Science.gov

Sample records for active region generate

  1. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  2. Application of heat- and steam-generating sheets to the lumbar or abdominal region affects autonomic nerve activity.

    PubMed

    Nagashima, Yoshinao; Oda, Hideshi; Igaki, Michihito; Suzuki, Megumi; Suzuki, Atsushi; Yada, Yukihiro; Tsuchiya, Shuichi; Suzuki, Toshiyuki; Ohishi, Sachiko

    2006-06-30

    Effects of applying a heat- and steam-generating (HSG) sheet on peripheral hemodynamics and autonomic nerve activity were examined. An HSG sheet was applied to the lumbar or abdominal region. Measurements included skin temperature at the lumbar and abdominal regions and the fingertip, total hemoglobin, tissue oxygen saturation ratio (StO2), pupillary light reflex, changes in ECG R-R interval blood pressure and percutaneous electrogastrography (EGG). A heat-generating sheet without steam was used as the control. Based on the present findings, application of the HSG sheet to the lumbar or abdominal region may improve peripheral hemodynamics and inhibit sympathetic nerve activity, resulting in parasympathetic nerve activity dominance.

  3. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region

    SciTech Connect

    Fujita, Kazuue Hitaka, Masahiro; Ito, Akio; Edamura, Tadataka; Yamanishi, Masamichi; Jung, Seungyong; Belkin, Mikhail A.

    2015-06-22

    We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2} at room temperature.

  4. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  5. Genome-Based Identification of Active Prophage Regions by Next Generation Sequencing in Bacillus licheniformis DSM13

    PubMed Central

    Hertel, Robert; Rodríguez, David Pintor; Hollensteiner, Jacqueline; Dietrich, Sascha; Leimbach, Andreas; Hoppert, Michael; Liesegang, Heiko; Volland, Sonja

    2015-01-01

    Prophages are viruses, which have integrated their genomes into the genome of a bacterial host. The status of the prophage genome can vary from fully intact with the potential to form infective particles to a remnant state where only a few phage genes persist. Prophages have impact on the properties of their host and are therefore of great interest for genomic research and strain design. Here we present a genome- and next generation sequencing (NGS)-based approach for identification and activity evaluation of prophage regions. Seven prophage or prophage-like regions were identified in the genome of Bacillus licheniformis DSM13. Six of these regions show similarity to members of the Siphoviridae phage family. The remaining region encodes the B. licheniformis orthologue of the PBSX prophage from Bacillus subtilis. Analysis of isolated phage particles (induced by mitomycin C) from the wild-type strain and prophage deletion mutant strains revealed activity of the prophage regions BLi_Pp2 (PBSX-like), BLi_Pp3 and BLi_Pp6. In contrast to BLi_Pp2 and BLi_Pp3, neither phage DNA nor phage particles of BLi_Pp6 could be visualized. However, the ability of prophage BLi_Pp6 to generate particles could be confirmed by sequencing of particle-protected DNA mapping to prophage locus BLi_Pp6. The introduced NGS-based approach allows the investigation of prophage regions and their ability to form particles. Our results show that this approach increases the sensitivity of prophage activity analysis and can complement more conventional approaches such as transmission electron microscopy (TEM). PMID:25811873

  6. Formation of sunspots and active regions through the emergence of magnetic flux generated in a solar convective dynamo

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Rempel, Matthias D.; Fan, Yuhong

    2016-05-01

    We present a realistic numerical model of sunspot and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the near surface layer radiation MHD simulations of magneto-convection and flux emergence with the MURaM code. The latter code simulates the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere.The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of sunspots are formed through the coalescence of the small scale magnetic elements. The sunspot pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries come most probably from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted and the leading sides of the emerging flux tubes are usually up against the downdraft lanes of the giant cells. It is also found that penumbrae with numerous filamentary structures form in regions of strong horizontal magnetic fields that naturally comes from the ongoing flux emergence. In contrast to previous models, the penumbrae and umbrae are divided by very sharp boarders, which is highly consistent with observations.

  7. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    SciTech Connect

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikic, Zoran

    2012-12-10

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

  8. Active Learning Crosses Generations.

    ERIC Educational Resources Information Center

    Woodard, Diane K.

    2002-01-01

    Describes the benefits of intergenerational programs, highlighting a child care program that offers age-appropriate and mutually beneficial activities for children and elders within a nearby retirement community. The program has adopted High/Scope's active learning approach to planning and implementing activities that involve both generations. The…

  9. Wave activated generator

    SciTech Connect

    Neuenschwander, V. L.

    1985-09-03

    A wave activated generator utilizes the principle of providing relative movement between a permanent magnet and a coil to induce an electrical current in the coil. The coil is situated in a static tube anchored to the sea bed by means of a ballast tank at the base of the tube and guy wires extending from the tube. A plunger with permanent magnets is mounted in the tube for vertical reciprocation of the plunger, the plunger projecting outwardly from the upper end of the tube and terminating in a hull-shaped float which rides the water surface and provides vertical reciprocation of the plunger responsive to wave motion in order to move the magnets relative to the coil and generate current in the coil.

  10. Active region seismology

    NASA Technical Reports Server (NTRS)

    Bogdan, Tom; Braun, D. C.

    1995-01-01

    Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.

  11. Active region flows

    NASA Technical Reports Server (NTRS)

    Foukal, Peter

    1987-01-01

    A wide range of observations has shown that active region phenomena in the photospheric, chromospheric and coronal temperature regimes are dynamical in nature. At the photosphere, recent observations of full line profiles place an upper limit of about + or - 20/msec on any downflows at supergranule cell edges. Observations of the full Stokes 5 profiles in the network show no evidence for downflows in magnetic flux tubes. In the area of chromospheric dynamics, several models were put forward recently to reproduce the observed behavior of spicules. However, it is pointed out that these adiabatic models do not include the powerful radiative dissipation which tend to damp out the large amplitude disturbances that produce the spicular acceleration in the models. In the corona, loop flows along field lines clearly transport mass and energy at rates important for the dynamics of these structures. However, advances in understanding the heating and mass balance of the loop structures seem to require new kinds of observations. Some results are presented using a remote sensing diagnostic of the intensity and orientation of macroscopic plasma electric fields predicted by models of reconnective heating and also wave heating.

  12. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup.

  13. Active droplet generation in microfluidics.

    PubMed

    Chong, Zhuang Zhi; Tan, Say Hwa; Gañán-Calvo, Alfonso M; Tor, Shu Beng; Loh, Ngiap Hiang; Nguyen, Nam-Trung

    2016-01-01

    The reliable generation of micron-sized droplets is an important process for various applications in droplet-based microfluidics. The generated droplets work as a self-contained reaction platform in droplet-based lab-on-a-chip systems. With the maturity of this platform technology, sophisticated and delicate control of the droplet generation process is needed to address increasingly complex applications. This review presents the state of the art of active droplet generation concepts, which are categorized according to the nature of the induced energy. At the liquid/liquid interface, an energy imbalance leads to instability and droplet breakup. PMID:26555381

  14. Regional Activities Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures affecting…

  15. Active Region Release Two CMEs

    NASA Video Gallery

    Solar material can be seen blowing off the sun in this video captured by NASA’s Solar Dynamics Observatory (SDO) on the night of Feb. 5, 2013. This active region on the sun sent out two coronal ...

  16. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity

    PubMed Central

    Quante, Timo; Otto, Benjamin; Brázdová, Marie; Kejnovská, Iva; Deppert, Wolfgang; Tolstonog, Genrich V.

    2012-01-01

    The molecular mechanisms underlying mutant p53 (mutp53) “gain-of-function” (GOF) are still insufficiently understood, but there is evidence that mutp53 is a transcriptional regulator that is recruited by specialized transcription factors. Here we analyzed the binding sites of mutp53 and the epigenetic status of mutp53-regulated genes that had been identified by global expression profiling upon depletion of endogenous mutp53 (R273H) expression in U251 glioblastoma cells. We found that mutp53 preferentially and autonomously binds to G/C-rich DNA around transcription start sites (TSS) of many genes characterized by active chromatin marks (H3K4me3) and frequently associated with transcription-competent RNA polymerase II. Mutp53-bound regions overlap predominantly with CpG islands and are enriched in G4-motifs that are prone to form G-quadruplex structures. In line, mutp53 binds and stabilizes a well-characterized G-quadruplex structure in vitro. Hence, we assume that binding of mutp53 to G/C-rich DNA regions associated with a large set of cancer-relevant genes is an initial step in their regulation by mutp53. Using GAS1 and HTR2A as model genes, we show that mutp53 affects several parameters of active transcription. Finally, we discuss a dual mode model of mutp53 GOF, which includes both stochastic and deterministic components. PMID:22894900

  17. The Life Cycle of Active Region Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  18. SDO Sees Active Region Outbursts

    NASA Video Gallery

    This close up video by NASA’s Solar Dynamics Observatory shows an active region near the right-hand edge of the sun’s disk, which erupted with at least a dozen minor events over a 30-hour period fr...

  19. Organized Subsurface Flows near Active Regions

    NASA Astrophysics Data System (ADS)

    Haber, D. A.; Hindman, B. W.; Toomre, J.; Thompson, M. J.

    2004-04-01

    Local helioseismic techniques, such as ring analysis and time-distance helioseismology, have already shown that large-scale flows near the surface converge towards major active regions. Ring analysis has further demonstrated that at greater depths some active regions exhibit strong outflows. A critique leveled at the ring-analysis results is that the Regularized Least Squares (RLS) inversion kernels on which they are based have negative sidelobes near the surface. Such sidelobes could result in a surface inflow being misidentified as a diverging outflow at depth. In this paper we show that the Optimally Located Averages (OLA) inversion technique, which produces kernels without significant sidelobes, generates flows markedly similar to the RLS results. Active regions are universally zones of convergence near the surface, while large complexes evince strong outflows deeper down.

  20. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  1. Ab Initio Active Region Formation

    NASA Astrophysics Data System (ADS)

    Stein, Robert F.; Nordlund, A.

    2013-01-01

    The tachocline is not necessary to produce active regions with their global properties. Dynamo action within the convection zone can produce large scale reversing polarity magnetic fields as shown by ASH code and Charboneau et al simulations. Magneto-convection acting on this large scale field produces Omega-loops which emerge through the surface to produce active regions. The field first emerges as small bipoles with horizontal field over granules anchored in vertical fields in the intergranular lanes. The fields are quickly swept into the intergranular lanes and produce a mixed polarity "pepper and salt" pattern. The opposite polarities then migrate toward separate unipolar regions due to the underlying large scale loop structure. When sufficient flux concentrates, pores and sunspots form. We will show movies of magneto-convection simulations of the emerging flux, its migration, and concentration to form pores and spots, as well as the underlying magnetic field evolution. In addition, the same atmospheric data has been used as input to the LILIA Stokes Inversion code to calculate Stokes spectra for the Fe I 630 nm lines and then invert them to determine the magnetic field. Comparisons of the inverted field with the simulation field shows that small-scale, weak fields, less than 100 G, can not be accurately determined because of vertical gradients that are difficult to match in fitting the line profiles. Horizontal smoothing by telescope diffraction further degrades the inversion accuracy.

  2. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  3. What makes active regions grow.

    NASA Technical Reports Server (NTRS)

    Weart, S.

    1972-01-01

    A study of magnetic flux growth or growth failure in over 100 active regions is shown to indicate that most growth is connected with the emergence of a large batch of flux in the shape of a new arch filament system (AFS). During the recent sunspot maximum, new AFSs appeared at a rate of nearly one per day over the entire sun. Evidence is presented for two proposed hypotheses, namely: (1) a twist in the flux tubes of new AFSs is a key factor in determining which new AFSs will grow; and (2) this twist is related to the well-known asymmetry of sunspot groups.

  4. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  5. Evolution of active region outflows throughout an active region lifetime

    NASA Astrophysics Data System (ADS)

    Zangrilli, L.; Poletto, G.

    2016-10-01

    Context. We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Aims: Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Methods: Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R⊙, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H i Lyα line and the O vi doublet lines at 1031.9 and 1037.6 Å. Results: Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two types of outflows at different latitudes, both possibly originating in the same negative polarity area of the AR. We also analyzed the behavior of the Si xii 520 Å line along the UVCS slit in an attempt to reveal changes in the Si abundance when different regions are traversed. Although we found some evidence for a Si enrichment in the AR outflows, alternative interpretations are also plausible. Conclusions: Our results demonstrate that outflows from ARs are detectable in the intermediate corona throughout the whole AR lifetime. This confirms that outflows contribute to the slow wind.

  6. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  7. CME Productivity of Active Regions.

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, Y.; Wang, J.; Shen, C.; Ye, P.; Zhang, Q.; Liu, R.; Wang, S.

    2015-12-01

    Solar active regions (ARs) are the major sources of two kinds of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). Although they are believed to be two phenomena in the same eruptive process, the productivity of them could be quiet different for various ARs. Why is an AR productive? And why is a flare-rich AR CME-poor? To answer these questions, we compared the recent super flare-rich but CME-poor AR 12192, with other four ARs; two were productive in both flares and CMEs and the other two were inert to produce any M-class or intenser flares or CMEs. By investigating the photospheric parameters based on the SDO/HMI vector magnetogram, we find the three productive ARs have larger magnetic flux, current and free magnetic energy than the inert ARs. Furthermore, the two ARs productive in both flares and CMEs contain higher current helicity, concentrating along both sides of the flaring neutral lines, indicating the presence of a seed magnetic structure( that is highly sheared or twisted) of a CME; they also have higher decay index in the low corona, showing weak constraint. The results suggest that productive ARs are always large and have strong current system and sufficient free energy to power flares, and more importantly whether or not a flare is accompanied by a CME is seemingly related to (1) if there is significant sheared or twisted core field serving as the seed of the CME and (2) if the constraint of the overlying arcades is weak enough. Moreover, some productive ARs may frequently produce more than one CME. How does this happen? We do a statistical investigation of waiting times of quasi-homologous CMEs ( CME ssuccessive originating from the same ARs within short intervals) from super ARs in solar cycle 23 to answer this question. The waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hours, the first component peaks at 7 hours. The correlation analysis among CME waiting times

  8. Renewable Generation Effect on Net Regional Energy Interchange: Preprint

    SciTech Connect

    Diakov, Victor; Brinkman, Gregory; Denholm, Paul; Jenkin, Thomas; Margolis, Robert

    2015-07-30

    Using production-cost model (PLEXOS), we simulate the Western Interchange (WECC) at several levels of the yearly renewable energy (RE) generation, between 13% and 40% of the total load for the year. We look at the overall energy exchange between a region and the rest of the system (net interchange, NI), and find it useful to examine separately (i) (time-)variable and (ii) year-average components of the NI. Both contribute to inter-regional energy exchange, and are affected by wind and PV generation in the system. We find that net load variability (in relatively large portions of WECC) is the leading factor affecting the variable component of inter-regional energy exchange, and the effect is quantifiable: higher regional net load correlation with the rest of the WECC lowers net interchange variability. Further, as the power mix significantly varies between WECC regions, effects of ‘flexibility import’ (regions ‘borrow’ ramping capability) are also observed.

  9. Generation and Suppression of E Region Artificial Field Aligned Irregularities

    NASA Astrophysics Data System (ADS)

    Miceli, R. J.; Hysell, D. L.; Munk, J.; Han, S.

    2012-12-01

    Artificial field-aligned plasma density irregularities (FAIs) were generated in the E region of the ionosphere above the High Frequency Active Auroral Research Program (HAARP) facility during campaigns in May and August of 2012 and were quantified using a 30 MHz coherent scatter radar in Homer, Alaska. The purpose of the experiment was to analyze the X-mode suppression of FAIs generated from O-mode heating and to measure the threshold required to excite thermal parametric instabilities. The irregularities were excited by gradually increasing the power of a zenith pointing O-mode emission transmitted at a frequency of 2.75 MHz. To suppress the irregularities, a second X-mode emission at a higher frequency was added on alternating power cycles. The Homer radar measured the signal-to-noise ratio, Doppler shift, and spectral width of echoes reflected from the irregularities. We will calculate the threshold electric field required to excite the irregularities and compare with similar experiments in order to better understand the thermal parametric instability.

  10. Regional projections of nuclear and fossil electric power generation costs

    SciTech Connect

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors.

  11. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  12. Student Activities Can Generate Positive PR.

    ERIC Educational Resources Information Center

    Armistead, Lew

    1985-01-01

    To counter negative news about education it is important to make sure that positive school activities receive their fair share of exposure in the news media. Presents tips on how to generate positive public relations. Includes a list of newsworthy activities ideas. (MD)

  13. A Case of Filament - Active Region Interaction

    NASA Astrophysics Data System (ADS)

    Dumitrache, C.; Dumitru, L.

    2010-09-01

    We analyze a huge filament observed between 5 and 19 September 2001. In its evolution it is linked to the active region 9612, observed between 7 and 16 September 2001. The filament has a strange morphology and dynamics: starting as two parallel components (A and B), it becomes a double sigmoid filament when a third component (C ) appears linking the other two. An unusual magnetic topology characterizes this evolution: the active region is located between the parallel components. When the third component becomes observable, it links these ones first below the active region. After a spectacular plasma movement registered in filament (A), this one becomes linked to (B) above the active region. In spite of these dramatically changes of the magnetic topology and filament -- active region switch, no CME is observed. Only a few flares occurring in AR9612 are registered and these ones can be seen in the dynamics of the filament as an expression of large scale magnetic reconnections.

  14. Software Displays Data on Active Regions of the Sun

    NASA Technical Reports Server (NTRS)

    Golightly, Mike; Weyland, Mark; Raben, Vern

    2011-01-01

    The Solar Active Region Display System is a computer program that generates, in near real time, a graphical display of parameters indicative of the spatial and temporal variations of activity on the Sun. These parameters include histories and distributions of solar flares, active region growth, coronal mass ejections, size, and magnetic configuration. By presenting solar-activity data in graphical form, this program accelerates, facilitates, and partly automates what had previously been a time-consuming mental process of interpretation of solar-activity data presented in tabular and textual formats. Intended for original use in predicting space weather in order to minimize the exposure of astronauts to ionizing radiation, the program might also be useful on Earth for predicting solar-wind-induced ionospheric effects, electric currents, and potentials that could affect radio-communication systems, navigation systems, pipelines, and long electric-power lines. Raw data for the display are obtained automatically from the Space Environment Center (SEC) of the National Oceanic and Atmospheric Administration (NOAA). Other data must be obtained from the NOAA SEC by verbal communication and entered manually. The Solar Active Region Display System automatically accounts for the latitude dependence of the rate of rotation of the Sun, by use of a mathematical model that is corrected with NOAA SEC active-region position data once every 24 hours. The display includes the date, time, and an image of the Sun in H light overlaid with latitude and longitude coordinate lines, dots that mark locations of active regions identified by NOAA, identifying numbers assigned by NOAA to such regions, and solar-region visual summary (SRVS) indicators associated with some of the active regions. Each SRVS indicator is a small pie chart containing five equal sectors, each of which is color-coded to provide a semiquantitative indication of the degree of hazard posed by one aspect of the activity at

  15. Activity cliffs and activity cliff generators based on chemotype-related activity landscapes.

    PubMed

    Pérez-Villanueva, Jaime; Méndez-Lucio, Oscar; Soria-Arteche, Olivia; Medina-Franco, José L

    2015-11-01

    Activity cliffs have large impact in drug discovery; therefore, their detection and quantification are of major importance. This work introduces the metric activity cliff enrichment factor and expands the previously reported activity cliff generator concept by adding chemotype information to representations of the activity landscape. To exemplify these concepts, three molecular databases with multiple biological activities were characterized. Compounds in each database were grouped into chemotype classes. Then, pairwise comparisons of structure similarities and activity differences were calculated for each compound and used to construct chemotype-based structure-activity similarity (SAS) maps. Different landscape distributions among four major regions of the SAS maps were observed for different subsets of molecules grouped in chemotypes. Based on this observation, the activity cliff enrichment factor was calculated to numerically detect chemotypes enriched in activity cliffs. Several chemotype classes were detected having major proportion of activity cliffs than the entire database. In addition, some chemotype classes comprising compounds with smooth structure activity relationships (SAR) were detected. Finally, the activity cliff generator concept was applied to compounds grouped in chemotypes to extract valuable SAR information.

  16. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  17. Suppression of Active-Region CME Production by the Presence of Other Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor

    2009-01-01

    From the SOHO mission s data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region s total magnetic flux), and (2) a gauge of the active region s free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region s expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region s flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

  18. Active Region Emergence and Remote Flares

    NASA Astrophysics Data System (ADS)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  19. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  20. DTM generation in forest regions from satellite stereo imagery

    NASA Astrophysics Data System (ADS)

    Tian, J.; Krauss, T.; Reinartz, P.

    2014-11-01

    Satellite stereo imagery is becoming a popular data source for derivation of height information. Many new Digital Surface Model (DSM) generation and evaluation methods have been proposed based on these data. A novel Digital Terrain Model (DTM) extraction method based on the DSM from satellite stereo imagery is proposed in this paper. Instead of directly filtering the DSM, firstly a single channel based classification method is proposed. In this step, no multi-spectral information is used, because for some stereo sensors, like Cartosat-1, only panchromatic channels are available. The proposed classification method adopts the random forests method to get initial probability maps of the four main classes in forest regions (high-forest, low-forest, ground, and buildings). To cover the pepper and salt effect of this pixel based classification method, the probability maps are further filtered based on the adaptive Wiener filtering. Then a cube-based greedy strategy is applied in generating the final classification map from these refined probability maps. Secondly, the height distances between neighboring regions are calculated along the boundary regions. These height distances can be used to estimate the relative region heights. Thirdly, the DTM is extracted by subtracting these relative region heights from the DSM in the order of: buildings - low forest - high forest. In the end, the extracted DTM is further smoothed using median filter. The proposed DTM extraction method is finally tested on satellite stereo imagery captured by Cartosat-1. Quality evaluation is performed by comparing the extracted DTMs to a reference DTM, which is generated from the last return airborne laser scanning point cloud.

  1. On the Spectrum and Generation Regions of Solar Microbursts in the Decimeter Wave Band

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Gofman, A. A.; Stupishin, A. G.

    2016-08-01

    We analyze the nature and physical conditions in the generation regions of decimeter microbursts (MBs), which were discovered with the radiotelescope of the Russian Academy of Sciences (RATAN-600). One of the main peculiarities of MBs is an almost constant upper-frequency limit of about 1.1 GHz, which has not been explained in previously studied generation models. Here it is shown that this spectral peculiarity can be explained by the generation of the upper-hybrid waves at the double plasma resonance (DPR) and a subsequent transformation into low-frequency plasma waves considering free-free and cyclotron absorption. Model calculations show that MBs occur in the active regions where the magnetic-field strength is close to 100 G. MBs are most probably generated in the transition region of the solar atmosphere between main magnetic fields with opposite polarities.

  2. Generativity as a Route to Active Ageing

    PubMed Central

    Kruse, Andreas; Schmitt, Eric

    2012-01-01

    We elucidate the significance of active ageing from an individual as well as from a societal perspective. Taking an individual perspective, maintaining activity in later years is linked to successful ageing because of empirical relationships to positive self-perception, satisfaction with life, and development of competences, whereas from a societal perspective, active ageing implies usage of older people's life competences as a human capital of society—a societal imperative, particularly in times of demographic change but also more basically substantiated in an ethics of responsibility, intergenerational solidarity, and generation equity. We focus on the psychological construct of generativity which is interpreted as an aspect of the philosophical-anthropological category of joint responsibility. Our own research in Mexico and the Baltic States supports the notion that maintaining access to the public sphere and active engagement for others is a more basic individual concern than a life-stages specific developmental task. We report background and results of a Dialogue Forum Project Funding, a research cooperation between our institute and the Foundation Remembrance, Responsibility, and Future aimed to improve generativity in Belarus, Russia, and Ukraine by implementing and supporting local initiatives offering opportunities for intergenerational dialogue. PMID:22919378

  3. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-07-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  4. IS ACTIVE REGION CORE VARIABILITY AGE DEPENDENT?

    SciTech Connect

    Ugarte-Urra, Ignacio; Warren, Harry P.

    2012-12-10

    The presence of both steady and transient loops in active region cores has been reported from soft X-ray and extreme-ultraviolet observations of the solar corona. The relationship between the different loop populations, however, remains an open question. We present an investigation of the short-term variability of loops in the core of two active regions in the context of their long-term evolution. We take advantage of the nearly full Sun observations of STEREO and Solar Dynamics Observatory spacecraft to track these active regions as they rotate around the Sun multiple times. We then diagnose the variability of the active region cores at several instances of their lifetime using EIS/Hinode spectral capabilities. We inspect a broad range of temperatures, including for the first time spatially and temporally resolved images of Ca XIV and Ca XV lines. We find that the active region cores become fainter and steadier with time. The significant emission measure at high temperatures that is not correlated with a comparable increase at low temperatures suggests that high-frequency heating is viable. The presence, however, during the early stages, of an enhanced emission measure in the ''hot'' (3.0-4.5 MK) and ''cool'' (0.6-0.9 MK) components suggests that low-frequency heating also plays a significant role. Our results explain why there have been recent studies supporting both heating scenarios.

  5. Generation of Chorus Wave Emissions in the Source Region

    NASA Astrophysics Data System (ADS)

    Schriver, D.; Ashour-Abdalla, M.; Leboeuf, J.; Winningham, J. D.; Pickett, J. S.; Santolik, O.; Goldstein, M. L.

    2006-12-01

    Chorus waves with frequencies below the electron gyrofrequency (fce) are observed in the inner radiation belt and may play a role in the acceleration of electrons. To understand how these waves are generated and what their effects are on electrons, a study has been carried out using Cluster satellite observations and numerical simulations. The WBD, STAFF, and Whisper instruments onboard Cluster have made observations of chorus waves within the source region in the near-Earth magnetosphere and the PEACE electron instrument has shown the presence of multiple electron species of different temperature from cold (10's eV), to warm (100's eV) to hot (> keV). The warm species is highly anisotropic with perpendicular temperature as much as 10 times the parallel temperature. Using the electron observations made in the generation region, a linear theory and simulation study has been undertaken. Linear theory shows that the observed electron species are unstable to whistler waves at frequencies in the range 0.7-0.8 fce. To understand how the instability saturates and the ensuing wave-particle interactions, an electromagnetic particle in cell simulation study has been carried out using observed parameters. The effects the chorus waves have on electrons and the implications for the radiation belt region will be discussed.

  6. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  7. THz quantum cascade lasers with wafer bonded active regions.

    PubMed

    Brandstetter, M; Deutsch, C; Benz, A; Cole, G D; Detz, H; Andrews, A M; Schrenk, W; Strasser, G; Unterrainer, K

    2012-10-01

    We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.

  8. ON THE FORMATION OF ACTIVE REGIONS

    SciTech Connect

    Stein, Robert F.; Nordlund, Ake E-mail: aake@nbi.dk

    2012-07-01

    Magnetoconvection can produce an active region without an initial coherent flux tube. A simulation was performed where a uniform, untwisted, horizontal magnetic field of 1 kG strength was advected into the bottom of a computational domain 48 Mm wide by 20 Mm deep. The up and down convective motions produce a hierarchy of magnetic loops with a wide range of scales, with smaller loops riding 'piggy-back' in a serpentine fashion on larger loops. When a large loop approaches the surface, it produces a small active region with a compact leading spot and more diffuse following spots.

  9. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-04-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. Using NSO Kitt Peak synoptic magnetograms, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed lagging-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with lagging-polarity flux located poleward of leading-polarity flux. This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  10. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  11. Swim Pressure: Stress Generation in Active Matter

    NASA Astrophysics Data System (ADS)

    Takatori, S. C.; Yan, W.; Brady, J. F.

    2014-07-01

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries—this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  12. Swim pressure: stress generation in active matter.

    PubMed

    Takatori, S C; Yan, W; Brady, J F

    2014-07-11

    We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries-this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.

  13. Asia Section. Regional Activities Division. Paper.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Two papers on library and information activities in developing nations, particularly in India and other Asian countries, were presented at the 1983 International Federation of Library Associations (IFLA) conference. In "IFLA in Asia: A Review of the Work of the Regional Section for Asia," Edward Lim Huck Tee (Malaysia) describes the low level of…

  14. Active Ageing: Intergenerational Relationships and Social Generativity.

    PubMed

    Rossi, Giovanna; Boccacin, Lucia; Bramanti, Donatella; Meda, Stefania G

    2014-01-01

    This contribution is a reflection on the concept of active ageing from the perspective of relational sociology. At the same time, it offers practical implications and outlines possible future courses of action, in the face of demographic and relational scenarios rapidly changing, and the challenges that each day people of all generations are called to cope with. Active ageing is quite a recent concept and indicates an attitude towards ageing that enhances the quality of life as people become older. The goal of active ageing is to enable people to realise their potential for physical, social and mental well-being and to participate in social life also in the last stage of the life cycle. In this phase, the presence of a network of support, security and care adequate to the possible onset of problems and criticalities is crucial. Relational sociology frames the phenomenon of an ageing population in a dense network of social relations, primarily at the level of family and community. For this reason, as supported by the most recent sociological literature and evidence from studies conducted in Italy and abroad (cf. SHARE), it is extremely important to investigate the link between active ageing, intergenerational orientation (solidarity and exchanges) and practices of prosociality (i.e. engagement in third-sector activities and volunteering in later life).

  15. TRACE Observations of Active Region Births

    NASA Astrophysics Data System (ADS)

    Wolfson, C. J.; Shine, R. A.

    2000-05-01

    TRACE has recorded the births of a few bona-fide active regions, as well as many ephemeral regions and so-called X-ray bright points. The observations have usually been made serendipitously while studying a nearby, well formed active region. However, a couple of events have been recorded when deliberately looking for emerging flux in quiet portions of an active region belt. This poster will discuss some of the best observations to date, where the quality ranking of the observation is closely coupled to the observing mode TRACE was in and the availability of high resolution (temporal and/or spatial) MDI magnetograms. Included will be the birth of NOAA AR#8699 on 11 September 1999 at about 14 UT (N22E34), AR#8637 on 17 July 1999 at about 4 UT (N11W1), and AR#8885 on 21 February 2000 at about 6 UT (N11W7); these specifics being provided to encourage coordination with other observations. The temporal relationships between the first appearances of magnetic bipoles, EUV loops, chromospheric plage, pores, and sunspots will be discussed as will the growth rate and spatial relationships of these different features and any associated photospheric flows.

  16. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  17. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  18. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  19. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  20. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  1. Supergranule Diffusion and Active Region Decay

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2004-01-01

    Models of the Sun's magnetic dynamo include turbulent diffusion to parameterize the effects of convective motions on the evolution of the Sun's magnetic field. Supergranules are known to dominate the evolution of the surface magnetic field structure as evidenced by the structure of both the active and quiet magnetic network. However, estimates for the dif hivity attributed to su perymules differ by an order of magnitude from about 100 km sup2/s to more than 1000 km sup2/s. We examine this question of the e i v i t y using three merent approaches. 1) We study the decay of more than 30,000 active regions by determining the rate of change in the sunspot area of each active region from day-to-day. 2) We study the decay of a single isolated active region near the time of solar minimum by examining the magnetic field evolution over five solar rotations fiom SOHOMDI magnetograms obtained at 96-minute intervals. 3) We study the characteristics of supergranules that influence the estimates of their diffusive properties - flow speeds and lifetimes as functions of size - fiom SOHO/MDI Dopplergrams.

  2. Active region evolution in the chromosphere and transtition region

    NASA Technical Reports Server (NTRS)

    Shine, R. A.; Schrijver, C. J.

    1988-01-01

    Images in the C IV 1548 A and the Si II 1526 S lines taken with the ultraviolet spectrometer polarimeter (UVSP) instrument on board the Solar Maximum Mission (SMM) satellite were combined into movies showing the evolution of active regions and the neighboring supergranulation over several days. The data sets generally consist of 240 by 240 arc second rasters with 3 arc second pixels taken one per orbit (about every 90 minutes). The images are projected on a latitude/longitude grid to remove the forshortening as the region rotates across the solar disk and further processed to remove jitter and gain variations. Movies were made with and without differential rotation. Although there are occasional missing orbits, these series do not suffer from the long nighttime gaps that occur in observations taken at a single groundbased observatory and are excellent for studying changes on time scales of several hours. The longest sequence processed to date runs from 20 Oct. 1980 to 25 Oct. 1980. This was taken during an SMM flare buildup study on AR 2744. Several shorter sequences taken in 1980 and 1984 will also be shown. The results will be presented on a video disk which can be interactively controlled to view the movies.

  3. Mental arithmetic activates analogic representations of internally generated sums.

    PubMed

    Kallai, Arava Y; Schunn, Christian D; Fiez, Julie A

    2012-08-01

    The internal representation of numbers generated during calculation has received little attention. Much of the mathematics learning literature focuses on symbolic retrieval of math facts; in contrast, we critically test the hypothesis that internally generated numbers are represented analogically, using an approximate number system. In an fMRI study, the spontaneous processing of arithmetical expressions was tested. Participants passively viewed a sequence of double-digit addition expressions that summed to the same number. Adaptation was found in number-related regions in a fronto-parietal network. Following adaptation, arrays of dots were introduced, differing in their numerical distance from the sum of the addition expressions. Activation in voxels that showed adaptation to a repeated sum was also sensitive to the distance of the dot quantity from the sum. We conclude that participants exhibited adaptation to an internally generated number, that adapted representations were analogic in nature, and that these analogic representations may undergird arithmetic calculation. PMID:22732492

  4. Solar luminosity fluctuations and active region photometry

    SciTech Connect

    Chapman, G.A.; Herzog, A.D.; Lawrence, J.K.; Shelton, J.C.

    1984-07-15

    We present monochromatic observations, obtained with a 512 element diode array, of the irradiance fluctuations of the sunspots and faculae of an active region during its disk transit in 1982 August. Bolometric and stray light corrections are approximately equal in magnitude but opposite in sign, so they have not been applied. The maximum sunspot fluctuation, as a fraction of the quiet-Sun irradiance, is -800 parts per million (ppm). Faculae have a maximum irradiance fluctuation of about +200 ppm near the limbs. We find that the facular energy excess is more than 50% of the sunspot energy deficit, which is -5.8 x 10/sup 35/ ergs. These observations show that faculae are an important element in active region energy balance.

  5. Colony Rheology: Active Arthropods Generate Flows

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Mann, Michael; Charbonneau, Patrick

    2015-03-01

    Hydrodynamic-like flows are observed in biological systems as varied as bacteria, insects, birds, fish, and mammals. Both the phenomenology (e.g. front instabilities, milling motions) and the interaction types (hydrodynamic, direct contact, psychological, excluded-volume) strongly vary between systems, but a question common to all of them is to understand the role of particle-scale fluctuations in controlling large-scale rheological behaviors. We will address these questions through experiments on a new system, Tyrolichus casei (cheese mites), which live in dense, self-mixing colonies composed of a mixture of living mites and inert flour/detritus. In experiments performed in a Hele-Shaw geometry, we observe that the rheology of a colony is strongly dependent on the relative concentration of active and inactive particles. In addition to spreading flows, we also observe that the system can generate convective circulation and auto-compaction.

  6. Generating passive NIR images from active LIDAR

    NASA Astrophysics Data System (ADS)

    Hagstrom, Shea; Broadwater, Joshua

    2016-05-01

    Many modern LIDAR platforms contain an integrated RGB camera for capturing contextual imagery. However, these RGB cameras do not collect a near-infrared (NIR) color channel, omitting information useful for many analytical purposes. This raises the question of whether LIDAR data, collected in the NIR, can be used as a substitute for an actual NIR image in this situation. Generating a LIDAR-based NIR image is potentially useful in situations where another source of NIR, such as satellite imagery, is not available. LIDAR is an active sensing system that operates very differently from a passive system, and thus requires additional processing and calibration to approximate the output of a passive instrument. We examine methods of approximating passive NIR images from LIDAR for real-world datasets, and assess differences with true NIR images.

  7. Axial Tilt Angles of Active Regions

    NASA Astrophysics Data System (ADS)

    Howard, Robert F.

    1996-12-01

    Separate Mount Wilson plage and sunspot group data sets are analyzed in this review to illustrate several interesting aspects of active region axial tilt angles. (1) The distribution of tilt angles differs between plages and sunspot groups in the sense that plages have slightly higher tilt angles, on average, than do spot groups. (2) The distributions of average plage total magnetic flux, or sunspot group area, with tilt angle show a consistent effect: those groups with tilt angles nearest the average values are larger (or have a greater total flux) on average than those farther from the average values. Moreover, the average tilt angles on which these size or flux distributions are centered differ for the two types of objects, and represent closely the actual different average tilt angles for these two features. (3) The polarity separation distances of plages and sunspot groups show a clear relationship to average tilt angles. In the case of each feature, smaller polarity separations are correlated with smaller tilt angles. (4) The dynamics of regions also show a clear relationship with region tilt angles. The spot groups with tilt angles nearest the average value (or perhaps 0-deg tilt angle) have on average a faster rotation rate than those groups with extreme tilt angles. All of these tilt-angle characteristics may be assumed to be related to the physical forces that affect the magnetic flux loop that forms the region. These aspects are discussed in this brief review within the context of our current view of the formation of active region magnetic flux at the solar surface.

  8. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  9. Transient Thermoelectric Generator: An Active Load Story

    NASA Astrophysics Data System (ADS)

    Stockholm, J. G.; Goupil, C.; Maussion, P.; Ouerdane, H.

    2015-06-01

    Under stationary conditions, the optimization of maximum power output and efficiency of thermoelectric generators (TEG) is a well-known subject. Use of a finite-time thermodynamics (FTT) approach to the description of TEGs has demonstrated that there exists a closed feedback effect between the output electrical load value and the entering heat current. From the practical point of view, this effect is strongly evidenced by the use of direct current (DC-to-DC) converters as active loads. Both transient conditions and FTT contribute to a complex landscape of the optimization of the power and efficiencies of a TEG. It has been claimed that the use of inductive load may lead to a strong enhancement of the efficiency, and the frequency response of a TEG as a band-pass filter has also been recently reported. We consider these results using a classical linear Onsager approach of a TEG operating under transient conditions. We show that a trans-admittance may be defined as a coupling element between the input and the output, leading to the observed electric-to-thermal feedback. We discuss recent experiments on a TEG connected to an active load, which is reported to boast an efficiency exceeding the usual stationary DC thermoelectric efficiency.

  10. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102

  11. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  12. Observations of an active region filament

    NASA Astrophysics Data System (ADS)

    Zong, W. G.; Tang, Y. H.; Fang, C.; Xu, A. A.

    An active region filament was well observed on September 4, 2002 with THEMIS at the Teide observatory and SOHO/MDI. The full Stokes parameters of the filament were obtained in Hα and FeI 6302 Å lines. Using the data, we have studied the fine structure of the filament and obtained the parameters at the barb endpoints, including intensity, velocity and longitudinal magnetic field. Our results indicate: (a) the Doppler velocities are quiet different at barb endpoints; (b) the longitudinal magnetic fields at the barb endpoints are very weak; (c) there is a strong magnetic field structure under the filament spine.

  13. Pederson Current Dissipation In Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, M. G.

    2011-05-01

    Pederson current dissipation in emerging active regions. Certain regions of the solar atmosphere, such as the photosphere and chromosphere, as well as prominences, contain a significant amount of neutral atoms, and a complete description of the plasma requires including the effects of partial ionization. In the chromosphere the dissipation of Pederson currents is important for the evolution of emerging magnetic fields. Due to the relatively high number density in the chromosphere, the ion-neutral collision time-scale is much smaller than timescales associated with flux emergence. Hence we use a single-fluid approach to model the partially ionized plasma. Looking at both the emergence of large-scale sub-surface structures, and the emergence and reconnection of undulatory fields, we investigate the effect of Pederson current dissipation on the state of the emerging field, on magnetic reconnection and on dissipative heating of the atmosphere. Specifically we examine the effect of motions across fieldlines in the partially ionized regions, and how this can increase the free energy supplied to the corona by flux emergence. We also look at reconnection associated with flux emergence in the partially ionized atmosphere, and how this can account for observed small-scale brightenings (Ellerman Bombs).

  14. Direct charge radioisotope activation and power generation

    DOEpatents

    Lal, Amit; Li, Hui; Blanchard, James P.; Henderson, Douglass L.

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  15. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  16. FIP bias in a sigmoidal active region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, Lidia; Green, L. M.; Steed, K.; Carlyle, J.

    2014-01-01

    We investigate first ionization potential (FIP) bias levels in an anemone active region (AR) - coronal hole (CH) complex using an abundance map derived from Hinode/EIS spectra. The detailed, spatially resolved abundance map has a large field of view covering 359'' × 485''. Plasma with high FIP bias, or coronal abundances, is concentrated at the footpoints of the AR loops whereas the surrounding CH has a low FIP bias, ~1, i.e. photospheric abundances. A channel of low FIP bias is located along the AR's main polarity inversion line containing a filament where ongoing flux cancellation is observed, indicating a bald patch magnetic topology characteristic of a sigmoid/flux rope configuration.

  17. Three dimensional structures of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1986-01-01

    Three dimensional structure of an active region is determined from observations with the Very Large Array (VLA) at 2, 6, and 20 cm. This region exhibits a single magnetic loop of length approx. 10 to the 10th power cm. The 2 cm radiation is mostly thermal bremsstrahlung and originates from the footpoints of the loop. The 6 and 20 cm radiation is dominated by the low harmonic gyroresonance radiation and originates from the upper portion of the legs or the top of the loop. The loop broadens toward the apex. The top of the loop is not found to be the hottest point, but two temperature maxima on either side of the loop apex are observed, which is consistent with the model proposed for long loops. From 2 and 6 cm observations it can be concluded that the electron density and temperature cannot be uniform in a plane perpendicular to the axis of the loop; the density should decrease away from the axis of the loop.

