Science.gov

Sample records for active region temperature

  1. Average Potential Temperature of the Upper Mantle and Excess Temperatures Beneath Regions of Active Upwelling

    NASA Astrophysics Data System (ADS)

    Putirka, K. D.

    2006-05-01

    The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and

  2. The temperature structure and pressure balance of magnetic loops in active regions. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Foukal, P.

    1975-01-01

    EUV observations show many active region loops in lines formed at temperatures between 10,000 and 2,000,000 K. The brightest loops are associated with flux tubes leading to the umbrae of sunspots. It is shown that the high visibility of certain loops in transition region lines is due principally to a sharp radial decrease of temperature to chromospheric values toward the loop axis. The plasma density of these cool loops is not significantly greater than in the hot gas immediately surrounding it. Consequently, the internal gas pressure of the cool material is clearly lower. The hot material immediately surrounding the cool loops is generally denser than the external corona by a factor 3-4. When the active region is examined in coronal lines, this hot high pressure plasma shows up as loops that are generally parallel to the cool loops but significantly displaced laterally.

  3. The distribution of temperature in an active region for a comet with known parameters of rotation and orbit

    NASA Astrophysics Data System (ADS)

    Ivanova, A. V.; Shulman, L. M.

    2005-06-01

    We calculated the temperature regime of an active region considered as a conical hole in dust layer. All the calculations are carried out for the case when the season effects are distinctly expressed. The temperature is defined from the geometrical parameters of the active region separately for ice bottom and dust walls. It is shown that dust walls are cooled very slowly for the small vertex angles of the crater structure. The temperature of the ice bottom practically does not change over the whole period of rotation, because it is retained at an approximately constant level by concentration of reradiated energy from the dust walls heated by the Sun.

  4. ION TEMPERATURE AND NON-THERMAL VELOCITY IN A SOLAR ACTIVE REGION: USING EMISSION LINES OF DIFFERENT ATOMIC SPECIES

    SciTech Connect

    Imada, S.; Hara, H.; Watanabe, T.

    2009-11-10

    We have studied the characteristics of the ion thermal temperature and non-thermal velocity in an active region observed by the EUV Imaging Spectrometer onboard Hinode. We used two emission lines of different atomic species (Fe XVI 262.98 A and S XIII 256.69 A) to distinguish the ion thermal velocity from the observed full width at half-maximum. We assumed that the sources of the two emission lines are the same thermal temperature. We also assumed that they have the same non-thermal velocity. With these assumptions, we could obtain the ion thermal temperature, after noting that M{sub sulfur} approx 0.6M{sub iron}. We have carried out the ion thermal temperature analysis in the active region where the photon counts are sufficient (>4500). What we found is as follows: (1) the common ion thermal temperatures obtained by Fe XVI and S XIII are approx2.5 MK, (2) the typical non-thermal velocities are approx13 km s{sup -1}, (3) the highest non-thermal velocities (>20 km s{sup -1}) are preferentially observed between the bright points in Fe XVI, while (4) the hottest material (>3 MK) is observed relatively inside the bright points compared with the highest non-thermal velocity region.

  5. Elemental abundances and temperatures of quiescent solar active region cores from X-ray observations

    NASA Astrophysics Data System (ADS)

    Del Zanna, G.; Mason, H. E.

    2014-05-01

    A brief review of studies of elemental abundances and emission measures in quiescent solar active region cores is presented. Hinode EUV Imaging Spectrometer (EIS) observations of strong iron spectral lines have shown sharply peaked distributions around 3 MK. EIS observations of lines emitted by a range of elements have allowed good estimates of abundances relative to iron. However, X-ray observations are required to measure the plasma emission above 3 MK and the abundances of oxygen and neon. We revisit, using up-to-date atomic data, older X-ray observations obtained by a sounding rocket and by the Solar Maximum Mission (SMM) Flat Crystal Spectrometer (FCS). We find that the Fe/O and Fe/Ne ratios are normally increased by a factor of 3.2, compared to the photospheric values. Similar results are obtained from FCS observations of six quiescent active region cores. The FCS observations also indicate that the emission measure above 3 MK has a very steep negative slope, with very little plasma observed at 5 MK or above. Appendix A is available in electronic form at http://www.aanda.org

  6. Adult activity and temperature preference drives region-wide damselfly (Zygoptera) distributions under a warming climate

    PubMed Central

    Corser, Jeffrey D.; White, Erin L.; Schlesinger, Matthew D.

    2015-01-01

    We analysed a recently completed statewide odonate Atlas using multivariate linear models. Within a phylogenetically explicit framework, we developed a suite of data-derived traits to assess the mechanistic distributional drivers of 59 species of damselflies in New York State (NYS). We found that length of the flight season (adult breeding activity period) mediated by thermal preference drives regional distributions at broad (105 km2) scales. Species that had longer adult flight periods, in conjunction with longer growing seasons, had significantly wider distributions. These intrinsic traits shape species' responses to changing climates and the mechanisms behind such range shifts are fitness-based metapopulation processes that adjust phenology to the prevailing habitat and climate regime through a photoperiod filter. PMID:25878048

  7. Temperature Analysis of an Active Region Core Loop Using AIA and XRT Data

    NASA Astrophysics Data System (ADS)

    Garst, Jennifer W.; Schmelz, J.; Kimble, J.

    2012-05-01

    Data obtained on December 10, 2010 by both the Atmospheric Imaging Assembly (AIA) and the X-Ray Telescope (XRT) are co-aligned and appropriately scaled in order to do a differential emission measure analysis of the combined data. This project uses Hybrid abundances from Fludra & Schmelz and atomic data from the CHIANTI atomic physics database to analyze an active region core loop and report on the multithermal analysis of the combined data set. The loop being analyzed is visible in the 94, 131, 171, 193, 211, 335 Å passbands on AIA; and the Al-thick, Ti-poly, Al-mesh, Al-poly/Ti-poly, C-Poly/Ti-poly, C-poly, Be-thin, Be-med, Al-med, and Al-poly filters on XRT. Solar physics research at the University of Memphis is supported by NSF ATM-0402729 as well as a Hinode subcontract from NASA/SAO.

  8. Regional and total body active heating and cooling of a resting diver in water of varied temperatures

    NASA Astrophysics Data System (ADS)

    Bardy, Erik; Mollendorf, Joseph; Pendergast, David

    2008-02-01

    Passive insulations alone are not sufficient for maintaining underwater divers in thermal balance or comfort. The purpose of this study was to experimentally determine the active heating and cooling requirements to keep a diver at rest in thermal balance and comfort in water temperatures between 10 and 40 °C. A diver wearing a prototype tubesuit and a wetsuit (3 or 6.5 mm foam neoprene) was fully submersed (0.6 m) in water at a specified temperature (10, 20, 30 and 40 °C). During immersion, the tubesuit was perfused with 30 °C water at a flow rate of 0.5 L min-1 to six individual body regions. An attempt was made to keep skin temperatures below 42 °C in hot water (>30 °C) and elevated but below 32 °C in cold water (<20 °C). A skin temperature of 32 °C is the threshold for maximal body thermal resistance due to vasoconstriction. Skin temperatures and core temperature were monitored during immersion to ensure they remained within set thermal limits. In addition skin heat flux, oxygen consumption and the thermal exchange of the tubesuit were measured. In both wetsuit thicknesses there was a linear correlation between the thermal exchange of the tubesuit and ambient water temperature. In the 6.5 mm wetsuit -214 W to 242 W of heating (-) and cooling (+) was necessary in 10 °C to 40 °C water, respectively. In the 3 mm wetsuit -462 to 342 W was necessary in 10 °C to 40 °C water, respectively. It was therefore concluded that a diver at rest can be kept in thermal balance in 10-40 °C water with active heating and cooling.

  9. Room-temperature lasing in microring cavities with an InAs/InGaAs quantum-dot active region

    SciTech Connect

    Kryzhanovskaya, N. V. Zhukov, A. E.; Nadtochy, A. M.; Maximov, M. V.; Moiseev, E. I.; Kulagina, M. M.; Savelev, A. V.; Arakcheeva, E. M.; Lipovskii, A. A.; Zubov, F. I.; Kapsalis, A.; Mesaritakis, C.; Syvridis, D.; Mintairov, A.; Livshits, D.

    2013-10-15

    Microring cavities (diameter D = 2.7-7 {mu}m) with an active region based on InAs/InGaAs quantum dots are fabricated and their characteristics are studied by the microphotoluminescence method and near-field optical microscopy. A value of 22 000 is obtained for the Q factor of a microring cavity with the diameter D = 6 {mu}m. Lasing up to room temperature is obtained in an optically pumped ring microlaser with a diameter of D = 2.7 {mu}m.

  10. Temperature dependence of emission measure in solar X-ray plasmas. 1: Non-flaring active regions

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    1974-01-01

    X-ray and ultraviolet line emission from hot, optically thin material forming coronal active regions on the sun may be described in terms of an emission measure distribution function, Phi (T). A relationship is developed between line flux and Phi (T), a theory which assumes that the electron density is a single-valued function of temperature. The sources of error involved in deriving Phi (T) from a set of line fluxes are examined in some detail. These include errors in atomic data (collisional excitation rates, assessment of other mechanisms for populating excited states of transitions, element abundances, ion concentrations, oscillator strengths) and errors in observed line fluxes arising from poorly - known instrumental responses. Two previous analyses are discussed in which Phi (T) for a non-flaring active region is derived. A least squares method of Batstone uses X-ray data of low statistical significance, a fact which appears to influence the results considerably. Two methods for finding Phi (T) ab initio are developed. The coefficients are evaluated by least squares. These two methods should have application not only to active-region plasmas, but also to hot, flare-produced plasmas.

  11. Multithermal emission in active regions

    NASA Astrophysics Data System (ADS)

    Del Zanna, Giulio

    High-resolution EUV observations from SDO/AIA, Hi-C and Hinode/EIS are used, together with updated new atomic data, to study the multi-thermal emission in active region structures. Previous observations are largely confirmed, with most structures being not co-spatial and having nearly isothermal cross-sections. Those at temperatures below 1 MK appear as nearly resolved but those at 1-3 MK are still largely unresolved even at the Hi-C resolution. Very little emission above 3 MK is present in quiescent active regions. Elemental abundances vary in different structures. The active region cores show FIP enhancements of about a factor of three. X-ray spectroscopy confirms the results of the EUV observations for the hot cores.

  12. Active region seismology

    NASA Technical Reports Server (NTRS)

    Bogdan, Tom; Braun, D. C.

    1995-01-01

    Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.

  13. Active region coronal evolution

    NASA Technical Reports Server (NTRS)

    Golub, L.; Noci, G.; Poletto, G.; Vaiana, G. S.

    1982-01-01

    Scaling relations between coronal base pressure and longitudinal photospheric magnetic field strength are tested for the case of a single active region observed for five solar rotations from Skylab. The evolution of measureable quantities, such as coronal thermal energy content, total longitudinal photospheric magnetic flux, region scale size, and peak energy density, is traced throughout the five rotations observed. The theoretically derived scaling law of Golub et al. (1980) is found to provide an acceptable fit to the data throughout the entire evolutionary history of the region from an age of about 3 days to the fully evolved state in which the mature active region merges into the general large-scale structure of the quiet corona. An alternative scaling law obtained by including the results of Galeev et al. (1981), however, is found to provide a somewhat better fit to the data. The study is seen as providing additional justification for the belief that magnetic field-related heating is the operative mechanism in the solar corona.

  14. Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser.

    PubMed

    Matsuo, Shinji; Takeda, Koji; Sato, Tomonari; Notomi, Masaya; Shinya, Akihiko; Nozaki, Kengo; Taniyama, Hideaki; Hasebe, Koichi; Kakitsuka, Takaaki

    2012-02-13

    We have developed a wavelength-scale embedded active-region photonic-crystal laser using lateral p-i-n structure. Zn diffusion and Si ion implantation are used for p- and n-type doping. Room-temperature continuous-wave lasing behavior is clearly observed from the injection current dependence of the output power, 3dB-bandwidth of the peak, and lasing wavelength. The threshold current is 390 μA and the estimated effective threshold current is 9.4 μA. The output power in output waveguide is 1.82 μW for a 2.0-mA current injection. These results indicate that the embedded active-region structure effectively reduce the thermal resistance. Ultrasmall electrically driven lasers are an important step towards on-chip photonic network applications. PMID:22418134

  15. Effects of acute microinjections of thyroid hormone to the preoptic region of hypothyroid adult male rats on sleep, motor activity and body temperature.

    PubMed

    Moffett, Steven X; Giannopoulos, Phillip F; James, Thomas D; Martin, Joseph V

    2013-06-21

    Thyroid hormones induce short-latency nongenomic effects in adult brain tissue, suggesting that their acute administration would affect brain activity in intact animals. The influence on EEG-defined sleep of acute restoration of l-3,3'5-triiodothyronine (T3) to a sleep-regulatory brain region, the preoptic region, was examined in hypothyroid rats. Sleep parameters were monitored for 48 h weekly: for 24 h immediately following a control microinjection and for an additional 24h after a second microinjection including a T3 dose to the preoptic region or lateral ventricle. Male albino rats were implanted with EEG and EMG electrodes, abdominal temperature/activity transponders and unilateral lateral ventricle cannulae or bilateral preoptic region cannulae, and were given 0.02% n-propythiouracil (PTU) in their drinking water for 4 weeks. For histologically-confirmed bilateral preoptic region cannula placements (N=7), effects of T3 (especially a 3 μg dose) were apparent within 10h of injection as decreases in REM, NREM and total sleep and increases in waking and activity. Minimal effects of lateral ventricle T3 microinjection were demonstrated (N=5). Significant effects due to the time of day on the experimental measures were seen in both lateral ventricle and preoptic region groups, but these effects did not interact with the effect of administered hormone dose. These effects of T3 microinjection to the preoptic region were demonstrated after acute injections and within hours of injection rather than after chronic administration over days. PMID:23603414

  16. EUV SPECTRAL LINE FORMATION AND THE TEMPERATURE STRUCTURE OF ACTIVE REGION FAN LOOPS: OBSERVATIONS WITH HINODE/EIS AND SDO/AIA

    SciTech Connect

    Brooks, David H.; Young, Peter R.; Warren, Harry P.

    2011-04-01

    With the aim of studying active region fan loops using observations from the Hinode EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA), we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why spectroheliograms formed from these lines look very similar despite the fact that ionization equilibrium calculations suggest that they have significantly different formation temperatures: log(T{sub e} /K) = 5.6 and 5.8, respectively. It is important to resolve these issues because confidence has been undermined in their use for differential emission measure (DEM) analysis, and Fe VIII is the main contributor to the AIA 131 A channel at low temperatures. Furthermore, the strong Fe VIII 185.213 A and Si VII 275.368 A lines are the best EIS lines to use for velocity studies in the transition region, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213 A line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log(T{sub e} /K) = 5.6-5.8 temperature range, or is strongly peaked, Fe VIII 185.213 A and Si VII 275.368 A will be formed at the same temperature. We show that this effect explains the similarity of these images in the fans. Furthermore, we show that the most recent ionization balance compilations resolve the discrepancies in absolute intensities. With these difficulties overcome, we combine EIS and AIA data to determine the temperature structure of a number of fan loops and find that they have peak temperatures of 0.8-1.2 MK. The EIS data indicate that the temperature distribution has a finite (but narrow) width < log ({sigma}{sub Te}/K) = 5.5 which, in one detailed case, is found to broaden substantially toward the loop base. AIA and EIS yield similar results on the temperature, emission

  17. EUV Spectral Line Formation and the Temperature Structure of Active Region Fan Loops: Observations with Hinode/EIS and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Brooks, David H.; Warren, Harry P.; Young, Peter R.

    2011-04-01

    With the aim of studying active region fan loops using observations from the Hinode EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA), we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why spectroheliograms formed from these lines look very similar despite the fact that ionization equilibrium calculations suggest that they have significantly different formation temperatures: log(Te /K) = 5.6 and 5.8, respectively. It is important to resolve these issues because confidence has been undermined in their use for differential emission measure (DEM) analysis, and Fe VIII is the main contributor to the AIA 131 Å channel at low temperatures. Furthermore, the strong Fe VIII 185.213 Å and Si VII 275.368 Å lines are the best EIS lines to use for velocity studies in the transition region, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213 Å line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log(Te /K) = 5.6-5.8 temperature range, or is strongly peaked, Fe VIII 185.213 Å and Si VII 275.368 Å will be formed at the same temperature. We show that this effect explains the similarity of these images in the fans. Furthermore, we show that the most recent ionization balance compilations resolve the discrepancies in absolute intensities. With these difficulties overcome, we combine EIS and AIA data to determine the temperature structure of a number of fan loops and find that they have peak temperatures of 0.8-1.2 MK. The EIS data indicate that the temperature distribution has a finite (but narrow) width < log (σ_{T_e}/K) = 5.5 which, in one detailed case, is found to broaden substantially toward the loop base. AIA and EIS yield similar results on the temperature, emission measure

  18. Active Region Soft X-Ray Spectra and Temperature Analyses based on Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid V.; Wieman, Seth; Woods, Thomas N.; Jones, Andrew; Moore, Christopher

    2016-05-01

    Some initial results of soft x-ray spectral (0.5 to 3.0 nm) observations of active regions (AR11877 and AR11875) from a sounding rocket flight NASA 36.290 on 21 October 2013 at about 18:30 UT are reported. These observations were made by a Solar Aspect Monitor (SAM), a rocket version of the EUV Variability Experiment’s (EVE) channel, a pinhole camera modified for EVE rocket suite of instruments to include a free-standing transmission grating (200 nm period), which provided spectrally-resolved images of the solar disk. Intensity ratios for strong emission lines extracted from temporally averaged SAM spectral profiles of the ARs were compared to appropriately convolved modeled CHIANTI spectra. These ratios represent the AR’s temperature structures, which are compared to the structures derived from some other observations and temperature models.

  19. Evolution of Active Regions

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Green, Lucie May

    2015-09-01

    The evolution of active regions (AR) from their emergence through their long decay process is of fundamental importance in solar physics. Since large-scale flux is generated by the deep-seated dynamo, the observed characteristics of flux emergence and that of the subsequent decay provide vital clues as well as boundary conditions for dynamo models. Throughout their evolution, ARs are centres of magnetic activity, with the level and type of activity phenomena being dependent on the evolutionary stage of the AR. As new flux emerges into a pre-existing magnetic environment, its evolution leads to re-configuration of small-and large-scale magnetic connectivities. The decay process of ARs spreads the once-concentrated magnetic flux over an ever-increasing area. Though most of the flux disappears through small-scale cancellation processes, it is the remnant of large-scale AR fields that is able to reverse the polarity of the poles and build up new polar fields. In this Living Review the emphasis is put on what we have learned from observations, which is put in the context of modelling and simulation efforts when interpreting them. For another, modelling-focused Living Review on the sub-surface evolution and emergence of magnetic flux see Fan (2009). In this first version we focus on the evolution of dominantly bipolar ARs.

  20. 3D-Stereoscopic Analysis of Solar Active Region Loops: I: SoHo/EIT Observations at Temperatures of 1.0-1.5 MK

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Newmark, Jeff; Delaboudiniere, Jean-Pierre; Neupert, Werner M.; Portier-Fozzani, Fabrice; Gary, G. Allen; Zucker, Arik

    1998-01-01

    The three-dimensional (3D) structure of solar active region NOAA 7986 observed on 1996 August 30 with the Extrem-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO) is analyzed. We develop a new method of Dynamic Stereoscopy to reconstruct the 3D geometry of dynamically changing loops, which allows us to determine the orientation of the loop plane with respect to the line-of-sight, a prerequisite to correct properly for projection effects in 3D loop models. With this method and the filter-ratio technique applied to EIT 171 A and 195 A images we determine the 3D coordinates (x(s), y(s), z(s)), the loop width) w(s), the electron density n(sub e)(s), and the electron temperature T(sub e)(s) as function of the loop length s for 30 loop segments. Fitting the loop densities with an exponential density model n(sub e)(h) we find that the so inferred scale height temperatures, T(sub e)(sup lambda) = 1.22 +/- 0.23 MK, match closely the EIT filter-ratio temperatures, T(sub e)(sup FIT) = 1.21 +/- 0.06 MK. We conclude that these rather large-scale loops (with heights of h approx. equals 50 - 200 Mm) that dominate EIT 171 A images are close to thermal equilibrium. Most of the loops show no significant thickness variation w(s), but many exhibit a trend of increasing temperature (dT/ds greater than 0) above the footpoint.

  1. Regional Activities Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures affecting…

  2. Volcanically Active Regions on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shown here is a portion of one of the highest-resolution images of Io (Latitude: +10 to +60 degrees, Longitude: 180 to 225 degrees) acquired by the Galileo spacecraft, revealing immense lava flows and other volcanic landforms. Several high-temperature volcanic hot spots have been detected in this region by both the Near Infrared Mapping Spectrometer and the imaging system of Galileo. The temperatures are consistent with active silicate volcanism in lava flows or lava lakes (which reside inside irregular depressions called calderas). The large dark lava flow in the upper left region of the image is more than 400 km long, similar to ancient flood basalts on Earth and mare lavas on the Moon.

    North is to the top of the picture and the sun illuminates the surface from the left. The image covers an area 1230 kilometers wide and the smallest features that can be discerned are 2.5 kilometers in size. This image was taken on November 6th, 1996, at a range of 245,719 kilometers by the Solid State Imaging (CCD) system on the Galileo Spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  3. Active Region Release Two CMEs

    NASA Video Gallery

    Solar material can be seen blowing off the sun in this video captured by NASA’s Solar Dynamics Observatory (SDO) on the night of Feb. 5, 2013. This active region on the sun sent out two coronal ...

  4. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  5. SDO Sees Active Region Outbursts

    NASA Video Gallery

    This close up video by NASA’s Solar Dynamics Observatory shows an active region near the right-hand edge of the sun’s disk, which erupted with at least a dozen minor events over a 30-hour period fr...

  6. Adiposity and human regional body temperature123

    PubMed Central

    Savastano, David M; Gorbach, Alexander M; Eden, Henry S; Brady, Sheila M; Reynolds, James C

    2009-01-01

    Background: Human obesity is associated with increased heat production; however, subcutaneous adipose tissue provides an insulating layer that impedes heat loss. To maintain normothermia, therefore, obese individuals must increase their heat dissipation. Objective: The objective was to test the hypothesis that temperature in a heat-dissipating region of the hand is elevated in obese adults. Design: Obese [body mass index (in kg/m2) ≥ 30] and normal-weight (NW; body mass index = 18–25) adults were studied under thermoneutral conditions at rest. Core body temperature was measured by using ingested telemetric capsules. The temperatures of the third fingernail bed of the right hand and of abdominal skin from an area 1.5 cm inferior to the umbilicus were determined by using infrared thermography. Abdominal skin temperatures were also measured via adhesive thermistors that were placed over a prominent skin-surface blood vessel and over an adjacent nonvessel location. The groups were compared by analysis of covariance with age, sex, race, and room temperature as covariates. Results: Core temperature did not differ significantly between the 23 obese and 13 NW participants (P = 0.74). However, infrared thermography–measured fingernail-bed temperature was significantly higher in obese subjects than in NW subjects (33.9 ± 0.7°C compared with 28.6 ± 0.9°C; P < 0.001). Conversely, infrared thermography–measured abdominal skin temperature was significantly lower in obese subjects than in NW subjects (31.8 ± 0.2°C compared with 32.8 ± 0.3°C; P = 0.02). Nonvessel abdominal skin temperatures measured by thermistors were also lower in obese subjects (P = 0.04). Conclusions: Greater subcutaneous abdominal adipose tissue in obese adults may provide a significant insulating layer that blunts abdominal heat transfer. Augmented heat release from the hands may offset heat retention in areas of the body with greater adiposity, thereby helping to maintain normothermia in

  7. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  8. Global oscillations and active regions

    NASA Astrophysics Data System (ADS)

    Durrant, C. J.

    The author presents further estimates of the amplitude of the modulation of the solar global velocity signal caused by the passage of active regions across the solar disc. Using measurements of the profile of the K I λ769.9 nm line in the quiet sun and in plages he finds a global velocity variation of ≡2 m s-1 during the transit of a typical active region of area 3300 millionths of the hemisphere. However, during the period in which a velocity amplitude of 6 m s-1 was reported by Claverie et al. (1982), the sunspot areas were exceptionally large and the author confirms Schröter's (1984) result that the combination of spot and plage contributions is sufficient to account for the observed signal. The velocity modulation is thus attributable to surface inhomogeneities, not to the structure of the solar core.

  9. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  10. Brazil's sugarcane boom could affect regional temperatures

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-04-01

    With the world seeking to cut its dependence on fossil fuels, the use of bioethanol and other biofuels is on the rise. In Brazil, the second largest producer and consumer of bioethanol, this has led to a boom in sugarcane production. Based on new laws and trade agreements, researchers expect Brazil's production of sugarcane-derived ethanol to increase tenfold over the next decade, with considerable land being converted for growing sugarcane. Much of this expansion is expected to come at a loss of some of the country's cerrado savannas. So while a major aim of the turn to biofuels is to reduce the transfer of carbon to the atmosphere and mitigate global climate change, the shifting agricultural activity could have direct consequences on Brazil's climate by changing the region's physical and biogeochemical properties.

  11. Emerging flux in active regions. [of sun

    NASA Technical Reports Server (NTRS)

    Liggett, M.; Zirin, H.

    1985-01-01

    The rates at which flux emerges in active and quiet solar regions within the sunspot belts are compared. The emerging flux regions (EFRs) were identified by the appearance of arch filament structures in H-alpha. All EFRs in high resolution films of active regions made at Big Bear in 1978 were counted. The comparable rate of flux emergence in quiet regions was obtained from SGD data and independently from EFRs detected outside the active region perimeter on the same films. The rate of flux emergence is 10 times higher in active regions than in quiet regions. A sample of all active regions in 31 days of 1983 gave a ratio of 7.5. Possible mechanisms which might funnel new magnetic flux to regions of strong magnetic field are discussed.

