82 (/sup 82/Rb) elution system is described for use with clinical positron emission tomography. The system is self-calibrating with 1.4% repeatability, independent of generator activity and elution flow rate. Saline flow is switched between a /sup 82/Sr//sup 82/Rb generator and a bypass line to achieve a constant activity elution of /sup 82/Rb. In the present study, pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control algorithm is developed which produces a constant activity elution within the constraints of long feedback delay and short elution time. Accurate constant-activity elutions of 10-70% of the total generator activity were demonstrated using the threshold comparison control. The adaptive-corrective control of the PWM valve provided a substantial improvement in precision of the steady-state output.

  17. Sustained neuronal activity generated by glial plasticity

    PubMed Central

    Pirttimaki, Tiina M.; Hall, Stephen D.; Parri, H. Rheinallt

    2011-01-01

    Astrocytes release gliotransmitters, notably glutamate, that can affect neuronal and synaptic activity. In particular, astrocytic glutamate release results in the generation of N-methyl D-aspartate receptor (NMDA-R) mediated slow inward currents (SICs) in neurons. However, factors underlying the emergence of SICs, and their physiological roles are largely unknown. Here we show that, in acute slices of rat somatosensory thalamus, stimulation of Lemniscal or cortical afferents results in a sustained increase of SICs in thalamocortical (TC) neurons that outlasts the duration of the stimulus by an hour. This long term enhancement (LTE) of astrocytic glutamate release is induced by group I metabotropic glutamate receptors (mGluRs), and is dependent on astrocytic intracellular calcium ([Ca2+]i). Neuronal SICs are mediated by extrasynaptic NR2B subunit-containing NMDA-Rs and are capable of eliciting bursts. These are distinct from T-type Ca2+ channel dependent bursts of action potentials, and are synchronized in neighboring TC neurons. These findings describe a previously unrecognized form of excitatory, non-synaptic plasticity in the central nervous system (CNS) that feeds forward to generate local neuronal firing long after stimulus termination. PMID:21613477

  18. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia.

    PubMed

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN.

  19. Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Zhao, Junwei; Schuck, P. W.

    2012-01-01

    We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the sunspot umbra and outward flows surrounding the sunspot. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the sunspot penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding sunspots. On the other hand, most well-documented flux-emergence-related flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.

  20. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  1. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  2. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibrationmore » based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.« less

  3. 50 CFR 216.250 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Weapon Missions in the Gulf of Mexico § 216.250 Specified activity and specified geographical region. (a... within the Eglin Air Force Base Gulf Test and Training Range within the northern Gulf of Mexico. The...

  4. New Insights on Mt. Etna's Crust and Relationship with the Regional Tectonic Framework from Joint Active and Passive P-Wave Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Barberi, G.; Cocina, O.; Koulakov, I.; Scarfì, L.; Zuccarello, L.; Prudencio, J.; García-Yeguas, A.; Álvarez, I.; García, L.; Ibáñez, J. M.

    2018-01-01

    In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel `Sarmiento de Gamboa'. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan-southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW-SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian-Tindari-Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.

  5. Optimal mix of renewable power generation in the MENA region as a basis for an efficient electricity supply to europe

    NASA Astrophysics Data System (ADS)

    Alhamwi, Alaa; Kleinhans, David; Weitemeyer, Stefan; Vogt, Thomas

    2014-12-01

    Renewable Energy sources are gaining importance in the Middle East and North Africa (MENA) region. The purpose of this study is to quantify the optimal mix of renewable power generation in the MENA region, taking Morocco as a case study. Based on hourly meteorological data and load data, a 100% solar-plus-wind only scenario for Morocco is investigated. For the optimal mix analyses, a mismatch energy modelling approach is adopted with the objective to minimise the required storage capacities. For a hypothetical Moroccan energy supply system which is entirely based on renewable energy sources, our results show that the minimum storage capacity is achieved at a share of 63% solar and 37% wind power generations.

  6. The Solomon Sea eddy activity from a 1/36° regional model

    NASA Astrophysics Data System (ADS)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is

  7. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  8. Specificity of regional brain activity in anxiety types during emotion processing.

    PubMed

    Engels, Anna S; Heller, Wendy; Mohanty, Aprajita; Herrington, John D; Banich, Marie T; Webb, Andrew G; Miller, Gregory A

    2007-05-01

    The present study tested the hypothesis that anxious apprehension involves more left- than right-hemisphere activity and that anxious arousal is associated with the opposite pattern. Behavioral and fMRI responses to threat stimuli in an emotional Stroop task were examined in nonpatient groups reporting anxious apprehension, anxious arousal, or neither. Reaction times were longer for negative than for neutral words. As predicted, brain activation distinguished anxious groups in a left inferior frontal region associated with speech production and in a right-hemisphere inferior temporal area. Addressing a second hypothesis about left-frontal involvement in emotion, distinct left frontal regions were associated with anxious apprehension versus processing of positive information. Results support the proposed distinction between the two types of anxiety and resolve an inconsistency about the role of left-frontal activation in emotion and psychopathology.

  9. Computer Generated Snapshot of Our Sun's Magnetic Field

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These banana-shaped loops are part of a computer-generated snapshot of our sun's magnetic field. The solar magnetic-field lines loop through the sun's corona, break through the sun's surface, and cornect regions of magnetic activity, such as sunspots. This image --part of a magnetic-field study of the sun by NASA's Allen Gary -- shows the outer portion (skins) of interconnecting systems of hot (2 million degrees Kelvin) coronal loops within and between two active magnetic regions on opposite sides of the sun's equator. The diameter of these coronal loops at their foot points is approximately the same size as the Earth's radius (about 6,000 kilometers).

  10. Evidence for fourth generation structures in the Piedra Lumbre region, Western Picuris Mountains, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernoff, C.B.; Helper, M.A.; Mosher, S.

    1993-02-01

    Mid-Proterozoic Hondo Group metasediments in the western Picuris Mountains, New Mexico clearly display 3 generations of previously recognized penetrative, synmetamorphic structures and a previously undocumented forth generation of overprinting folds with an associated axial planar foliation. The earliest structures include: (1) a bedding-parallel S[sub 1] foliation and rare, rootless, intrafolial F[sub 1] folds; (2) north-verging, west-trending F[sub 2] folds and an axial planar metamorphic foliation (S[sub 2]); (3) a steeply dipping, N-S striking crenulation cleavage (S[sub 3]). In the Piedra Lumbre region, southwest-plunging, open, upright chevron and box folds (F[sub 4]) locally reorient F[sub 2], S[sub 2] and S[sub 3]more » crenulations. The largest F[sub 4] folds in the Piedra Lumbre region have half-wavelengths of 500 meters. An associated nearly vertical foliation (S[sub 4]) overprints the first three foliations. The S[sub 4] foliation is a crenulation cleavage in micaceous layers and a discontinuous alignment of biotite laths in quartzose layers. Crystallization of biotite during S[sub 4] and chloritoid after S[sub 4], along with static recrystallization and mineral replacement by chlorite, suggests this deformation occurred during the waning stages of mid-Proterozoic metamorphism. The orientation of F[sub 2] and F[sub 4] folds are similar and both appear to occur on a regional scale. Interference of open upright F[sub 4] folds and tight, north-verging, overturned F[sub 2] folds produces a geometry that resembles that of the kilometer-scale Copper Hill Anticline of the western Picuris Mountains, previously interpreted to be solely the result of F[sub 2] folding.« less

  11. Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement.

    PubMed

    Adamsky, Adar; Kol, Adi; Kreisel, Tirzah; Doron, Adi; Ozeri-Engelhard, Nofar; Melcer, Talia; Refaeli, Ron; Horn, Henrike; Regev, Limor; Groysman, Maya; London, Michael; Goshen, Inbal

    2018-05-18

    Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Colony Rheology: Active Arthropods Generate Flows

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Mann, Michael; Charbonneau, Patrick

    2015-03-01

    Hydrodynamic-like flows are observed in biological systems as varied as bacteria, insects, birds, fish, and mammals. Both the phenomenology (e.g. front instabilities, milling motions) and the interaction types (hydrodynamic, direct contact, psychological, excluded-volume) strongly vary between systems, but a question common to all of them is to understand the role of particle-scale fluctuations in controlling large-scale rheological behaviors. We will address these questions through experiments on a new system, Tyrolichus casei (cheese mites), which live in dense, self-mixing colonies composed of a mixture of living mites and inert flour/detritus. In experiments performed in a Hele-Shaw geometry, we observe that the rheology of a colony is strongly dependent on the relative concentration of active and inactive particles. In addition to spreading flows, we also observe that the system can generate convective circulation and auto-compaction.

  13. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  14. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition.

    PubMed

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-02-08

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates ( F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware.

  15. Cortical regions recruited for complex active-learning strategies and action planning exhibit rapid reactivation during memory retrieval.

    PubMed

    Voss, Joel L; Galvan, Ashley; Gonsalves, Brian D

    2011-12-01

    Memory retrieval can involve activity in the same sensory cortical regions involved in perception of the original event, and this neural "reactivation" has been suggested as an important mechanism of memory retrieval. However, it is still unclear if fragments of experience other than sensory information are retained and later reactivated during retrieval. For example, learning in non-laboratory settings generally involves active exploration of memoranda, thus requiring the generation of action plans for behavior and the use of strategies deployed to improve subsequent memory performance. Is information pertaining to action planning and strategic processing retained and reactivated during retrieval? To address this question, we compared ERP correlates of memory retrieval for objects that had been studied in an active manner involving action planning and strategic processing to those for objects that had been studied passively. Memory performance was superior for actively studied objects, and unique ERP retrieval correlates for these objects were identified when subjects remembered the specific spatial locations at which objects were studied. Early-onset frontal shifts in ERP correlates of retrieval were noted for these objects, which parallel the recruitment of frontal cortex during learning object locations previously identified using fMRI with the same paradigm. Notably, ERPs during recall for items studied with a specific viewing strategy localized to the same supplementary motor cortex region previously identified with fMRI when this strategy was implemented during study, suggesting rapid reactivation of regions directly involved in strategic action planning. Collectively, these results implicate neural populations involved in learning in important retrieval functions, even for those populations involved in strategic control and action planning. Notably, these episodic features are not generally reported during recollective experiences, suggesting that

  16. Active Region Jets II: Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco

    2017-08-01

    We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ˜<2‧‧) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  17. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    NASA Astrophysics Data System (ADS)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  18. Engineering streptokinase for generation of active site-labeled plasminogen analogs*

    PubMed Central

    Laha, Malabika; Panizzi, Peter; Nahrendorf, Matthias; Bock, Paul E.

    2011-01-01

    We previously demonstrated that streptokinase (SK) can be used to generate active site-labeled fluorescent analogs of plasminogen (Pg) by virtue of its non-proteolytic activation of the zymogen. The method is versatile and allows for stoichiometric and active site-specific incorporation of any one of many molecular probes. The limitation of the labeling approach is that it is both time-consuming and low yield. Here we demonstrate an improved method for the preparation of labeled Pg analogs by the use of an engineered SK mutant fusion protein with both COOH- and NH2-terminal His6-tags. The NH2-terminal tag is followed by a tobacco etch virus proteinase cleavage site to ensure that the SK Ile1 residue, essential for conformational activation of Pg, is preserved. The SK COOH-terminal Lys414 residue and residues Arg253-Leu260 in the SK β-domain were deleted to prevent cleavage by plasmin (Pm), and to disable Pg substrate binding to the SK·Pg*/Pm catalytic complexes, respectively. Near-elimination of Pm generation with the SKΔ(R253-L260)ΔK414-His6 mutant increased the yield of labeled Pg 2.6-fold and reduced the time required >2-fold. The versatility of the labeling method was extended to the application of Pg labeled with a near-infrared probe to quantitate Pg receptors on immune cells by flow cytometry. PMID:21570944

  19. Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions.

    PubMed

    Hoque, Md Anarul; Zhang, Yong; Chen, Liuqing; Yang, Guangyu; Khatun, Mst Afroza; Chen, Haifeng; Hao, Liu; Feng, Yan

    2017-05-19

    The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >10 7 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.

  20. IFLA General Conference, 1987. Division of Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Six of the seven papers in this collection focus on regional library activities in Africa, Asia and Oceania, and Latin America and the Caribbean: (1) "Libraries and Information Services in a Changing World: The Challenges African Information Services Face at the End of the 1980s" (Dejen Abate, Ethiopia); (2) "The Computer and…

  1. Active control of fan-generated plane wave noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.

    1993-01-01

    Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.

  2. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats

    PubMed Central

    Shukla, Charu; Koch, Lauren G.; Britton, Steven L.; Cai, Minying; Hruby, Victor J.; Bednarek, Maria; Novak, Colleen M.

    2015-01-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of melanocortin peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT. PMID:26404873

  3. Activity of nitric oxide-generating compounds against encephalomyocarditis virus.

    PubMed Central

    Guillemard, E; Geniteau-Legendre, M; Kergot, R; Lemaire, G; Petit, J F; Labarre, C; Quero, A M

    1996-01-01

    Nitric oxide (NO) generated by two NO donors (sodium nitroprusside or S-nitroso-L-glutathione) was shown to exert a dose-dependent inhibition of encephalomyocarditis virus growth in L-929 cells. This activity was not due to the cytotoxic or direct virucidal effects of NO donors. L-929 cells were shown to produce NO endogenously, but this low level of production did not counter encephalomyocarditis virus replication. PMID:8849231

  4. Magnetic flux transport of decaying active regions and enhanced magnetic network. [of solar supergranulation

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1991-01-01

    Several series of coordinated observations on decaying active regions and enhanced magnetic network regions on the sun were carried out jointly at Big Bear Solar Observatory and at the Huairou Solar Observing Station of the Bejing Astronomical Observatory in China. The magnetic field evolution in several regions was followed closely for three to seven days. The magnetic flux transport from the remnants of decayed active regions was studied, along with the evolution and lifetime of the magnetic network which defines the boundaries of supergranules. The magnetic flux transport in an enhanced network region was studied in detail and found to be negative. Also briefly described are some properties of moving magnetic features around a sunspot. Results of all of the above studies are presented.

  5. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application.more » With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.« less

  6. Tactile interactions activate mirror system regions in the human brain.

    PubMed

    McKyton, Ayelet

    2011-12-07

    Communicating with others is essential for the development of a society. Although types of communications, such as language and visual gestures, were thoroughly investigated in the past, little research has been done to investigate interactions through touch. To study this we used functional magnetic resonance imaging. Twelve participants were scanned with their eyes covered while stroking four kinds of items, representing different somatosensory stimuli: a human hand, a realistic rubber hand, an object, and a simple texture. Although the human and the rubber hands had the same overall shape, in three regions there was significantly more blood oxygen level dependent activation when touching the real hand: the anterior medial prefrontal cortex, the ventral premotor cortex, and the posterior superior temporal cortex. The last two regions are part of the mirror network and are known to be activated through visual interactions such as gestures. Interestingly, in this study, these areas were activated through a somatosensory interaction. A control experiment was performed to eliminate confounds of temperature, texture, and imagery, suggesting that the activation in these areas was correlated with the touch of a human hand. These results reveal the neuronal network working behind human tactile interactions, and highlight the participation of the mirror system in such functions.

  7. Large-scale patterns formed by solar active regions during the ascending phase of cycle 21

    NASA Astrophysics Data System (ADS)

    Gaizauskas, V.; Harvey, K. L.; Harvey, J. W.; Zwaan, C.

    1983-02-01

    Synoptic maps of photospheric magnetic fields prepared at the Kitt Peak National Observatory are used in investigating large-scale patterns in the spatial and temporal distribution of solar active regions for 27 solar rotations between 1977 and 1979. The active regions are found to be distributed in 'complexes of activity' (Bumba and Howard, 1965). With the working definition of a complex of activity based on continuity and proximity of the constituent active regions, the phenomenology of complexes is explored. It is found that complexes of activity form within one month and that they are typically maintained for 3 to 6 solar rotations by fresh injections of magnetic flux. During the active lifetime of a complex of activity, the total magnetic flux in the complex remains steady to within a factor of 2. The magnetic polarities are closely balanced, and each complex rotates about the sun at its own special, constant rate. In certain cases, the complexes form two diverging branches.