  18. Multiple Wavelength Observations of Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.

    The radio emission of quiescent active regions at 6 cm wavelength marks the legs of magnetic dipoles, and the emission at 20 cm wavelength delineates the radio wavelength counterpart of the coronal loops previously detected at X-ray wavelengths. At both wavelengths the temperatures have coronal values of a few million degrees. The polarization of the radio emission specifies the structure and strength of the coronal magnetic field (H ≈ 600 Gauss at heights h ≈ 4 x 109 cm above sunspot umbrae). At 6 cm and 20 cm wavelength the solar bursts have angular sizes between 5" and 30", brightness temperatures between 2 x 107 K and 2 x 108 K, and degrees of circular polarization between 10% and 90%. The location of the burst energy release is specified with second-of-arc accuracy. At radio wavelengths the bursts occur within the central regions of magnetic loops, while the flaring Ha kernels are located at the loop footpoints. Coronal loops exhibit enhanced radio emission (preburst heating) a few minutes before the release of burst energy. The radio polarization data indicate magnetic changes before and during solar bursts.

  19. A new generation of regional climate simulations for Europe: The EURO-CORDEX Initiative

    NASA Astrophysics Data System (ADS)

    Gobiet, A.; Jacob, D.; Euro-Cordex Community

    2012-04-01

    The Coordinated Regional Downscaling Experiment (CORDEX) aims to provide an internationally coordinated framework within which various regional climate downscaling (RCD) methodologies can be compared, improved, standardized and, where possible, best-practices recommended. The specific aims of CORDEX are to provide a framework to coordinate model evaluation and improvement, produce a new generation of RCD projections for land-regions worldwide based on new CMIP5 GCM projections, to foster the dialogue between the RCD communities and the impact, adaptation and vulnerability communities, and to engage developing nation scientists in the generation, evaluation and use of CORDEX data. Within this framework, regional initiatives are formed. In Europe, regional climate downscaling can build on wide experience from previous RCD projects like STARDEX, PRUDENCE, and ENSEMBLES. An ensemble of rather high resolution regional climate simulations (25 km x 25 km grid) is already available. This led to the decision that EURO-CORDEX focuses, other than other regions, on simulations at very high resolution (about 12 km x 12 km grid). In its first phase, EURO-CORDEX focuses on the evaluation of the high resolution simulations and on the construction of a simulation matrix that covers both the uncertainty induced by the driving global climate models and the uncertainty induced by the RCD methods in the best affordable manner. Further future activities include the analysis future climate simulations, the joint analysis of dynamical and empirical-statistical methods, and the design and application of suitable bias correction techniques to provide EURO-CORDEX results that are directly applicable in climate change impact research. This presentation will give an overview of the current status and activities of the EURO-CORDEX community.

  20. A Tale of Two Super-Active Active Regions: On the Magnetic Origin of Flares and CMEs

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dhakal, Suman; Chintzoglou, Georgios

    2015-04-01

    From a comparative study of two super-active active regions, we find that the magnetic origin of CMEs is different from that of flares. NOAA AR 12192 is one of the largest active regions in the recorded history with a sunspot number of 66 and area of 2410 millonths. During its passage through the front disk from Oct. 14-30, 2014, the active region produced 93 C-class, 30 M-class and 6 X-class flares. However, all six X-class flares are confined; in other words, none of them are associated with CMEs; most other flares are also confined. This behavior of low-CME production rate for such as a super active region is rather peculiar, given the usual hand-on-hand occurrence of CMEs with flares. To further strengthen this point, we also investigated the super-active NOAA AR 11429, which had a sunspot number of 28 and area of 1270 millionths. During its passage from March 02-17, 2012, the active region produced 47 C-class, 15 M-class and 3 X-class flares. In this active region, all three X-class flares were accompanied by CMEs, and the same for most M-class flares. Given the relative sizes of the two active regions, the production rates of flares are comparable. But the CME production rates are not. Through a careful study of the magnetic configuration on the surface and the extrapolated magnetic field in the corona, we argue that the generation of flares largely depends on the amount of free energy in the active region. On the other hand, the generation of CMEs largely depends on the complexity, such as measured by magnetic helicity. In particular, we argue that the high CME generation rate in the smaller active region is caused by the emergence and continuous generation of magnetic flux ropes in the region.

  1. Simulation of Ectopic Pacemakers in the Heart: Multiple Ectopic Beats Generated by Reentry inside Fibrotic Regions

    PubMed Central

    Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Lobosco, Marcelo; Alonso, Sergio

    2015-01-01

    The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127

  2. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  3. Estimating evaporative vapor generation from automobiles based on parking activities.

    PubMed

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S

    2015-07-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade-Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5-8% less than calculation without considering parking activity.

  4. Fluidic Active Transducer for Electricity Generation.

    PubMed

    Yang, YoungJun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang

    2015-01-01

    Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug.

  5. Fluidic Active Transducer for Electricity Generation

    PubMed Central

    Yang, YoungJun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang

    2015-01-01

    Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug. PMID:26511626

  6. Fluidic Active Transducer for Electricity Generation.

    PubMed

    Yang, YoungJun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang

    2015-01-01

    Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug. PMID:26511626

  7. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  8. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  9. Next Generation Active Buffet Suppression System

    NASA Technical Reports Server (NTRS)

    Galea, Stephen C.; Ryall, Thomas G.; Henderson, Douglas A.; Moses, Robert W.; White, Edward V.; Zimcik, David G.

    2003-01-01

    Buffeting is an aeroelastic phenomenon that is common to high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. This paper describes an international collaborative research activity among Australia, Canada and the United States involving the use of active structural control to alleviate the damaging structural response to these loads. The research program is being co-ordinated by the Air Force Research Laboratory (AFRL) and is being conducted under the auspices of The Technical Cooperative Program (TTCP). This truly unique collaborative program has been developed to enable each participating country to contribute resources toward a program that coalesces a broad range of technical knowledge and expertise into a single investigation. This collaborative program is directed toward a full-scale test of an F/A-18 empennage, which is an extension of an earlier initial test. The current program aims at applying advanced directional piezoactuators, the aircraft rudder, switch mode amplifiers and advanced control strategies on a full-scale structure to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration.

  10. Growth of Disturbances in a Flame-Generated Shear Region

    NASA Technical Reports Server (NTRS)

    Blackshear, Perry L , Jr

    1958-01-01

    Results are presented of an experimental and theoretical investigation of the growth of transverse velocity disturbances in the shear region caused by a flame in a duct. In the theoretical stability analysis, a flow field arising from a flame in a duct was analyzed. The flow was neutrally stable to symmetric disturbances and unstable to antisymmetric ones. In the experimental part of the program disturbances of various frequencies were imposed on a flame stabilized in a duct, and the effects were measured by shadow photography and photomultiplier-probe surveys.

  11. Attainable region analysis for continuous production of second generation bioethanol

    PubMed Central

    2013-01-01

    Background Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. Results We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. Conclusions In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum

  12. NMDA receptor antagonist-enhanced high frequency oscillations: are they generated broadly or regionally specific?

    PubMed

    Olszewski, Maciej; Dolowa, Wioleta; Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark J

    2013-12-01

    Systemic administration of NMDA receptor antagonists, used to model schizophrenia, increase the power of high-frequency oscillations (130-180Hz, HFO) in a variety of neuroanatomical and functionally distinct brain regions. However, it is unclear whether HFO are independently and locally generated or instead spread from a distant source. To address this issue, we used local infusion of tetrodotoxin (TTX) to distinct brain areas to determine how accurately HFO recorded after injection of NMDAR antagonists reflect the activity actually generated at the electrode tip. Changes in power were evaluated in local field potentials (LFPs) recorded from the nucleus accumbens (NAc), prefrontal cortex and caudate and in electrocorticograms (ECoGs) from visual and frontal areas. HFO recorded in frontal and visual cortices (ECoGs) or in the prefrontal cortex, caudate (LFPs) co-varied in power and frequency with observed changes in the NAc. TTX infusion to the NAc immediately and profoundly reduced the power of accumbal HFO which correlated with changes in HFO recorded in distant cortical sites. In contrast, TTX infusion to the prefrontal cortex did not change HFO power recorded locally, although gamma power was reduced. A very similar result was found after TTX infusion to the caudate. These findings raise the possibility that the NAc is an important neural generator. Our data also support existing studies challenging the idea that high frequencies recorded in LFPs are necessarily generated at the recording site.

  13. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  14. Artificial Syntactic Violations Activate Broca's Region

    ERIC Educational Resources Information Center

    Petersson, Karl Magnus; Forkstam, Christian; Ingvar, Martin

    2004-01-01

    In the present study, using event-related functional magnetic resonance imaging, we investigated a group of participants on a grammaticality classification task after they had been exposed to well-formed consonant strings generated from an artificial regular grammar. We used an implicit acquisition paradigm in which the participants were exposed…

  15. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  16. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  17. Subsurface helicity of active regions 12192 and 10486

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; Tripathy, Sushant; Howe, Rachel; Hill, Frank

    2015-04-01

    The active region 10486 that produced the Halloween flares in 2003 initiated our interest in the kinetic helicity of subsurface flows associated with active regions. This lead to the realization that the helicity of subsurface flows is related to the flare activity of active regions. Eleven years later, a similarly enormous active region (12192) appeared on the solar surface. We plan to study the kinetic helicity of the subsurface flows associated with region 12192 and compare it to that of region 10486. For 10486, we have analyzed Dopplergrams obtained with the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO) and the Global Oscillation Network Group (GONG) with a dense-pack ring-diagram analysis. For 12192, we have analyzed Dopplergrams from GONG and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We will present the latest results.

  18. A Fractal Dimension Survey of Active Region Complexity

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  19. Source component mixing in the regions of arc magma generation

    NASA Astrophysics Data System (ADS)

    Arculus, Richard J.; Powell, Roger

    1986-05-01

    give rise to the trace element and isotopic systematics generally observed in arc basalts. Furthermore, subsequent melting of wedge-type peridotite in nonsubduction zone environments can result in complementary enrichment of the high field strength elements compared with arcs, and in the general isotopic similarity of hot spot and arc magmas. Although it is likely that the wedge-type peridotite in any arc is heterogeneously veined by previous inefficient melt extraction episodes, it is possible that the subduction zone environment is most conducive to the generation of veining.

  20. NASA/NREN: Next Generation Internet (NGI) Activities

    NASA Technical Reports Server (NTRS)

    desJardins, Richard; Freeman, Ken

    1998-01-01

    Various issues associated with next generation internet (NGI) and the NREN (NASA Research and Education Network) activities are presented in viewgraph form. Specific topics include: 1) NREN architecture; 2) NREN applications; and 3) NREN applied research.

  1. 15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS AT LEFT, HISTORIC CONTROL PANEL AT RIGHT. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  2. Emergent Public Spaces: Generative Activities on Function Interpolation

    ERIC Educational Resources Information Center

    Carmona, Guadalupe; Dominguez, Angeles; Krause, Gladys; Duran, Pablo

    2011-01-01

    This study highlights ways in which generative activities may be coupled with network-based technologies in the context of teacher preparation to enhance preservice teachers' cognizance of how their own experience as students provides a blueprint for the learning environments they may need to generate in their future classrooms. In this study, the…

  3. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is

  4. The birth and evolution of solar active regions

    NASA Astrophysics Data System (ADS)

    Gaizauskas, V.

    1993-09-01

    The growth of solar active regions is a well-observed surface phenomenon with its origins concealed in the solar interior. We review the salient facts about the emergence of active regions and the consequences of their growth on the solar atmosphere. The most powerful flares, the ones which display a range of phenomena that still pose serious challenges for high-energy astrophysics, are associated with regions of high magnetic complexity. How does that degree of complexity arise when the vast majority of active regions are simple bipolar entities? In order to gain some insight into that problem, we compare the emergence of magnetic flux in ordinary regions with an instance when magnetic complexity is apparent from the very first appearance of a new region - clearly a subsurface prefabrication of complexity - and with others wherein a new region interacts with a pre-existing one to create the complexity in plain view.

  5. IFLA General Conference, 1985. Division on Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on regional library activities which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Importance of Information Resources in National Development with Particular Reference to the Asian Scene" (Yogendra P. Dubey, India); (2) "Report of the Activities of the Regional Section for Asia…

  6. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Dalmasse, K.; Kliem, B.; Török, T.

    2015-09-01

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

  7. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  8. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-08-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  9. Meteosat Third Generation (MTG) critical technology pre-development activities

    NASA Astrophysics Data System (ADS)

    Aminou, Donny M. A.; Bézy, Jean Loup; Meynart, Roland; Blythe, Paul; Kraft, S.; Zayer, I.; Linder, M.; Falkner, M.; Luhmann, H. J.

    2009-09-01

    ESA and EUMETSAT have initiated joint preparatory activities for the formulation and definition of the Meteosat Third Generation (MTG) geostationary system to ensure the future continuity, and enhancement, of the current Meteosat Second Generation (MSG) system. The MTG programmatics are being established to ensure a seamless transition between the conclusion of the successful MSG operational system and the start of the new MTG operational system, with particular emphasis on continuity of the imagery missions. The MTG phase A studies were successfully concluded in December 2008 an re-consolidation phase B1 activities continued from January to July 2009. They were devoted to the MTG concept definition and requirements consolidation for meeting the User needs in the field of Nowcasting and Very Short Term Weather Forecasting (NWC), Medium/Short Range global and regional Numerical Weather Prediction (NWP), Climate, Air Quality and Composition Monitoring. The following missions have been analysed, measurement techniques studied and preliminary concepts established: - High Resolution Fast Imagery Mission (improved successor to MSG SEVIRI HRV mission) - Full Disk High Spectral Resolution Imagery Mission (improved successor to SEVIRI) - Lightning Imagery Mission - IR Sounding Mission - UV-VIS-NIR Sounding Mission Both space segment architecture and preliminary satellite and instrument concepts were investigated in the course of these studies, and a dual satellite configuration established comprising the Imaging satellite (MTG-I) and the sounding satellite (MTG-S). The study covered all elements to a level of detail allowing to establish a technical baseline, conclude on the feasibility of the system requirements and undertake preliminary programmatic evaluation. Riders to the Phase A studies (Phase B1 work) have been placed to further consolidate the satellite and payload definition and development, prior to the release of the Invitation To Tender (ITT) for the full space

  10. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect

    Schweitzer, Martin

    2010-08-01

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This

  11. 20 CFR 627.225 - Employment generating activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of information on JTPA programs and activities; labor market surveys; and development of on-the-job... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Employment generating activities. 627.225 Section 627.225 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR...

  12. 20 CFR 627.225 - Employment generating activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of information on JTPA programs and activities; labor market surveys; and development of on-the-job... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Employment generating activities. 627.225 Section 627.225 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR...

  13. Active Generations: An Intergenerational Approach to Preventing Childhood Obesity

    ERIC Educational Resources Information Center

    Werner, Danilea; Teufel, James; Holtgrave, Peter L.; Brown, Stephen L.

    2012-01-01

    Background: Over the last 3 decades, US obesity rates have increased dramatically as more children and more adults become obese. This study explores an innovative program, Active Generations, an intergenerational nutrition education and activity program implemented in out-of-school environments (after school and summer camps). It utilizes older…

  14. Regions of Generation and Optical Thicknesses of dm-Zebra Lines

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.

    2015-07-01

    Using a new model based on the double plasma resonance (DPR), we show that the zebra structure seen in solar radio bursts is generated in the transition region and at the tops of the magnetic arcade. The magnetic field in zebra sources is probably weaker than 150 gauss. According to this model, a generation of zebras in stronger magnetic fields is improbable. The high-frequency boundary of decimetric zebras depends on the background electron plasma density, but not on the magnetic field strength in the generation regions. The bremsstrahlung absorption in atmospheric layers above the DPR zebra generation region and the cyclotron absorption in the DPR region and in the gyroresonance layers at higher altitudes limit the spectrum of zebras from both high-frequency and low-frequency sides. While the bremsstrahlung reduces the emission from the high-frequency side, the cyclotron absorption limits the low-frequency side. The observed frequency range and the number of observed zebra lines are determined not only by these absorptions, but also by appropriate distribution functions of superthermal electrons and plasma conditions in this region. Low-frequency (metric) zebra emissions can be generated at high altitudes. Computations show that such emissions can escape from the DPR generation region only at high gyro-harmonics () and with many zebra lines.

  15. Prediction of household and commercial BMW generation according to socio-economic and other factors for the Dublin region.

    PubMed

    Purcell, M; Magette, W L

    2009-04-01

    Both planning and design of integrated municipal solid waste management systems require accurate prediction of waste generation. This research predicted the quantity and distribution of biodegradable municipal waste (BMW) generation within a diverse 'landscape' of residential areas, as well as from a variety of commercial establishments (restaurants, hotels, hospitals, etc.) in the Dublin (Ireland) region. Socio-economic variables, housing types, and the sizes and main activities of commercial establishments were hypothesized as the key determinants contributing to the spatial variability of BMW generation. A geographical information system (GIS) 'model' of BMW generation was created using ArcMap, a component of ArcGIS 9. Statistical data including socio-economic status and household size were mapped on an electoral district basis. Historical research and data from scientific literature were used to assign BMW generation rates to residential and commercial establishments. These predictions were combined to give overall BMW estimates for the region, which can aid waste planning and policy decisions. This technique will also aid the design of future waste management strategies, leading to policy and practice alterations as a function of demographic changes and development. The household prediction technique gave a more accurate overall estimate of household waste generation than did the social class technique. Both techniques produced estimates that differed from the reported local authority data; however, given that local authority reported figures for the region are below the national average, with some of the waste generated from apartment complexes being reported as commercial waste, predictions arising from this research are believed to be closer to actual waste generation than a comparison to reported data would suggest. By changing the input data, this estimation tool can be adapted for use in other locations. Although focusing on waste in the Dublin region

  16. Prediction of household and commercial BMW generation according to socio-economic and other factors for the Dublin region.

    PubMed

    Purcell, M; Magette, W L

    2009-04-01

    Both planning and design of integrated municipal solid waste management systems require accurate prediction of waste generation. This research predicted the quantity and distribution of biodegradable municipal waste (BMW) generation within a diverse 'landscape' of residential areas, as well as from a variety of commercial establishments (restaurants, hotels, hospitals, etc.) in the Dublin (Ireland) region. Socio-economic variables, housing types, and the sizes and main activities of commercial establishments were hypothesized as the key determinants contributing to the spatial variability of BMW generation. A geographical information system (GIS) 'model' of BMW generation was created using ArcMap, a component of ArcGIS 9. Statistical data including socio-economic status and household size were mapped on an electoral district basis. Historical research and data from scientific literature were used to assign BMW generation rates to residential and commercial establishments. These predictions were combined to give overall BMW estimates for the region, which can aid waste planning and policy decisions. This technique will also aid the design of future waste management strategies, leading to policy and practice alterations as a function of demographic changes and development. The household prediction technique gave a more accurate overall estimate of household waste generation than did the social class technique. Both techniques produced estimates that differed from the reported local authority data; however, given that local authority reported figures for the region are below the national average, with some of the waste generated from apartment complexes being reported as commercial waste, predictions arising from this research are believed to be closer to actual waste generation than a comparison to reported data would suggest. By changing the input data, this estimation tool can be adapted for use in other locations. Although focusing on waste in the Dublin region

  17. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  18. Active-region designs in quantum cascade lasers

    SciTech Connect

    Zasavitskii, I I

    2012-10-31

    This paper analyses the development of active-region designs in quantum cascade lasers. Active-region designs have been demonstrated to date that employ various radiative transitions (vertical, diagonal, interminiband and interband). The lower laser level is depopulated through nonradiative transitions, such as one- or two-phonon (and even three-phonon) relaxation or bound state {yields} continuum transitions. Advances in active-region designs and energy diagram optimisation in the past few years have led to significant improvements in important characteristics of quantum cascade lasers, such as their output power, emission bandwidth, characteristic temperature and efficiency. (invited paper)

  19. A Study on Grid-Square Statistics Based Estimation of Regional Electricity Demand and Regional Potential Capacity of Distributed Generators

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo

    We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.

  20. Single Cell Visualization of Yeast Gene Expression Shows Correlation of Epigenetic Switching between Multiple Heterochromatic Regions through Multiple Generations

    PubMed Central

    Mano, Yasunobu; Kobayashi, Tetsuya J.; Nakayama, Jun-ichi; Uchida, Hiroyuki; Oki, Masaya

    2013-01-01

    Differences in gene expression between individual cells can be mediated by epigenetic regulation; thus, methods that enable detailed analyses of single cells are crucial to understanding this phenomenon. In this study, genomic silencing regions of Saccharomyces cerevisiae that are subject to epigenetic regulation, including the HMR, HML, and telomere regions, were investigated using a newly developed single cell analysis method. This method uses fluorescently labeled proteins to track changes in gene expression over multiple generations of a single cell. Epigenetic control of gene expression differed depending on the specific silencing region at which the reporter gene was inserted. Correlations between gene expression at the HMR-left and HMR-right regions, as well as the HMR-right and HML-right regions, were observed in the single-cell level; however, no such correlations involving the telomere region were observed. Deletion of the histone acetyltransferase GCN5 gene from a yeast strain carrying a fluorescent reporter gene at the HMR-left region reduced the frequency of changes in gene expression over a generation. The results presented here suggest that epigenetic control within an individual cell is reversible and can be achieved via regulation of histone acetyltransferase activity. PMID:23843746

  1. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  2. Active Ageing Level of Older Persons: Regional Comparison in Thailand.

    PubMed

    Haque, Md Nuruzzaman

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p < 0.001)). Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP), containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons' active ageing level in Thailand. PMID:27375903

  3. Active Ageing Level of Older Persons: Regional Comparison in Thailand.

    PubMed

    Haque, Md Nuruzzaman

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p < 0.001)). Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP), containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons' active ageing level in Thailand.

  4. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  5. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  6. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  7. Radio Coronal Magnetography of a Large Active Region

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.; Gary, Dale E.; White, Stephen; Fleishman, Gregory; Chen, Bin

    2015-04-01

    Quantitative knowledge of coronal magnetic fields is fundamental to understanding energetic phenomena such as solar flares. Flares occur in solar active regions where strong, non-potential magnetic fields provide free energy. While constraints on the coronal magnetic field topology are readily available through high resolution SXR and EUV imaging of solar active regions, useful quantitative measurements of coronal magnetic fields have thus far been elusive. Recent progress has been made at infrared (IR) wavelengths in exploiting both the Zeeman and Hanle effects to infer the line-of-sight magnetic field strength or the orientation of the magnetic field vector in the plane of the sky above the solar limb. However, no measurements of coronal magnetic fields against the solar disk are possible using IR observations. Radio observations of gyroresonance emission from active regions offer the means of measuring coronal magnetic fields above the limb and on the solar disk. In particular, for plasma plasma conditions in the solar corona, active regions typically become optically thick to emission over a range of radio frequencies through gyroresonance absorption at a low harmonic of the electron gyrofrequency. The specific range of resonant frequencies depends on the range of coronal magnetic field strengths present in the active region.The Karl G. Jansky Very Large Array was used in November 2014 to image NOAA/USAF active region AR12209 over a continuous frequency range of 1-8 GHz, corresponding to a wavelength range of 3.75-30 cm. This frequency range is sensitive to coronal magnetic field strengths ranging from ~120-1400G. The active region was observed on four different dates - November 18, 20, 22, and 24 - during which the active region longitude ranged from -15 to +70 degrees, providing a wide range of aspect angles. In this paper we provide a preliminary description of the coronal magnetic field measurements derived from the radio observations.

  8. The EM fields in the Solid Generated by a Fault in a Porous Region

    NASA Astrophysics Data System (ADS)

    Ren, H.; Huang, Q.; Chen, X.

    2015-12-01

    Electrokinetic effect, as one of the most possible generation mechanisms of the seismo-electromagnetic phenomenons associated with natural earthquakes, has interested many researchers. Besides, it is also considered as a potential tool for the water/oil exploration. Recently, we numerically investigated the electromagnetic (EM) fields due to the electrokinetic effect in mixed layered model. The mixed model comprises not only porous layers but also solid layers. We firstly tested a two-layer mixed model. The numerical results show that, in addition to the radiation EM fields, another kind of evanescent EM fields can be generated by the seismic waves arriving at the interface with incident angles greater the critical angle. The evanescent EM fields decay faster than the radiation EM fields when getting away from the interface. For the seismic frequency band, the evanescent EM fields in the solid are still measurable at a distance of, e.g., 2km to the interface. We then tested a eight-layer mixed model. The top and bottom layers are solid and the other layers are porous. A finite fault of 20x10km is located in the porous region. The focal depth is 8km. The applied source time function is a ramp fuction with an arise time of 0.8s. Point stacking method was used to compute the wave-fields caused by the finite fault. Our nuemrical results show that, this model can generate the EM fields before the arrival of seismic waves as well as the residual EM fields. Both the two kinds of EM fields have been observed in field observations. There is a possibility that the anomalous EM activities before big earthquakes may be caused by the fluid flow in the shallow Earth as a result of the stress changes.

  9. Multiscale Aspects of Generation of High-Gamma Activity during Seizures in Human Neocortex123

    PubMed Central

    Marcuccilli, Charles J.; Ben-Mabrouk, Faiza; Lew, Sean M.; Goodman, Robert R.; McKhann, Guy M.; Frim, David M.; Kohrman, Michael H.; Schevon, Catherine A.; van Drongelen, Wim

    2016-01-01

    High-gamma (HG; 80-150 Hz) activity in macroscopic clinical records is considered a marker for critical brain regions involved in seizure initiation; it is correlated with pathological multiunit firing during neocortical seizures in the seizure core, an area identified by correlated multiunit spiking and low frequency seizure activity. However, the effects of the spatiotemporal dynamics of seizure on HG power generation are not well understood. Here, we studied HG generation and propagation, using a three-step, multiscale signal analysis and modeling approach. First, we analyzed concurrent neuronal and microscopic network HG activity in neocortical slices from seven intractable epilepsy patients. We found HG activity in these networks, especially when neurons displayed paroxysmal depolarization shifts and network activity was highly synchronized. Second, we examined HG activity acquired with microelectrode arrays recorded during human seizures (n = 8). We confirmed the presence of synchronized HG power across microelectrode records and the macroscale, both specifically associated with the core region of the seizure. Third, we used volume conduction-based modeling to relate HG activity and network synchrony at different network scales. We showed that local HG oscillations require high levels of synchrony to cross scales, and that this requirement is met at the microscopic scale, but not within macroscopic networks. Instead, we present evidence that HG power at the macroscale may result from harmonics of ongoing seizure activity. Ictal HG power marks the seizure core, but the generating mechanism can differ across spatial scales. PMID:27257623

  10. Visualisation of nitric oxide generated by activated murine macrophages.

    PubMed

    Leone, A M; Furst, V W; Foxwell, N A; Cellek, S; Moncada, S

    1996-04-01

    We have visualised the release and approximate diffusion profile of nitric oxide (NO) from activated murine macrophages using a high transmission microscope coupled to a high sensitivity photon counting camera. The images generated by NO were cell-associated and spread over an area of approximately 175 micrometers from the activated macrophage. The signals obtained were dependent on the presence of exogenous L-arginine in the medium and followed a time course similar to that previously described for the generation of NO by the inducible form of NO synthase. The light signal was attenuated by the inhibitor of NO synthase, N omega-nitro-L-arginine methyl ester. Studies using superoxide-deficient macrophages further confirmed that the signals detected were generated by NO rather than reactive oxygen intermediates. PMID:8660339

  11. The generation effect: activating broad neural circuits during memory encoding.

    PubMed

    Rosner, Zachary A; Elman, Jeremy A; Shimamura, Arthur P

    2013-01-01

    The generation effect is a robust memory phenomenon in which actively producing material during encoding acts to improve later memory performance. In a functional magnetic resonance imaging (fMRI) analysis, we explored the neural basis of this effect. During encoding, participants generated synonyms from word-fragment cues (e.g., GARBAGE-W_ST_) or read other synonym pairs (e.g., GARBAGE-WASTE). Compared to simply reading target words, generating target words significantly improved later recognition memory performance. During encoding, this benefit was associated with a broad neural network that involved both prefrontal (inferior frontal gyrus, middle frontal gyrus) and posterior cortex (inferior temporal gyrus, lateral occipital cortex, parahippocampal gyrus, ventral posterior parietal cortex). These findings define the prefrontal-posterior cortical dynamics associated with the mnemonic benefits underlying the generation effect.

  12. Income Generation Activities among Academic Staffs at Malaysian Public Universities

    ERIC Educational Resources Information Center

    Ahmad, Abd Rahman; Soon, Ng Kim; Ting, Ngeoh Pei

    2015-01-01

    Income generation activities have been acquainted among public higher education institutions (HEIs) in Malaysia. Various factors that brought to insufficient of funding caused Higher Education Institutions(HEIs) to seek for additional income as to support the operation expenses. Financial sustainability issues made up the significant impact…

  13. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  14. Generating Coherent Patterns of Activity from Chaotic Neural Networks

    PubMed Central

    Sussillo, David; Abbott, L. F.

    2009-01-01

    Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. FORCE learning works even though the networks we train are spontaneously chaotic and we leave feedback loops intact and unclamped during learning. Using this approach, we construct networks that produce a wide variety of complex output patterns, input-output transformations that require memory, multiple outputs that can be switched by control inputs, and motor patterns matching human motion capture data. Our results reproduce data on pre-movement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated. PMID:19709635

  15. Tracking Active Region NOAA 12192 in Multiple Carrington Rotations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant C.; Hill, Frank

    2015-04-01

    Active region NOAA 12192 appeared on the visible solar disk on October 18, 2014 and grew rapidly into the largest such region since 1990. During its entire transit across the Earth facing side of the Sun, it produced a significant number of X- and M-class flares. The combination of front-side and helioseismic far-side images clearly indicated that it lived through several Carrington rotations. In this paper, using Dopplergrams from GONG and HMI, we present a study on mode parameters, viz. oscillation frequencies, amplitude, and sub-surface flows and investigate how these vary with the evolution of active region in multiple rotations. We also present a detailed comparison between NOAA 10486 (the biggest active region in cycle 23) and NOAA 12192, and discuss the similarities/differences between them.

  16. Active Tectonics And Modern Geodynamics Of Sub-Yerevan Region

    NASA Astrophysics Data System (ADS)

    Avanesyan, M.

    2004-05-01

    The given work is dedicated to active tectonics and modern geodynamics of Sub-Yerevan region. This region is interesting as a one of regions with maximal seismic activity in Armenia. The high level of seismic risk of this region is conditioned by high level of seismic hazard, high density of the population, as well as presence of objects of special importance and industrial capacities. The modern structure of Sub-Yerevan region and the adjacent area, as well as the Caucasus entirely, has mosaic-block appearance, typical for collision zone of Arabian and Eurasian plates. Distinctively oriented active faults of various ranges and morphological types are distinguished. These faults, in their turn, form various-scale active blocks of the Earth's crust and their movement defines seismic activity of the region. The researches show, that all strong earthquakes in the region were caused by movements by newest and activated ancient faults. In order to reveal the character of Earth's crust active blocks movement, separation of high gradients of horizontal and vertical movements and definition of stress fields highest concentration regions by GPS observations, high-accuracy leveling and study of earthquake focal mechanisms a new seismotectonic model is developed, which represents a combination of tectonic structure, seismic data, newest and modern movements. On the basis of comparison and analysis of these data zones with potential maximal seismic hazard are separated. The zone of joint of Azat-Sevan active and Yerevan abysmal faults is the most active on the territory of Sub-Yerevan region. The directions relatively the Earth's crust movement in the zones of horizontal and vertical movement gradients lead to conclusion, that Aragats-Tsakhkunian and Gegam active blocks undergo clockwise rotation. This means, that additional concentration of stress must be observed in block corners, that is confirmed by location of strong earthquakes sources. Thus, on the North 1988 Spitak (M

  17. Universities and Economic Development Activities: A UK Regional Comparison

    ERIC Educational Resources Information Center

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.

    2011-01-01

    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  18. Harmonic generation in the discrete spectral region of xenon using broadband femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kutzner, J.; Tsilimis, G.; Zacharias, H.

    2005-02-01

    The conversion of 34-fs Ti:sapphire laser pulses into the wavelength region 105 210 nm has been studied in xenon for laser intensities up to 5×1013 W/cm2. A strongly structured, pressure-dependent emission spectrum is observed. Radiation is detected in regions expected for the 5th and 7th harmonics but also in regions in between. In the resonance region (λ<147 nm), self-phase-modulation processes in the conversion medium together with phase-matched, efficient harmonic generation in negative-dispersive spectral regions explain the observations. Broadband emission is detected in the resonance-free, positive-dispersive spectral region 155 210 nm. Emission from the xenon dimer is superimposed on a ‘direct’ 5th-harmonic signal.

  19. The generation of hybrid grids incorporating prismatic regions for viscous flow calculations

    SciTech Connect

    Chappell, J.A.; Shaw, J.A.; Leatham, M.

    1996-12-31

    The extension of the SAUNA hybrid block-structured/unstructured mesh generation system to meet the demands of accurate Reynolds-averaged Navier-Stokes simulation is considered. For regions where block-structured meshes are employed, no changes to the basic philosophy are required. However, it is argued that semi-structured prismatic meshes should be used in shear layer regions in preference to highly anisotropic tetrahedra. Many of the benefits of unstructured meshes are thereby maintained without incurring significant computational overheads or modelling inaccuracies. The generation of the prismatic elements is described and techniques to interface them to the other elements used in a hybrid approach discussed.

  20. [Do regional and generational differences in attitudes toward "Luck Resource Belief" exist?].

    PubMed

    Murakami, Koshi

    2016-04-01

    This article examines whether belief in superstitions and folklore differs by age and degree of modernization specifically. This study investigated regional and generational differences in attitudes toward "Luck Resource Belief," a notion regarding luck. The 500 Japanese participants in our sample were stratified by place of residence, age, and income. The results reflected gender differences, but not regional or generational differences with regard to the "Luck Resource Belief" scale scores. Based on these results, the hypothesis that the mass media plays a major role in the dissemination of information about superstitions and folklore is discussed in this context.

  1. [Do regional and generational differences in attitudes toward "Luck Resource Belief" exist?].

    PubMed

    Murakami, Koshi

    2016-04-01

    This article examines whether belief in superstitions and folklore differs by age and degree of modernization specifically. This study investigated regional and generational differences in attitudes toward "Luck Resource Belief," a notion regarding luck. The 500 Japanese participants in our sample were stratified by place of residence, age, and income. The results reflected gender differences, but not regional or generational differences with regard to the "Luck Resource Belief" scale scores. Based on these results, the hypothesis that the mass media plays a major role in the dissemination of information about superstitions and folklore is discussed in this context. PMID:27180517

  2. Saturation of Alfven oscillations in the ring current region due to generation of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Gamaiunov, K. V.; Krivorutskii, E. N.; Veriaev, A. A.; Khazanov, G. V.

    1992-04-01

    The possibility of flux generation of lower hybrid oscillations in the ring current region of the earth's magnetosphere is suggested in this paper. The energy level of lower hybrid oscillations can exceed the modulational instability threshold, which leads to the formation of caverns. The consequences of this are qualitatively analyzed. Also, an assumption is made that the flux instability of lower hybrid oscillations may limit the level of Alfven oscillations in the ring current region.

  3. Hypergraph-based saliency map generation with potential region-of-interest approximation and validation

    NASA Astrophysics Data System (ADS)

    Liang, Zhen; Fu, Hong; Chi, Zheru; Feng, Dagan

    2012-01-01

    A novel saliency model is proposed in this paper to automatically process images in the similar way as the human visual system which focuses on conspicuous regions that catch human beings' attention. The model combines a hypergraph representation and a partitioning process with potential region-of-interest (p-ROI) approximation and validation. Experimental results demonstrate that the proposed method shows considerable improvement in the performance of saliency map generation.

  4. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction.

    PubMed

    Coloma, M J; Hastings, A; Wims, L A; Morrison, S L

    1992-07-31

    A new family of vectors has been produced which facilitates the cloning and expression of immunoglobulin variable regions cloned by polymerase chain reaction (PCR). The vectors are designed to express the cloned variable regions joined to human constant regions and take advantage of priming in the leader sequence so that no amino acid changes will be introduced into the mature antibody molecule. Both the heavy chain and light chain vectors utilize a murine VH promoter provided with an EcoRV restriction site so that the amplified variable regions can be directly cloned into a functional promoter. For the heavy chain an NheI restriction site has been generated at the first two amino acids of CH1 and the cloned leader and variable region are fused directly to the CH1 domain of the constant region. When the leader and variable regions of the light chain were fused directly to C kappa, no expression was observed. Therefore the light chain expression vector was designed with a SalI restriction site for cloning into a splice junction 3' of the variable region; VL then is joined to C kappa by splicing. Both vectors direct the expression of functional, fully assembled immunoglobulin molecules with the expected molecular weight. Use of redundant oligomers to prime the PCR permits the cloning and expression of recombinant antibodies without any prior information as to their sequence and makes it possible to rapidly generate recombinant antibodies from any monoclonal antibody producing cell line.

  5. The Distribution of Active Force Generators Controls Mitotic Spindle Position

    NASA Astrophysics Data System (ADS)

    Grill, Stephan W.; Howard, Jonathon; Schäffer, Erik; Stelzer, Ernst H. K.; Hyman, Anthony A.

    2003-07-01

    During unequal cell divisions a mitotic spindle is eccentrically positioned before cell cleavage. To determine the basis of the net force imbalance that causes spindle displacement in one-cell Caenorhabditis elegans embryos, we fragmented centrosomes with an ultraviolet laser. Analysis of the mean and variance of fragment speeds suggests that the force imbalance is due to a larger number of force generators pulling on astral microtubules of the posterior aster relative to the anterior aster. Moreover, activation of heterotrimeric guanine nucleotide-binding protein (G protein) α subunits is required to generate these astral forces.

  6. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  7. Fraunhofer computer-generated hologram for diffused 3D scene in Fresnel region.

    PubMed

    Liu, Yuan-Zhi; Dong, Jian-Wen; Pu, Yi-Ying; He, He-Xiang; Chen, Bing-Chu; Wang, He-Zhou; Zheng, Huadong; Yu, Yingjie

    2011-06-01

    A Fraunhofer computer-generated hologram (CGH) is proved to be valid in display for three-dimensional (3D) objects from the Fresnel to the far-field region without a Fourier lens for reconstruction. To quickly compute large and complicated 3D objects that consist of slanted diffused surfaces in the Fresnel region, a Fraunhofer-based analytical approach using a basic-triangle tiling diffuser is developed. Both theoretical and experimental results reveal that Fraunhofer CGH can perform the same effects as Fresnel CGH but require less calculation time. Impressive 3D solid effects are achieved in the Fresnel region.

  8. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  9. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  10. Footpoint Separation and Evershed Flow of Active Regions

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Jones, E. H.

    2012-05-01

    The bipolar nature of active regions and sunspot groups within the Sun’s photosphere is generally attributed to the emergence of magnetic flux tubes that originate from shear and turbulent pumping at the base of the Sun’s convection zone. There is debate, however, as to exactly how well-connected active regions are to solar interior. A connection to the solar interior during the ascent of a flux tube through the convection zone is a requirement within numerical models designed to describe the observed characteristics of active regions, e.g. Joy’s law tilt and latitude emergence, however, these models also predict post-emergence behavior of sunspots that is not supported observationally (Schussler and Rempel, 1995; Fan, 2009; Toth and Gerlei, 2003). It has been suggested (Rubio et al., 2008; Schussler and Rempel, 1995) that a bipolar magnetic region might lose its connection quickly upon emergence. Using data from SDO/HMI, we examine the footpoint separation and the Evershed flow of a number of active regions over time to detect the disconnection process of a sunspot from its magnetic roots.

  11. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    PubMed

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  12. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    PubMed

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  13. Kink Waves in an Active Region Dynamic Fibril

    NASA Astrophysics Data System (ADS)

    Pietarila, A.; Aznar Cuadrado, R.; Hirzberger, J.; Solanki, S. K.

    2011-10-01

    We present high spatial and temporal resolution Ca II 8542 Å observations of a kink wave in an on-disk chromospheric active region fibril. The properties of the wave are similar to those observed in off-limb spicules. From the observed phase and period of the wave we determine a lower limit for the field strength in the chromospheric active region fibril located at the edge of a sunspot to be a few hundred gauss. We find indications that the event was triggered by a small-scale reconnection event higher up in the atmosphere.

  14. Income-generating activities for family planning acceptors.

    PubMed

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  15. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    Chichester, D. L.; Seabury, E. H.

    2009-03-10

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  16. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  17. Sensitivity of Regional Hydropower Generation to the Projected Changes in Future Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Kao, S. C.; Naz, B. S.; Gangrade, S.

    2015-12-01

    Hydropower is a key contributor to the renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power systems. With the projected change in the future watershed hydrology, including shift of snowmelt timing, increasing occurrence of extreme precipitation, and change in drought frequencies, there is a need to investigate how the regional hydropower generation may change correspondingly. To evaluate the sensitivity of watershed storage and hydropower generation to future climate change, a lumped Watershed Runoff-Energy Storage (WRES) model is developed to simulate the annual and seasonal hydropower generation at various hydropower areas in the United States. For each hydropower study area, the WRES model use the monthly precipitation and naturalized (unregulated) runoff as inputs to perform a runoff mass balance calculation for the total monthly runoff storage in all reservoirs and retention facilities in the watershed, and simulate the monthly regulated runoff release and hydropower generation through the system. The WRES model is developed and calibrated using the historic (1980-2009) monthly precipitation, runoff, and generation data, and then driven by a large set of dynamically- and statistically-downscaled Coupled Model Intercomparison Project Phase 5 climate projections to simulate the change of watershed storage and hydropower generation under different future climate scenarios. The results among different hydropower regions, storage capacities, emission scenarios, and timescales are compared and discussed in this study.

  18. Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Fornasier, S.; Pajola, M.; Besse, S.; Davidsson, B. J. R.; Lara, L. M.; Mottola, S.; Naletto, G.; Sierks, H.; Barucci, A. M.; Scholten, F.; Preusker, F.; Pommerol, A.; Masoumzadeh, N.; Lazzarin, M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hall, I.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lin, Z.-Y.; Lopez Moreno, J. J.; Marzari, F.; Moreno, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.