  12. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specified surface of the body. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes: (1) operating the isolator at the same temperature as the constant temperature of the sensor and (2) establishing a fixed boundary temperature which is either less than or equal to or slightly greater than the sensor constant temperature.

  13. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  14. Changes in Soil Temperature Regimes under Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Millar, S. W.

    2013-12-01

    Soil temperatures can provide a smoothed record of regional changes in atmospheric conditions due to soil thermal properties that reduce the annual air and surface temperature amplitude. In areas with seasonal snow cover, however, its insulating effect isolates the soil thermal regime from winter air temperatures. Under changing regional climate patterns, snow cover extent, depth and duration are decreasing. The net effect is thus an expected winter cooling of soil temperature. However, the extent to which this might be mitigated by warmer summer conditions, and changing soil moisture remains to be seen. To examine the relative strength of a cold-season cooling signal versus enhanced summer warming, a network of soil temperature loggers has recorded hourly soil temperatures over the period 2005-2013 within a single watershed experiencing 'lake effect snow'. Elevations range from 168 m to 612 m, on Silurian and Ordovician shale, limestone, and sandstone that have been heavily glaciated. Most of the sites are located on NY Department of Environmental Conservation land in mixed, hardwood and spruce forests. At six sites in varied topographic and land-use setting, two ONSET HOBO Outdoor 4 channel soil temperature loggers are deployed in order to reduce concerns of data reliability and systematic logger drift. Five sites also record air temperature using HOBO Pro Series Temperature loggers at three sites and HOBO Weather Stations at two. Soil temperature data are recorded at hourly intervals at depths of 2-, 5-, 10-, and 25-cm. Several other sites have been operationalized over the 8 year period, but have been tampered with, damaged, stolen, or have failed. These partial records are included to provide greater geographic representation of changing conditions where possible. Data indicate decreasing winter soil temperatures in specific land-use and topographic settings. Only one site, located in a dense spruce plantation, experiences soil freezing within the top 5 cm

  15. Rocket measurements of electron temperature in the E region

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. K., Jr.; Smith, L. G.

    1980-01-01

    The rocket borne equipment, experimental method, and data reduction techniques used in the measurement of electron temperature in the E region are fully described. Electron temperature profiles from one daytime equatorial flight and two nighttime midlatitude flights are discussed. The last of these three flights, Nike Apache 14.533, showed elevated E region temperatures which are interpreted as the heating effect of a stable auroral red arc.

  16. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  17. The Twist Limit for Bipolar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  18. Electron temperatures in the F region of the ionosphere - Theory and observations

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Nagy, A. F.

    1978-01-01

    The theory and observations relating to electron temperatures in the F region of the ionosphere are reviewed. The review is divided into three basic parts. In the first part the theory concerning electron heating, cooling, and energy transport processes is reviewed, and all the relevant expressions are updated. In the second part the behavior of F region electron temperatures, as measured by satellites, rockets, and incoherent scatter radars, is discussed. This portion covers electron temperature variations with altitude, latitude, local time, season, geomagnetic activity, and solar cycle. The third part is primarily devoted to a discussion of the various attempts to compare measured and calculated F region electron temperatures.

  19. The transcriptional activator CorR is involved in biosynthesis of the phytotoxin coronatine and binds to the cmaABT promoter region in a temperature-dependent manner.

    PubMed

    Wang, L; Bender, C L; Ullrich, M S

    1999-09-01

    A modified two-component regulatory system consisting of the histidine protein kinase CorS and two highly homologous response regulators, CorR and CorP, controls biosynthesis of the polyketide phytotoxin coronatine (COR) by Pseudomonas syringae pv. glycinea PG4180 in a temperature-dependent manner. COR synthesis is maximal at 18 degrees C but does not occur at 28 degrees C. Fusions of CorR and CorP to the maltose-binding protein (MBP) were overproduced in Escherichia coli and P. syringae PG4180, and tested for functionality by complementation of corR and corP mutants of PG4180, respectively. The cmaABT promoter region was defined by deletion mapping, and the DNA-binding capability of CorR and CorP was examined by gel retardation assays. When overproduced in P. syringae at 18 degrees C and purified, MBP-CorR was shown to bind specifically to a 218-bp DNA fragment corresponding to positions -841 to -623 bp upstream of the transcriptional start site of the cmaABT operon. In contrast, MBP-CorP and MBP itself, when overproduced in P. syringae and E. coli at 18 degrees C and 28 degrees C, respectively, did not bind to the 218-bp fragment or to any other DNA fragment analyzed. The CorP protein lacks typical DNA-binding motifs, suggesting that it might modulate the function of CorR. However, addition of purified MBP-CorP did not alter the DNA-binding activity of MBP-CorR. On the other hand, this activity was completely abolished when MBPCorR was overproduced at 28 degrees C or in a corS mutant, indicating that the binding of CorR depended on the growth temperature at which it was produced and was controlled by CorS. In addition, overproduction of MBP-CorR in a corP mutant of PG4180 also yielded inactive protein, underlining the importance of CorP for CorR activation. We propose that CorR is activated by CorS at low temperature and that CorP is required for this activation before CorR can bind to DNA. PMID:10517320

  20. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    SciTech Connect

    Schmelz, J. T.; Pathak, S.

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescales less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.

  1. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  2. Active Region Emergence and Remote Flares

    NASA Astrophysics Data System (ADS)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  3. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  4. The composition of a coronal active region

    NASA Technical Reports Server (NTRS)

    Waljeski, K.; Moses, D.; Dere, K. P.; Saba, J. L. R.; Strong, K. T.; Webb, D. F.; Zarro, D. M.

    1994-01-01

    The relative abundances of iron, oxygen, magnesium, and neon in a coronal active region are determined from measurements of soft X-ray line and broadband intensities. The emission measure, temperature, and column density are derived from these measured intensities and are used to place a constraint on the abundances of the heavier elements relative to hydrogen in the corona. The intensity measurements were made on 1987 December 11, when an active region was observed jointly by the American Science and Engineering (AS&E) High Resolution Soft X-Ray Imaging Sounding-Rocket Payload and the X-Ray Polychromator Flat Crystal Spectrometer (FCS) onboard the Solar Maximum Mission spacecraft. The coordinated observations include images through two broadband filters (8 to 29 A and 8 to 39, 44 to 60 A) and profiles of six emission lines: Fe XVII (15.01 A), FE VIII (15.26 A), O VIII (18.97 A), Mg XI (9.17 A), Ne IX (13.44 A), and Fe XVIII (14.21 A). The effects of resonance scattering are considered in the interpretation of the FCS line intensities. We calculated the expected intensity ratio of the two Fe XVII lines as a function of optical depth and compared this ratio with the observed intensity ratio to obtain the optical depths of each of the lines and the column density. The line intensities and the broadband filtered images are consistent with the emission from a thermal plasma where Fe, O, Mg, and Ne have the 'adopted coronal' abundances of Meyer (1985b) relative to one another, but are not consistent with the emission from a plasma having photospheric abundances: The ratios of the abundances of the low first ionization potential (FIP) elements (Fe and Mg) to the abundances of the high-FIP elements (Ne and O) are higher than the ratios seen in the photosphere by a factor of about 3.5. This conclusion is independent of the assumption of either an isothermal or a multithermal plasma. The column densities derived from the Fe XVII line ratio and the geometry of the active

  5. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  6. The flare productivity of active regions

    NASA Astrophysics Data System (ADS)

    Kuroda, N.; Christe, S.

    2012-12-01

    Previous studies have shown that the flare frequency distribution is consistent with a power-law. Furthermore, studies have shown that regions of higher magnetic complexity produce more large flares. This may imply that the flare frequency distribution is harder for magnetically complex active regions. However, the relationship between source active regions' magnetic complexity and the flare size distribution has not been extensively studied. We present a new study of 25,000 microflares detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) from March 2002 to February 2007. For each flare, we have obtained the two classifications of magnetic complexity, the Mount Wilson Magnetic Classification and the Zurich/McIntosh Sunspot Classification, from the Solar Region Summary prepared by the National Oceanic and Atmospheric Administration (NOAA)/ Space Weather Prediction Center (SWPC), and compared them with the RHESSI flare size distribution as observed in the 12 to 25 keV energy range. We investigate the relationship between the slope of the microflare size distribution and the magnetic properties of source active regions. For each flare we obtain the relevant MDI magnetogram to determine properties such as the area of the source active region and total unsigned magnetic flux. These properties are then compared to properties of the associated microflares such as peak flux and microflare size distribution. We find that, for both the Mount Wilson Magnetic Classification and the Zurich/McIntosh Sunspot Classification, the slopes of the microflare size distribution tend to get harder as a function of magnetic complexity. For example, in Mount Wilson Magnetic Classification the slope for α regions was 1.66 and the slope for βγδ region was 1.51.This suggests that βγδ regions are 50 % more likely to produce X class flares than α regions.

  7. Chromospheric Acoustic Oscillations in Active Flaring Regions

    NASA Astrophysics Data System (ADS)

    Monsue, T.; Hill, F.; Stassun, K.

    2014-12-01

    Chromospheric p-mode oscillations are studied in Hα to obtain helioseismic information regarding the local structural conditions around highly magnetic regions such as sunspots. Solar flares commonly occur in active regions where these sunspots exist therefore boosting the p-mode power. In our current study of analyzing p-modes in the chromosphere we study the time evolution of acoustic p-mode oscillation data taken from the Global Oscillation Network Group (GONG) Hα, and investigate the p-modes across the frequency band (1 < ν < 8.33 mHz). This study entails three active regions directly over sunspots, with accompanying flaring activity from two solar flares, occurring on June 13th and July 12th, 2012. Our analysis utilizes time series data to create Fourier power spectra of individual pixels spatially resolved around the flare region, to study the frequency bands. We then study how the frequency distribution evolves temporally by constructing a Power Map Movie (PMM) of the regions. From these PMMs we can take a survey of the chromospheric oscillations for each frequency band. We found that the intensity of the flare has an effect on the behavior of the p-modes within different frequency bands. The suppression of power was observed in dark anomalous structures within the PMMs and in other regions there was an observed boost in power due to flaring activity.

  8. Sensitivity of regional climate to global temperature and forcing

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudia; O'Neill, Brian; Lamarque, Jean-François

    2015-07-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250-1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m-2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway.

  9. Growth and Decay of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Dobias, J. J.; Chapman, G. A.; Cookson, A. M.; Preminger, D. G.; Walton, S. R.

    2002-05-01

    We report here on a study of growth and decay rates of sunspot and facular areas of solar active regions. The data used in this project come from an ongoing program of daily photometric observations of the sun with the Cartesian Full Disk Telescope No. 1 (CFDT1) at the San Fernando Observatory (SFO). Sunspot regions are determined from images taken with a red filter centered at 672.3 nm with a bandpass of 9.7 nm, while images taken with a Ca II K line filter, centered at 393.4 nm and with a bandpass of only 1nm, are used to find facular areas. Before any areas can be found on any observed images, they have to be calibrated then flattened by removing limb darkening thus producing contrast images. Sunspot areas are then determined from any pixel with contrast of -8.5% or less, while any pixel on a K line contrast image with a contrast of +4.8%/μ or higher, where μ is the cosine of the heliocentric angle, is considered to be a facular pixel. To identify the areas as clearly as possible, studied active regions were usually observed on the sun with relatively low activity; that means that each region is either alone on the sun's disk or with only very few other active regions present. Furthermore, to obtain growth and decay patterns of the areas as reliably as possible, only such active regions must be chosen for which there is as complete observational coverage as possible. At the present time studies have been finished for only a few active regions, but analysis of several others is on going. Obtained results will be presented at the meeting. This work is supported by NSF grant ATM-9912132 and NASA grants NAG5-7191 and NAG5-7778.

  10. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  11. Local versus regional coherence in meteorological variables and lake temperatures

    SciTech Connect

    Benson, B.J.; Kratz, T.K.; Dillon, P. |

    1995-06-01

    Lakes are affected by many driving variables, some acting locally, some regionally. Meteorological variables and lake temperature profiles from long-term data sets collected at four research sites across the Great Lakes Region (the North Temperate Lakes LTER sites in northern and southern Wisconsin, and the Experimental Lakes Area and Dorset Research Area in Canada) were analyzed to test whether inter-annual variation in meteorological variables (air temperature and solar radiation), lake temperature, and mixed layer depth was temporally coherent, i.e. exhibited synchronous variation. Coherence is an important property to evaluate because it influences how broadly we can extrapolate results from a lake or set of lakes and it clarifies what aspects of climate are linked to lake dynamics. Results to date show strong coherence, as measured by high correlation values, of air temperature among the four areas. Summer surface temperature was strongly coherent for lakes within a research site and moderately coherent among some of the sites whereas hypolimnion temperature was not as coherent. Thus lake thermal variables range from being tightly linked to climate to relatively disconnected from regional climatic variation.

  12. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  13. Fluxon Modeling of Active Region Evolution

    NASA Astrophysics Data System (ADS)

    Deforest, C. E.; Kankelborg, C. C.; Davey, A. R.; Rachmeler, L.

    2006-12-01

    We present current results and status on fluxon modeling of free energy buildup and release in active regions. Our publicly available code, FLUX, has the unique ability to track magnetic energy buildup with a truly constrained topology in evolving, nonlinear force-free conditions. Recent work includes validation of the model against Low &Lou force-free field solutions, initial evolution studies of idealized active regions, and inclusion of locally parameterized reconnection into the model. FLUX is uniquely able to simulate complete active regions in 3-D on a single workstation; we estimate that a parallelized fluxon model, together with computer vision code to ingest solar data, could run faster than real time on a cluster of \\textasciitilde 30 CPUs and hence provide a true predictive space weather model in the style of predictive simulations of terrestrial weather.

  14. Quantifying the Complexity of Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Stark, B.; Hagyard, M. J.

    1997-05-01

    While solar physicists have a better understanding of the importance magnetic fields play in the solar heating mechanism, it is still not possible to predict whether or when an active region will flare. In recent decades, qualitative studies of the changes in active region morphology have shown that there is generally an increase in the complexity of the spatial configuration of a solar active region leading up to a flare event. In this study, we quantify the spatial structure of the region using the Differential Box-Counting Method (DBC)of fractal analysis. We analyze data from NASA/Marshall Space Flight Center's vector magnetograph from two flaring active regions: AR 6089 from June 10, 1990, which produced one M1.7 flare, and AR 6659 from June 8, 9 and 10, 1991, this data set including one C5.7 and two M(6.4 and 3.2) flares. (AR 6659 produced several other flares). Several magnetic parameters are studied, including the transverse and longitudinal magnetic field components (Bt and Bl), the total field (Bmag), and the magnetic shear, which describes the non-potentiality of the field. Results are presented for the time series of magnetograms in relation to the timing of flare events.

  15. Quantifying the Complexity of Flaring Active Regions

    NASA Technical Reports Server (NTRS)

    Stark, B.; Hagyard, M. J.

    1997-01-01

    While solar physicists have a better understanding of the importance magnetic fields play in the solar heating mechanism, it is still not possible to predict whether or when an active region will flare. In recent decades, qualitative studies of the changes in active region morphology have shown that there is generally an increase in the complexity of the spatial configuration of a solar active region leading up to a flare event. In this study, we quantify the spatial structure of the region using the differential Box-Counting Method (DBC) of fractal analysis. We analyze data from NASA/Marshall Space Flight Centr's vector magnetograph from two flaring active regions: AR 6089 from June 10, 1990, which produced one M1.7 flare, and AR 6659 from June 8, 9 and 10, 1991, this data set including one C5.7 and two M(6.4 and 3.2) flare. (AR 6659 produced several other flares). Several magnetic parameters are studied, including the transverse and longitudinal magnetic field components (Bt and B1), the total field (Bmag), and the magnetic shear, which describes the non-potentiality of the field. Results are presented for the time series of magnetograms in relation to the timing of flare events.

  16. ON THE FORMATION OF ACTIVE REGIONS

    SciTech Connect

    Stein, Robert F.; Nordlund, Ake E-mail: aake@nbi.dk

    2012-07-01

    Magnetoconvection can produce an active region without an initial coherent flux tube. A simulation was performed where a uniform, untwisted, horizontal magnetic field of 1 kG strength was advected into the bottom of a computational domain 48 Mm wide by 20 Mm deep. The up and down convective motions produce a hierarchy of magnetic loops with a wide range of scales, with smaller loops riding 'piggy-back' in a serpentine fashion on larger loops. When a large loop approaches the surface, it produces a small active region with a compact leading spot and more diffuse following spots.

  17. On the Formation of Active Regions

    NASA Astrophysics Data System (ADS)

    Stein, Robert F.; Nordlund, Åke

    2012-07-01

    Magnetoconvection can produce an active region without an initial coherent flux tube. A simulation was performed where a uniform, untwisted, horizontal magnetic field of 1 kG strength was advected into the bottom of a computational domain 48 Mm wide by 20 Mm deep. The up and down convective motions produce a hierarchy of magnetic loops with a wide range of scales, with smaller loops riding "piggy-back" in a serpentine fashion on larger loops. When a large loop approaches the surface, it produces a small active region with a compact leading spot and more diffuse following spots.

  18. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  19. Asia Section. Regional Activities Division. Paper.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Two papers on library and information activities in developing nations, particularly in India and other Asian countries, were presented at the 1983 International Federation of Library Associations (IFLA) conference. In "IFLA in Asia: A Review of the Work of the Regional Section for Asia," Edward Lim Huck Tee (Malaysia) describes the low level of…

  20. TEMPERATURE STRUCTURE AND METALLICITY IN H II REGIONS

    SciTech Connect

    Rodriguez, Monica; GarcIa-Rojas, Jorge E-mail: jogarcia@iac.e

    2010-01-10

    The metallicities implied by collisionally excited lines (CELs) of heavy elements in H II regions are systematically lower than those implied by recombination lines (RLs) by factors of approx2, introducing uncertainties of the same order in the metallicities inferred for the interstellar medium of any star-forming galaxy. Most explanations of this discrepancy are based on the different sensitivities of CELs and RLs to electron temperature, and invoke either some extra heating mechanism producing temperature fluctuations in the ionized region or the addition of cold gas in metal-rich inclusions or ionized by cosmic rays or X-rays. These explanations will change the temperature structure of the ionized gas from the one predicted by simple photoionization models, and depending on which one is correct, will imply different metallicities for the emitting gas. We select nine H II regions with observed spectra of high quality and show that simple models with metallicities close to the ones implied by oxygen CELs reproduce easily their temperature structure, measured with T{sub e}([N II])/T{sub e}([O III]), and their oxygen CELs emission. We discuss the strong constraints that this agreement places on the possible explanations of the discrepancy and suggest that the simplest explanation, namely errors in the line recombination coefficients by factors approx2, might be the correct one. In such case, CELs will provide the best estimates of metallicity.

  1. NO and temperature control of the D region

    NASA Astrophysics Data System (ADS)

    Danilov, A. D.; Taubenheim, J.

    1983-04-01

    It is postulated that the behavior of the D region parameters, first and foremost the electron concentration, is controlled not only (and probably not primarily) by the variations in solar and geophysical parameters but also by the changes in the characteristics of the strato-mesosphere, its thermal and dynamical regime. This is seen as the essence of the meteorological control of the D region. The way that this meteorological control is exercised, that is, the influence of the meteorological parameter on the D region characteristics, is investigated. The goal is to determine the indices which, together with the well known solar and geophysical indices, could be used to adequately describe the behavior of the D region. Calculations are performed showing that the experimentally observed seasonal variations in the ion composition, which lead to the systematic summer-to-winter difference in the electron concentration, can be accounted for by the seasonal changes in the mesospheric temperature.

  2. North American regional climate reconstruction from underground temperatures.

    NASA Astrophysics Data System (ADS)

    Jaume-Santero, Fernando; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-04-01

    Within the framework of the PAGES NorthAmerica2k project, 514 North American temperature-depth profiles were analyzed to infer recent climate changes. The ground surface temperature (GST) histories for the last 500 years were reconstructed from the subsurface temperature anomalies using a singular value decomposition (SVD) inversion that retains four principal components and takes into account time logging differences. Steady-state surface temperature and thermal gradient were estimated by linear regression for the lower 100 meters of the temperature profile, and climate induced subsurface temperature anomalies were estimated as departures from the steady-state conditions. Additionally, a Monte-Carlo method was used to find the range of solutions within a maximum subsurface anomaly error determined by the minimum distance between the model and the data. A regional analysis was performed for the last 5 centuries yielding mean temperature change every 50 years. The GST history results, presented as the mean and 95% confidence interval, show a warming by 1.0°C to 2.5°C during the post industrial era.

  3. EVIDENCE OF IMPULSIVE HEATING IN ACTIVE REGION CORE LOOPS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2010-11-01

    Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained emission measure EM(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely, static equilibrium, strong condensation, and strong evaporation from Klimchuk et al. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log T[K] = 5.15-6.3. Using photospheric abundances, we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the strong condensation case (EM{sub con}), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3-5 MK) seen in the core of active regions are heated by nanoflares.

  4. Semidiurnal temperature oscillation and E-region absorption over Haringhata

    NASA Technical Reports Server (NTRS)

    Purkait, N. N.

    1985-01-01

    An attempt has been made to explain the observed asymmetry in the diurnal curves on absorption for the E region at 2.2 MHz for the field station at Haringhata (22 deg 56'N, 88 deg 36'E). A comparison between the computed and observed diurnal curves on absorption revealed that a part of the asymmetry was a manifestation of the effect of semidiurnal temperature oscillation present in the E layer. It was further noted that the degree of the asymmetry of the observed diurnal curves depends profoundly on the rate of downwards phase progression of the temperature oscillation.

  5. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  6. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  7. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  8. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  9. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  10. Supergranule Diffusion and Active Region Decay

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2004-01-01

    Models of the Sun's magnetic dynamo include turbulent diffusion to parameterize the effects of convective motions on the evolution of the Sun's magnetic field. Supergranules are known to dominate the evolution of the surface magnetic field structure as evidenced by the structure of both the active and quiet magnetic network. However, estimates for the dif hivity attributed to su perymules differ by an order of magnitude from about 100 km sup2/s to more than 1000 km sup2/s. We examine this question of the e i v i t y using three merent approaches. 1) We study the decay of more than 30,000 active regions by determining the rate of change in the sunspot area of each active region from day-to-day. 2) We study the decay of a single isolated active region near the time of solar minimum by examining the magnetic field evolution over five solar rotations fiom SOHOMDI magnetograms obtained at 96-minute intervals. 3) We study the characteristics of supergranules that influence the estimates of their diffusive properties - flow speeds and lifetimes as functions of size - fiom SOHO/MDI Dopplergrams.

  11. Temperature, Pulse, and Respiration. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  12. Active Layer Thermal Response to Stream Water Temperatures

    NASA Astrophysics Data System (ADS)

    Cozzetto, K.; McKnight, D.

    2004-12-01

    The hyporheic zone is comprised of sediments below and adjacent to a stream through which stream water flows in and out. In polar regions, the shape, dimensions, physical and chemical characteristics of this zone are affected by the seasonal freezing and thawing of the active layer. One factor that may influence the active layer temperature regime is stream water temperature, both its absolute value and cyclic variations in its value. Many of the glacial meltwater streams in Taylor Valley in the McMurdo Dry Valleys of Antarctica, exhibit daily temperature patterns with lows of 0 or 1° C and highs of 10 or, on occasion, 15° C. Because the viscosity of water decreases significantly with increasing temperature, these daily maxima may increase infiltration and the exchange of water and heat between the stream and the hyporheic zone. To investigate the influence of stream water temperature and flow paths on the active layer temperature regime and vice versa, two conservative tracer injection experiments were conducted. Both took place in the same 200-meter reach, which was instrumented with temperature and conductivity probes. Both also took place at the same time of day during which the stream reaches its temperature maximum. However, in one experiment snow from a nearby patch was added to the stream to suppress the temperature maximum by 3° C from 10 to 7° C. The temperature data show that the snow addition slowed the rate of hyporheic zone warming and suppressed temperature increases in the hyporheic zone by 1-3° C when compared with the non-perturbation experiment. The electrical conductivity data indicate that during the snow addition experiment, the stream neither gained nor lost water while during the non-perturbation experiment, the stream lost water. These results suggest that the stream water cooling decreased infiltration and heat transfer into the hyporheic zone.

  13. Proper Motion Of Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Tian, Lirong

    2009-05-01

    Observational and modeling results indicate that typically the leading magnetic field of bipolar active regions is often spatially more compact, while more dispersed and fragmented in following polarity. Tian & Alexander (2009, ApJ, 695) studied 15 emerging active regions and find that magnetic helicity flux injected into the corona by the leading polarity is generally several times larger than that injected by the following polarity. They argue that the asymmetry of the magnetic helicity should be responsible for the asymmetry of the magnetic morphology. This argument is supported by two resent model results that magnetic flux tubes with higher degree of twist (and therefor greater magnetic tension) have higher rates of emergence (Murray & Hood 2008, A&A, 479; Cheung et al. 2008, ApJ, 687). These results are consistent because the proper motion (related to the emergence) of the leading polarity was found to be faster than that of the following polarity (van Driel-Gesztelyi & Petrovay 1990, Solar Phys., 126). In this paper, we will reinvestigate the proper motion of leading and following polarities of the emerging active regions, and study possible relationship between the proper motion and magnetic helicity.