  8. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  9. Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Levy, Max; Li, Fei-Fei; Ding, Yuchen; Courtney, Colleen M.; Chowdhury, Partha P.; Erbse, Annette; Chatterjee, Anushree; Nagpal, Prashant

    2018-03-01

    The rapid emergence of superbugs or multi-drug resistant (MDR) organisms has prompted a search for novel antibiotics, beyond traditional small-molecule therapies. Nanotherapeutics are being investigated as alternatives, and recently superoxide-generating quantum dots (QDs) have been shown as important candidates for selective light-activated therapy and potentiating existing antibiotics against MDR superbugs. Their therapeutic action is selective, can be tailored by simply changing their quantum-confined conduction-valence bands and their alignment with different redox half-reactions, and hence their ability to generate specific radical species in biological media. Here, we show the design of superoxide-generating QDs using optimal QD material and size well matched to superoxide redox potential, charged ligands to modulate their uptake in cells and selective redox interventions, and core/shell structures to improve their stability for therapeutic action. We show that cadmium telluride (CdTe) QDs with conduction band position at -0.5V with respect to Normal Hydrogen Electron (NHE) and visible 2.4 eV bandgap generate a large flux of selective superoxide radicals, thereby demonstrating the most effective light-activated therapy. Although the positively charged QDs demonstrate large cellular uptake, they bind indiscriminately to cell surfaces and cause non-selective cell death, while negatively charged and zwitterionic QD ligands reduce the uptake and allow selective therapeutic action via interaction with redox species. The stability of designed QDs in biologically-relevant media increases with the formation of core-shell QD structures, but an appropriate design of core-shell structures is needed to minimize any reduction in charge injection efficiency to adsorbed oxygen molecules (to form superoxide) and maintain similar quantitative generation of tailored redox species, as measured using electron paramagnetic resonance (EPR) spectroscopy and electrochemical

  10. Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy.

    PubMed

    Goodman, Samuel M; Levy, Max; Li, Fei-Fei; Ding, Yuchen; Courtney, Colleen M; Chowdhury, Partha P; Erbse, Annette; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    The rapid emergence of superbugs, or multi-drug resistant (MDR) organisms, has prompted a search for novel antibiotics, beyond traditional small-molecule therapies. Nanotherapeutics are being investigated as alternatives, and recently superoxide-generating quantum dots (QDs) have been shown as important candidates for selective light-activated therapy, while also potentiating existing antibiotics against MDR superbugs. Their therapeutic action is selective, can be tailored by simply changing their quantum-confined conduction-valence band (CB-VB) positions and alignment with different redox half-reactions-and hence their ability to generate specific radical species in biological media. Here, we show the design of superoxide-generating QDs using optimal QD material and size well-matched to superoxide redox potential, charged ligands to modulate their uptake in cells and selective redox interventions, and core/shell structures to improve their stability for therapeutic action. We show that cadmium telluride (CdTe) QDs with conduction band (CB) position at -0.5 V with respect to Normal Hydrogen Electron (NHE) and visible 2.4 eV bandgap generate a large flux of selective superoxide radicals, thereby demonstrating the effective light-activated therapy. Although the positively charged QDs demonstrate large cellular uptake, they bind indiscriminately to cell surfaces and cause non-selective cell death, while negatively charged and zwitterionic QD ligands reduce the uptake and allow selective therapeutic action via interaction with redox species. The stability of designed QDs in biologically-relevant media increases with the formation of core-shell QD structures, but an appropriate design of core-shell structures is needed to minimize any reduction in charge injection efficiency to adsorbed oxygen molecules (to form superoxide) and maintain similar quantitative generation of tailored redox species, as measured using electron paramagnetic resonance (EPR) spectroscopy and

  11. Estimating municipal solid waste generation by different activities and various resident groups in five provinces of China.

    PubMed

    Fu, Hui-zhen; Li, Zhen-shan; Wang, Rong-hua

    2015-07-01

    The quantities and composition of municipal solid waste (MSW) are important factors in the planning and management of MSW. Daily human activities were classified into three groups: maintenance activities (meeting the basic needs of food, housing and personal care, MA); subsistence activities (providing the financial support requirements, SA); and leisure activities (social and recreational pursuits, LA). A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was employed to estimate MSW generation by different activities and resident groups in five provinces (Zhejiang, Guangdong, Hebei, Henan and Sichuan) of China. These five provinces were chosen for this study and the distribution patterns of MSW generated by different activities and resident groups were revealed. The results show that waste generation in SA and LA fluctuated slightly from 2003 to 2008. For general waste generation in the five provinces, MA accounts for more than 70% of total MSW, SA approximately 10%, and LA between 10% and 16% by urban residents in 2008. Females produced more daily MSW than males in MA. Males produced more daily MSW than females in SA and LA. The wastes produced at weekends in MA and LA were far greater than on weekdays, but less than on weekdays for SA wastes. Furthermore, one of the model parameters (the waste generation per unit of consumer expenditure) is inversely proportional to per-capita disposable income of urban residents. A significant correlation between gross domestic product (GDP) and waste generation by SA was observed with a high coefficient of determination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The activities of the C-terminal regions of the formin protein disheveled-associated activator of morphogenesis (DAAM) in actin dynamics.

    PubMed

    Vig, Andrea Teréz; Földi, István; Szikora, Szilárd; Migh, Ede; Gombos, Rita; Tóth, Mónika Ágnes; Huber, Tamás; Pintér, Réka; Talián, Gábor Csaba; Mihály, József; Bugyi, Beáta

    2017-08-18

    Disheveled-associated activator of morphogenesis (DAAM) is a diaphanous-related formin protein essential for the regulation of actin cytoskeleton dynamics in diverse biological processes. The conserved formin homology 1 and 2 (FH1-FH2) domains of DAAM catalyze actin nucleation and processively mediate filament elongation. These activities are indirectly regulated by the N- and C-terminal regions flanking the FH1-FH2 domains. Recently, the C-terminal diaphanous-autoregulatory domain (DAD) and the C terminus (CT) of formins have also been shown to regulate actin assembly by directly interacting with actin. Here, to better understand the biological activities of DAAM, we studied the role of DAD-CT regions of Drosophila DAAM in its interaction with actin with in vitro biochemical and in vivo genetic approaches. We found that the DAD-CT region binds actin in vitro and that its main actin-binding element is the CT region, which does not influence actin dynamics on its own. However, we also found that it can tune the nucleating activity and the filament end-interaction properties of DAAM in an FH2 domain-dependent manner. We also demonstrate that DAD-CT makes the FH2 domain more efficient in antagonizing with capping protein. Consistently, in vivo data suggested that the CT region contributes to DAAM-mediated filopodia formation and dynamics in primary neurons. In conclusion, our results demonstrate that the CT region of DAAM plays an important role in actin assembly regulation in a biological context. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. 50 CFR 217.151 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... geographical region. 217.151 Section 217.151 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKE OF MARINE MAMMALS INCIDENTAL TO SPECIFIED ACTIVITIES Taking Marine Mammals Incidental to...

  14. 50 CFR 217.151 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... geographical region. 217.151 Section 217.151 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKE OF MARINE MAMMALS INCIDENTAL TO SPECIFIED ACTIVITIES Taking Marine Mammals Incidental to...

  15. The coronal structure of active regions

    NASA Technical Reports Server (NTRS)

    Landini, M.; Monsignori Fossi, B. C.; Krieger, A.; Vaiana, G. S.

    1975-01-01

    A four-parameter model, which assumes a Gaussian dependence of both temperature and pressure on distance from center, is used to fit the compact part of coronal active regions as observed in X-ray photographs from a rocket experiment. The four parameters are the maximum temperature, the maximum pressure, the width of the pressure distribution, and the width of the temperature distribution. The maximum temperature ranges from 2.2 to 2.8 million K, and the maximum density from 2 to 9 by 10 to the 9th power per cu cm. The range of the pressure-distribution width is from 2 to 4 by 10 to the 9th power cm and that of the temperature-distribution width from 2 to 7.

  16. Signatures of coronal rain observed in the chromosphere of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Pillet, V. M.; McAteer, J.

    2016-12-01

    Using He 10830A spectropolarimetric data from the Tenerife Infrared Polarimeter (TIP) in a rather compact active region neutral line, we observe a persistent chromospheric downflow on both sides of the neutral line that we interpret as the signature of rain from the Corona. The photospheric Si I line also present in this spectral region allows studying the continuation of the chromospheric downflow into the deeper areas dominated by granulation. Full reconstruction of the photospheric and chromospheric vector magnetic field showed that the active region filament was the central, axial, part of a magnetic flux rope. These observations demonstrate the potential of this spectral region to monitor the magnetic field and plasma motions in solar filaments. NMSU and NSO are teaming to start a synoptic program at the DST (Sac Peak) that uses this spectral region to track the evolution of magnetic fields and flows in solar filaments. We briefly present the characteristics of the synoptic program.

  17. Estimating municipal solid waste generation by different activities and various resident groups: a case study of Beijing.

    PubMed

    Li, Zhen-shan; Fu, Hui-zhen; Qu, Xiao-yan

    2011-09-15

    Reliable and accurate determinations of the quantities and composition of wastes is required for the planning of municipal solid waste (MSW) management systems. A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was developed and employed to estimate MSW generation by different activities and resident groups in Beijing. The principle is that MSW is produced by consumption of consumer goods by residents in their daily activities: 'Maintenance' (meeting the basic needs of food, housing and personal care), 'Subsistence' (providing the financial requirements) and 'Leisure' (social and recreational pursuits) activities. Three series of important parameters - waste generation per unit of consumer expenditure, consumer expenditure distribution to activities in unit time, and time assignment to activities by different resident groups - were determined using a statistical analysis, a sampling survey and the Analytic Hierarchy Process, respectively. Data for analysis were obtained from the Beijing Statistical Yearbook (2004-2008) and questionnaire survey. The results reveal that 'Maintenance' activity produced the most MSW, distantly followed by 'Leisure' and 'Subsistence' activities. In 2008, in descending order of MSW generation the different resident groups were floating population, non-civil servants, retired people, civil servants, college students (including both undergraduates and graduates), primary and secondary students, and preschoolers. The new estimation model, which was successful in fitting waste generation by different activities and resident groups over the investigated years, was amenable to MSW prediction. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The discrete and localized nature of the variable emission from active regions

    NASA Technical Reports Server (NTRS)

    Arndt, Martina Belz; Habbal, Shadia Rifai; Karovska, Margarita

    1994-01-01

    Using data from the Extreme Ultraviolet (EUV) Spectroheliometer on Skylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints, (delta n)/N, that exhibits variable emission, varies by +/- 15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 10(exp 5) K. (5) The ratio of the intensity of the variable to the average background emission, (delta I)/(bar-I), also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.

  19. Widespread Nanoflare Variability Detected with Hinode/XRT in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Reale, Fabio; Terzo, Sergio; Miceli, Marco; Klimchuk, James A.; Kano, Ryouhei; Tsuneta, Saku

    2011-01-01

    It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun s hot corona, but whether they are the explanation for most of the multi-million degree plasma has been a matter of ongoing debate. We here present evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on-board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multi-pixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using Monte Carlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable with a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced, e.g., from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.

  20. Copernican tectonic activities in the northwestern Imbrium region of the Moon

    NASA Astrophysics Data System (ADS)

    Daket, Yuko; Yamaji, Atsushi; Sato, Katsushi

    2015-04-01

    Mare ridges and lobate scarps are the manifestations of horizontal compression in the shallow part of the Moon. Conventionally, tectonism within mascon basins has been thought to originate from mascon loading which is syndepositional tectonics (e.g., Solomon and Head, 1980). However, Ono et al. (2009) have pointed out that the subsurface tectonic structures beneath some mare ridges in Serenitatis appeared to be formed after the deposition of mare strata. Watters et al. (2010) also reported Copernican lobate scarps. Those young deformations cannot be explained by the mascon loading and are possibly ascribed to global cooling, orbital evolution and/or regional factors. Since mare ridges are topographically larger than lobate scarps, they might have large contribution to the recent contraction. In this study, we estimated until when the tectonic activities of mare ridges lasted in the northwestern Imbrium region. In order to infer the timing of the latest ages of tectonic activities, we used craters dislocated by the thrust faults that run along to the mare ridges in the study area. The ages of dislocated craters indicate the oldest estimate of the latest tectonic activity of the faults, because those craters must have existed during the tectonic activities. The ages of craters are inferred by the degradation levels classified by Trask (1971). We found ~450 dislocated craters in the study area. About 40 of them are smaller than 100 meter in diameter. Sub-hundred-meter-sized craters that still maintain their morphology sharp are classified into Copernican Period. Those small dislocated craters are interspersed all over the region, indicating that the most of the mare ridges in the study area were tectonically active in Copernican Period. In addition, we also found two sub-hundred-meter-sized craters dislocated by a graben at the west of Promontorium Laplace, indicating horizontal extension existed at Copernican Period. Consequently, tectonic activities in the study

  1. LIGHT BRIDGE IN A DEVELOPING ACTIVE REGION. I. OBSERVATION OF LIGHT BRIDGE AND ITS DYNAMIC ACTIVITY PHENOMENA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M., E-mail: shin.toriumi@nao.ac.jp

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, andmore » the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.« less

  2. On Heating the Sun's Corona by Magnetic Explosions: Feasibility in Active Regions and prospects for Quiet Regions and Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1999-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal

  3. Pixantrone can be activated by formaldehyde to generate a potent DNA adduct forming agent

    PubMed Central

    Evison, Ben J.; Mansour, Oula C.; Menta, Ernesto; Phillips, Don R.; Cutts, Suzanne M.

    2007-01-01

    Mitoxantrone is an anti-cancer agent used in the treatment of breast and prostate cancers. It is classified as a topoisomerase II poison, however can also be activated by formaldehyde to generate drug–DNA adducts. Despite identification of this novel form of mitoxantrone–DNA interaction, excessively high, biologically irrelevant drug concentrations are necessary to generate adducts. A search for mitoxantrone analogues that could potentially undergo this reaction with DNA more efficiently identified Pixantrone as an ideal candidate. An in vitro crosslinking assay demonstrated that Pixantrone is efficiently activated by formaldehyde to generate covalent drug–DNA adducts capable of stabilizing double-stranded DNA in denaturing conditions. Pixantrone–DNA adduct formation is both concentration and time dependent and the reaction exhibits an absolute requirement for formaldehyde. In a direct comparison with mitoxantrone–DNA adduct formation, Pixantrone exhibited a 10- to 100-fold greater propensity to generate adducts at equimolar formaldehyde and drug concentrations. Pixantrone–DNA adducts are thermally and temporally labile, yet they exhibit a greater thermal midpoint temperature and an extended half-life at 37°C when compared to mitoxantrone–DNA adducts. Unlike mitoxantrone, this enhanced stability, coupled with a greater propensity to form covalent drug–DNA adducts, may endow formaldehyde-activated Pixantrone with the attributes required for Pixantrone–DNA adducts to be biologically active. PMID:17483512

  4. How Activism Features in the Career Lives of Four Generations of Canadian Nurses.

    PubMed

    MacDonnell, Judith A; Buck-McFadyen, Ellen

    2016-11-01

    Recent nursing research using a critical feminist lens challenges the prevailing view of political inertia in nursing. This comparative life history study using a critical feminist lens explores the relevance of activism with four generations of Canadian nurses. Purposeful sampling of Ontario nurses resulted in 40 participants who were diverse in terms of generation, practice setting, and activist practice. Interviews and focus groups were completed with the sample of Ontario registered nurses or undergraduate and graduate nursing students: 8 Generation X, 9 Generation Y (Millennials), 20 Boomers, and 3 Overboomers. Factors such as professional norms and personal and organizational supports shaped contradictory nursing activist identities, practices, and impacts. Gendered norms, organizational dynamics, and the political landscape influenced the meanings nurses attributed to critical incidents and influences that prompted activism inside and outside the workplace, shaping the transformative potential of nursing. Despite its limitations, the study has implications for creating professional and organizational supports for consideration of health politics and policy, and spaces for dialogue to support practice and research aligned with social justice goals.