    2016-02-01

    Aims.We carried out an investigation of the surface variegation of comet 67P/Churyumov-Gerasimenko, the detection of regions showing activity, the determination of active and inactive surface regions of the comet with spectral methods, and the detection of fallback material. Methods: We analyzed multispectral data generated with Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) narrow angle camera (NAC) observations via spectral techniques, reflectance ratios, and spectral slopes in order to study active regions. We applied clustering analysis to the results of the reflectance ratios, and introduced the new technique of activity thresholds to detect areas potentially enriched in volatiles. Results: Local color inhomogeneities are detected over the investigated surface regions. Active regions, such as Hapi, the active pits of Seth and Ma'at, the clustered and isolated bright features in Imhotep, the alcoves in Seth and Ma'at, and the large alcove in Anuket, have bluer spectra than the overall surface. The spectra generated with OSIRIS NAC observations are dominated by cometary emissions of around 700 nm to 750 nm as a result of the coma between the comet's surface and the camera. One of the two isolated bright features in the Imhotep region displays an absorption band of around 700 nm, which probably indicates the existence of hydrated silicates. An absorption band with a center between 800-900 nm is tentatively observed in some regions of the nucleus surface. This absorption band can be explained by the crystal field absorption of Fe2+, which is a common spectral feature seen in silicates.

  19. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  20. A third-generation wave model for coastal regions: 1. Model description and validation

    NASA Astrophysics Data System (ADS)

    Booij, N.; Ris, R. C.; Holthuijsen, L. H.

    1999-04-01

    A third-generation numerical wave model to compute random, short-crested waves in coastal regions with shallow water and ambient currents (Simulating Waves Nearshore (SWAN)) has been developed, implemented, and validated. The model is based on a Eulerian formulation of the discrete spectral balance of action density that accounts for refractive propagation over arbitrary bathymetry and current fields. It is driven by boundary conditions and local winds. As in other third-generation wave models, the processes of wind generation, whitecapping, quadruplet wave-wave interactions, and bottom dissipation are represented explicitly. In SWAN, triad wave-wave interactions and depth-induced wave breaking are added. In contrast to other third-generation wave models, the numerical propagation scheme is implicit, which implies that the computations are more economic in shallow water. The model results agree well with analytical solutions, laboratory observations, and (generalized) field observations.

  1. IFLA General Conference, 1989. Division of Regional Activities. Section on Regional Activities--Africa; Section on Regional Activities--Asia and Oceania; Section on Regional Activities--Latin America and the Caribbean. Booklet 80.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    There are five papers in this collection from the Division of Regional Activities: (1) "Communication and Information in Contemporary African Society" (Bimpe Aboyade), which discusses how libraries can make themselves relevant to other institutions concerned with information transfer; (2) "Libraries and Rural Development: Village Reading Rooms in…

  2. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  3. IFLA General Conference, 1987. Division of Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Six of the seven papers in this collection focus on regional library activities in Africa, Asia and Oceania, and Latin America and the Caribbean: (1) "Libraries and Information Services in a Changing World: The Challenges African Information Services Face at the End of the 1980s" (Dejen Abate, Ethiopia); (2) "The Computer and Knowledge Information…

  4. Urban, Rural, and Regional Variations in Physical Activity

    ERIC Educational Resources Information Center

    Martin, Sarah Levin; Kirkner, Gregory J.; Mayo, Kelly; Matthews, Charles E.; Durstine, J. Larry; Hebert, James R.

    2005-01-01

    Purpose: There is some speculation about geographic differences in physical activity (PA) levels. We examined the prevalence of physical inactivity (PIA) and whether US citizens met the recommended levels of PA across the United States. In addition, the association between PIA/PA and degree of urbanization in the 4 main US regions (Northeast,…

  5. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  6. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  7. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  8. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  9. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors.

    PubMed

    Khodade, Vinayak S; Sharath Chandra, Mallojjala; Banerjee, Ankita; Lahiri, Surobhi; Pulipeta, Mallikarjuna; Rangarajan, Radha; Chakrapani, Harinath

    2014-07-10

    The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. PMID:25050164

  10. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  11. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  12. Evolution of two Flaring Active Regions With CME Association

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Wiegelmann, T.

    2008-12-01

    We study the coronal magnetic field structure of two active regions, one during solar activity minimum (June 2007) and another one during a more active time (January 2004). The temporal evolution was explored with the help of nonlinear force-free coronal magnetic field extrapolations of SOLIS/VSM and NAOJ/SFT photospheric vector magnetograms. We study the active region NOAA 10960 observed on 2007 June 7 with three SOLIS/VSM snapshots taken during a small C1.0 flare of time cadence 10 minutes and six snapshots during a quiet period. The total magnetic energy in the active region was approximately 3 × 1025 J. Before the flare the free magnetic energy was about 5~% of the potential field energy. A part of this excess energy was released during the flare, producing almost a potential configuration at the beginning of the quiet period. The return to an almost potential structure can be assigned to a CME as recorded by the SoHO/LASCO instrument on 2007 June 07 around 10 minutes after the flare peaked, so that whatever magnetic helicity was bodily removed from the structure. This was compared with active region 10540 observed on 2004 January 18 -- 21, which was analyzed with the help of vector magnetograph data from the Solar Flare Telescope in Japan of time cadence of about 1 day. The free energy was Efree≈ 66~% of the total energy which was sufficiently high to power a M6.1 flare on January 20, which was associated with a CME 20 minutes later. The activity of AR 10540 was significantly higher than for AR 10960, as was the total magnetic energy. Furthermore, we found the common feature that magnetic energy accumulates before the flare/CME and a significant part of the excess energy is released during the eruption.

  13. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Moselle, John R.; Lee, Jinho

    1991-01-01

    Experimental studies were conducted to examine the aerothermal characteristics of shock/shock/boundary layer interaction regions generated by single and multiple incident shocks. The presented experimental studies were conducted over a Mach number range from 6 to 19 for a range of Reynolds numbers to obtain both laminar and turbulent interaction regions. Detailed heat transfer and pressure measurements were made for a range of interaction types and incident shock strengths over a transverse cylinder, with emphasis on the 3 and 4 type interaction regions. The measurements were compared with the simple Edney, Keyes, and Hains models for a range of interaction configurations and freestream conditions. The complex flowfields and aerothermal loads generated by multiple-shock impingement, while not generating as large peak loads, provide important test cases for code prediction. The detailed heat transfer and pressure measurements proved a good basis for evaluating the accuracy of simple prediction methods and detailed numerical solutions for laminar and transitional regions or shock/shock interactions.

  14. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  15. Regional brain activation during meditation shows time and practice effects: an exploratory FMRI study.

    PubMed

    Baron Short, E; Kose, Samet; Mu, Qiwen; Borckardt, Jeffery; Newberg, Andrew; George, Mark S; Kozel, F Andrew

    2010-03-01

    Meditation involves attentional regulation and may lead to increased activity in brain regions associated with attention such as dorsal lateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Using functional magnetic resonance imaging, we examined whether DLPFC and ACC were activated during meditation. Subjects who meditate were recruited and scanned on a 3.0 Tesla scanner. Subjects meditated for four sessions of 12 min and performed four sessions of a 6 min control task. Individual and group t-maps were generated of overall meditation response versus control response and late meditation response versus early meditation response for each subject and time courses were plotted. For the overall group (n = 13), and using an overall brain analysis, there were no statistically significant regional activations of interest using conservative thresholds. A region of interest analysis of the entire group time courses of DLPFC and ACC were statistically more active throughout meditation in comparison to the control task. Moreover, dividing the cohort into short (n = 8) and long-term (n = 5) practitioners (>10 years) revealed that the time courses of long-term practitioners had significantly more consistent and sustained activation in the DLPFC and the ACC during meditation versus control in comparison to short-term practitioners. The regional brain activations in the more practised subjects may correlate with better sustained attention and attentional error monitoring. In summary, brain regions associated with attention vary over the time of a meditation session and may differ between long- and short-term meditation practitioners.

  16. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  17. A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions.

    PubMed

    Cheng, Jijun; Roden, Christine A; Pan, Wen; Zhu, Shu; Baccei, Anna; Pan, Xinghua; Jiang, Tingting; Kluger, Yuval; Weissman, Sherman M; Guo, Shangqin; Flavell, Richard A; Ding, Ye; Lu, Jun

    2016-01-01

    Clustered regularly-interspaced palindromic repeats (CRISPR)-based genetic screens using single-guide-RNA (sgRNA) libraries have proven powerful to identify genetic regulators. Applying CRISPR screens to interrogate functional elements in noncoding regions requires generating sgRNA libraries that are densely covering, and ideally inexpensive, easy to implement and flexible for customization. Here we present a Molecular Chipper technology for generating dense sgRNA libraries for genomic regions of interest, and a proof-of-principle screen that identifies novel cis-regulatory domains for miR-142 biogenesis. The Molecular Chipper approach utilizes a combination of random fragmentation and a type III restriction enzyme to derive a densely covering sgRNA library from input DNA. Applying this approach to 17 microRNAs and their flanking regions and with a reporter for miR-142 activity, we identify both the pre-miR-142 region and two previously unrecognized cis-domains important for miR-142 biogenesis, with the latter regulating miR-142 processing. This strategy will be useful for identifying functional noncoding elements in mammalian genomes. PMID:27025950

  18. A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions.

    PubMed

    Cheng, Jijun; Roden, Christine A; Pan, Wen; Zhu, Shu; Baccei, Anna; Pan, Xinghua; Jiang, Tingting; Kluger, Yuval; Weissman, Sherman M; Guo, Shangqin; Flavell, Richard A; Ding, Ye; Lu, Jun

    2016-03-30

    Clustered regularly-interspaced palindromic repeats (CRISPR)-based genetic screens using single-guide-RNA (sgRNA) libraries have proven powerful to identify genetic regulators. Applying CRISPR screens to interrogate functional elements in noncoding regions requires generating sgRNA libraries that are densely covering, and ideally inexpensive, easy to implement and flexible for customization. Here we present a Molecular Chipper technology for generating dense sgRNA libraries for genomic regions of interest, and a proof-of-principle screen that identifies novel cis-regulatory domains for miR-142 biogenesis. The Molecular Chipper approach utilizes a combination of random fragmentation and a type III restriction enzyme to derive a densely covering sgRNA library from input DNA. Applying this approach to 17 microRNAs and their flanking regions and with a reporter for miR-142 activity, we identify both the pre-miR-142 region and two previously unrecognized cis-domains important for miR-142 biogenesis, with the latter regulating miR-142 processing. This strategy will be useful for identifying functional noncoding elements in mammalian genomes.

  19. A Molecular Chipper technology for CRISPR sgRNA library generation and functional mapping of noncoding regions

    PubMed Central

    Cheng, Jijun; Roden, Christine A.; Pan, Wen; Zhu, Shu; Baccei, Anna; Pan, Xinghua; Jiang, Tingting; Kluger, Yuval; Weissman, Sherman M.; Guo, Shangqin; Flavell, Richard A.; Ding, Ye; Lu, Jun

    2016-01-01

    Clustered regularly-interspaced palindromic repeats (CRISPR)-based genetic screens using single-guide-RNA (sgRNA) libraries have proven powerful to identify genetic regulators. Applying CRISPR screens to interrogate functional elements in noncoding regions requires generating sgRNA libraries that are densely covering, and ideally inexpensive, easy to implement and flexible for customization. Here we present a Molecular Chipper technology for generating dense sgRNA libraries for genomic regions of interest, and a proof-of-principle screen that identifies novel cis-regulatory domains for miR-142 biogenesis. The Molecular Chipper approach utilizes a combination of random fragmentation and a type III restriction enzyme to derive a densely covering sgRNA library from input DNA. Applying this approach to 17 microRNAs and their flanking regions and with a reporter for miR-142 activity, we identify both the pre-miR-142 region and two previously unrecognized cis-domains important for miR-142 biogenesis, with the latter regulating miR-142 processing. This strategy will be useful for identifying functional noncoding elements in mammalian genomes. PMID:27025950

  20. Active sonar, beaked whales and European regional policy.

    PubMed

    Dolman, Sarah J; Evans, Peter G H; Notarbartolo-di-Sciara, Giuseppe; Frisch, Heidrun

    2011-01-01

    Various reviews, resolutions and guidance from international and regional fora have been produced in recent years that acknowledge the significance of marine noise and its potential impacts on cetaceans. Within Europe, ACCOBAMS and ASCOBANS have shown increasing attention to the issue. The literature highlights concerns surrounding the negative impacts of active sonar on beaked whales in particular, where concerns primarily relate to the use of mid-frequency active sonar (1-10kHz), as used particularly in military exercises. The authors review the efforts that European regional policies have undertaken to acknowledge and manage possible negative impacts of active sonar and how these might assist the transition from scientific research to policy implementation, including effective management and mitigation measures at a national level.

  1. Patterns of Activity Revealed by a Time Lag Analysis of a Model Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen; Viall, Nicholeen

    2016-05-01

    We investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of average frequencies. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine an extrapolated magnetic skeleton with hydrodynamic and forward modeling codes to create a model active region, and apply the time lag method to synthetic observations. Our aim is to recover some typical properties and patterns of activity observed in active regions. Our key findings are: 1. Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. 2. Shorter coronal loops in the core cool more quickly than longer loops at the periphery. 3. All channel pairs show zero time lag when the line-of-sight passes through coronal loop foot-points. 4. There is strong evidence that plasma must be re-energized on a time scale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies operates across active regions. 5. Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  2. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.

    PubMed

    Hofer, Katharina T; Kandrács, Ágnes; Ulbert, István; Pál, Ildikó; Szabó, Csilla; Héja, László; Wittner, Lucia

    2015-02-01

    Hippocampal sharp wave-ripples (SPW-Rs) occur during slow wave sleep and behavioral immobility and are thought to play an important role in memory formation. We investigated the cellular and network properties of SPW-Rs with simultaneous laminar multielectrode and intracellular recordings in a rat hippocampal slice model, using physiological bathing medium. Spontaneous SPW-Rs were generated in the dentate gyrus (DG), CA3, and CA1 regions. These events were characterized by a local field potential gradient (LFPg) transient, increased fast oscillatory activity and increased multiple unit activity (MUA). Two types of SPW-Rs were distinguished in the CA3 region based on their different LFPg and current source density (CSD) pattern. Type 1 (T1) displayed negative LFPg transient in the pyramidal cell layer, and the associated CSD sink was confined to the proximal dendrites. Type 2 (T2) SPW-Rs were characterized by positive LFPg transient in the cell layer, and showed CSD sinks involving both the apical and basal dendrites. In both types, consistent with the somatic CSD source, only a small subset of CA3 pyramidal cells fired, most pyramidal cells were hyperpolarized, while most interneurons increased firing rate before the LFPg peak. Different neuronal populations, with different proportions of pyramidal cells and distinct subsets of interneurons were activated during T1 and T2 SPW-Rs. Activation of specific inhibitory cell subsets-with the possible leading role of perisomatic interneurons-seems to be crucial to synchronize distinct ensembles of CA3 pyramidal cells finally resulting in the expression of different SPW-R activities. This suggests that the hippocampus can generate dynamic changes in its activity stemming from the same excitatory and inhibitory circuits, and so, might provide the cellular and network basis for an input-specific and activity-dependent information transmission. PMID:25209976

  3. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Hill, F. E-mail: stripathy@nso.edu

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  4. THE EVOLUTION OF DARK CANOPIES AROUND ACTIVE REGIONS

    SciTech Connect

    Wang, Y.-M.; Robbrecht, E.; Muglach, K. E-mail: eva.robbrecht@oma.be

    2011-05-20

    As observed in spectral lines originating from the chromosphere, transition region, and low corona, active regions are surrounded by an extensive 'circumfacular' area which is darker than the quiet Sun. We examine the properties of these dark moat- or canopy-like areas using Fe IX 17.1 nm images and line-of-sight magnetograms from the Solar Dynamics Observatory. The 17.1 nm canopies consist of fibrils (horizontal fields containing extreme-ultraviolet-absorbing chromospheric material) clumped into featherlike structures. The dark fibrils initially form a quasiradial or vortical pattern as the low-lying field lines fanning out from the emerging active region connect to surrounding network and intranetwork elements of opposite polarity. The area occupied by the 17.1 nm fibrils expands as supergranular convection causes the active-region flux to spread into the background medium; the outer boundary of the dark canopy stabilizes where the diffusing flux encounters a unipolar region of opposite sign. The dark fibrils tend to accumulate in regions of weak longitudinal field and to become rooted in mixed-polarity flux. To explain the latter observation, we note that the low-lying fibrils are more likely to interact with small loops associated with weak, opposite-polarity flux elements in close proximity, than with high loops anchored inside strong unipolar network flux. As a result, the 17.1 nm fibrils gradually become concentrated around the large-scale polarity inversion lines (PILs), where most of the mixed-polarity flux is located. Systematic flux cancellation, assisted by rotational shearing, removes the field component transverse to the PIL and causes the fibrils to coalesce into long PIL-aligned filaments.

  5. Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions

    PubMed Central

    Gredilla, Ricardo; Garm, Christian; Holm, Rikke; Bohr, Vilhelm A.; Stevnsner, Tinna

    2008-01-01

    Aging in the brain is characterized by increased susceptibility to neuronal loss and functional decline, and mitochondrial DNA (mtDNA) mutations are thought to play an important role in these processes. Due to the proximity of mtDNA to the main sites of mitochondrial free radical generation, oxidative stress is a major source of DNA mutations in mitochondria. The base excision repair (BER) pathway removes oxidative lesions from mtDNA, thereby constituting an important mechanism to avoid accumulation of mtDNA mutations. The complexity of the brain implies that exposure and defence against oxidative stress varies among brain regions and hence some regions may be particularly prone to accumulation of mtDNA damages. In the current study we investigated the efficiency of the BER pathway throughout the murine lifespan in mitochondria from cortex and hippocampus, regions that are central in mammalian cognition, and which are severely affected during aging and in neurodegenerative diseases. A regional specific regulation of mitochondrial DNA repair activities was observed with aging. In cortical mitochondria, DNA glycosylase activities peaked at middle-age followed by a significant drop at old age. However, only minor changes were observed in hippocampal mitochondria during the whole lifespan of the animals. Furthermore, DNA glycosylase activities were lower in hippocampal than in cortical mitochondria. Mitochondrial AP endonuclease activity increased in old animals in both brain regions. Our data suggest an important regional specific regulation of mitochondrial BER during aging. PMID:18701195

  6. Generation of Multivariate Surface Weather Series with Use of the Stochastic Weather Generator Linked to Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Farda, A.; Huth, R.

    2012-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms

  7. CURRENT HELICITY OF ACTIVE REGIONS AS A TRACER OF LARGE-SCALE SOLAR MAGNETIC HELICITY

    SciTech Connect

    Zhang, H.; Gao, Y.; Xu, H.; Moss, D.; Kleeorin, N.; Rogachevskii, I.; Kuzanyan, K.; Sokoloff, D.

    2012-05-20

    We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the large-scale dynamo generated field. We use an advanced two-dimensional mean-field dynamo model with dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic two-dimensional mean-field dynamo model with simple algebraic alpha-quenching only. Using these numerical models we obtained butterfly diagrams both for the small-scale current helicity and also for the large-scale magnetic helicity, and compared them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by -A {center_dot} B evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are, respectively, the dynamo generated mean magnetic field and its vector potential. A theoretical interpretation of these results is given.

  8. An active immunization approach to generate protective catalytic antibodies.

    PubMed Central

    Wang, J; Han, Y; Wilkinson, M F

    2001-01-01

    We report that mice immunized with a phosphate immunogen produced polyclonal catalytic antibodies (PCAbs) that catalysed the hydrolysis of carbaryl, a widely used broad-spectrum carbamate insecticide that exerts toxic effects in animals and humans. The reaction catalysed by the PCAbs (IgGs) obeyed Michaelis-Menten kinetics in vitro with the following values at pH 8.0 and 25 degrees C: K(m) approximately 8.0 microM, k(cat)=4.8x10(-3)-5.8x10(-1), k(cat)/k(non-cat)=5.6x10(1)-6.8x10(3) (where k(non-cat) is the rate constant of the reaction in the absence of added catalyst). The PCAbs were also active in whole sera under physiological conditions in vitro. The PCAbs induced in vivo were also active in vivo, as immunization with the phosphate immunogen decreased the mouse blood concentration of carbaryl. To our knowledge, this is the first report demonstrating that active immunization generates antibodies possessing therapeutic catalytic function in vivo. We propose that active immunization schemes that induce enzymically active antibodies may provide a highly specific therapeutic approach for degrading toxic substances. PMID:11696002

  9. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  10. Fine thermal structure of a coronal active region.

    PubMed

    Reale, Fabio; Parenti, Susanna; Reeves, Kathy K; Weber, Mark; Bobra, Monica G; Barbera, Marco; Kano, Ryouhei; Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro; Peres, Giovanni; Golub, Leon

    2007-12-01

    The determination of the fine thermal structure of the solar corona is fundamental to constraining the coronal heating mechanisms. The Hinode X-ray Telescope collected images of the solar corona in different passbands, thus providing temperature diagnostics through energy ratios. By combining different filters to optimize the signal-to-noise ratio, we observed a coronal active region in five filters, revealing a highly thermally structured corona: very fine structures in the core of the region and on a larger scale further away. We observed continuous thermal distribution along the coronal loops, as well as entangled structures, and variations of thermal structuring along the line of sight.

  11. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales

    PubMed Central

    Stickler, Claudia M.; Coe, Michael T.; Costa, Marcos H.; Nepstad, Daniel C.; McGrath, David G.; Dias, Livia C. P.; Rodrigues, Hermann O.; Soares-Filho, Britaldo S.

    2013-01-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4–8% and 10–12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6–36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  12. Armenia as a Regional Centre for Astronomy for Development activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  13. Effects of snow persistence on streamflow generation in mountain regions of the western U.S.

    NASA Astrophysics Data System (ADS)

    Hammond, J. C.; Kampf, S. K.

    2015-12-01

    In mountain regions, both snowpack trend analyses and modeling studies suggest that streamflow generation is sensitive to loss of snow, yet we still lack understanding of where the most snow-sensitive regions are located. Snow persistence (SP), defined as the fraction of year that an area is snow-covered, is a useful variable for identifying snow-sensitive regions because it is easily observed globally using remote sensing. SP can affect streamflow generation by shifting the timing and magnitude of water input. All other factors being equal, we hypothesize that declining SP decreases the ratio of streamflow to precipitation (runoff ratio), and the magnitude of this effect is greater in arid climates than in humid climates. To evaluate whether streamflow generation declines with decreasing SP, we used the MODSCAG fractional snow cover product and 68 USGS reference catchments across five mountainous regions of the Western U.S. to compute annual and mean annual SP and discharge for water years 2000 to 2011. We used PRISM precipitation to compute the annual and mean annual runoff ratio for each catchment. Results show strong positive relationships between annual SP and annual runoff ratio in the Northern Rockies, Southern Rockies, and Basin and Range, where annual precipitation ranges from 0.25 m at low elevations in the Basin and Range to 2.5 m at high elevations in the Northern Rockies. Mean annual runoff ratios for these regions range from 0.32-0.53, and they also increase with mean annual SP. No relationships between annual SP and runoff ratios are evident in the wetter North Cascades and Sierra Nevada ranges, where annual precipitation ranges from 0.44 m in the low elevation Sierras to 4.8 m in the high elevation Cascades. Mean annual runoff ratios for these regions are 0.53-0.87 and show no clear dependence on SP. These results suggest that streamflow generation in arid regions may be most sensitive to loss of persistent winter snow.

  14. The Antimicrobial Activity of Marinocine, Synthesized by Marinomonas mediterranea, Is Due to Hydrogen Peroxide Generated by Its Lysine Oxidase Activity

    PubMed Central

    Lucas-Elío, Patricia; Gómez, Daniel; Solano, Francisco; Sanchez-Amat, Antonio

    2006-01-01

    Marinocine is a broad-spectrum antibacterial protein synthesized by the melanogenic marine bacterium Marinomonas mediterranea. This work describes the basis for the antibacterial activity of marinocine and the identification of the gene coding for this protein. The antibacterial activity is inhibited under anaerobic conditions and by the presence of catalase under aerobic conditions. Marinocine is active only in culture media containing l-lysine. In the presence of this amino acid, marinocine generates hydrogen peroxide, which causes cell death as confirmed by the increased sensitivity to marinocine of Escherichia coli strains mutated in catalase activity. The gene coding for this novel enzyme was cloned using degenerate PCR with primers designed based on conserved regions in the antimicrobial protein AlpP, synthesized by Pseudoalteromonas tunicata, and some hypothetical proteins. The gene coding for marinocine has been named lodA, standing for lysine oxidase, and it seems to form part of an operon with a second gene, lodB, that codes for a putative dehydrogenase flavoprotein. The identity of marinocine as LodA has been demonstrated by N-terminal sequencing of purified marinocine and generation of lodA mutants that lose their antimicrobial activity. This is the first report on a bacterial lysine oxidase activity and the first time that a gene encoding this activity has been cloned. PMID:16547036

  15. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  16. Generation of multifunctional murine monoclonal antibodies specifically directed to the VP1unique region protein of human parvovirus B19.

    PubMed

    Drechsler, Maik D; Obermeier, Ingrid; Döring, Yvonne; Lackner, Karl J; Modrow, Susanne; von Landenberg, Philipp

    2008-01-01

    Little is known about the VP1unique region (VP1u), a part of one major capsid protein of human parvovirus B19 (B19), concerning its involvement in viral replication and infection cycle. Showing a phospholipase A2 (PLA2)-like activity, which is discussed to be necessary for viral release from host cell, its precise function remains unclear. The purpose of this study was to generate multifunctional monoclonal antibodies (mabs) for different applications that may be useful in investigating VP1u's relevance. To establish antiVP1u antibodies, spleen cells from Balb/c mice immunized with purified recombinant viral protein were used for generating antibody-producing hybridoma cell lines. Usability of the antibodies was tested in enzyme-linked immunosorbent assay (ELISA), Western-blot analysis, immunofluorescence and an inhibition assay of enzymatic activity of PLA2. Three hybridoma cell lines secreting mab's specifically directed against the VP1u protein of B19 could be generated and functioned in every screening method used in this study. These antibodies are helpful tools for investigations in B19 research and diagnosis. Furthermore, the antibodies could help in gaining a deeper understanding of VP1u's role in viral replication and infection especially in the importance of its constitutive PLA2-like activity.

  17. Active control of fan-generated plane wave noise

    NASA Astrophysics Data System (ADS)

    Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.

    1993-08-01

    Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.

  18. Experimental generation of single photons via active multiplexing

    SciTech Connect

    Ma Xiaosong; Zotter, Stefan; Kofler, Johannes; Jennewein, Thomas; Zeilinger, Anton

    2011-04-15

    An on-demand single-photon source is a fundamental building block in quantum science and technology. We experimentally demonstrate the proof of concept for a scheme to generate on-demand single photons via actively multiplexing several heralded photons probabilistically produced from pulsed spontaneous parametric down-conversions (SPDCs). By utilizing a four-photon-pair source, an active feed-forward technique, and an ultrafast single-photon router, we show a fourfold enhancement of the output photon rate. Simultaneously, we maintain the quality of the output single-photon states, confirmed by correlation measurements. We also experimentally verify, via Hong-Ou-Mandel interference, that the router does not affect the indistinguishability of the single photons. Furthermore, we give numerical simulations, which indicate that photons based on multiplexing of four SPDC sources can outperform the heralding based on highly advanced photon-number-resolving detectors. Our results show a route for on-demand single-photon generation and the practical realization of scalable linear optical quantum-information processing.

  19. Active control of fan-generated plane wave noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Nuckolls, William E.; Santamaria, Odillyn L.; Martinson, Scott D.

    1993-01-01

    Subsonic propulsion systems for future aircraft may incorporate ultra-high bypass ratio ducted fan engines whose dominant noise source is the fan with blade passage frequency less than 1000 Hz. This low frequency combines with the requirement of a short nacelle to diminish the effectiveness of passive duct liners. Active noise control is seen as a viable method to augment the conventional passive treatments. An experiment to control ducted fan noise using a time domain active adaptive system is reported. The control sound source consists of loudspeakers arrayed around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. In this first series of tests, the fan is configured so that predominantly zero order circumferential waves are generated. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same. The noise reduction is not as great when the mode orders are not the same even though the noise source modes are evanescent, but the control system converges stably and global noise reduction is demonstrated in the far field. Further experimentation is planned in which the performance of the system will be evaluated when higher order radial and spinning modes are generated.

  20. Structure and polarization of active region microwave emission

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Alissandrakis, C. E.

    1984-01-01

    Active region radio emission observations made at 6.16 cm wavelength during May 20-27, 1980, are the bases of maps of total intensity and circular polarization presented for the three regions whose Hale numbers are 16850, 16863, and 16864. A detailed comparison is made between these maps and on- and off-band H-alpha pictures and magnetograms. The neutral lines with which the strongest sources were associated have their two opposite polarities close to each other, implying a high magnetic field gradient, and are also associated with arch filament systems. A detailed analysis is undertaken of observations of the circular polarization sense inversion in region 16863. The large scale structure of the magnetic field can be approximated by a dipole with its axis inclined by 11 deg with respect to the photosphere, and with a dipole moment of about 2 x 10 to the 31 power cgs units.

  1. IPS observations of heliospheric density structures associated with active regions

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Altrock, R.; Woan, G.; Slater, G.

    1996-01-01

    Interplanetary scintillation (IPS) measurements of the 'disturbance factor' g, obtained with the Cambridge (UK) array can be used to explore the heliospheric density structure. We have used these data to construct synoptic (Carrington) maps, representing the large-scale enhancements of the g-factor in the inner heliosphere. These maps emphasize the stable corotating, rather than the transient heliospheric density enhancements. We have compared these maps with Carrington maps of Fe XIV observations National Solar Observatory ((NSO), Sacramento Peak) and maps based on Yohkoh Soft X-Ray Telescope (SXT) X-ray observations. Our results indicate that the regions of enhanced g tend to map to active regions rather than the current sheet. The implication is that act ve regions are the dominant source of the small-scale (approximately equal 200 km) density variations present in the quiet solar wind.

  2. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  3. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    SciTech Connect

    Ludewigt, Bernhard A.; Antolak, A.J.; Henestroza, E.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.; Kwan, J.W.

    2008-08-01

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the 11B(p,gamma)12C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the 11B(p,gamma)12C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB6 tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 mu s long pulses, and a 1percent duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  4. Diagnostics of Coronal Heating in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Fludra, Andrzej; Hornsey, Christopher; Nakariakov, Valery

    2015-04-01

    We aim to develop a diagnostic method for the coronal heating mechanism in active region loops. Observational constraints on coronal heating models have been sought using measurements in the X-ray and EUV wavelengths. Statistical analysis, using EUV emission from many active regions, was done by Fludra and Ireland (2008) who studied power-law relationships between active region integrated magnetic flux and emission line intensities. A subsequent study by Fludra and Warren (2010) for the first time compared fully resolved images in an EUV spectral line of OV 63.0 nm with the photospheric magnetic field, leading to the identification of a dominant, ubiquitous variable component of the transition region EUV emission and a discovery of a steady basal heating, and deriving the dependence of the basal heating rate on the photospheric magnetic flux density. In this study, we compare models of single coronal loops with EUV observations. We assess to what degree observations of individual coronal loops made in the EUV range are capable of providing constraints on the heating mechanism. We model the coronal magnetic field in an active region using an NLFF extrapolation code applied to a photospheric vector magnetogram from SDO/HMI and select several loops that match an SDO/AIA 171 image of the same active region. We then model the plasma in these loops using a 1D hydrostatic code capable of applying an arbitrary heating rate as a function of magnetic field strength along the loop. From the plasma parameters derived from this model, we calculate the EUV emission along the loop in AIA 171 and 335 bands, and in pure spectral lines of Fe IX 17.1 nm and Fe XVI 33.5 nm. We use different spatial distributions of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints, and investigate their effect on the modelled EUV intensities. We find a diagnostics based on the dependence of the total loop intensity on the shape of the heating function

  5. Electron acceleration and radiation in evolving complex active regions

    NASA Astrophysics Data System (ADS)

    Anastasiadis, A.; Gontikakis, C.; Vilmer, N.; Vlahos, L.

    2004-07-01

    We present a model for the acceleration and radiation of solar energetic particles (electrons) in evolving complex active regions. The spatio - temporal evolution of active regions is calculated using a cellular automaton model, based on self-organized criticality. The acceleration of electrons is due to the presence of randomly placed, localized electric fields produced by the energy release process, simulated by the cellular automaton model. We calculate the resulting kinetic energy distributions of the particles and their emitted X-ray radiation spectra using the thick target approximation, and we perform a parametric study with respect to number of electric fields present and thermal temperature of the injected distribution. Finally, comparing our results with the existing observations, we find that they are in a good agreement with the observed X-ray spectra in the energy range 100-1000 keV.

  6. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  7. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  8. Simulation of Active-Region-Scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Manchester, W.; van der Holst, B.

    2015-12-01

    Shear flows long observed in solar active regions are now understood to be a consequence of the Lorentz force that develops from a complex interaction between magnetic fields and the thermal pressure of the Sun's gravitationally stratified atmosphere. The shearing motions transport magnetic flux and energy from the submerged portion of the field to the corona providing the necessary energy for flares, filament eruptions and CMEs. To further examine this shearing process, we simulate flux emergence on the scale of active regions with a large-scale model of the near surface convection zone constructed on an adaptive spherical grid. This model is designed to simulate flux emerging on the scale of active regions from a depth of 30 Mm. Here, we show results of a twisted flux rope emerging through the hierarchy of granular convection, and examine the flow patterns that arise as the flux approaches the photosphere. We show how these organized flows driven by the Lorentz force cause the coronal field evolve to a highly non-potential configuration capable of driving solar eruptions such as CMEs and flares.

  9. Evidence for coronal turbulence in a quiescent active region

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.; Strong, Keith T.

    1986-01-01

    The first evidence for nonthermal broadening of X-ray lines in a quiescent active region was based on a single observation of a limb active region by the Flat Crystal Spectrometer (FCS) on the SMM satellite, reported by Acton et al. (1981). With the renewal of SMM operations, the FCS has been used to further investigate this phenomenon. On April 28, 1984 a map of Mg XI resonance line profiles was made for a bright area in NOAA Active Region 4474 during a nonflaring period. The narrowest line profiles are consistent with the nominal instrumental width plus a thermal width equivalent to about 3 million K, the temperature derived from line ratios of O VIII, Ne IX, and Mg XI. The broadest line profiles are consistent with the instrumental width plus a thermal width equivalent to about 7 million K, but a substantial amount of plasma at this temperature would result in much greater flux in the FCS higher-temperature channels than was seen. If the excess width is attributed solely to plasma turbulence, the corresponding velocity would be about 40 + or - 10 km/s.

  10. A theoretical approach to spot active regions in antimicrobial proteins

    PubMed Central

    2009-01-01

    Background Much effort goes into identifying new antimicrobial compounds able to evade the increasing resistance of microorganisms to antibiotics. One strategy relies on antimicrobial peptides, either derived from fragments released by proteolytic cleavage of proteins or designed from known antimicrobial protein regions. Results To identify these antimicrobial determinants, we developed a theoretical approach that predicts antimicrobial proteins from their amino acid sequence in addition to determining their antimicrobial regions. A bactericidal propensity index has been calculated for each amino acid, using the experimental data reported from a high-throughput screening assay as reference. Scanning profiles were performed for protein sequences and potentially active stretches were identified by the best selected threshold parameters. The method was corroborated against positive and negative datasets. This successful approach means that we can spot active sequences previously reported in the literature from experimental data for most of the antimicrobial proteins examined. Conclusion The method presented can correctly identify antimicrobial proteins with an accuracy of 85% and a sensitivity of 90%. The method can also predict their key active regions, making this a tool for the design of new antimicrobial drugs. PMID:19906288

  11. Atypical slow waves generated in gastric corpus provide dominant pacemaker activity in guinea pig stomach.

    PubMed

    Hashitani, Hikaru; Garcia-Londoño, A Pilar; Hirst, G David S; Edwards, Frank R

    2005-12-01

    When intracellular recordings were made from the circular layer of the intact muscular wall of the isolated guinea pig gastric corpus, an ongoing regular high frequency discharge of slow waves was detected even though this region lacked myenteric interstitial cells. When slow waves were recorded from preparations consisting of both the antrum and the corpus, slow waves of identical frequency, but with different shapes, were generated in the two regions. Corporal slow waves could be distinguished from antral slow waves by their time courses and amplitudes. Corporal slow waves, like antral slow waves, were abolished by buffering the internal concentration of calcium ions, [Ca2+]i, to low levels, or by caffeine, 2-aminoethoxydiphenyl borate or the chloride channel blocker DIDS. Corporal preparations demonstrated an ongoing discharge of unitary potentials, as has been found in all other tissues containing interstitial cells. The experiments show that the corpus provides the dominant pacemaker activity which entrains activity in other regions of the stomach and it is suggested that this activity is generated by corporal intramuscular interstitial cells.

  12. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ∼ 700–1200 km s‑1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ∼{10}11.5 cm‑3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  13. Two generations of Canadian active imaging systems: ALBEDOS and ELVISS

    NASA Astrophysics Data System (ADS)

    Larochelle, Vincent; Mathieu, Pierre; Simard, Jean-Robert

    1999-07-01

    Search and rescue and general surveillance mission pose a serious challenge to conventional imaging systems used by actual aircraft crews. These systems must often work in low- light and low-visibility conditions to find the identify targets. A new airborne imaging technology has been developed to overcome several deficiencies encountered with common CCD cameras, image intensified system and thermal imaging sensors. The recent developments in laser diode arrays, laser diode beam collimation and gatable micro- channel plate intensifier have made possible the construction of a compact active imagin system, called the Airborne Laser-Based Enhanced Detection and Observation Systems (ALBEDOS). This system proved particularly efficient at night and in degraded weather conditions. In addition, it was demonstrated that range gating, besides eliminating most of the light backscattered by aerosols, provided to some extent immunity to blooming effects specific to highly sensitive cameras. The system was installed on a helicopter and tested in various scenarios in October 1995 to demonstrate its potential. To enhance the surveillance capability over large areas of coverage, to optimize detection of humans and small objects and to improve the effectiveness of the search aircraft, a second-generation payload is presently developed and combines the benefits of two complementary imaging sensors. The Enhanced Low-Light level Visible and IR Surveillance System (ELVISS) consists of an improved range-gated active imager and a high-quality thermal imager, installed in two separate airborne platforms slaved together and controlled by a single user interface. It is expected that such a sensor systems will have a direct impact on improving the response time in finding those in need of assistance or simply in increasing the performance, reliability and efficiency of crews involved in general surveillance operations. This paper explains the concept of range gating, details a preliminary

  14. Unleashing creativity: The role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas.

    PubMed

    Mayseless, Naama; Aharon-Peretz, Judith; Shamay-Tsoory, Simone

    2014-11-01

    Human creativity is thought to entail two processes. One is idea generation, whereby ideas emerge in an associative manner, and the other is idea evaluation, whereby generated ideas are evaluated and screened. Thus far, neuroimaging studies have identified several brain regions as being involved in creativity, yet only a handful of studies have examined the neural basis underlying these two processes. We found that an individual with left temporoparietal hemorrhage who had no previous experience as an artist developed remarkable artistic creativity, which diminished as the hemorrhage receded. We thus hypothesized that damage to the evaluation network of creativity during the initial hematoma had a releasing effect on creativity by "freeing" the idea generation system. In line with this hypothesis, we conducted a subsequent fMRI study showing that decreased left temporal and parietal activations among healthy individuals as they evaluated creative ideas selectively predicted higher creativity. The current studies provide converging multi-method evidence suggesting that the left temporoparietal area is part of a neural network involved in evaluating creativity, and that as such may act as inhibitors of creativity. We propose an explanatory model of creativity centered upon the key role of the left temporoparietal regions in evaluating and inhibiting creativity. PMID:25261613

  15. Mapping of Fugitive Dust Generation, Transport, and Deposition in the Nogales, Arizona Region Using Enhanced Thematic Mapper Plus (ETM+) Data

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Stefanov, W. L.; Ramsey, M. S.; Christensen, P. R.

    2001-05-01

    Urban centers located along the U.S.-Mexico border represent significant sources of fugitive (airborne) dust. This dust, which can lead to adverse health effects, arises from several factors including construction activities related to land use conversion (i.e., agricultural to residential), unpaved roadways, agricultural activities, and human disturbance of the soil. Fundamental baseline data needed for modeling and monitoring of particulate generation and transport are accurate regional classification of land cover, degree of disturbance, and a metric of land cover change. Identification and delineation of fugitive dust source regions using a purely field-based approach is time and labor intensive and can lead to errors over time as land use changes. Further, restrictions on access to specific areas (such as private lands and reservations) may impede or prevent site investigations in these areas. Remotely gathered information can be used to circumvent these difficulties and provide rapid dust source region identification with quantitative area measurements required in transport models. Landsat ETM+ data was used to identify and delineate surficial materials that were either potential fugitive dust source regions or were important factors in dust transport and deposition. Using a knowledge-based system, land cover was classified into three generalized types: natural and disturbed soils (dust generation sites); asphalt, concrete, and urban materials (dust transport areas); and vegetated areas (dust deposition sites). Accuracy of the land cover classification was assessed using field verification, comparison of field and image reflectance spectra, and digital aerial orthophotographs. Results of image classification and field verification for Landsat data acquired during the winter of 2000 show a strong correlation, and will be used with data collected during the summer dry season for change detection analysis. The digital format of the classified data is optimal for

  16. Regional differences in muscle activation during hamstrings exercise.

    PubMed

    Schoenfeld, Brad J; Contreras, Bret; Tiryaki-Sonmez, Gul; Wilson, Jacob M; Kolber, Morey J; Peterson, Mark D

    2015-01-01

    It is believed that regional activation within a muscle may lead to greater site-specific muscular adaptations in the activated portion of the muscle. Because the hamstrings are a biarticular muscle, it can be theorized that single-joint exercises where movement originates at the hip vs. the knee will result in differential activation of the muscle complex. The purpose of the present study was to assess electromyographic activity in the proximal and distal aspects of the medial and lateral hamstrings during performance of the stiff-legged deadlift (SLDL), a hip-dominant exercise, and the lying leg curl (LLC), a knee-dominant exercise. Ten young, resistance-trained men were recruited from a university population to participate in the study. Employing a within-subject design, participants performed the SLDL and LLC to muscular failure using a load equating to their 8 repetition maximum for each exercise. The order of performance of exercises was counterbalanced between participants so that approximately half of the subjects performed SLDL first and the other half performed LLC first. Surface electromyography was used to record mean normalized muscle activity of the upper lateral hamstrings, lower lateral hamstrings, upper medial hamstrings, and lower medial hamstrings. Results showed that the LLC elicited significantly greater normalized mean activation of the lower lateral and lower medial hamstrings compared with the SLDL (p ≤ 0.05). These findings support the notion that the hamstrings can be regionally targeted through exercise selection. Further investigations are required to determine whether differences in activation lead to greater muscular adaptations in the muscle complex. PMID:24978835

  17. Active region upflows. II. Data driven magnetohydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    Galsgaard, K.; Madjarska, M. S.; Vanninathan, K.; Huang, Z.; Presmann, M.