  14. Models of Impulsively Heated Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Klimchuk, J.

    2009-05-01

    A number of attempts to model solar active regions with steady coronal heating have been modestly successful at reproducing the observed soft X-ray emission, but they fail dramatically at explaining EUV observations. Since impulsive heating (nanoflare) models can reproduce individual EUV loops, it seems reasonable to consider that entire active regions are impulsively heated. However, nanoflares are characterized by many parameters, such as magnitude, duration, and time delay between successive events, and these parameters may depend on the strength of the magnetic field or the length of field lines, for example, so a wide range of active region models must be examined. We have recently begun such a study. Each model begins with a magnetic "skeleton” obtained by extrapolating an observed photospheric magnetogram into the corona. Field lines are populated with plasma using our highly efficient hydro code called Enthalpy Based Thermal Evolution of Loops (EBTEL). We then produce synthetic images corresponding to emission line or broad-band observations. By determining which set of nanoflare parameters best reproduces actual observations, we hope to constrain the properties of the heating and ultimately to reveal the physical mechanism. We here report on the initial progress of our study.

  15. Temperature, activity, and lizard life histories

    SciTech Connect

    Adolph, S.C.; Porter, W.P. )

    1993-08-01

    Lizard life-history characteristics vary widely among species and populations. Most authors seek adaptive or phylogenetic explanations for life-history patterns, which are usually presumed to reflect genetic differences. However, lizard life histories are often phenotypically plastic, varying in response to temperature, food availability, and other environmental factors. Despite the importance of temperature to lizard ecology and physiology, its effects on life histories have received relatively little attention. The authors present a theoretical model predicting the proximate consequences of the thermal environment for lizard life histories. Temperature, by affecting activity times, can cause variation in annual survival rate and fecundity, leading to a negative correlation between survival rate and fecundity among populations in different thermal environments. Thus, physiological and evolutionary models predict the same qualitative pattern of life-history variation in lizards. They tested their model with published life-history data from field studies of the lizard Sceloporus undulatus, using climate and geographical data to reconstruct estimated annual activity seasons. Among populations, annual activity times were negatively correlated with annual survival rate and positively correlated with annual fecundity. Proximate effects of temperature may confound comparative analyses of lizard life-history variation and should be included in future evolutionary models. 125 refs., 6 figs., 1 tab.

  16. Heating of active region cores: Impulsive or steady?

    NASA Astrophysics Data System (ADS)

    Tripathi, Durgesh

    The question of active region heating has proven to be highly challenging since its discovery in 1940s. The recent observational facilities have shed new lights towards the understanding of this problem. In this paper we review some of the new measurements to study the heating mechanisms in the hot core loops of active regions using the observations recorded by Solar Ultraviolet Measurements of Emitted Radiation (SUMER) onboard SoHO and the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard Hinode. These new measurements show that the properties of hot core loops are consistent with by impulsive heating -- low frequency nanoflare - scenario. However, the evidences are not strong enough to rule-out steady heating completely. Further measurement using better spectral resolution and temperature coverage is required, which will be provided by Interface Region Imaging Spectrometer (IRIS) and Solar-C in near future.

  17. Climatology of upper air temperature in the Eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Philandras, C. M.; Nastos, P. T.; Kapsomenakis, I. N.; Repapis, C. C.

    2015-01-01

    The goal of this study is to contribute to the climatology of upper air temperature in the Mediterranean region, during the period 1965-2011. For this purpose, both radiosonde recordings and gridded reanalysis datasets of upper air temperature from National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) were used for seven barometric levels at 850 hPa, 700 hPa, 500 hPa, 300 hPa, 200 hPa, 150 hPa and 100 hPa. Trends and variability of upper air temperature were analyzed on annual and seasonal basis. Further, the impact of atmospheric circulation, by means of correlation between upper air temperature at different barometric levels and specific climatic indices such as Mediterranean Oscillation Index (MOI), North Sea Caspian Pattern Index (NCPI) and North Atlantic Oscillation Index (NAOI), was also quantified. Our findings have given evidence that air temperature is increasing at a higher rate in lower/middle troposphere against upper, and this is very likely due to increasing greenhouse gas concentrations.

  18. Mesopause region wind, temperature and airglow irradiance above Eureka, Nunavut

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Samuel; Ward, William E.; Vail, Christopher; Shepherd, Marianna

    2016-07-01

    The PEARL All Sky Imager (PASI, airglow images), the Spectral Airglow Temperature Imager (SATI, airglow irradiance and temperature) and the E-Region Wind Interferometer II (ERWIN2, wind, airglow irradiance and temperature) are co-located at the Polar Environment Atmospheric Research Laboratory (PEARL)in Eureka, Nunavut (80 N, 86 W). These instruments view the wind, temperature and airglow irradiance of hydroxyl (all three) O2 (ERWIN2 and SATI), sodium (PASI), and oxygen green line (PASI and ERWIN2). The viewing locations and specific emissions of the various instruments differ. Nevertheless, the co-location of these instruments provides an excellent opportunity for case studies of specific events and for intercomparison between the different techniques. In this paper we discuss the approach we are using to combine observations from the different instruments. Case studies show that at times the various instruments are in good agreement but at other times they differ. Of particular interest are situations where gravity wave signatures are evident for an extended period of time and one such situation is presented. The discussion includes consideration of the filtering effect of viewing through airglow layers and the extent to which wind, airglow and temperature variations can be associated with the same gravity wave.

  19. The Effect of Natural Multidecadal Ocean Temperature Oscillations on Contiguous U.S. Regional Temperatures

    PubMed Central

    Kurtz, Bruce E.

    2015-01-01

    Atmospheric temperature time series for the nine climate regions of the contiguous U.S. are accurately reproduced by the superposition of oscillatory modes, representing the Atlantic multidecadal oscillation (AMO) and the Pacific decadal oscillation (PDO), on a monotonic mode representing, at least in part, the effect of radiant forcing due to increasing atmospheric CO2. The relative importance of the different modes varies among the nine climate regions, grouping them into three mega-regions: Southeastern comprising the South, Southeast and Ohio Valley; Central comprising the Southwest, Upper Midwest, and Northeast; and Northwestern comprising the West, Northwest, and Northern Rockies & Plains. The defining characteristics of the mega-regions are: Southeastern – dominated by the AMO, no PDO influence; Central – influenced by the AMO, no PDO influence, Northwestern – influenced by both the AMO and PDO. Temperature vs. time curves calculated by combining the separate monotonic and oscillatory modes agree well with the measured temperature time series, indicating that the 1938-1974 small decrease in contiguous U.S. temperature was caused by the superposition of the downward-trending oscillatory mode on the upward-trending monotonic mode while the 1980-2000 large increase in temperature was caused by the superposition of the upward-trending oscillatory mode on the upward-trending monotonic mode. The oscillatory mode, mostly representing the AMO, was responsible for about 72% of the entire contiguous U.S. temperature increase over that time span with the contribution varying from 86 to 42% for individual climate regions. PMID:26098932

  20. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  1. Land surface temperature shaped by urban fractions in megacity region

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxuan; Hu, Yonghong; Jia, Gensuo; Hou, Meiting; Fan, Yanguo; Sun, Zhongchang; Zhu, Yuxiang

    2015-11-01

    Large areas of cropland and natural vegetation have been replaced by impervious surfaces during the recent rapid urbanization in China, which has resulted in intensified urban heat island effects and modified local or regional warming trends. However, it is unclear how urban expansion contributes to local temperature change. In this study, we investigated the relationship between land surface temperature (LST) change and the increase of urban land signals. The megacity of Tianjin was chosen for the case study because it is representative of the urbanization process in northern China. A combined analysis of LST and urban land information was conducted based on an urban-rural transect derived from Landsat 8 Thermal Infrared Sensor (TIRS), Terra Moderate Resolution Imaging Spectrometer (MODIS), and QuickBird images. The results indicated that the density of urban land signals has intensified within a 1-km2 grid in the urban center with an impervious land fraction >60 %. However, the construction on urban land is quite different with low-/mid-rise buildings outnumbering high-rise buildings in the urban-rural transect. Based on a statistical moving window analysis, positive correlation (R 2 > 0.9) is found between LST and urban land signals. Surface temperature change (ΔLST) increases by 0.062 °C, which was probably caused by the 1 % increase of urbanized land (ΔIF) in this case region.

  2. Temperature (de)activated patchy colloidal particles

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Telo da Gama, Margarida M.

    2016-06-01

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim’s first order perturbation theory, and use Flory–Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation.

  3. Temperature (de)activated patchy colloidal particles.

    PubMed

    de Las Heras, Daniel; da Gama, Margarida M Telo

    2016-06-22

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim's first order perturbation theory, and use Flory-Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation. PMID:27115118

  4. Spot temperatures and area coverages on active dwarf stars

    NASA Technical Reports Server (NTRS)

    Sarr, Steven H.; Neff, James E.

    1990-01-01

    Two active K dwarfs are examined to determine the temperatures of the stars and to estimate the locations and sizes of cool spots on the stellar surfaces. Two wavelength regions with TiO absorption bands at different temperature sensitivities are modeled simultaneously using the method developed by Huenemoerder and Ramsey (1987). The spectrum of BD +26deg730 shows excess absorption in the TiO band, and the absence of the 8860 A band in HD 82558 indicates that its spots are warmer than those of BD +26deg730.

  5. High temperature garnet growth in New England: regional temperature-time trends revealed

    NASA Astrophysics Data System (ADS)

    Sullivan, N.; Ostwald, C.; Chu, X.; Baxter, E. F.; Ague, J. J.; Eckert, J. O.

    2013-12-01

    A series of localized ultrahigh-temperature (UHT)/high-temperature (HT) granulite facies regions have been identified within the regional amphibolite facies metamorphic zone of the Central Maine Terrane stretching from north-central New Hampshire, through central Massachusetts, and into northeastern Connecticut. Here, we aim to constrain the age and peak temperature of metamorphism at three localities within this region: Bristol, NH, Phillipston, MA and Willington, CT. Garnet-forming reactions are linked directly to peak metamorphic temperatures through thermodynamic modeling and/or Zr-in-rutile thermometry. Precise garnet geochronology allows us to identify the timing of these peak temperatures, as well as the duration of garnet growth. Geochronologic and thermodynamic work was done on 12 samples collected throughout a ~5 km2 metamorphic 'hotspot' previously identified in Bristol, NH (Chamberlain and Rumble, 1988; Journal of Petrology). The highest temperature assemblage within this hotspot is characterized by the presence of garnet + sillimanite + K-feldspar + cordierite and reached temperatures >820οC. The lowest temperature periphery of the hotspot is characterized by sillimanite + muscovite + K-feldspar + minor garnet and reached a maximum temperature of 650οC. Bulk garnet ages from samples within the hotspot range significantly from at least 400.0 × 2.5 Ma to 352.7 × 1.8 Ma with the youngest ages associated with the lower temperature samples. This collection of ages indicates a prolonged period (~50 Ma) of >650οC temperatures interspersed by period(s) of garnet growth. Zoned garnet geochronology will help reveal whether garnet growth and related heating was continuous or episodic. Further south, in Phillipston, MA, zoned garnet geochronology performed on a 2.5 cm diameter garnet porphyroblast indicates garnet growth spanning 389 - 363 Ma, reaching peak temperatures at the end of that time span of 920-940οC, followed by a younger event recorded in

  6. Effect of temperature change on anammox activity.

    PubMed

    Lotti, T; Kleerebezem, R; van Loosdrecht, M C M

    2015-01-01

    Autotrophic nitrogen removal appears as a prerequisite for the implementation of energy autarchic municipal wastewater treatment plants. Whilst the application of anammox-related technologies in the side-stream is at present state of the art, the feasibility of this energy-efficient process in main-stream conditions is still under investigation. Lower operating temperatures and ammonium concentrations, together with a demand for high and stable nitrogen removal efficiency, represent the main challenges to overcome for this appealing new frontier of the wastewater treatment field. In this study, we report the short-term effect of temperature on the maximum biomass specific activity of anaerobic ammonium oxidizing (anammox) bacteria as evaluated by means of batch tests. The experiments were performed on anammox biomass sampled from two full-scale reactors and two lab-scale reactors, all characterized by different reactor configurations and operating conditions. The results indicate that for the anammox conversion, the temperature dependency cannot be accurately modeled by one single Arrhenius coefficient (i.e., θ) as typically applied for other biological processes. The temperature effect is increasing at lower temperatures. Adaptation of anammox bacteria after long-term cultivation at 20 and 10°C was observed. Implications for modeling and process design are finally discussed. PMID:25042674

  7. Solar activity and the mean global temperature

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Sloan, T.; Wolfendale, A. W.

    2009-01-01

    The variation with time from 1956 to 2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is {\\lesssim }14% of the observed global warming.

  8. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  9. Observations of an active region filament

    NASA Astrophysics Data System (ADS)

    Zong, W. G.; Tang, Y. H.; Fang, C.; Xu, A. A.

    An active region filament was well observed on September 4, 2002 with THEMIS at the Teide observatory and SOHO/MDI. The full Stokes parameters of the filament were obtained in Hα and FeI 6302 Å lines. Using the data, we have studied the fine structure of the filament and obtained the parameters at the barb endpoints, including intensity, velocity and longitudinal magnetic field. Our results indicate: (a) the Doppler velocities are quiet different at barb endpoints; (b) the longitudinal magnetic fields at the barb endpoints are very weak; (c) there is a strong magnetic field structure under the filament spine.

  10. Instant Stereoscopic Tomography of Active Regions with STEREO/EUVI

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.; Wuelser, J.; Nitta, N.; Lemen, J.; Sandman, A.

    2008-12-01

    We develop a novel 3D reconstruction method of the coronal plasma of an active region by combining stereoscopic triangulation of loops with density and temperature modeling of coronal loops with a filling factor equivalent to tomographic volume rendering. Because this method requires only a stereoscopic image pair in multiple temperature filters, which are sampled within ~1 minute with the recent STEREO/EUVI instrument, this method is about 4 orders of magnitude faster than conventional solar rotation-based tomography. We reconstruct the 3D density and temperature distribution of active region NOAA 10955 by stereoscopic triangulation of 70 loops, which are used as a skeleton for a 3D field interpolation of some 7000 loop components, leading to a 3D model that reproduces the observed fluxes in each stereosocpic image pair with an accuracy of a few percent (of the average flux) in each pixel. With the stereoscopic tomography we infer also a differential emission measure (DEM) distribution over the entire temperature range of T~0.01-10 MK, with predictions for the transition region and hotter corona in soft X-rays. The tomographic 3D model provides also large statistics of physical parameters. We find that the EUV loops with apex temperatures of T = 1- 3 MK tend to be super-hydrostatic, while hotter loops with T = 4-7 MK are near-hydrostatic. The new 3D reconstruction model is fully independent of any magnetic field data and is promising for future tests of theoretical magnetic field models and coronal heating models.

  11. Groundwater temperature transients on the Armutlu peninsula, eastern Marmara region

    NASA Astrophysics Data System (ADS)

    Woith, Heiko; Caka, Deniz; Seyis, Cemil; Italiano, Francesco; Celik, Cengiz; Wang, Rongjiang; Baris, Serif

    2016-04-01

    Since many years MAM and GFZ in co-operation with Kocaeli University (KU) operate fluid monitoring stations around the Sea of Marmara. In the frame of MARsite (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417) these networks were jointly evaluated for the first time. The on-land fluid monitoring networks continuously monitor the following parameters: soil radon (21 sites), temperature and conductivity of thermal springs (9 sites) operated by MAM covering the whole Marmara region; fluid pressure and water level/temperature (8 sites) within ARNET operated by GFZ/KU. ARNET is a combined seismological/hydrogeological monitoring network covering the Armutlu peninsula located SE of Istanbul. Additional to the geothermal wells and springs - our main target to detect transients of potentially seismo-tectonic origin - three shallow groundwater wells (tenth of meters deep) are being operated to identify and quantify seasonal variations, and meteorological influences like rainfall and snowmelt. But it turned out that these shallow aquifer systems showed very stable conditions with very small annual temperature amplitudes (0.2 - 0.3°C). One of these shallow monitoring wells is located just south of Lake Iznik (in the village of Sölöz) very close to the southern branch of the North Anatolian Fault Zone. Water level showed a steady decreasing trend since June 2012. This trend resulted in a data gap starting in January 2014, when the water level dropped below the sensor position. After adjusting the sensor position, positive spikes in the borehole temperature were recorded in June and August 2014, and again in 2015. The spikes are characterised by a sharp temperature increase followed by a decay lasting several days until the pre-event temperature was reached again. Since the spikes occurred on two independent logger systems, and since they lasted several days, a

  12. Pederson Current Dissipation In Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, M. G.

    2011-05-01

    Pederson current dissipation in emerging active regions. Certain regions of the solar atmosphere, such as the photosphere and chromosphere, as well as prominences, contain a significant amount of neutral atoms, and a complete description of the plasma requires including the effects of partial ionization. In the chromosphere the dissipation of Pederson currents is important for the evolution of emerging magnetic fields. Due to the relatively high number density in the chromosphere, the ion-neutral collision time-scale is much smaller than timescales associated with flux emergence. Hence we use a single-fluid approach to model the partially ionized plasma. Looking at both the emergence of large-scale sub-surface structures, and the emergence and reconnection of undulatory fields, we investigate the effect of Pederson current dissipation on the state of the emerging field, on magnetic reconnection and on dissipative heating of the atmosphere. Specifically we examine the effect of motions across fieldlines in the partially ionized regions, and how this can increase the free energy supplied to the corona by flux emergence. We also look at reconnection associated with flux emergence in the partially ionized atmosphere, and how this can account for observed small-scale brightenings (Ellerman Bombs).

  13. Localizing Region-Based Active Contours

    PubMed Central

    Lankton, Shawn; Tannenbaum, Allen

    2009-01-01

    In this paper, we propose a natural framework that allows any region-based segmentation energy to be re-formulated in a local way. We consider local rather than global image statistics and evolve a contour based on local information. Localized contours are capable of segmenting objects with heterogeneous feature profiles that would be difficult to capture correctly using a standard global method. The presented technique is versatile enough to be used with any global region-based active contour energy and instill in it the benefits of localization. We describe this framework and demonstrate the localization of three well-known energies in order to illustrate how our framework can be applied to any energy. We then compare each localized energy to its global counterpart to show the improvements that can be achieved. Next, an in-depth study of the behaviors of these energies in response to the degree of localization is given. Finally, we show results on challenging images to illustrate the robust and accurate segmentations that are possible with this new class of active contour models. PMID:18854247

  14. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  15. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Yu, D.; Wilby, R. L.

    2013-12-01

    Development agencies often face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in data sparse regions with few meteorological stations, complex topography and extreme weather events. At the same time, these regions are also often highly vulnerable to climate risks. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the Highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet-days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of growing season rainfall totals. We conclude that local terrain and remotely sensed variables can be used to infer annual mean temperature and precipitation across the most populous, south-west area of Yemen. Important features of the daily and seasonal weather can also be simulated at the site scale, but more rigorous validation is ultimately constrained by lack of data. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  16. Stagnation region gas film cooling: Effects of dimensionless coolant temperature

    NASA Technical Reports Server (NTRS)

    Bonnice, M. A.; Lecuyer, M. R.

    1983-01-01

    An experimental investigation was conducted to mode the film cooling performance for a turbine vane leading edge using the stagnation region of a cylinder in cross flow. Experiments were conducted with a single row of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio and dimensionless coolant temperature with free stream-to-wall temperature ratio approximately 1.7 and Re sub D = 90000. the cylindrical test surface was instrumented with miniature heat flux gages and wall thermocouples to determine the percentage reduction in the Stanton number as a function of the distance downstream from injection (x/d sub 0) and the location between adjacent holes (z/S). Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, from stagnation using a hole spacing ratio of S/d = 5. The film coolant was injected with T sub c T sub w with a dimensionless coolant temperature in the range 1.18 or equal to theta sub c or equal to 1.56. The data for local Stanton Number Reduction (SNR) showed a significant increase in SNR as theta sub c was increased above 1.0.

  17. Radio magnetography of the solar active regions

    NASA Astrophysics Data System (ADS)

    Gelfreikh, G. B.; Shibasaki, K.

    The observations of the solar magnetic fields is one of the most important basics for study of all important processes in structuring the solar atmosphere and most kinds of the release of the energy. The radio methods are of the special interest here because they gain the information on the magnetic field strength in the solar corona and upper chromosphere where traditional optical methods do not work. The construction of the Nobeyama radio heliograph opens a new era in usage radio methods for solar radio magnetography due to some unique property of the instrument: - The 2D mapping of the whole disk of the sun both in I and V Stokes parameters with resolution of 10 arcsec. - Regular observations (without breaks due to weather conditions), eight hours a day, already for seven years. The most effective and representative radio method of measuring the solar magnetic fields is to use polarization measurements of the thermal bremsstrahlung (free-free emission). It is applicable both to analysis of chromospheric and coronal magnetic fields and presents information on longitude component of the magnetic field strength in solar active regions. Three problems are met, however: (i) One needs to measure very low degree of polarization (small fraction of a percent); (ii) To get the real value of the field the spectral data are necessary. (iii) While observing an active region on the disk we have got the overlapping effects on polarized signal of the chromospheric and coronal magnetic fields. To get higher sensitivity the averaging of the radio maps over periods of about ten minutes were used with the results of sensitivity on V-maps of the order 0.1%. Observations for a number of dates have been analysed (August 22, 1992, October 31, 1992; June 30, 1993, July 22,1994, June 15, 1995 and some more). In all cases a very good similarity was found of the polarized regions (V-maps) with the Ca^ + plages in form and total coincidence with the direction of the magnetic fields on the

  18. High temperature solid oxide fuel development activities

    SciTech Connect

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  19. FIP bias in a sigmoidal active region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, Lidia; Green, L. M.; Steed, K.; Carlyle, J.

    2014-01-01

    We investigate first ionization potential (FIP) bias levels in an anemone active region (AR) - coronal hole (CH) complex using an abundance map derived from Hinode/EIS spectra. The detailed, spatially resolved abundance map has a large field of view covering 359'' × 485''. Plasma with high FIP bias, or coronal abundances, is concentrated at the footpoints of the AR loops whereas the surrounding CH has a low FIP bias, ~1, i.e. photospheric abundances. A channel of low FIP bias is located along the AR's main polarity inversion line containing a filament where ongoing flux cancellation is observed, indicating a bald patch magnetic topology characteristic of a sigmoid/flux rope configuration.

  20. Regional ground surface temperature mapping from meteorological data

    NASA Astrophysics Data System (ADS)

    Signorelli, S.; Kohl, T.

    2004-02-01

    Evaluating ground surface temperature (GST) is common in applied and general geothermal research. Our main focus here is investigating GST for Switzerland because of its well-known impact on low-enthalpy resources, like borehole heat exchanger (BHE) utilization. Using mainly meteorological data, we determined the present-day GST distribution through different approaches. First, we analyzed the actual GST data from the last 20 years measured at the meteorological stations of the Swiss Meteorological Institute (SMI) by investigating recent climatic history and annual variation behavior. Recent climate change seems to have a higher impact on Alpine regions than on the Alpine Foreland. Next, we determined the GST altitude dependence in the range of 200-1800 m a.s.l., using nonlinear fitting approaches and investigated the relationship between GST and surface exposure. Contrary to previous publications, no universal correlation between GST and surface exposure was found, due to local and rapid changing meteorological conditions. Finally, we used a complete data set to consider meteorologically relevant data like soil moisture, wind speed, and vegetation cover and height. The measured GST was well reproduced for the case of low vegetation, except when covered by snow and for days of subzero surface air temperature (SAT). Other locations like urban areas could not be tested. Due to the complexity of physical interaction and the resulting assessment of large data sets, this approach is not suitable for determining regional GST distribution which we need as an input for BHE modeling. A relationship between GST and SAT was defined based on the data from the meteorological stations. By applying nonlinear approaches, we established three different altitude zones that require individual consideration. By further processing, an existing SAT map was converted into the first GST map of Switzerland. To verify this new map within the range of validity (up to altitudes of 1500 m a

  1. Regional synchrony of temperature variation and internal wave forcing along the Florida Keys reef tract

    NASA Astrophysics Data System (ADS)

    Leichter, James J.; Stokes, M. Dale; Vilchis, L. Ignacio; Fiechter, Jerome

    2014-01-01

    Analysis of 10 year temperature records collected along the Florida Keys reef tract (FLKRT) reveals strong, regional-scale synchrony in high-frequency temperature variation suggestive of internal wave forcing at predominately semidiurnal frequencies. In each year and at all sites, the amplitude of semidiurnal temperature variation was greatest from March to September, and markedly lower from October to February. Comparisons of the semidiurnal component of the temperature variation among sites suggest complex patterns in the arrival of internal waves, with highest cross correlation among closely spaced sites and synchrony in periods of enhanced internal wave activity across the length of the FLKRT, particularly in summer. The periods of enhanced semidiurnal temperature variation at the 20 and 30 m isobaths on the reef slopes appear to be associated with the dynamics of the Florida Current and the onshore movement of warm fronts preceding the passage of Florida Current frontal eddies. Regional-scale satellite altimetry observations suggest temporal linkages to sea surface height anomalies in the Loop Current (upstream of the Florida Current) and setup of the Tortugas Gyre. The synchronized forcing of cool water onto the reef slope sites across the FLKRT is likely to affect physiological responses to temperature variation in corals and other ectothermic organisms, as well as larval transport and nutrient dynamics with the potential for regionally coherent pulses of larvae and nutrients arriving on reef slopes across the FLKRT.

  2. Anger Style, Psychopathology, and Regional Brain Activity

    PubMed Central

    Stewart, Jennifer L.; Levin, Rebecca L.; Sass, Sarah M.; Heller, Wendy; Miller, Gregory A.