  5. Active optics for next generation space telescopes

    NASA Astrophysics Data System (ADS)

    Costes, V.; Perret, L.; Laubier, D.; Delvit, J. M.; Imbert, C.; Cadiergues, L.; Faure, C.

    2017-09-01

    High resolution observation systems need bigger and bigger telescopes. The design of such telescopes is a key issue for the whole satellite. In order to improve the imaging resolution with minimum impact on the satellite, a big effort must be made to improve the telescope compactness. Compactness is also important for the agility of the satellite and for the size and cost of the launcher. This paper shows how compact a high resolution telescope can be. A diffraction limited telescope can be less than ten times shorter than its focal length. But the compactness impacts drastically the opto-mechanical sensitivity and the optical performances. Typically, a gain of a factor of 2 leads to a mechanical tolerance budget 6 times more difficult. The need to implement active optics for positioning requirements raises very quickly. Moreover, the capability to compensate shape defaults of the primary mirror is the way to simplify the mirror manufacture, to mitigate the development risks and to minimize the cost. The larger the primary mirror is, the more interesting it is to implement active optics for shape compensations. CNES is preparing next generation of earth observation satellite in the frame of OTOS (Observation de la Terre Optique Super-Résolue; High resolution earth observing optical system). OTOS is a technology program. In particular, optical technological developments and breadboards dedicated to active optics are on-going. The aim is to achieve TRL 5 to TRL6 for these new technologies and to validate the global performances of such an active telescope.

  6. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  7. An Evaluation of a Wide Range of Job-Generating Activities for Rural Counties.

    ERIC Educational Resources Information Center

    Finsterbusch, Kurt; And Others

    1992-01-01

    Examines the job-generating activities in 15 rural counties in Maryland through 175 interviews and field work. Those ranking high included industrial park development, economic development activities, and tourism. Special financial arrangements for relocating and new businesses also received high marks. Includes 48 references. (JOW)

  8. Perspective usage estimation of Volga region combustible shale as a power generating fuel alternative

    NASA Astrophysics Data System (ADS)

    Korolev, E.; Barieva, E.; Eskin, A.

    2018-05-01

    A comprehensive study of combustible shale, common within Tatarstan and Ulyanovsk region, is carried out. The rocks physicochemical parameters are found to meet the power generating fuels requirements. The predictive estimate of ash products properties of combustible shale burning is held. Minding furnace process technology it is necessary to know mineral and organic components behavior when combustible shale is burnt. Since the first will determine slagging properties of energy raw materials, the second – its calorific value. In consideration of this the main research methods were X-ray, thermal and X-ray fluorescence analyses. Summing up the obtained results, we can draw to the following conclusions: 1. The combustible shale in Tatarstan and the Ulyanovsk region has predominantly low calorific value (Qb d = 5-9 MJ/kg). In order to enhance its efficiency and to reduce cost it is possible to conduct rocks burning together with some other organic or organic mineral power generating fuels. 2. High ash content (Ad = 60-80%) that causes a high external ballast content in shale implies the appropriateness of using this fuel resource next to its exploitation site. The acceptable distance to a consumer will reduce unproductive transportation charges for large ash and moisture masses. 3. The performed fuel ash components characteristics, as well as the yield and volatiles composition allow us to specify the basic parameters for boiler units, designed for the Volga combustible shale burning. 4. The noncombustible residual components composition shows that shale ash can be used in manufacture of materials of construction.

  9. Space-weather Parameters for 1,000 Active Regions Observed by SDO/HMI

    NASA Astrophysics Data System (ADS)

    Bobra, M.; Liu, Y.; Hoeksema, J. T.; Sun, X.

    2013-12-01

    We present statistical studies of several space-weather parameters, derived from observations of the photospheric vector magnetic field by the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory, for a thousand active regions. Each active region has been observed every twelve minutes during the entirety of its disk passage. Some of these parameters, such as energy density and shear angle, indicate the deviation of the photospheric magnetic field from that of a potential field. Other parameters include flux, helicity, field gradients, polarity inversion line properties, and measures of complexity. We show that some of these parameters are useful for event prediction.

  10. Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Sun, Xudong; Török, Tibor

    The physical conditions that determine whether or not solar active regions (ARs) produce strong flares and coronal mass ejections (CMEs) are not yet well understood. Here, we investigate the association between electric-current neutralization, magnetic shear along polarity inversion lines (PILs), and eruptive activity in four ARs: two emerging and two well-developed ones. We find that the CME-producing ARs are characterized by a strongly non-neutralized total current, while the total current in the ARs that did not produce CMEs is almost perfectly neutralized. The difference in the PIL shear between these two groups is much less pronounced, which suggests that themore » degree of current neutralization may serve as a better proxy for assessing the ability of ARs to produce CMEs.« less

  11. Micropipette force probe to quantify single-cell force generation: application to T-cell activation.

    PubMed

    Sawicka, Anna; Babataheri, Avin; Dogniaux, Stéphanie; Barakat, Abdul I; Gonzalez-Rodriguez, David; Hivroz, Claire; Husson, Julien

    2017-11-07

    In response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell. This technique simultaneously allows tracking the resulting changes in cell morphology and mechanics as well as measuring the forces generated by the cell. To illustrate the power of this technique, we applied it to the study of human primary T lymphocytes (T-cells). It allowed the fine monitoring of pushing and pulling forces generated by T-cells in response to various activating antibodies and bending stiffness of the micropipette. We further dissected the sequence of mechanical and morphological events occurring during T-cell activation to model force generation and to reveal heterogeneity in the cell population studied. We also report the first measurement of the changes in Young's modulus of T-cells during their activation, showing that T-cells stiffen within the first minutes of the activation process. © 2017 Sawicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    PubMed

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  14. Helioseismology of pre-emerging active regions. III. Statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, G.; Leka, K. D.; Braun, D. C.

    The subsurface properties of active regions (ARs) prior to their appearance at the solar surface may shed light on the process of AR formation. Helioseismic holography has been applied to samples taken from two populations of regions on the Sun (pre-emergence and without emergence), each sample having over 100 members, that were selected to minimize systematic bias, as described in Paper I. Paper II showed that there are statistically significant signatures in the average helioseismic properties that precede the formation of an AR. This paper describes a more detailed analysis of the samples of pre-emergence regions and regions without emergencemore » based on discriminant analysis. The property that is best able to distinguish the populations is found to be the surface magnetic field, even a day before the emergence time. However, after accounting for the correlations between the surface field and the quantities derived from helioseismology, there is still evidence of a helioseismic precursor to AR emergence that is present for at least a day prior to emergence, although the analysis presented cannot definitively determine the subsurface properties prior to emergence due to the small sample sizes.« less

  15. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  16. Regionalization and dependence of coda Q on frequency and lapse time in the seismically active Peloritani region (northeastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Giampiccolo, Elisabetta; Tuvè, Tiziana

    2018-05-01

    The Peloritani region is one of the most seismically active regions in Italy and, consequently, the quantification of attenuation of the medium plays an important role for seismic risk evaluation. Moreover, it is necessary for the prediction of earth ground motion and future seismic source studies. An in depth analysis has been made here to understand the frequency and lapse time dependence of attenuation characteristics of the region by using the coda of local earthquakes. A regionalization is likewise performed in order to investigate the spatial variation of coda Q across the whole region. Finally, our results are jointly interpreted with those obtained from recently published 3D velocity tomographies for further insights.

  17. Spontaneous alterations of regional brain activity in patients with adult generalized anxiety disorder

    PubMed Central

    Xia, Likun; Li, Shumei; Wang, Tianyue; Guo, Yaping; Meng, Lihong; Feng, Yunping; Cui, Yu; Wang, Fan; Ma, Jian; Jiang, Guihua

    2017-01-01

    Objective We aimed to examine how spontaneous brain activity might be related to the pathophysiology of generalized anxiety disorder (GAD). Patients and methods Using resting-state functional MRI, we examined spontaneous regional brain activity in 31 GAD patients (mean age, 36.87±9.16 years) and 36 healthy control participants (mean age, 39.53±8.83 years) matched for age, education, and sex from December 2014 to October 2015. We performed a two-sample t-test on the voxel-based analysis of the regional homogeneity (ReHo) maps. We used Pearson correlation analysis to compare scores from the Hamilton Anxiety Rating Scale, Hamilton Depression Rating Scale, State–Trait Anxiety Scale-Trait Scale, and mean ReHo values. Results We found abnormal spontaneous activity in multiple regions of brain in GAD patients, especially in the sensorimotor cortex and emotional regions. GAD patients showed decreased ReHo values in the right orbital middle frontal gyrus, left anterior cingulate cortex, right middle frontal gyrus, and bilateral supplementary motor areas, with increased ReHo values in the left middle temporal gyrus, left superior temporal gyrus, and right superior occipital gyrus. The ReHo value of the left middle temporal gyrus correlated positively with the Hamilton Anxiety Rating Scale scores. Conclusion These results suggest that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of GAD. PMID:28790831

  18. Regional cholinesterase activity in white-throated sparrow brain is differentially affected by acephate (Orthene®)

    USGS Publications Warehouse

    Vyas, N.B.; Kuenzel, W.J.; Hill, E.F.; Romo, G.A.; Komaragiri, M.V.S.

    1996-01-01

    Effects of a 14-day dietary exposure to an organophosphorus pesticide, acephate (acetylphosphoramidothioic acid O,S-dimethyl ester), were determined on cholinesterase activity in three regions (basal ganglia, hippocampus, and hypothalamus) of the white-throated sparrow, Zonotrichia albicollis, brain. All three regions experienced depressed cholinesterase activity between 0.5–2 ppm acephate. The regions exhibited cholinesterase recovery at 2–16 ppm acephate; however, cholinesterase activity dropped and showed no recovery at higher dietary levels (>16 ppm acephate). Evidence indicates that the recovery is initiated by the magnitude of depression, not the duration. In general, as acephate concentration increased, differences in ChE activity among brain regions decreased. Three terms are introduced to describe ChE response to acephate exposure: 1) ChE resistance threshold, 2) ChE compensation threshold, and 3) ChE depression threshold. It is hypothesized that adverse effects to birds in the field may occur at pesticide exposure levels customarily considered negligible.

  19. The Activities, Roles, and Relationships of Successful First-Generation College Students

    ERIC Educational Resources Information Center

    Demetriou, Cynthia; Meece, Judith; Eaker-Rich, Deborah; Powell, Candice

    2017-01-01

    This qualitative study describes the experiences of 16 successful first-generation college students (FGCS) utilizing a theoretical lens, informed significantly by bioecological systems theory (Bronfenbrenner, 1979), which guided our qualitative analyses of interview transcripts to examine the activities, roles, and relationships of these students…

  20. Organized Emergence of Multiple-Generations of Teeth in Snakes Is Dysregulated by Activation of Wnt/Beta-Catenin Signalling

    PubMed Central

    Gaete, Marcia; Tucker, Abigail S.

    2013-01-01

    In contrast to mammals, most reptiles constantly regenerate their teeth. In the snake, the epithelial dental lamina ends in a successional lamina, which proliferates and elongates forming multiple tooth generations, all linked by a permanent dental lamina. To investigate the mechanisms used to control the initiation of new tooth germs in an ordered sequential pattern we utilized the polyphodont (multiple-generation) corn snake (Pantherophis guttatus). We observed that the dental lamina expressed the transcription factor Sox2, a multipotent stem cell marker, whereas the successional lamina cells expressed the transcription factor Lef1, a Wnt/β-catenin pathway target gene. Activation of the Wnt/β-catenin pathway in culture increased the number of developing tooth germs, in comparison to control untreated cultures. These additional tooth germs budded off from ectopic positions along the dental lamina, rather than in an ordered sequence from the successional lamina. Wnt/β-catenin activation enhanced cell proliferation, particularly in normally non-odontogenic regions of the dental lamina, which widely expressed Lef1, restricting the Sox2 domain. This suggests an expansion of the successional lamina at the expense of the dental lamina. Activation of the Wnt/β-catenin pathway in cultured snake dental organs, therefore, led to changes in proliferation and to the molecular pattern of the dental lamina, resulting in loss of the organised emergence of tooth germs. These results suggest that epithelial compartments are critical for the arrangement of organs that develop in sequence, and highlight the role of Wnt/β-catenin signalling in such processes. PMID:24019968

  1. Magnetic Characteristics of Active Region Heating Observed with TRACE, SOHO/EIT, and Yohkoh/SXT

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Falconer, D. A.; Moore, R. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Over the past several years, we have reported results from studies that have compared the magnetic structure and heating of the transition region and corona (both in active regions and in the quiet Sun) by combining X-ray and EUV images from Yohkoh and Solar and Heliospheric Observatory (SOHO) with photospheric magnetograms from ground-based observatories. Our findings have led us to the hypothesis that most heating throughout the corona is driven from near and below the base of the corona by eruptive microflares occurring in compact low-lying "core magnetic fields (i.e., fields rooted along and closely enveloping polarity inversion lines in the photospheric magnetic flux). We now extend these studies, comparing sequences of UV images from Transition Region and Coronal Explorer (TRACE) with longitudinal magnetograms from Kitt Peak and vector magnetograms from MUSIC. These comparisons confirm the previous results regarding the importance of core-field activity to active region heating. Activity in fields associated with satellite polarity inclusions and/or magnetically sheared configurations is especially prominent. This work is funded by NASA's Office of Space Science through the Sun-Earth Connection Guest Investigator Program and the Solar Physics Supporting Research and Technology Program.

  2. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography.

    PubMed

    Hegyi, A; Péter, A; Finni, T; Cronin, N J

    2018-03-01

    Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. INTERSTITIAL PLASMIN ACTIVITY WITH EPSILON AMINOCAPROIC ACID: TEMPORAL AND REGIONAL HETEROGENEITY

    PubMed Central

    Reust, Daryl L.; Reeves, Scott T.; Abernathy, James H.; Dixon, Jennifer A.; Gaillard, William F.; Mukherjee, Rupak; Koval, Christine N.; Stroud, Robert E.; Spinale, Francis G.

    2010-01-01

    Background Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in-vivo region specific temporal changes in PLact following EACA administration. Methods Pigs (25-35kg) received EACA (75mg/kg, n=7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney and quadricep muscle. The microdialysate contained a plasmin specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90 and 120 minutes following EACA/vehicle infusion. Results EACA caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes and at 30, 60, 120 minutes respectively (p<0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p<0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes post infusion, and were 5-fold higher in the renal compartment and 4-fold higher in the myocardium, when compared to the liver or muscle (p<0.05). Conclusions Using a large animal model and in-vivo microdialysis measurements of plasmin activity, the unique findings from this study were 2-fold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period. PMID:20417774

  4. Interstitial plasmin activity with epsilon aminocaproic acid: temporal and regional heterogeneity.

    PubMed

    Reust, Daryl L; Reeves, Scott T; Abernathy, James H; Dixon, Jennifer A; Gaillard, William F; Mukherjee, Rupak; Koval, Christine N; Stroud, Robert E; Spinale, Francis G

    2010-05-01

    Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in vivo region specific temporal changes in PLact after EACA administration. Pigs (25 to 35 kg) received EACA (75 mg/kg, n = 7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney, and quadricep muscle. The microdialysate contained a plasmin-specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90, and 120 minutes after EACA/vehicle infusion. Epsilon aminocaproic acid caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes, and at 30, 60, and 120 minutes, respectively (p < 0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p < 0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes after infusion, and were fivefold higher in the renal compartment and fourfold higher in the myocardium, when compared with the liver or muscle (p < 0.05). Using a large animal model and in vivo microdialysis measurements of plasmin activity, the unique findings from this study were twofold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region-specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period. Copyright (c) 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Single cell active force generation under dynamic loading - Part I: AFM experiments.