    2015-12-01

    Context. Observations of many active regions show a slow systematic outflow/upflow from their edges lasting from hours to days. At present no physical explanation has been proven, while several suggestions have been put forward. Aims: This paper investigates one possible method for maintaining these upflows assuming, that convective motions drive the magnetic field to initiate them through magnetic reconnection. Methods: We use Helioseismic and Magnetic Imager (HMI) data to provide an initial potential 3D magnetic field of the active region NOAA 11123 on 2010 November 13 where the characteristic upflow velocities are observed. A simple 1D hydrostatic atmospheric model covering the region from the photosphere to the corona is derived. Local correlation tracking of the magnetic features in the HMI data is used to derive a proxy for the time dependent velocity field. The time dependent evolution of the system is solved using a resistive 3D magnetohydrodynamic code. Results: The magnetic field contains several null points located well above the photosphere, with their fan planes dividing the magnetic field into independent open and closed flux domains. The stressing of the interfaces between the different flux domains is expected to provide locations where magnetic reconnection can take place and drive systematic flows. In this case, the region between the closed and open flux is identified as the region where observations find the systematic upflows. Conclusions: In the present experiment, the driving only initiates magneto-acoustic waves without driving any systematic upflows at any of the flux interfaces. Movie is available in electronic form at http://www.aanda.org

  18. On the Periodicity of Energy Release in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Goldvarg, T. B.; Nagovitsyn, Yu. A.; Solov'Ev, A. A.

    2005-06-01

    We investigate the periodic regimes of energy release on the Sun, namely, the recurrence of solar flares in active regions using the Solar Geophysical Data Journal on Hα flares from 1979 until 1981, which corresponds to the maximum of solar cycle 21. We obtained the following series of periods in the manifestation of flare activity bymeans of a correlation periodogram analysis, a self-similarity function, and a wavelet analysis: ˜1, 2, 3 h as well as ˜0.4, 1, 2, 5 days. We suggest a diffusive model for the quasi-periodic transfer of toroidal magnetic fields from under the photosphere to interpret the retrieved sequence of periods in the enhancement of flare activity. We estimated the typical spatial scales of the magnetic field variations in the solar convection zone: ˜17 000 km.

  19. Microfluidic Platform Generates Oxygen Landscapes for Localized Hypoxic Activation

    PubMed Central

    Rexius, Megan L.; Mauleon, Gerardo; Malik, Asrar B.; Rehman, Jalees; Eddington, David T.

    2014-01-01

    An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes. PMID:25315003

  20. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  1. FORMATION OF CORONAL HOLES ON THE ASHES OF ACTIVE REGIONS

    SciTech Connect

    Karachik, Nina V.; Pevtsov, Alexei A.; Abramenko, Valentyna I. E-mail: apevtsov@nso.ed

    2010-05-10

    We investigate the formation of isolated non-polar coronal holes (CHs) on the remnants of decaying active regions (ARs) at the minimum/early ascending phase of sunspot activity. We follow the evolution of four bipolar ARs and measure several parameters of their magnetic fields including total flux, imbalance, and compactness. As regions decay, their leading and following polarities exhibit different dissipation rates: loose polarity tends to dissipate faster than compact polarity. As a consequence, we see a gradual increase in flux imbalance inside a dissipating bipolar region, and later a formation of a CH in place of more compact magnetic flux. Out of four cases studied in detail, two CHs had formed at the following polarity of the decaying bipolar AR, and two CHs had developed in place of the leading polarity field. All four CHs contain a significant fraction of magnetic field of their corresponding AR. Using potential field extrapolation, we show that the magnetic field lines of these CHs were closed on the polar CH at the North, which at the time of the events was in imbalance with the polar CH at the South. This topology suggests that the observed phenomenon may play an important role in transformation of toroidal magnetic field to poloidal field, which is a key step in transitioning from an old solar cycle to a new one. The timing of this observed transition may indicate the end of solar cycle 23 and the beginning of cycle 24.

  2. Helioseismology of pre-emerging active regions. III. Statistical analysis

    SciTech Connect

    Barnes, G.; Leka, K. D.; Braun, D. C.; Birch, A. C.

    2014-05-01

    The subsurface properties of active regions (ARs) prior to their appearance at the solar surface may shed light on the process of AR formation. Helioseismic holography has been applied to samples taken from two populations of regions on the Sun (pre-emergence and without emergence), each sample having over 100 members, that were selected to minimize systematic bias, as described in Paper I. Paper II showed that there are statistically significant signatures in the average helioseismic properties that precede the formation of an AR. This paper describes a more detailed analysis of the samples of pre-emergence regions and regions without emergence based on discriminant analysis. The property that is best able to distinguish the populations is found to be the surface magnetic field, even a day before the emergence time. However, after accounting for the correlations between the surface field and the quantities derived from helioseismology, there is still evidence of a helioseismic precursor to AR emergence that is present for at least a day prior to emergence, although the analysis presented cannot definitively determine the subsurface properties prior to emergence due to the small sample sizes.

  3. ActivitySim: large-scale agent based activity generation for infrastructure simulation

    SciTech Connect

    Gali, Emmanuel; Eidenbenz, Stephan; Mniszewski, Sue; Cuellar, Leticia; Teuscher, Christof

    2008-01-01

    The United States' Department of Homeland Security aims to model, simulate, and analyze critical infrastructure and their interdependencies across multiple sectors such as electric power, telecommunications, water distribution, transportation, etc. We introduce ActivitySim, an activity simulator for a population of millions of individual agents each characterized by a set of demographic attributes that is based on US census data. ActivitySim generates daily schedules for each agent that consists of a sequence of activities, such as sleeping, shopping, working etc., each being scheduled at a geographic location, such as businesses or private residences that is appropriate for the activity type and for the personal situation of the agent. ActivitySim has been developed as part of a larger effort to understand the interdependencies among national infrastructure networks and their demand profiles that emerge from the different activities of individuals in baseline scenarios as well as emergency scenarios, such as hurricane evacuations. We present the scalable software engineering principles underlying ActivitySim, the socia-technical modeling paradigms that drive the activity generation, and proof-of-principle results for a scenario in the Twin Cities, MN area of 2.6 M agents.

  4. Feasibility study on introduction of the bio-fuel power generation in tropical regions

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Study is made on feasibility of introducing the bio-fuel power generation in tropical regions, especially in South East Asia including Okinawa and South America. Biomass promising as bio-fuel is bagasse and palm oil mill dregs; and bagasse is found to be advantageous to the use for large-scaled power generation. Prospective uses of bagasse are a combined use of gasification process and gas turbine power generation, an effective use of gas turbine exhaust heat at sugar cane factories, and a use of the system to be developed which totalizes these two. As to how to carry out the R and D project, since the gasification power generation process itself is a high technology and has partially unknown fields, it is desirable that research and development are conducted in such technologically developed countries as Japan (Okinawa). A developmental plan, therefore, is worked out as such that a pilot plant of approximately 3000kW is to be constructed in Okinawa because the period for bagasse production is at least 3 months there, and a commercial-scale plant is to be constructed and operated in such big bagasse-producing countries as Brazil.

  5. Active tectonics and earthquake potential of the Myanmar region

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  6. Time Dependence of Joy's Law for Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Zhang, J.; Liu, Y.

    2013-07-01

    Joy's law governs the tilt of Active Regions (ARs) with respect to their absolute heliographic latitude. Together with Hale's law of hemispheric polarity, it is essential in constraining solar dynamo models. However, previous studies on Joy's law show only a weak positive trend between AR tilt angles and latitudes. In this study, we are focusing on the time dependence of Joy's law, for the cases of emerging ARs of Solar Cycle 24. We selected 40 ARs that emerge on the East hemisphere, effectively maximizing the observing time for each AR. Then, by converting the helioprojective maps into heliographic, we determine the geometrical as well as the magnetic-flux-weighted centroids for each emergence case. That way we are able to track the temporal evolution of their physical properties, including locations, fluxes of positive and negative polarities, as well as the tilt angles of these regions in a continuous manner until emergence stops and the ARs assume their final state.

  7. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  8. Influence of the Cardiac Myosin Hinge Region on Contractile Activity

    NASA Astrophysics Data System (ADS)

    Margossian, Sarkis S.; Krueger, John W.; Sellers, James R.; Cuda, Giovanni; Caulfield, James B.; Norton, Paul; Slayter, Henry S.

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the antihinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  9. Influence of the cardiac myosin hinge region on contractile activity.

    PubMed

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  10. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s‑1) as well as modest non-thermal velocities (with an average of ˜24 km s‑1 and the peak of the distribution at ˜15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  11. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  12. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s-1) as well as modest non-thermal velocities (with an average of ˜24 km s-1 and the peak of the distribution at ˜15 km s-1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  13. From snakes to region-based active contours defined by region-dependent parameters.

    PubMed

    Jehan-Besson, Stéphanie; Gastaud, Muriel; Precioso, Frédéric; Barlaud, Michel; Aubert, Gilles; Debreuve, Eric

    2004-01-10

    Image and sequence segmentation of a the segmentation task are discussed from the point of view of optimizing the segmentation criterion. Such a segmentation criterion involves so-called (boundary and region) descriptors, which, in general, may depend on their respective boundaries or regions. This dependency must be taken into account when one is computing the criterion derivative with respect to the unknown object domain (defined by its boundary). If this dependency not considered, some correctional terms may be omitted. Computing the derivative of the segmentation criterion with a dynamic scheme is described. The scheme is general enough to provide a framework for a wide variety of applications in segmentation. It also provides a theoretical meaning to the philosophy of active contours.

  14. The coronal and transition region temperature structure of a solar active region

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Pye, J. P.

    1980-01-01

    Using measurements of EUV and X-ray spectral lines, the differential emission measure vs electron temperature from the transition region to the corona of an active region (electron temperature between 100,000 and 5,000,000 K) is derived. The total emission measure and radiative losses are of the order 3 x 10 to the 48th/cu cm and 4 x 10 to the 26th ergs/sec, respectively. The emission measure at electron temperatures greater than approximately 1,000,000 K (i.e. that mainly responsible for the X-ray emission) is about 75% of the total. The use of the Mg x line at 625 A as an indicator of coronal electron density is also examined. A set of theoretical energy balance models of coronal loops in which the loop divergence is a variable parameter is presented and compared with the observations.

  15. Generation and reactivation of T-cell receptor A joining region pseudogenes in primates

    SciTech Connect

    Thiel, C.; Lanchbury, J.S.; Otting, N.

    1996-06-01

    Tandemly duplicated T-cell receptor (Tcr) AJ (J{alpha}) segments contribute significantly to TCRA chain junctional region diversity in mammals. Since only limited data exists on TCRA diversity in nonhuman primates, we examined the TCRAJ regions of 37 chimpanzee and 71 rhesus macaque TCRA cDNA clones derived from inverse polymerase chain reaction on peripheral blood mononuclear cell cDNA of healthy animals. Twenty-five different TCRAJ regions were characterized in the chimpanzee and 36 in the rhesus macaque. Each bears a close structural relationship to an equivalent human TCRAJ region. Conserved amino acid motifs are shared between all three species. There are indications that differences between nonhuman primates and humans exist in the generation of TCRAJ pseudogenes. The nucleotide and amino acid sequences of the various characterized TCRAJ of each species are reported and we compare our results to the available information on human genomic sequences. Although we provide evidence of dynamic processes modifying TCRAJ segments during primate evolution, their repertoire and primary structure appears to be relatively conserved. 21 refs., 2 figs.

  16. Demolition waste generation for development of a regional management chain model.

    PubMed

    Bernardo, Miguel; Gomes, Marta Castilho; de Brito, Jorge

    2016-03-01

    Even though construction and demolition waste (CDW) is the bulkiest waste stream, its estimation and composition in specific regions still faces major difficulties. Therefore new methods are required especially when it comes to make predictions limited to small areas, such as counties. This paper proposes one such method, which makes use of data collected from real demolition works and statistical information on the geographical area under study. Based on a correlation analysis between the demolition waste estimates and indicators such as population density, buildings ageing index, buildings density and land occupation type, relationships are established that can be used to determine demolition waste outputs in a given area. The derived models are presented and explained. This methodology is independent from the specific region with which it is exemplified (the Lisbon Metropolitan Area) and can therefore be applied to any region of the world, from the country to the county level. Generation of demolition waste data at the county level is the basis of the design of a systemic model for CDW management in a region. Future developments proposed include a mixed-integer linear programming formulation of such recycling network. PMID:26838607

  17. Lightning activity variation during the evolution of tropical cyclones in the southwest Pacific region

    NASA Astrophysics Data System (ADS)

    Chandra, A.; Kumar, S.; Kumar, A.

    2015-12-01

    The South Pacific Island countries are vulnerable to natural hazards which cause devastating effects on infrastructure, crops and at times loss of lives and many others. Tropical cyclones (TCs) are one type of natural hazard experienced by Pacific Island countries (PICs). The South Pacific region has two seasons, namely: the cyclone season, running from November to April, and the non-cyclone season, running from May to October. Tropical cyclones are associated with strong winds, rainfall, and thunderstorms generating strong lightning discharges. The analysis of lightning data obtained from the World Wide Lightning Locations Network for the southwest Pacific region, defined as the region bounded between geographic coordinates, latitudes 0 - 40°S, longitudes 135°E - 120°W, during 2013 clearly shows the lightning activity to be higher during the cyclone season due to increased convective activity. The change in the lightning activity with the intensity of 41 TCs of categories 2 to 5 occurring in the southwest Pacific region has been analysed for the years 2005 to 2013. The intensity measurements, as determined by maximum sustained winds and the lightning activity, as determined by flash counts were studied during the stages of evolution of these TCs. Taking into account the lag between peak lightning activity and peak maximum sustained wind, the two quantities; lightning activity and intensity for individual TCs were correlated. Square 10° grid sizes were used along with radial sections to quantify lightning. We quantify lightning occurrences in three distinct sections of the cyclone (eyewall, inner and outer rainbands) to clearly show the lightning characteristics within these different regions. Lightning activity is seen to be greatly variable between different storms, however we do observe lightning outbreaks in the eyewall prior to the intensification of the storm.

  18. Implications of Special Regions to Conducting Human Activities on Mars

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Barlow, N. G.; Beaty, D. W.; Jones, M. A.; Hipkin, V.

    2014-12-01

    A MEPAG Science Analysis Group (SAG) has undertaken an analysis of Special Regions (SR) on Mars—regions where indigenous martian life could exist or where Earth microbes, if introduced, could survive and reproduce. The SR-SAG has considered the impact of SR on future human activities on the martian surface. Human exploration requires access to in-situ resources, some of which may be found in SR. Water and oxygen for ISRU are found in the atmosphere, surface/near-surface ice, hydrated minerals, and perchlorates. Water ice is most abundant at latitudes poleward of ~60 degrees, but polar darkness, cold temperatures, and CO2 degassing present hazards to human operations in these regions. Accessible water is more limited toward the equator, though temperature and solar energy conditions become more favorable. The possible presence of liquid water in Recurring Slope Lineae and active gullies leads to their treatment as SR. Fuel for surface operations and propellants for crew ascent could be manufactured from the martian atmosphere and surface materials, but dust in the atmosphere may clog ISRU equipment and perchlorate is toxic to humans. Power may be produced from solar or nuclear energy. Reliance on solar energy limits operations to the equatorial zone where easily accessible ice resources are limited. Nuclear power allows surface operations at a range of latitudes, but waste heat could convert some non-SR into SR. Radiation shielding is necessary for long-term human operations on Mars and could be obtained by deposition of regolith or by water storage in tanks or as ice around habitats, or the use of underground habitats. SR-SAG recognizes that it will be impossible for all human-associated processes and operations to be conducted within entirely closed systems. Protocols need to be established so (1) human missions to Mars will not contaminate SR nor be contaminated by materials from them, and (2) human activities on Mars will avoid converting areas into SR.

  19. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect

    Morgan, Huw; Jeska, Lauren; Leonard, Drew

    2013-06-01

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  20. Chromospheric Evolution and the Flare Activity of Super-Active Region NOAA 6555

    NASA Technical Reports Server (NTRS)

    PrasadC, Debi; Ambastha, Ashok; Srivastava, Nandita; Tripathy, Sushanta C.; Hagyard, Mona J.

    1997-01-01

    Super-active region NOAA 6555 was highly flare productive during the period March 21st - 27th, 1991 of its disk passage. We have studied its chromospheric activity using high spatial resolution H alpha filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.

  1. Hinode Observations of an Eruption from a Sigmoidal Active Region

    NASA Astrophysics Data System (ADS)

    Green, L. M.; Wallace, A. J.; Kliem, B.

    2012-08-01

    We analyse the evolution of a bipolar active region which produces an eruption during its decay phase. The soft X-ray arcade develops high shear over a time span of two days and transitions to sigmoidal shortly before the eruption. We propose that the continuous sigmoidal soft X-ray threads indicate that a flux rope has formed which is lying low in the solar atmosphere with a bald patch separatrix surface topology. The formation of the flux rope is driven by the photospheric evolution which is dominated by fragmentation of the main polarities, motion due to supergranular flows and cancellation at the polarity inversion line.

  2. SOI/MDI studies of active region seismology and evolution

    NASA Technical Reports Server (NTRS)

    Tarbell, Ted D.; Title, Alan; Hoeksema, J. Todd; Scherrer, Phil; Zweibel, Ellen

    1995-01-01

    The solar oscillations investigation (SOI) will study solar active regions using both helioseismic and conventional observation techniques. The Michelson Doppler imager (MDI) can perform Doppler continuum and line depth imagery and can produce longitudinal magnetograms, showing either the full disk or a high resolution field of view. A dynamics program of continuous full disk Doppler observations for two months per year, campaign programs of eight hours of continuous observation per day, and a synoptic magnetic program of about 15 full disk magnetograms per day, are planned. The scientific plans, measurements and observation programs, are described.

  3. The distribution of maximum temperatures of coronal active region loops

    NASA Technical Reports Server (NTRS)

    Teske, R. G.; Mayfield, E. B.

    1981-01-01

    Starting with the integrated emission measure distributions of solar active regions, the distribution of the maximum temperature parameter which characterizes individual plasma loops is determined. The observed emission measure distributions were determined by combining EUV and X-ray data from two separate experiments on ATM/Skylab. The present work sets some limits on such an approach. It is found that the distribution of maximum temperature has approximately the same shape as the integrated emission measure distributions, a result which is expected since most of the loop emission measure is near their maximum temperatures.

  4. Substrate-emitting semiconductor laser with a trapezoidal active region

    SciTech Connect

    Dikareva, N V; Nekorkin, S M; Karzanova, M V; Zvonkov, B N; Aleshkin, V Ya; Dubinov, A A; Afonenko, A A

    2014-04-28

    Semiconductor lasers with a narrow (∼2°) directional pattern in the planes both parallel and perpendicular to the p–n junction are fabricated. To achieve a low radiation divergence in the p–n junction plane, the active region in this plane was designed in the form of a trapezium. The narrow directional pattern in the plane perpendicular to the p–n junction was ensured by the use of a leaky mode, through which more than 90% of laser power was coupled out. (lasers)

  5. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  6. Peptides of the Constant Region of Antibodies Display Fungicidal Activity

    PubMed Central

    Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C.; Pinto, Marcia R.; Travassos, Luiz R.; Pertinhez, Thelma A.; Spisni, Alberto; Conti, Stefania

    2012-01-01

    Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523

  7. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions

    PubMed Central

    Kim, Hanna; Erlich, Henry A.; Calloway, Cassandra D.

    2015-01-01

    Aim To apply massively parallel and clonal sequencing (next generation sequencing or NGS) to the analysis of forensic mixed samples. Methods A duplex polymerase chain reaction (PCR) assay targeting the mitochondrial DNA (mtDNA) hypervariable regions I/II (HVI/HVII) was developed for NGS analysis on the Roche 454 GS Junior instrument. Eight sets of multiplex identifier-tagged 454 fusion primers were used in a combinatorial approach for amplification and deep sequencing of up to 64 samples in parallel. Results This assay was shown to be highly sensitive for sequencing limited DNA amounts ( ~ 100 mtDNA copies) and analyzing contrived and biological mixtures with low level variants ( ~ 1%) as well as “complex” mixtures (≥3 contributors). PCR artifact “hybrid” sequences generated by jumping PCR or template switching were observed at a low level (<2%) in the analysis of mixed samples but could be eliminated by reducing the PCR cycle number. Conclusion This study demonstrates the power of NGS technologies targeting the mtDNA HVI/HVII regions for analysis of challenging forensic samples, such as mixtures and specimens with limited DNA. PMID:26088845

  8. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  9. Active Region Magnetic Structure Observed in the Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Metcalf, Thomas R.

    2001-01-01

    The magnetic flux above sunspots and plage in NOAA (National Oceanic and Atmospheric Administration) Active Region 8299 has been measured in the photosphere and the chromosphere. We investigate the vertical magnetic structure above the umbrae, penumbrae and plage regions using quantitative statistical comparisons of the photospheric and chromospheric vector magnetic flux data. The results include: (1) a decrease in flux with height, (2) the direct detection of the superpenumbral canopy in the chromosphere, (3) values for dB/dz which are consistent with earlier investigations when derived from a straight difference between the two datasets but quite low when derived from the delta x B = 0 condition, (4) a monolithic structure in the umbra which extends well into the upper chromosphere with a very complex and varied structure in the penumbra and plage, as evidenced by (5) a uniform magnetic scale height in the umbrae with an abrupt jump to widely varying scale heights in the penumbral and plage regions. Further, we find (6) evidence for a very large (delta z approximately equals 3Mm) height difference between the atmospheric layers sampled in the two magnetograms, almost a factor of three larger than that implied by atmospheric models. We additionally test the apropriateness of using photospheric magnetic flux as a boundary for field-line extrapolations, and find a better agreement with observed coronal structure when the chromospheric flux is used as a boundary.

  10. Plasma Beta Above a Solar Active Region: Rethinking the Paradigm

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In this paper, we present a model of the plasma beta above an active region and discuss its consequences in terms of coronal magnetic field modeling. The beta-plasma model is representative and derived from a collection of sources. The resulting beta variation with height is used to emphasize the assumption that the magnetic pressure dominates over the plasma pressure must be carefully considered depending on what part of the solar atmosphere is being considered. This paper points out (1) that the paradigm that the coronal magnetic field can be constructed from a force-free magnetic field must be used in the correct context, since the forcefree region is sandwiched between two regions which have beta greater than 1, (2) that the chromospheric MgIICIV magnetic measurements occur near the beta-minimum, and (3) that, moving from the photosphere upwards, beta can return to 1 at relatively low coronal heights, e.g. R approximately 1.2R(sub)s.

  11. Women's income generation activities in Merowe Province, Northern State, Sudan.

    PubMed

    Pitamber, S; Osama, S

    1994-06-01

    Merowe province in rural northern Sudan has been divided into three local government council areas: Merowe, Karima, and Ed Debba. A government program was instituted to increase the welfare of residents and food production. A baseline survey of 490 respondents was conducted in order to ascertain how illiterate women viewed development in the area and to provide useful information for program design and implementation. Women from 24 villages were administered questionnaires, observed in their daily activities, and engaged in discussion in a local meeting place. Discussions were also held with members of the local Popular Committee. Demographic information was very sketchy about age, and 48% had no formal education in writing and reading. General reading and writing skills of the remainder were very poor. There were 500 female children and 502 male children, and the sex ratio varied among the 3 council areas. 52% were married and 14% were divorced or widowed and living with relatives. The average monthly income was from Ls. 700 to Ls. 3000 based on reports from only 59.3% of respondents. Most of the women had skills in food processing and 25.7% were skilled in handicrafts. Water was obtained primarily from local wells and not decontaminated before use. Pit latrines were the standard. One bathing facility was available in the compound for the entire council area. Health units were either in each village or within 20-30 minutes walk. Child mortality was 4.3% in Merowe province. 77 children 0-5 years old died out of a total of 1002 live births. Life expectancy was 41-50 years for women and 61-70 years for men. Cleanliness and healthful eating were observed. 58% owned no land; plots were under 5 feddans and usually half a feddan. 92.1% had no bank account and 90% had no experience with loans. 70.2% were indifferent about involvement in an income generation program. 26% were interested in part-time participation. Only 3.9% desired full-time participation. 8.6% said they

  12. Morphological characteristics of disturbances generated in the polar cap region of the upper thermosphere

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hitoshi

    Recent radar and satellite observations have shown various disturbances in the polar cap region of the upper thermosphere. For example, the European incoherent scatter (EISCAT) radar, Super Dual Auroral Radar Network (SuperDARN), and CHAMP satellite observations have revealed ionospheric and thermospheric variations due to energy inputs from the magnetosphere. From the simultaneous observations with the EISCAT Svalbard radar and CUTLASS radar, Fujiwara et al. [2007] showed existence of significant heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events. Bruinsma and Forbes [2007] showed trans-polar propagation of the traveling atmospheric disturbances (TADs) in connection with three sudden injections of energy at high latitudes from the CHAMP mass density observations. In the present study, we focus our attention on both disturbances directly generated in the polar cap region of the upper thermosphere and those propagating from other regions. We perform numerical simulations with a general circulation model, which includes all the atmospheric regions, developed by Miyoshi and Fujiwara [2003]. The morphological characteristics of the disturbances due to auroral particle precipitation and electric field enhancement are investigated here. References: Bruinsma, S., and J. M. Forbes, Global observation of traveling atmospheric disturbances (TADs) in the thermosphere, Geophys. Res., Lett., 34, L14103, doi: 10.1029/2007GL030243, 2007. Fujiwara, H., R. Kataoka, M. Suzuki, S. Maeda, S. Nozawa, K. Hosokawa, H. Fukunishi, N. Sato, and M. Lester, Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations, Ann. Geophys., 25, 2393-2403, 2007. Miyoshi, Y., and H. Fujiwara, Day-to-day variations of migrating diurnal tide simulated by a GCM from the ground surface to the

  13. Conjugation between quinolone-susceptible bacteria can generate mutations in the quinolone resistance-determining region, inducing quinolone resistance.

    PubMed

    Pitondo-Silva, André; Martins, Vinicius Vicente; Silva, Carolina Fávero da; Stehling, Eliana Guedes

    2015-02-01

    Quinolones are an important group of antibacterial agents that can inhibit DNA gyrase and topoisomerase IV activity. DNA gyrase is responsible for maintaining bacteria in a negatively supercoiled state, being composed of subunits A and B. Topoisomerase IV is a homologue of DNA gyrase and consists of two subunits codified by the parC and parE genes. Mutations in gyrA and gyrB of DNA gyrase may confer resistance to quinolones, and the majority of resistant strains show mutations between positions 67 and 106 of gyrA, a region denoted the quinolone resistance-determining region (QRDR). The most frequent substitutions occur at positions 83 and 87, but little is known about the mechanisms promoting appearance of mutations in the QRDR. The present study proposes that some mutations in the QRDR could be generated as a result of the natural mechanism of conjugation between bacteria in their natural habitat. This event was observed following conjugation in vitro of two different isolates of quinolone-susceptible Pseudomonas aeruginosa, which transferred plasmids of different molecular weights to a recipient strain of Escherichia coli (HB101), also quinolone-susceptible, generating two different transconjugants that presented mutations in DNA gyrase and acquisition of resistance to all quinolones tested. PMID:25262036

  14. Magnetic helicity and free energy in solar active regions

    NASA Astrophysics Data System (ADS)

    Moraitis, K.; Georgoulis, M.; Tziotziou, K.; Archontis, V.

    2013-09-01

    We study the evolution of the non-potential free magnetic energy and relative magnetic helicity budgets in solar active regions (ARs). For this we use a time-series of a three-dimensional, synthetic AR produced by magnetohydrodynamical (MHD) simulations. As a first step, we calculate the potential magnetic field that has the same normal components with the MHD field along all boundaries of the AR, by solving Laplace's equation. The free magnetic energy of the AR is then easily derived. From the two fields, MHD and potential one, we calculate the corresponding vector potentials with a recently proposed integration method. The knowledge of both fields and their respective vector potentials throughout the AR, allows us to estimate the relative magnetic helicity budget of the AR. Following this procedure for each snapshot of the AR, we reconstruct the evolution of free energy and helicity in the AR. Our method reproduces, for a synthetic AR, the energy/helicity relations known to hold in real active regions.

  15. Multi-Wavelength Study of Active Region Loop Dynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, D.

    2006-11-01

    Observations have revealed the existence of weak transient disturbances in extended coronal loop systems. These propagating disturbances (PDs) originate from small scale brightenings at the footpoints of the loops and propagate upward along the loops. In all cases observed, the projected propagation speed is close to, but below the expected sound speed in the loops. This suggests that the PDs could be interpreted as slow mode MHD waves. Interpreting the oscillation in terms of different wave modes and/or plasma motions always depend on the line of sight as we observe in the limb or on the center of the disk. The JOP 165 campaign will address some of these questions. MDI and TRACE photospheric and UV imaging of TRACE and SPIRIT have been acquired simultaneously with high temporal and spatial coverage along with the spectroscopic data from CDS. EIT was operated in the shutter-less mode to achieve high Cadence. Some of the off- limb active region dynamics and oscillations observed during this JOP campaign will be focused in this presentation. Plasma condensations and temporal variations in active region loops will be also addressed.

  16. Magnetic field measurements in and above a limb active region

    NASA Astrophysics Data System (ADS)

    Philip, Judge

    2013-07-01

    We analyze spectropolarimetric data of a limb active region (NOAA 11302) obtained on September 22nd 2011 using the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope (DST). Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm were obtained in three scans over a 45"x75" area. Simultaneous narrow band Ca II K and G-band intensity data were acquired with a cadence of 5s at the DST. The He I data show not only typical active region polarization signatures, but also signatures in plumes -- cool post flare loops -- which extend many Mm into the corona across the visible limb. The plumes have remarkably uniform brightness, and the plume plasma is significantly Doppler shifted as it drains from the corona. Using carefully constructed observing and calibration sequences and applying Principal Component Analysis to remove instrumental artifacts, we achieved a polarization sensitivity approaching 0.02%. With this sensitivity we attempt to diagnose the vector magnetic fields and plasma properties of chromospheric and cool coronal material in and above NOAA 11302. Inversions using various radiative transfer models in the HAZEL code are remarkably consistent with the idea that plume spectra are formed in a simple, slab-like geometry, but that the ``disk'' spectra are formed under more traditional models (Milne-Eddington). The inverted magnetic data of He I lines are compared with photospheric inversions of DST Si I and Fe I data from the Solar Dynamics Observatory.

  17. Active Region Filaments Might Harbor Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A.

    2016-05-01

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between them being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.

  18. Photospheric electric current and transition region brightness within an active region

    NASA Technical Reports Server (NTRS)

    Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.

    1984-01-01

    Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.

  19. On the formation of dipolar magnetic fields in the central regions of active galaxies

    NASA Astrophysics Data System (ADS)

    Andreasyan, R. R.

    A model of the formation of large-scale magnetic fields of dipolar configuration in the central regions of active galaxies is studied. It is assumed that these regions contain a rapidly rotating partly ionized gas. Ionized matter escapes with a high velocity from the center of this region and is entrained by the rotation of the surrounding medium. Biermann's "battery" effect (L.Biermann, Z. Naturforsch., 5a, 65, 1950) operates under such conditions, and circular electric curents are generated in the medium, which amplify the dipolar magnetic fields. Dipolar magnetic fields of opposite orientation with respect to the angular momentum of the central engine can be amplified where there is accretion of gaseous matter onto the rotating central part of a galaxy. The direction of the "Halo" magnetic field of our Galaxy is in accordance with the first model.

  20. Putative role of border cells in generating spontaneous morphological activity within Kölliker's organ.

    PubMed

    Dayaratne, M W Nishani; Vlajkovic, Srdjan M; Lipski, Janusz; Thorne, Peter R

    2015-12-01

    Kölliker's organ is a transient epithelial structure, comprising a major part of the organ of Corti during pre-hearing stages of development. The auditory system is spontaneously active during development, which serves to retain and refine neural connections. Kölliker's organ is considered a key candidate for generating such spontaneous activity, most likely through purinergic (P2 receptor) signalling and inner hair cell (IHC) activation. Associated with the spontaneous neural activity, ATP released locally by epithelial cells induces rhythmic morphological changes within Kölliker's organ, the purpose of which is not understood. These changes are accompanied by a shift in cellular refractive index, allowing optical detection of this activity in real-time. Using this principle, we investigated the origin of spontaneous morphological activity within Kölliker's organ. Apical turns of Wistar rat cochleae (P9-11) were dissected, and the purinergic involvement was studied following acute tissue exposure to a P2 receptor agonist (ATPγS) and antagonist (suramin). ATPγS induced a sustained darkening throughout Kölliker's organ, reversed by suramin. This effect was most pronounced in the region closest to the inner hair cells, which also displayed the highest frequency of intrinsic morphological events. Additionally, suramin alone induced swelling of this region, suggesting a tight regulation of cell volume by ATP-mediated mechanisms. Histological analysis of cochlear tissues demonstrates the most profound volume changes in the border cell region immediately adjacent to the IHCs. Together, these results underline the role of purinergic signalling in initiating morphological events within Kölliker's organ, and suggest a key involvement of border cells surrounding IHCs in regulating this spontaneous activity.

  1. Modulation of Exciton Generation in Organic Active Planar pn Heterojunction: Toward Low Driving Voltage and High-Efficiency OLEDs Employing Conventional and Thermally Activated Delayed Fluorescent Emitters.

    PubMed

    Chen, Dongcheng; Liu, Kunkun; Gan, Lin; Liu, Ming; Gao, Kuo; Xie, Gaozhan; Ma, Yuguang; Cao, Yong; Su, Shi-Jian

    2016-08-01

    Organic light-emitting diodes (OLEDs) combining low driving voltage and high efficiency are designed by employing conventional and thermally activated delayed fluorescence emitters through modulation of excitons generated at the planar p-n heterojunction region. To date, this approach enables the highest power efficiency for yellow-green emitting fluorescent OLEDs with a simplified structure.

  2. Evidence for fourth generation structures in the Piedra Lumbre region, Western Picuris Mountains, New Mexico

    SciTech Connect

    Chernoff, C.B.; Helper, M.A.; Mosher, S. . Dept. of Geological Sciences)

    1993-02-01

    Mid-Proterozoic Hondo Group metasediments in the western Picuris Mountains, New Mexico clearly display 3 generations of previously recognized penetrative, synmetamorphic structures and a previously undocumented forth generation of overprinting folds with an associated axial planar foliation. The earliest structures include: (1) a bedding-parallel S[sub 1] foliation and rare, rootless, intrafolial F[sub 1] folds; (2) north-verging, west-trending F[sub 2] folds and an axial planar metamorphic foliation (S[sub 2]); (3) a steeply dipping, N-S striking crenulation cleavage (S[sub 3]). In the Piedra Lumbre region, southwest-plunging, open, upright chevron and box folds (F[sub 4]) locally reorient F[sub 2], S[sub 2] and S[sub 3] crenulations. The largest F[sub 4] folds in the Piedra Lumbre region have half-wavelengths of 500 meters. An associated nearly vertical foliation (S[sub 4]) overprints the first three foliations. The S[sub 4] foliation is a crenulation cleavage in micaceous layers and a discontinuous alignment of biotite laths in quartzose layers. Crystallization of biotite during S[sub 4] and chloritoid after S[sub 4], along with static recrystallization and mineral replacement by chlorite, suggests this deformation occurred during the waning stages of mid-Proterozoic metamorphism. The orientation of F[sub 2] and F[sub 4] folds are similar and both appear to occur on a regional scale. Interference of open upright F[sub 4] folds and tight, north-verging, overturned F[sub 2] folds produces a geometry that resembles that of the kilometer-scale Copper Hill Anticline of the western Picuris Mountains, previously interpreted to be solely the result of F[sub 2] folding.

  3. Statistical downscaling and future scenario generation of temperatures for Pakistan Region

    NASA Astrophysics Data System (ADS)

    Kazmi, Dildar Hussain; Li, Jianping; Rasul, Ghulam; Tong, Jiang; Ali, Gohar; Cheema, Sohail Babar; Liu, Luliu; Gemmer, Marco; Fischer, Thomas

    2015-04-01

    Finer climate change information on spatial scale is required for impact studies than that presently provided by global or regional climate models. It is especially true for regions like South Asia with complex topography, coastal or island locations, and the areas of highly heterogeneous land-cover. To deal with the situation, an inexpensive method (statistical downscaling) has been adopted. Statistical DownScaling Model (SDSM) employed for downscaling of daily minimum and maximum temperature data of 44 national stations for base time (1961-1990) and then the future scenarios generated up to 2099. Observed as well as Predictors (product of National Oceanic and Atmospheric Administration) data were calibrated and tested on individual/multiple basis through linear regression. Future scenario was generated based on HadCM3 daily data for A2 and B2 story lines. The downscaled data has been tested, and it has shown a relatively strong relationship with the observed in comparison to ECHAM5 data. Generally, the southern half of the country is considered vulnerable in terms of increasing temperatures, but the results of this study projects that in future, the northern belt in particular would have a possible threat of increasing tendency in air temperature. Especially, the northern areas (hosting the third largest ice reserves after the Polar Regions), an important feeding source for Indus River, are projected to be vulnerable in terms of increasing temperatures. Consequently, not only the hydro-agricultural sector but also the environmental conditions in the area may be at risk, in future.

  4. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic

  5. Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint.

    PubMed

    Appia, Vikram; Yezzi, Anthony

    2011-11-01

    We present an active geodesic contour model in which we constrain the evolving active contour to be a geodesic with respect to a weighted edge-based energy through its entire evolution rather than just at its final state (as in the traditional geodesic active contour models). Since the contour is always a geodesic throughout the evolution, we automatically get local optimality with respect to an edge fitting criterion. This enables us to construct a purely region-based energy minimization model without having to devise arbitrary weights in the combination of our energy function to balance edge-based terms with the region-based terms. We show that this novel approach of combining edge information as the geodesic constraint in optimizing a purely region-based energy yields a new class of active contours which exhibit both local and global behaviors that are naturally responsive to intuitive types of user interaction. We also show the relationship of this new class of globally constrained active contours with traditional minimal path methods, which seek global minimizers of purely edge-based energies without incorporating region-based criteria. Finally, we present some numerical examples to illustrate the benefits of this approach over traditional active contour models.

  6. Active Control of Fan-Generated Tone Noise

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1995-01-01

    This paper reports on an experiment to control the noise radiated from the inlet of a ducted fan using a time domain active adaptive system. The control ,sound source consists of loudspeakers arranged in a ring around the fan duct. The error sensor location is in the fan duct. The purpose of this experiment is to demonstrate that the in-duct error sensor reduces the mode spillover in the far field, thereby increasing the efficiency of the control system. The control system is found to reduce the blade passage frequency tone significantly in the acoustic far field when the mode orders of the noise source and of the control source are the same, when the dominant wave in the duct is a plane wave. The presence of higher order modes in the duct reduces the noise reduction efficiency, particularly near the mode cut-on where the standing wave component is strong, but the control system converges stably. The control system is stable and converges when the first circumferential mode is generated in the duct. The control system is found to reduce the fan noise in the far field on an arc around the fan inlet by as much as 20 dB with none of the sound amplification associated with mode spillover.

  7. Characteristics, location and origin of flare activity in a complex active region

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Gary, G. A.; Hagyard, M. J.; Hernandez, A. M.; Rovira, M. G.

    1986-01-01

    The observational characteristics of series of multiple-loop flares from a complex active region are summarized. The location of the highest observed photospheric magnetic shear is found to be the commonly observed site of flare onset, but not, in many cases, the magnetic region where the largest time-integrated energy release is observed. The observations thus reveal a consistent pattern of energy-release processes related to the magnetic-field topology.

  8. CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112

    SciTech Connect

    Tarr, Lucas; Longcope, Dana

    2012-04-10

    The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.

  9. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  10. Freezing Rain Diagnostic Study Over Eastern Canada Using the 5th Generation Canadian Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Bresson, É.; Paquin, D.; Laprise, R.; Theriault, J. M.; de Elía, R.

    2015-12-01

    Northeastern North America is often affected by freezing rain events during the cold season. They can have significant consequences (from road accidents, to severe power outages) despite their intensity and duration. The 1998 Ice Storm over Eastern Canada and Northeastern United States is an example of an extreme event with catastrophic consequences. A total of up to 150 mm of ice accumulated during 10 days were observed in some areas. This natural disaster has highlighted the need to better understand how such phenomena will evolve with future climate scenario. The goal is to investigate the feasibility of using regional climate modeling to diagnose the occurrence of freezing rain events over Quebec (Canada). To address this issue, we used the 5th generation of the Canadian Regional Climate Model (CRCM5), from 1979 to 2014. An empirical method (Bourgouin, 2000) developed to determine the type of winter precipitations was chosen to diagnose freezing rain events. The study focused in the Montreal area and the St. Lawrence River Valley (Quebec, Canada). The sensitivity of the model to horizontal resolution was explored by using three resolutions: 0.44°, 0.22° and 0.11°. In general, freezing rain was diagnosed consistently at all resolutions but the higher one (0.11°) produced more realistic results due to a better representation of the orography. Using the higher resolution, the results showed that the climatology of the freezing rain occurrence in the Montreal area is comparable to available observations. It also suggested that the role of the specific orography of the region with the St. Lawrence River Valley can impact the characteristics of freezing rain events in this area. Overall, this study will contribute to a better preparedness for such events in the future. High resolution regional climate simulations are essential to improve the reproduction of local scale orographically-forced phenomena.

  11. Agricultural pests under future climate conditions: downscaling of regional climate scenarios with a stochastic weather generator

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stöckli, S.; Dubrovsky, M.; Spirig, C.; Rotach, M. W.; Calanca, P.; Samietz, J.