    2010-01-01

    Depression and anxiety often involve high levels of trait anger and disturbances in anger expression. Reported anger experience and outward anger expression have recently been associated with left-biased asymmetry of frontal cortical activity, assumed to reflect approach motivation. However, different styles of anger expression could presumably involve different brain mechanisms and/or interact with psychopathology to produce various patterns of brain asymmetry. The present study explored these issues by comparing resting regional electroencephalographic activity in participants high in trait anger who differed in anger expression style (high anger-in, high anger-out, both) and participants low in trait anger, with depression and anxiety systematically assessed. Trait anger, not anger-in or anger-out, predicted left-biased asymmetry at medial frontal EEG sites. The anger-in group reported higher levels of anxious apprehension than did the anger-out group. Furthermore, anxious apprehension moderated the relationship between trait anger, anger-in, and asymmetry in favor of the left hemisphere. Results suggest that motivational direction is not always the driving force behind the relationship of anger and left frontal asymmetry. Findings also support a distinction between anxious apprehension and anxious arousal. PMID:18837620

  3. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Yu, D.

    2013-06-01

    Agencies face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in regions with few meteorological stations, complex topography and extreme weather events. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the Highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet-days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of growing season rainfall totals. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  4. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Yu, D.

    2013-10-01

    Humanitarian and development agencies face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in regions with few meteorological stations, complex topography and extreme weather events. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of the growing season's rainfall totals. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  5. Small-Scale High-Temperature Structures in Flare Regions

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Chernov, G. P.; Hanaoka, I.

    2001-04-01

    When analyzing YOHKOH/SXT, HXT (soft and hard X-ray) images of solar flares against the background of plasma with a temperature T ~ 6 MK, we detected localized (with minimum observed sizes of approximately 2000 km) high-temperature structures (HTSs) with T = (20-50) MK with a complex spatial-temporal dynamics. Quasi-stationary, stable HTSs form a chain of hot cores that encircles the flare region and coincides with the magnetic loop. No structures are seen in the emission measure. We reached conclusions about the reduced heat conductivity (a factor of ~10^3 lower than the classical isotropic one) and high thermal insulation of HTSs. The flare plasma becomes collisionless in the hottest HTSs (T > 20 MK). We confirm the previously investigated idea of spatial heat localization in the solar atmosphere in the form of HTSs during flare heating with a volume nonlocalized source. Based on localized soliton solutions of a nonlinear heat conduction equation with a generalized flare-heating source of a potential form including radiative cooling, we discuss the nature of HTSs.

  6. Relation between Thermal and Magnetic Properties of Active Regions as a Probe of Coronal Heating Mechanisms

    NASA Astrophysics Data System (ADS)

    Yashiro, Seiji; Shibata, Kazunari

    2001-03-01

    We study the relation between thermal and magnetic properties of active regions in the corona observed with the soft X-ray telescope aboard Yohkoh. We derive the mean temperature and pressure of 64 mature active regions using the filter ratio technique, and examine the relationship of region size with temperature and pressure. We find that the temperature T of active regions increases with increasing region size L as T~L0.28, while the pressure P slightly decreases with the region size as P~L-0.16. We confirm the scaling law T~(PL)1/3 for mature active regions found by R. Rosner, W. H. Tucker, & G. S. Vaiana. We examined the magnetic properties of active regions by analyzing 31 active regions observed with the Solar and Heliospheric Observatory/Michelson Doppler Imager and find the following empirical scaling law between thermal and magnetic properties,Uth~Φ1.33,P~B0.78,where Uth, Φ, and B are the total thermal energy content, total magnetic flux, and average magnetic flux density of active regions, respectively. The former is consistent with the results of L. Golub et al., but the latter is not. Implications of our findings for coronal heating mechanisms are discussed.

  7. Galactic Temperature and Metallicity Gradients from Ultracompact H II Regions

    NASA Astrophysics Data System (ADS)

    Afflerbach, A.; Churchwell, E.; Acord, J. M.; Hofner, P.; Kurtz, S.; Depree, C. G.

    1996-10-01

    We report observations in the H42α, H66α, H76α, and H93α radio recombination lines (RRL) toward 28 ultracompact (UC) H II regions distributed in Galactocentric radius from 0 to 17 kpc. It was possible to fit the observed line intensities with a single set of electron density (ne) and temperature (Te)-values for 17 nebulae distributed in DG from 4 to 11 kpc using a non-LTE model analysis. A Galactocentric Te gradient was found of the form Te(K) = (5537±387) + (320±64)DG, where DG is the Galactocentric distance in kpc. On average, our sample is hotter than that found by Shaver et al. (1983) by approximately 1000 K. We attribute the higher average temperatures of the sources in our sample relative to those in the Shaver et al. sample to the higher density of our sample. As density increases from t0 cm-3 to 105 cm-3, metal coolants are quenched and Te increases. From the combination of photoionization-statistical equilibrium models at the densities of UC H II regions and the derived Te gradient, we find a Galactocentric oxygen abundance gradient d(O/H)/d(DG) =-0.047±0.009 dex kpc-1 under the assumption that the Te gradient is primarily determined by metal abundances. Within the uncertainties, the O/H gradient is the same as that found by Shaver et al. from optical observations. The observed line widths are correlated with density in the sense that the denser regions are more likely to have large turbulent motions and/or bulk motions such as outflows, rotation, shocks, etc. Helium RRLs were detected in a subset of six nebulae. The He+/H+ abundances are typically in the range 0.07-0.12 by number, consistent with the range found by other investigators from lower resolution observations. However, one source in our sample, G32.80A, has a ratio of 0.158±0.047, possibly indicating local enrichment of helium.

  8. Concentration and temperature effects on ovostatin activity

    NASA Technical Reports Server (NTRS)

    Moriarity, Debra M.

    1994-01-01

    Light scattering experiments performed at Mississippi State University using MSFC ovostatin preparations indicated that at low ovostatin concentrations, below 0.2 mg/ml, the protein was dissociating from a tetramer into dimers. Since the proposed mechanism of action involved the tetrameric form of the protein, we hypothesized that perhaps under the conditions of our assays at various O/T ratios the ovostatin was becoming dissociated into an inactive dimer. To examine this possibility we assayed the ovostatin activity as a function of ovostatin concentration and of temperature of the assay. Data are presented that show the results of these assays at 23 C, 30 C, 37 C and 42 C respectively. The data are highly suggestive that there is a decrease in ovostatin activity as the concentration of the protein falls below 0.06 mg/ml. This may not be of any physiological importance, however, since the concentration of ovostatin in the egg is about 0.5 mg/ml. Curiously, the dissociation of the tetramer into dimers does not show a significant temperature dependence as would be expected for an equilibrium reaction. Whether this is in fact the case, or whether the differences are so small as to not be discerned from the current data remains to be seen. Another aspect to consider is that in the egg the primary role of the ovostatin may or may not be as a protease inhibitor. Although the inhibition of collagenase by ovostatin may be an important aspect of embryogenesis, it is also possible that it functions as a binding protein for some substance. In this regard, all ovostatin preparations from MSFC have shown an approximately 88,000 MW protein associated with the ovostatin. The identity of this protein is not currently known and may be the subject of future studies.

  9. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  10. The Life Cycle of Active Region Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  11. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  12. Implications of Special Regions to Conducting Human Activities on Mars

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Barlow, N. G.; Beaty, D. W.; Jones, M. A.; Hipkin, V.

    2014-12-01

    A MEPAG Science Analysis Group (SAG) has undertaken an analysis of Special Regions (SR) on Mars—regions where indigenous martian life could exist or where Earth microbes, if introduced, could survive and reproduce. The SR-SAG has considered the impact of SR on future human activities on the martian surface. Human exploration requires access to in-situ resources, some of which may be found in SR. Water and oxygen for ISRU are found in the atmosphere, surface/near-surface ice, hydrated minerals, and perchlorates. Water ice is most abundant at latitudes poleward of ~60 degrees, but polar darkness, cold temperatures, and CO2 degassing present hazards to human operations in these regions. Accessible water is more limited toward the equator, though temperature and solar energy conditions become more favorable. The possible presence of liquid water in Recurring Slope Lineae and active gullies leads to their treatment as SR. Fuel for surface operations and propellants for crew ascent could be manufactured from the martian atmosphere and surface materials, but dust in the atmosphere may clog ISRU equipment and perchlorate is toxic to humans. Power may be produced from solar or nuclear energy. Reliance on solar energy limits operations to the equatorial zone where easily accessible ice resources are limited. Nuclear power allows surface operations at a range of latitudes, but waste heat could convert some non-SR into SR. Radiation shielding is necessary for long-term human operations on Mars and could be obtained by deposition of regolith or by water storage in tanks or as ice around habitats, or the use of underground habitats. SR-SAG recognizes that it will be impossible for all human-associated processes and operations to be conducted within entirely closed systems. Protocols need to be established so (1) human missions to Mars will not contaminate SR nor be contaminated by materials from them, and (2) human activities on Mars will avoid converting areas into SR.

  13. Regional ground surface temperature mapping from meteorological data

    NASA Astrophysics Data System (ADS)

    Signorelli, S.; Kohl, T.

    2003-04-01

    The evaluation of ground surface temperature (GST) represents a common aspect of applied and general geothermal research. The main focus of this study is a country-wide GST investigation for Switzerland because of its well-known impact on low-enthalpy resources, like borehole heat exchanger (BHE) utilization. Using mainly meteorological data the GST distribution was determined by different approaches. Firstly, the actual GST data from the last 20 years measured at the meteorological stations of the Swiss Meteorological Institute (SMI) were analysed by determining the altitude dependence in the range of 200 - 1800 m a.s.l.. Secondly, the correlation between GST and surface exposition was investigated. Contrary to previous publications no universal correlation was found, due to different meteorological conditions over short distances. Finally, an approach considering meteorologically relevant data like soil moisture, wind speed, vegetation cover and vegetation height is discussed on the example of a complete data set. The measured GST was well reproduced for the case of low vegetation, except when covered by snow. Other locations like urban areas or forests could not be tested. Due to the complexity of physical interaction and the necessary assessment of large data set this approach is not suitable for regional GST determination to dimension of BHE systems. A relationship between GST and air temperature (Tair) was defined based on the data from the meteorological stations. We found the difference between GST and Tair to be constant over a long altitude range up to ~1000 m a.s.l.. By further processing an existing Tair map was converted into the first GST map of Switzerland. GST values extrapolated from boreholes represent independent data sources which were used to verify this new map up to an altitude of 1800 m a.s.l.. Generally a fit with a standard deviation of 1.0 K was achieved, but locally deviations of 2 K can occur. The new GST map of Switzerland provides

  14. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    PubMed

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits. PMID:27503719

  15. Recurrent flares in active region NOAA 11283

    NASA Astrophysics Data System (ADS)

    Romano, P.; Zuccarello, F.; Guglielmino, S. L.; Berrilli, F.; Bruno, R.; Carbone, V.; Consolini, G.; de Lauretis, M.; Del Moro, D.; Elmhamdi, A.; Ermolli, I.; Fineschi, S.; Francia, P.; Kordi, A. S.; Landi Degl'Innocenti, E.; Laurenza, M.; Lepreti, F.; Marcucci, M. F.; Pallocchia, G.; Pietropaolo, E.; Romoli, M.; Vecchio, A.; Vellante, M.; Villante, U.

    2015-10-01

    Context. Flares and coronal mass ejections (CMEs) are solar phenomena that are not yet fully understood. Several investigations have been performed to single out their related physical parameters that can be used as indices of the magnetic complexity leading to their occurrence. Aims: In order to shed light on the occurrence of recurrent flares and subsequent associated CMEs, we studied the active region NOAA 11283 where recurrent M and X GOES-class flares and CMEs occurred. Methods: We use vector magnetograms taken by HMI/SDO to calculate the horizontal velocity fields of the photospheric magnetic structures, the shear and the dip angles of the magnetic field, the magnetic helicity flux distribution, and the Poynting fluxes across the photosphere due to the emergence and the shearing of the magnetic field. Results: Although we do not observe consistent emerging magnetic flux through the photosphere during the observation time interval, we detected a monotonic increase of the magnetic helicity accumulated in the corona. We found that both the shear and the dip angles have high values along the main polarity inversion line (PIL) before and after all the events. We also note that before the main flare of X2.1 GOES class, the shearing motions seem to inject a more significant energy than the energy injected by the emergence of the magnetic field. Conclusions: We conclude that the very long duration (about 4 days) of the horizontal displacement of the main photospheric magnetic structures along the PIL has a primary role in the energy release during the recurrent flares. This peculiar horizontal velocity field also contributes to the monotonic injection of magnetic helicity into the corona. This process, coupled with the high shear and dip angles along the main PIL, appears to be responsible for the consecutive events of loss of equilibrium leading to the recurrent flares and CMEs. A movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  16. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  17. Response of California temperature to regional anthropogenic aerosol changes

    SciTech Connect

    Kirchstetter, Thomas; Novakov, T.; Kirchstetter, T.W.; Menon, S.; Aguiar, J.

    2008-05-12

    In this paper, we compare constructed records of concentrations of black carbon (BC)--an indicator of anthropogenic aerosols--with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

  18. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  19. The Role of Anthropogenic-Induced Surface Temperature Change on Regional Enhanced Warming over East Asia

    NASA Astrophysics Data System (ADS)

    Guan, X.; Huang, J.; Guo, R.

    2014-12-01

    In this study, the long-term trend and decadal variability of surface air temperature (SAT) are studied by using observation data from 1901-2009. We found that the warming trends of the semi-arid regions are higher than other lands, which have increased 2.42°C as compared to the global annual mean temperature increase of 1.13°C over land. To investigate the causes of Enhanced Semi-Arid Warming (ESAW), we used an advanced dynamic-adjusted method proposed by Wallace et al. (2012) to analyse the contribution of dynamically-induced and anthropogenic-induced SAT changes to ESAW. In the process of dynamic adjustment, the temperature has been divided into two parts, one for the dynamic forcing induced temperature, and the other for the temperature associated with the build-up of greenhouse gases and the other various radiative forcing. The results show that the anthropogenic-warming peak over semi-arid region plays the main role in the ESAW. Such anthropogenic warming peak may be related to reduction of snow cover due to black carbon (BC) emission by fuels for winter residential heating. Besides the impact of BC in snow, the agricultural mulch creation, wind farms and other types of human activities may also make attribution to local SAT changes that need to be further studied.

  20. Surface temperatures in the polar regions from Nimbus 7 temperature humidity infrared radiometer

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    1994-01-01

    Monthly surface temperatures in the Arctic and Antarctic regions have been derived from the 11.5 micrometer thermal infrared channel of the Nimbus 7 temperature humidity infrared radiometer (THIR) for a whole year in 1979 and for a winter and a summer month from 1980 through 1985. The data set shows interannual variability and provides spatial details that allow identification of temperature patterns over sea ice and ice sheet surfaces. For example, the coldest spot in the southern hemisphere is observed to be consistently in the Antarctic plateau in the southern hemisphere, while that in the northern hemisphere is usually located in Greenland, or one of three other general areas: Siberia, the central Arctic, or the Canadian Archipelago. Also, in the southern hemisphere, the amplitude of the seasonal fluctuation of ice sheet temperatures is about 3 times that of sea ice, while in the northern hemisphere, the corresponding fluctuations for the two surfaces are about the same. The main sources of error in the retrieval are cloud and other atmospheric effects. These were minimized by first choosing the highest radiance value from the set of measurements during the day taken within a 30 km by 30 km grid of each daily map. Then the difference of daily maps was taken and where the difference is greater than a certain threshold (which in this case is 12 C), the data element is deleted. Overall, the monthly maps derived from the resulting daily maps are spatially and temporally consistent, are coherent with the topograph y of the Antarctic continent and the location of the sea ice edge, and are in qualitative agreement with climatological data. Quantitatively, THIR data are in good agreement with Antarctic ice sheet surface air temperature station data with a correlation coefficient of 0.997 and a standard deviation of 2.0 C. The absolute values are not as good over the sea ice edges, but a comparison with Russian 2-m drift station temperatures shows very high correlation

  1. Practical engineering: control of active systems using the stagnation temperature

    SciTech Connect

    Lunde, P.J.

    1982-04-01

    Solar active systems with flat plate collectors are discussed with reference to the temperature at which the system should be activated. It is concluded that the system should be activated when the stagnation temperature (temperature under the absorber plate when no fluid is circulating) equals the temperature of the fluid in storage. A thermistor Wheatstone bridge control system is described which will eliminate pump relay chatter and the permissible control differential is calculated from the collector efficiency curve. To avoid dedication of an entire collector to house the control system, a method is described for determining the stagnation temperature using a portion of an active collector. For an active solar hot water system, a calculation is carried out to show that a 2/sup 0/F temperature differential (stagnation temperature-storage temperature) is satisfactory. (MJJ)

  2. Detection of recent regional sea surface temperature warming in the Caribbean and surrounding region

    NASA Astrophysics Data System (ADS)

    Glenn, Equisha; Comarazamy, Daniel; González, Jorge E.; Smith, Thomas

    2015-08-01

    We show a sea surface temperature (SST) warming trend for the Caribbean and surrounding region over 1982-2012. Using an optimum interpolated SST product, a 30 year climatological analysis was generated to observe annual, monthly, and seasonal trends. Results show that SSTs are increasing annually for the region. For the two Caribbean rainy seasons, the Early Rainfall Season (ERS) and the Late Rainfall Season (LRS), estimated trends at 0.0161°C yr-1 and 0.0209°C yr-1 were observed, with high statistical significance. Subregional analysis revealed that warming is greatest in the Gulf of Mexico and north of South America during the ERS and LRS. Additionally, LRS averages for 1998-2012 reflect an increase in magnitude and intensity of the Atlantic Warm Pool (AWP) since the 1983-1997 period reflected in the AWP Area Index. Extreme increases/decreases in the time series show potential correlation with El Niño and the Southern Oscillation.

  3. Spectroscopic Observations of Fe XVIII in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Teriaca, Luca; Warren, Harry P.; Curdt, Werner

    2012-08-01

    The large uncertainties associated with measuring the amount of high temperature emission in solar active regions (ARs) represents a significant impediment to making progress on the coronal heating problem. Most current observations at temperatures of 3 MK and above are taken with broadband soft X-ray instruments. Such measurements have proven difficult to interpret unambiguously. Here, we present the first spectroscopic observations of the Fe XVIII 974.86 Å emission line in an on-disk AR taken with the SUMER instrument on SOHO. Fe XVIII has a peak formation temperature of 7.1 MK and provides important constraints on the amount of impulsive heating in the corona. Detailed evaluation of the spectra and comparison of the SUMER data with soft X-ray images from the X-Ray Telescope on Hinode confirm that this line is unblended. We also compare the spectroscopic data with observations from the Atmospheric Imaging Assembly (AIA) 94 Å channel on the Solar Dynamics Observatory. The AIA 94 Å channel also contains Fe XVIII, but is blended with emission formed at lower temperatures. We find that it is possible to remove the contaminating blends and form relatively pure Fe XVIII images that are consistent with the spectroscopic observations from SUMER. The observed spectra also contain the Ca XIV 943.63 Å line that, although a factor 2-6 weaker than the Fe XVIII 974.86 Å line, allows us to probe the plasma around 3.5 MK. The observed ratio between the two lines indicates (isothermal approximation) that most of the plasma in the brighter Fe XVIII AR loops is at temperatures between 3.5 and 4 MK.

  4. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  5. Chemical Fingerprints of Star Forming Regions and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, Juan-Pablo

    2010-10-01

    This thesis is devoted to the study of the physical conditions of the interstellar medium (ISM) in active galactic nuclei (AGNs) and Galactic star-forming regions, using mostly single-dish millimeter observations. I first study the excitation conditions of dense gas in a group of Seyfert galaxies using radiative transfer models (Chapter 2). I then study the galaxy NGC 1068, and try to distinguish signatures of the contributions from the AGN and the starburst ring by incorporating observations of high-J transitions of dense gas tracers (Chapter 3). Later, I venture into the mid-infrared spectral region to study different aspects of the AGN and starburst components in the galaxy NGC 4945 (Chapter 4). In Chapter 5 I delve into theoretical aspects of the dynamical evolution of gas in an AGN torus. I use a 3D hydrodynamic simulation with chemical abundances driven by X-rays. The aim is to understand the effects of X-ray irradiation by the AGN on the temperature, formation and destruction of the molecular gas. I finally explore a Galactic star-forming region, the Omega Nebula, with high resolution single dish observations, to study the properties of the warm gas and to constrain chemical models (Chapters 6 and 7).

  6. The anomalous Mesopause region temperatures of the 2003-2004 winter season measured from Svalbard (78N 16E)

    NASA Astrophysics Data System (ADS)

    Dyrland, M. E.; Sigernes, F.; Mulligan, F.; Deehr, C. S.

    2007-12-01

    This paper reports on the temperature and dynamics of the hydroxyl layer at approx. 87km measured over Longyearbyen (78N 16E) during the 2003-2004 winter. Optical spectra obtained by a Ebert-Fastie spectrometer were used for the temperature derivation. The high number of spectra available enabled spectral analysis of both the hourly and daily averaged temperatures. We were able to identify both the presence of a 16 day wave and a quasi 27 day oscillation in the mesopause region (approx. 87 km) temperatures from this season. The average daily temperature was 228K with a standard deviation of 17K. This is exceptionally high compared to previous and later years reported in the 23 year old time series from Svalbard. The observed temperatures have been compared to temperature data from other height regions above the Arctic (troposphere and stratosphere) and to satellite data from the satellite instrument SABER. In early January 2004 a major stratospheric warming event led to a nearly 2 month long vortex disruption with high-latitude easterlies in the middle to lower stratosphere and correspondingly high temperatures. The upper stratospheric temperatures of the same period were unusually low, while mesopause temperatures were high. The regions of alternating low and high temperatures throughout the atmosphere and the dynamics of these, are clearly coupled through gravity wave activity and general atmospheric circulation. We try to put our data into context with other authors' reports on the anomalous state of the atmosphere during the 2003-2004 boreal winter.

  7. Holocene fire activity in the Carpathian region: regional climate vs. local controls

    NASA Astrophysics Data System (ADS)

    Florescu, Gabriela; Feurdean, Angelica

    2015-04-01

    Introduction. Fire drives significant changes in ecosystem structure and function, diversity, species evolution, biomass dynamics and atmospheric composition. Palaeodata and model-based studies have pointed towards a strong connection between fire activity, climate, vegetation and people. Nevertheless, the relative importance of these factors appears to be strongly variable and a better understanding of these factors and their interaction needs a thorough investigation over multiple spatial (local to global) and temporal (years to millennia) scales. In this respect, sedimentary charcoal, associated with other proxies of climate, vegetation and human impact, represents a powerful tool of investigating changes in past fire activity, especially in regions with scarce fire dataset such as the CE Europe. Aim. To increase the spatial and temporal coverage of charcoal records and facilitate a more critical examination of the patterns, drivers and consequences of biomass burning over multiple spatial and temporal scales in CE Europe, we have investigated 6 fossil sequences in the Carpathian region (northern Romania). These are located in different geographical settings, in terms of elevation, vegetation composition, topography and land-use. Specific questions are: i) determine trends in timing and magnitude of fire activity, as well as similarities and differences between elevations; ii) disentangle the importance of regional from local controls in fire activity; iii) evaluate ecological consequences of fire on landscape composition, structure and diversity. Methods. We first determine the recent trends in fire activity (the last 150 years) from charcoal data and compare them with instrumental records of temperature, precipitation, site history and topography for a better understanding of the relationship between sedimentary charcoal and historical fire activity. We then statistically quantify centennial to millennial trends in fire activity (frequency, magnitude) based on

  8. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  9. A Fractal Dimension Survey of Active Region Complexity

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  10. Homologous flares and the evolution of NOAA Active Region 2372

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Smith, J. B., Jr.; Mccabe, M. K.; Machado, M. E.; Saba, J. L. R.; Simnett, G. M.

    1984-01-01

    A detailed record of the evolution of NOAA Active Region 2372 has been compiled by the FBS Homology Study Group. It was one of the most prolific flare-producing regions observed by SMM. The flares occurred in distinct stages which corresponded to particular evolutionary phases in the development of the active region magnetic field. By comparison with a similar but less productive active region, it is found that the activity seems to be related to the magnetic complexity of the region and the amount of shear in the field. Further, the soft X-ray emission in the quiescent active region is related to its flare rate. Within the broader definition of homology adopted, there was a degree of homology between the events within each stage of evolution of AR2372.

  11. Ultra-Hot Plasma in Active Regions Observed by the Extreme-ultraviolet Imaging Spectrometer on Hinode

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Warren, H. P.; Feldman, U.

    2008-05-01

    The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft obtains high resolution spectra of the solar atmosphere in two wavelength ranges: 170 - 210 and 250 — 290 Angstroms. These wavelength regions contain a wealth of emission lines covering temperature regions from the chromosphere/transition region (e.g., He II, Si VII) up to soft X-ray flare temperatures (Fe XXIII, Fe XXIV). EIS can obtain line profiles and intensities for the spectral lines in these wavelength regions. Of particular interest for understanding coronal heating is a line of Ca XVII, formed near a temperature of 6 MK. This line is blended with lines of Fe XI and O V. However, by using unblended lines of these ions, the Ca XVII line can be deconvolved from the blended emission. EIS has obtained many raster observations of active regions by stepping the slit in small increments across the active region, producing monochromatic images of the active region. The Ca XVII blend has been included in many of these rasters. In this paper we discuss the appearance and frequency of 6 MK plasma in active regions in the absence of strong flaring activity. This temperature region is not well-observed by normal incidence imaging spectrometers and therefore the EIS data shed light on higher temperature areas of active regions than normally available from imaging instruments alone. We discuss how to deconvolve the blend and show examples of 6 MK plasma emission in several active regions.