    PubMed

    Weafer, P P; Reynolds, N H; Jarvis, S P; McGarry, J P

    2015-11-01

    A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Measured forces for the untreated cells are dramatically different to cytochalasin-D (cyto-D) treated cells, indicating that the contractile actin cytoskeleton plays a critical role in the response of cells to dynamic loading. Following a change in applied strain magnitude, while maintaining a constant applied strain rate, the compression force for contractile cells recovers to 88.9±7.8% of the steady state force. In contrast, cyto-D cell compression forces recover to only 38.0±6.7% of the steady state force. Additionally, untreated cells exhibit strongly negative (pulling) forces during unloading half-cycles when the probe is retracted. In comparison, negligible pulling forces are measured for cyto-D cells during probe retraction. The current study demonstrates that active contractile forces, generated by actin-myosin cross-bridge cycling, dominate the response of single cells to dynamic loading. Such active force generation is shown to be independent of applied strain magnitude. Passive forces generated by the applied deformation are shown to be of secondary importance, exhibiting a high dependence on applied strain magnitude, in contrast to the active forces in untreated cells. A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Contractile cells, which contain the active force generation machinery of the actin cytoskeleton, are shown to be insensitive to applied strain magnitude, exhibiting high resistance to dynamic compression and stretching. Such trends are not observed for cells in which the actin cytoskeleton has been chemically disrupted. These biomechanical insights have not been previously reported. This detailed characterisation of

  6. The 3D Recognition, Generation, Fusion, Update and Refinement (RG4) Concept

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Cheeseman, Peter; Smelyanskyi, Vadim N.; Kuehnel, Frank; Morris, Robin D.; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an active (real time) recognition strategy whereby information is inferred iteratively across several viewpoints in descent imagery. We will show how we use inverse theory within the context of parametric model generation, namely height and spectral reflection functions, to generate model assertions. Using this strategy in an active context implies that, from every viewpoint, the proposed system must refine its hypotheses taking into account the image and the effect of uncertainties as well. The proposed system employs probabilistic solutions to the problem of iteratively merging information (images) from several viewpoints. This involves feeding the posterior distribution from all previous images as a prior for the next view. Novel approaches will be developed to accelerate the inversion search using novel statistic implementations and reducing the model complexity using foveated vision. Foveated vision refers to imagery where the resolution varies across the image. In this paper, we allow the model to be foveated where the highest resolution region is called the foveation region. Typically, the images will have dynamic control of the location of the foveation region. For descent imagery in the Entry, Descent, and Landing (EDL) process, it is possible to have more than one foveation region. This research initiative is directed towards descent imagery in connection with NASA's EDL applications. Three-Dimensional Model Recognition, Generation, Fusion, Update, and Refinement (RGFUR or RG4) for height and the spectral reflection characteristics are in focus for various reasons, one of which is the prospect that their interpretation will provide for real time active vision for automated EDL.

  7. The Reverse Transcriptase of the Tf1 Retrotransposon Has a Specific Novel Activity for Generating the RNA Self-Primer That Is Functional in cDNA Synthesis▿

    PubMed Central

    Hizi, Amnon

    2008-01-01

    The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5′ end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3′ end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs. PMID:18753200

  8. The reverse transcriptase of the Tf1 retrotransposon has a specific novel activity for generating the RNA self-primer that is functional in cDNA synthesis.

    PubMed

    Hizi, Amnon

    2008-11-01

    The Tf1 retrotransposon of Schizosaccharomyces pombe represents a group of eukaryotic long terminal repeat (LTR) retroelements that, based on their sequences, were predicted to use an RNA self-primer for initiating reverse transcription while synthesizing the negative-sense DNA strand. This feature is substantially different from the one typical to retroviruses and other LTR retrotransposons that all exhibit a tRNA-dependent priming mechanism. Genetic studies have suggested that the self-primer of Tf1 can be generated by a cleavage between the 11th and 12th bases of the Tf1 RNA transcript. The in vitro data presented here show that recombinant Tf1 reverse transcriptase indeed introduces a nick at the end of a duplexed region at the 5' end of Tf1 genomic RNA, substantiating the prediction that this enzyme is responsible for generating this RNA self-primer. The 3' end of the primer, generated in this manner, can then be extended upon the addition of deoxynucleoside triphosphates by the DNA polymerase activity of the same enzyme, synthesizing the negative-sense DNA strand. This functional primer must have been generated by the RNase H activity of Tf1 reverse transcriptase, since a mutant enzyme lacking this activity has lost its ability to generate the self-primer. It was also found here that the reverse transcriptases of human immunodeficiency virus type 1 and of murine leukemia virus do not exhibit this specific cleavage activity. In all, it is likely that the observed unique mechanism of self-priming in Tf1 represents an early advantageous form of initiating reverse transcription in LTR retroelements without involving cellular tRNAs.

  9. Distinguishing How from Why the Mind Wanders: A Process-Occurrence Framework for Self-Generated Mental Activity

    ERIC Educational Resources Information Center

    Smallwood, Jonathan

    2013-01-01

    Cognition can unfold with little regard to the events taking place in the environment, and such self-generated mental activity poses a specific set of challenges for its scientific analysis in both cognitive science and neuroscience. One problem is that the spontaneous onset of self-generated mental activity makes it hard to distinguish the events…

  10. Left ventricular lead placement in the latest activated region guided by coronary venous electroanatomic mapping.

    PubMed

    Rad, Masih Mafi; Blaauw, Yuri; Dinh, Trang; Pison, Laurent; Crijns, Harry J; Prinzen, Frits W; Vernooy, Kevin

    2015-01-01

    Left ventricular (LV) lead placement in the latest activated region is an important determinant of response to cardiac resynchronization therapy (CRT). We investigated the feasibility of coronary venous electroanatomic mapping (EAM) to guide LV lead placement to the latest activated region. Twenty-five consecutive CRT candidates with left bundle-branch block underwent intra-procedural coronary venous EAM using EnSite NavX. A guidewire was used to map the coronary veins during intrinsic activation, and to test for phrenic nerve stimulation (PNS). The latest activated region, defined as the region with an electrical delay >75% of total QRS duration, was located anterolaterally in 18 (basal, n = 10; mid, n = 8) and inferolaterally in 6 (basal, n = 3; mid, n = 3). In one patient, identification of the latest activated region was impeded by limited coronary venous anatomy. In patients with >1 target vein (n = 12), the anatomically targeted inferolateral vein was rarely the vein with maximal electrical delay (n = 3). A concordant LV lead position was achieved in 18 of 25 patients. In six patients, this was hampered by PNS (n = 4), lead instability (n = 1), and coronary vein stenosis (n = 1). Coronary venous EAM can be used intraprocedurally to guide LV lead placement to the latest activated region free of PNS. This approach especially contributes to optimization of LV lead electrical delay in patients with multiple target veins. Conventional anatomical LV lead placement strategy does not target the vein with maximal electrical delay in many of these patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  11. The Sub-Regional Functional Organization of Neocortical Irritative Epileptic Networks in Pediatric Epilepsy

    PubMed Central

    Janca, Radek; Krsek, Pavel; Jezdik, Petr; Cmejla, Roman; Tomasek, Martin; Komarek, Vladimir; Marusic, Petr; Jiruska, Premysl

    2018-01-01

    Between seizures, irritative network generates frequent brief synchronous activity, which manifests on the EEG as interictal epileptiform discharges (IEDs). Recent insights into the mechanism of IEDs at the microscopic level have demonstrated a high variance in the recruitment of neuronal populations generating IEDs and a high variability in the trajectories through which IEDs propagate across the brain. These phenomena represent one of the major constraints for precise characterization of network organization and for the utilization of IEDs during presurgical evaluations. We have developed a new approach to dissect human neocortical irritative networks and quantify their properties. We have demonstrated that irritative network has modular nature and it is composed of multiple independent sub-regions, each with specific IED propagation trajectories and differing in the extent of IED activity generated. The global activity of the irritative network is determined by long-term and circadian fluctuations in sub-region spatiotemporal properties. Also, the most active sub-region co-localizes with the seizure onset zone in 12/14 cases. This study demonstrates that principles of recruitment variability and propagation are conserved at the macroscopic level and that they determine irritative network properties in humans. Functional stratification of the irritative network increases the diagnostic yield of intracranial investigations with the potential to improve the outcomes of surgical treatment of neocortical epilepsy. PMID:29628910

  12. Leveling the Playing Field: First Generation Korean American Males and School Based Extracurricular Activities

    ERIC Educational Resources Information Center

    Levy, Corey

    2010-01-01

    This study examined the manner in which extracurricular activities impacted the acculturation of first-generation adolescent males. Specifically, the project focused on the influence of organized high school soccer on the development of first-generation adolescent Korean American males. Eight adolescent participants, ranging in age from fourteen…

  13. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition

    PubMed Central

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-01-01

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates (F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware. PMID

  14. Development of a Homogenous Database of Bipolar Active Regions Spanning Four Cycles

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, A.; Werginz, Z. A.; Vargas-Acosta, J. P.; DeLuca, M. D.; Vargas-Dominguez, S.; Lamb, D. A.; DeForest, C. E.; Longcope, D. W.; Martens, P.

    2016-12-01

    The solar cycle can be understood as a process that alternates the large-scale magnetic field of the Sun between poloidal and toroidal configurations. Although the process that transitions the solar cycle between toroidal and poloidal phases is still not fully understood, theoretical studies, and observational evidence, suggest that this process is driven by the emergence and decay of bipolar magnetic regions (BMRs) at the photosphere. Furthermore, the emergence of BMRs at the photosphere is the main driver behind solar variability and solar activity in general; making the study of their properties doubly important for heliospheric physics. However, in spite of their critical role, there is still no unified catalog of BMRs spanning multiple instruments and covering the entire period of systematic measurement of the solar magnetic field (i.e. 1975 to present).In this presentation we discuss an ongoing project to address this deficiency by applying our Bipolar Active Region Detection (BARD) code on full disk magnetograms measured by the 512 (1975-1993) and SPMG (1992-2003) instruments at the Kitt Peak Vacuum Telescope (KPVT), SOHO/MDI (1996-2011) and SDO/HMI (2010-present). First we will discuss the results of our revitalization of 512 and SPMG KPVT data, then we will discuss how our BARD code operates, and finally report the results of our cross-callibration across instruments.The corrected and improved KPVT magnetograms will be made available through the National Solar Observatory (NSO) and Virtual Solar Observatory (VSO), including updated synoptic maps produced by running the corrected KPVT magnetograms though the SOLIS pipeline. The homogeneous active region database will be made public by the end of 2017 once it has reached a satisfactory level of quality and maturity. The Figure shows all bipolar active regions present in our database (as of Aug 2016) colored according to the instrument where they were detected. The image also includes the names of the NSF

  15. High-resolution observations of active region moss and its dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R. J.; McLaughlin, J. A., E-mail: richard.morton@northumbria.ac.uk

    2014-07-10

    The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases alongmore » the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s{sup –1} for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.« less

  16. Statistical Analysis of Acoustic Wave Power and Flows around Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2018-05-01

    We analyze the effect of a sunspot in its quiet surroundings applying a helioseismic technique on almost three years of Helioseismic and Magnetic Imager (HMI) observations obtained during solar cycle 24 to further study the sunspot structure below the solar surface. The attenuation of acoustic waves with frequencies lower than 4.2 mHz depends more strongly on the wave direction at a distance of 6°–7° from the sunspot center. The amplification of higher frequency waves is highest 6° away from the active region and is largely independent of the wave’s direction. We observe a mean clockwise flow around active regions, the angular speed of which decreases exponentially with distance and has a coefficient close to ‑0.7 degree‑1. The observed horizontal flow in the direction of the nearby active region agrees with a large-scale circulation around the sunspot in the shape of cylindrical shell. The center of the shell seems to be centered around 7° from the sunspot center, where we observe an inflow close to the surface down to ∼2 Mm, followed by an outflow at deeper layers until at least 7 Mm.

  17. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  18. Forward modeling transient brightenings and microflares around an active region observed with Hi-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobelski, Adam R.; McKenzie, David E., E-mail: kobelski@solar.physics.montana.edu

    Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C)more » sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.« less

  19. Electricity generation from wetlands with activated carbon bioanode

    NASA Astrophysics Data System (ADS)

    Sudirjo, E.; Buisman, C. J. N.; Strik, D. P. B. T. B.

    2018-03-01

    Paddy fields are potential non-tidal wetlands to apply Plant Microbial Fuel Cell (PMFC) technology. World widely they cover about 160 million ha of which 13.3 million ha is located in Indonesia. With the PMFC, in-situ electricity is generated by a bioanode with electrochemically active bacteria which use primary the organic matter supplied by the plant (e.g. as rhizodeposits and plant residues). One of limitations when installing a PMFC in a non-tidal wetland is the usage of “expensive” large amounts of electrodes to overcome the poor conductivity of wet soils. However, in a cultivated wetland such as rice paddy field, it is possible to alter soil composition. Adding a conductive carbon material such as activated carbon is believed to improve soil conductivity with minimum impact on plant vitality. The objective of this research was to study the effect of activated carbon as an alternative bioanode material on the electricity output and plants vitality. Lab result shows that activated carbon can be a potential alternative for bioanode material. It can continuously deliver current on average 1.54 A/m3 anode (0.26 A/m2 PGA or 66 mW/m2 PGA) for 98 days. Based on this result the next step is to do a test of this technology in the real paddy fields.

  20. Tracking Organs Composed of One or Multiple Regions Using Geodesic Active Region Models

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Jiménez, J. J.

    In radiotherapy treatment it is very important to find out the target organs on the medical image sequence in order to determine and apply the proper dose. The techniques to achieve this goal can be classified into extrinsic and intrinsic. Intrinsic techniques only use image processing with medical images associated to the radiotherapy treatment, as we deal in this chapter. To accurately perform this organ tracking it is necessary to find out segmentation and tracking models that were able to be applied to several image modalities involved on a radiotherapy session (CT See Modality , MRI , etc.). The movements of the organs are mainly affected by two factors: breathing and involuntary movements associated with the internal organs or patient positioning. Among the several alternatives to track the organs of interest, a model based on geodesic active regions is proposed. This model has been tested over CT images from the pelvic, cardiac, and thoracic area. A new model for the segmentation of organs composed by more than one region is proposed.

  1. Identification and characterization of a highly variable region in mitochondrial genomes of fusarium species and analysis of power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hamzah, Haider Mousa

    In the microbial fuel cell (MFC) project, power generation from Shewanella oneidensis MR-1 was analyzed looking for a novel system for both energy generation and sustainability. The results suggest the possibility of generating electricity from different organic substances, which include agricultural and industrial by-products. Shewanella oneidensis MR-1 generates usable electrons at 30°C using both submerged and solid state cultures. In the MFC biocathode experiment, most of the CO2 generated at the anodic chamber was converted into bicarbonate due the activity of carbonic anhydrase (CA) of the Gluconobacter sp.33 strain. These findings demonstrate the possibility of generation of electricity while at the same time allowing the biomimetic sequestration of CO2 using bacterial CA. In the mitochondrial genomes project, the filamentous fungal species Fusarium oxysporum was used as a model. This species causes wilt of several important agricultural crops. A previous study revealed that a highly variable region (HVR) in the mitochondrial DNA (mtDNA) of three species of Fusarium contained a large, variable unidentified open reading frame (LV-uORF). Using specific primers for two regions of the LV-uORF, six strains were found to contain the ORF by PCR and database searches identified 18 other strains outside of the Fusarium oxysporum species complex. The LV-uORF was also identified in three isolates of the F. oxysporum species complex. Interestingly, several F. oxysporum isolates lack the LV-uORF and instead contain 13 ORFs in the HVR, nine of which are unidentified. The high GC content and codon usage of the LV-uORF indicate that it did not co-evolve with other mt genes and was horizontally acquired and was introduced to the Fusarium lineage prior to speciation. The nonsynonymous/synonymous (dN/dS) ratio of the LV-uORFs (0.43) suggests it is under purifying selection and the putative polypeptide is predicted to be located in the mitochondrial membrane. Growth assays

  2. The analytical approach to optimization of active region structure of quantum dot laser

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-10-01

    Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value.

  3. FIP bias in a sigmoidal active region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, Lidia; Green, L. M.; Steed, K.; Carlyle, J.