    2010-09-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously unaffected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests have been developed, which model the infestation depending on actual weather conditions. Assessing the future risk of pest-related damages therefore requires future weather data at high temporal and spatial resolution. In particular, pest forecast models are often not based on screen temperature and precipitation alone (i.e., the most generally projected climate variables), but might require input variables such as soil temperature, in-canopy net radiation or leaf wetness. Here, we use a stochastic weather and a re-sampling procedure for producing site-specific hourly weather data from regional climate change scenarios for 2050 in Switzerland. The climate change scenarios were derived from multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly temperature, precipitation and radiation data were produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather time series were then used for modeling important phases in the lifecycle of codling moth, the major insect pest in apple orchards worldwide. First results indicate a shift in the occurrence and duration of phases relevant for pest disease control for projected as compared to current climate (e.g. the flight of the codling moth starts about ten days earlier in future climate), continuing an already observed trend towards more favorable conditions for this insect during the last 20 years.

  12. Activation of the dentate nucleus in a verb generation task: A 7T MRI study.

    PubMed

    Thürling, M; Küper, M; Stefanescu, R; Maderwald, S; Gizewski, E R; Ladd, M E; Timmann, D

    2011-08-01

    There is increasing evidence of a topographic organization within the human cerebellar cortex for motor and non-motor functions. Likewise, a subdivision of the dentate nucleus in a more dorsal and rostral motor domain and a more ventral and caudal non-motor domain has been proposed by Dum and Strick (2003) based on anatomical studies in monkey. In humans, however, very little is known about topographic organization within the dentate nucleus. Activation of the dentate nucleus in a verb generation task was examined in young and healthy subjects using ultra-highfield 7T functional magnetic resonance imaging (fMRI) with its increase in signal-to-noise ratio. Data of 17 subjects were included in statistical analysis. Subjects were asked to (i) read words (nouns) aloud presented on a screen, (ii) silently read the same nouns, (iii) silently generate the appropriate verbs to the same nouns and (iv) to silently repeat the names of the months. A block design was used. For image processing, a recently developed region of interest (ROI) driven normalization method of the dentate nuclei was applied. Activation related to motor speech (contrast aloud reading minus silent reading) was strongest in the rostral parts of the dentate nucleus. Dorsorostral activations were present bilaterally. Activation related to verb generation (contrast verb generation minus silent reading) was found in the ventrocaudal parts of the dentate nucleus on the right. The present findings are in good accordance with the anatomical data in monkeys and suggest that the human dentate nucleus can be subdivided into a rostral and more dorsal motor domain and a ventrocaudal non-motor domain. PMID:21640191

  13. Deleting the Redundant TSH Receptor C-Peptide Region Permits Generation of the Conformationally Intact Extracellular Domain by Insect Cells

    PubMed Central

    Chen, Chun-Rong; Salazar, Larry M.; McLachlan, Sandra M.

    2015-01-01

    The TSH receptor (TSHR) extracellular domain (ECD) comprises a N-terminal leucine-rich repeat domain and an hinge region (HR), the latter contributing to ligand binding and critical for receptor activation. The crystal structure of the leucine-rich repeat domain component has been solved, but previous attempts to generate conformationally intact complete ECD or the isolated HR component for structural analysis have failed. The TSHR HR contains a C-peptide segment that is removed during spontaneous TSHR intramolecular cleavage into disulfide linked A- and B-subunits. We hypothesized that deletion of the redundant C-peptide would overcome the obstacle to generating conformationally intact TSHR ECD protein. Indeed, lacking the C-peptide region, the TSHR ECD (termed ECD-D1) and the isolated HR (termed HR-D1) were secreted into medium of insect cells infected with baculoviruses coding for these modified proteins. The identities of TSHR ECD-D1 and HR-D1 were confirmed by ELISA and immunoblotting using TSHR-specific monoclonal antibodies. The TSHR-ECD-D1 in conditioned medium was folded correctly, as demonstrated by its ability to inhibit radiolabeled TSH binding to the TSH holoreceptor. The TSHR ECD-D1 purification was accomplished in a single step using a TSHR monoclonal antibody affinity column, whereas the HR-D1 required a multistep protocol with a low yield. In conclusion, we report a novel approach to generate the TSHR ECD, as well as the isolated HR in insect cells, the former in sufficient amounts for structural studies. However, such studies will require previous complexing of the ECD with a ligand such as TSH or a thyroid-stimulating antibody. PMID:25860033

  14. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  15. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  16. On the modified active region design of interband cascade lasers

    SciTech Connect

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J.; Weih, R.; Dallner, M.; Kamp, M.; Höfling, S.

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  17. Investigating Molecular Hydrogen in Active Regions with IRIS

    NASA Astrophysics Data System (ADS)

    Jaeggli, Sarah A.; Saar, Steven H.; Daw, Adrian N.; Innes, Davina

    2014-06-01

    Molecular hydrogen should be the most abundant molecular species in sunspots, but recent observations with IRIS show that its florescent signature is absent from above the sunspot umbra, but appears brightly during flares. In this poster we continue the analysis of FUV observations of H2 in active regions, examining the correlation between the intensity of the H2 lines and the lines of C II and Si IV which are responsible for their excitation. We particularly focus on differentiating places where H2 is abundant, holes in the chromospheric opacity where FUV photons can enter more deeply into the solar atmosphere, and places where the FUV radiation field is intense, as in flares.

  18. Observational analysis of active region on June, 2000

    NASA Astrophysics Data System (ADS)

    Rovira, M. G.; Luoni, M. L.

    In the recent inaugurated German-Argentinian Solar-Observatory at El Leoncito, a H-alpha Telescope (HASTA) and a mirror coronograph (MICA) are obtained daily images of the solar disk and the inner corona. Since its installation on August 1997, MICA has been imaging the inner corona with high temporal and spatial resolution. Its field-of-view ranges 1.05 to 2.0 solar radii above the sun center. HASTA started operations on May 1998. It has a tunable ( [+1,-1] Å) Lyot-filter with a bandwith of 0.3 Å. In high speed mode full frames can be taken every 2 sec. We study the evolution of an Active Region (AR 9026) and we compare different images as taken in defferent wavelengths. These studies tend to relate flares with coronal mass ejection (CME).

  19. Data-driven Simulations of Evolving Active Regions

    NASA Astrophysics Data System (ADS)

    Cheung, M.; DeRosa, M. L.

    2011-12-01

    We present results from numerical simulations of coronal field evolution in response to photospheric driving. In the simulations, the coronal field evolves according to magnetofriction, which ensures that the model field evolves toward a non-linear force-free state. Unlike static field extrapolation methods, this approach takes into account the history of the photospheric field evolution. This allows for the formation of flux ropes as well as current sheets between magnetic domains of connectivity. Using time sequences of HMI magnetograms as the bottom boundary condition, we apply this method to model the emergence and evolution of various active regions. Comparisons of the models with AIA observations and with HMI vector magnetogram inversions will be discussed.

  20. DOME-SHAPED EUV WAVES FROM ROTATING ACTIVE REGIONS

    SciTech Connect

    Selwa, M.; Poedts, S.; DeVore, C. R. E-mail: stefaan.poedts@wis.kuleuven.be

    2012-03-10

    Recent STEREO observations enabled the study of the properties of EUV waves in more detail. They were found to have a three-dimensional (3D) dome-shaped structure. We investigate, by means of 3D MHD simulations, the formation of EUV waves as the result of the interaction of twisted coronal magnetic loops. The numerical simulation is initialized with an idealized dipolar active region and is performed under coronal (low {beta}) conditions. A sheared rotational motion is applied to the central parts of both the positive and negative flux regions at the photosphere so that the flux tubes in between them become twisted. We find that the twisting motion results in a dome-shaped structure followed in space by a dimming and in time by an energy release (flare). The rotation of the sunspots is the trigger of the wave which initially consists of two fronts that later merge together. The resulting EUV wave propagates nearly isotropically on the disk and {approx}2 times faster in the upward direction. The initial stage of the evolution is determined by the driver, while later the wave propagates freely with a nearly Alfvenic speed.

  1. Sunspot waves and triggering of homologous active region jets

    NASA Astrophysics Data System (ADS)

    Chandra, R.; Gupta, G. R.; Mulay, Sargam; Tripathi, Durgesh

    2015-02-01

    We present and discuss multiwavelength observations of five homologous recurrent solar jets that occurred in active region NOAA 11133 on 2010 December 11. These jets were well observed by the Solar Dynamic observatory (SDO) with high spatial and temporal resolution. The speed of the jets ranged between 86 and 267 km s-1. A type III radio burst was observed in association with all the five jets. The investigation of the overall evolution of magnetic field in the source regions suggested that the flux was continuously emerging on longer term. However, all the jets but J5 were triggered during a local dip in the magnetic flux, suggesting the launch of the jets during localized submergence of magnetic flux. Additionally, using the PFSS modelling of the photospheric magnetic field, we found that all the jets were ejected in the direction of open field lines. We also traced sunspot oscillations from the sunspot interior to foot-point of jets and found presence of ˜3 min oscillations in all the SDO/AIA (Atmospheric Imaging Assembly) passbands. The wavelet analysis revealed an increase in amplitude of the oscillations just before the trigger of the jets, that decreased after the jets were triggered. The observations of increased amplitude of the oscillation and its subsequent decrease provides evidence of wave-induced reconnection triggering the jets.

  2. Regional variations in the health, environmental, and climate benefits of wind and solar generation.

    PubMed

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger; Apt, Jay

    2013-07-16

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region.

  3. Solar wind disturbances in th outer heliosphere caused by successive solar flares from the same active region

    NASA Technical Reports Server (NTRS)

    Akasofu, S. I.; Hakamada, K.

    1983-01-01

    Solar wind disturbances caused by successive flares from the same active region are traced to about 20 AU, using the modeling method developed by Hakamada and Akasofu (1982). It is shown that the flare-generated shock waves coalesce with the co-rotating interaction region of the interplanetary magnetic field, resulting in a large-scale magnetic field structure in the outer heliosphere. Such a structure may have considerable effects on the propagation of galactic cosmic rays.

  4. Tracking the will to attend: Cortical activity indexes self-generated, voluntary shifts of attention.

    PubMed

    Gmeindl, Leon; Chiu, Yu-Chin; Esterman, Michael S; Greenberg, Adam S; Courtney, Susan M; Yantis, Steven

    2016-10-01

    The neural substrates of volition have long tantalized philosophers and scientists. Over the past few decades, researchers have employed increasingly sophisticated technology to investigate this issue, but many studies have been limited considerably by their reliance on intrusive experimental procedures (e.g., abrupt instructional cues), measures of brain activity contaminated by overt behavior, or introspective self-report techniques of questionable validity. Here, we used multivoxel pattern time-course analysis of functional magnetic resonance imaging data to index voluntary, covert perceptual acts-shifts of visuospatial attention-in the absence of instructional cues, overt behavioral indices, and self-report. We found that these self-generated, voluntary attention shifts were time-locked to activity in the medial superior parietal lobule, supporting the hypothesis that this brain region is engaged in voluntary attentional reconfiguration. Self-generated attention shifts were also time-locked to activity in the basal ganglia, a novel finding that motivates further research into the role of the basal ganglia in acts of volition. Remarkably, prior to self-generated shifts of attention, we observed early and selective increases in the activation of medial frontal (dorsal anterior cingulate) and lateral prefrontal (right middle frontal gyrus) cortex-activity that likely reflects processing related to the intention or preparation to reorient attention. These findings, which extend recent evidence on freely chosen motor movements, suggest that dorsal anterior cingulate and lateral prefrontal cortices play key roles in both overt and covert acts of volition, and may constitute core components of a brain network underlying the will to attend. PMID:27301353

  5. Activating Generative Learning in Organizations through Optimizing Relational Strategies

    ERIC Educational Resources Information Center

    Park, Mary Kay

    2010-01-01

    Using a grounded theory method, this dissertation seeks to discover how relationships impact organizational generative learning. An organization is a socially constructed reality and organizational learning is situated in the process of co-participation. To discover the link between relationships and generative learning this study considers the…

  6. Mental Arithmetic Activates Analogic Representations of Internally Generated Sums

    ERIC Educational Resources Information Center

    Kallai, Arava Y.; Schunn, Christian D.; Fiez, Julie A.

    2012-01-01

    The internal representation of numbers generated during calculation has received little attention. Much of the mathematics learning literature focuses on symbolic retrieval of math facts; in contrast, we critically test the hypothesis that internally generated numbers are represented analogically, using an approximate number system. In an fMRI…

  7. Gyroharmonic Features of Generation of Artificial Irregularities Hf-Induced in the Ionospheric F_2 Region

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Akchurin, Adel; Bolotin, Ilya; Zykov, Evgeniy; Vertogradov, Gennadiy

    In the report, basing on experimental data obtained at the SURA heating facility [1-4], we consider gyroharmonic features of generation of artificial irregularities HF-induced in the ionospheric F _{2} region. In [5] it was revealed that, when the pump wave frequency (f _{PW}) is slightly above the 4th electron gyro harmonic frequency (4f_{ce}) in the ionosphere disturbed volume, spectra of signals field-aligned scattered from irregularities with l_⊥ ≃ 10 - 20 m had widths up to DeltaF ≃ 10 Hz in comparison with DeltaF ≃ 0.5 Hz, when the f _{PW} was below 4f_{ce}. Obtained in our experiments data have shown that the scattering from decameter irregularities consists of two components (narrow- and wideband) distinguished by their spectral characteristics, relaxation times, and dependence on f _{PW}. The narrowband component is related to scattered signals when f _{PW} is outside the gyro harmonic frequency range. The wideband component is observed at deltaf = f_{PW} - 4f_{ce} ≃ 0 - 150 kHz and shows well-pronounced gyro features; it has the maximum width (up to 10 Hz) at deltaf_{m} ≃ 20 - 60 kHz, where the BUM component in SEE spectra has the greatest intensity. A typical growth time for the wideband component is of the same order of magnitude as the growth time of decameter irregularities (0.3 - 0.5 s); its typical decay time is of about 0.4 - 0.9 s, which is much shorter of the decay time for decameter irregularities. It is significant that at the decay stage the fast narrowing of the wideband component spectra is observed. In [4] it was observed short-term decreases in TEC of about 0.03 - 0.05 TECU when a sounding wave crossed the magnetic zenith region in the ionosphere disturbed volume. According to [6] such TEC variations can be produced by generation of super small-scale striations with l_⊥ ≃ 10 - 20 sm. Basing on obtained experimental data it may be concluded that not only the generation of small-scale irregularities with l_⊥ < 50 m, but the

  8. A third-generation wave model for coastal regions: 2. Verification

    NASA Astrophysics Data System (ADS)

    Ris, R. C.; Holthuijsen, L. H.; Booij, N.

    1999-04-01

    A third-generation spectral wave model (Simulating Waves Nearshore (SWAN)) for small-scale, coastal regions with shallow water, (barrier) islands, tidal flats, local wind, and ambient currents is verified in stationary mode with measurements in five real field cases. These verification cases represent an increasing complexity in two-dimensional bathymetry and added presence of currents. In the most complex of these cases, the waves propagate through a tidal gap between two barrier islands into a bathymetry of channels and shoals with tidal currents where the waves are regenerated by a local wind. The wave fields were highly variable with up to 3 orders of magnitude difference in energy scale in individual cases. The model accounts for shoaling, refraction, generation by wind, whitecapping, triad and quadruplet wave-wave interactions, and bottom and depth-induced wave breaking. The effect of alternative formulations of these processes is shown. In all cases a relatively large number of wave observations is available, including observations of wave directions. The average rms error in the computed significant wave height and mean wave period is 0.30 m and 0.7 s, respectively, which is 10% of the incident values for both.

  9. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases

    SciTech Connect

    Heljasvaara, Ritva; Nyberg, Pia; Luostarinen, Jani; Parikka, Mataleena; Heikkilae, Pia; Rehn, Marko; Sorsa, Timo; Salo, Tuula; Pihlajaniemi, Taina . E-mail: taina.pihlajaniemi@oulu.fi

    2005-07-15

    Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis.

  10. SVBR-100 module-type fast reactor of the IV generation for regional power industry

    NASA Astrophysics Data System (ADS)

    Zrodnikov, A. V.; Toshinsky, G. I.; Komlev, O. G.; Stepanov, V. S.; Klimov, N. N.

    2011-08-01

    In the report the following is presented: basic conceptual provisions of the innovative nuclear power technology (NPT) based on modular fast reactors (FR) SVBR-100, summarized results of calculations of the reactor, analysis of the opportunities of multi-purpose application of such reactor facilities (RF) including export potentials with due account of nonproliferation requirements. The most important features of the proposed NPT analyzed in the report are as follows: (1) integral (monoblock) arrangement of the primary circuit equipment with entire elimination of the primary circuit pipelines and valves that considerably reduces the construction and assembly works period and coupling with high boiling point of lead-bismuth coolant (LBC) deterministically eliminates accidents of the LOCA type, (2) option for 100 MWe power and dimensions of the reactor provide: on the one hand, an opportunity to transport the reactor monoblock in factory-readiness by railway as well as other kinds of transport, on the other hand, core breeding ratio (CBR) exceeds 1 while MOX-fuel is used. The preferable area of application of RF SVBR-100 is regional and small power requiring power-units of electric power in a range of (100-600) MW, which could be used for cogeneration-based district heating while locating them nearby cities as well as for generation of electric power in a mode of load tracking in the regions with low network systems.

  11. LPV control for the full region operation of a wind turbine integrated with synchronous generator.

    PubMed

    Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  12. Source Generated Electrostatic Waves in a Plasma - Application to the Earth's Electron Foreshock Region.

    NASA Astrophysics Data System (ADS)

    Pangia, Michael Joseph

    1988-12-01

    The problem of electrostatic waves generated in a collisionless plasma by a source of charged particles is formulated using the Vlasov description with an inhomogeneous term. A formal solution is obtained by use of the Green's function for the linearized case of a Maxwellian background plasma with a low density particle source. Detailed analysis of the Green's function shows the dynamic behavior of the system as time progresses. In particular, in addition to the asymptotic time limit of the Green's function being described by the roots of the dielectric function, two other limits are discussed. The short time limit of the Green's function behaves approximately like a cold plasma, and the intermediate time limit of the Green's behaves approximately like a plasma with thermal electrons and a cold ion distribution. An equation for the discrete Fourier transform coefficients of the electric field is derived without restricting to any particular time limit, and is useful for comparing with measured spectra. The theory is applied to the region deep in the Earth's electron foreshock where electrostatic waves are observed, and yet no beams to cause an instability have been reported. It is postulated that the electrostatic waves in this region are driven by the distribution of electrons coming from the bow shock, and that this distribution varies spatially with a characteristic wavelength. The electric field spectrum is calculated and shown to give agreement with the reported observations.

  13. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    PubMed Central

    Grigoriadis, Karolos M.; Nyanteh, Yaw D.

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036

  14. LPV control for the full region operation of a wind turbine integrated with synchronous generator.

    PubMed

    Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036

  15. Long-Period ULF Wave Activity in the Cusp Region

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Belakhovsky, V.; Engebretson, M. J.; Kozlovsky, A.

    2013-12-01

    We compare simultaneous observations of long-period ULF wave activity from the Svalbard/IMAGE and Greenland fluxgate magnetometer profiles covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL) and narrow-band Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of the return signal of the SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, and augmented whenever possible by DMSP identification of magnetospheric boundary domains. The meridional spatial structure of IPCL/Pc5 pulsation spectral power has been found to have a localized latitudinal peak, but not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. Possible mechanisms and their relevance to observational data are discussed. The occurrence of IPCL and Pc5 waves in the dayside boundary layers is a challenge to modelers, because so far their mechanism has not been firmly identified.

  16. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  17. Emotion at Work: A Contribution to Third-Generation Cultural-Historical Activity Theory

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2007-01-01

    Second-generation cultural-historical activity theory, which drew its inspiration from Leont'ev's work, constituted an advance over Vygotsky's first-generation theory by explicitly articulating the dialectical relation between individual and collective. As part of an effort to develop third-generation-historical activity theory, I propose in this…

  18. 77 FR 24952 - Agency Information Collection Activities; Proposed Collection; Comment Request; Regional Haze...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... ICR (August 26, 2009; 74 FR 43118). The last collection request anticipated the program progressing... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Regional Haze... organizations and facilities potentially regulated under the regional haze rule. Title: Regional...

  19. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. III - NOAA active region 6233 (1990 August)

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.

    1993-01-01

    We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.

  20. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  1. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats.

    PubMed

    Shukla, C; Koch, L G; Britton, S L; Cai, M; Hruby, V J; Bednarek, M; Novak, C M

    2015-12-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.

  2. Observations of the Growth of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong

    2016-10-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. H α observations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  3. High Resolution Simulations of Tearing and Flux-Rope Formation in Active Region Jets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    2015-12-01

    Observations of coronal jets increasingly suggest that local fragmentation and the generation of small-scale structure plays an important role in the dynamics of these events. In the magnetically closed corona, jets most often occur near active regions and are associated with an embedded-bipole topology consisting of a 3D magnetic null point atop a domed fan separatrix surface at the base of a coronal loop. Impulsive reconnection in the vicinity of the null point between the magnetic fluxes inside and outside the dome launches the jet along the loop. Wyper & Pontin 2014 showed that the 3D current layers that facilitate such reconnection are explosively unstable to tearing, generating complex flux-rope structures. Utilizing the adaptive mesh capabilities of the Adaptively Refined Magnetohydrodynamics Solver, we investigate the generation of such fine-scale structure in high-resolution simulations of active-region jets. We observe the formation of multiple flux-rope structures forming across the fan separatrix surface and discuss the photospheric signatures of these flux ropes and the associated local topology change. We also introduce a new way of identifying such flux ropes in the magnetic field, based on structures observed in the magnetic squashing factor calculated on the photosphere. By tracking the position and number of new null points produced by the fragmentation, we also show that the formation of flux ropes can occur away from the main null region on the flanks of the separatrix dome and that the jet curtain has a highly complex magnetic structure. This work was funded through an appointment to the NASA Postdoctoral Program and by NASA's Living With a Star TR&T program.

  4. Unravelling the competing influence of regional uplift and active normal faulting in SW Calabria, Italy

    NASA Astrophysics Data System (ADS)

    Whittaker, Alex; Roda Boluda, Duna; Boulton, Sarah; Erhardt, Sebastian

    2015-04-01

    The Neogene geological and geomorphological evolution of Southern Italy is complex and is fundamentally controlled by the subduction of the Ionian slab along the Apennine belt from the Calabrian Arc, and back-arc extension driven by trench rollback. In the area of Calabria and the Straits of Messina the presence of (i) uplifted, deformed and dissected basin sediments and marine terraces, ranging in age from the early to mid-Pleistocene and (ii) seismicity associated with NE-SW normal faults that have well-developed footwall topography and triangular facets have led workers to suggest that both significant regional uplift and extensional faulting in SW Calabria have played a role in generating relief in the area since the mid Pleistocene. However, there is considerable uncertainty in the rates of total surface uplift relative to sea level in both time and space, and the relative partitioning of this uplift between a mantle-driven regional signal, potentially related to a slab tear, and the active extensional structures. Additionally, despite the widespread recognition of normal faults in Calabria to which historical earthquakes are often linked, there is much less agreement on (i) which ones are active and for what length of time; (ii) how the faults interact; and (iii) what their throw and throw rates are. In particular, the ability to resolve both regional uplift and normal faulting in SW Calabria is essential in order to fully understand the tectonic history of the region, while an understanding of location and slip rate of active faults, in an area where the population numbers more than two million people, is essential to assess regional seismic hazards. Here we address these important questions using a combination of tectonic geomorphology and structural geology. We critically examine existing constraints on the rates and distribution of active normal faulting and regional uplift in the area, and we derive new constraints on the along-strike variation in throw

  5. Seismic activity of the San Francisco Bay region

    USGS Publications Warehouse

    Bakun, W.H.

    1999-01-01

    Moment magnitude M with objective confidence-level uncertainties are estimated for felt San Francisco Bay region earthquakes using Bakun and Wentworth's (1997) analysis strategy for seismic intensity observations. The frequency-magnitude distribution is well described for M ???5.5 events since 1850 by a Gutenberg-Richter relation with a b-value of 0.90. The seismic moment rate ??M0/yr since 1836 is 2.68 X 1018 N-m/yr (95% confidence range = 1.29 X 1018 N-m/yr to 4.07 X 1018 N-m/yr); the seismic moment rate since 1850 is nearly the same. ??M0/yr in the 56 years before 1906 is about 10 times that in the 70 years after 1906. In contrast, ??M0/yr since 1977 is about equal that in the 56 years before 1906. 80% (1?? = 14%) of the plate-motion moment accumulation rate is available for release in earthquakes. The historical ??M0/yr and the portion of the plate-motion moment accumulation rate available for release in earthquakes are used in a seismic cycle model to estimate the rate of seismic activity in the twenty-first century. High and low rates of future seismic activity are both permissible given the range of possible seismic-cycle recurrence times T and the uncertainties in the historical ??M0 and in the percentage of plate motion available for release in earthquakes. If the historical seismic moment rate is not greater than the estimated 2.68 X 1018 N-m/yr and the percentage of the plate-motion moment accumulation available for release in earthquakes is not less than the estimated 80%, then for all T, the rate of seismic moment release from now until the next 1906-sized shock will be comparable to the rate from 1836 to 1905 when M 6 1/2 shocks occurred every 15 to 20 years.

  6. FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION

    SciTech Connect

    Baker, D.; Yardley, S. L.; Driel-Gesztelyi, L. van; Long, D. M.; Green, L. M.; Brooks, D. H.; Démoulin, P.

    2015-04-01

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4–6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.

  7. On transient events in the upper atmosphere generated away of thunderstorm regions

    NASA Astrophysics Data System (ADS)

    Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.

    2011-12-01

    Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their

  8. Synthetic Training Data Generation for Activity Monitoring and Behavior Analysis

    NASA Astrophysics Data System (ADS)

    Monekosso, Dorothy; Remagnino, Paolo

    This paper describes a data generator that produces synthetic data to simulate observations from an array of environment monitoring sensors. The overall goal of our work is to monitor the well-being of one occupant in a home. Sensors are embedded in a smart home to unobtrusively record environmental parameters. Based on the sensor observations, behavior analysis and modeling are performed. However behavior analysis and modeling require large data sets to be collected over long periods of time to achieve the level of accuracy expected. A data generator - was developed based on initial data i.e. data collected over periods lasting weeks to facilitate concurrent data collection and development of algorithms. The data generator is based on statistical inference techniques. Variation is introduced into the data using perturbation models.

  9. Acetylcholine activity in selective striatal regions supports behavioral flexibility.

    PubMed

    Ragozzino, Michael E; Mohler, Eric G; Prior, Margaret; Palencia, Carlos A; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m(2) muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility.

  10. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  11. Plasma composition in a sigmoidal anemone active region

    SciTech Connect

    Baker, D.; Van Driel-Gesztelyi, L.; Green, L. M.; Carlyle, J.; Brooks, D. H.; Démoulin, P.; Steed, K.

    2013-11-20

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  12. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  13. Plasma Composition in a Sigmoidal Anemone Active Region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, L.; Green, L. M.; Steed, K.; Carlyle, J.

    2013-11-01

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  14. Active region emission measure distributions and implications for nanoflare heating

    SciTech Connect

    Cargill, P. J.

    2014-03-20

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ∼ T{sup a} below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (T{sub N} ) and the distribution of nanoflare energies. If T{sub N} is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, T{sub N} must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  15. The distribution of maximum temperatures of coronal active region loops

    NASA Technical Reports Server (NTRS)

    Mayfield, E. B.; Teske, R. G.

    1980-01-01

    The emission measure distribution across the range 4.5 log T 6.5 was derived for several coronal active regions by combining EUV line fluxes with broadband X-ray fluxes. The distributions of the maximum temperature was then derived using a numerical model. It is shown that the emission measure distribution can be represented over the full range 5.6 log Tm 6.5 by the superposition of simple loop models, if the models incorporate a substantial rise in their individual emission measure distributions near the maximum temperature. The unresolved loops may have substantial area ratios, since it is this ratio that fixes the extent of the rise in the emission measure distribution. Since the bulk of the emission measure is then contributed from the loop tops, the distribution of maximum temperatures has approximately the same shape as does the integrated emission measure distributions. The EUV and X-ray data used were obtained by from two separate experiments on ATM/Skylab.

  16. Geometry of Broad Line Regions of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lü, Xiao-Rong

    2008-02-01

    It has long remained an open question as to the geometry of the broad line region (BLR) in active galactic nuclei (AGNs). The reverberation mapping technique which measures the response of the broad emission lines to the ionizing continuum, when combined with multiwavelength continuum fitted by sophisticated accretion disks, provides a way of probing the BLR geometry. We analyze a sample of 35 AGNs, which have been monitored by the reverberation mapping campaign. In view of energy budget, the reverberation-based BH masses are found to be in agreement with those obtained by accretion disk models in two thirds of the present sample while the reverberation mapping methods underestimate the BH masses in about one third of objects, as also suggested by Collin et al. in a recent work. We point out that there are obviously two kinds of BLR geometry, which are strongly dependent on the Eddington ratio, and separated by the value LBol/LEdd~0.1. These results prefer a scenario of the disk and wind configuration of the BLR and identify the Eddington ratio as the physical driver regulating the wind in the BLR.

  17. Simulation of the Formation of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; Rempel, M.; Title, A. M.; Schüssler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B vprop rhov1/2. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  18. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity.

    PubMed Central

    Jordan, E T; Marita, J M; Clough, R C; Vierstra, R D

    1997-01-01

    Phytochrome A (phyA) is a red/far-red (FR) light photoreceptor responsible for initiating numerous light-mediated plant growth and developmental responses, especially in FR light-enriched environments. We previously showed that the first 70 amino acids of the polypeptide contain at least two regions with potentially opposite functions (E.T. Jordan, J.R. Cherry, J.M. Walker, R.D. Vierstra [1996] Plant J 9: 243-257). One region is required for activity and correct apoprotein/chromophore interactions, whereas the second appears to regulate phytochrome activity. We have further resolved these functional regions by analysis of N-terminal deletion and alanine-scanning mutants of oat (Avena sativa) phyA in transgenic tobacco (Nicotiana tabacum). The results indicate that the region involved in chromophore/apoprotein interactions contains two separate segments (residues 25-33 and 50-62) also required for biological activity. The region that regulates phyA activity requires only five adjacent serines (Sers) (residues 8-12). Removal or alteration of these Sers generates a photoreceptor that increases the sensitivity of transgenic seedlings to red and FR light more than intact phyA. Taken together, these data identify three distinct regions in the N-terminal domain necessary for photoreceptor activity, and further define the Ser-rich region as an important site for phyA regulation. PMID:9342873

  19. Land use change effects on runoff generation in a humid tropical montane cloud forest region

    NASA Astrophysics Data System (ADS)

    Muñoz-Villers, L. E.; McDonnell, J. J.

    2013-04-01

    While tropical montane cloud forests (TMCF) provide critical hydrological services to downstream regions throughout much of the humid tropics, catchment hydrology and impacts associated with forest conversion in these ecosystems remain poorly understood. Here, we compare the annual, seasonal and event-scale streamflow patterns and runoff generation processes of three neighbouring headwater catchments in central Veracruz (eastern Mexico) with similar pedological and geological characteristics, but different land cover: old-growth TMCF (MAT), 20 yr-old naturally regenerating TMCF (SEC) and a heavily grazed pasture (PAS). We used a 2 yr record of high resolution rainfall and stream flow data (2008-2010) in combination with stable isotope and chemical tracer data collected for a series of storms during a 6-week period of increasing antecedent wetness (wetting-up cycle). Our results showed that annual and seasonal streamflow patterns of the MAT and SEC were similar. In contrast, the PAS showed a 10% higher mean annual streamflow, most likely because of a lower rainfall interception. During the wetting-up cycle, storm runoff ratios increased at all three catchments (from 11 to 54% for the MAT, 7 to 52% for the SEC and 3 to 59% for the PAS). With the increasing antecedent wetness, hydrograph separation analysis showed progressive increases of pre-event water contributions to total stormflow (from 35 to 99% in the MAT, 26 to 92% in the SEC and 64 to 97% in the PAS). At all three sites, rainfall-runoff responses were dominated by subsurface flow generation processes for the majority of storms. However, for the largest and most intense storm (typically occurring once every 2 yr), sampled under wet antecedent conditions, the event water contribution in the PAS (34% on average) was much higher than in the forests (5% on average), indicating that rainfall infiltration capacity of the PAS was exceeded. This result suggests that despite the high permeability of the volcanic soils

  20. Land use change effects on runoff generation in a humid tropical montane cloud forest region

    NASA Astrophysics Data System (ADS)

    Muñoz-Villers, L. E.; McDonnell, J. J.

    2013-09-01

    While tropical montane cloud forests (TMCF) provide critical hydrological services to downstream regions throughout much of the humid tropics, catchment hydrology and impacts associated with forest conversion in these ecosystems remain poorly understood. Here, we compare the annual, seasonal and event-scale streamflow patterns and runoff generation processes of three neighbouring headwater catchments in central Veracruz (eastern Mexico) with similar pedological and geological characteristics, but different land cover: old-growth TMCF, 20 yr-old naturally regenerating TMCF and a heavily grazed pasture. We used a 2 yr record of high resolution rainfall and stream flow data (2008-2010) in combination with stable isotope and chemical tracer data collected for a series of storms during a 6-week period of increasing antecedent wetness (wetting-up cycle). Our results showed that annual and seasonal streamflow patterns in the mature and secondary forest were similar. In contrast, the pasture showed a 10% higher mean annual streamflow, most likely because of a lower rainfall interception. During the wetting-up cycle, storm runoff ratios increased at all three catchments (from 11 to 54% for the mature forest, 7 to 52% for the secondary forest and 3 to 59% for the pasture). With the increasing antecedent wetness, hydrograph separation analysis showed progressive increases of pre-event water contributions to total stormflow (from 35 to 99% in the mature forest, 26 to 92% in the secondary forest and 64 to 97% in the pasture). At all three sites, rainfall-runoff responses were dominated by subsurface flow generation processes for the majority of storms. However, for the largest and most intense storm (typically occurring once every 2 yr), sampled under wet antecedent conditions, the event water contribution in the pasture (34% on average) was much higher than in the forests (5% on average), indicating that rainfall infiltration capacity of the pasture was exceeded. This result

  1. Generation of a chickenized catalytic anti-nucleic acid antibody by complementarity-determining region grafting.

    PubMed

    Roh, Jooho; Byun, Sung June; Seo, Youngsil; KIm, Minjae; Lee, Jae-Ho; Kim, Songmi; Lee, Yuno; Lee, Keun Woo; Kim, Jin-Kyoo; Kwon, Myung-Hee

    2015-02-01

    In contrast to a number of studies on the humanization of non-human antibodies, the reshaping of a non-human antibody into a chicken antibody has never been attempted. Therefore, nothing is known about the animal species-dependent compatibility of the framework regions (FRs) that sustain the appropriate conformation of the complementarity-determining regions (CDRs). In this study, we attempted the reshaping of the variable domains of the mouse catalytic anti-nucleic acid antibody 3D8 (m3D8) into the FRs of a chicken antibody (“chickenization”) by CDR grafting, which is a common method for the humanization of antibodies. CDRs of the acceptor chicken antibody that showed a high homology to the FRs of m3D8 were replaced with those of m3D8, resulting in the chickenized antibody (ck3D8). ck3D8 retained the biochemical properties (DNA binding, DNA hydrolysis, and cellular internalizing activities) and three-dimensional structure of m3D8 and showed reduced immunogenicity in chickens. Our study demonstrates that CDR grafting can be applied to the chickenization of a mouse antibody, probably due to the interspecies compatibility of the FRs.

  2. Effects of pinacidil on reentrant arrhythmias generated during acute regional ischemia: a simulation study.

    PubMed

    Trénor, Beatriz; Ferrero, José M; Rodríguez, Blanca; Montilla, Fulgencio

    2005-07-01

    Many experimental studies have pointed out the controversy involving the arrhythmogenic effects of potassium channel openers (KCOs) in ischemia. KCOs activate the ATP-sensitive potassium current [IK(ATP)], resulting in action potential duration (APD) shortening, especially under pathological conditions such as ischemia. Acute myocardial ischemia leads to electrophysiological inhomogeneities in APD, conduction velocity, and refractoriness, which provide the substrate for reentry initiation and maintenance and may lead to malignant arrhythmias. The aim of this work is to analyze the effect of the KCO pinacidil on vulnerability to reentry during acute regional ischemia using computer simulations. We use a two-dimensional virtual heart tissue with implementation of acute regional ischemia conditions. Membrane kinetics are represented by a modified version of Luo-Rudy (phase II) action potential model that incorporates the effect of pinacidil on IK(ATP). The vulnerable window (VW) for reentry is quantified for different doses of pinacidil. Our results show that for doses below 3 micromol/l the VW widens with increasing pinacidil concentration, whereas for higher doses of pinacidil the VW decreases, becoming zero for concentrations above 10 micromol/l. The ionic mechanisms involved in this behavior are explored. This study demonstrates that the effect of pinacidil on arrhythmogenesis is strongly dose-dependent, and that high doses of pinacidil exert a strong antiarrhythmic effect.

  3. Generation and detection of super small striations by F region HF heating

    NASA Astrophysics Data System (ADS)

    Najmi, A.; Milikh, G.; Secan, J.; Chiang, K.; Psiaki, M.; Bernhardt, P.; Briczinski, S.; Siefring, C.; Chang, C. L.; Papadopoulos, K.

    2014-07-01

    Recent theoretical models and preliminary observations indicate that super small striations (SSS) in the plasma density with scale size of 10 cm can be excited by F region HF heating at frequencies close to multiples of the electron gyrofrequency. We present here new experimental results using the High Frequency Active Auroral Research Program ionospheric heater at a frequency close to the fourth electron gyroharmonic with simultaneous GPS, Stimulated Electromagnetic Emission, ionosonde, and occasional Incoherent Radar Scattering diagnostics. Differential phase measurements of GPS signals through the heated region indicated the presence of SSS with extremely high amplitude (δn/n = 0.2-0.3) at scale size comparable to the electron gyroradius. The highest amplitude of GPS scintillations coincide with the highest level of the Broad Upshifted Maximum (BUM) and occurred when the HF frequency is slightly above the fourth harmonic of the electron cyclotron frequency. Frequency sweeps indicate that the scintillation amplitude exhibits hysteresis similar to that observed for the BUM amplitude when the HF frequency is cycled about the fourth harmonic of the cyclotron frequency. The results favor a four wave parametric process as the physical mechanism of the SSS. Additional experiments allowed the determination of the excitation and decay rates of the SSS.

  4. Generation of a transcription map from the 17q21 region containing the BRCA1 locus

    SciTech Connect

    Rommens, J.M.; McArthur, J.; Allen, T.

    1994-09-01

    A limited interval of the chromosome 17q21 has been implicated in hereditary breast and ovarian cancer by linkage analysis. The type I 17{beta}-hydroxysteriod dehydrogenase gene (17{beta}HSD) was used to isolate two YACs. These and additional YACs identified with nearby genetic markers were characterized to obtain a detailed physical map of the BRCA1 region. This map provided the basis for the generation of a transcription map in order to identify candidate genes that could be assessed for involvement in the development of breast cancer in affected families. Direct selection of cDNAs from the genomic clones was carried out by hybridization with primary cDNA pools that had been prepared from RNA of mammary gland, ovary, placenta and the Caco-2 colon carcinoma cell line. The selected material was amplified by the polymerase chain reaction and cloned into plasmid vectors. Individual clones of the libraries of the retrieved fragments were then characterized by physical mapping, by RNA hybridization and by sequence analysis. To date, 36 unique cDNA fragments have been mapped to this region and confirmed to originate from chromosome 17. Longer cDNAs were also isolated by screening libraries derived from human breast and placenta. Based on analyses of these clones we have evidence for at least 12 genes from a 1 Megabase region. These include the type I 17{beta}HSD gene and the human {gamma}-tubulin gene. Sequences of two of the cDNA fragments showed similarity to a human brain cDNA and to a human pancreas cDNA. The predicted coding portion of one cDNA showed similarity with a rat ribosomal protein. Also, one cDNA fragment was found to be part of the recently identified gene corresponding to the CA125 antigen. The sequences of the remaining clones showed no strong similarity to known genes or proteins. These cDNAs are being analyzed by DNA and RNA hybridization for aberrations in breast and ovarian cancers.

  5. Regional variations in the health, environmental, and climate benefits of wind and solar generation

    PubMed Central

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M. Granger; Apt, Jay

    2013-01-01

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region. PMID:23798431

  6. Regional variations in the health, environmental, and climate benefits of wind and solar generation.

    PubMed

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger; Apt, Jay

    2013-07-16

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region. PMID:23798431

  7. Characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge with array generators

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Bin; Nie, Qiu-Yue

    2015-09-01

    The two-dimensional spatially extended atmospheric plasma arrays by many parallel radio-frequency glow discharge plasma jets packed densely, represent a feature option of large-scale low-temperature atmospheric plasma technologies with distinct capability of directed delivery of reactive species and good insusceptibility to sample variations. However, it is still a challenge to form plasma jet with large area of uniform active species on a downstream substrate due to the complex interactions between individual jets. This paper proposes to numerically study the strategy and mechanism of control/modulation for the array discharge to produce two-dimensional plasma uniformity in the downstream working area. In this work, a two dimensional fluid model is employed to investigate the characteristics in the jet region of helium radio-frequency atmospheric-pressure glow discharge (RF APGD) with array generators. The influences of upstream discharge characteristics, gas flow and their cooperative effects on the distribution of species densities, gas temperatures and the uniformity of active species in the material treating area is studied, and the essential strategy for the modulation method is acquired. The results will be significant for deep understanding of coupling behaviors of multiple plasma plumes in the RF APGD array and applications of the technology.

  8. Summary of three regional assessment studies of solar electric generation opportunities in the Southwest, Southeast, and Northeast United States

    SciTech Connect

    Watts, R.L.; Harty, H.