  12. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  13. Regional projection of Temperature for the 21st Century over the Eastern India

    NASA Astrophysics Data System (ADS)

    Dhage, Pradnya; Singh Raghuwanshi, Narendra; Singh, Rajendra

    2016-04-01

    Global as well as regional climate has changed due to human activities like land use changes, production of industrial effluents and other developmental activities of the society. The consequences of these changes have a massive impact on atmospheric events like precipitation, temperature etc. The rainfall and temperature are intrinsic parameters of hydrologic cycle. Consequently, these are also the major driving factors of change in hydrologic response due to climate change. Future temperature information is required at regional and basin scales for climate change studies. Therefore, in present study, daily maximum (Tmax) and minimum (Tmin) temperatures scenarios were developed from Multi-GCM ensemble (CanESM2, IPSL-CM5A-LR, MPI-ESM-LR, and CNRM-CM5 GCMs) using bias correction and spatial downscaling (BCSD) method at station scale for Kangsabati reservoir catchment and command, West Bengal, India. Subsequently, temperature intensity and frequency indices like extremes of maximum and minimum temperatures, consecutive hot days, consecutive cold days, and warming nights were analyzed. The GCM data for all the requisite variables corresponding to historic run (1971-2005) and future climate (2006-2100) were used under Representative Concentration Pathway (RCP4.5 and RCP8.5) emission scenarios. The results indicate significant increase in maximum and minimum temperatures in all seasons (pre-monsoon, monsoon, and post-monsoon), with the most significant increase occurring in pre-monsoon season, and for all the stations of the study area. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area are projected as 0.20 and 0.22 °C/decade under RCP4.5, and 0.54 and 0.59 °C/decade under RCP8.5 for 2011-2100 period, respectively. Further, it is found that the temperature intensity and frequency indices will increase (maximum value of Tmax and Tmin, and minimum value of Tmax and Tmin, consecutive hot days, and warming nights) while

  14. Water-temperature data acquisition activities in the United States

    USGS Publications Warehouse

    Pauszek, F.H.

    1972-01-01

    Water Data Coordination, U.S. Geological Survey, and published in the "Catalog of Information on Water Data, Index to Water Quality Section, Edition 1970." This is one of four indexes, each of which is a separate section of the Catalog. Three of the indexes, "Index to Water-Quality Section," "Index to Surface-Water Section," and "Index to Ground-.Water Stations," contain information on data acquired on a recurrent basis at specific locations for a period of 3 years or more. The fourth section, "Index to Areal Investigations and Miscellaneous Activities," is concerned with specific projects or shorter-term data activities that involve field or laboratory measurements or observations not included in any other section of the Catalog. The Catalog is a record of activities throughout the country (and in some places along the international border between the United States and Canada) conducted by Federal and non-Federal agencies engaged in the acquisition of water data and who furnish such information for presentation in the Catalog. The Catalog itself is an outgrowth of an assignment to the Department of the Interior and in turn to the Geological Survey, by the Office of Management and Budget, through the medium of OMB Circular A-67. This Circular states in part that one of the assigned responsibilities will be maintenance of a "central catalog of information on...water data and on Federal activities being planned or conducted to acquire such data." As an extension of this activity, non-Federal agencies are solicited to participate in the program. In this report, information is presented by means of tables and illustrations preceded by brief explanations. It includes the agencies collecting the data, the number of stations located on surface and ground waters where temperature measurements are made, the distribution of stations by States and by the 21 regions of the Water Resources Council (WRC) (a Federal agency created in accordance with the Water Resources Planning Act of

  15. Temperature Icreasing Trend During Recent Four Decades At Riyadh Region

    NASA Astrophysics Data System (ADS)

    Almleaky, Y.; Sharaf, M.; Basurah, H.; Malawi, A.; Euony, S.

    In this paper the data analysis of one element of the meteorological data of old Riyadh, namely air temperature will be discussed. This station is located on the middle province of the Kingdom of Saudi Arabia and of coordinates (46.72 E and 24.65 N). The analysis of each of the global maximum and, the global minimum temperature is given for each year through out five points: its value, the date of occurrence, the day of the year and the Julian day, finally, the day of the year. Some statistics are provided for the smoothed values of the mean daily variation of the air temperature. We finally addressed some graphical representations, e.g. histograms, daily variations with their fitting equation. A preliminary conclusion indicating that there are general increasing trend in the temperature during the recent thirty four years.

  16. "The Effect of Alternative Representations of Lake Temperatures and Ice on WRF Regional Climate Simulations"

    EPA Science Inventory

    Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weathe...

  17. Photonic crystal lasers using wavelength-scale embedded active region

    NASA Astrophysics Data System (ADS)

    Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Shinya, Akihiko; Nozaki, Kengo; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya; Fujii, Takuro; Hasebe, Koichi; Kakitsuka, Takaaki

    2014-01-01

    Lasers with ultra-low operating energy are desired for use in chip-to-chip and on-chip optical interconnects. If we are to reduce the operating energy, we must reduce the active volume. Therefore, a photonic crystal (PhC) laser with a wavelength-scale cavity has attracted a lot of attention because a PhC provides a large Q-factor with a small volume. To improve this device's performance, we employ an embedded active region structure in which the wavelength-scale active region is buried with an InP PhC slab. This structure enables us to achieve effective confinement of both carriers and photons, and to improve the thermal resistance of the device. Thus, we have obtained a large external differential quantum efficiency of 55% and an output power of -10 dBm by optical pumping. For electrical pumping, we use a lateral p-i-n structure that employs Zn diffusion and Si ion implantation for p-type and n-type doping, respectively. We have achieved room-temperature continuous-wave operation with a threshold current of 7.8 µA and a maximum 3 dB bandwidth of 16.2 GHz. The results of an experimental bit error rate measurement with a 10 Gbit s-1 NRZ signal reveal the minimum operating energy for transferring a single bit of 5.5 fJ. These results show the potential of this laser to be used for very short reach interconnects. We also describe the optimal design of cavity quality (Q) factor in terms of achieving a large output power with a low operating energy using a calculation based on rate equations. When we assume an internal absorption loss of 20 cm-1, the optimized coupling Q-factor is 2000.

  18. IFLA General Conference, 1985. Division on Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on regional library activities which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Importance of Information Resources in National Development with Particular Reference to the Asian Scene" (Yogendra P. Dubey, India); (2) "Report of the Activities of the Regional Section for Asia…

  19. Properties of solar coronal active regions deduced from X-ray line spectra

    NASA Astrophysics Data System (ADS)

    McKenzie, D. L.

    1987-11-01

    Spectra from the SOLEX B RAP spectrometer have been used to analyze the temperature and density structure of over 100 nonflaring solar active regions. Density measurements that used the R ratio of O VII indicated that few regions have electron densities higher than ≡3×109cm-3. In a few cases, flare-productive regions had measured densities approximately twice this high. Temperature-sensitive line ratios in the helium-like ions O VII, Ne IX, and Mg XI were used to decude the general properties of the differential emission-measure function B(T) for nonflaring regions. B(T) falls off with increasing temperature above a peak temperature that is almost always lower than Tm(O VII) = 1.8×106K.

  20. Software Displays Data on Active Regions of the Sun

    NASA Technical Reports Server (NTRS)

    Golightly, Mike; Weyland, Mark; Raben, Vern

    2011-01-01

    The Solar Active Region Display System is a computer program that generates, in near real time, a graphical display of parameters indicative of the spatial and temporal variations of activity on the Sun. These parameters include histories and distributions of solar flares, active region growth, coronal mass ejections, size, and magnetic configuration. By presenting solar-activity data in graphical form, this program accelerates, facilitates, and partly automates what had previously been a time-consuming mental process of interpretation of solar-activity data presented in tabular and textual formats. Intended for original use in predicting space weather in order to minimize the exposure of astronauts to ionizing radiation, the program might also be useful on Earth for predicting solar-wind-induced ionospheric effects, electric currents, and potentials that could affect radio-communication systems, navigation systems, pipelines, and long electric-power lines. Raw data for the display are obtained automatically from the Space Environment Center (SEC) of the National Oceanic and Atmospheric Administration (NOAA). Other data must be obtained from the NOAA SEC by verbal communication and entered manually. The Solar Active Region Display System automatically accounts for the latitude dependence of the rate of rotation of the Sun, by use of a mathematical model that is corrected with NOAA SEC active-region position data once every 24 hours. The display includes the date, time, and an image of the Sun in H light overlaid with latitude and longitude coordinate lines, dots that mark locations of active regions identified by NOAA, identifying numbers assigned by NOAA to such regions, and solar-region visual summary (SRVS) indicators associated with some of the active regions. Each SRVS indicator is a small pie chart containing five equal sectors, each of which is color-coded to provide a semiquantitative indication of the degree of hazard posed by one aspect of the activity at

  1. The covariation of Northern Hemisphere summertime CO2 with surface temperature in boreal regions

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Wennberg, P. O.; Messerschmidt, J.; Parazoo, N. C.; Toon, G. C.; Deutscher, N. M.; Keppel-Aleks, G.; Roehl, C. M.; Randerson, J. T.; Warneke, T.; Notholt, J.

    2013-09-01

    We observe significant interannual variability in the strength of the seasonal cycle drawdown in northern midlatitudes from measurements of CO2 made by the Total Carbon Column Observing Network (TCCON) and the Greenhouse Gases Observing Satellite (GOSAT). This variability correlates with surface temperature in the boreal regions. Using TCCON measurements, we find that the slope of the relationship between the XCO2 seasonal cycle minima and boreal surface temperature is 1.2 ± 0.7 ppm K-1. Assimilations from CarbonTracker 2011 and CO2 simulations using the Simple Biosphere exchange Model (SiB) transported by GEOS-Chem underestimate this covariation. Both atmospheric transport and biospheric activity contribute to the observed covariation.

  2. THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Tziotziou, Kostas; Georgoulis, Manolis K.; Raouafi, Nour-Eddine

    2012-11-01

    Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

  3. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    NASA Astrophysics Data System (ADS)

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-02-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (˜110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  4. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    USGS Publications Warehouse

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  5. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  6. Photoperiod, temperature, and regional patterns of conceptions in the USA

    NASA Astrophysics Data System (ADS)

    Randall, Walter

    1993-03-01

    Twenty-two years of monthly values of birth data for the USA, 1967 through 1988, were analyzed by visual inspection. The data were transformed to remove the influence of length of month and of linear trend, and the values were lagged 9 months to approximate the time of conception. Then, 11-year monthly averages were obtained and plotted as standard scores. Thus two 11-year sets of data were independently analyzed, providing the opportunity of replication. Four distinct temporal patterns were found, differing in month of occurrence of the initial trough and peak and the relative sizes of the two troughs; these characteristics of the temporal pattern change systematically with latitude in the eastern and midwestern states. Data from two other continents, the United Kingdom and Australia, also were analyzed using the same method and found to exhibit a temporal pattern during the year similar to the northern states of the USA. Two biologically relevant variables, temperature and photoperiod, were considered as possible controllers and regulators of the annual rhythmicity. Comparisons of the trends in conceptions with these environmental variables, and inspections of the temperatures and photoperiods at which peaks and troughs in conceptions were found, indicated that these environmental variables could not account for the annual rhythmicity in conceptions.

  7. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control. PMID:15588252

  8. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  9. Regional homogenization of surface temperature records using robust statistical methods

    NASA Astrophysics Data System (ADS)

    Pintar, A. L.; Possolo, A.; Zhang, N. F.

    2013-09-01

    An algorithm is described that is intended to estimate and remove spurious influences from the surface temperature record at a meteorological station, which may be due to changes in the location of the station or in its environment, or in the method used to make measurements, and which are unrelated to climate change, similarly to [1]. The estimate of these influences is based on a comparison of non-parametric decompositions of the target series with series measured at other stations in a neighborhood of the target series. The uncertainty of the estimated spurious artifacts is determined using a statistical bootstrap method that accounts for temporal correlation structure beyond what is expected from seasonal effects. Our computer-intensive bootstrap procedure lends itself readily to parallelization, which makes the algorithm practicable for large collections of stations. The role that the proposed procedure may play in practice is contingent on the results of large-scale testing, still under way, using historical data.

  10. Global gravity wave activity in the tropopause region from CHAMP radio occultation data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; de la Torre, A.; Wickert, J.

    2008-08-01

    We discuss the global gravity wave (GW) activity expressed by the specific potential energy in the altitude range from 5 km below to 10 km above the tropopause, derived from GPS radio occultation data from CHAMP (2001-2008). The GW analysis is based on vertical detrending of the individual measured temperature profiles by applying a Gaussian filter in two different ways: (i) filtering of the complete temperature profiles and (ii) separate filtering of the profiles for the tropospheric and lower stratospheric parts. The separate filtering method significantly reduces the usually observed wave activity enhancement in the tropopause region which highly depends on the performance of the complete filtering method to reproduce the change in the temperature gradient at the tropopause. We only consider vertical wavelengths less than 10 km. The global mean potential energy in the tropopause region deduced with these different background temperatures will be analyzed, differences will be emphasized and possible error sources of the new method will be considered.

  11. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  12. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  13. Thermal infrared remote sensing and its usefulness in determining regional stream temperatures

    NASA Astrophysics Data System (ADS)

    Cherkauer, K. A.; Handcock, R. N.; Kay, J. E.; Kampf, S. K.; Gillespie, A. R.; Burges, S. J.

    2003-12-01

    Stream temperatures are an important water quality variable in the Pacific Northwest, especially due their impact on health of regional salmon and steelhead runs. With several of these runs classified as threatened or endangered by the National Marine Fisheries Service in the last decade, monitoring of regional stream temperatures has never been more important. Networks of in-situ temperature observation sites tend to be costly to install and maintain, limiting their ability to monitor large regions in detail. Thermal infrared (TIR) remote sensing from aircraft and satellite based platforms have the potential to provide high resolution regional information about stream temperatures at a specific time. We present results from a three-year study, conducted to investigate the usefulness of TIR images in monitoring and observing regional stream temperatures. This project compared satellite-, aircraft- and ground-based TIR sensors with a network of in-stream temperature loggers and volunteer observations to assess the accuracy and uncertainty of TIR derived stream temperatures. Accuracy and uncertainty of temperatures extracted from the TIR images are strongly related to our ability to correct imagery for the effects of surface emissivity, atmospheric conditions and thermal scattering from the near-bank environment. Limited observations of atmospheric water vapor are of particular concern, however, total column water predictions from a meso-scale atmospheric model can be a useful substitute. The biggest limiting factor in using remote sensing for the evaluation of regional stream temperatures is the resolution of the sensor. Satellite-based sensors are unable to fully resolve all but the largest regional rivers. Higher-resolution aircraft-based images can resolve most regional rivers and stream, but may be unable to yield accurate temperatures in the presence of dense riparian zone vegetation. Very high-resolution images from the ground-based TIR sensors can resolve

  14. Active Ageing Level of Older Persons: Regional Comparison in Thailand

    PubMed Central

    Haque, Md. Nuruzzaman

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p < 0.001)). Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP), containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons' active ageing level in Thailand. PMID:27375903

  15. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  16. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  17. Differential activity of regions of transversus abdominis during trunk rotation.

    PubMed

    Urquhart, Donna M; Hodges, Paul W

    2005-05-01

    The role of the abdominal muscles in trunk rotation is not comprehensively understood. This study investigated the electromyographic (EMG) activity of anatomically distinct regions of the abdominal muscles during trunk rotation in six subjects with no history of spinal pain. Fine-wire electrodes were inserted into the right abdominal wall; upper region of transversus abdominis (TrA), middle region of TrA, obliquus internus abdominis (OI) and obliquus externus abdominis (OE), and lower region of TrA and OI. Surface electrodes were placed over right rectus abdominis (RA). Subjects performed trunk rotation to the left and right in sitting by rotating their pelvis relative to a fixed thorax. EMG activity was recorded in relaxed supine and sitting, and during an isometric hold at end range. TrA was consistently active during trunk rotation, with the recruitment patterns of the upper fascicles opposite to that of the middle and lower fascicles. During left rotation, there was greater activity of the lower and middle regions of contralateral TrA and the lower region of contralateral OI. The upper region of ipsilateral TrA and OE were predominately active during right rotation. In contrast, there was no difference in activity of RA and middle OI between directions (although middle OI was different between directions for all but one subject). This study indicates that TrA is active during trunk rotation, but this activity varies between muscle regions. These normative data will assist in understanding the role of TrA in lumbopelvic control and movement, and the effect of spinal pain on abdominal muscle recruitment. PMID:15940481

  18. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  19. Radio Coronal Magnetography of a Large Active Region

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.; Gary, Dale E.; White, Stephen; Fleishman, Gregory; Chen, Bin

    2015-04-01

    Quantitative knowledge of coronal magnetic fields is fundamental to understanding energetic phenomena such as solar flares. Flares occur in solar active regions where strong, non-potential magnetic fields provide free energy. While constraints on the coronal magnetic field topology are readily available through high resolution SXR and EUV imaging of solar active regions, useful quantitative measurements of coronal magnetic fields have thus far been elusive. Recent progress has been made at infrared (IR) wavelengths in exploiting both the Zeeman and Hanle effects to infer the line-of-sight magnetic field strength or the orientation of the magnetic field vector in the plane of the sky above the solar limb. However, no measurements of coronal magnetic fields against the solar disk are possible using IR observations. Radio observations of gyroresonance emission from active regions offer the means of measuring coronal magnetic fields above the limb and on the solar disk. In particular, for plasma plasma conditions in the solar corona, active regions typically become optically thick to emission over a range of radio frequencies through gyroresonance absorption at a low harmonic of the electron gyrofrequency. The specific range of resonant frequencies depends on the range of coronal magnetic field strengths present in the active region.The Karl G. Jansky Very Large Array was used in November 2014 to image NOAA/USAF active region AR12209 over a continuous frequency range of 1-8 GHz, corresponding to a wavelength range of 3.75-30 cm. This frequency range is sensitive to coronal magnetic field strengths ranging from ~120-1400G. The active region was observed on four different dates - November 18, 20, 22, and 24 - during which the active region longitude ranged from -15 to +70 degrees, providing a wide range of aspect angles. In this paper we provide a preliminary description of the coronal magnetic field measurements derived from the radio observations.

  20. Some features of active regions and bursts in millimetric range.

    NASA Astrophysics Data System (ADS)

    Yu, Xingfeng; Yao, Jinxing

    1995-09-01

    The characteristics of active regions and bursts at mm wavelengths, observed with the 13.7 m radio telescope at Quinghai from Nov 16 to Dec 1, 1993, are analyzed. It appears that the active region collapsed and vanished while there occurred a coronal loop with two polarities. GRE bursts at mm wavelength may be interpreted by thermal gyro-resonance radiation and are part of the chromospheric eruption. There is no indication of FFS in 10 ms recordings.

  1. Temperature and Structure of Active Eruptions from a Handheld Camcorder

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Carling, Greg T.; Saito, Takeshi; Dangerfield, Anne; Tingey, David G.; Lorenz, Ralph D.; Lopes, Rosaly M.; Howell, Robert R.; Diniega, Serina; Turtle, Elizabeth P.

    2014-11-01

    A commercial handheld digital camcorder can operate as a high-resolution, short-wavelength, low-cost thermal imaging system for monitoring active volcanoes, when calibrated against a laboratory heated rock of similar composition to the given eruptive material. We utilize this system to find full pixel brightness temperatures on centimeter scales at close but safe proximity to active lava flows. With it, observed temperatures of a Kilauea tube flow exposed in a skylight reached 1200 C, compared with pyrometer measurements of the same flow of 1165 C, both similar to reported eruption temperatures at that volcano. The lava lake at Erta Ale, Ethiopia had crack and fountain temperatures of 1175 C compared with previous pyrometer measurements of 1165 C. Temperature calibration of the vigorously active Marum lava lake in Vanuatu is underway, challenges being excessive levels of gas and distance from the eruption (300 m). Other aspects of the fine-scale structure of the eruptions are visible in the high-resolution temperature maps, such as flow banding within tubes, the thermal gradient away from cracks in lake surfaces, heat pathways through pahoehoe crust and temperature zoning in spatter and fountains. High-resolution measurements such as these reveal details of temperature, structure, and change over time at the rapidly evolving settings of active lava flows. These measurement capabilities are desirable for future instruments exploring bodies with active eruptions like Io, Enceladus and possibly Venus.

  2. Coronal temperature, density, and magnetic field maps of a solar acitve region using the Owens Valley Solar Array

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.; Hurford, G. J.

    1994-01-01

    We present the first results of solar active region observations with the recently completed five-element Owens Valley Solar Array. On 1991 October 24, maps of Active Region AR 6891 were obtained at 22 frequencies from 1.2-7.0 GHz to provide brightness temperature spectra at each point. This is the first time that both high spatial and frequency-resolution brightness temperature spectra have been available over such a broad radio-frequency range. We find that over most of the region the spectra fall into one of the two well-defined categories: thermal free-free or thermal gyroresonance. In these cases, we use the spectra to deduce the spatial variation of physical parameters-electron temperature, column emission measure (intergral n(sup 2)(sub e) dl), and the coronal magnetic field strength-in and around the active region. Over a limited area of the region, the spectra resemble neither of the simple types, and alternative interpretations are required. The possibilties include the presence of fine structure that is unresolved at low frequencies; the presence of a small number of nonthermal electrons; or the presence of overlying, cooler 10(exp 6) K material which at low frequencies absorbs the hot (3 x 10(exp 6) K) thermal emission generated below.

  3. Regional Skin Temperature Response to Moderate Aerobic Exercise Measured by Infrared Thermography

    PubMed Central

    Fernandes, Alex de Andrade; Amorim, Paulo Roberto dos Santos; Brito, Ciro José; Sillero-Quintana, Manuel; Bouzas Marins, João Carlos

    2016-01-01

    Background: Infrared thermography (IRT) does not require contact with the skin, and it is a convenient, reliable and non-invasive technique that can be used for monitoring the skin temperature (TSK). Objectives: The aim of this study was to monitor the variations in the regional TSK during exercise on 28 regions of interest (ROIs) (forehead, face, chest, abdomen, back, lumbar, anterior and posterior neck, and posterior and anterior views of the right and left hands, forearms, upper arms, thighs, and legs) with IRT. Patients and Methods: 12 physically active young males were monitored with IRT during the following three phases: a) 30 minutes before exercise b) while performing one hour of moderate intensity exercise on a treadmill at 60% of the VO2max, and c) 60 minutes after exercise. Results: During pre-exercise, all TSK reached a steady-state (P ≤ 0.05), which ensured adequate thermal stabilisation. At the beginning of exercise, there was a significant reduction in the TSK in most ROIs after 10 minutes of activity, except for the lower limbs (legs and thighs). After one hour of recovery, in the anterior view of the hands and thighs and in the posterior view of the legs, there were significant increases in the TSK compared to pre-exercise. Conclusions: There were significant distinctions in the skin temperature distribution during exercise according to the activity of the area under consideration during exercise, which may be important in the development of physiological models and heat flux analyses for different purposes. PMID:27217931

  4. Observations of Small-scale IRIS Bombs (Reconnection Events) in an Evolving Active Region

    NASA Astrophysics Data System (ADS)

    Madsen, C. A.; Tian, H.; DeLuca, E. E.

    2015-12-01

    We present the first Interface Region Imaging Spectrograph (IRIS) observations of small-scale bombs evolving with their host active region. Bombs appear most clearly in the IRIS 1330 Å and 1400 Å slit-jaw images as small (~1 arcsec), compact, intense brightenings at transition region temperatures. Their NUV/FUV emission spectra exhibit dramatic line splitting and strong absorption features indicative of bidirectional flows from magnetic reconnection embedded deep within the cool lower solar atmosphere. The bombs may contribute significantly to the heating of the solar atmosphere in active regions; however, it's unclear how prevalent the bombs are throughout the lifetime of an active region. Using a semi-automated detection method, we locate bombs within AR 11850 over the course of four observations from 06:00 UT on September 25, 2013 until 11:30 UT the next day. The active region is first observed in an emerging phase and rapidly grows into a mature active region with well-developed sunspots. The bomb occurrence rate drops dramatically as the active region fully emerges. We also find that the bombs fall into two distinct populations: one appears largely during active region emergence and contains a majority of the bombs, while the other population is present regardless of active region age. The first population of bombs is typically found embedded in the low-lying loops prominent in the young active region. Furthermore, we use Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) line-of-sight magnetograms to show that the bombs associated with the first population occur at the boundaries between the upward and downward flux of small, isolated bipolar regions. These regions dissipate as the active region emerges and reconfigures its magnetic field into two large network patches of upward and downward flux with a clear inversion line. The second, smaller population of bombs usually occurs far from the active region loop structures in the plage and

  5. Geothermal and Hydrogeologic Controls on Regional Groundwater Temperatures

    NASA Astrophysics Data System (ADS)

    Burns, E. R.; Ingebritsen, S.; Williams, C. F.; Manga, M.

    2015-12-01

    A 1-D analytic solution for combined heat and groundwater flow through an aquifer system accounts for geothermal heating at the base of the aquifer, recharge of cooler water along the groundwater flow path, advection of heat within the aquifer, conduction of heat through the vadose zone, and viscous heating. The 1-D solution, which uses a freely available Python script, can be applied to moderately complex geometries by solving the heat flow equation for piece-wise linear or constant properties and boundary conditions. Analysis of the Eastern Snake River Plain regional aquifer system demonstrates that viscous heating, normally neglected by numerical solutions, is variably important along the groundwater flow path, and that heat conduction to the land surface and cool recharge are the primary thermal perturbations causing deviation from a steady, slow heating along the flow path. Because viscous heating is sometimes important, a general anisotropic form of the viscous heat-generation term has been derived and can be included in more complex 2-D and 3-D numerical solvers of the coupled heat and groundwater flow equations. The 1-D solution allows quick and easy determination of whether this term needs to be included. The rate at which thermal perturbations equilibrate with distance is controlled by the Peclet Number (the ratio of advective to conductive heat transport), which can be used to estimate the distance over which thermal perturbations (e.g., cool recharge or local geothermal hotspots) will be detectable.