    2014-01-01

    We investigate first ionization potential (FIP) bias levels in an anemone active region (AR) - coronal hole (CH) complex using an abundance map derived from Hinode/EIS spectra. The detailed, spatially resolved abundance map has a large field of view covering 359'' × 485''. Plasma with high FIP bias, or coronal abundances, is concentrated at the footpoints of the AR loops whereas the surrounding CH has a low FIP bias, ~1, i.e. photospheric abundances. A channel of low FIP bias is located along the AR's main polarity inversion line containing a filament where ongoing flux cancellation is observed, indicating a bald patch magnetic topology characteristic of a sigmoid/flux rope configuration.

  4. The evolution of active region loop plasma

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Antiochos, S. K.

    1980-01-01

    The adjustment of coronal active-region loops to changes in their heating rate is investigated numerically. The one-dimensional hydrodynamic equations are solved subject to boundary conditions in which heat flux-induced mass exchange between coronal and chromospheric components is allowed. The calculated evolution of physical parameters suggests that (1) mass supplied during chromospheric evaporation is much more effective in moderating coronal temperature excursions than when downward heat flux is dissipated by a static chromosphere, and (2) the method by which the chromosphere responds to changing coronal conditions can significantly influence coronal readjustment time scales. Observations are cited which illustrate the range of possible fluctuations in the heating rates.

  5. Exploring Preferences of Mentoring Activities among Generational Groups of Registered Nurses in Florida

    ERIC Educational Resources Information Center

    Posey-Goodwin, Patricia Ann

    2013-01-01

    The purpose of this study was to explore differences in perceptions of mentoring activities from four generations of registered nurses in Florida, using the Alleman Mentoring Activities Questionnaire ® (AMAQ ®). Statistical procedures of analysis of variance (ANOVA) were employed to explore differences among 65 registered nurses in Florida from…

  6. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    PubMed

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  7. Generation of 3D templates of active sites of proteins with rigid prosthetic groups.

    PubMed

    Nebel, Jean-Christophe

    2006-05-15

    With the increasing availability of protein structures, the generation of biologically meaningful 3D patterns from the simultaneous alignment of several protein structures is an exciting prospect: active sites could be better understood, protein functions and protein 3D structures could be predicted more accurately. Although patterns can already be generated at the fold and topological levels, no system produces high-resolution 3D patterns including atom and cavity positions. To address this challenge, our research focuses on generating patterns from proteins with rigid prosthetic groups. Since these groups are key elements of protein active sites, the generated 3D patterns are expected to be biologically meaningful. In this paper, we present a new approach which allows the generation of 3D patterns from proteins with rigid prosthetic groups. Using 237 protein chains representing proteins containing porphyrin rings, our method was validated by comparing 3D templates generated from homologues with the 3D structure of the proteins they model. Atom positions were predicted reliably: 93% of them had an accuracy of 1.00 A or less. Moreover, similar results were obtained regarding chemical group and cavity positions. Results also suggested our system could contribute to the validation of 3D protein models. Finally, a 3D template was generated for the active site of human cytochrome P450 CYP17, the 3D structure of which is unknown. Its analysis showed that it is biologically meaningful: our method detected the main patterns of the cytochrome P450 superfamily and the motifs linked to catalytic reactions. The 3D template also suggested the position of a residue, which could be involved in a hydrogen bond with CYP17 substrates and the shape and location of a cavity. Comparisons with independently generated 3D models comforted these hypotheses. Alignment software (Nestor3D) is available at http://www.kingston.ac.uk/~ku33185/Nestor3D.html

  8. Beta-globin locus activation regions: conservation of organization, structure, and function.

    PubMed Central

    Li, Q L; Zhou, B; Powers, P; Enver, T; Stamatoyannopoulos, G

    1990-01-01

    The human beta-globin locus activation region (LAR) comprises four erythroid-specific DNase I hypersensitive sites (I-IV) thought to be largely responsible for activating the beta-globin domain and facilitating high-level erythroid-specific globin gene expression. We identified the goat beta-globin LAR, determined 10.2 kilobases of its sequence, and demonstrated its function in transgenic mice. The human and goat LARs share 6.5 kilobases of homologous sequences that are as highly conserved as the epsilon-globin gene promoters. Furthermore, the overall spatial organization of the two LARs has been conserved. These results suggest that the functionally relevant regions of the LAR are large and that in addition to their primary structure, the spatial relationship of the conserved elements is important for LAR function. Images PMID:2236034

  9. 50 CFR 217.110 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Specified activity and specified geographical region. 217.110 Section 217.110 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKE OF MARINE MAMMALS INCIDENTAL TO...

  10. Magnetic structure of an activated filament in a flaring active region

    NASA Astrophysics Data System (ADS)

    Sasso, C.; Lagg, A.; Solanki, S. K.

    2014-01-01

    Aims: While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We report observational results on the magnetic field structure of an activated filament in a flaring active region. In particular, we studied its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displayed signs of rotation. Methods: We inverted the Stokes profiles of the chromospheric He i 10 830 Å triplet and the photospheric Si i 10 827 Å line observed in this filament by the Vacuum Tower Telescope on Tenerife. Using these inversion results, we present and interpret the first maps of the velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Results: Up to five different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of the filament, while the downflows are concentrated along its periphery. Moreover, the upflowing gas is associated with an opposite-polarity magnetic configuration with respect to the photosphere, while the downflowing gas is associated with a same-polarity configuration. Conclusions: The activated filament has a very complex structure. Nonetheless, it is compatible with a flux rope, albeit a distorted one, in the normal configuration. The observations are best explained by a rising flux rope in which part of the filament material is still stably stored (upflowing material, rising with the field), while the rest is no longer stably stored and flows down along the field lines. The movie is available in electronic form at http://www.aanda.org

  11. Resveratrol strongly enhances the retinoic acid-induced superoxide generating activity via up-regulation of gp91-phox gene expression in U937 cells.

    PubMed

    Kikuchi, Hidehiko; Mimuro, Hitomi; Kuribayashi, Futoshi

    2018-01-01

    The membrane bound cytochrome b 558 composed of gp91-phox and p22-phox proteins, and cytosolic proteins p40-, p47-and p67-phox are important components of superoxide (O 2 - )-generating system in phagocytes. Here, we describe that resveratrol, a pleiotropic phytochemical belonging to the stilbenoids, dramatically activates the O 2 - -generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and resveratrol, the O 2 - -generating activity increased more than 5-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and resveratrol strongly enhanced transcription of the gp91-phox compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and resveratrol caused remarkable accumulation of protein levels of gp91-phox (to 4-fold), p22-phox (to 5-fold) and p47-phox (to 4-fold) compared with those of the RA-treatment alone. In addition, ChIP assay suggested that resveratrol participates in enhancing the gene expression of gp91-phox via promoting acetylation of Lys-9 residues and Lys-14 residues of histone H3 within chromatin around the promoter regions of the gene. These results suggested that resveratrol strongly enhances the RA-induced O 2 - -generating activity via up-regulation of gp91-phox gene expression in U937 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Regional Socioeconomic Inequalities in Physical Activity and Sedentary Behavior Among Brazilian Adolescents.

    PubMed

    Werneck, André O; Oyeyemi, Adewale L; Fernandes, Rômulo A; Romanzini, Marcelo; Ronque, Enio R V; Cyrino, Edilson S; Sardinha, Luís B; Silva, Danilo R

    2018-05-01

    This study aims to describe the regional prevalence and patterns of physical activity (PA) and sedentary behavior among Brazilian adolescents. Data from the Brazilian Scholar Health Survey, a nationally representative survey of ninth-grade adolescents [mean age: 14.29 y (14.27-14.29)] conducted in 2015 (n = 101,445), were used. Outcomes were television viewing, sitting time (ST), total PA, and active traveling collected via self-administered questionnaire. Information on frequency of physical education classes and type of school was collected from the school's director. Frequencies with 95% confidence intervals were used to determine the prevalence and patterns of outcomes. Higher prevalence of PA (≥300 min/wk) and ST (>4 h/d) was found in Midwest (PA = 38.0%; ST = 44.5%), South (PA = 37.6%; ST = 50.1%), and Southeast (PA = 36.1%; ST = 49.3%) compared with Northeast (PA = 29.7%; ST = 36.9%) and North (PA = 34.4%; ST = 34.8%) regions of Brazil. ST was higher among adolescents from private schools (51.5%) than public schools (42.9%), whereas active traveling was greater among students of public schools than private schools (62.0% vs 34.4%). Most inequalities in outcomes between capital and interior cities were in the poorest regions. The results indicate that national plans targeting regional inequalities are needed to improve PA and to reduce sedentary behavior among Brazilian adolescents.

  13. Activation of photodynamic therapy in vitro with Cerenkov luminescence generated from Yttrium-90 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2016-03-01

    Translation of photodynamic therapy to the clinical setting has primarily been limited to easily accessible and/or superficial diseases where traditional light delivery can be performed noninvasively. Cerenkov luminescence, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively in order to overcome this depth limitation. We report on the use of Cerenkov luminescence generated from Yttrium-90 as a means to active the photodynamic therapy process in monolayer tumor cell cultures. The current study investigates the utility of Cerenkov luminescence for activating both the clinically relevant aminolevulinic acid at 1.0 mM and also the more efficient photosensitizer TPPS2a at 1.2 µM. Cells were incubated with aminolevulinic acid for 6 hours prior to radionuclide addition, as well as additional daily treatments for three days. TPPS2a was delivered as a single treatment with an 18 hour incubation time before radionuclide addition. Experiments were completed for both C6 glioma cells and MDA-MB-231 breast tumor cells. Although aminolevulinic acid proved ineffective for generating a therapeutic effect at any activity for either cell line, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 cell line. Current results demonstrate that it may be possible to generate a therapeutic effect in vivo using Cerenkov luminescence to activate the photodynamic therapy process with clinically relevant photosensitizers.

  14. Spectral luminescent and generation properties of new active media in the blue region of the spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruzinskii, V.V.; Degtyarenko, K.M.; Kopylova, T.N.

    A series of organic luminophores based on benzene, diphenyl, diphenyl ether, diphenylmethane and diphenylene oxide (4,4'-distyryldiphenyl ether and 3,6-distyryldiphenylene oxide were obtained for the first time) were synthesized by a new method, and new patterns of change in their spectral-luminscent properties, depending on the structure of the molecules, were found. The generation of emission obtained for the new compounds in vapors and in solutions is fairly efficient, especially in the case of 4,4'-di(phenylethynyl)diphenyl.

  15. Wind turbine generators with active radar signature control blades

    NASA Astrophysics Data System (ADS)

    Tennant, Alan; Chambers, Barry

    2004-07-01

    The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, however the Doppler shifts introduced by the WTG are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem that we are investigating is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the RCS of the blade return. The active blade can operate in one of two modes: firstly the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected: a second mode of operation is to introduce specific coding on to the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques that we have developed for active radar absorbers. Results of experimental work using a 10GHz Doppler radar and scale model WTG with active Doppler imparting blades are presented.

  16. Altered spontaneous activity in antisocial personality disorder revealed by regional homogeneity.

    PubMed

    Tang, Yan; Liu, Wangyong; Chen, Jingang; Liao, Jian; Hu, Dewen; Wang, Wei

    2013-08-07

    There is increasing evidence that antisocial personality disorder (ASPD) stems from brain abnormalities. However, there are only a few studies investigating brain structure in ASPD. The aim of this study was to find regional coherence abnormalities in resting-state functional MRI of ASPD. Thirty-two ASPD individuals and 34 controls underwent a resting-state functional MRI scan. The regional homogeneity (ReHo) approach was used to examine whether ASPD was related to alterations in resting-state neural activity. Support vector machine discriminant analysis was used to evaluate the sensitivity/specificity characteristics of the ReHo index in discriminating between the ASPD individuals and controls. The results showed that, compared with controls, ASPD individuals show lower ReHo in the right cerebellum posterior lobe (Crus1) and the right middle frontal gyrus, as well as higher ReHo in the right middle occipital gyrus (BA 19), left inferior temporal gyrus (BA 37), and right inferior occipital gyrus (cuneus, BA 18). All alternation regions reported a predictive accuracy above 70%. To our knowledge, this study was the first to study the change in regional activity coherence in the resting brain of ASPD individuals. These results not only elucidated the pathological mechanism of ASPD from a resting-state functional viewpoint but also showed that these alterations in ReHo may serve as potential markers for the detection of ASPD.

  17. Active Faults and Seismic Sources of the Middle East Region: Earthquake Model of the Middle East (EMME) Project

    NASA Astrophysics Data System (ADS)

    Gulen, L.; EMME WP2 Team*

    2011-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the GEM (Global Earthquake Model) project (http://www.emme-gem.org/). The EMME project covers Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project consists of three main modules: hazard, risk, and socio-economic modules. The EMME project uses PSHA approach for earthquake hazard and the existing source models have been revised or modified by the incorporation of newly acquired data. The most distinguishing aspect of the EMME project from the previous ones is its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that permits continuous update, refinement, and analysis. An up-to-date earthquake catalog of the Middle East region has been prepared and declustered by the WP1 team. EMME WP2 team has prepared a digital active fault map of the Middle East region in ArcGIS format. We have constructed a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. The EMME project database includes information on the geometry and rates of movement of faults in a "Fault Section Database", which contains 36 entries for each fault section. The "Fault Section" concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far 6,991 Fault Sections have been defined and 83,402 km of faults are fully parameterized in the Middle East region. A separate "Paleo-Sites Database" includes information on the timing and amounts of fault

  18. Contact system activation and high thrombin generation in hyperthyroidism.

    PubMed

    Kim, Namhee; Gu, Ja-Yoon; Yoo, Hyun Ju; Han, Se Eun; Kim, Young Il; Nam-Goong, Il Sung; Kim, Eun Sook; Kim, Hyun Kyung

    2017-05-01

    Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extracellular traps (NET) has emerged as an important trigger of thrombosis, we hypothesized that the contact system is activated along with active NET formation in hyperthyroidism and that their markers correlate with disease severity. In 61 patients with hyperthyroidism and 40 normal controls, the levels of coagulation factors (fibrinogen, and factor VII, VIII, IX, XI and XII), D-dimer, thrombin generation assay (TGA) markers, NET formation markers (histone-DNA complex, double-stranded DNA and neutrophil elastase) and contact system markers (activated factor XII (XIIa), high-molecular-weight kininogen (HMWK), prekallikrein and bradykinin) were measured. Patients with hyperthyroidism showed higher levels of fibrinogen (median (interquartile range), 315 (280-344) vs 262 (223-300), P  = 0.001), D-dimer (103.8 (64.8-151.5) vs 50.7 (37.4-76.0), P  < 0.001), peak thrombin (131.9 (102.2-159.4) vs 31.6 (14.8-83.7), P  < 0.001) and endogenous thrombin potential (649 (538-736) vs 367 (197-1147), P  = 0.021) in TGA with 1 pM tissue factor, neutrophil elastase (1.10 (0.39-2.18) vs 0.23 (0.20-0.35), P  < 0.001), factor XIIa (66.9 (52.8-87.0) vs 73.0 (57.1-86.6), P  < 0.001), HMWK (6.11 (4.95-7.98) vs 3.83 (2.60-5.68), P  < 0.001), prekallikrein (2.15 (1.00-6.36) vs 1.41 (0.63-2.22), P  = 0.026) and bradykinin (152.4 (137.6-180.4) vs 118.3 (97.1-137.9), P  < 0.001) than did normal controls. In age- and sex-adjusted logistic regression analysis, fibrinogen, factor VIII, IX and XIIa, D-dimer, peak thrombin, neutrophil elastase, HMWK and bradykinin showed significant odds ratios representing hyperthyroidism's contribution to coagulation and contact system activation. Free T4 was significantly correlated with factors VIII and IX, D-dimer, double-stranded DNA and bradykinin. This study demonstrated that contact system

  19. Acoustic holograms of active regions

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2008-10-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  20. 50 CFR 217.60 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... geographical region. (a) Regulations in this subpart apply only to the 30th Space Wing, United States Air Force... that occurs incidental to: (1) Launching up to 15 space and each year from Vandenberg Air Force Base.... Air Force Launches, Aircraft and Helicopter Operations, and Harbor Activities Related to Launch...