    1981-02-01

    Market opportunities for solar generation of electricity for utility and for residential/commercial/industrial applications in the Northeast, Southeast, and Southwest regions of the United States were evaluated in three studies (JBF 1979, Stone and Webster 1979a, 1979b) and are summarized. The evaluations were based on both economic analyses and user perception of what they would require to select or approve the use of solar electric generation for themselves or for their employers. Over 30 utilities and several industrial and commercial firms and homeowners were involved. Solar electric technologies considered included biomass, hybrid retrofit, OTEC, photovoltaic, solar thermal, and wind. The studies projected that solar electric technologies could account for several percent of the forecast generation in year 2000 in the Southeast and Southwest regions,and up to 10 to 20% in the Northeast region. No single solar electric technology or application (for utility or industrial/commercial/residential use) arrived earlier at economic breakeven than other technologies in the Southeast region, but wind generation for both utility and industrial applications predominated in the Northeast region. The Southwest region, in which only utility applications were considered, showed wind energy and retrofit hybrid (a solar adjunct to an existing fossil-fueled plant) to be the most likely early applications.

  9. [Soil active organic matter in broadleaved forest and Chinese fir plantation in subtropical region of China].

    PubMed

    Wang, Qing-Kui; Fan, Bing; Xu, Guang-Biao

    2009-07-01

    A comparative study was made on the soil active organic matter in a broadleaved forest and two Chinese fir (Cunninghamia lanceolata) plantations in subtropical region of China, aimed to understand the effects of forest conversion and continuous plantation on soil organic C and nutrient status. After the conversion from broadleaved forest to Chinese fir plantation, the contents of soil total organic C, humus C, humic acid, and fulvic acid decreased by 27.8%-52.1%, 32.2%-52.8%, 36.4%-59.0%, and 29.7%-50.0%, respectively. Continuous plantation also resulted in the decrease of soil organic C and humus contents. The contents of soil total organic C, humus C, humic acid, and fulvic acid in second generation of Chinese fir plantation were 9.0%-25.0%, 25.0%-38.0%, 28.6%-39.2% and 23.1%-36.4% lower than those in the first generation of Chinese fir plantation, respectively. More obvious effects were observed on the soil active organic matter. After the conversion from broadleaved forest to Chinese fir plantation, the maximum decrement of soil microbial biomass C and N and dissolved organic C and N was 61.8%, 38.2%, 43.3%, and 69.0%; while comparing with the first generation of Chinese fir plantation, the second generation of Chinese fir plantation had the maximum decrement of soil microbial biomass C and N and dissolved organic C and N being 34.7%, 29.3%, 30.4%, and 18.4%, respectively. Soil nutrient contents also decreased due to forest conversion and continuous plantation. In comparing with broadleaved forests, Chinese fir plantations had a decrease of soil N, P, and K contents being 15.7%-31.2%, 11.5%-49.3%, and 15.1%-33.8%, respectively. There were close relationships between soil nutrients and soil active organic matter fractions except cold water extractable organic N.

  10. MAGNETIC HELICITY AND ENERGY SPECTRA OF A SOLAR ACTIVE REGION

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2014-04-01

    We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during 2011 February 11-15 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ≈ 0.4 Mm{sup –1}, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k {sup –11/3} power law at large wavenumbers, which implies a k {sup –5/3} spectrum for the modulus of the current helicity. A k {sup –5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm{sup –1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artifacts at small scales.

  11. CONTRACTING AND ERUPTING COMPONENTS OF SIGMOIDAL ACTIVE REGIONS

    SciTech Connect

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Toeroek, Tibor

    2012-10-01

    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  12. Identifying the Main Driver of Active Region Outflows

    NASA Astrophysics Data System (ADS)

    Baker, D.; van Driel-Gesztelyi, L.; Mandrini, C. H.; Démoulin, P.; Murray, M. J.

    2012-08-01

    Hinode's EUV Imaging Spectrometer (EIS) has discovered ubiquitous outflows of a few to 50 km s-1 from active regions (ARs). The characteristics of these outflows are very curious in that they are most prominent at the AR boundary and appear over monopolar magnetic areas. They are linked to strong non-thermal line broadening and are stronger in hotter EUV lines. The outflows persist for at least several days. Whereas red-shifted down flows observed in AR closed loops are well understood, to date there is no general consensus for the mechanism(s) driving blue-shifted AR-related outflows. We use Hinode EIS and X-Ray Telescope observations of AR 10942 coupled with magnetic modeling to demonstrate for the first time that the outflows originate from specific locations of the magnetic topology where field lines display strong gradients of magnetic connectivity, namely quasi-separatrix layers (QSLs), or in the limit of infinitely thin QSLs, separatrices. The strongest AR outflows were found to be in the vicinity of QSL sections located over areas of strong magnetic field. We argue that magnetic reconnection at QSLs, separating closed field lines of the AR and either large-scale externally connected or ‘open’ field lines, is a viable mechanism for driving AR outflows which are potentially sources of the slow solar wind. In fact, magnetic reconnection along QSLs (including separatricies) is the first theory to explain the most puzzling characteristics of the outflows, namely their occurrence over monopolar areas at the periphery of ARs and their longevity.

  13. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS

    SciTech Connect

    Petrie, G. J. D.; Sudol, J. J.

    2010-12-01

    We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

  14. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  15. generation of picosecond pulses in solid-state lasers using new active media

    SciTech Connect

    Lisitsyn, V.N.; Matrosov, V.N.; Pestryakov, E.V.; Trunov, V.I.

    1986-07-01

    Results are reported of investigations aimed at generating nanosecond radiation pulses in solid-state lasers using new active media having broad gain lines. Passive mode locking is accomplished for the first time in a BeLa:Nd/sup 3/ laser at a wavelength 1.354 microm, and in a YAG:Nd/sup 3/ laser on a 1.32-microm transition. The free lasing and mode-locking regimes were investigated in an alexandrite (BeA1/sub 2/O/sub 4/:Cr/sup 3/) laser in the 0.72-0.78-microm range and in a synchronously pumped laser on F/sub 2//sup -/ centers in LiF in the 1.12-1.24-microm region. The features of nonlinear perception of IR radiation by the eye, using a developed picosecond laser on F/sub 2//sup -/ centers, are investigated for the first time.

  16. Application of active quenching of second generation wire for current limiting

    DOE PAGESBeta

    Solovyov, Vyacheslav F.; Li, Qiang

    2015-10-19

    Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggersmore » a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.« less

  17. Application of active quenching of second generation wire for current limiting

    SciTech Connect

    Solovyov, Vyacheslav F.; Li, Qiang

    2015-10-19

    Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggers a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.

  18. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A. E-mail: ambastha@prl.res.in

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  19. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Falconer, D. A.

    2009-05-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are LWLSG, a gauge of the total free energy in an active region's magnetic field, and LΦ, a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 RSun central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size LΦ of the active region, (2) in (Log LWLSG, Log LΦ) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active-region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: áBñ ≡ ΦA ≈ 300 G, where Φ is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (< 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division, NSF's Division of Atmospheric Sciences, and AFOSR's MURI Program.

  20. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  1. Identification of conserved genomic regions and variation therein amongst Cetartiodactyla species using next generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Next Generation Sequencing has created an opportunity to genetically characterize an individual both inexpensively and comprehensively. In earlier work produced in our collaboration [1], it was demonstrated that, for animals without a reference genome, their Next Generation Sequence data ...

  2. Biological activity of photoproducts of merocyanine 540 generated by laser-light activation

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.; Chanh, Tran C.; Pervaiz, Shazib; Harriman, Anthony; Matthews, James Lester

    1992-08-01

    Controlled exposure of photoactive compounds to light prior to their use in biological targets results in the formation of heretofore unknown photoproducts. This process of photoproduct generation, termed "preactivation," renders the photactive compound capable of systemic use without further dependence on light. Preactivation of mercyanin 540 (MC540) and several other photoactive compounds is achievable by exposure to CW and pulse laser radiation. The singlet oxygen generated at excited states attacks the dye molucule itself, resulting in the formation of biologically active photoproducts. For preactivated MC540 (photoproducts of MC540) generated by exposure to argon laser light (514 nm) and light from free-electron laser, we have demonstrated its effectiveness in selective killing of certain types of cultured tumor cells as well as human immunodeficiency virus type 1 (HIV-1) with very low, if any, damage to normal cells and tisues. For example, approximately 90% of the Burkitt's lymphoma Daudi cells and HL-60 leukemic cells are killed by preactivated MC540 at a concentration of 120 μg/ml. A two-hour treatment of cultured cells with buthionine sulfoxamine followed by the treatement with preactivated MC540 reults in 99.99% inhibition of clonogenic tumor stem cell growth. We also have demonstrated that preactivated MC540 is very effective in killing cell-free and cell-associated HIV-1. It also is very effective in killing HIV-1 and simian immunodeficiency virus (SIV) in virus-infected blood in vitro as determined by reverse transcriptase, P24, P17, core antigen expression and synctium formation. Treatment of HIV-1 with preactivated MC540 renders the treated HIV-1 incapable of binding to CD4 target molecules on T cells as determined by immunofluorescence and radioimmunoprecipitation assays. In vivo toxicology studies show that preactivated MC540 is very well tolerated and does not produce any signs of adverse reaction at the therapeutic doses, as determined by

  3. A low upper limit on the subsurface rise speed of solar active regions

    PubMed Central

    Birch, Aaron C.; Schunker, Hannah; Braun, Douglas C.; Cameron, Robert; Gizon, Laurent; Löptien, Björn; Rempel, Matthias

    2016-01-01

    Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube; it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface around emerging active regions, in combination with numerical simulations of solar magnetoconvection, can constrain the subsurface rise speed of emerging magnetic flux. The observed flows imply that the rise speed of the magnetic field is no larger than 150 m/s at a depth of 20 Mm, that is, well below the prediction of the (standard) thin flux tube model but in the range expected for convective velocities at this depth. We conclude that convective flows control the dynamics of rising flux tubes in the upper layers of the Sun and cannot be neglected in models of flux emergence. PMID:27453947

  4. A low upper limit on the subsurface rise speed of solar active regions.

    PubMed

    Birch, Aaron C; Schunker, Hannah; Braun, Douglas C; Cameron, Robert; Gizon, Laurent; Löptien, Björn; Rempel, Matthias

    2016-07-01

    Magnetic field emerges at the surface of the Sun as sunspots and active regions. This process generates a poloidal magnetic field from a rising toroidal flux tube; it is a crucial but poorly understood aspect of the solar dynamo. The emergence of magnetic field is also important because it is a key driver of solar activity. We show that measurements of horizontal flows at the solar surface around emerging active regions, in combination with numerical simulations of solar magnetoconvection, can constrain the subsurface rise speed of emerging magnetic flux. The observed flows imply that the rise speed of the magnetic field is no larger than 150 m/s at a depth of 20 Mm, that is, well below the prediction of the (standard) thin flux tube model but in the range expected for convective velocities at this depth. We conclude that convective flows control the dynamics of rising flux tubes in the upper layers of the Sun and cannot be neglected in models of flux emergence. PMID:27453947

  5. Linking the Weather Generator with Regional Climate Model: Effect of Higher Resolution

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Huth, Radan; Farda, Ales; Skalak, Petr

    2014-05-01

    This contribution builds on our last year EGU contribution, which followed two aims: (i) validation of the simulations of the present climate made by the ALADIN-Climate Regional Climate Model (RCM) at 25 km resolution, and (ii) presenting a methodology for linking the parametric weather generator (WG) with RCM output (aiming to calibrate a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations). Now we have available new higher-resolution (6.25 km) simulations with the same RCM. The main topic of this contribution is an anser to a following question: What is an effect of using a higher spatial resolution on a quality of simulating the surface weather characteristics? In the first part, the high resolution RCM simulation of the present climate will be validated in terms of selected WG parameters, which are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series. When comparing the WG parameters from the two sources (RCM vs observations), we interpolate the RCM-based parameters into the station locations while accounting for the effect of altitude. In the second part, we will discuss an effect of using the higher resolution: the results of the validation tests will be compared with those obtained with the lower-resolution RCM. Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).

  6. Hydrocarbon generation potential of the Cretaceous section from Well ALP-6, Perija Region, Venezuela

    SciTech Connect

    Pratt, L. ); Mompart, L.; Murat, B. )

    1993-02-01

    Geochemistry and sedimentology have been integrated in order to provide a better understanding of the source rock potential and depositional environments of the La Luna Formation and Machiques Member in Well ALP-6 (Perija region). These two units, the dominant source rocks in the Maracaibo Basin, are mainly shales with high to very high organic content, while thin interbeds of limestones are poor in organic matter. A detailed sedimentological study and sequence analysis indicates that both shaly units represent a period of platform infilling subsequent to drowning. Periods of progressive back stepping culminating in the deposition of organic-rich condensed intervals are recognized, based on sedimentology of cores and wireline log analysis. A succession of fining-upward sequences, 1' to 5' thick, with distinct sedimentological and geochemical signatures have been identified in the La Luna Formation. Phenomena of early diagenesis (intrashale calcite growth due to organic matter degradation; sulfur precipitated in local paleolows) to late diagenesis (pressure-solution effects with development of laterally correlatable cone-in-cone layers) are all indicators that the hydrocarbon generation potential of La Luna is not uniform and can only be assessed by detailed geological, sedimentological and geochemical investigations. Two geochemically distinct facies can be identified in both La Luna and Machiques. A sulfur-rich facies is characterized by Corg/AVSul ratios averaging 1.9 and by exceptionally high concentrations of sulfur-bearing aromatic compounds. A sulfur-poor facies is characterized by Corg/AVSul ratios averaging 9.2 and by trace concentrations or absence of sulfur-bearing aromatic compounds.

  7. Generation of hemolytic activity in ozone-treated phosphatidylcholine

    SciTech Connect

    Butterman, J.; Chan, P.C.; Kesner, L.

    1987-04-01

    When liposomes prepared from purified soybean phosphatidylcholine were treated with ozone, at least two types of hemolytic agents were formed. One type was stable at 0 degree C but was destroyed rapidly at 37 degrees C. A second type was evolved during storage of ozone-treated phosphatidylcholine at 37 degrees C in the absence of EDTA. This study is concerned mainly with the heat-labile type. The hemolytic activity was not associated with lipid hydroperoxides. A number of substances were shown to inhibit the hemolytic activity and these may be divided into two classes. The first included cysteine, polyamines, n-heptylamine, semicarbazide, and tryptophan. Preincubation of the ozone-treated phosphatidylcholine was necessary with a Class 1 inhibitor, presumably for the interaction of the inhibitor with a functional group of the hemolytic agents. The Class II inhibitors, including BHT and vitamin C, required no preincubation. These possibly abolished the hemolytic activity by scavenging free radicals in the process.

  8. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  9. 76 FR 58533 - Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Bureau of Land Management Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper... River Regional Coal Team (RCT) has scheduled a public meeting for October 26, 2011, to review coal management activities in the Powder River Coal Production Region. DATES: The RCT meeting will begin at 9...

  10. Using Guided, Corpus-Aided Discovery to Generate Active Learning

    ERIC Educational Resources Information Center

    Huang, Li-Shih

    2008-01-01

    Over the years, educators have proposed a variety of active learning pedagogical approaches that focus on encouraging students to discover for themselves the principles and solutions that will engage them in learning and enhance their educational outcomes. Among these approaches are problem-based, inquiry-based, experiential, and discovery…

  11. Multi-Generational Learning: Developing Informed Advocates and Active Children

    ERIC Educational Resources Information Center

    Carson, Linda M.

    2004-01-01

    The creation of multifaceted, multigenerational programs in college communities could create a ripple effect of advocacy for physical education with students and parents becoming agents for change in their own families, communities, cultures, and professions. This article describes community-based physical activity programs at West Virginia…

  12. Educating for Political Activity: A Younger Generational Response

    ERIC Educational Resources Information Center

    Mac an Ghaill, Mairtin

    2010-01-01

    This paper is a response to Professor Chitty's "Educational Review" Guest Lecture article, "Educating for political activity". I address the three sections of his paper: a global and national-based politics of war, corporate manipulation and parliamentary scandals. This provides a basis to draw upon empirical material from a recent critical…

  13. Scientific and legal perspectives on science generated for regulatory activities.

    PubMed

    Henry, Carol J; Conrad, James W

    2008-01-01

    This article originated from a conference that asked "Should scientific work conducted for purposes of advocacy before regulatory agencies or courts be judged by the same standards as science conducted for other purposes?" In the article, which focuses on the regulatory advocacy context, we argue that it can be and should be. First, we describe a set of standards and practices currently being used to judge the quality of scientific research and testing and explain how these standards and practices assist in judging the quality of research and testing regardless of why the work was conducted. These standards and practices include the federal Information Quality Act, federal Good Laboratory Practice standards, peer review, disclosure of funding sources, and transparency in research policies. The more that scientific information meets these standards and practices, the more likely it is to be of high quality, reliable, reproducible, and credible. We then explore legal issues that may be implicated in any effort to create special rules for science conducted specifically for a regulatory proceeding. Federal administrative law does not provide a basis for treating information in a given proceeding differently depending on its source or the reason for which it was generated. To the contrary, this law positively assures that interested persons have the right to offer their technical expertise toward the solution of regulatory problems. Any proposal to subject scientific information generated for the purpose of a regulatory proceeding to more demanding standards than other scientific information considered in that proceeding would clash with this law and would face significant administrative complexities. In a closely related example, the U.S. Environmental Protection Agency considered but abandoned a program to implement standards aimed at "external" information.

  14. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2013-01-01

    It has been found previously, by measuring from active ]region magnetograms a proxy of the free energy in the active region fs magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main ]sequence path bordering the free ]energy ]limit line in (flux content, free ]energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free ]energy limit, the ratio of magnetic ]shear free energy to the non ]free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. Evidently, most active regions in which this core ]field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

  15. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Falconer, David; Sterling, Alphonse

    2012-01-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  16. THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2012-05-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  17. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    NASA Astrophysics Data System (ADS)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  18. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  19. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

    PubMed Central

    Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E; Adamson, Britt; Pak, Ryan A; Chen, Yuwen; Fields, Alexander P; Park, Chong Yon; Corn, Jacob E; Kampmann, Martin; Weissman, Jonathan S

    2016-01-01

    We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001 PMID:27661255

  20. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  1. Deterministic generation of remote entanglement with active quantum feedback

    DOE PAGESBeta

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  2. Deterministic generation of remote entanglement with active quantum feedback

    SciTech Connect

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.

  3. Rapid generation of region-specific probes by chromosome microdissection: Application to the identification of chromosomal rearrangements

    SciTech Connect

    Trent, J.M.; Guan, X.Y.; Zang, J.; Meltzer, P.S. )

    1993-01-01

    The authors present results using a novel strategy for chromosome microdissection and direct in vitro amplification of specific chromosomal regions, to identify cryptic chromosome alterations, and to rapidly generate region-specific genomic probes. First, banded chromosomes are microdissected and directly PCR amplified by a procedure which eliminates microchemistry (Meltzer, et al., Nature Genetics, 1:24, 1992). The resulting PCR product can be used for several applications including direct labeling for fluorescent in situ hybridization (FISH) to normal metaphase chromosomes. A second application of this procedure is the extremely rapid generation of chromosome region-specific probes. This approach has been successfully used to determine the derivation of chromosome segments unidentifiable by standard chromosome banding analysis. In selected instances these probes have also been used on interphase nuclei and provides the potential for assessing chromosome abnormalities in a variety of cell lineages. The microdissection probes (which can be generated in <24 hours) have also been utilized in direct library screening and provide the possibility of acquiring a significant number of region-specific probes for any chromosome band. This procedure extends the limits of conventional cytogenetic analysis by providing an extremely rapid source of numerous band-specific probes, and by enabling the direct analysis of essentially any unknown chromosome region.

  4. A restricted parabrachial pontine region is active during non-REM sleep

    PubMed Central

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H.

    2011-01-01

    The principal site that generates both REM sleep and wakefulness is located in the mesopontine reticular formation, whereas non-REM sleep (NREM) is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase or GABA. During NREM, only a few Fos immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral peribrachial region (CLPB). The number of the Fos+ neurons in the CLPB during NREM was significantly greater (67.9 ± 10.9, P < 0.0001) compared to QW (8.0 ± 6.7), AW (5.2 ± 4.2) or REM-carbachol (8.0 ± 4.7). In addition, there was a positive correlation (R = 0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of

  5. CORONAL MAGNETOGRAPHY OF A SIMULATED SOLAR ACTIVE REGION FROM MICROWAVE IMAGING SPECTROPOLARIMETRY

    SciTech Connect

    Wang, Zhitao; Gary, Dale E.; Fleishman, Gregory D.; White, Stephen M.

    2015-06-01

    We have simulated the Expanded Owens Valley Solar Array (EOVSA) radio images generated at multiple frequencies from a model solar active region, embedded in a realistic solar disk model, and explored the resulting data cube for different spectral analysis schemes to evaluate the potential for realizing one of EOVSA’s most important scientific goals—coronal magnetography. In this paper, we focus on modeling the gyroresonance and free–free emission from an on-disk solar active region model with realistic complexities in electron density, temperature and magnetic field distribution. We compare the magnetic field parameters extrapolated from the image data cube along each line of sight after folding through the EOVSA instrumental profile with the original (unfolded) parameters used in the model. We find that even the most easily automated, image-based analysis approach (Level-0) provides reasonable quantitative results, although they are affected by systematic effects due to finite sampling in the Fourier (UV) plane. Finally, we note the potential for errors due to misidentified harmonics of the gyrofrequency, and discuss the prospects for applying a more sophisticated spectrally based analysis scheme (Level-1) to resolve the issue in cases where improved UV coverage and spatial resolution are available.

  6. The rotation of sunspots in the solar active region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Gopasyuk, O. S.

    2014-06-01

    The rotation of sunspots in the solar active region NOAA 10930 was investigated on the basis of the data on the longitudinal magnetic field and the Doppler velocities using magnetograms and dopplergrams taken with the Solar Optical Telescope installed aboard the HINODE mission. Under the assumption of axial symmetry, areally-mean vertical, radial, and azimuthal components of the magnetic field and velocity vectors were calculated in both sunspots. The plasma in the sunspots rotated in opposite directions: in the leading sunspot, clockwise, and in the following sunspot, counterclockwise. The magnetic flux tubes that formed sunspots of the active region on the solar surface were twisted in one direction, clockwise. Electric currents generated as a result of the rotation and twisting of magnetic flux tubes were also flowing in one direction. Azimuthal components of magnetic and velocity fields of both sunspot umbrae reached their maximum on December 11, 2006. By the start of the X3.4 flare (December 13, 2006), their values became practically equal to zero.

  7. Antibody Constant Region Peptides Can Display Immunomodulatory Activity through Activation of the Dectin-1 Signalling Pathway

    PubMed Central

    Cenci, Elio; Monari, Claudia; Magliani, Walter; Ciociola, Tecla; Conti, Stefania; Gatti, Rita; Bistoni, Francesco; Polonelli, Luciano; Vecchiarelli, Anna

    2012-01-01

    We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc) of human IgG1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules. PMID:22952831

  8. LOW-LATITUDE CORONAL HOLES, DECAYING ACTIVE REGIONS, AND GLOBAL CORONAL MAGNETIC STRUCTURE

    SciTech Connect

    Petrie, G. J. D.; Haislmaier, K. J.

    2013-10-01

    We study the relationship between decaying active-region magnetic fields, coronal holes, and the global coronal magnetic structure using Global Oscillations Network Group synoptic magnetograms, Solar TErrestrial RElations Observatory extreme-ultraviolet synoptic maps, and coronal potential-field source-surface models. We analyze 14 decaying regions and associated coronal holes occurring between early 2007 and late 2010, 4 from cycle 23 and 10 from cycle 24. We investigate the relationship between asymmetries in active regions' positive and negative magnetic intensities, asymmetric magnetic decay rates, flux imbalances, global field structure, and coronal hole formation. Whereas new emerging active regions caused changes in the large-scale coronal field, the coronal fields of the 14 decaying active regions only opened under the condition that the global coronal structure remained almost unchanged. This was because the dominant slowly varying, low-order multipoles prevented opposing-polarity fields from opening and the remnant active-region flux preserved the regions' low-order multipole moments long after the regions had decayed. Thus, the polarity of each coronal hole necessarily matched the polar field on the side of the streamer belt where the corresponding active region decayed. For magnetically isolated active regions initially located within the streamer belt, the more intense polarity generally survived to form the hole. For non-isolated regions, flux imbalance and topological asymmetry prompted the opposite to occur in some cases.

  9. The "Fourth Generation University" as a Creator of the Local and Regional Development

    ERIC Educational Resources Information Center

    Pawlowski, Krzysztof

    2009-01-01

    Beginning with a view of the role of tertiary-level educational institutions in the globalizing world and the condition of the Polish higher education system in 2007, the author presents the factors affecting the regional development as well as those that exert the strongest influence on long-term regional development. While examining current…

  10. Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure.

    PubMed Central

    Rowe, C L; Fleming, J O; Nathan, M J; Sgro, J Y; Palmenberg, A C; Baker, S C

    1997-01-01

    Coronavirus RNA evolves in the central nervous systems (CNS) of mice during persistent infection. This evolution can be monitored by detection of a viral quasispecies of spike deletion variants (SDVs) (C. L. Rowe, S. C. Baker, M. J. Nathan, and J. O. Fleming, J. Virol. 71:2959-2969, 1997). We and others have found that the deletions cluster in the region from 1,200 to 1,800 nucleotides from the 5' end of the spike gene sequence, termed the "hypervariable" region. To address how SDVs might arise, we generated the predicted folding structures of the positive- and negative-strand senses of the entire 4,139-nt spike RNA sequence. We found that a prominent, isolated stem-loop structure is coincident with the hypervariable region in each structure. To determine if this predicted stem-loop is a "hot spot" for RNA recombination, we assessed whether this region of the spike is more frequently deleted than three other selected regions of the spike sequence in a population of viral sequences isolated from the CNS of acutely and persistently infected mice. Using differential colony hybridization of cloned spike reverse transcription-PCR products, we detected SDVs in which the hot spot was deleted but did not detect SDVs in which other regions of the spike sequence were exclusively deleted. Furthermore, sequence analysis and mapping of the crossover sites of 25 distinct patterns of SDVs showed that the majority of crossover sites clustered to two regions at the base of the isolated stem-loop, which we designated as high-frequency recombination sites 1 and 2. Interestingly, the majority of the left and right crossover sites of the SDVs were directly across from or proximal to one another, suggesting that these SDVs are likely generated by intramolecular recombination. Overall, our results are consistent with there being an important role for the spike RNA secondary structure as a contributing factor in the generation of SDVs during persistent infection. PMID:9223514

  11. Next-generation electroceramic fibers for active control

    NASA Astrophysics Data System (ADS)

    Bystricky, Pavel; Pascucci, Marina R.; Strock, Harold B.

    2002-07-01

    Lead-based PMN-31PT and lead-free BNBZT fibers in the 250- 500 micrometer diameter range were produced using CeraNova's proprietary extrusion technology. Various recrystallization approaches were investigated, including seeded solid state conversion and self-seeded texturing, with the goal of obtaining single-crystalline or textured macrocrystalline fibers. Grains in excess of 100 micrometers - and exceeding 1 mm in some cases - with surface and bulk coverage approaching 100 percent, were obtained in a narrow temperature range and under carefully controlled atmosphere conditions. Large grain growth in BNBZT required the presence of BaSrTiO3 or SrTiO3 seeds and temperatures in the 1150-1200 degrees C range. In PMN-31PT, nearly compete recrystalline was observed in unseeded material at relatively low temperature and short time, and improved performance was achieved with a two-step sintering schedule and slightly extended time. While conduction effects have not yet allowed compete assessment of recrystalline BNBZT, PMN-31PT fibers have shown excellent piezoelectric properties with remanent polarization in excess of 30(mu) C/cm2 and coercive field of 4.5kV/cm. When incorporated into active fiber composites, the latter fibers' performance of 2000 microstrain in superior to average PZT-based production composites. Efforts are under way to induce preferred orientation in the large crystal in order to maximize performance.

  12. Variability of Regional Wind Energy Generation on Intraseasonal to Interannual timescales

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, D. B.; Jascourt, S. D.; Cassidy, C.

    2012-12-01

    We produce forecasts of wind energy electrical generation in a large number of electrical interconnections in the United States, Canada and Europe. Using our data base of wind farm locations, turbine numbers and types, we are able to use reanalyzed winds from NOAA's Climate Forecast System Reanalysis to calculate the electrical power that would have been generated by the existing wind farm network for the last thirty years. We will show these time series for several electrical interconnections in North America and Europe, and discuss their correlations with various indices of the global circulation, including the North Atlantic Oscillation and the Madden-Julian Oscillation on short time scales, and the the El Niño-Southern Oscillation on longer time scales. These studies allow analysis of the expected variations of wind powered electrical generation on monthly to interannual time scales, and set the stage for coupled-climate model prediction of wind energy generation, using the NOAA Climate Forecast System.

  13. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  14. Generating extreme weather event sets from very large ensembles of regional climate models

    NASA Astrophysics Data System (ADS)

    Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim

    2015-04-01

    Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a

  15. Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.; Zhang, J.; Sun, X. D.; Guo, Y.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-01

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s-1. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  16. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520

    SciTech Connect

    Cheng, X.; Ding, M. D.; Zhang, J.; Guo, Y.; Sun, X. D.; Wang, Y. M.; Kliem, B.; Deng, Y. Y.

    2014-07-10

    In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted field and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.

  17. Earthquake Model of the Middle East (EMME) Project: Active Fault Database for the Middle East Region

    NASA Astrophysics Data System (ADS)

    Gülen, L.; Wp2 Team

    2010-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the umbrella GEM (Global Earthquake Model) project (http://www.emme-gem.org/). EMME project region includes Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project will use PSHA approach and the existing source models will be revised or modified by the incorporation of newly acquired data. More importantly the most distinguishing aspect of the EMME project from the previous ones will be its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that will permit continuous update, refinement, and analysis. A digital active fault map of the Middle East region is under construction in ArcGIS format. We are developing a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. Similar to the WGCEP-2007 and UCERF-2 projects, the EMME project database includes information on the geometry and rates of movement of faults in a “Fault Section Database”. The “Fault Section” concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far over 3,000 Fault Sections have been defined and parameterized for the Middle East region. A separate “Paleo-Sites Database” includes information on the timing and amounts of fault displacement for major fault zones. A digital reference library that includes the pdf files of the relevant papers, reports is also being prepared. Another task of the WP-2 of the EMME project is to prepare

  18. Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices

    PubMed Central

    Ross, F M; Brodie, M J; Stone, T W

    1998-01-01

    Hippocampal slices (450 μm) generate epileptiform bursts of an interictal nature when perfused with a zero magnesium medium containing 4-aminopyridine (50 μM). The effect of adenine nucleotides on this activity was investigated.ATP and adenosine depressed this epileptiform activity in a concentration-dependent manner, with both purines being equipotent at concentrations above 10 μM.Adenosine deaminase 0.2 u ml−1, a concentration that annuls the effect of adenosine (50 μM), did not significantly alter the depression of activity caused by ATP (50 μM).8-Cyclopentyl-1, 3-dimethylxanthine (CPT), an A1 receptor antagonist, enhanced the discharge rate significantly and inhibited the depressant effect of both ATP and adenosine such that the net effect of ATP or adenosine plus CPT was excitatory.Several ATP analogues were also tested: α, β-methyleneATP (α, β-meATP), 2-methylthioATP (2-meSATP) and uridine triphosphate (UTP). Only α, β-meATP (10 μM) produced an increase in the frequency of spontaneous activity which suggests a lack of involvement of P2Y or P2U receptors.Suramin and pyridoxalphosphate-6-azophenyl-2′, 4′-disulphonic acid (PPADS), P2 receptor antagonists, failed to inhibit the depression produced by ATP (50 μM). The excitatory effect of α, β-meATP (10 μM) was inhibited by suramin (50 μM) and PPADS (5 μM).ATP therefore depresses epileptiform activity in this model in a manner which is not consistent with the activation of known P1 or P2 receptors, suggesting the involvement of a xanthine-sensitive nucleotide receptor. The results are also indicative of an excitatory P2X receptor existing in the hippocampal CA3 region. PMID:9484856

  19. Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region.

    PubMed

    Jaramillo-Villegas, Jose A; Xue, Xiaoxiao; Wang, Pei-Hsun; Leaird, Daniel E; Weiner, Andrew M

    2015-04-20

    A path within the parameter space of detuning and pump power is demonstrated in order to obtain a single cavity soliton (CS) with certainty in SiN microring resonators in the anomalous dispersion regime. Once the single CS state is reached, it is possible to continue a path to compress it, broadening the corresponding single free spectral range (FSR) Kerr frequency comb. The first step to achieve this goal is to identify the stable regions in the parameter space via numerical simulations of the Lugiato-Lefever equation (LLE). Later, using this identification, we define a path from the stable modulation instability (SMI) region to the stable cavity solitons (SCS) region avoiding the chaotic and unstable regions. PMID:25968998

  20. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    SciTech Connect

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah S.

    2014-12-18

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease in annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.

  1. Projecting changes in annual hydropower generation using regional runoff data: An assessment of the United States federal hydropower plants

    DOE PAGESBeta

    Kao, Shih -Chieh; Sale, Michael J.; Ashfaq, Moetasim; Uria Martinez, Rocio; Kaiser, Dale Patrick; Wei, Yaxing; Diffenbaugh, Noah S.

    2014-12-18

    Federal hydropower plants account for approximately half of installed US conventional hydropower capacity, and are an important part of the national renewable energy portfolio. Utilizing the strong linear relationship between the US Geological Survey WaterWatch runoff and annual hydropower generation, a runoff-based assessment approach is introduced in this study to project changes in annual and regional hydropower generation in multiple power marketing areas. Future climate scenarios are developed with a series of global and regional climate models, and the model output is bias-corrected to be consistent with observed data for the recent past. Using this approach, the median decrease inmore » annual generation at federal projects is projected to be less than –2 TWh, with an estimated ensemble uncertainty of ±9 TWh. Although these estimates are similar to the recently observed variability in annual hydropower generation, and may therefore appear to be manageable, significantly seasonal runoff changes are projected and it may pose significant challenges in water systems with higher limits on reservoir storage and operational flexibility. Lastly, future assessments will be improved by incorporating next-generation climate models, by closer examination of extreme events and longer-term change, and by addressing the interactions among hydropower and other water uses.« less

  2. Synthetic Physical Interactions Map Kinetochore-Checkpoint Activation Regions

    PubMed Central

    Ólafsson, Guðjón; Thorpe, Peter H.

    2016-01-01

    The spindle assembly checkpoint (SAC) is a key mechanism to regulate the timing of mitosis and ensure that chromosomes are correctly segregated to daughter cells. The recruitment of the Mad1 and Mad2 proteins to the kinetochore is normally necessary for SAC activation. This recruitment is coordinated by the SAC kinase Mps1, which phosphorylates residues at the kinetochore to facilitate binding of Bub1, Bub3, Mad1, and Mad2. There is evidence that the essential function of Mps1 is to direct recruitment of Mad1/2. To test this model, we have systematically recruited Mad1, Mad2, and Mps1 to most proteins in the yeast kinetochore, and find that, while Mps1 is sufficient for checkpoint activation, recruitment of either Mad1 or Mad2 is not. These data indicate an important role for Mps1 phosphorylation in SAC activation, beyond the direct recruitment of Mad1 and Mad2. PMID:27280788

  3. Phytochemical Composition, Antioxidant Activity and HPLC Fingerprinting Profiles of Three Pyrola Species from Different Regions

    PubMed Central

    Wang, Dongmei; He, Fengyuan; Lv, Zhenjiang; Li, Dengwu

    2014-01-01

    The present study was performed to investigate the variation of phytochemical composition, antioxidant activity and High Performance Liquid Chromatography (HPLC) fingerprinting profiles of three Pyrola species. Thirteen samples (eight P. decorata, three P. calliantha and two P. renifolia) were collected from different regions in China. The tannin, hyperoside and quercetin contents of all samples were determined by reverse-phase HPLC and varied within the range 9.77–34.75, 0.34–2.16 and 0.062–0.147 mg/g dry weigh, respectively. Total flavonoid content was evaluated and varied within the range 16.22–37.82 mg/g dry weight. Antioxidant activity was determined by DPPH assay, with IC50 ranging from 7.96 to 50.33 µg/ml, ABTS•+ and FRAP assay, within the range 612.66–1021.05 and 219.64–398.12 µmol equiv. Trolox/g, respectively. These results revealed that there were significant variations in phytochemical profiles and antioxidant activity among all samples. Due to the higher phytochemical content and significant antioxidant activity, P. calliantha was selected as the most valuable species, and the P. calliantha sample from Left banner of Alxa even possessed the strongest antioxidant activity among all the thirteen samples. Futhermore, Emei Mountain was proved to be the most suitable region for producing P. decorata. Moreover, in order to further evaluate the diversities and quality of Pyrola, HPLC fingerprint analysis coupled with hierarchical cluster and discrimination analyses were introduced to establish a simple, rapid and effective method for accurate identification, classification and quality assessment of Pyrola. Thirteen samples were divided into three groups consistent with their morphological classification. Two types of discriminant functions were generated and the ratio of discrimination was 100%. This method can identify different species of Pyrola and the same species from different regions of origin. Also, it can be used to compare and

  4. Antibody Complementarity-Determining Regions (CDRs) Can Display Differential Antimicrobial, Antiviral and Antitumor Activities

    PubMed Central

    Polonelli, Luciano; Pontón, José; Elguezabal, Natalia; Moragues, María Dolores; Casoli, Claudio; Pilotti, Elisabetta; Ronzi, Paola; Dobroff, Andrey S.; Rodrigues, Elaine G.; Juliano, Maria A.; Maffei, Domenico Leonardo; Magliani, Walter; Conti, Stefania; Travassos, Luiz R.

    2008-01-01

    Background Complementarity-determining regions (CDRs) are immunoglobulin (Ig) hypervariable domains that determine specific antibody (Ab) binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here. Methodology/Principal Findings CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a) a protein epitope of Candida albicans cell wall stress mannoprotein; b) a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c) a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains. Conclusions/Significance The high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small sized synthetic

  5. Regional trends in radiogenic heat generation in the Precambrian basement of the Western Canadian Basin

    NASA Astrophysics Data System (ADS)

    Jones, F. W.; Majorowicz, J. A.

    Radiogenic heat generation values for 381 basement samples from 229 sites in the western Canadian basin exhibit a lognormal frequency distribution. The mean value = 2.06 (S.D. = 1.22) µWm-3 is larger than the radiogenic heat generation values reported for the shield in the Superior (ca. 1.2 µWm-3, Jessop and Lewis, 1978) and Churchill (ca. 0.7 µWm-3, Drury, 1985) provinces. When equal Log A contour intervals are used to map the basement heat generation, three large zones of relatively high heat generation are found. One coincides with the Peace River Arch basement structure and one with the Athabasca axis (Darnley, 1981). There is no apparent indication of increased heat flow through the Paleozoic formations associated with these two zones. The third zone, in southwestern Saskatchewan, coincides with a high heat flow zone in the Swift Current area. The lack of correlation between heat flow and heat generation in Alberta may be due to the disturbance to the heat flow in the Paleozoic formations by water motion, or may indicate that the heat is from uranium, thorium and potassium isotope enrichment near the basement surface rather than enrichment throughout the entire upper crust.

  6. Magnetic field configuration in a flaring active region

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Balmaceda, L. A.; Vieira, L. E.

    2015-10-01

    The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides continuous monitoring of the Sun's vector magnetic field through full-disk photospheric data with both high cadence and high spatial resolution. Here we investigate the evolution of AR 11249 from March 6 to March 7, 2012. We make use of HMI Stokes imaging, SDO/SHARPs, the HMI magnetic field line-of-sight (LOS) maps and the transverse components of the magnetic field as well as LOS velocity maps in order to detect regions with significant flux emergence and/or cancellation. In addition, we apply the Local Correlation Tracking (LCT) technique to the total and signed magnetic flux data and derive maps of horizontal velocity. From this analysis, we were able to pinpoint localized shear regions (and a shear channel) where penumbrae and pore formation areas, with strong linear polarization signals, are stretched and squeezed, showing also important downflows and upflows. We have also utilized Hinode/SP data and compared them to the HMI-SHARPs and the HMI-Stokes spectrograms. The aforementioned shear channel seems to correspond well with the X-class flare main channel of March 7 2012, as observed in AIA/SDO 171, 304 and 1600 Å.

  7. Time course of regional brain activity accompanying auditory verbal hallucinations in schizophrenia

    PubMed Central

    Hoffman, Ralph E.; Pittman, Brian; Constable, R. Todd; Bhagwagar, Zubin; Hampson, Michelle

    2011-01-01

    Background The pathophysiology of auditory verbal hallucinations remains poorly understood. Aims To characterise the time course of regional brain activity leading to auditory verbal hallucinations. Method During functional magnetic resonance imaging, 11 patients with schizophrenia or schizoaffective disorder signalled auditory verbal hallucination events by pressing a button. To control for effects of motor behaviour, regional activity associated with hallucination events was scaled against corresponding activity arising from random button-presses produced by 10 patients who did not experience hallucinations. Results Immediately prior to the hallucinations, motor-adjusted activity in the left inferior frontal gyrus was significantly greater than corresponding activity in the right inferior frontal gyrus. In contrast, motor-adjusted activity in a right posterior temporal region overshadowed corresponding activity in the left homologous temporal region. Robustly elevated motor-adjusted activity in the left temporal region associated with auditory verbal hallucinations was also detected, but only subsequent to hallucination events. At the earliest time shift studied, the correlation between left inferior frontal gyrus and right temporal activity was significantly higher for the hallucination group compared with non-hallucinating patients. Conclusions Findings suggest that heightened functional coupling between the left inferior frontal gyrus and right temporal regions leads to coactivation in these speech processing regions that is hallucinogenic. Delayed left temporal activation may reflect impaired corollary discharge contributing to source misattribution of resulting verbal images. PMID:21972276

  8. Interaction and generation of small-scale waves by medium-scale waves in the MLT region.

    NASA Astrophysics Data System (ADS)

    Heale, C. J.; Snively, J. B.