  6. Active region emission measure distributions and implications for nanoflare heating

    SciTech Connect

    Cargill, P. J.

    2014-03-20

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ∼ T{sup a} below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (T{sub N} ) and the distribution of nanoflare energies. If T{sub N} is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, T{sub N} must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  7. Static and Impulsive Models of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, James A.

    2008-01-01

    The physical modeling of active regions (ARs) and of the global coronal is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright EUV warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, repetition time) of the impulsive heating.

  8. Static and Impulsive Models of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.; Klimchuk, J. A.

    2008-12-01

    The physical modeling of active regions (ARs) and of the global corona is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright extreme-ultraviolet (EUV) warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations, respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, and repetition time) of the impulsive heating.

  9. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  10. Activation energies and temperature effects from electrical spectra of soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apparent permittivity often has soil-specific temperature responses as well as soil water responses. These variations affect dielectric sensors, often requiring site-specific calibrations. Variations of permittivity as a function of frequency and temperature can be used to calculate activation energ...

  11. Ambient temperature and activation of implantable cardioverter defibrillators

    NASA Astrophysics Data System (ADS)

    McGuinn, L.; Hajat, S.; Wilkinson, P.; Armstrong, B.; Anderson, H. R.; Monk, V.; Harrison, R.

    2013-09-01

    The degree to which weather influences the occurrence of serious cardiac arrhythmias is not fully understood. To investigate, we studied the timing of activation of implanted cardiac defibrillators (ICDs) in relation to daily outdoor temperatures using a fixed stratum case-crossover approach. All patients attending ICD clinics in London between 1995 and 2003 were recruited onto the study. Temperature exposure for each ICD patient was determined by linking each patient's postcode of residence to their nearest temperature monitoring station in London and the South of England. There were 5,038 activations during the study period. Graphical inspection of ICD activation against temperature suggested increased risk at lower but not higher temperatures. For every 1 °C decrease in ambient temperature, risk of ventricular arrhythmias up to 7 days later increased by 1.2 % (95 % CI -0.6 %, 2.9 %). In threshold models, risk of ventricular arrhythmias increased by 11.2 % (0.5 %, 23.1 %) for every 1° decrease in temperature below 2 °C. Patients over the age of 65 exhibited the highest risk. This large study suggests an inverse relationship between ambient outdoor temperature and risk of ventricular arrhythmias. The highest risk was found for patients over the age of 65. This provides evidence about a mechanism for some cases of low-temperature cardiac death, and suggests a possible strategy for reducing risk among selected cardiac patients by encouraging behaviour modification to minimise cold exposure.

  12. Differential Magnetic Field Shear in an Active Region

    NASA Technical Reports Server (NTRS)

    Schmeider, B.; DeMoulin, P.; Aulanier, G.; Golub, Leon

    1997-01-01

    The three-dimensional extrapolation of magnetic field lines from a magnetogram obtained at Kitt Peak allows us to understand the global structure of the NOAA active region 6718, as observed in X-rays with the Normal Incidence X-ray Telescope (NIXT) and in Ha with the Multichannel Subtractive Double Pass spectrograph (MSDP) in Meudon on 1991 July 11. This active region was in a quiet stage. Bright X-ray loops connect plages having field strengths of approx. 300 G, while H-alpha fibriles connect penumbrae having strong spot fields to the surrounding network. Small, intense X-ray features in the moat region around a large spot, which could be called X-ray-bright points, are due mainly to the emergence of magnetic flux and merging of these fields with surrounding ones. A set of large-scale, sheared X-ray loops is observed in the central part of the active region. Based on the fit between the observed coronal structure and the field configurations (and assuming a linear force-free field), we propose a differential magnetic field shear model for this active region. The decreasing shear in outer portions of the active region may indicate a continual relaxation of the magnetic field to a lower energy state in the progressively older portions of the AR.

  13. Doppler shift of hot coronal lines in a moss area of an active region

    NASA Astrophysics Data System (ADS)

    Dadashi, N.; Teriaca, L.; Tripathi, D.; Solanki, S. K.; Wiegelmann, T.

    2012-12-01

    The moss is the area at the footpoint of the hot (3 to 5 MK) loops forming the core of the active region where emission is believed to result from the heat flux conducted down to the transition region from the hot loops. Studying the variation of Doppler shift as a function of line formation temperatures over the moss area can give clues on the heating mechanism in the hot loops in the core of the active regions. We investigate the absolute Doppler shift of lines formed at temperatures between 1 MK and 2 MK in a moss area within active region NOAA 11243 using a novel technique that allows determining the absolute Doppler shift of EUV lines by combining observations from the SUMER and EIS spectrometers. The inner (brighter and denser) part of the moss area shows roughly constant blue shift (upward motions) of 5 km s-1 in the temperature range of 1 MK to 1.6 MK. For hotter lines the blue shift decreases and reaches 1 km s-1 for Fe xv 284 Å (~2 MK). The measurements are discussed in relation to models of the heating of hot loops. The results for the hot coronal lines seem to support the quasi-steady heating models for nonsymmetric hot loops in the core of active regions.

  14. Analysing Regional Land Surface Temperature Changes by Satellite Data, a Case Study of Zonguldak, Turkey

    NASA Astrophysics Data System (ADS)

    Sekertekin, A.; Kutoglu, S.; Kaya, S.; Marangoz, A. M.

    2014-12-01

    In recent years, climate change is one of the most important problems that the ecological system of the world has been encountering. Global warming and climate change have been studied frequently by all disciplines all over the world and Geomatics Engineering also contributes to such studies by means of remote sensing, global positioning system etc. Monitoring Land Surface Temperature (LST) via remote sensing satellites is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and there are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. Generally three algorithms are used to obtain LST by using Landsat 5 TM data. These algorithms are radiative transfer equation method, single channel method and mono-window algorithm. Radiative transfer equation method is not applicable because during the satellite pass, atmospheric parameters must be measured in-situ. In this research, mono window algorithm was implemented to Landsat 5 TM image. Besides, meteorological data such as humidity and temperature are used in the algorithm. Acquisition date of the image is 28.08.2011 and our study area is Zonguldak, Turkey. High resolution images are used to investigate the relationships between LST and land cover type. As a result of these analyses, area with vegetation cover has approximately 5 ºC lower temperature than the city center and arid land. Because different surface properties like reinforced concrete construction, green zones and sandbank are all together in city center, LST differs about 10 ºC in the city center. The temperature around some places in thermal power plant region Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature because of land cover structure. Thanks to this

  15. Active Tectonics And Modern Geodynamics Of Sub-Yerevan Region

    NASA Astrophysics Data System (ADS)

    Avanesyan, M.

    2004-05-01

    The given work is dedicated to active tectonics and modern geodynamics of Sub-Yerevan region. This region is interesting as a one of regions with maximal seismic activity in Armenia. The high level of seismic risk of this region is conditioned by high level of seismic hazard, high density of the population, as well as presence of objects of special importance and industrial capacities. The modern structure of Sub-Yerevan region and the adjacent area, as well as the Caucasus entirely, has mosaic-block appearance, typical for collision zone of Arabian and Eurasian plates. Distinctively oriented active faults of various ranges and morphological types are distinguished. These faults, in their turn, form various-scale active blocks of the Earth's crust and their movement defines seismic activity of the region. The researches show, that all strong earthquakes in the region were caused by movements by newest and activated ancient faults. In order to reveal the character of Earth's crust active blocks movement, separation of high gradients of horizontal and vertical movements and definition of stress fields highest concentration regions by GPS observations, high-accuracy leveling and study of earthquake focal mechanisms a new seismotectonic model is developed, which represents a combination of tectonic structure, seismic data, newest and modern movements. On the basis of comparison and analysis of these data zones with potential maximal seismic hazard are separated. The zone of joint of Azat-Sevan active and Yerevan abysmal faults is the most active on the territory of Sub-Yerevan region. The directions relatively the Earth's crust movement in the zones of horizontal and vertical movement gradients lead to conclusion, that Aragats-Tsakhkunian and Gegam active blocks undergo clockwise rotation. This means, that additional concentration of stress must be observed in block corners, that is confirmed by location of strong earthquakes sources. Thus, on the North 1988 Spitak (M

  16. Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.

    PubMed

    Portes, Maria Teresa; Figueiredo-Ribeiro, Rita de Cássia L; de Carvalho, Maria Angela M

    2008-10-01

    In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions

  17. Calculating activation energies for temperature compensation in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2011-10-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.

  18. Universities and Economic Development Activities: A UK Regional Comparison

    ERIC Educational Resources Information Center

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.

    2011-01-01

    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  19. First measurements of electron temperature in the D region with a symmetric double probe

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1973-01-01

    Measurement of the altitude profile of electron temperature in the ionospheric D region with the aid of a symmetric double probe flown on a Nike-Cajun payload launched on Oct. 13, 1971. The procedure for determining the electron temperature from the parameters of the double probe's current-voltage characteristic under conditions of nonnegligible ion-atom collision frequencies is described. It is shown that in its first lower ionospheric application the technique of the symmetric double probe has yielded the lowest values of electron temperature yet measured and has provided the very first direct measurement of electron temperature in the D region.

  20. Coronal temperatures of selected active cool stars as derived from low resolution Einstein observations

    NASA Technical Reports Server (NTRS)

    Vilhu, Osmi; Linsky, Jeffrey L.

    1990-01-01

    Mean coronal temperatures of some active G-K stars were derived from Rev1-processed Einstein-observatory's IPC-spectra. The combined X-ray and transition region emission line data are in rough agreement with static coronal loop models. Although the sample is too small to derive any statistically significant conclusions, it suggests that the mean coronal temperature depends linearly on the inverse Rossby-number, with saturation at short rotation periods.

  1. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  2. Temperature systematically modifies neural activity for sweet taste

    PubMed Central

    Wilson, David M.

    2014-01-01

    Temperature can modify neural and behavioral responses to taste stimuli that elicit “sweetness,” a perception linked to intake of calorie-laden foods. However, the role of temperature in the neural representation of sweet taste is poorly understood. Here we made electrophysiological recordings from gustatory neurons in the medulla of inbred mice to study how adjustments in taste solution temperature to cool (18°C), ambient (22°C), and warm (30°C and 37°C) values changed the magnitude and latency of gustatory activity to sucrose (0, 0.05, 0.1, 0.17, 0.31, and 0.56 M). Analysis of 22 sucrose-best neurons revealed that temperature markedly influenced responses to sucrose, which, across concentrations, were largest when solutions were warmed to 30°C. However, reducing solution temperature from warm to ambient to cool progressively steepened the slope of the sucrose concentration-response function computed across cells (P < 0.05), indicating that mean activity to sucrose increased more rapidly with concentration steps under cooling than with warming. Thus the slope of the sucrose concentration-response function shows an inverse relation with temperature. Temperature also influenced latency to the first spike of the sucrose response. Across neurons, latencies were shorter when sucrose solutions were warmed and longer, by hundreds of milliseconds, when solutions were cooled (P < 0.05), indicating that temperature is also a temporal parameter of sucrose activity. Our findings reveal that temperature systematically modifies the timing of gustatory activity to sucrose in the mammalian brain and how this activity changes with concentration. Results further highlight how oral somatosensory cues function as physiological modulators of gustatory processing. PMID:24966301

  3. Forced-convection Heat Transfer to Water at High Pressures and Temperatures in the Nonboiling Region

    NASA Technical Reports Server (NTRS)

    Kaufman, S J; Henderson, R W

    1951-01-01

    Forced-convection heat-transfer data have been obtained for water flowing in an electrically heated tube of circular cross section at water pressures of 200 and 2000 pounds per square inch, and temperatures in the nonboiling region, for water velocities ranging between 5 and 25 feet per second. The results indicate that conventional correlations can be used to predict heat-transfer coefficients for water at pressures up to 2000 pounds per square inch and temperatures in the nonboiling region.

  4. Cardiovascular Mortality Associated with Low and High Temperatures: Determinants of Inter-Region Vulnerability in China

    PubMed Central

    Yang, Xunfeng; Li, Lianfa; Wang, Jinfeng; Huang, Jixia; Lu, Shijun

    2015-01-01

    The objectives of this study were to estimate the effects of temperature on cardiovascular mortality in 26 regions in the south and west of China from 2008 to 2011, and to identify socioeconomic and demographic factors contributing to such inter-region variation in the temperature effect. A separate Poisson generalized additive model (GAM) was fitted to estimate percent changes in cardiovascular mortality at low and high temperatures on a daily basis for each region. The model used the smooth functions to model the nonlinear effects of temperature and humidity and to control for the seasonal factor using the calendar time variable. Given variation in the magnitude of the temperature effect on cardiovascular mortality, we employed a Bayesian network (BN) to identify potential region-specific socioeconomic and demographic factors that may explain the variation. In most regions, an increasing trend in high or low temperature was associated with an increase in cardiovascular mortality, with variation in the magnitude of the temperature effects across regions. Three factors, including per capita years of education (as an indicator of economic status), percentage of the population over 65 years of age and percentage of women had direct impact on cold-related cardiovascular mortality. Number of hospital beds (as an indicator of the availability of medical resources), percentage of population engaged in industrial occupations, and percentage of women showed direct impact on heat-related cardiovascular mortality. Due to the socioeconomic and demographic inequalities between regions, the development of customized prevention and adaptation programs to address the low/high temperatures in vulnerable regions should be prioritized. PMID:26024362

  5. The uncertainties of the net primary production due to regional and seasonal temperature changes in China

    NASA Astrophysics Data System (ADS)

    Sun, Guodong

    2015-04-01

    A kind of temperature change scenario is supplied by the approach of conditional nonlinear optimal perturbation related to parameter (CNOP-P) to estimate the variation of the net primary production (NPP)in North-South transect of eastern China within a state-of-the-art Lund-Potsdam-Jena dynamical global vegetation model (LPJ DGVM). There are two traits for the kind of temperature change scenario. Firstly, the kind of temperature change scenario considers the regional and seasonal differences in North-South transect of eastern China. The character of the temperature change is similar to the observation data due to the observational constraint. Secondly, the kind of temperature change scenario causes the maximal possible impact on the simulated NPP to discuss the maximal uncertainty in the simulated NPP to the temperature change in North-South transect of eastern China. Other two kinds of temperature change scenarios are also applied to explain the above two traits and to analyze variations due to different kinds of temperature change scenarios. It is shown that the kind of temperature change scenario resulted of the CNOP-P approach, which is called as the CNOP-P-type temperature change scenario, exhibits the regional and seasonal temperature differences in North-South transect of eastern China. The NPP decreases by 1.84% in northern China, and respectively increases by 4.09% and 18.99% in northeastern and southern China as the results of the CNOP-P-type temperature change scenario, though the NPP increases in small part of northern China and decreases in part of northeastern China. The variations in the NPP caused by the CNOP-P-type temperature change scenario are different to those by the other two types of temperature change scenarios in northern, northeastern China and southern China. The impact of the CNOP-P-type temperature change scenario on the NPP is intenser than that of the other two types of temperature change scenarios. The seasonal analyses demonstrate

  6. Extending temperature sum models to simulate onset of birch flowering on the regional scale

    NASA Astrophysics Data System (ADS)

    Klein, Christian; Biernath, Christian; Priesack, Eckart

    2015-04-01

    For human health issues a reliable forecast of the onset of flowering of different plants which produce allergenic pollen is important. Yet, there are numerous phenological models available with different degrees of model complexity. All models consider the effect of the air temperatures on plant development; but only few models also include other environmental factors and/or plant internal water and nutrient status. However, the more complex models often use empirical relations without physiological meaning and are often tested against small datasets derived from a limited amount of sites. Most models which are used to simulate plant phenology are based on the temporal integration of temperatures above a defined base temperature. A critical temperature sum then defines the onset of a new phenological stage. The use of models that base on temperatures only, is efficient as temperatures are the most frequently documented and available weather component on global, regional and local scales. These models score by their robustness over a wide range of environmental conditions. However, the simulations sometimes fail by more than 20 days compared to measurements, and thus are not adequate for their use in pollen forecast. We tested the ability of temperature sum models to simulate onset of flowering of wild (e.g. birch) and domestic plants in Bavaria. In a first step we therefore determined both, a regional averaged optimum base temperature and temperature sum for the examined plant species in Bavaria. In the second step, the base temperatures were optimized to each site for the simulation period 2001-2010. Our hypothesis is that domestic plants depend much less on the regional weather conditions than wild plants do, due to low and high genetic variability, respectively. If so, the observed base temperatures of wild plants are smaller for low annual average temperatures and higher for high annual average temperatures. In the cases of domestic plants the optimized base

  7. Spatial analysis of future East Asian seasonal temperature using two regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Kim, Yura; Jun, Mikyoung; Min, Seung-Ki; Suh, Myoung-Seok; Kang, Hyun-Suk

    2016-05-01

    CORDEX-East Asia, a branch of the coordinated regional climate downscaling experiment (CORDEX) initiative, provides high-resolution climate simulations for the domain covering East Asia. This study analyzes temperature data from regional climate models (RCMs) participating in the CORDEX - East Asia region, accounting for the spatial dependence structure of the data. In particular, we assess similarities and dissimilarities of the outputs from two RCMs, HadGEM3-RA and RegCM4, over the region and over time. A Bayesian functional analysis of variance (ANOVA) approach is used to simultaneously model the temperature patterns from the two RCMs for the current and future climate. We exploit nonstationary spatial models to handle the spatial dependence structure of the temperature variable, which depends heavily on latitude and altitude. For a seasonal comparison, we examine changes in the winter temperature in addition to the summer temperature data. We find that the temperature increase projected by RegCM4 tends to be smaller than the projection of HadGEM3-RA for summers, and that the future warming projected by HadGEM3-RA tends to be weaker for winters. Also, the results show that there will be a warming of 1-3°C over the region in 45 years. More specifically, the warming pattern clearly depends on the latitude, with greater temperature increases in higher latitude areas, which implies that warming may be more severe in the northern part of the domain.

  8. Kappa-distributions and Temperature Structure of the Prominence-Corona Transition Region

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Mackovjak, Šimon; Heinzel, Petr

    2014-01-01

    The influence of the electron κ - distributions on the differential emission measure (DEM) of the prominence-corona transition region (PCTR) derived from observed line intensities has been investigated. An important consequence of the κ - distribution is formation of the emission lines in much wider temperature ranges. The implications for the formation temperature of the observed SDO/AIA band emissions are shown.

  9. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  10. The solar atmosphere and the structure of active regions

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1974-01-01

    The existence of 'holes' in the corona is reported characterized by abnormally low densities and temperatures. It was found that such coronal holes appear to be the source of high-velocity, enhanced-density streams in the solar wind as observed at the earth's orbit. It was further noted that coronal holes appear to be associated with regions of diverging magnetic fields in the corona. Models were developed to accomplish the objective for the principal energy flows in the transition region and corona.

  11. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    NASA Astrophysics Data System (ADS)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  12. An assessment of thermal infrared remote sensing and its usefulness in determining regional stream temperatures

    NASA Astrophysics Data System (ADS)

    Cherkauer, K. A.; Handcock, R.; Kay, J. E.; Kampf, S. K.; Burges, S. J.; Gillespie, A. R.

    2006-12-01

    Thermal infrared (TIR) remote sensing is an important tool for the assessment of regional stream temperatures. Stream temperatures are an important water quality variable in the Pacific Northwest, especially due its impact on health of regional salmon and steelhead runs. Traditional measurements rely on networks of in-situ temperature observation sites, which are costly to install and maintain, limiting their ability to monitor large regions in detail. States have been collecting aircraft-based TIR measurements for several years now to assess the health of many of the smaller reaches that are not currently monitored with in-situ sensors but play a significant role in controlling water temperatures in the larger downstream reaches. Satellite-based TIR measurements with their repeating coverage and large fields of view hold a great deal of potential for monitoring and management of regional stream temperatures but are currently limited by low resolutions. TIR imagery from multiple streams and rivers in Washington State were collected along with in-situ measurements of water temperatures to assess the ability of current TIR technology to obtain accurate water temperature measurements in streams. A procedure for correcting TIR imagery for atmospheric and emissivity effects is presented. Corrected temperatures can provide accuracies within a degree Celsius of in-situ observations in most cases. The largest source of error was directly related to the TIR images resolution. Poorly resolved stream channels mix bank temperatures with water temperatures, so the most accurate stream temperatures are obtained when image resolution is 1/3 the width of the stream channel. Current satellite TIR resolutions are limited to monitoring only 6% of the reaches in Washington operating under temperature TMDLs.

  13. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  14. Divalent cations activate TRPV1 through promoting conformational change of the extracellular region

    PubMed Central

    Yang, Fan; Ma, Linlin; Cao, Xu

    2014-01-01

    Divalent cations Mg2+ and Ba2+ selectively and directly potentiate transient receptor potential vanilloid type 1 heat activation by lowering the activation threshold into the room temperature range. We found that Mg2+ potentiates channel activation only from the extracellular side; on the intracellular side, Mg2+ inhibits channel current. By dividing the extracellularly accessible region of the channel protein into small segments and perturbing the structure of each segment with sequence replacement mutations, we observed that the S1–S2 linker, the S3–S4 linker, and the pore turret are all required for Mg2+ potentiation. Sequence replacements at these regions substantially reduced or eliminated Mg2+-induced activation at room temperature while sparing capsaicin activation. Heat activation was affected by many, but not all, of these structural alternations. These observations indicate that extracellular linkers and the turret may interact with each other. Site-directed fluorescence resonance energy transfer measurements further revealed that, like heat, Mg2+ also induces structural changes in the pore turret. Interestingly, turret movement induced by Mg2+ precedes channel activation, suggesting that Mg2+-induced conformational change in the extracellular region most likely serves as the cause of channel activation instead of a coincidental or accommodating structural adjustment. PMID:24344245

  15. Relationship between skin temperature and muscle activation during incremental cycle exercise.

    PubMed

    Priego Quesada, Jose I; Carpes, Felipe P; Bini, Rodrigo R; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2015-02-01

    While different studies showed that better fitness level adds to the efficiency of the thermoregulatory system, the relationship between muscular effort and skin temperature is still unknown. Therefore, the present study assessed the relationship between neuromuscular activation and skin temperature during cycle exercise. Ten physically active participants performed an incremental workload cycling test to exhaustion while neuromuscular activations were recorded (via surface electromyography - EMG) from rectus femoris, vastus lateralis, biceps femoris and gastrocnemius medialis. Thermographic images were recorded before, immediately after and 10 min after finishing the cycling test, at four body regions of interest corresponding to the muscles where neuromuscular activations were monitored. Frequency band analysis was conducted to assess spectral properties of EMG signals in order to infer on priority in recruitment of motor units. Significant inverse relationship between changes in skin temperature and changes in overall neuromuscular activation for vastus lateralis was observed (r<-0.5 and p<0.04). Significant positive relationship was observed between skin temperature and low frequency components of neuromuscular activation from vastus lateralis (r>0.7 and p<0.01). Participants with larger overall activation and reduced low frequency component for vastus lateralis activation presented a better adaptive response of their thermoregulatory system by showing fewer changes in skin temperature after incremental cycling test. PMID:25660627

  16. Minimum extreme temperature in the gulf of mexico: is there a connection with solar activity?

    NASA Astrophysics Data System (ADS)

    Maravilla, D.; Mendoza, B.; Jauregui, E.

    Minimum extreme temperature ( MET) series from several meteorological stations of the Gulf of Mexico are spectrally analyzed using the Maximum Entrophy Method. We obtained periodicities similar to those found in the sunspot number, the magnetic solar cycle, comic ray fluxes and geomagnetic activity which are modulated by solar activity. We suggested that the solar signal is perhaps present in the MET record of this region of Mexico.

  17. A Novel Analysis of Acoustic Oscillations in Chromospheric Active Regions

    NASA Astrophysics Data System (ADS)

    Monsue, Teresa; Hill, Frank; Stassun, Keivan G.

    2015-04-01

    A helioseismic analysis of the chromosphere is employed in H-alpha to study how solar flares around active regions affect the behavior of acoustic oscillations. Our analysis deals with flares directly over sunspots, where the region is highly magnetized. In our current study of analyzing these oscillations in the chromosphere we study the temporal evolution of the oscillatory behavior from data taken from the Global Oscillation Network Group (GONG) H-alpha detectors. We investigate the wave behavior across different frequency bands (1 < ν < 8.33 mHz). In order to analyze the frequency bands of the oscillations, our analysis utilizes time series data to create Fourier power spectra of individual pixels spatially resolved and temporally evolved around the flare region; thereby creating a movie of each frequency band. This study entails three active regions, directly over sunspots, in which flaring activity is taking place from two solar flares, which occurred on June 13th and July 12th, 2012. We found that the intensity of the flare has an effect on the oscillations within different frequency bands. A suppression of power was observed in dark anomalous structures across the total frequency bands and in other regions there was an observed boost in power due to flaring activity. We find that, in the heart of all three regions, the low-frequency power (˜1-2 mHz) is substantially enhanced immediately prior to and after the flare, and that power at all frequencies up to 8 mHz is depleted at flare maximum. This depletion is both frequency and time dependent, which probably reflects the changing depths visible during the flare in the bandpass of the filter. These variations are not observed outside the flaring region. The depletion may indicate that acoustic energy is being converted into thermal energy at flare maximum, while the low-frequency enhancement may arise from an instability in the chromosphere and provide an early warning of the flare onset.