  1. Variability, trends, and drivers of regional fluctuations in Australian fire activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2017-07-01

    Throughout the world fire regimes are determined by climate, vegetation, and anthropogenic factors, and they have great spatial and temporal variability. The availability of high-quality satellite data has revolutionized fire monitoring, allowing for a more consistent and comprehensive evaluation of temporal and spatial patterns. Here we utilize a satellite based "active fire" (AF) product to statistically analyze 2001-2015 variability and trends in Australian fire activity and link this to precipitation and large-scale atmospheric structures (namely, the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)) known to have potential for predicting fire activity in different regions. It is found that Australian fire activity is decreasing (during summer (December-February)) or stable, with high temporal and spatial variability. Eastern New South Wales (NSW) has the strongest decreasing trend (to the 1% confidence level), especially during the winter (JJA) season. Other significantly decreasing areas are Victoria/NSW, Tasmania, and South-east Queensland. These decreasing fire regions are relatively highly populated, so we suggest that the declining trends are due to improved fire management, reducing the size and duration of bush fires. Almost half of all Australian AFs occur during spring (September-November). We show that there is considerable potential throughout Australia for a skillful forecast for future season fire activity based on current and previous precipitation activity, ENSO phase, and to a lesser degree, the IOD phase. This is highly variable, depending on location, e.g., the IOD phase is for more indicative of fire activity in southwest Western Australia than for Queensland.

  2. Seasonal Variation of Wave Activities near the Mesopause Region Observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.; Won, Y.; Wu, D. L.

    2012-12-01

    We have analyzed neutral wind data obtained from a VHF meteor radar at King Sejong Station (KSS), Antarctica to investigate wave activities in the altitude region of 80 - 100 km over the Antarctic vortex boundary. The seasonal behavior of semidiurnal tides is generally consistent with the prediction of GSWM (Global Scale Wave Model) except for the altitude region above ~96 km. The gravity wave activities inferred from variances of neutral winds show very similar seasonal characteristics to the semidiurnal tides, implying that there is a close interaction between the gravity wave and tide. Although the seasonal behaviors of the wind variance as an indicator of the gravity wave activity are consistent with those observed at the adjacent Rothera station, the magnitude of the variances at KSS is much larger above the mesopause, especially from May through September, than those at Rothera. The Aura Microwave Limb Sounder (MLS) satellite observations also confirmed the enhancement of gravity wave activity during the same period near the tip of Antarctic Peninsula, where KSS is located. The observed large wind variances at KSS may imply that the atmospheric conditions near the Antarctic vortex are very effective for generation of the gravity waves that propagate to the upper atmosphere.

  3. Results of the IRIS UV Burst Survey, Part I: Active Regions Tracked Limb to Limb

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; DeLuca, E.

    2017-12-01

    We present results from the first phase of an effort to thoroughly characterize UV bursts within the Interface Region Imaging Spectrograph (IRIS) data catalogue. The observational signatures of these phenomena include dramatically intensified and broadened NUV/FUV emission line profiles with absorption features from cool metallic ions. These properties suggest that UV bursts originate from plasma at transition region temperatures (≥ 80,000 K) which is deeply embedded in the cool lower chromosphere ( 5,000 K). Rigorously characterizing the energetic and dynamical properties of UV bursts is crucial since they have considerable potential to heat active region chromospheres and could provide critical constraints for models of magnetic reconnection in these regions. The survey first focuses on IRIS observations of active regions tracked from limb to limb. All observations consist of large field-of-view raster scans of 320 or 400 steps each, which allow for widespread detection of many burst profiles at the expense of having limited short-term time evolution information. We detect bursts efficiently by applying a semi-automated single-Gaussian fitting technique to Si IV 1393.8 Å emission profiles that isolates the distinct burst population in a 4-D parameter space. The robust sample of NUV/FUV burst spectra allows for precise constraints of properties critical for modeling reconnection in the chromosphere, including outflow kinetic energy, density estimates from intensity ratios of Si IV 1402.8 Å and O IV 1401.2 Å emission lines, and coincident measures of emission in other wavelengths. We also track burst properties throughout the lifetimes of their host active regions, noting changes in detection rate and preferential location as the active regions evolve. Finally, the tracked active region observations provide a unique opportunity to investigate line-of-sight effects on observed UV burst spectral properties, particularly the strength of Ni II 1393.3 Å absorption

  4. Physics of the Solar Active Regions from Radio Observations

    NASA Astrophysics Data System (ADS)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  5. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    PubMed

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were

  6. Activation of the subthalamic region during emotional processing in Parkinson disease.

    PubMed

    Kühn, A A; Hariz, M I; Silberstein, P; Tisch, S; Kupsch, A; Schneider, G-H; Limousin-Dowsey, P; Yarrow, K; Brown, P

    2005-09-13

    To elucidate the involvement of the human subthalamic nucleus (STN) region in the processing or transmission of emotional information. Local field potentials (LFPs) were recorded from this region in 10 patients with Parkinson disease (PD) undergoing bilateral implantation of the STN for high-frequency stimulation. LFP recordings were made while patients viewed pleasant and unpleasant emotionally arousing and neutral pictures. A significant decrease (event-related desynchronization [ERD]) in the local alpha power (8 to 12 Hz) was found for all stimulus categories starting at about 0.5 seconds after stimulus presentation. However, 1 to 2 seconds poststimulus, the ERD was larger in trials of pleasant (mean ERD: 21.6 +/- 2.8%; p < 0.009) and unpleasant (mean ERD: 15.0 +/- 4.2%; p = 0.018) stimuli compared with neutral stimuli (mean ERD: 4.4 +/- 4.2%). The delayed modulation of alpha activity recorded from the area of the subthalamic nucleus in PD may reflect the processing or transmission of information related to emotional stimuli. "Limbic" activation in the region of the subthalamic nucleus may explain why high-frequency stimulation of the subthalamic nucleus alters affect in some patients with PD.

  7. Solar Active Region Coronal Jets. II. Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Martinez, Francisco

    2017-07-01

    We study a series of X-ray-bright, rapidly evolving active region coronal jets outside the leading sunspot of AR 12259, using Hinode/X-ray telescope, Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), and Interface Region Imaging Spectrograph (IRIS) data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets. The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ≲ 2\\prime\\prime ) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2016). Some jets strands are difficult/impossible to detect, perhaps due to, e.g., their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ˜ 1.5× {10}19 Mx hr-1. An average flux of ˜ 5× {10}18 Mx canceled prior to each episode, arguably building up ˜1028-1029 erg of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption build up and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  8. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions

    USGS Publications Warehouse

    Keefer, D.K.

    1994-01-01

    This paper describes a general method for determining the amount of earthquake-induced landsliding that occurs in a seismically active region over time; this determination can be used as a quantitative measure of the long-term hazard from seismically triggered landslides as well as a measure of the importance of this process to regional slope-erosion rates and landscape evolution. The method uses data from historical earthquakes to relate total volume of landslide material dislodged by an earthquake to the magnitude, M, and seismic moment, M0, of the earthquake. From worldwide data, a linear-regression relation between landslide volume, V, and M0 is determined as: V = M0/1018.9(?? 0.13), where V is measured in m3 and M0 is in dyn-cm. To determine the amount of earthquake-generated landsliding over time, this relation is combined with data on seismic-moment release for a particular region, which may be derived from either earthquake-history or fault-slip data. The form of the M0-V relation allows the rate of production of earthquake-induced landslides over time to be determined from total rate of seismic-moment release without regard to the distribution of individual events, thus simplifying and generalizing the determination. Application of the method to twelve seismically active regions, with areas ranging from 13,275 to 2,308,000 km2, shows that erosion rates from earthquake-induced landslides vary significantly from region to region. Of the regions studied, the highest rates were determined for the island of Hawaii, New Zealand, western New Guinea, and the San Francisco Bay region of California. Significantly lower rates were determined for Iran, Tibet, the Sierra Nevada-Great Basin region of California, and central Japan (for the time period from 715 AD to the present). Intermediate rates were determined for Peru, southern California, onshore California, Turkey, and central Japan (for the time period from 1586 AD to the present). To determine the relative, long

  9. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  10. Two regions of seafloor deformation generated the tsunami for the 13 November 2016, Kaikoura, New Zealand earthquake

    NASA Astrophysics Data System (ADS)

    Bai, Yefei; Lay, Thorne; Cheung, Kwok Fai; Ye, Lingling

    2017-07-01

    The 13 November 2016 Kaikoura, New Zealand, Mw 7.8 earthquake ruptured multiple crustal faults in the transpressional Marlborough and North Canterbury tectonic domains of northeastern South Island. The Hikurangi trench and underthrust Pacific slab terminate in the region south of Kaikoura, as the subdution zone transitions to the Alpine fault strike-slip regime. It is difficult to establish whether any coseismic slip occurred on the megathrust from on-land observations. The rupture generated a tsunami well recorded at tide gauges along the eastern coasts and in Chatham Islands, including a 4 m crest-to-trough signal at Kaikoura where coastal uplift was about 1 m, and at multiple gauges in Wellington Harbor. Iterative modeling of teleseismic body waves and the regional water-level recordings establishes that two regions of seafloor motion produced the tsunami, including an Mw 7.6 rupture on the megathrust below Kaikoura and comparable size transpressional crustal faulting extending offshore near Cook Strait.

  11. A New Method for Generating Probability Tables in the Unresolved Resonance Region

    DOE PAGES

    Holcomb, Andrew M.; Leal, Luiz C.; Rahnema, Farzad; ...

    2017-04-18

    One new method for constructing probability tables in the unresolved resonance region (URR) has been developed. This new methodology is an extensive modification of the single-level Breit-Wigner (SLBW) pseudo-resonance pair sequence method commonly used to generate probability tables in the URR. The new method uses a Monte Carlo process to generate many pseudo-resonance sequences by first sampling the average resonance parameter data in the URR and then converting the sampled resonance parameters to the more robust R-matrix limited (RML) format. Furthermore, for each sampled set of pseudo-resonance sequences, the temperature-dependent cross sections are reconstructed on a small grid around themore » energy of reference using the Reich-Moore formalism and the Leal-Hwang Doppler broadening methodology. We then use the effective cross sections calculated at the energies of reference to construct probability tables in the URR. The RML cross-section reconstruction algorithm has been rigorously tested for a variety of isotopes, including 16O, 19F, 35Cl, 56Fe, 63Cu, and 65Cu. The new URR method also produced normalized cross-section factor probability tables for 238U that were found to be in agreement with current standards. The modified 238U probability tables were shown to produce results in excellent agreement with several standard benchmarks, including the IEU-MET-FAST-007 (BIG TEN), IEU-MET-FAST-003, and IEU-COMP-FAST-004 benchmarks.« less

  12. An fMRI study of sex differences in regional activation to a verbal and a spatial task.

    PubMed

    Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E

    2000-09-01

    Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.

  13. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  14. Inference Generation during Text Comprehension by Adults with Right Hemisphere Brain Damage: Activation Failure Versus Multiple Activation.

    ERIC Educational Resources Information Center

    Tompkins, Connie A.; Fassbinder, Wiltrud; Blake, Margaret Lehman; Baumgaertner, Annette; Jayaram, Nandini

    2004-01-01

    ourse comprehensionEvidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults…

  15. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  16. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Phillips, Wayne (Inventor); Borshchevsky, Alex (Inventor); Kolawa, Elizabeth A. (Inventor); Ryan, Margaret A. (Inventor); Caillat, Thierry (Inventor); Mueller, Peter (Inventor); Snyder, G. Jeffrey (Inventor); Kascich, Thorsten (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  17. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  18. Does regional disadvantage affect health-related sport and physical activity level? A multi-level analysis of individual behaviour.

    PubMed

    Wicker, Pamela; Downward, Paul; Lera-López, Fernando

    2017-11-01

    This study examines the role of regional government quality in health-related participation in sport and physical activity among adults (18-64 years) in 28 European countries. The importance of the analysis rests in the relative autonomy that regional and local governments have over policy decisions connected with sport and physical activity. While existing studies have focussed on economic and infrastructural investment and expenditure, this research investigates the quality of regional governments across 208 regions within 28 European countries. The individual-level data stem from the 2013 Eurobarometer 80.2 (n = 18,675) and were combined with regional-level data from Eurostat. An individual's level of participation in sport and physical activity was measured by three variables reflecting whether an individual's activity level is below, meets, or exceeds the recommendations of the World Health Organization. The results of multi-level analyses reveal that regional government quality has a significant and positive association with individual participation in sport and physical activity at a level meeting or exceeding the guidelines. The impact is much larger than that of regional gross domestic product per capita, indicating that regional disadvantage in terms of political quality is more relevant than being disadvantaged in terms of economic wealth.

  19. Localization of new, microdissection- generated, anonymous markers and of the genes Pcsk1, Dhfr, Ndub13, and Ccnb1 to rat chromosome region 2q1.

    PubMed

    Quan, X; Laes, J F; Ravoet, M; Van Vooren, P; Szpirer, J; Szpirer, C

    2000-01-01

    The centromeric region of rat chromosome 2 (2q1) harbors unidentified quantitative trait loci of genes that control tumor growth or development. To improve the mapping of this chromosome region, we microdissected it and generated 10 new microsatellite markers, which we included in the linkage map and/or radiation hybrid map of 2q1, together with other known markers, including four genes: Pcsk1 (protein convertase 1), Dhfr (dihydrofolate reductase), Ndub13 (NADH ubiquinone oxidoreductase subunit b13), and Ccnb1 (cyclin B1). To generate anchor points between the different maps, the gene Ndub13 and the microsatellite markers D2Ulb25 and D2Mit1 were also localized cytogenetically. The radiation map generated in region 2q1 extends its centromeric end of about 150 cR. Copyright 2000 S. Karger AG, Basel

  20. The road to reorganization. A system keeps its regional network all in the family.

    PubMed

    Haglund, C

    1989-11-01

    One prominent strategy health-care institutions are pursuing today is the formation of regional networks providing comprehensive continuums of care. Regional activities can be organized according to several distinct geographical parameters: city, county, state, or multistate regions. Although the different types of regionalization may be beneficial, they will generate different types of activities and benefits. Another consideration is that regional structures can range from very loose affiliations to complete ownership. In 1987 the Sisters of Providence health system, Seattle, initiated efforts to create a functionally integrated regional healthcare system in the Portland, OR, market, which had a good framework in place for developing a vertically and horizontally linked comprehensive continuum of care. The Oregon Management Committee, composed of local administrators, was established to identify issues and develop common objectives. The group developed a regional strategic plan and identified eight key areas to begin regionally coordinated activities. It began creating working relationships among institutional counterparts and program integration in several outpatient service areas where duplication was evident. Another effort involved greater coordination of marketing activities.

  1. An investigation of coronal active region loop structures using AS&E rocket X-ray images

    NASA Technical Reports Server (NTRS)

    Webb, D. F.

    1983-01-01

    Simultaneous high spatial resolution observations at 6 cm in soft X-rays, in photospheric magnetograms, and in optical filtergrams were used to compare the most intense sources of centimetric emission in two active regions to coronal loops, sunspots, chromospheric structures, and photospheric magnetic fields. Results show that the majority of the bright microwave components are not associated with sunspots or X-ray emission. A nonthermal mechanism appears necessary to explain the brightest microwave components, discrete regions of continuous particle acceleration may be common in active regions. Studies of the plasma parameters of selected loops imply that the radio emission is consistent with gyro-resonance absorption at the third and fourth harmonic, at least from part of each loop. Results are presented for: (1) X-ray and microwave observations of active regions; (2) comparison of coronal holes observed in soft X-rays and Hel 10830 A spectrosheliograms; and (3) the reappearance of polar coronal holes and the evolution of the solar magnetic field.

  2. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  3. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world

    PubMed Central

    Dowdy, Andrew J.