    2015-12-01

    Interactions between gravity waves of different scales are frequent in the mesosphere and lower thermosphere (MLT) region of Earth's atmosphere. Recent coordinated observational studies [e.g., Fritts et al. 2014, Taylor et al. 2015, Bossert et al. 2015 ] have identified numerous cases where small-scale waves (~10s km wavelength, minute periods) are found to be propagating within strong medium-scale wave fields (~100s km wavelength and intrinsic periods of approximately hours). Despite this, it is unclear to what extent the small-scale waves are generated from the same source, are ambient in the atmosphere as generated by other sources, or are generated in-situ by the medium-scale wave and its interactions. A 2D compressible, nonlinear model is used to simulate cases of (1) the refractive effects of medium scale wave-like wind and temperature fields in addition to (2) the full dynamic interactions between small scale and medium scale waves under realistic atmospheric conditions. We investigate possible mechanisms for the medium scale wave to provide favorable regions of propagation for smaller scale waves from other sources in contrast to scenarios favoring in-situ wave generation or the generation of smaller-scale wavelike features. We also examine the propagation of small-scale waves generated from the same source location as the medium-scale waves, and how the propagation characteristics of waves determine which parts of the gravity wave spectrum may be susceptible to possible interactions. Small scale waves are shown to have a significant impact on the momentum and energy budget of the MLT through dissipation, filtering, and instability mechanisms [e.g. Fritts and Alexander 2003, Fritts et al. 2014]. Understanding and separating the roles of larger scale waves in refracting, interacting with, or generating smaller scale waves will be crucial in predicting the location and distribution of small-scale wave energy and momentum depositions and the resulting local

  9. A cytoplasmic RNA virus generates functional viral small RNAs and regulates viral IRES activity in mammalian cells

    PubMed Central

    Weng, Kuo-Feng; Hung, Chuan-Tien; Hsieh, Po-Ting; Li, Mei-Ling; Chen, Guang-Wu; Kung, Yu-An; Huang, Peng-Nien; Kuo, Rei-Lin; Chen, Li-Lien; Lin, Jing-Yi; Wang, Robert Yung-Liang; Chen, Shu-Jen; Tang, Petrus; Horng, Jim-Tong; Huang, Hsing-I; Wang, Jen-Ren; Ojcius, David M.; Brewer, Gary; Shih, Shin-Ru

    2014-01-01

    The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>105 copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5′ untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES. PMID:25352551

  10. Gradual tolerance of metabolic activity is produced in mesolimbic regions by chronic cocaine treatment, while subsequent cocaine challenge activates extrapyramidal regions of rat brain.

    PubMed

    Hammer, R P; Cooke, E S

    1994-07-01

    Acute administration of cocaine is known to enhance extracellular dopamine levels in the striatum and to activate immediate-early gene expression in striatal neurons. Regional cerebral metabolic rate for glucose (rCMRglc) reportedly increases in extrapyramidal and mesolimbic brain regions in response to acute cocaine treatment. However, chronic administration attenuates the cocaine-induced enhancement of regional dopamine response and the induction of immediate-early gene expression in these regions. Chronic treatment also produces tolerance to cocaine's reinforcing effects. Thus, differential responses to cocaine occur with increasing length of treatment. Therefore, we examined the time course of effects of repeated daily cocaine treatment on rCMRglc in rat brain. Acute administration of 10 mg/kg cocaine slightly increased rCMRglc in mesolimbic and extrapyramidal regions. However, no significant effects were observed until more than 7 d of treatment, whereupon rCMRglc was reduced compared to saline treatment in the infralimbic portion of the medial prefrontal cortex, nucleus accumbens, olfactory tubercle, habenula, amygdala, and a few other brain regions. In contrast, after 13 d of 10 mg/kg cocaine treatment, challenge with 30 mg/kg cocaine increased rCMRglc in the striatum, globus pallidus, entopeduncular nucleus, subthalamus, substantia nigra pars reticulata, and a few other regions without affecting limbic or mesolimbic regions. Thus, repeated daily treatment with a low dose of cocaine gradually decreased metabolic activity particularly in mesolimbic regions. Subsequent treatment with a higher dose produced metabolic activation mostly in extrapyramidal regions. This effect of chronic treatment could represent tolerance to the initial metabolic response, which can be replicated thereafter but only by increasing the drug dose. These results suggest that tolerance to the metabolic effects of cocaine in selective mesolimbic circuits may contribute to the

  11. Generation of benzyne from benzoic acid using C-H activation.

    PubMed

    Cant, Alastair A; Roberts, Lee; Greaney, Michael F

    2010-12-01

    ortho C-H activation of benzoic acids with Pd(II) generates an oxapalladacycle that can decarboxylate to produce a palladium-associated aryne. The arynes then undergo [2+2+2] trimerisation to afford triphenylenes.

  12. Leveling the Playing Field: First Generation Korean American Males and School Based Extracurricular Activities

    ERIC Educational Resources Information Center

    Levy, Corey

    2010-01-01

    This study examined the manner in which extracurricular activities impacted the acculturation of first-generation adolescent males. Specifically, the project focused on the influence of organized high school soccer on the development of first-generation adolescent Korean American males. Eight adolescent participants, ranging in age from fourteen…

  13. Developing a Regionally-Based "Next Generation" High School Climate Science Curriculum

    NASA Astrophysics Data System (ADS)

    Bell, M.; Clark, J.; Getty, S. R.; Marks, J.; Hungate, B. A.; Kaufman, D. S.; Coles, R.; Haden, C.; Cooley, N.

    2012-12-01

    Colorado Plateau Carbon Connections is a regionally relevant, culturally responsive, technology-rich high school climate science curriculum for the Colorado Plateau/Four Corners region. Funded by an NSF Climate Change Education Partnership grant, the 10-lesson curriculum supplement is the result of collaboration between Northern Arizona University climate scientists, social scientists and educators and the NASA-funded Biological Sciences Curriculum Study Carbon Connections project. The curriculum includes disciplinary core ideas in Earth Science from A Framework for K-12 Science Education. It integrates cross-cutting relationships and science and engineering practices. Students are introduced to regional and global effects of climate change, and build their understanding of climate science using simulations and climate models. The models are based on authentic data and allow students to explore the roles of carbon dioxide, volcanic forcing, El Niño effects, solar variability, and anthropogenic inputs to the climate system. Students also negate climate misconceptions using climate science, and analyze personal connections to the climate system. They examine their own carbon footprints and propose regionally based solutions for mitigating the effects of climate change. The curriculum was field tested in Spring 2012 with 384 students and ten teachers in seven schools. The evaluation shows strong student engagement and increased knowledge of climate science and solutions. This curriculum also serves as a model for integrating regional issues into climate science education.

  14. Alpha2A adrenergic receptor activation inhibits epileptiform activity in the rat hippocampal CA3 region.

    PubMed

    Jurgens, Chris W D; Hammad, Hana M; Lichter, Jessica A; Boese, Sarah J; Nelson, Brian W; Goldenstein, Brianna L; Davis, Kylie L; Xu, Ke; Hillman, Kristin L; Porter, James E; Doze, Van A

    2007-06-01

    Norepinephrine has potent antiepileptic properties, the pharmacology of which is unclear. Under conditions in which GABAergic inhibition is blocked, norepinephrine reduces hippocampal cornu ammonis 3 (CA3) epileptiform activity through alpha(2) adrenergic receptor (AR) activation on pyramidal cells. In this study, we investigated which alpha(2)AR subtype(s) mediates this effect. First, alpha(2)AR genomic expression patterns of 25 rat CA3 pyramidal cells were determined using real-time single-cell reverse transcription-polymerase chain reaction, demonstrating that 12 cells expressed alpha(2A)AR transcript; 3 of the 12 cells additionally expressed mRNA for alpha(2C)AR subtype and no cells possessing alpha(2B)AR mRNA. Hippocampal CA3 epileptiform activity was then examined using field potential recordings in brain slices. The selective alphaAR agonist 6-fluoronorepinephrine caused a reduction of CA3 epileptiform activity, as measured by decreased frequency of spontaneous epileptiform bursts. In the presence of betaAR blockade, concentration-response curves for AR agonists suggest that an alpha(2)AR mediates this response, as the rank order of potency was 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14304) >or= epinephrine >6-fluoronorepinephrine > norepinephrine > phenylephrine. Finally, equilibrium dissociation constants (K(b)) of selective alphaAR antagonists were functionally determined to confirm the specific alpha(2)AR subtype inhibiting CA3 epileptiform activity. Apparent K(b) values calculated for atipamezole (1.7 nM), MK-912 (4.8 nM), BRL-44408 (15 nM), yohimbine (63 nM), ARC-239 (540 nM), prazosin (4900 nM), and terazosin (5000 nM) correlated best with affinities previously determined for the alpha(2A)AR subtype (r = 0.99, slope = 1.0). These results suggest that, under conditions of impaired GABAergic inhibition, activation of alpha(2A)ARs is primarily responsible for the antiepileptic actions of norepinephrine in the rat hippocampal CA3

  15. High resolution ALMA observations of dense molecular medium in the central regions of active galaxies

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2015-08-01

    I will present recent ALMA results on the dense molecular gas in the central regions of local active galaxies, including NGC 1068, NGC 1097, and NGC 7469, hosting both AGN and circumnuclear starburst regions. Impact of X-ray radiation, outflows, and shocks from active nuclei on the physical and chemical properties of the surrouding dense molecular medium will be discussed.

  16. The Atlantic Canada-New England Region and Environment. A Learning Activity Packet.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.

    In this Learning Activity Packet (LAP) students examine the geographic and ecological bases of the Eastern international region. The overall objective of activities is to help students comprehend the man-earth relationship concept. By studying this familiar relevant region students gain geographic knowledge and skills applicable to other areas.…

  17. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  18. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  19. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  20. Distribution of Activator (Ac) Throughout the Maize Genome for Use in Regional Mutagenesis

    PubMed Central

    Kolkman, Judith M.; Conrad, Liza J.; Farmer, Phyllis R.; Hardeman, Kristine; Ahern, Kevin R.; Lewis, Paul E.; Sawers, Ruairidh J. H.; Lebejko, Sara; Chomet, Paul; Brutnell, Thomas P.

    2005-01-01

    A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs. PMID:15520264

  1. Optimal mix of renewable power generation in the MENA region as a basis for an efficient electricity supply to europe

    NASA Astrophysics Data System (ADS)

    Alhamwi, Alaa; Kleinhans, David; Weitemeyer, Stefan; Vogt, Thomas

    2014-12-01

    Renewable Energy sources are gaining importance in the Middle East and North Africa (MENA) region. The purpose of this study is to quantify the optimal mix of renewable power generation in the MENA region, taking Morocco as a case study. Based on hourly meteorological data and load data, a 100% solar-plus-wind only scenario for Morocco is investigated. For the optimal mix analyses, a mismatch energy modelling approach is adopted with the objective to minimise the required storage capacities. For a hypothetical Moroccan energy supply system which is entirely based on renewable energy sources, our results show that the minimum storage capacity is achieved at a share of 63% solar and 37% wind power generations.

  2. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions

    PubMed Central

    Wang, Jayson; Shiels, Carol; Sasieni, Peter; Wu, Pei Jun; Islam, Suhail A.; Freemont, Paul S.; Sheer, Denise

    2004-01-01

    The promyelocytic leukemia (PML) protein is aggregated into nuclear bodies that are associated with diverse nuclear processes. Here, we report that the distance between a locus and its nearest PML body correlates with the transcriptional activity and gene density around the locus. Genes on the active X chromosome are more significantly associated with PML bodies than their silenced homologues on the inactive X chromosome. We also found that a histone-encoding gene cluster, which is transcribed only in S-phase, is more strongly associated with PML bodies in S-phase than in G0/G1 phase of the cell cycle. However, visualization of specific RNA transcripts for several genes showed that PML bodies were not themselves sites of transcription for these genes. Furthermore, knock-down of PML bodies by RNA interference did not preferentially change the expression of genes closely associated with PML bodies. We propose that PML bodies form in nuclear compartments of high transcriptional activity, but they do not directly regulate transcription of genes in these compartments. PMID:14970191

  3. Muscle activity in the classical singer's shoulder and neck region.

    PubMed

    Pettersen, V; Westgaard, R H

    2002-01-01

    The objective of this study is to characterize the level of use of the trapezius (TR) and the sternocleidomastoideus (STM) muscles by singing students. We further try to lower the activity in both muscles by use of biofeedback (BF) from electromyographic recordings (EMG). We finally examine whether the experiences from the BF session can be transferred into regular singing by maintaining a mental focus on the experiences made in the BF session. Two groups, each consisting of eight conservatory singing students, all in their first or second year of study, volunteered as subjects. Two singing procedures were used, a song and a sustained tone of maximum possible duration. EMG activity was recorded bilaterally from the TR and STM by use of an ambulatory monitoring system. EMG BF appeared to lower muscle activity in the two muscles, thus the experiences made in the BF session could be transferred into regular singing. We conclude that singers, although having an enhanced awareness of posture, still may have overuse of especially the TR muscle, but probably also the STM muscle.

  4. Coronal heating above active regions - 3D MHD model versus multi-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Bingert, Sven; Peter, Hardi

    2014-05-01

    The plasma heating mechanism in the Solar corona is a puzzle since decades. Today high-performance computing together with multi-spacecraft observations offer new insights. We conducted a high-resolution simulation of the corona above an active region and compare synthetic emission deduced from the model with co-temporal observations. Photospheric observations act as a boundary condition for our model that drives magnetic-field braiding by advection and generates a net upwards Poynting flux. In particular, we do not only get a sufficient energy input to the base of the corona, but we also reproduce the observed coronal loops: the 3D structure of the hot AR loops system in the model compares well to joint STEREO-A/-B and Hinode observations. The plasma flows along these loops are similar to observed Doppler maps. Draining and siphon flows along magnetic structures at different temperatures offer a new alternative explanation for the average Doppler red-shifts in the transition region and coronal blue-shifts. This match between model and observations indicates a realistic distribution of the coronal heating in time and space and shows that our 3D MHD model of the corona captures the relevant processes involved.

  5. Regional stochastic generation of streamflows using an ARIMA (1,0,1) process and disaggregation

    USGS Publications Warehouse

    Armbruster, Jeffrey T.

    1979-01-01

    An ARIMA (1,0,1) model was calibrated and used to generate long annual flow sequences at three sites in the Juniata River basin, Pennsylvania. The model preserves the mean, variance, and cross correlations of the observed station data. In addition, it has a desirable blend of both high and low frequency characteristics and therefore is capable of preserving the Hurst coefficient, h. The generated annual flows are disaggregated into monthly sequences using a modification of the Valencia-Schaake model. The low-flow frequency and flow duration characteristics of the generated monthly flows, with length equal to the historical data, compare favorably with the historical data. Once the models were verified, 100-year sequences were generated and analyzed for their low flow characteristics. One-, three- and six- month low-flow frequencies at recurrence intervals greater than 10 years are generally found to be lower than flow computed from the historical flows. A method is proposed for synthesizing flows at ungaged sites. (Kosco-USGS)

  6. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease.

    PubMed Central

    Rachmilewitz, D; Stamler, J S; Bachwich, D; Karmeli, F; Ackerman, Z; Podolsky, D K

    1995-01-01

    Recent studies have suggested that nitric oxide (NO.), the product of nitric oxide synthase in inflammatory cells, may play a part in tissue injury and inflammation through its oxidative metabolism. In this study the colonic generation of oxides of nitrogen (NOx) and nitric oxide synthase activity was determined in ulcerative colitis and Crohn's disease. Colonic biopsy specimens were obtained from inflammatory bowel disease patients and from normal controls. Mucosal explants were cultured in vitro for 24 hours and NOx generation was determined. Nitric oxide synthase activity was monitored by the conversion of [3H]-L-arginine to citrulline. Median NOx generation by inflamed colonic mucosa of patients with active ulcerative colitis and Crohn's colitis was 4.2- and 8.1-fold respectively higher than that by normal human colonic mucosa. In ulcerative colitis and Crohn's colitis nitric oxide synthase activity was 10.0- and 3.8-fold respectively higher than in normal subjects. Colonic NOx generation is significantly decreased by methylprednisolone and ketotifen. The decrease in NOx generation by cultured colonic mucosa induced by methylprednisolone suggests that NO synthase activity is induced during the culture and the steroid effect may contribute to its therapeutic effect. Enhanced colonic NOx generation by stimulated nitric oxide synthase activity in ulcerative colitis and Crohn's disease may contribute to tissue injury. PMID:7541008

  7. A simple simulation approach to generate complex rainfall fields conditioned by elevation: example of the eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Oriani, Fabio; Ohana-Levi, Noa; Straubhaar, Julien; Renard, Philippe; Karnieli, Arnon; Mariethoz, Grégoire; Morin, Efrat; Marra, Francesco

    2016-04-01

    Stochastically generating realistic rainfall fields is useful to study the uncertainty related to catchment recharge and its propagation to distributed hydrological models. To this end, it is critical to use weather radar images as training data, being the single most informative source for rainfall spatial heterogeneity. Generating realistic simulations is particularly important in regions like the eastern Mediterranean, where the synoptic conditions can lead to rainfall fields presenting various morphology, anisotropy and non-stationarity. The Direct Sampling (DS) technique [Mariethoz2010] is proposed here as a stochastic generator of spatial daily rainfall fields relying on the simulation of radar imagery. The technique is based on resampling of a training data set (in this case, a stack of radar images) and the generation of similar patterns to the ones found in the data. The strong point of DS, which makes it an attractive simulation approach for rainfall, is its capability to preserve the high-order statistical features present in the training image (e.g., rainfall cell shape, spatial non-stationarity) with minimal parameterization. Moreover, factors influencing rainfall, like elevation, can be used as conditioning variables, without the need of a complex statistical dependence model. A DS setup for radar image simulation is presented and tested for the simulation of daily rainfall fields using a 10-year radar-image record from the central region of Israel. Using a synoptic weather classification to train the model, the algorithm can generate realistic spatial fields for different rainfall types, preserving the variability and the covariance structure of the reference reasonably well. Moreover, the simulation is conditioned using the digital elevation model to preserve the complex relation between rainfall intensity and altitude that is characteristic for this region. [Mariethoz2010] G. Mariethoz, P. Renard, and J. Straubhaar. The direct sampling method to

  8. Virtual industrial water usage and wastewater generation in the Middle East/North African region

    NASA Astrophysics Data System (ADS)

    Sakhel, S. R.; Geissen, S.-U.; Vogelpohl, A.

    2013-01-01

    This study deals with the quantification of volumes of water usage, wastewater generation, virtual water export, and wastewater generation from export for eight export relevant industries present in the Middle East/North Africa (MENA). It shows that about 3400 million m3 of water is used per annum while around 793 million m3 of wastewater is generated from products that are meant for domestic consumption and export. The difference between volumes of water usage and wastewater generation is due to water evaporation or injecting underground (oil wells pressure maintenance). The wastewater volume generated from production represents a population equivalent of 15.5 million in terms of wastewater quantity and 30.4 million in terms of BOD. About 409 million m3 of virtual water flows from MENA to EU27 (resulting from export of eight commodities) which is equivalent to 12.1% of the water usage of those industries and Libya is the largest virtual water exporter (about 87 million m3). Crude oil and refined petroleum products represent about 89% of the total virtual water flow, fertilizers represent around 10% and 1% remaining industries. EU27 poses the greatest indirect pressure on the Kuwaiti hydrological system where the virtual water export represents about 96% of the actual renewable water resources in this country. The Kuwaiti crude oil water use in relation to domestic water withdrawal is about 89% which is highest among MENA countries. Pollution of water bodies, in terms of BOD, due to production is very relevant for crude oil, slaughterhouses, refineries, olive oil, and tanneries while pollution due to export to EU27 is most relevant for crude oil industry and olive oil mills.

  9. Monitoring small land subsidence phenomena in the Marmara see region by new SAR generation satellite ESA Sentinel 1

    NASA Astrophysics Data System (ADS)

    Cantone, Alessio; Riccardi, Paolo; Pasquali, Paolo; Defilippi, Marco; Peternier, Achille

    2015-04-01

    The Marmara see region is a large and dense urbanized area affected by tectonics deformations due to the presence of the underlying North Anatolia Fault. This area is affected by strong seismic phenomena (Izmith and Duzce earthquake), and by landslide and small surface deformation. The new generation ESA SAR satellites Copernicus Sentinel-1 system TOPS (Terrain Observation with Progressive Scans in azimuth) permit a short acquisition repetition cycle, an extreme large coverage, a high spatial resolution to respect the covered area and a small baseline separation. All of those characteristics suggest an intensive exploitation of these data through the usage of the interferometry technology and in particular the stacking interferometry for the small terrain displacement monitoring. The Sentinel-1 mission is made up of a constellation of two satellites (A and B units) each carrying a C-band SAR sensor. The objective of the S-1 mission is to acquire systematically with a 12-day repeat orbit cycle for each satellite with a small orbital baselines, characteristics particularly suited for interferometry application. In the near future, when both satellites will be active, there will be an acquisition every 6 days, covering the whole area. The first TOPSAR interferogram has been successfully produced, and the SARScape® stacking processing chains (SBAS and PSI) have been update to support this new sensor. The SBAS (Small Baseline) technique seems to be the best candidate for this application relatively to the morphology and large extension of Marmara region. Moreover the new incremental SBAS will permit a velocity map (at about 25 meters spatial resolution) estimation at near real time at each Sentinel-1 acquisition. We are collecting imaging over the Marmara since October 2014 within the framework of European FP7 Marsite project. In February-March 2015 we will have enough acquisition to perform the first SBAS TOPSAR monitoring of this area. The SBAS processing chain has

  10. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  11. Thermal modeling and hydrocarbon generation in an active-margin basin: Taranaki Basin, New Zealand

    SciTech Connect

    Armstrong, P.A.; Chapman, D.S.; Funnell, R.H.; Allis, R.G.; Kamp, P.J.J.

    1996-08-01

    The Taranaki Basin contains the only known commercial hydrocarbon reserves in New Zealand. The hydrocarbons were derived principally from Late Cretaceous and Paleocene-Eocene coals. An average temperature gradient of 29{degrees}C/km characterizes much of the basin, but gradients range geographically from 22 to 33{degrees}C/km. Thermal and hydrocarbon generation histories were simulated for selected wells that characterize the different regions of the basin. Modeling results show that predepositional and syndepositional Mesozoic crustal thickening, erosion, and rifting resulted in high heat flow during the early stages of deposition. The early high heat flow affected only the deepest source rocks, especially where they are thick and were buried to depths greater than 2.5 km prior to 60 Ma; hydrocarbon generation and expulsion may have been as early as the early Paleocene in these areas. For wells in the Western Platform region, most potential source rocks are immature or have just reached expulsion maturity. However, in areas where initial burial was rapid and more than 1 km of Cretaceous-early Tertiary sediments accumulated, generation amounts sufficient for expulsion may have been reached in the last 1 m.y. for much of the source section, and possibly as early as the Eocene for the deepest source rocks. in the southern Taranaki region, temperatures and generation rates were greatest about 5-10 Ma. About 5 Ma, generation rates decreased and expulsion terminated due to cooling related to structural inversion; temperatures generally are too low for significant oil expulsion (less than 120{degrees}C) at present. In the eastern Taranaki region, the combination of tectonic (rapid sedimentation and erosion) and magmatic effects caused variations in burial depths and geothermal gradients that resulted in oil generation and expulsion that were more spatially and temporally variable than in other regions.

  12. Atmospheric energetics in regions of intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1977-01-01

    Synoptic-scale budgets of kinetic and total potential energy are computed using 3- and 6-h data at nine times from NASA's fourth Atmospheric Variability Experiment (AVE IV). Two intense squall lines occurred during the period. Energy budgets for areas that enclose regions of intense convection are shown to have systematic changes that relate to the life cycles of the convection. Some of the synoptic-scale energy processes associated with the convection are found to be larger than those observed in the vicinity of mature cyclones. Volumes enclosing intense convection are found to have large values of cross-contour conversion of potential to kinetic energy and large horizontal export of kinetic energy. Although small net vertical transport of kinetic energy is observed, values at individual layers indicate large upward transport. Transfer of kinetic energy from grid to subgrid scales of motion occurs in the volumes. Latent heat release is large in the middle and upper troposphere and is thought to be the cause of the observed cyclic changes in the budget terms. Total potential energy is found to be imported horizontally in the lower half of the atmosphere, transported aloft, and then exported horizontally. Although local changes of kinetic energy and total potential energy are small, interaction between volumes enclosing convection with surrounding larger volumes is quite large.

  13. Conductivity structure in and around the Deep Low-Frequency Tremors generation region beneath the western part of the Kii Peninsula in Southwest Japan.

    NASA Astrophysics Data System (ADS)

    Katakami, S.; Yamaguchi, S.; Uyeshima, M.; Murakami, H.; Ogawa, T.; Oshiman, N.; Yoshimura, R.; Aizawa, K.; Shiozaki, I.; Kasaya, T.; Ito, Y.

    2015-12-01

    Non-volcanic deep low-frequency tremors (DLT) was detected in the southwest Japan subduction zone by Obara (2002). They are distributed in the fore arc side along the strike of the descending Philippine Sea plate. The generation of tremors may be related to the movement of fluid in the subduction zone judging from the long duration and mobility of the tremor activity,. The network magnetotelluric (NMT) method (Uyeshima et al., 2001) is one of the MT method and is well-suited for investigating deep and large-scale conductivity strcture. Yamaguchi et al. (2009) has developed a modified NMT (modified NMT) method to overcome the problem posed by the progressive replacement of metallic transmission cables with fiber cables and first applied this modified NMT method over the Kii Peninsula. They showed a 2D conductivity model along a transect across the CENTRAL part of the Kii Peninsula. Their model is characterize by a large (˜20 km wide and depths of 10-60 km) and highly conductive (<10 ohm- m) region between the Conrad discontinuity and the upper surface of the Philippine Sea slab. This region contains the hypocenters of many deep low-frequency tremors but regular earthquakes are rare. In this paper, we show a 2D conductivity model along the transect across the WESTERN part of the Kii Peninsula in order to image a 3D structure in and around the DLT region. Our model is characterized by following four regions. (1) A highly conductive region in the wedge mantle. This region contains the hypocenters of many DLT but regular earthquakes are rare. (2) A highly conductive region along the upper boundary of the Philippine Sea slab at a depths of 20-40 km. As this region well corresponds to the high Poisson's ratio region, so we interpret highly conductivity is caused by presence of fluid. (3) A highly resistive region between the surface to ~10km in depth beneath the southern part of the model profile. The region corresponds to the Kumano acidic rocks. (4) A highly conductive

  14. Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2

    PubMed Central

    2011-01-01

    Anti HCV vaccine is not currently available and the present antiviral therapies fail to cure approximately half of the treated HCV patients. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 and test their neutralizing activities in a step towards developing therapeutic and/or prophylactic immunogens against HCV infection. Antibodies were generated by vaccination of goats with synthetic peptides derived from HCV E2. Viral neutralizing capacity of the generated anti E2 antibodies was tested using in vitro assays. Goats immunized with E2 synthetic peptides termed p412 [a.a 412-419], p430 [a.a 430-447] and p517 [a.a 517-531] generated high titers of antibody responses 2 to 4.5 fold higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. In post infection experiments of native HCV into cultured Huh7.5 cells anti p412 and anti p 517 were proven to be neutralizing to HCV genotype 4a from patients' sera (87.5% and 75% respectively). On the contrary anti p430 exhibited weak viral neutralization capacity on the same samples (31.25%). Furthermore Ab mixes containing anti p430 exhibited reduced viral neutralization properties. From these experiments one could predict that neutralization by Abs towards different E2-epitopes varies considerably and success in the enrichment of neutralization epitope-specific antibodies may be accompanied by favorable results in combating HCV infection. Also, E2 conserved peptides p517 and p412 represent potential components of a candidate peptide vaccine against HCV infection. PMID:21819575

  15. Market for diesel-generating plant - African region, South of the Sahara

    SciTech Connect

    Escombe, F.M.

    1982-09-01

    The report is the first in a series investigating world markets for diesel-generating plant rated at 20 kW and above and powered by diesel engines and similar prime movers. The research covers Africa south of the Sahara, with particular reference to Kenya, Nigeria, and South Africa. The markets in these countries are analyzed in terms of power rating and application. The development of the markets over the period since 1978 is discussed, together with a forecast to 1985. The principal factors influencing the market for diesel plant are examined, including the availability and reliability of utility power and the presence of complete generating systems. Other reports in the series describe results of similar research in the Far East, North America, South America, the Middle East and North Africa and Western Europe. A concluding volume presents an overall review of world markets.

  16. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats.

  17. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis

    PubMed Central

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-01-01

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ70-dependent and the contrasting σ54-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ54-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ70-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ54-regulated promoters. Strikingly, removal of the σ54 Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. PMID:26365052

  18. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis.

    PubMed

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-11-01

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ(70)-dependent and the contrasting σ(54)-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ(54)-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ(70)-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ(54)-regulated promoters. Strikingly, removal of the σ(54) Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator.

  19. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis.

    PubMed

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-11-01

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ(70)-dependent and the contrasting σ(54)-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ(54)-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ(70)-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ(54)-regulated promoters. Strikingly, removal of the σ(54) Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. PMID:26365052

  20. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    NASA Astrophysics Data System (ADS)

    Moon, Kevin R.; Li, Jimmy J.; Delouille, Véronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O.

    2016-01-01

    Context. The flare productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. Aims: We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. Methods: We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from magnetogram to analyze separately the core part of an active region from its surrounding part. Results: We find relationships between the complexity of an active region as measured by its Mount Wilson classification and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. Conclusions: Intrinsic dimension has the potential to distinguish simple from complex active regions. These results also pave the way for patch-based dictionary learning with a view toward automatic clustering of active regions.

  1. Colors of active regions on comet 67P

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.; Besse, S.; Fornasier, S.; Barucci, M. A.; Lara, L.; Scholten, F.; Preusker, F.; Lazzarin, M.; Pajola, M.; La Forgia, F.

    2015-10-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) scientific imager (Keller et al. 2007) is successfully delivering images of comet 67P/Churyumov-Gerasimenko from its both wide angle camera (WAC) and narrow angle camera (NAC) since ESA's spacecraft Rosetta's arrival to the comet. Both cameras are equipped with filters covering the wavelength range of about 200 nm to 1000 nm. The comet nucleus is mapped with different combination of the filters in resolutions up to 15 cm/px. Besides the determination of the surface morphology in great details (Thomas et al. 2015), such high resolution images provided us a mean to unambiguously link some activity in the coma to a series of pits on the nucleus surface (Vincent et al. 2015).

  2. Application of the active camber morphing concept based on compliant structures to a regional aircraft

    NASA Astrophysics Data System (ADS)

    De Gaspari, Alessandro; Ricci, Sergio

    2014-04-01

    The present work addresses the optimal design of a morphing mechanism based on compliant structures used to implement the active camber morphing concept. The subject of the work is part of the FP7-NOVEMOR project (Novel Air Vehicle Configurations: From Fluttering Wings to Morphing Flight) which is one of the many projects from the seventh European Framework Programme. The implementation of active camber concept is based on the use of conformable morphing control surfaces. Aiming at the optimal design of such as morphing devices, two dedicated tools called PHORMA and SPHERA, respectively, are introduced. The definition of the optimal shape taking into account both aerodynamic and structural constraints is done by PHORMA. Then SPHERA, based on the load path approach codified by coupling a non linear beam solver to a genetic multi- objective optimizer, is adopted to generate the optimal internal structure able to produce, when loaded, the target optimal shape. The paper is mainly focused on the optimal design of the compliant structures starting from the optimal shape already available for a Reference Aircraft (RA) developed inside NOVEMOR project and representative of a typical regional jet capable to carry 113 PAX in a single economic class.

  3. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    SciTech Connect

    Vemareddy, P.

    2015-06-20

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity flux has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.

  4. Effect of Gravity Waves Generated in the Monsoon Region on Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Thurairajah, B.; Bailey, S. M.; Carstens, J. N.; Siskind, D. E.

    2015-12-01

    Gravity Waves (GWs) play an important role in both the formation and destruction of polar mesospheric clouds. In summer, while vertically propagating GWs induce a residual circulation that cools the summer mesosphere and therefore supports the formation of PMCs, observation and modeling studies have also shown that short period GWs can additionally destroy PMCs. In this study we analyze the effect of non-vertical propagation of GWs on PMCs using temperature data from the SABER instrument on TIMED satellite and PMC occurrence frequency from the CIPS instrument on the AIM satellite. During the 2007 PMC season, time series of GWs over the monsoon region at 50 km and PMCs over the polar region at 84 km have a correlation coefficient of 0.9. SABER GW amplitude and momentum flux over the monsoon region show a poleward tilt with altitude. This slanted structure suggests a poleward, but non-vertical, propagation of GWs facilitated by the easterly winds associated with the monsoon circulation, thus indicating a possible source of high latitude middle atmospheric GWs.

  5. A new generation of the regional climate model REMO: REMO non-hydrostatic

    NASA Astrophysics Data System (ADS)

    Sieck, Kevin; Raub, Thomas; Marien, Lennart; Buntemeyer, Lars; Jacob, Daniela

    2016-04-01

    The regional climate model REMO is well established and has proofed it's value in regional climate simulations for more than a decade. However, due to the hydrostatic formulation REMO is not able to produce useful regional climate information on scales smaller than ~10 km. The demand for higher resolution data especially in the climate service sector is evident. Often climate change information on urban district or even point level is needed. A previous development of a non-hydrostatic dynamical core for REMO utilizing ideas of Miller and Pearce (1974) and Janjic (2001) has been picked up and implemented into the latest hydrostatic REMO version. One of the advantages of the Janjic formulation is that hydrostatic and non-hydrostatic computations are well separated. This offers a straightforward implementation of the non-hydrostatic calculations into an existing hydrostatic model. Other advantages are the easy quantification of the error done by the hydrostatic approximation and the lower computational costs at lower resolutions by switching of the non-hydrostatic part. We will show results from climate simulations on the EURO-CORDEX domain with and without non-hydrostatic option.

  6. An active region model for capturing fractal flow patterns in unsaturated soils: model development.

    PubMed

    Liu, H H; Zhang, R; Bodvarsson, G S

    2005-11-01

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  7. An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

    SciTech Connect

    Liu, Hui-Hai; Zhang, R.; Bodvarsson, Gudmundur S.

    2005-06-11

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  8. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2012-11-10

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  9. Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    The solar corona is much hotter (>=10(exp 6) K) than its surface (approx 6000 K), puzzling astrophysicists for several decades. Active region (AR) corona is again hotter than the quiet Sun (QS) corona by a factor of 4-10. The most widely accepted mechanism that could heat the active region corona is the energy release by current dissipation via reconnection of braided magnetic field structure, first proposed by E. N. Parker three decades ago. The first observational evidence for this mechanism has only recently been presented by Cirtain et al. by using High-resolution Coronal Imager (Hi-C) observations of an AR corona at a spatial resolution of 0.2 arcsec, which is required to resolve the coronal loops, and was not available before the rocket flight of Hi-C in July 2012. The Hi-C project is led by NASA/MSFC. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. We are currently investigating the changes taking place in photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. For this purpose, we are also using SDO/AIA data of +/- 2 hours around the 5 minutes Hi-C flight. In the present talk, I will first summarize some of the results of the Hi-C observations and then present some results from our recent analysis on what photospheric processes feed the magnetic energy that dissipates into heat in coronal loops.

  10. Children with Autistic Spectrum Disorders and Speech-Generating Devices: Communication in Different Activities at Home

    ERIC Educational Resources Information Center

    Thunberg, Gunilla; Ahlsen, Elisabeth; Sandberg, Annika Dahlgren

    2007-01-01

    The communication of four children with autistic spectrum disorder was investigated when they were supplied with a speech-generating device (SGD) in three different activities in their home environment: mealtime, story reading and "sharing experiences of the preschool day". An activity based communication analysis, in which collective and…

  11. Contradictions between the Virtual and Physical High School Classroom: A Third-Generation Activity Theory Perspective

    ERIC Educational Resources Information Center

    Murphy, Elizabeth; Manzanares, Maria A. Rodriguez

    2008-01-01

    This paper uses a third-generation Activity Theory perspective to gain insight into the contradictions between the activity systems of the physical and virtual high school classroom from the perspective of teachers who had transitioned from one system to the other. Data collection relied on semi-structured interviews conducted with e-teachers as…

  12. Analysing Third Generation Activity Systems: Labour-Power, Subject Position and Personal Transformation

    ERIC Educational Resources Information Center

    Daniels, Harry; Warmington, Paul

    2007-01-01

    Purpose: The purpose of this paper is to describe how Engestrom's "third generation" activity theory, with its emphasis on developing conceptual tools to understand dialogues, multiple perspectives and networks of interacting activity systems, has informed research into professional learning in multiagency service settings in England.…

  13. Exploring Preferences of Mentoring Activities among Generational Groups of Registered Nurses in Florida

    ERIC Educational Resources Information Center

    Posey-Goodwin, Patricia Ann

    2013-01-01

    The purpose of this study was to explore differences in perceptions of mentoring activities from four generations of registered nurses in Florida, using the Alleman Mentoring Activities Questionnaire ® (AMAQ ®). Statistical procedures of analysis of variance (ANOVA) were employed to explore differences among 65 registered nurses in Florida from…

  14. Human Platelets Utilize Cycloxygenase-1 to Generate Dioxolane A3, a Neutrophil-activating Eicosanoid*

    PubMed Central

    Hinz, Christine; Aldrovandi, Maceler; Uhlson, Charis; Marnett, Lawrence J.; Longhurst, Hilary J.; Warner, Timothy D.; Alam, Saydul; Slatter, David A.; Lauder, Sarah N.; Allen-Redpath, Keith; Collins, Peter W.; Murphy, Robert C.; Thomas, Christopher P.; O'Donnell, Valerie B.

    2016-01-01

    Eicosanoids are important mediators of fever, pain, and inflammation that modulate cell signaling during acute and chronic disease. We show by using lipidomics that thrombin-activated human platelets generate a new type of eicosanoid that both stimulates and primes human neutrophil integrin (Mac-1) expression, in response to formylmethionylleucylphenylalanine. Detailed characterization proposes a dioxolane structure, 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (dioxolane A3, DXA3). The lipid is generated in nanogram amounts by platelets from endogenous arachidonate during physiological activation, with inhibition by aspirin in vitro or in vivo, implicating cyclooxygenase-1 (COX). Pharmacological and genetic studies on human/murine platelets revealed that DXA3 formation requires protease-activated receptors 1 and 4, cytosolic phospholipase A2 (cPLA2), Src tyrosine kinases, p38 MAPK, phospholipase C, and intracellular calcium. From data generated by purified COX isoforms and chemical oxidation, we propose that DXA3 is generated by release of an intermediate from the active site followed by oxygenation at C8. In summary, a new neutrophil-activating platelet-derived lipid generated by COX-1 is presented that can activate or prime human neutrophils, suggesting a role in innate immunity and acute inflammation. PMID:27129261

  15. Beyond participation: the association between school extracurricular activities and involvement in violence across generations of immigration.

    PubMed

    Jiang, Xin; Peterson, Ruth D

    2012-03-01

    Participation in extracurricular activities is purported to protect the broad spectrum of youth from a host of behavioral risks. Yet, empirical research on the extent to which this assumption holds for involvement in violence by immigrant youth is limited. Thus, using data for 13,236 (51.8% female) adolescents from the National Longitudinal Study of Adolescent Health, this study explores how the relationship between extracurricular activities and youth violence varies by type of extracurricular activity profile (sports alone, non-sports alone, and a combination of sports and non-sports) and by generations of immigration (first, second, and third-plus). The sample is composed of 9.3% (n = 1,233) first-generation youth, 15.7% (n = 2,080) second generation, and 74.9% (n = 9,923) third-plus generation. The results reveal that adolescents from the third-plus generation (i.e., non-immigrant youth) who participate in non-sports alone or sports plus non-sports have lower odds of involvement in violence than adolescents from the same generation who do not participate in extracurricular activities. However, for first- and second-generation adolescents, participation in extracurricular activities is associated with higher rather than lower odds of violence compared to their non-participating counterparts. These findings challenge the viewpoint that participation in mainstream extracurricular activities as afforded by US schools is equally beneficial for all youth. They also call for additional research that explores why immigrant youth are less likely than non-immigrant youth to gain violence-reducing benefits when they participate in extracurricular activities.

  16. Regional vulnerability of the hippocampus to repeated motor activity deprivation.

    PubMed

    Faraji, Jamshid; Soltanpour, Nabiollah; Moeeini, Reza; Hosseini, Seyed Abedin; Pakdel, Shiva; Moharrerie, Alireza; Arjang, Kaveh; Soltanpour, Nasrin; Metz, Gerlinde A S

    2016-03-15

    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress. PMID:26723539

  17. Regional vulnerability of the hippocampus to repeated motor activity deprivation.

    PubMed

    Faraji, Jamshid; Soltanpour, Nabiollah; Moeeini, Reza; Hosseini, Seyed Abedin; Pakdel, Shiva; Moharrerie, Alireza; Arjang, Kaveh; Soltanpour, Nasrin; Metz, Gerlinde A S

    2016-03-15

    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress.

  18. Future of low specific activity molybdenum-99/technetium-99m generator.

    PubMed

    Mushtaq, A

    2012-10-01

    In last few years, the shortage of molybdenum-99 (99Mo) was felt in the developed and developing countries hospitals, where diagnostic nuclear medicine is practiced. To overcome the shortage of 99Mo various routes of its production by accelerators and reactors generating low and high specific activity products have been planned. High specific activity 99Mo obtained by fission of uranium-235 (235U) has completely dominated in the manufacturing of technetium-99m (99mTc) generators in last 3-4 decades, but due to proliferation and dirty bomb, issues non fission routes of 99Mo production are emphasized. Future of low specific activity 99Mo is discussed.

  19. The Solomon Sea eddy activity from a 1/36° regional model

    NASA Astrophysics Data System (ADS)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is

  20. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  1. THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Xiang, Y. Y.; Kong, D. F.; Yang, L. H.; Pan, G. M.

    2015-08-15

    To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspot with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.

  2. Magnetic Structure of Sites of Braiding in Hi-C Active Region

    NASA Technical Reports Server (NTRS)

    Tiwari, S. K.; Alexander, C. E.; Winebarger, A.; Moore, R. L.

    2014-01-01

    High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood. To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.

  3. A note on chromospheric fine structure at active region polarity boundaries.

    NASA Technical Reports Server (NTRS)

    Prata, S. W.