  18. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium

    NASA Astrophysics Data System (ADS)

    Pages2k-Pmip3 Group

    2015-06-01

    Estimated external radiative forcings, model results and proxy-based climate reconstructions have been used over the past several decades to improve our understanding of the mechanisms underlying observed climate variability and change over the past millennium. Here, the recent set of temperature reconstructions at the continental-scale generated by the PAGES 2k project and the collection of state-of-the-art model simulations driven by realistic external forcings following the PMIP3 protocol are jointly analysed. The first aim is to estimate the consistency between model results and reconstructions for each continental-scale region over time and frequency domains. Secondly, the links between regions are investigated to determine whether reconstructed global-scale covariability patterns are similar to those identified in model simulations. The third aim is to assess the role of external forcings in the observed temperature variations. From a large set of analyses, we conclude that models are in relatively good agreement with temperature reconstructions for Northern Hemisphere regions, particularly in the Arctic. This is likely due to the relatively large amplitude of the externally forced response across northern and high latitudes regions, which results in a clearly detectable signature in both reconstructions and simulations. Conversely, models disagree strongly with the reconstructions in the Southern Hemisphere. Furthermore, the simulations are more regionally coherent than the reconstructions perhaps due to an underestimation of the magnitude of internal variability in models or to an overestimation of the response to the external forcing in the Southern Hemisphere. Part of the disagreement might also reflect large uncertainties in the reconstructions, specifically in some Southern Hemisphere regions which are based on fewer paleoclimate records than in the Northern Hemisphere.

  19. Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium

    NASA Astrophysics Data System (ADS)

    Pages 2k-Pmip3 Group

    2015-12-01

    Estimated external radiative forcings, model results, and proxy-based climate reconstructions have been used over the past several decades to improve our understanding of the mechanisms underlying observed climate variability and change over the past millennium. Here, the recent set of temperature reconstructions at the continental-scale generated by the PAGES 2k project and a collection of state-of-the-art model simulations driven by realistic external forcings are jointly analysed. The first aim is to estimate the consistency between model results and reconstructions for each continental-scale region over the time and frequency domains. Secondly, the links between regions are investigated to determine whether reconstructed global-scale covariability patterns are similar to those identified in model simulations. The third aim is to assess the role of external forcings in the observed temperature variations. From a large set of analyses, we conclude that models are in relatively good agreement with temperature reconstructions for Northern Hemisphere regions, particularly in the Arctic. This is likely due to the relatively large amplitude of the externally forced response across northern and high-latitude regions, which results in a clearly detectable signature in both reconstructions and simulations. Conversely, models disagree strongly with the reconstructions in the Southern Hemisphere. Furthermore, the simulations are more regionally coherent than the reconstructions, perhaps due to an underestimation of the magnitude of internal variability in models or to an overestimation of the response to the external forcing in the Southern Hemisphere. Part of the disagreement might also reflect large uncertainties in the reconstructions, specifically in some Southern Hemisphere regions, which are based on fewer palaeoclimate records than in the Northern Hemisphere.

  20. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-01-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model. PMID:26293488

  1. Tracing temperature in a nanometer size region in a picosecond time period

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  2. Tracing temperature in a nanometer size region in a picosecond time period

    PubMed Central

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-01-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model. PMID:26293488

  3. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  4. On the Active Region Bright Grains Observed in the Transition Region Imaging Channels of IRIS

    NASA Astrophysics Data System (ADS)

    Skogsrud, H.; Rouppe van der Voort, L.; De Pontieu, B.

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5-1.″7 that generally move limbward with velocities up to about 30 km s-1. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  5. INTRAPULPAL TEMPERATURE VARIATION DURING BLEACHING WITH VARIOUS ACTIVATION MECHANISMS

    PubMed Central

    Michida, Sílvia Masae de Araujo; Passos, Sheila Pestana; Marimoto, Ângela Regina Kimie; Garakis, Márcia Carneiro Valera; de Araújo, Maria Amélia Máximo

    2009-01-01

    Objectives: The aim of this study was to evaluate the intrapulpal temperature variation after bleaching treatment with 35% hydrogen peroxide using different sources of activation. Material and Methods: Twenty-four human teeth were sectioned in the mesiodistal direction providing 48 specimens, and were divided into 4 groups (n=12): (G1) Control - Bleaching gel without light activation, (G2) Bleaching gel + halogen light, (G3) Bleaching gel + LED, (G4) Bleaching gel + Nd:YAG Laser. The temperatures were recorded using a digital thermometer at 4 time points: before bleaching gel application, 1 min after bleaching gel application, during activation of the bleaching gel, and after the bleaching agent turned from a dark-red into a clear gel. Data were analyzed statistically by the Dunnet's test, ANOVA and Tukey's test (α=0.05). Results: The mean intrapulpal temperature values (°C) in the groups were: G1: 0.617 ± 0.41; G2: 1.800 ± 0.68; G3: 0.975 ± 0.51; and G4: 4.325 ± 1.09. The mean maximum temperature variation (MTV) values were: 1.5°C (G1), 2.9°C (G2), 1.7°C (G3) and 6.9°C (G4). When comparing the experimental groups to the control group, G3 was not statistically different from G1 (p>0.05), but G2 and G4 presented significantly higher (p<0.05) intrapulpal temperatures and MTV. The three experimental groups differed significantly (p<0.05) from each other. Conclusions: The Nd:YAG laser was the activation method that presented the highest values of intrapulpal temperature variation when compared with LED and halogen light. The group activated by LED light presented the lowest values of temperature variation, which were similar to that of the control group. PMID:19936522

  6. Monitoring of Regional Land Surface Temperature in city by Wireless Sensing Network

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jiang, H.; Jin, J.

    2015-12-01

    Land surface temperature (LST) is an important environmental factor. The precise monitoring data of LST can provide crucial support for further ecological researches such as the environment change and urban heat island. The Wireless Sensing Network (WSN) is a kind of modern information technology which integrates sensor technology, automatic control technology with data network transmission, storage, processing and analysis technology. As a new kind of data collection method, WSN is innovatively applied to monitor regional LST in different land cover types of city in this study. The LST data with high temporal resolution is obtained from temperature sensors of WSN. The land cover types of city are extracted from WorldView-II image with high resolution. The Southeast University Wuxi Branch campus and its surroundings which covers 2 km2 is chosen as the study area in Wuxi city, Jiangsu province, China. WSN is established to continuously monitor LST in real-time for one week. Then, the heterogeneous pattern of LST is investigated at a fine spatial and temporal scale based on different land cover types. The result shows LST of streets is higher than LST of campus in the daytime, but lower than LST of campus at night. The spatial heterogeneity of LST in the campus is not significant. This is because the number of vehicle was larger in the daytime than that at night, while the population of campus in day and night almost having little change. Notably, the influence of plant activities (e.g. photosynthesis and respiration) on LST can be detected by WSN. This study is a new attempt to monitor regional environment of city by WSN technology. Moreover, compared to traditional methods, WSN technology can improve the detection of LST with finer temporal and spatial resolution.

  7. Skylab observations of X-ray loops connecting separate active regions. [solar activity

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.

    1976-01-01

    One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.

  8. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  9. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  10. Validation of climate model-inferred regional temperature change for late-glacial Europe.

    PubMed

    Heiri, Oliver; Brooks, Stephen J; Renssen, Hans; Bedford, Alan; Hazekamp, Marjolein; Ilyashuk, Boris; Jeffers, Elizabeth S; Lang, Barbara; Kirilova, Emiliya; Kuiper, Saskia; Millet, Laurent; Samartin, Stéphanie; Toth, Monika; Verbruggen, Frederike; Watson, Jenny E; van Asch, Nelleke; Lammertsma, Emmy; Amon, Leeli; Birks, Hilary H; Birks, H John B; Mortensen, Morten F; Hoek, Wim Z; Magyari, Enikö; Muñoz Sobrino, Castor; Seppä, Heikki; Tinner, Willy; Tonkov, Spassimir; Veski, Siim; Lotter, André F

    2014-01-01

    Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth's recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our palaeotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe. PMID:25208610

  11. Validation of climate model-inferred regional temperature change for late-glacial Europe

    PubMed Central

    Heiri, Oliver; Brooks, Stephen J.; Renssen, Hans; Bedford, Alan; Hazekamp, Marjolein; Ilyashuk, Boris; Jeffers, Elizabeth S.; Lang, Barbara; Kirilova, Emiliya; Kuiper, Saskia; Millet, Laurent; Samartin, Stéphanie; Toth, Monika; Verbruggen, Frederike; Watson, Jenny E.; van Asch, Nelleke; Lammertsma, Emmy; Amon, Leeli; Birks, Hilary H.; Birks, H. John B.; Mortensen, Morten F.; Hoek, Wim Z.; Magyari, Enikö; Sobrino, Castor Muñoz; Seppä, Heikki; Tinner, Willy; Tonkov, Spassimir; Veski, Siim; Lotter, André F.

    2014-01-01

    Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized paleoclimate datasets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth's recent past. Here we present a new chironomid-based paleotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our paleotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe. PMID:25208610

  12. IFLA General Conference, 1987. Division of Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Six of the seven papers in this collection focus on regional library activities in Africa, Asia and Oceania, and Latin America and the Caribbean: (1) "Libraries and Information Services in a Changing World: The Challenges African Information Services Face at the End of the 1980s" (Dejen Abate, Ethiopia); (2) "The Computer and Knowledge Information…

  13. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  14. SNS Devices With Pinhole-Defined Active Regions

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D.; Barner, Jeffrey B.

    1996-01-01

    Superconductor/normal conductor/superconductor (SNS) microbridge devices with pinhole-defined active regions undergoing development. Device includes thin, electrically insulating layer deposited epitaxially, with controlled formation of pinholes, on one of two superconducting layers. Normally conducting metal deposited epitaxially in pinholes and on insulating layer, forming electrical contact between two superconducting layers. Junction resistances and maximum junction voltages expected to be increased.

  15. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  16. Urban, Rural, and Regional Variations in Physical Activity

    ERIC Educational Resources Information Center

    Martin, Sarah Levin; Kirkner, Gregory J.; Mayo, Kelly; Matthews, Charles E.; Durstine, J. Larry; Hebert, James R.

    2005-01-01

    Purpose: There is some speculation about geographic differences in physical activity (PA) levels. We examined the prevalence of physical inactivity (PIA) and whether US citizens met the recommended levels of PA across the United States. In addition, the association between PIA/PA and degree of urbanization in the 4 main US regions (Northeast,…

  17. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  18. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  19. A new soil-temperature module for SWAT application in regions with seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Qi, Junyu; Li, Sheng; Li, Qiang; Xing, Zisheng; Bourque, Charles P.-A.; Meng, Fan-Rui

    2016-07-01

    Accurate estimates of soil temperature are important for quantifying hydrological and biological processes in hydrological models. Soil temperature predictions in the widely used Soil and Water Assessment Tool (SWAT) have large prediction errors when applied to regions with significant snow cover during winter. In this study, a new physically-based soil-temperature module is developed as an alternative to the empirical soil-temperature module currently used in SWAT. The physically-based module ​simulates soil temperature in different soil layers as a result of energy transfer between the atmosphere and soil (or snow) interface. The modified version of SWAT with the new soil-temperature module in place, introduces only three new parameters over the original soil-temperature module. Both the original and new soil-temperature modules are tested against field data from the Black Brook Watershed, a small watershed in Atlantic Canada. The results indicate that both versions of soil-temperature module ​are able to provide acceptable predictions of temperature in different layers of the soil during non-winter seasons. However, the original module severely underestimates soil temperatures in winter (within -10 to -20 °C), while the new module produces results that are more consistent with field measurements (within -2 to 2 °C). In addition, unlike its counterpart, the new module ​is able to simulate freeze-thaw cycles in the soil profile. Ice-water content variations in winter are reasonably simulated by the new module for different snow cover scenarios. In general, modified-SWAT improves prediction accuracy on baseflow discharge compared with the original-SWAT, due to improved estimates of soil temperature during winter. The new physically-based soil-temperature module has greatly improved the ability of SWAT to predict soil temperatures under seasonal snow cover, which is essential to the application of the model in regions like Atlantic Canada.

  20. Evolution of two Flaring Active Regions With CME Association

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Wiegelmann, T.

    2008-12-01

    We study the coronal magnetic field structure of two active regions, one during solar activity minimum (June 2007) and another one during a more active time (January 2004). The temporal evolution was explored with the help of nonlinear force-free coronal magnetic field extrapolations of SOLIS/VSM and NAOJ/SFT photospheric vector magnetograms. We study the active region NOAA 10960 observed on 2007 June 7 with three SOLIS/VSM snapshots taken during a small C1.0 flare of time cadence 10 minutes and six snapshots during a quiet period. The total magnetic energy in the active region was approximately 3 × 1025 J. Before the flare the free magnetic energy was about 5~% of the potential field energy. A part of this excess energy was released during the flare, producing almost a potential configuration at the beginning of the quiet period. The return to an almost potential structure can be assigned to a CME as recorded by the SoHO/LASCO instrument on 2007 June 07 around 10 minutes after the flare peaked, so that whatever magnetic helicity was bodily removed from the structure. This was compared with active region 10540 observed on 2004 January 18 -- 21, which was analyzed with the help of vector magnetograph data from the Solar Flare Telescope in Japan of time cadence of about 1 day. The free energy was Efree≈ 66~% of the total energy which was sufficiently high to power a M6.1 flare on January 20, which was associated with a CME 20 minutes later. The activity of AR 10540 was significantly higher than for AR 10960, as was the total magnetic energy. Furthermore, we found the common feature that magnetic energy accumulates before the flare/CME and a significant part of the excess energy is released during the eruption.

  1. Doppler Shifts in Active Region Moss Using SOHO/SUMER

    NASA Astrophysics Data System (ADS)

    Winebarger, Amy; Tripathi, Durgesh; Mason, Helen E.; Del Zanna, Giulio

    2013-04-01

    The velocity of the plasma at the footpoint of hot loops in active region cores can be used to discriminate between different heating frequencies. Velocities on the order of a few kilometers per second would indicate low-frequency heating on sub-resolution strands, while velocities close to zero would indicate high-frequency (steady) heating. To discriminate between these two values requires accurate velocity measurements; previous velocity measurements suffer from large uncertainties, mainly due to the lack of an absolute wavelength reference scale. In this paper, we determine the velocity in the loop footpoints using observations from Solar Ultraviolet Measurements of Emitted Radiation (SUMER) on Solar and Heliospheric Observatory. We use neutral spectral lines to determine the wavelength scale of the observations with an uncertainty in the absolute velocity of <3.5 km s-1 and co-aligned Transition Region and Coronal Explorer (TRACE) images to identify footpoint regions. We studied three different active regions and found average redshifts in the Ne VIII 770 Å emission line (formed at 6 × 105 K) of 5.17 ± 5.37 km s-1 and average redshifts in the C IV 1548 and 1550 Å emission lines (formed at 1 × 105 K) of 13.94 ± 4.93 km s-1 and 14.91 ± 6.09 km s-1, respectively. We find no correlation between the brightness in the spectral line and the measured velocity, nor do we find correlation between the Ne VIII and C IV velocities measured co-spatially and co-temporally. SUMER scanned two of the active regions twice; in those active regions we find positive correlation between the co-spatial velocities measured during the first and second scans. These results provide definitive and quantitative measurements for comparisons with simulations of different coronal heating mechanisms.

  2. Transition temperature range of thermally activated nickel-titanium archwires

    PubMed Central

    SPINI, Tatiana Sobottka; VALARELLI, Fabrício Pinelli; CANÇADO, Rodrigo Hermont; de FREITAS, Karina Maria Salvatore; VILLARINHO, Denis Jardim

    2014-01-01

    Objectives The shape memory resulting from the superelasticity and thermoelastic effect is the main characteristic of thermally activated NiTi archwires and is closely related to the transition temperature range (TTR). The aim of this study was to evaluate the TTR of thermally activated NiTi archwires commercially available. Material and Methods Seven different brands of 0.019"x0.025" thermally activated nickel-titanium archwires were tested as received by differential scanning calorimetry (DSC) over the temperature range from -100°C to 150°C at 10°C/min. Results All thermally activated NiTi archwires analyzed presented stage transformation during thermal scanning with final austenitic temperature (Af) ranging from 20.39°C to 45.42°C. Three brands of NiTi archwires presented Af close to the room temperature and, this way, do not present properties of shape memory and pseudoelasticity that are desirable in clinical applications. Conclusions The thermally activated NiTi archwires present great variability in the TTR and the elastic parameters of each NiTi archwire should be provided by the manufacturers, to allow achievement of the best clinical performance possible. PMID:24676581

  3. AMR (Active Magnetic Regenerative) refrigeration for low temperature

    NASA Astrophysics Data System (ADS)

    Jeong, Sangkwon

    2014-07-01

    This paper reviews AMR (Active Magnetic Regenerative) refrigeration technology for low temperature applications that is a novel cooling method to expand the temperature span of magnetic refrigerator. The key component of the AMR system is a porous magnetic regenerator which allows a heat transfer medium (typically helium gas) to flow through it and therefore obviate intermittently operating an external heat switch. The AMR system alternatingly heats and cools the heat transfer medium by convection when the magneto-caloric effect is created under varying magnetic field. AMR may extend the temperature span for wider range than ADR (Adiabatic Demagnetization Refrigerator) at higher temperatures above 10 K because magneto-caloric effects are typically concentrated in a small temperature range in usual magnetic refrigerants. The regenerative concept theoretically enables each magnetic refrigerant to experience a pseudo-Carnot magnetic refrigeration cycle in a wide temperature span if it is properly designed, although adequate thermodynamic matching of strongly temperature-dependent MCE (magneto-caloric effect) of the regenerator material and the heat capacity of fluid flow is often tricky due to inherent characteristics of magnetic materials. This paper covers historical developments, fundamental concepts, key components, applications, and recent research trends of AMR refrigerators for liquid helium or liquid hydrogen temperatures.

  4. Patterns of Activity Revealed by a Time Lag Analysis of a Model Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen; Viall, Nicholeen

    2016-05-01

    We investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of average frequencies. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine an extrapolated magnetic skeleton with hydrodynamic and forward modeling codes to create a model active region, and apply the time lag method to synthetic observations. Our aim is to recover some typical properties and patterns of activity observed in active regions. Our key findings are: 1. Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. 2. Shorter coronal loops in the core cool more quickly than longer loops at the periphery. 3. All channel pairs show zero time lag when the line-of-sight passes through coronal loop foot-points. 4. There is strong evidence that plasma must be re-energized on a time scale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies operates across active regions. 5. Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  5. Regional impacts of global change: seasonal trends in extreme rainfall, run-off and temperature in two contrasting regions of Morocco

    NASA Astrophysics Data System (ADS)

    Khomsi, Kenza; Mahe, Gil; Tramblay, Yves; Sinan, Mohamed; Snoussi, Maria

    2016-05-01

    In Morocco, socio-economic activities are highly vulnerable to extreme weather events. This study investigates trends in mean and extreme rainfall, run-off and temperature, as well as their relationship with large-scale atmospheric circulation. It focuses on two Moroccan watersheds: the subhumid climate region of Bouregreg in the north and the semi-arid region of Tensift in the south, using data from 1977 to 2003. The study is based on a set of daily temperature, precipitation and run-off time series retrieved from weather stations in the two regions. Results do not show a homogeneous behaviour in the two catchments; the influence of the large-scale atmospheric circulation is different and a clear spatial dependence of the trend analysis linked to the distance from the coast and the mountains can be observed. Overall, temperature trends are mostly positive in the studied area, while weak statistically significant trends can be identified in seasonal rainfall, extreme rainfall events, average run-off and extreme run-off events.

  6. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  7. Permanent geoelectrical and temperature monitoring in the permafrost region Magnetköpfl, Salzburg

    NASA Astrophysics Data System (ADS)

    Ottowitz, D.; Jochum, B.; Supper, R.; Keuschnig, M.; Hartmeyer, I.

    2012-04-01

    Changes of climate parameters due to global warming generate increased permafrost warming and deglaciation in alpine regions. In the area of interest scientists observe increasing rock instability due to the disappearance of the permafrost inside the Magnetköpfl, a peak below the Kitzsteinhorn (3203 m a.m.s.l), as well as the decrease of glacier hight followed by a lack of counterpressure at the flanks of the slope. As a result, slabs of rock fall onto the year-round ski slope during the warmer season. Geoelectric measurements are an adequate method to measure permafrost, since the underground electric resistivity is highly dependent on temperature. The GEOMON4D, an autonomous geoelectric monitoring system, developed by the Geological Survey of Austria, equipped with 80 electrodes and powered by a fuel cell, was installed for testing reasons in the year 2007 on Sonnblick and 2010 on Mölltaler Glacier. In 2011 the system was moved to the Magnetköpfl. The results of the active site show, that the resistivities are much higher than at the Mölltaler Glacier, which was about 200 m lower and contained no permafrost. Although the GEOMON4D is adapted for very high subsurface electrical resistivities with a constant current source we still approach the 10 V at the input channel with an injected current in the range of µA. Resistivity ranges at the Magnetköpfl from 104-108 Ohmm. By the end of December we covered the interesting period of the freezing process by measuring increased resistivity in the first 3 m below surface. Since the soil temperature is highly dependent on various parameters (e.g. location, slope angle, lithology) it is necessary to have on site soil temperatures for a more reliable interpretation of the resistivity data. The geoelectric measurements are accompanied by various soil temperature sensors in several depths on and around the Magnetköpfl. The recording of the soil temperature is conducted in the framework of the MOREXPERT project by the

  8. Active sonar, beaked whales and European regional policy.

    PubMed

    Dolman, Sarah J; Evans, Peter G H; Notarbartolo-di-Sciara, Giuseppe; Frisch, Heidrun

    2011-01-01

    Various reviews, resolutions and guidance from international and regional fora have been produced in recent years that acknowledge the significance of marine noise and its potential impacts on cetaceans. Within Europe, ACCOBAMS and ASCOBANS have shown increasing attention to the issue. The literature highlights concerns surrounding the negative impacts of active sonar on beaked whales in particular, where concerns primarily relate to the use of mid-frequency active sonar (1-10kHz), as used particularly in military exercises. The authors review the efforts that European regional policies have undertaken to acknowledge and manage possible negative impacts of active sonar and how these might assist the transition from scientific research to policy implementation, including effective management and mitigation measures at a national level. PMID:20451221

  9. The multi-thermal emission in solar active regions

    NASA Astrophysics Data System (ADS)

    Del Zanna, G.

    2013-10-01

    We present simultaneous SDO AIA and Hinode EIS observations of the hot cores of active regions (ARs) and assess the dominant contributions to the AIA EUV bands. This is an extension of our previous work. We find good agreement between SDO AIA, EVE and EIS observations, using our new EIS calibration and the latest EVE v.3 data. We find that all the AIA bands are multi-thermal, with the exception of the 171 and 335 Å, and provide ways to roughly estimate the main contributions directly from the AIA data. We present and discuss new atomic data for the AIA bands, showing that they are now sufficiently complete to obtain temperature information in the cores of ARs, with the exception of the 211 Å band. We found that the newly identified Fe xiv 93.61 Å line is the dominant contribution to the 94 Å band, whenever Fe xviii is not present. Three methods to estimate the Fe xviii emission in this band are presented, two using EIS and one directly from the AIA data. Fe xviii emission is often present in the cores of ARs, but we found cases where it is formed at 3 MK and not 7 MK, the temperature of peak ion abundance in equilibrium. The best EIS lines for elemental abundance determination and differential emission measure (DEM) analysis are discussed. A new set of abundances for many elements are obtained from EIS observations of hot 3 MK loops. The abundances of the elements with low first ionisation potential (FIP), relative to those of the high-FIP elements, are found to be enhanced by about a factor of three, compared to the photospheric values. A measurement of the path length implies that the absolute abundances of the low-FIP elements are higher than the photospheric values by at least a factor of three. We present a new DEM method customised for the AIA bands, to study the thermal structure of ARs at 1'' resolution. This was tested on a few ARs, including one observed during the Hi-C rocket flight. We found excellent agreement between predicted and observed AIA

  10. Tooth Whitening And Temperature Rise With Two Bleaching Activation Methods

    SciTech Connect

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-09-27

    To measure the tooth whitening and the surface and Intrapulpal temperature increase in vitro on freshly extracted upper human central incisors after chemical, Zoom AP light and diode laser activated bleaching. Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n = 10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel, for three applications of 15 min each. Group II was bleached with high intensity advanced power Zoom activation light (Zoom AP), for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 Watt diode laser for three applications of 30 sec each. The whitening degree was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and Intrapulpal. The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Chemical bleaching produces the same whitening effect as Zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than Zoom AP light. Diode laser used to activate bleaching gels is not considered dangerous to the vitality of dental pulp using power settings of 2 W.

  11. Tooth whitening and temperature rise with two bleaching activation methods

    NASA Astrophysics Data System (ADS)

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-02-01

    Objectives: To measure the tooth whitening and the surface and intra-pulpal temperature increase in vitro on extracted upper human incisors after chemical, zoom light and diode laser activated bleaching. Materials and Methods: Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n=10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel. Group II was bleached with high intensity advanced power zoom activation light, for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 watt diode laser for three applications of 30 sec each. Degree of whitening was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and intrapulpal. Results: The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Conclusions: Chemical bleaching produces the same whitening effect as zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than zoom AP light. Diode lasers used to activate bleaching gels are not considered dangerous to the vitality of dental pulps using power settings of 2W.

  12. Tooth Whitening And Temperature Rise With Two Bleaching Activation Methods

    NASA Astrophysics Data System (ADS)

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-09-01

    To measure the tooth whitening and the surface and Intrapulpal temperature increase in vitro on freshly extracted upper human central incisors after chemical, Zoom AP light and diode laser activated bleaching. Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n = 10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel, for three applications of 15 min each. Group II was bleached with high intensity advanced power Zoom activation light (Zoom AP), for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 Watt diode laser for three applications of 30 sec each. The whitening degree was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and Intrapulpal. The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Chemical bleaching produces the same whitening effect as Zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than Zoom AP light. Diode laser used to activate bleaching gels is not considered dangerous to the vitality of dental pulp using power settings of 2 W.