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  4. Region-Specific Responses of Adductor Longus Muscle to Gravitational Load-Dependent Activity in Wistar Hannover Rats

    PubMed Central

    Ohira, Takashi; Terada, Masahiro; Kawano, Fuminori; Nakai, Naoya; Ogura, Akihiko; Ohira, Yoshinobu

    2011-01-01

    Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive. PMID:21731645

  5. Utilizing upper hybrid resonance for high density plasma production and negative ion generation in a downstream region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-09-15

    Localized wave-induced resonances are created by microwaves launched directly into a multicusp (MC) plasma device in the k Up-Tack B mode, where k is the wave vector and B is the static magnetic field. The resonance zone is identified as upper hybrid resonance (UHR), and lies r = {approx}22 mm away from the MC boundary. Measurement of radial wave electric field intensity confirms the right hand cutoff of the wave (r = 22.5-32.1 mm) located near the UHR zone. A sharp rise in the corresponding electron temperature in the resonance region by {approx}13 eV from its value away from resonancemore » at r = 0, is favorable for the generation of vibrationally excited molecules of hydrogen. A transverse magnetic filter allows cold electrons ({approx}1-2 eV) to pass into the downstream region where they generate negative ions by dissociative attachment. Measurements of electron energy distribution function (EEDF) support the viewpoint. H{sup -} current density of {approx}0.26 mA/cm{sup 2} is obtained at a wave power density of {approx}3 W/cm{sup 2} at 2.0 mTorr pressure, which agrees reasonably well with results obtained from a steady state model using particle balance equations.« less

  6. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  7. Kinetics and Mechanism of Chemical Marker Formation and Water-Activated Heat Generation

    DTIC Science & Technology

    1994-05-01

    activated chemical heaters. It has recently been discovered at the Army’s Natick, Massachusetts Research, Development & Engineering Center that certain...FUNDING NUMBERS 0 i Kinetics and Mechanism of Chemical Marker Formation and Water-Activated Heat Generation ~~ 3 6. AUTHOR(S) I-GZ05 Kenneth Kustin DI N...unlimited. rpIC Q.UA y uI sECTED 5 13. ABSTRACT (Maximum 200 words) n Research has been conducted on two projects: intrinsic chemical markers and water

  8. Regional air quality impacts of increased natural gas production and use in Texas.

    PubMed

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-02

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.

  9. We are what we do: Examining learner-generated content in the anatomy laboratory through the lens of activity theory.

    PubMed

    Doubleday, Alison F; Wille, Sarah J

    2014-01-01

    Video and photography are often used for delivering content within the anatomical sciences. However, instructors typically produce these resources to provide instructional or procedural information. Although the benefits of learner-generated content have been explored within educational research, virtually no studies have investigated the use of learner-generated video and photograph content within anatomy dissection laboratories. This study outlines an activity involving learner-generated video diaries and learner-generated photograph assignments produced during anatomy laboratory sessions. The learner-generated photographs and videos provided instructors with a means of formative assessment and allowed instructors to identify evidence of collaborative behavior in the laboratory. Student questionnaires (n = 21) and interviews (n = 5), as well as in-class observations, were conducted to examine student perspectives on the laboratory activities. The quantitative and qualitative data were examined using the framework of activity theory to identify contradictions between student expectations of, and engagement with, the activity and the actual experiences of the students. Results indicate that learner-generated photograph and video content can act as a rich source of data on student learning processes and can be used for formative assessment, for observing collaborative behavior, and as a starting point for class discussions. This study stresses the idea that technology choice for activities must align with instructional goals. This research also highlights the utility of activity theory as a framework for assessing classroom and laboratory activities, demonstrating that this approach can guide the development of laboratory activities. © 2014 American Association of Anatomists.

  10. Packaging waste prevention activities: A life cycle assessment of the effects on a regional waste management system.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2015-09-01

    A life cycle assessment was carried out to evaluate the effects of two packaging waste prevention activities on the overall environmental performance of the integrated municipal waste management system of Lombardia region, Italy. The activities are the use of refined tap water instead of bottled water for household consumption and the substitution of liquid detergents packaged in single-use containers by those distributed 'loose' through self-dispensing systems and refillable containers. A 2020 baseline scenario without waste prevention is compared with different waste prevention scenarios, where the two activities are either separately or contemporaneously implemented, by assuming a complete substitution of the traditional product(s). The results show that, when the prevention activities are carried out effectively, a reduction in total waste generation ranging from 0.14% to 0.66% is achieved, corresponding to a 1-4% reduction of the affected packaging waste fractions (plastics and glass). However, the improvements in the overall environmental performance of the waste management system can be far higher, especially when bottled water is substituted. In this case, a nearly 0.5% reduction of the total waste involves improvements ranging mostly between 5 and 23%. Conversely, for the substitution of single-use packaged liquid detergents (0.14% reduction of the total waste), the achieved improvements do not exceed 3% for nearly all impact categories. © The Author(s) 2015.

  11. Generation of a Listeria vaccine strain by enhanced Caspase-1 activation

    PubMed Central

    Warren, Sarah E.; Duong, Hien; Mao, Dat Phat; Armstrong, Abraham; Rajan, Jayant; Miao, Edward A.; Aderem, Alan

    2012-01-01

    The immunostimulatory properties conferred by vaccine adjuvants require Caspase-1 for processing of IL-1β and IL-18. Caspase-1 is activated in response to a breach of the cytosolic compartment by microbes and the process is initiated by intracellular pattern recognition receptors within inflammasomes. Listeria monocytogenes is detected in the cytosol by the NLRC4, NLRP3 and AIM2 inflammasomes. NLRC4 is activated by flagellin, and L. monocytogenes evades this detector by repressing flagellin expression. We generated an L. monocytogenes strain that was forced to express flagellin in the host cell cytosol. This strain hyperactivated Caspase-1 and was preferentially cleared via NLRC4 detection in an IL-1β/IL-18 independent manner. We also created a strain of L. monocytogenes with forced expression of another NLRC4 agonist, PrgJ from the Type III secretion system of S. typhimurium. Forced expression of flagellin or PrgJ resulted in attenuation, yet both strains conferred protective immunity in mice against lethal challenge with L. monocytogenes. This work is the first demonstration of specific targeting of the Caspase-1 activation pathway to generate a safe and potent L. monocytogenes based vaccine. Moreover, the attenuated strains with embedded flagellin or PrgJ adjuvants, represent attractive vectors for vaccines aimed at eliciting T cell responses. PMID:21538346

  12. Solar wind stream interaction regions throughout the heliosphere

    NASA Astrophysics Data System (ADS)

    Richardson, Ian G.

    2018-01-01

    This paper focuses on the interactions between the fast solar wind from coronal holes and the intervening slower solar wind, leading to the creation of stream interaction regions that corotate with the Sun and may persist for many solar rotations. Stream interaction regions have been observed near 1 AU, in the inner heliosphere (at ˜ 0.3-1 AU) by the Helios spacecraft, in the outer and distant heliosphere by the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, and out of the ecliptic by Ulysses, and these observations are reviewed. Stream interaction regions accelerate energetic particles, modulate the intensity of Galactic cosmic rays and generate enhanced geomagnetic activity. The remote detection of interaction regions using interplanetary scintillation and white-light imaging, and MHD modeling of interaction regions will also be discussed.

  13. Activity in Face-Responsive Brain Regions is Modulated by Invisible, Attended Faces: Evidence from Masked Priming

    PubMed Central

    Eger, Evelyn; Dolan, Raymond; Henson, Richard N.

    2009-01-01

    It is often assumed that neural activity in face-responsive regions of primate cortex correlates with conscious perception of faces. However, whether such activity occurs without awareness is still debated. Using functional magnetic resonance imaging (fMRI) in conjunction with a novel masked face priming paradigm, we observed neural modulations that could not be attributed to perceptual awareness. More specifically, we found reduced activity in several classic face-processing regions, including the “fusiform face area,” “occipital face area,” and superior temporal sulcus, when a face was preceded by a briefly flashed image of the same face, relative to a different face, even when 2 images of the same face differed. Importantly, unlike most previous studies, which have minimized awareness by using conditions of inattention, the present results occurred when the stimuli (the primes) were attended. By contrast, when primes were perceived consciously, in a long-lag priming paradigm, we found repetition-related activity increases in additional frontal and parietal regions. These data not only demonstrate that fMRI activity in face-responsive regions can be modulated independently of perceptual awareness, but also document where such subliminal face-processing occurs (i.e., restricted to face-responsive regions of occipital and temporal cortex) and to what extent (i.e., independent of the specific image). PMID:18400791

  14. Abdominal expiratory activity in the rat brainstem–spinal cord in situ: patterns, origins and implications for respiratory rhythm generation

    PubMed Central

    Abdala, A P L; Rybak, I A; Smith, J C; Paton, J F R

    2009-01-01

    We studied respiratory neural activity generated during expiration. Motoneuronal activity was recorded simultaneously from abdominal (AbN), phrenic (PN), hypoglossal (HN) and central vagus nerves from neonatal and juvenile rats in situ. During eupnoeic activity, low-amplitude post-inspiratory (post-I) discharge was only present in AbN motor outflow. Expression of AbN late-expiratory (late-E) activity, preceding PN bursts, occurred during hypercapnia. Biphasic expiratory (biphasic-E) activity with pre-inspiratory (pre-I) and post-I discharges occurred only during eucapnic anoxia or hypercapnic anoxia. Late-E activity generated during hypercapnia (7–10% CO2) was abolished with pontine transections or chemical suppression of retrotrapezoid nucleus/ventrolateral parafacial (RTN/vlPF). AbN late-E activity during hypercapnia is coupled with augmented pre-I discharge in HN, truncated PN burst, and was quiescent during inspiration. Our data suggest that the pons provides a necessary excitatory drive to an additional neural oscillatory mechanism that is only activated under conditions of high respiratory drive to generate late-E activity destined for AbN motoneurones. This mechanism may arise from neurons located in the RTN/vlPF or the latter may relay late-E activity generated elsewhere. We hypothesize that this oscillatory mechanism is not a necessary component of the respiratory central pattern generator but constitutes a defensive mechanism activated under critical metabolic conditions to provide forced expiration and reduced upper airway resistance simultaneously. Possible interactions of this oscillator with components of the brainstem respiratory network are discussed. PMID:19491247

  15. Lorentz drift compensation in high harmonic generation in the soft and hard X-ray regions of the spectrum

    DOE PAGES

    Galloway, Benjamin R.; Popmintchev, Dimitar; Pisanty, Emilio; ...

    2016-09-09

    Here, we present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 10 15 W/cm 2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling whichmore » acts in addition to the dominant high harmonic flux scaling of λ -(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV.« less

  16. Altered regional and circuit resting-state activity in patients with occult spastic diplegic cerebral palsy.

    PubMed

    Mu, Xuetao; Wang, Zhiqun; Nie, Binbin; Duan, Shaofeng; Ma, Qiaozhi; Dai, Guanghui; Wu, Chunnan; Dong, Yuru; Shan, Baoci; Ma, Lin

    2017-10-07

    Very few studies have been made to investigate functional activity changes in occult spastic diplegic cerebral palsy (SDCP). The purpose of this study was to analyze whole-brain resting state regional brain activity and functional connectivity (FC) changes in patients with SDCP. We examined 12 occult SDCP and 14 healthy control subjects using resting-state functional magnetic resonance imaging. The data were analyzed using Resting-State fMRI Data Analysis Toolkit (REST) software. The regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and whole brain FC of the motor cortex and thalamus were analyzed and compared between the occult SDCP and control groups. Compared with the control group, the occult SDCP group showed decreased ReHo regions, including the bilateral frontal, parietal, and temporal lobes, the cerebellum, right cingulate gyrus, and right lenticular nucleus, whereas an increased ReHo value was observed in the left precuneus, calcarine, fusiform gyrus, and right precuneus. Compared with the control group, no significant differences in ALFF were noted in the occult SDCP group. With the motor cortex as the region of interest, the occult SDCP group showed decreased connectivity regions in the bilateral fusiform and lingual gyrus, but increased connectivity regions in the contralateral precentral and postcentral gyrus, supplementary motor area, and the ipsilateral postcentral gyrus. With the thalamus being regarded as the region of interest, the occult SDCP group showed decreased connectivity regions in the bilateral basal ganglia, cingulate, and prefrontal cortex, but increased connectivity regions in the bilateral precentral gyrus, the contralateral cerebellum, and inferior temporal gyrus. Resting-state regional brain activities and FC changes in the patients with occult SDCP exhibited a special distribution pattern, which is consistent with the pathology of the disease. Copyright © 2017. Published by Elsevier B.V.

  17. A Cryptosporidium parvum genomic region encoding hemolytic activity.

    PubMed Central

    Steele, M I; Kuhls, T L; Nida, K; Meka, C S; Halabi, I M; Mosier, D A; Elliott, W; Crawford, D L; Greenfield, R A

    1995-01-01

    Successful parasitization by Cryptosporidium parvum requires multiple disruptions in both host and protozoan cell membranes as cryptosporidial sporozoites invade intestinal epithelial cells and subsequently develop into asexual and sexual life stages. To identify cryptosporidial proteins which may play a role in these membrane alterations, hemolytic activity was used as a marker to screen a C. parvum genomic expression library. A stable hemolytic clone (H4) containing a 5.5-kb cryptosporidial genomic fragment was identified. The hemolytic activity encoded on H4 was mapped to a 1-kb region that contained a complete 690-bp open reading frame (hemA) ending in a common stop codon. A 21-kDa plasmid-encoded recombinant protein was expressed in maxicells containing H4. Subclones of H4 which contained only a portion of hemA did not induce hemolysis on blood agar or promote expression of the recombinant protein in maxicells. Reverse transcriptase-mediated PCR analysis of total RNA isolated from excysted sporozoites and the intestines of infected adult mice with severe combined immunodeficiency demonstrated that hemA is actively transcribed during the cryptosporidial life cycle. PMID:7558289

  18. Voluntary facial action generates emotion-specific autonomic nervous system activity.

    PubMed

    Levenson, R W; Ekman, P; Friesen, W V

    1990-07-01

    Four experiments were conducted to determine whether voluntarily produced emotional facial configurations are associated with differentiated patterns of autonomic activity, and if so, how this might be mediated. Subjects received muscle-by-muscle instructions and coaching to produce facial configurations for anger, disgust, fear, happiness, sadness, and surprise while heart rate, skin conductance, finger temperature, and somatic activity were monitored. Results indicated that voluntary facial activity produced significant levels of subjective experience of the associated emotion, and that autonomic distinctions among emotions: (a) were found both between negative and positive emotions and among negative emotions, (b) were consistent between group and individual subjects' data, (c) were found in both male and female subjects, (d) were found in both specialized (actors, scientists) and nonspecialized populations, (e) were stronger when the voluntary facial configurations most closely resembled actual emotional expressions, and (f) were stronger when experience of the associated emotion was reported. The capacity of voluntary facial activity to generate emotion-specific autonomic activity: (a) did not require subjects to see facial expressions (either in a mirror or on an experimenter's face), and (b) could not be explained by differences in the difficulty of making the expressions or by differences in concomitant somatic activity.

  19. 77 FR 50520 - Agency Information Collection Activities: Application for Regional Center Under the Immigrant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ...-0061] Agency Information Collection Activities: Application for Regional Center Under the Immigrant... collection. (2) Title of the Form/Collection: Application for Regional Center under the Immigrant Investor... behalf of an entity under the Immigrant Investor Pilot Program. (5) An estimate of the total number of...

  20. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some ofmore » these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.« less

  1. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity

    NASA Astrophysics Data System (ADS)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.

    2013-04-01

    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  2. Detailed correlation of type III radio bursts with H alpha activity. I - Active region of 22 May 1970.

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Pasachoff, J. M.

    1973-01-01

    Comparison of observations of type III impulsive radio bursts made at the Clark Lake Radio Observatory with high-spatial-resolution cinematographic observations taken at the Big Bear Solar Observatory. Use of the log-periodic radio interferometer makes it possible to localize the radio emission uniquely. This study concentrates on the particularly active region close to the limb on May 22, 1970. Sixteen of the 17 groups were associated with some H alpha activity, 11 of them with the start of such activity.

  3. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. III - NOAA active region 6233 (1990 August)

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.

    1993-01-01

    We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.

  4. Generation of knockout rabbits using transcription activator-like effector nucleases.

    PubMed

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  5. Coronal Magnetography of Solar Active Regions Using Coordinated SOHO/CDS and VLA Observations

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.