    1971-01-01

    High resolution H-alpha filtergrams from Big Bear Solar Observatory reveal that some filamentary features in active regions have fine structure and hence magnetic field transverse to the gross structure and the zero longitudinal field line. These features are distinct from the usual active region filament, in which fine structure, magnetic field, and filament are all parallel to the zero longitudinal field line. The latter occur on boundaries between regions of weaker fields, while the former occur at boundaries between regions of stronger field.

  4. Active region upflow plasma: its relation to small activity and the solar wind

    NASA Astrophysics Data System (ADS)

    Mandrini, Cristina H.; Culhane, J. Leonard; Cristiani, Germán; Vásquez, Alberto; Van Driel-Gesztelyi, Lidia; Baker, Deborah; Pick, Monique; Demoulin, Pascal; Nuevo, Federico

    Recent studies show that active region (AR) upflowing plasma, observed by the Hinode EUV Imaging Spectrometer (EIS), can gain access to open field lines and be released into the solar wind via magnetic interchange reconnection occurring below the source surface at magnetic null-points in pseudo-streamer configurations. When only one simple bipolar AR is present on the Sun and it is fully covered by the separatrix of a streamer, like AR 10978 on December 2007, it seems unlikely that the upflowing AR plasma could find its way into the slow solar wind. However, signatures of plasma with AR composition at 1 AU that appears to originate from the West of AR 10978 were recently found by Culhane and coworkers. We present a detailed topology analysis of AR 10978 based on a linear force-free magnetic field model at the AR scale, combined with a global PFSS model. This allows us, on one hand, to explain the variations observed in the upflows to the West of the AR as the result of magnetic reconnection at quasi-separatrix layers (QSLs). While at a global scale, we show that reconnection, occurring in at least two main steps, first at QSLs and later at a high-altitude coronal null-point, allows the AR plasma to get around the topological obstacle of the streamer separatrix and be released into the solar wind.

  5. The effects of activation procedures on regional cerebral blood flow in humans

    SciTech Connect

    Rozenfeld, D.; Wolfson, L.I.

    1981-07-01

    Regional cerebral blood flow (r-CBF) can be measured using 133XE and collimated detectors. The radionuclide can be administered either by inhalation or intracarotid injection. Comparison of blood flow determinations at rest and during performance of an activity identifies those brain regions that become active during the performance of the activity. Relatively specific patterns of r-CBF are observed during hand movements, sensory stimulation, eye movements, speech, listening, and reading. Regional CBF changes during reasoning and memorization are less specific and less well characterized. It is clear that brain lesions affect r-CBF responses to various activities, but this effect has not been well correlated with functional deficits or recovery of function. Regional CBF measurement gives information about brain activity and the functional response to experimental manipulation. This approach may well add to our understanding of normal, as well as pathologic, brain functioning.

  6. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  7. Observations of E region irregularities generated at auroral latitudes by a high-power radio wave

    NASA Technical Reports Server (NTRS)

    Djuth, F. T.; Jost, R. J.; Noble, S. T.; Gordon, W. E.; Stubbe, P.

    1985-01-01

    The initial results of a series of observations made with the high-power HF heating facility near Tromso, Norway are reported. During these experiments, attention was focused on the production of artificial geomagnetic field-aligned irregularities (AFAIs) in the auroral E region by HF waves. A mobile 46.9-MHz radar was used to diagnose the formation of AFAIs having spatial scales of 3.2 across geomagnetic field lines. The dynamic characteristics of the AFAIs are discussed within the context of current theoretical work dealing with the natural production of AFAIs in the ionosphere.

  8. The weaver gene expression affects neuronal generation patterns depending on age and encephalic region.

    PubMed

    Martí, Joaquín; Carmen Santa-Cruz, M; Bayer, Shirley A; Hervás, José P

    2006-04-01

    Cell generation and survival are investigated in three different neuronal populations of weaver mice: Purkinje and fastigial neurons in the cerebellum, and dopaminergic neurons in the substantia nigra pars compacta. Tritiated thymidine was supplied to pregnant females at the time that these neurons were being produced. Autoradiography was then applied on brain sections obtained from the control and weaver offspring at postnatal (P) day 8 and 90. This makes it possible to assess the differential survival of neurons that were born at distinct embryonic times on the basis of the proportion of labeled cells at two postnatal ages. When labeling profiles were measured at P8, the inferred time of origin was similar between +/+ and wv/wv genotypes for each neuronal population considered. The same occurred at P90 for Purkinje or fastigial neurons, but the labeling profiles of midbrain neurons were different between wild type and weaver homozygotes. There is already a substantial reduction in the number of Purkinje and fastigial cells at P8, but loss of dopaminergic neurons was only detected in 90-day-old weavers and, therefore, vulnerability is built into this midbrain neural system during its late postnatal development. Our results show that depletion of Purkinje and fastigial cells is random with respect to the time of their birth, whereas the weaver gene seems to be specifically targeting the late-generated dopaminergic neurons.

  9. Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes

    SciTech Connect

    Greco, A.; Mariani, C.; Miranda, C.; Pagliardini, S.; Pierotti, M.A. )

    1993-11-01

    TRK oncogenes are created by chromosomal rearrangements linking the tyrosine-kinase domain of the NTRK1 gene (encoding one of the receptors for the nerve growth factor) to foreign activating sequences. TRK oncogenes are frequently detected in human papillary thyroid carcinoma, as a result of rearrangements involving at least three different activating genes. The authors have found that the rearrangements creating all the TRK oncogenes so far characterized fall within a 2.9-kb XbaI/SmaI restriction fragment of the NTRK1 gene. Here they report the nucleotide sequence and the exon organization of this fragment. 13 refs., 2 figs.

  10. Antithrombin Regulates Matriptase Activity Involved in Plasmin Generation, Syndecan Shedding, and HGF Activation in Keratinocytes

    PubMed Central

    Chen, Ya-Wen; Xu, Zhenghong; Baksh, Adrienne N. H.; Wang, Jehng-Kang; Chen, Chiu-Yuan; Swanson, Richard; Olson, Steve T.; Kataoka, Hiroaki; Johnson, Michael D.; Lin, Chen-Yong

    2013-01-01

    Matriptase, a membrane-associated serine protease, plays an essential role in epidermal barrier function through activation of the glycosylphosphatidylinositol (GPI)-anchored serine protease prostasin. The matriptase-prostasin proteolytic cascade is tightly regulated by hepatocyte growth factor activator inhibitor (HAI)-1 such that matriptase autoactivation and prostasin activation occur simultaneously and are followed immediately by the inhibition of both enzymes by HAI-1. However, the mechanisms whereby matriptase acts on extracellular substrates remain elusive. Here we report that some active matriptase can escape HAI-1 inhibition by being rapidly shed from the cell surface. In the pericellular environment, shed active matriptase is able to activate hepatocyte growth factor (HGF), accelerate plasminogen activation, and shed syndecan 1. The amount of active matriptase shed is inversely correlated with the amount of antithrombin (AT) bound to the surface of the keratinocytes. Binding of AT to the surface of keratinocytes is dependent on a functional heparin binding site, Lys-125, and that the N-glycosylation site Asn-135 be unglycosylated. This suggests that β-AT, and not α-AT, is responsible for regulation of pericellular matriptase activity in keratinocytes. Keratinocytes appear to rely on AT to regulate the level of pericellular active matriptase much more than breast and prostate epithelial cells in which AT regulation of matriptase activity occurs at much lower levels than keratinocytes. These results suggest that keratinocytes employ two distinct serine protease inhibitors to control the activation and processing of two different sets of matriptase substrates leading to different biological events: 1) HAI-1 for prostasin activation/inhibition, and 2) AT for the pericellular proteolysis involved in HGF activation, accelerating plasminogen activation, and shedding of syndecans. PMID:23675430

  11. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  12. Development of a theory for generating regional cardiac perfusion images during coronary angiography in the coronary angiography lab.

    PubMed

    Sakaguchi, Takuya; Ichihara, Takashi; Trost, Jeffrey C; Yousuf, Omair; Lima, Joao A C; Yao, Jingwu; George, Richard T

    2014-01-01

    The purpose of this study was to develop a novel theory and method for generating regional myocardial perfusion images using fluoroscopy in the coronary angiography lab. We modified the Kety model to introduce the Patlak plot method for two-dimensional fluoroperfusion (FP) imaging. For evaluation, seven porcine models of myocardial ischemia with stenosis in the left coronary artery were prepared. Rest and stress FP imaging were performed using cardiovascular X-ray imaging equipment during the injection of iopamidol via the left main coronary artery. Images were acquired and retrospectively ECG gated at 80 % of the R-R interval. FP myocardial blood flow (MBF) was obtained using the Patlak plot method applied to time-intensity curve data of the proximal artery and myocardium. The results were compared to microsphere MBF measurements. Time-intensity curves were also used to generate color-coded FP maps. There was a moderate linear correlation between the calculated FP MBF and the microsphere MBF (y = 0.9758x + 0.5368, R² = 0.61). The color-coded FP maps were moderately correlated with the regional distribution of flow. This novel method of first-pass contrast-enhanced two-dimensional fluoroscopic imaging can quantify MBF and provide color coded FP maps representing regional myocardial perfusion.

  13. Free radical generation during the activation of hemolymph prepared from the homopteran Dactylopius coccus.

    PubMed

    García-Gil De Muñoz, F; Lanz-Mendoza, H; Hernández-Hernández, F C

    2007-05-01

    Superoxide anion (O(-) (2)) and nitric oxide (NO) generation in Dactylopius coccus hemolymph obtained by perfusion and activated with zymosan was studied. Activated hemolymph reduced 3-[4,5 dimethylthiazolil-2]-2,5-diphenyl tetrazolium bromide. This reduction was prevented by superoxide dismutase (SOD) indicating O(-) (2) generation. This activity was dependent on temperature, and hemolymph incubated at 75 degrees C lost its activity. Chromatocytes incubated with zymosan released their content and produced O(-) (2). Activated hemolymph also produced NO and this activity was prevented in the presence of NG-nitro-L-arginine methyl ester, suggesting that nitric oxide synthase (NOS) might be present in D. coccus hemolymph. The probable source of O(-) (2) in the D. coccus hemolymph is the anthraquinone oxidation, since commercial carminic dye produced O(-) (2) during its oxidation by Agaricus bisporus tyrosinase. Gram+ Micrococcus luteus exposed to activated hemolymph were killed in vitro, and addition of NG-nitro-L-arginine methyl ester and D-Mannitol (a hydroxyl radical scavenger) prevented their killing. The cytotoxic effect produced by the activated hemolymph was not observed with the Gram- bacteria Serratia marcescens. These results suggest that D. coccus activated hemolymph generates reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) that may limit M. luteus growth. PMID:17427930

  14. Evolution of Magnetic Field Twist and Tilt in Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar

    2011-07-01

    Magnetic twist of the active region has been measured over a decade using photospheric vector field data, chromospheric H_alpha data, and coronal loop data. The twist and tilt of the active regions have been measured at the photospheric level with the vector magnetic field measurements. The active region NOAA 10930 is a highly twisted emerging region. The same active region produced several flares and has been extensively observed by Hinode. In this paper, we will show the evolution of twist and tilt in this active region leading up to the two X-class flares. We find that the twist initially increases with time for a few days with a simultaneous decrease in the tilt until before the X3.4 class flare on December 13, 2006. The total twist acquired by the active region is larger than one complete winding before the X3.4 class flare and it decreases in later part of observations. The injected helicity into the corona is negative and it is in excess of 10^43 Mx^2 before the flares.

  15. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  16. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions. PMID:27236436

  17. Detection of Local/Regional Events in Kuwait Using Next-Generation Detection Algorithms

    SciTech Connect

    Gok, M. Rengin; Al-Jerri, Farra; Dodge, Douglas; Al-Enezi, Abdullah; Hauk, Terri; Mellors, R.

    2014-12-10

    Seismic networks around the world use conventional triggering algorithms to detect seismic signals in order to locate local/regional seismic events. Kuwait National Seismological Network (KNSN) of Kuwait Institute of Scientific Research (KISR) is operating seven broad-band and short-period three-component stations in Kuwait. The network is equipped with Nanometrics digitizers and uses Antelope and Guralp acquisition software for processing and archiving the data. In this study, we selected 10 days of archived hourly-segmented continuous data of five stations (Figure 1) and 250 days of continuous recording at MIB. For the temporary deployment our selection criteria was based on KNSN catalog intensity for the period of time we test the method. An autonomous event detection and clustering framework is employed to test a more complete catalog of this short period of time. The goal is to illustrate the effectiveness of the technique and pursue the framework for longer period of time.

  18. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    SciTech Connect

    Davies, C. S. Kruglyak, V. V.; Sadovnikov, A. V.; Nikitov, S. A.; Grishin, S. V.; Sharaevskii, Yu. P.

    2015-10-19

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.

  19. Mapping brain region activity during chewing: a functional magnetic resonance imaging study.

    PubMed

    Onozuka, M; Fujita, M; Watanabe, K; Hirano, Y; Niwa, M; Nishiyama, K; Saito, S

    2002-11-01

    Mastication has been suggested to increase neuronal activities in various regions of the human brain. However, because of technical difficulties, the fine anatomical and physiological regions linked to mastication have not been fully elucidated. Using functional magnetic resonance imaging during cycles of rhythmic gum-chewing and no chewing, we therefore examined the interaction between chewing and brain regional activity in 17 subjects (aged 20-31 years). In all subjects, chewing resulted in a bilateral increase in blood oxygenation level-dependent (BOLD) signals in the sensorimotor cortex, supplementary motor area, insula, thalamus, and cerebellum. In addition, in the first three regions, chewing of moderately hard gum produced stronger BOLD signals than the chewing of hard gum. However, the signal was higher in the cerebellum and not significant in the thalamus, respectively. These results suggest that chewing causes regional increases in brain neuronal activities which are related to biting force.

  20. Titin stiffness modifies the force-generating region of muscle sarcomeres

    PubMed Central

    Li, Yong; Lang, Patrick; Linke, Wolfgang A.

    2016-01-01

    The contractile units of striated muscle, the sarcomeres, comprise the thick (myosin) and thin (actin) filaments mediating active contraction and the titin filaments determining “passive” elasticity. We hypothesized that titin may be more active in muscle contraction by directly modulating thick-filament properties. We used single-myofibril mechanical measurements and atomic force microscopy of individual sarcomeres to quantify the effects of sarcomere strain and titin spring length on both the inter-filament lattice spacing and the lateral stiffness of the actin-myosin overlap zone (A-band). We found that strain reduced the lattice spacing similarly in sarcomeres with stiff (rabbit psoas) or compliant titin (rabbit diaphragm), but increased A-band lateral stiffness much more in psoas than in diaphragm. The strain-induced alterations in A-band stiffness that occur independently of lattice spacing effects may be due to titin stiffness-sensing by A-band proteins. This mechanosensitivity could play a role in the physiologically important phenomenon of length-dependent activation of striated muscle. PMID:27079135

  1. Air pollution and health implications of regional electricity transfer at generational centre and design of compensation mechanism

    NASA Astrophysics Data System (ADS)

    Relhan, Nemika

    India's electricity generation is primarily from coal. As a result of interconnection of grid and establishment of pithead power plants, there has been increased electricity transfer from one region to the other. This results in imbalance of pollution loads between the communities located in generation vis-a-vis consumption region. There may be some states, which are major power generation centres and hence are facing excessive environmental degradation. On the other hand, electricity importing regions are reaping the benefits without paying proper charges for it because present tariff structure does not include the full externalities in it. The present study investigates the distributional implications in terms of air pollution loads between the electricity generation and consumption regions at the state level. It identifies the major electricity importing and exporting states in India. Next, as a case study, it estimates the health damage as a result of air pollution from thermal power plants (TPPs) located in a critically polluted region that is one of the major generator and exporter of electricity. The methodology used to estimate the health damage is based on impact pathway approach. In this method, air pollution modelling has been performed in order to estimate the gridded Particulate Matter (PM) concentration at various receptor locations in the study domain. The air quality modeling exercise helps to quantify the air pollution concentration in each grid and also apportion the contribution of power plants to the total concentration. The health impacts as a result of PM have been estimated in terms of number of mortality and morbidity cases using Concentration Response Function (CRF's) available in the literature. Mortality has been converted into Years of Life Lost (YOLL) using life expectancy table and age wise death distribution. Morbidity has been estimated in terms of number of cases with respect to various health end points. To convert this health

  2. Fiscal Year 2014 Annual Report on BNLs Next Generation Safeguards Initiative Human Capital Development Activities

    SciTech Connect

    Pepper S. E.

    2014-10-10

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.

  3. NASA Surface-Modeling and Grid-Generation (SM/GG) activities

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.

    1992-01-01

    A NASA Steering Committee was formed to carry out the recommendations from the NASA Workshop on Future Directions in Surface Modeling and Grid Generation. Its function is to communicate and coordinate within NASA the acquisition and distribution of geometry/grid generation software/data, establish geometry data exchange standards, and interface with other government, university, and industry efforts. Two speakers present the committee's activities in viewgraph format.

  4. Organic geochemistry and petrology of oil source rocks, Carpathian Overthrust region, southeastern Poland - Implications for petroleum generation

    USGS Publications Warehouse

    Kruge, M.A.; Mastalerz, Maria; Solecki, A.; Stankiewicz, B.A.

    1996-01-01

    The organic mailer rich Oligocene Menilite black shales and mudstones are widely distributed in the Carpathian Overthrust region of southeastern Poland and have excellent hydrocarbon generation potential, according to TOC, Rock-Eval, and petrographic data. Extractable organic matter was characterized by an equable distribution of steranes by carbon number, by varying amounts of 28,30-dinor-hopane, 18??(H)-oleanane and by a distinctive group of C24 ring-A degraded triterpanes. The Menilite samples ranged in maturity from pre-generative to mid-oil window levels, with the most mature in the southeastern portion of the study area. Carpathian petroleum samples from Campanian Oligocene sandstone reservoirs were similar in biomarker composition to the Menilite rock extracts. Similarities in aliphatic and aromatic hydrocarbon distributions between petroleum asphaltene and source rock pyrolyzates provided further evidence genetically linking Menilite kerogens with Carpathian oils.

  5. Analysis of the characteristics of solar oscillation modes in active regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Basu, Sarbani

    2008-10-01

    We analyze the characteristics of high-degree solar acoustic modes in the vicinity of magnetic active regions and compare with those of magnetically quiet regions at the same latitude and at nearly the same time. We applied ring-diagram analysis to GONG+ and MDI data, using the 13-parameter mode-fitting model of Basu & Antia [1]. We explore the correlations of variations in mode frequencies, amplitudes, widths, and asymmetries with the total magnetic flux of the analyzed regions.

  6. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System

    NASA Astrophysics Data System (ADS)

    Takarada, S.

    2013-12-01

    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  7. Supercontinuum generation using a selectively water-filled photonic crystal fiber for enhancement in the visible spectral region

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiichi; Wada, Akira; Karasawa, Naoki

    2016-07-01

    We generated a supercontinuum from a selectively water-filled photonic crystal fiber (PCF) for enhancement in the visible spectral region using an optical pulse from a Ti:sapphire oscillator at 804 nm. We prepared a 7-cm-long fused silica PCF, where the holes adjacent to the central core were filled with water, using a UV-curable adhesive to close holes selectively before filling holes with water by capillary force. Compared with that of the PCF without water, the group velocity dispersion curve of the selectively water-filled PCF became flatter near 800 nm and the intensity in the visible spectral region of the supercontinuum became higher and more uniform. The spectra simulated using the calculated dispersion properties of the selectively water-filled PCF showed good agreement with the experimental spectra.

  8. Second Harmonic Generation with the GaAs Thin Film in the Soft X-Ray Region

    SciTech Connect

    Takayama, Yasuhiro; Shibasaki, Koutatsu; Sasaki, Naoya; Nakayama, Yuji; Nishihata, Keisuke; Yoneda, Yuichi; Yoshida, Tetsuo; Nakamura, Satoshi; Ishii, Hiroyoshi; Myayhara, Tsuneaki; Okabayashi, Jun; Kanai, Ken; Oshima, Masaharu; Yamamoto, Shigeru

    2007-01-19

    We have constructed an instrument for observing the second harmonic generation (SHG) in the soft x-ray region. The two beams are focused on the GaAs thin film, and the scattered beam corresponding to the SHG signal is detected by a photomultiplier tube (PMT). For detecting the small signal of the SHG, we have developed a novel modulation technique with a piezo actuator and a digital lock-in amplifier. The result of the experiment is almost consistent with the assumption that the SHG has been detected in our experiment.

  9. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight.

    PubMed

    Purohit, Rituraj

    2014-01-01

    KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805-850) by conducting molecular dynamics simulation (∼100 ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.

  10. Simulations of high harmonic generation from plasmonic nanoparticles in the terahertz region

    NASA Astrophysics Data System (ADS)

    Grynko, Yevgen; Zentgraf, Thomas; Meier, Torsten; Förstner, Jens

    2016-09-01

    Metallic nanostructures are known for enhancing weak nonlinear processes when a resonant and coherent excitation takes place. With proper structural design, an additional boost of particular nonlinear processes is expected to be possible. Here, we present a numerical technique that is capable of simulating high harmonic generation from resonantly excited metallic nanoparticles in the terahertz frequency range. We demonstrate our method by investigating the nonlinear emission of arrays of plasmonic split-ring resonators at the range of ten terahertzs. Our multiscale, non-perturbative, and microscopic approach is based on a self-consistent combination of a hydrodynamic model for the nonlinear electronic material response and the discontinuous Garlerkin time-domain technique for the evaluation of the propagation of the electromagnetic field. It is predicted that the electronic nonlinearities of plasmonic nanoparticles give rise to several harmonics in the light emission when excited by intense terahertz radiation. Furthermore, our analysis predicts a non-perturbative scaling of higher harmonics at high excitation intensities.

  11. Complex active regions as the main source of extreme and large solar proton events

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  12. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion.

    PubMed

    Han, Su Young; McLennan, Timothy; Czieselsky, Katja; Herbison, Allan E

    2015-10-20

    Normal reproductive functioning in mammals depends upon gonadotropin-releasing hormone (GnRH) neurons generating a pulsatile pattern of gonadotropin secretion. The neural mechanism underlying the episodic release of GnRH is not known, although recent studies have suggested that the kisspeptin neurons located in the arcuate nucleus (ARN) may be involved. In the present experiments we expressed channelrhodopsin (ChR2) in the ARN kisspeptin population to test directly whether synchronous activation of these neurons would generate pulsatile luteinizing hormone (LH) secretion in vivo. Characterization studies showed that this strategy targeted ChR2 to 70% of all ARN kisspeptin neurons and that, in vitro, these neurons were activated by 473-nm blue light with high fidelity up to 30 Hz. In vivo, the optogenetic activation of ARN kisspeptin neurons at 10 and 20 Hz evoked high amplitude, pulse-like increments in LH secretion in anesthetized male mice. Stimulation at 10 Hz for 2 min was sufficient to generate repetitive LH pulses. In diestrous female mice, only 20-Hz activation generated significant increments in LH secretion. In ovariectomized mice, 5-, 10-, and 20-Hz activation of ARN kisspeptin neurons were all found to evoke LH pulses. Part of the sex difference, but not the gonadal steroid dependence, resulted from differential pituitary sensitivity to GnRH. Experiments in kisspeptin receptor-null mice, showed that kisspeptin was the critical neuropeptide underlying the ability of ARN kisspeptin neurons to generate LH pulses. Together these data demonstrate that synchronized activation of the ARN kisspeptin neuronal population generates pulses of LH. PMID:26443858

  13. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion.

    PubMed

    Han, Su Young; McLennan, Timothy; Czieselsky, Katja; Herbison, Allan E

    2015-10-20

    Normal reproductive functioning in mammals depends upon gonadotropin-releasing hormone (GnRH) neurons generating a pulsatile pattern of gonadotropin secretion. The neural mechanism underlying the episodic release of GnRH is not known, although recent studies have suggested that the kisspeptin neurons located in the arcuate nucleus (ARN) may be involved. In the present experiments we expressed channelrhodopsin (ChR2) in the ARN kisspeptin population to test directly whether synchronous activation of these neurons would generate pulsatile luteinizing hormone (LH) secretion in vivo. Characterization studies showed that this strategy targeted ChR2 to 70% of all ARN kisspeptin neurons and that, in vitro, these neurons were activated by 473-nm blue light with high fidelity up to 30 Hz. In vivo, the optogenetic activation of ARN kisspeptin neurons at 10 and 20 Hz evoked high amplitude, pulse-like increments in LH secretion in anesthetized male mice. Stimulation at 10 Hz for 2 min was sufficient to generate repetitive LH pulses. In diestrous female mice, only 20-Hz activation generated significant increments in LH secretion. In ovariectomized mice, 5-, 10-, and 20-Hz activation of ARN kisspeptin neurons were all found to evoke LH pulses. Part of the sex difference, but not the gonadal steroid dependence, resulted from differential pituitary sensitivity to GnRH. Experiments in kisspeptin receptor-null mice, showed that kisspeptin was the critical neuropeptide underlying the ability of ARN kisspeptin neurons to generate LH pulses. Together these data demonstrate that synchronized activation of the ARN kisspeptin neuronal population generates pulses of LH.

  14. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90.

    PubMed

    Hartl, Brad A; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R

    2016-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 µm. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  15. The neck region of the myosin motor domain acts as a lever arm to generate movement.

    PubMed Central

    Uyeda, T Q; Abramson, P D; Spudich, J A

    1996-01-01

    The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long alpha-helical portion of the heavy chain. The swinging neck-level model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The delta RLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The delta BLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8633089

  16. Quantifying internally generated and externally forced climate signals at regional scales in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Lyu, Kewei; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2015-11-01

    The Earth's climate evolves because of both internal variability and external forcings. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) models, here we quantify the ratio of externally forced variance to total variance on interannual and longer time scales for regional surface air temperature (SAT) and sea level, which depends on the relative strength of externally forced signal compared to internal variability. The highest ratios are found in tropical areas for SAT but at high latitudes for sea level over the historical period when ocean dynamics and global mean thermosteric contributions are considered. Averaged globally, the ratios over a fixed time interval (e.g., 30 years) are projected to increase during the 21st century under the business-as-usual scenario (RCP8.5). In contrast, under two mitigation scenarios (RCP2.6 and RCP4.5), the ratio declines sharply by the end of the 21st century for SAT, but only declines slightly or stabilizes for sea level, indicating a slower response of sea level to climate mitigation.

  17. Characterization of transcriptional activation and DNA-binding functions in the hinge region of the vitamin D receptor.

    PubMed

    Shaffer, Paul L; McDonnell, Donald P; Gewirth, Daniel T

    2005-02-22

    The vitamin D receptor (VDR) is a ligand-responsive transcription factor that forms active, heterodimeric complexes with the 9-cis retinoic acid receptor (RXR) on vitamin D response elements (VDREs). Both proteins consist of an N-terminal DNA-binding domain, a C-terminal ligand-binding domain, and an intervening hinge region. The length requirements of the hinge for both transcriptional regulation and DNA binding have not been studied to date for any member of the steroid hormone superfamily. We have generated a series of internal deletion mutants of the VDR hinge and found that deletion of as few as five amino acids from the C-terminus of the hinge significantly reduces transcriptional activation in vivo. Replacing deleted residues in the C-terminus of the hinge with alanines restored activity, indicating that this section of the hinge acts as a sequence-independent spacer. The hinge region of VDR forms a long helix, and the geometric consequences of this structure may explain the requirement of the hinge region for transcriptional activity. Interestingly, all of the deletion mutants, even those that do not activate transcription, bind VDREs with equal and high affinity, indicating that the defect in these mutants is not their ability to bind VDREs. In contrast to VDR, constructs of RXR containing deletions of up to 14 amino acids in the hinge region exhibit near wild-type transcriptional activity. The ability to delete more of the RXR hinge may be related to the additional plasticity required by its role as the common heterodimer partner for nuclear receptors on differing DNA elements.

  18. On-Orbit Checkout and Activation of the ISS Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Prokhorov, Kimberlee S.

    2007-01-01

    NASA has developed and; deployed an Oxygen Generation System (OGS) into the Destiny Module of the International Space Station (ISS). The major. assembly; included in this system is the Oxygen Generator Assembly. (OGA) which was developed under NASA contract by Hamilton Sundstrand Space Systems International (HSSSI), Inc. This paper summarizes the installation of the system into the Destiny Module, its initial checkout and periodic preventative maintenance activities, and its operational activation. Trade studies and analyses that were conducted with the goal of mitigating on-orbit operational risks are also discussed.

  19. Energy deposition in the earth's atmosphere due to impact of solar activity-generated disturbances

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Kan, L. C.; Tandberg-Hanssen, E.; Dryer, M.

    1979-01-01

    Energy deposition in and dynamic responses of the terrestrial atmosphere to solar flare-generated shocks and other physical processes - such as particle precipitation and local heating - are investigated self-consistently in the context of hydrodynamics, the problem being treated as an initial boundary-value problem. It is extremely difficult to construct a general model for the line solar activity-magnetosphere-atmosphere; however, a limited model for this link is possible. The paper describes such a model, and presents some results on energy deposition into the earth's atmosphere due to solar activity-generated disturbances. Results from the present calculations are presented and discussed.

  20. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    NASA Astrophysics Data System (ADS)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  1. Repeated pseudotachylytes generation events along regional scale faults: the Orobic and Porcile thrusts (Southern Alps, N Italy)

    NASA Astrophysics Data System (ADS)

    Zanchetta, Stefano; D'Adda, Paolo; Barberini, Valentina; Villa, Igor Maria; Zanchi, Andrea

    2010-05-01

    many cases re-melting phenomena of pre-existing pseudotachylytes were observed at the micro-scale. Old pseudotachylyte fragments with evident resorption features are present within new veins, and "intrusive" contact were locally observed between different vein generations. Different melt pulses along the same vein are differentiated on the base of clast/matrix ratios and chemical composition of both matrix and crystallites. Brittle deformation producing brecciation of old pseudotachylytes seems to be contemporaneous with new melt injection and flow, resulting in the coexistence, within the same vein, of old fractured pseudotachylyte layers and new, undeformed, ones. Structural data relative to fault veins point out that both old and young pseudotachylytes formed along reverse fault planes with similar geometric features. This suggest that no significant changes occurred in the main stress axes orientations and resulting deformation structures correlated to the Late Cretaceous and the Eocene compressive deformation events along the Orobic and Porcile fault zones. Field data, 40Ar/39Ar ages, microstructural and mineralogical data on pseudotachylytes along the Orobic and Porcile thrusts reveal that repeated coseismic friction-induced melting occurred along same faults with a time interval in excess of 15 Ma. This implies that the seismic history of regional scale faults could be very complex and polyphasic, with successive long time range re-activations that can be individuated exploring the geological record associated to fault zones.

  2. Drawing as a Generative Activity and Drawing as a Prognostic Activity

    ERIC Educational Resources Information Center

    Schwamborn, Annett; Mayer, Richard E.; Thillmann, Hubertina; Leopold, Claudia; Leutner, Detlev

    2010-01-01

    In this study, 9th-grade students (N = 196) with a mean age of 14.7 years read a scientific text explaining the chemical process of doing laundry with soap and water and then took 3 tests. Students who were instructed to generate drawings during learning scored higher than students who only read on subsequent tests of transfer (d = 0.91),…

  3. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  4. HARPs: Tracked Active Region Patch Data Product from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Sun, X.; Bobra, M.

    2012-12-01

    We describe an HMI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated HARPs (HMI Active Region Patches). The HARP data series has been helpful for subsetting individual active regions, for development of near-real-time (NRT) space weather indices for individual active regions, and for defining closed magnetic structures for computationally-intensive algorithms like vector field disambiguation. The data series builds upon the 720s cadence activity masks, which identify large-scale instantaneously-observed magnetic features. Using these masks as a starting point, large spatially-coherent structures are identified using convolution with a longitudinally-extended kernel on a spherical domain. The resulting set of identified regions is then tracked from image to image. The metric for inter-image association is area of overlap between the best current estimate of AR location, as predicted by temporally extrapolating each currently tracked object, and the set of instantaneously-observed magnetic structures. Once completed tracks have been extracted, they are made into a standardized HARP data series by finding the smallest constant-angular-velocity box, of constant width in latitude and longitude, that encompasses all appearances of the active region. This data product is currently available, in definitive and near-real-time forms, with accompanying region-strength, location, and NOAA-AR metadata, on HMI's Joint Science Operations Center (JSOC) data portal.; HARP outlines for three days (2001 February 14, 15, and 16, 00:00 TAI, flipped N-S, selected from the 12-minute cadence original data product). HARPs are shown in the same color (some colors repeated) with a thin white box surrounding each HARP. HARPs are tracked and associated from image to image. HARPs, such as the yellow one in the images above, need not be connected regions. Merges and splits, such as the light blue region, are accounted for automatically.

  5. Activation of photodynamic therapy in vitro with Cerenkov luminescence generated from Yttrium-90 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2016-03-01

    Translation of photodynamic therapy to the clinical setting has primarily been limited to easily accessible and/or superficial diseases where traditional light delivery can be performed noninvasively. Cerenkov luminescence, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively in order to overcome this depth limitation. We report on the use of Cerenkov luminescence generated from Yttrium-90 as a means to active the photodynamic therapy process in monolayer tumor cell cultures. The current study investigates the utility of Cerenkov luminescence for activating both the clinically relevant aminolevulinic acid at 1.0 mM and also the more efficient photosensitizer TPPS2a at 1.2 µM. Cells were incubated with aminolevulinic acid for 6 hours prior to radionuclide addition, as well as additional daily treatments for three days. TPPS2a was delivered as a single treatment with an 18 hour incubation time before radionuclide addition. Experiments were completed for both C6 glioma cells and MDA-MB-231 breast tumor cells. Although aminolevulinic acid proved ineffective for generating a therapeutic effect at any activity for either cell line, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 cell line. Current results demonstrate that it may be possible to generate a therapeutic effect in vivo using Cerenkov luminescence to activate the photodynamic therapy process with clinically relevant photosensitizers.

  6. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

    SciTech Connect

    Piprek, Joachim

    2014-07-07

    This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410 nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

  7. Regional activation within the vastus medialis in stimulated and voluntary contractions.

    PubMed

    Gallina, Alessio; Ivanova, Tanya D; Garland, S Jayne

    2016-08-01

    This study examined the contribution of muscle fiber orientation at different knee angles to regional activation identified with high-density surface electromyography (HDsEMG). Monopolar HDsEMG signals were collected using a grid of 13 × 5 electrodes placed over the vastus medialis (VM). Intramuscular electrical stimulation was used to selectively activate two regions within VM. The distribution of EMG responses to stimulation was obtained by calculating the amplitude of the compound action potential for each channel; the position of the peak amplitude was tracked across knee angles to describe shifts of the active muscle regions under the electrodes. In a separate experiment, regional activation was investigated in 10 knee flexion-extension movements against a fixed resistance. Intramuscular stimulation of different VM regions resulted in clear differences in amplitude distribution along the columns of the electrode grid (P < 0.001); changes in knee angle resulted in consistent shifts along the rows (P < 0.01) and negligible shifts along the columns of the electrode grid. Regional VM activation was identified in dynamic movement, with distal shifts of the EMG distribution in the eccentric phase of the movement (P < 0.05) and at more flexed knee angles (P < 0.05). HDsEMG was used to describe regional activation across the VM that was not attributable to anatomic factors. Changes in muscle fiber orientation associated with knee joint angle mainly influence the amplitude distribution along the fiber direction. Future studies are needed to understand possible functional roles for regional activation within the VM in dynamic tasks. PMID:27365281

  8. Regional activation of rapid onset vasodilatation in mouse skeletal muscle: regulation through α-adrenoreceptors.

    PubMed

    Moore, Alex W; Bearden, Shawn E; Segal, Steven S

    2010-09-01

    Exercise onset entails motor unit recruitment and the initiation of vasodilatation. Dilatation can ascend the arteriolar network to encompass proximal feed arteries but is opposed by sympathetic nerve activity, which promotes vasoconstriction and inhibits ascending vasodilatation through activating α-adrenoreceptors. Whereas contractile activity can antagonize sympathetic vasoconstriction, more subtle aspects of this interaction remain to be defined. We tested the hypothesis that constitutive activation of α-adrenoreceptors governs blood flow distribution within individual muscles. The mouse gluteus maximus muscle (GM) consists of Inferior and Superior regions. Each muscle region is supplied by its own motor nerve and feed artery with an anastomotic arteriole (resting diameter 25 microm) that spans both muscle regions. In anaesthetized male C57BL/6J mice (3-5 months old), the GM was exposed and superfused with physiological saline solution (35 degrees C; pH 7.4). Stimulating the inferior gluteal motor nerve (0.1 ms pulse, 100 Hz for 500 ms) evoked a brief tetanic contraction and produced rapid (<1 s) onset vasodilatation (ROV; diameter change, 10 +/- 1 μm) of the anastomotic arteriole along the active (Inferior) muscle region but not along the inactive (Superior) region (n = 8). In contrast, microiontophoresis of acetylcholine (1 μm micropipette tip, 1 μA, 500 ms) initiated dilatation that travelled along the anastomotic arteriole from the Inferior into the Superior muscle region (diameter change, 5 +/- 2 μm). Topical phentolamine (1 μm) had no effect on resting diameter but this inhibition of α-adrenoreceptors enabled ROV to spread along the anastomotic arteriole into the inactive muscle region (dilatation, 7 +/- 1 μm; P < 0.05), where remote dilatation to acetylcholine then doubled (P < 0.05). These findings indicate that constitutive activation of α-adrenoreceptors in skeletal muscle can restrict the spread of dilatation within microvascular resistance

  9. Lorentz drift compensation in high harmonic generation in the soft and hard X-ray regions of the spectrum.

    PubMed

    Galloway, Benjamin R; Popmintchev, Dimitar; Pisanty, Emilio; Hickstein, Daniel D; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2016-09-19

    We present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 1015 W/cm2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling which acts in addition to the dominant high harmonic flux scaling of λ-(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV. PMID:27661918

  10. International workshop on final focus and interaction regions of next generation linear colliders: Proceedings

    SciTech Connect

    Not Available

    1992-01-01

    The first day of the workshop was devoted to four plenary issues'' talks, one for each working group: Beam-Beam Interaction, Detector, Hardware, and Optical Design. The last day was devoted to plenary talks summarizing the activities of the working groups. Each of the three remaining days there,was a short morning plenary devoted to a brief summary of the preceding day and an announcement of planned working group discussions for that day. The transparencies for the issues'' and summary'' talks are included in this volume, along with some remarks from the working group chairpersons. Very briefly, the beam-beam group continued to address the quantitative study of QED induced backgrounds, and attempted to better understand the nature and prevalence of QCD millijets. The detector group attempted to identify the impact on masking and detector design of the beam-beam backgrounds, the synchrotron radiation induced backgrounds from beam halos and muon backgrounds produced primarily in collimators. Nanosecond timing elements needed in conjunction with multi-bunch operation were discussed. The hardware group addressed the problem of magnet design and support, especially the final doublet magnets suspended within the detector environment, and instrumentation issues, such as high resolution beam position monitors. The optics group discussed new final focus system ideas, collimator design, and improvement of beamline tolerances. If you were not here to participate, we hope that this volume will help you in your orientation to these problems.

  11. International workshop on final focus and interaction regions of next generation linear colliders: Proceedings

    SciTech Connect

    Not Available

    1992-11-01

    The first day of the workshop was devoted to four plenary ``issues`` talks, one for each working group: Beam-Beam Interaction, Detector, Hardware, and Optical Design. The last day was devoted to plenary talks summarizing the activities of the working groups. Each of the three remaining days there,was a short morning plenary devoted to a brief summary of the preceding day and an announcement of planned working group discussions for that day. The transparencies for the ``issues`` and ``summary`` talks are included in this volume, along with some remarks from the working group chairpersons. Very briefly, the beam-beam group continued to address the quantitative study of QED induced backgrounds, and attempted to better understand the nature and prevalence of QCD millijets. The detector group attempted to identify the impact on masking and detector design of the beam-beam backgrounds, the synchrotron radiation induced backgrounds from beam halos and muon backgrounds produced primarily in collimators. Nanosecond timing elements needed in conjunction with multi-bunch operation were discussed. The hardware group addressed the problem of magnet design and support, especially the final doublet magnets suspended within the detector environment, and instrumentation issues, such as high resolution beam position monitors. The optics group discussed new final focus system ideas, collimator design, and improvement of beamline tolerances. If you were not here to participate, we hope that this volume will help you in your orientation to these problems.

  12. MAG4 versus alternative techniques for forecasting active region flare productivity

    PubMed Central

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  13. A Search for Coriolis Forces Acting on Tilt in Bipolar Active Regions

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.

    2013-12-01

    Bipolar active regions tend to be tilted with respect to the East - West equator of the Sun in accordance with Joy's law that describes the average tilt angle as a function of latitude. As individual bipolar active regions emerge, tilt angles vary with time. Data collected by the Helioseismic and Magnetic Imager aboard the Solar Dynamic Observatory at a higher cadence than previous data allow for a more continuous analysis of emerging regions over their lifetimes. It is theorized that rising magnetic flux-tubes, which emerge as active regions on the surface, are tilted by Coriolis forces acting on the retrograde flow inside the tubes. We will search for and measure any decrease in tilt near the end of emergence, as an indicator of Coriolis forces ending.

  14. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  15. PERK Utilizes Intrinsic Lipid Kinase Activity To Generate Phosphatidic Acid, Mediate Akt Activation, and Promote Adipocyte Differentiation

    PubMed Central

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J.; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A.; Witze, Eric S.

    2012-01-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought. PMID:22493067

  16. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation.

    PubMed

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A; Witze, Eric S; Diehl, J Alan

    2012-06-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.

  17. New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids.

    PubMed

    de Assuncao, Thiago M; Lomberk, Gwen; Cao, Sheng; Yaqoob, Usman; Mathison, Angela; Simonetto, Douglas A; Huebert, Robert C; Urrutia, Raul A; Shah, Vijay H

    2014-05-30

    Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling. PMID:24759103

  18. New Role for Kruppel-like Factor 14 as a Transcriptional Activator Involved in the Generation of Signaling Lipids*

    PubMed Central

    de Assuncao, Thiago M.; Lomberk, Gwen; Cao, Sheng; Yaqoob, Usman; Mathison, Angela; Simonetto, Douglas A.; Huebert, Robert C.; Urrutia, Raul A.; Shah, Vijay H.

    2014-01-01

    Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two