    1999-01-01

    The purpose of this project is to apply the coronal magnetographic technique to SOHO (Solar Heliospheric Observatory) /CDS (Coronal Diagnostic Spectrometer) EUV (Extreme Ultraviolet Radiation) and coordinated VLA microwave observations of solar active regions to derive the strength and structure of the coronal magnetic field. A CDS observing plan was developed for obtaining spectra needed to derive active region differential emission measures (DEMs) required for coronal magnetography. VLA observations were proposed and obtained. SOHO JOP 100 was developed, tested, approved, and implemented to obtain coordinated CDS (Coronal Diagnostic Spectrometer)/EIT (Ultraviolet Imaging Telescope)/ VLA (Very Large Array)/ TRACE (Transition Region and Coronal Explorer)/ SXT (Solar X Ray Telescope) observations of active regions on April 12, May 9, May 13, and May 23. Analysis of all four data sets began, with heaviest concentration on COS data. It is found that 200-pixel (14 A in NIS1) wavelength windows are appropriate for extracting broadened Gaussian line profile fit parameters for lines including Fe XIV at 334.2, Fe XVI at 335.4, Fe XVI at 360.8, and Mg IX at 368.1 over the 4 arcmin by 4 arcmin CDS field of view. Extensive efforts were focused on learning and applying were focused on learning and applying CDS software, and including it in new IDL procedures to carry out calculations relating to coronal magnetography. An important step is to extract Gaussian profile fits to all the lines needed to derive the DEM in each spatial pixel of any given active region. The standard CDS absolute intensity calibration software was applied to derived intensity images, revealing that ratios between density-insensitive lines like Fe XVI 360.8/335.4 yield good agreement with theory. However, the resulting absolute intensities of those lines are very high, indicating that revisions to the CDS absolute intensity calibrations remain to be included in the CDS software, an essential step to

  6. OUTFLOWS AND DARK BANDS AT ARCADE-LIKE ACTIVE REGION CORE BOUNDARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, J. T.; Martens, P. C. H.; Tarr, L.

    Observations from the EUV Imaging Spectrometer (EIS) on board Hinode have revealed outflows and non-thermal line broadening in low intensity regions at the edges of active regions (ARs). We use data from Hinode's EIS, Solar Dynamic Observatory's Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager, and the Transition Region and Coronal Explorer instrument to investigate the boundaries of arcade-like AR cores for NOAA ARs 11112, 10978, and 9077. A narrow, low intensity region that is observed at the core's periphery as a dark band shows outflows and increased spectral line broadening. This dark band is found to exist for daysmore » and appears between the bright coronal loop structures of different coronal topologies. We find a case where the dark band region is formed between the magnetic field from emerging flux and the field of the pre-existing flux. A magnetic field extrapolation indicates that this dark band is coincident with the spine lines or magnetic separatrices in the extrapolated field. This occurs over unipolar regions where the brightened coronal field is separated in connectivity and topology. This separation does not appear to be infinitesimal and an initial estimate of the minimum distance of separation is found to be Almost-Equal-To 1.5-3.5 Mm.« less

  7. Impaired active DNA demethylation in zygotes generated by round spermatid injection.

    PubMed

    Kurotaki, Yoko Kakino; Hatanaka, Yuki; Kamimura, Satoshi; Oikawa, Mami; Inoue, Hiroki; Ogonuki, Narumi; Inoue, Kimiko; Ogura, Atsuo

    2015-05-01

    Is the poor development of embryos generated from round spermatid injection (ROSI) in humans and animals associated with abnormal active DNA demethylation? A significant proportion of ROSI-derived embryos failed to undergo active DNA demethylation. Active DNA demethylation is initiated by the conversion of 5-methylcytosine (5mC) to 5-hydroxycytosine (5hmC) by the Tet3 enzyme. Active demethylation proceeds in a more pronounced manner in the male pronucleus than in the female one. Mouse zygotes generated by ICSI or ROSI were analyzed for active DNA methylation by quantification of 5mC and 5hmC using specific antibodies. Some ROSI-derived embryos were subjected to time-lapse imaging for DNA methylation levels and were transferred into recipient pseudo-pregnant female mice. In ICSI-derived embryos, the male:female pronucleus (M/F) ratio of 5mC immunostaining intensity was decreased while that of 5hmC was increased. However, a significant proportion of ROSI-derived embryos showed unchanged M/F ratios for 5mC and 5hmC even at the late zygotic period, indicating that they failed to undergo asymmetric active DNA demethylation. Consistent with this, some ROSI-derived embryos did not show preferential localization of Tet3 to the male pronucleus. ROSI-derived embryos were classified into 'demethylated' or 'non-demethylated' groups by time-lapse imaging and transferred into recipient female mice separately. More normal-sized fetuses were retrieved from the 'demethylated' group than 'non-demethylated' group at Day 11.5 of pregnancy. A causal relationship between impaired active DNA demethylation and the poor developmental ability of ROSI-derived embryos remains to be determined. We identified two types of ROSI-derived embryos in terms of the degree of active DNA demethylation. Induction of normal DNA demethylation at the zygotic stage might help in the technical improvement of ROSI. The work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science

  8. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  9. Moment tensor inversion of recent local moderate sized Van Earthquakes: seismicity and active tectonics of the Van region : Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Ocal, M. F.; Gunes, Y.; Pinar, A.

    2013-12-01

    The study area of the present research, the Van Region is located at the norththern end of the collision zone between the Anatolia and Arabian plates. Therefore, the southeast border of the Anatolian plate collides with the Arabian plate along the Bitlis Suture Zone. This zone is formed by collision of Arabian and in large scale Eurasian plates at mid-Miocen age. This type of thrust generation as a result of compressional regime extends east-west. The largest recorded earthquakes have all taken place along Southern Turkey (e.g. Lice, 1971; Varto, 1966; Caldiran, 1976). On the 23th of October 2011, an earthquake shook the Van Lake, Eastern Turkey, following a seismic sequence of more than three months in an unprecedented episode for this region characterized by null or low seismicity. The October 23, 2011 Van-Ercis Earthquake (Mw=7.1) was the most devastating resulting in loss of life and destruction. In order to study the aftershocks' activity of this main event, we installed and kept a seismic network of 10 broad-band (BB) stations in the area for an interval of nearly fifteen months. We characterized the seismogenic structure of the zone by calculating a minimum 1-D local velocity model and obtaining precise hypocentre locations. We also calculated fault plane solutions for more than 200 moderate sized earthquakes based on first motion polarities and commonly Moment Tensor Inversion Methods. The seismogenic zone would be localized at aproximately 10 km depth. Generally, the distribution of the important moderate earthquakes and the aftershock distribution shows that the E-W and NE-SW oriented fault segments cause the earthquake activities. Aftershock events are located along the eastern border of Lake Van and mainly between 5 and 10 km depth and disposed in two alignments: a ~E-W-trending alignment that matches with the trace of the Van Trust fault Zone and a NE-trending which could correspond to an structure not previously seen. Selected focal mechanisms show a

  10. Activated factor XI and tissue factor in aortic stenosis: Links with thrombin generation

    PubMed Central

    Luszczak, Joanna; Undas, Anetta; Gissel, Matthew; Olszowska, Maria; Butenas, Saulius

    2011-01-01

    Introduction In our previous studies we showed that a significant proportion of patients with various cardiovascular diseases have active tissue factor (TF) and factor (F)XIa in their plasma. Objective To evaluate these two proteins in plasma from patients with aortic stenosis (AS) and established their relationship with the severity of the disease. Methods Fifty-four consecutive patients with AS, including 38 (70.4%) severe AS patients, were studied. Plasma FXIa and TF activity were determined in clotting assays by measuring the response to inhibitory monoclonal antibodies. Results TF activity was detectible in plasma from 14 of 54 patients (25.9%), including 13 of 38 with severe AS (34.2%) and 1 of 16 (6.25%) with moderate AS (p=0.052). FXIa activity was found in 12 (22.2%) patients, mostly in individuals with severe AS (11 of 38, 28.9%, p=0.067). All 12 patients with circulating FXIa had active TF in their plasma as well. Severe AS patients with detectable TF had higher maximal (111±20 vs 97±16 mm Hg, p=0.02) and mean (61±12 vs 53±8 mm Hg, p=0.02) transvalvular gradient, compared with those without such activity in plasma. In severe AS patients with detectable active TF, prothrombin fragment 1.2, a thrombin generation marker, was higher than in patients without TF (375±122 vs. 207±64 pM, p<0.001). Conclusions Detectable FXIa and TF activity was observed for the first time in AS patients, primarily in severe ones. This activity correlates with thrombin generation in those patients. PMID:21519234

  11. Tracking Photospheric Energy Transport in Active Regions with SDO

    NASA Astrophysics Data System (ADS)

    Attié, R.; Thompson, B. J.

    2017-12-01

    The solar photosphere presents flow fields at all observable scales. Where energy-bearing magnetic active regions break through the photosphere these flows are particularly strong, as sheared and twisted magnetic fields come into equilibrium with their surroundings while transporting magnetic energy into the corona. A part of this magnetic energy - the so-called `free energy' stored in the magnetic field in the form of "twisted" and shear of the field - is released in flares and eruptions. We can quantify the energy arrival and build-up in the corona by tracking flow fields and magnetic features at the photosphere as magnetic flux emerges and evolves before and after a flare or eruption.To do this reliably requires two things: a long series of photospheric observations at high sensitivity, spatial and temporal resolution, and an efficient, reliable and robust framework that tracks the photospheric plasma flows and magnetic evolution in both the quiet sun and active regions. SDO/HMI provides the observations, and we present here an innovative high resolution tracking framework that involves the `Balltracking' and `Magnetic Balltracking' algorithms. We show the first results of a systematic, quantitative and comprehensive measurements of the flows and transport of magnetic energy into the solar atmosphere and investigate whether this dynamic view can improve predictions of flares and Coronal Mass Ejections (CMEs).

  12. Cigarette smoke exposure inhibits contact hypersensitivity via the generation of platelet activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Petrache, Irina; Van Demark, Mary J; Rashid, Badri M.; Ocana, Jesus A.; Tang, Yuxuan; Yi, Qiaofang; Turner, Matthew J.; Konger, Raymond L.; Travers, Jeffrey B.

    2013-01-01

    Previous studies have established that pro-oxidative stressors suppress host immunity due to their ability to generate oxidized lipids with PAF-receptor (PAF-R) agonist activity. Although exposure to the pro-oxidative stressor cigarette smoke (CS) is known to exert immunomodulatory effects, little is known regarding the role of platelet-activating factor (PAF) in these events. The current studies sought to determine the role of PAF-R signaling in CS-mediated immunomodulatory effects. We demonstrate that CS exposure induces the generation of a transient PAF-R agonistic activity in the blood of mice. CS exposure inhibits contact hypersensitivity in a PAF-R-dependent manner as PAF-R-deficient mice were resistant to these effects. Blocking PAF-R agonist production either by systemic antioxidants or treatment with serum PAF-acetyl hydrolase enzyme blocked both the CS-mediated generation of PAF-R-agonists and PAF-R dependent inhibition of CHS reactions, indicating a role for oxidized glycerophosphocholines with PAF-R agonistic activity in this process. In addition, cyclooxygenase-2 (COX-2) inhibition did not block PAF-R agonist production but prevented CS-induced inhibition of CHS. This suggests that COX-2 acts downstream of the PAF-R in mediating CS-induced systemic immunosuppression. Moreover, CS-exposure induced a significant increase in the expression of the regulatory T cell reporter gene in FoxP3EGFP mice but not in FoxP3EGFP mice on a PAF-R-deficient background. Finally, Treg depletion via anti-CD25 antibodies blocked CS-mediated inhibition of CHS, indicating the potential involvement of Tregs in CS-mediated systemic immunosuppression. These studies provide the first evidence that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF-R agonists produced through lipid oxidation. PMID:23355733

  13. Particle acceleration in solar active regions being in the state of self-organized criticality.

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  14. On transient events in the upper atmosphere generated away of thunderstorm regions

    NASA Astrophysics Data System (ADS)

    Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.

    2011-12-01

    Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their

  15. Tracking Organs Composed of One or Multiple Regions Using Geodesic Active Region Models

    NASA Astrophysics Data System (ADS)

    Martínez, A.; Jiménez, J. J.

    In radiotherapy treatment it is very important to find out the target organs on the medical image sequence in order to determine and apply the proper dose. The techniques to achieve this goal can be classified into extrinsic and intrinsic. Intrinsic techniques only use image processing with medical images associated to the radiotherapy Radiotherapy treatment, as we deal in this chapter. To accurately perform this organ tracking it is necessary to find out segmentation and tracking models that were able to be applied to several image modalities involved on a radiotherapy session (CT CT See Modality , MRI Magnetic resoance imaging , etc.). The movements of the organs are mainly affected by two factors: breathing and involuntary movements associated with the internal organs or patient positioning. Among the several alternatives to track the organs of interest, a model based on geodesic active regions is proposed. This model has been tested over CT Computed tomography images from the pelvic, cardiac, and thoracic area. A new model for the segmentation of organs composed by more than one region is proposed.

  16. Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leake, James E.; Linton, Mark G.; Schuck, Peter W., E-mail: james.e.leake@nasa.gov

    Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the development of coronal models which are “data-driven” at the photosphere. We present an investigation to determine the feasibility and accuracy of such methods. Our validation framework uses a simulation of active region (AR) formation, modeling the emergence of magnetic flux from the convection zone to the corona, as a ground-truth data set, to supply both the photospheric information and to perform the validation of the data-driven method. We focus ourmore » investigation on how the accuracy of the data-driven model depends on the temporal frequency of the driving data. The Helioseismic and Magnetic Imager on NASA’s Solar Dynamics Observatory produces full-disk vector magnetic field measurements at a 12-minute cadence. Using our framework we show that ARs that emerge over 25 hr can be modeled by the data-driving method with only ∼1% error in the free magnetic energy, assuming the photospheric information is specified every 12 minutes. However, for rapidly evolving features, under-sampling of the dynamics at this cadence leads to a strobe effect, generating large electric currents and incorrect coronal morphology and energies. We derive a sampling condition for the driving cadence based on the evolution of these small-scale features, and show that higher-cadence driving can lead to acceptable errors. Future work will investigate the source of errors associated with deriving plasma variables from the photospheric magnetograms as well as other sources of errors, such as reduced resolution, instrument bias, and noise.« less

  17. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 1: Assessing the influence of constrained multi-generational ageing

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-09-01

    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data; and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the Statistical Oxidation Model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional UCD/CIT air quality model and applied to air quality episodes in California and the eastern US. The mass, composition and properties of SOA predicted using SOM are compared to SOA predictions generated by a traditional "two-product" model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA

  18. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 1: Assessing the influence of constrained multi-generational ageing

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2016-02-01

    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions

  19. Auditory evoked fields to vocalization during passive listening and active generation in adults who stutter.

    PubMed

    Beal, Deryk S; Cheyne, Douglas O; Gracco, Vincent L; Quraan, Maher A; Taylor, Margot J; De Nil, Luc F

    2010-10-01

    We used magnetoencephalography to investigate auditory evoked responses to speech vocalizations and non-speech tones in adults who do and do not stutter. Neuromagnetic field patterns were recorded as participants listened to a 1 kHz tone, playback of their own productions of the vowel /i/ and vowel-initial words, and actively generated the vowel /i/ and vowel-initial words. Activation of the auditory cortex at approximately 50 and 100 ms was observed during all tasks. A reduction in the peak amplitudes of the M50 and M100 components was observed during the active generation versus passive listening tasks dependent on the stimuli. Adults who stutter did not differ in the amount of speech-induced auditory suppression relative to fluent speakers. Adults who stutter had shorter M100 latencies for the actively generated speaking tasks in the right hemisphere relative to the left hemisphere but the fluent speakers showed similar latencies across hemispheres. During passive listening tasks, adults who stutter had longer M50 and M100 latencies than fluent speakers. The results suggest that there are timing, rather than amplitude, differences in auditory processing during speech in adults who stutter and are discussed in relation to hypotheses of auditory-motor integration breakdown in stuttering. Copyright 2010 Elsevier Inc. All rights reserved.

  20. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges,more » sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.« less