  13. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region

    NASA Astrophysics Data System (ADS)

    Zhong, Xi; Qi, Jianhua; Li, Hongtao; Dong, Lijie; Gao, Dongmei

    2016-09-01

    Microbial activities in the atmosphere can indicate the physiological processes of microorganisms and can indirectly affect cloud formation and environmental health. In this study, the microbial activity in bioaerosols collected in the Qingdao coastal region was investigated using the fluorescein diacetate (FDA) hydrolysis method to detect the enzyme activity of microorganisms. The results showed that the microbial activity ranged from 5.49 to 102 ng/m3 sodium fluorescein from March 2013 to February 2014; the average value was 34.4 ng/m3. Microbial activity has no statistical correlation with total microbial quantity. Multiple linear regression analysis showed that meteorological factors such as atmospheric temperature, relative humidity and wind speed accounted for approximately 35.7% of the variation of the microbial activity, although their individual impacts on microbial activity varied. According to the correlation analysis, atmospheric temperature and wind speed had a significant positive and negative influence on microbial activity, respectively, whereas relative humidity and wind direction had no significant influence. The seasonal distribution of microbial activity in bioaerosols was in the order of summer > autumn > winter > spring, with high fluctuations in the summer and autumn. Microbial activity in bioaerosols differed in different weather conditions such as the sunny, foggy, and hazy days of different seasons. Further in situ observations in different weather conditions at different times and places are needed to understand the seasonal distribution characteristics of microbial activity in bioaerosols and the influence factors of microbial activity.

  14. Elevated temperature creep properties for selected active metal braze alloys

    SciTech Connect

    Stephens, J.J.

    1997-02-01

    Active metal braze alloys reduce the number of processes required for the joining of metal to ceramic components by eliminating the need for metallization and/or Ni plating of the ceramic surfaces. Titanium (Ti), V, and Zr are examples of active element additions which have been used successfully in such braze alloys. Since the braze alloy is expected to accommodate thermal expansion mismatch strains between the metal and ceramic materials, a knowledge of its elevated temperature mechanical properties is important. In particular, the issue of whether or not the creep strength of an active metal braze alloy is increased or decreased relative to its non-activated counterpart is important when designing new brazing processes and alloy systems. This paper presents a survey of high temperature mechanical properties for two pairs of conventional braze alloys and their active metal counterparts: (a) the conventional 72Ag-28Cu (Cusil) alloy, and the active braze alloy 62.2Ag- 36.2Cu-1.6Ti (Cusil ABA), and (b) the 82Au-18Ni (Nioro) alloy and the active braze alloy Mu-15.5M-0.75Mo-1.75V (Nioro ABA). For the case of the Cusil/Cusil ABA pair, the active metal addition contributes to solid solution strengthening of the braze alloy, resulting in a higher creep strength as compared to the non-active alloy. In the case of the Nioro/Nioro ABA pair, the Mo and V additions cause the active braze alloy to have a two-phase microstructure, which results in a reduced creep strength than the conventional braze alloy. The Garofalo sinh equation has been used to quantitatively describe the stress and temperature dependence of the deformation behavior. It will be observed that the effective stress exponent in the Garofalo sinh equation is a function of the instantaneous value of the stress argument.

  15. Problems in evaluating regional and local trends in temperature: An example from eastern Colorado, USA

    USGS Publications Warehouse

    Pielke, R.A., Sr.; Stohlgren, T.; Schell, L.; Parton, W.; Doesken, N.; Redmond, K.; Moeny, J.; McKee, T.; Kittel, T.G.F.

    2002-01-01

    We evaluated long-term trends in average maximum and minimum temperatures, threshold temperatures, and growing season in eastern Colorado, USA, to explore the potential shortcomings of many climate-change studies that either: (1) generalize regional patterns from single stations, single seasons, or a few parameters over short duration from averaging dissimilar stations: or (2) generalize an average regional pattern from coarse-scale general circulation models. Based on 11 weather stations, some trends were weakly regionally consistent with previous studies of night-time temperature warming. Long-term (80 + years) mean minimum temperatures increased significantly (P < 0.2) in about half the stations in winter, spring, and autumn and six stations had significant decreases in the number of days per year with temperatures ??? - 17.8 ??C (???0??F). However, spatial and temporal variation in the direction of change was enormous for all the other weather parameters tested, and, in the majority of tests, few stations showed significant trends (even at P < 0.2). In summer, four stations had significant increases and three stations had significant decreases in minimum temperatures, producing a strongly mixed regional signal. Trends in maximum temperature varied seasonally and geographically, as did trends in threshold temperature days ???32.2??C (???90??F) or days ???37.8??C (???100??F). There was evidence of a subregional cooling in autumn's maximum temperatures, with five stations showing significant decreasing trends. There were many geographic anomalies where neighbouring weather stations differed greatly in the magnitude of change or where they had significant and opposite trends. We conclude that sub-regional spatial and seasonal variation cannot be ignored when evaluating the direction and magnitude of climate change. It is unlikely that one or a few weather stations are representative of regional climate trends, and equally unlikely that regionally projected climate

  16. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  17. THE EVOLUTION OF DARK CANOPIES AROUND ACTIVE REGIONS

    SciTech Connect

    Wang, Y.-M.; Robbrecht, E.; Muglach, K. E-mail: eva.robbrecht@oma.be

    2011-05-20

    As observed in spectral lines originating from the chromosphere, transition region, and low corona, active regions are surrounded by an extensive 'circumfacular' area which is darker than the quiet Sun. We examine the properties of these dark moat- or canopy-like areas using Fe IX 17.1 nm images and line-of-sight magnetograms from the Solar Dynamics Observatory. The 17.1 nm canopies consist of fibrils (horizontal fields containing extreme-ultraviolet-absorbing chromospheric material) clumped into featherlike structures. The dark fibrils initially form a quasiradial or vortical pattern as the low-lying field lines fanning out from the emerging active region connect to surrounding network and intranetwork elements of opposite polarity. The area occupied by the 17.1 nm fibrils expands as supergranular convection causes the active-region flux to spread into the background medium; the outer boundary of the dark canopy stabilizes where the diffusing flux encounters a unipolar region of opposite sign. The dark fibrils tend to accumulate in regions of weak longitudinal field and to become rooted in mixed-polarity flux. To explain the latter observation, we note that the low-lying fibrils are more likely to interact with small loops associated with weak, opposite-polarity flux elements in close proximity, than with high loops anchored inside strong unipolar network flux. As a result, the 17.1 nm fibrils gradually become concentrated around the large-scale polarity inversion lines (PILs), where most of the mixed-polarity flux is located. Systematic flux cancellation, assisted by rotational shearing, removes the field component transverse to the PIL and causes the fibrils to coalesce into long PIL-aligned filaments.

  18. Warming Amplification of Minimum and Maximum Temperatures over High-Elevation Regions across the Globe

    PubMed Central

    Wang, Mengben; Jiménez, Claudia Villarroel

    2015-01-01

    An analysis of the annual mean temperature (TMEAN) (1961–2010) has revealed that warming amplification (altitudinal amplification and regional amplification) is a common feature of major high-elevation regions across the globe against the background of global warming since the mid-20th century. In this study, the authors further examine whether this holds for annual mean minimum temperature (TMIN) and annual mean maximum temperature (TMAX) (1961–2010) on a global scale. The extraction method of warming component of altitude, and the paired region comparison method were used in this study. Results show that a significant altitudinal amplification trend in TMIN (TMAX) is detected in all (four) of the six high-elevation regions tested, and the average magnitude of altitudinal amplification trend for TMIN (TMAX) [0.306±0.086 °C km-1(0.154±0.213 °C km-1)] is substantially larger (smaller) than TMEAN (0.230±0.073 °C km-1) during the period 1961–2010. For the five paired high- and low-elevation regions available, regional amplification is detected in the four high-elevation regions for TMIN and TMAX (respectively or as a whole). Qualitatively, highly (largely) consistent results are observed for TMIN (TMAX) compared with those for TMEAN. PMID:26461461

  19. Patterns of Activity in a Global Model of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, S. J.; Viall, N. M.

    2016-04-01

    In this work we investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of frequencies. What differs is the average frequency of the distributions. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine hydrodynamic and forward modeling codes with a magnetic field extrapolation to create a model active region and apply the time lag method to synthetic observations. Our aim is not to reproduce a particular set of observations in detail, but to recover some typical properties and patterns observed in active regions. Our key findings are the following. (1) Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. (2) Shorter coronal loops in the core cool more quickly than longer loops at the periphery. (3) All channel pairs show zero time lag when the line of sight passes through coronal loop footpoints. (4) There is strong evidence that plasma must be re-energized on a timescale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies are operating across active regions. (5) Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  20. Determining heating timescales in solar active region cores from AIA/SDO Fe XVIII images

    SciTech Connect

    Ugarte-Urra, Ignacio; Warren, Harry P.

    2014-03-01

    We present a study of the frequency of transient brightenings in the core of solar active regions as observed in the Fe XVIII line component of AIA/SDO 94 Å filter images. The Fe XVIII emission is isolated using an empirical correction to remove the contribution of 'warm' emission to this channel. Comparing with simultaneous observations from EIS/Hinode, we find that the variability observed in Fe XVIII is strongly correlated with the emission from lines formed at similar temperatures. We examine the evolution of loops in the cores of active regions at various stages of evolution. Using a newly developed event detection algorithm, we characterize the distribution of event frequency, duration, and magnitude in these active regions. These distributions are similar for regions of similar age and show a consistent pattern as the regions age. This suggests that these characteristics are important constraints for models of solar active regions. We find that the typical frequency of the intensity fluctuations is about 1400 s for any given line of sight, i.e., about two to three events per hour. Using the EBTEL 0D hydrodynamic model, however, we show that this only sets a lower limit on the heating frequency along that line of sight.

  1. Stress versus temperature dependent activation energies in creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1990-01-01

    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.

  2. Stress versus temperature dependence of activation energies for creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1992-01-01

    The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.

  3. Trend Detection in Regional-Mean Temperature Series: Maximum, Minimum, Mean, Diurnal Range, and SST.

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaogu; Basher, Reid E.; Thompson, Craig S.

    1997-02-01

    Regional climate trends are of interest both for understanding natural climate processes and as tests of anthropogenic climate change signatures. Relative to global trends, however, their detection is hampered by smaller datasets and the influence of regional climate processes such as the Southern Oscillation. Regional trends are often presented by authors without demonstration of statistical significance. In this paper, regional-average annual series of air temperature and sea surface temperature for the New Zealand region are analyzed using a systematic statistical approach that selects the optimum statistical model (with respect to serial correlation, linearity, etc.), explicitly models the interannual variability associated with observable regional climate processes, and tests significance. It is found that the residuals are stationary and are a red noise process [ARMA(1,0)] for all the series examined. The SOI and a meridional circulation anomaly index (both high-pass filtered) are `explanatory variables' for interannual variability. For national-average air temperature (AT), linear and exponential trend models are equally valid but for simplicity the linear model is preferred. Failure to model the serial correlation in AT would result in an estimated confidence interval for trend that is too small by 36%. The use of the explanatory variables tightens the confidence interval by 15%.Significant trends were detected. The trend in AT for 1896-1994 is 0.11 ± 0.035°C decade1 (95% confidence interval). This is about double the trend reported for global data, which may be due to the relative absence of sulfate aerosols in the South Pacific region. The trends in maximum and minimum temperature over this period are not statistically different. However, for the later period of 1951-90, the trend in maximum temperature reduces to an insignificant value, while the trend in minimum temperature remains high, resulting in a significant downward trend in diurnal range of 0

  4. The evolution and orientation of early cycle 22 active regions

    NASA Technical Reports Server (NTRS)

    Cannon, Anne T.; Marquette, William H.

    1991-01-01

    The evolution of six major active regions which appeared during the first phase of the present solar cycle (cycle 22) has been studied. It was found that the northern hemisphere regions exhibited a broad range of evolutionary behavior in which the commonly accepted 'normal pattern' (whereby the follower flux moves preferentially polewards ahead of the leader flux) is represented at one end of the range. At the other end of the range, the leader flux is displaced polewards of the follower flux. In the latter cases equatorward extensions of the polar coronal hole are noted.

  5. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  6. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  7. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  8. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  9. Latitude dependency of solar flare index-temperature relation occuring over middle and high latitudes of Atlantic-Eurasian region

    NASA Astrophysics Data System (ADS)

    Kilcik, A.; Özgüç, A.; Rozelot, J. P.

    2010-12-01

    By applying multitaper methods and Pearson test on the surface air temperature and flare index used as a proxy data for possible solar sources of climate-forcing, we investigated the signature of these variables on middle and high latitudes of the Atlantic-Eurasian region (Turkey, Finland, Romania, Ukraine, Cyprus, Israel, Lithuania, and European part of Russia). We considered the temperature and flare index data for the period ranging from January 1975 to the end of December 2005, which covers almost three solar cycles, 21st, 22nd, and 23rd.We found significant correlations between solar activity and surface air temperature over the 50-60° and 60-70° zones for cycle 22, and for cycle 23, over the 30-40°, 40-50°, and 50-60° zones.The most pronounced power peaks for surface air temperature found by multitaper method are around 1.2, 1.7, and 2.5 years which were reported earlier for some solar activity indicators. These results support the suggestion that there is signature of solar activity effect on surface air temperature of mid-latitudes.

  10. Rapid Temperature Changes and the Early Activity on Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Alí-Lagoa, V.; Delbo', M.; Libourel, G.

    2015-09-01

    The so-called “early activity” of comet 67P/Churyumov-Gerasimenko has been observed to originate mostly in parts of the concave region or “neck” between its two lobes. Since activity is driven by the sublimation of volatiles, this is a puzzling result because this area is less exposed to the Sun and is therefore expected to be cooler on average. We used a thermophysical model that takes into account thermal inertia, global self-heating, and shadowing, to compute surface temperatures of the comet. We found that, for every rotation in the 2014 August-December period, some parts of the neck region undergo the fastest temperature variations of the comet’s surface precisely because they are shadowed by their surrounding terrains. Our work suggests that these fast temperature changes are correlated to the early activity of the comet, and we put forward the hypothesis that erosion related to thermal cracking is operating at a high rate on the neck region due to these rapid temperature variations. This may explain why the neck contains some ice—as opposed to most other parts of the surface—and why it is the main source of the comet’s early activity. In a broader context, these results indicate that thermal cracking can operate faster on atmosphereless bodies with significant concavities than implied by currently available estimates.

  11. Armenia as a Regional Centre for Astronomy for Development activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  12. On the temperature and gas composition in the region of comet formation

    NASA Technical Reports Server (NTRS)

    Bar-Nun, Akiva; Kleinfeld, Idit

    1989-01-01

    The gas composition and temperature in the region of Comet Halley's formation are estimated on the basis of Giotto and Vega spacecraft results, in conjunction with an experimental study of gas-mixture trapping in amorphous water ice. A CO/CH4 ratio of the order of 100, and temperature about 48 K, are inferred for the case of Halley formation in the solar nebula through water vapor condensation in the presence of gas. This formation temperature, which implies that the ice was in amorphous form, is noted to be close to the temperatures observed in circumstellar dust shells by IRAS; it also lends support to the suggestion that short-period comets were formed outside the planet-formation region.

  13. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    PubMed

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  14. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  15. Using NOAA-AVHRR estimates of land surface temperature for regional agrometeorogical modelling

    NASA Astrophysics Data System (ADS)

    de Wit, A. J. W.; Boogaard, H. L.; van Diepen, C. A.

    2004-09-01

    Agrometeorological crop simulation models are used increasingly in spatial applications like regional crop monitoring and yield forecasting. The spatial application of these models involves gathering spatially representative values of meteorological input variables (temperature, radiation and precipitation). This is usually accomplished by interpolating meteorological variables measured at point locations. This paper explores the use of advanced very high resolution radiometer (AVHRR)-derived surface temperature as a replacement for interpolated maximum air temperature in a spatial crop monitoring and yield forecasting system. A 2-year set of daily National Oceanic And Atmospheric Administration (NOAA)-AVHRR images over western Europe was used to derive estimates of daily surface temperature aggregated over 50 km × 50 km gridcells, a land cover database was used to select only pixels that were classified as 'arable land'. On days that did not yield data due to cloud cover, the monthly average surface temperature was substituted. The AVHRR-derived surface temperature is usually higher than the maximum air temperature measured at a weather station. To account for this difference, an empirical model was used that relates surface temperature to maximum air temperature. The model parameters were obtained using calibration with the maximum air temperature measured at five weather stations. Next, it was applied to the entire AVHRR data set in order to convert AVHRR surface temperature into a simulated maximum air temperature. Finally, a case study was carried out by using the WOrld FOod Studies (WOFOST) crop model to simulate growth of winter-wheat and sunflower for Spain using both the simulated maximum air temperature and the interpolated maximum air temperature from weather stations. Our results demonstrate that the spatial patterns of the yearly temperature sums over Spain are similar for both sources of temperature. Therefore, it can be concluded that the AVHRR

  16. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States.

    PubMed

    Yuksel, Tugce; Michalek, Jeremy J

    2015-03-17

    We characterize the effect of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-phase power plant CO2 emissions in the U.S. The efficiency of a BEV varies with ambient temperature due to battery efficiency and cabin climate control. We find that annual energy consumption of BEVs can increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature differences. Greenhouse gas (GHG) emissions from BEVs vary primarily with marginal regional grid mix, which has three times the GHG intensity in the Upper Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle efficiency and charging duration and timing. Cold climate regions also encounter days with substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These regional differences are large enough to affect adoption patterns and energy and environmental implications of BEVs relative to alternatives. PMID:25671586

  17. Effects of activation energy and activation volume on the temperature-dependent viscosity of water.

    PubMed

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes. PMID:27627349

  18. Trends of temperature and precipitation extremes in the Loess Plateau Region of China, 1961-2010

    NASA Astrophysics Data System (ADS)

    Wang, Qi-xiang; Wang, Meng-ben; Fan, Xiao-hui; Zhang, Feng; Zhu, Shi-zhong; Zhao, Tian-liang

    2016-05-01

    The spatial and temporal trends of 11 (7) temperature (precipitation) extreme indices are examined for the Loess Plateau Region (LPR) and its southeast and northwest sub-regions based on daily observations at 214 meteorological stations. Results show widespread significant warming trends for all the temperature extremes except for the diurnal temperature range (DTR) and the lowest daily maximum temperature in each year (TXn) during 1961-2010. When regionally averaged, a significant warming trend is detected for all the indices except for DTR and TXn in the past 50 years. Compared with the entire LPR, a significant warming trend is detected for all the indices except for DTR and TXn over the southeast sub-region of LPR; while it is observed for all the indices over the northwest. The trends for these indices are generally stronger in the northwest than in the southeast in the past 50 years. In contrast, for precipitation indices, only a small percentage of areas show significant drying or wetting trends and, when regionally averaged, none of them displays significant trends during the past 50 years. On the sub-regional scale, however, a larger percentage of areas show significant drying trends for precipitation indices generally over the southeast relative to the entire LPR, and noticeably, the sub-regional average heavy precipitation (R10mm) and wet day precipitation (PRCPTOT) display significant decreasing trends during the past 50 years; whereas only a slightly larger percentage of areas show significant wetting trends for these indices over the northwest compared with the entire LPR, and when sub-regionally averaged, none of the indices have significant trends during the past 50 years.

  19. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  20. Investigating Temperature and Rainfall Patterns over the Amazon Region using Complex Networks

    NASA Astrophysics Data System (ADS)

    Boers, N.; Bookhagen, B.; Marwan, N.; Kurths, J.

    2012-04-01

    The Amazon rainforest is of distinct climatological interest due to its carbon storage capability. It has been suggested that the region may undergo dramatic shifts in global warming scenarios, thereby possibly loosing its stabilizing effect on the regional and global climate. In the last decade, several extreme droughts have been reported, causing the rainforest to release substantially more carbon dioxide than it could absorb. In combination with ongoing deforestation, this raises concerns that the Amazon rainforest may indeed experience a tipping point in the near future. It has been speculated that the rainforest ecosystem might become unstable and change towards a savanna or desert, with drastic impacts on the global climate system. The physical mechanisms at work, in particular the interplay of temperature, precipitation, and vegetation are complex and not well understood. Relying on both climatological re-analysis and satellite-derived rainfall and temperature data, we investigate temperature and precipitation patterns in the region using complex networks. This new approach has proven very useful in the analysis of spatio-temporal data in general and of global temperature dependencies in particular. We construct precipitation networks by quantifying the degree of synchronization of rainfall events and temperature networks by measuring the degree of correlation between time series at different places. In both network types, we investigate structural differences corresponding to different ENSO-stages. Furthermore, we search for patterns in both precipitation and temperature networks which might possibly explain the reported droughts.

  1. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  2. Formation of active region and quiescent prominence magnetic field configurations

    NASA Technical Reports Server (NTRS)

    An, C.-H.; Bao, J. J.; Wu, S. T.

    1986-01-01

    To investigate the formation of prominences, researchers studied chromospheric mass injection into an overlying coronal dipole magnetic field using a 2-D ideal magnetohydrodynamic (MHD) numerical model. Researchers propose that active region prominences are formed by chromospheric plasmas injected directly into the overlying coronal magnetic field and that quiescent prominences are formed by plasmas evaporated at the interface between spicules and corona. Hence, for the simulation of an active region prominence magnetic field we inject the mass from one side, but use a symmetric mass injection to form a quiescent prominence field configuration. Researchers try to find optimum conditions for the formation of Kippenhahn-Schuluter(K-S)type field configuration for stable support of the injection plasmas. They find that the formation of K-S type field configuration by mass injection requires a delicate balance between injection velocity, density, and overlying magnetic fields. These results may explain why a prominence does not form on every neutral line.

  3. Tilt Angles of Quiescent Filaments and Filaments of Active Regions

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Kuzanyan, K. M.; Vasil'yeva, V. V.

    2016-04-01

    We carry out study of tilt angles of solar filaments using the data from the two observatories: Meudon Observatory and Kislovodsk Mountain Astronomical Station for the century-long period 1919-2014. We developed special software for digitization of the filaments structures on Hα synoptic maps. The filaments were vectorized in semi-automatic mode. The tilt angles of filaments with respect to the equator (τ) were analyzed. Approximately 2/3 of the filaments have positive angles τ >0, which is defined as when the eastern end of the filaments are closer to the poles than the western ones. We have separated tilts for the filaments which are close to the active region structures and those of quiescent filaments. We found that long quiescent filaments mainly have negative tilts. The filaments which are close to active regions mainly have positive tilt angles.

  4. Fine structure of the magnetic field in active regions

    NASA Astrophysics Data System (ADS)

    Pustilnik, Lev; Beskrovnaya, Nina; Ikhsanov, Nazar

    High-resolution observations with SOHO, SDO, TRACE, HINODE suggest that the solar magnetic field in active regions has a complicated fine structure. There is a large number of thin magnetic arcs extended from the photosphere to corona with almost constant cross-section. We explore a possibility to model the complex of interacting arcs in terms of a dynamical percolating network. A transition of the system into flaring can be triggered by the flute instability of prominences and/or coronal condensations. We speculate around an assumption that the energy release in active regions is governed by the same scenario as dynamical current percolation through a random resistors network in which the saltatory conduction is controlled by a local current level.

  5. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  6. In Situ Thermal Ion Temperature Measurements in the E Region Ionosphere: Techniques, Results, and Limitations

    NASA Astrophysics Data System (ADS)

    Burchill, J. K.; Archer, W. E.; Clemmons, J. H.; Knudsen, D. J.; Nicolls, M. J.

    2011-12-01

    In situ measurements of thermal ion temperature are rare at E region altitudes, which are too low for satellites. Here we present ion temperature measurements from a Thermal Ion Imager (TII) that flew on NASA sounding rocket 36.234 (the "Joule-2" mission) into the nightside E region ionosphere on 19 January 2007 from Poker Flat, AK. The TII is an electrostatic ion energy/angle imager that provides 2D ion distributions at 8 ms resolution. Ion temperatures are derived at altitudes between 100 km and 190 km by modelling the detector total count rate versus ion bulk flow angle with respect to the plane of the imager's field of view. Modelling this count rate spin profile shows that the analysis technique is robust against a number of error sources, including variability in payload floating potential, ion upflow, and aperture widening due to reflections from electrode surfaces. A significant uncertainty is associated with the average mass of the ions, which is not measured independently. Using the International Reference Ionosphere model to estimate ion mass, we obtain an ion temperature of 1300 K at 125 km, increasing to more than 3000 K at 180 km. These temperatures are much larger than neutral temperatures obtained from an ionization gauge on the same rocket (Tn˜500 K at 125 km, ˜600 K at 180 km), and do not agree with incoherent scatter radar observations in the vicinity of the rocket. These anomalous ion temperatures are, however, consistent with results from an independent analysis of the shape of the ion distribution images from a similar instrument on a separate payload flown 10 minutes earlier [Archer, MSc Thesis, University of Calgary, 2009]. We conclude that the high ion temperature readings are an artifact related to the environment in the vicinity of the probe, and investigate mechanisms for the cause. We discuss the implications of this effect for future in situ attempts to measure ion temperature in the E region ionosphere.

  7. Regional temperature and precipitation changes under high-end (≥4°C) global warming.

    PubMed

    Sanderson, M G; Hemming, D L; Betts, R A

    2011-01-13

    Climate models vary widely in their projections of both global mean temperature rise and regional climate changes, but are there any systematic differences in regional changes associated with different levels of global climate sensitivity? This paper examines model projections of climate change over the twenty-first century from the Intergovernmental Panel on Climate Change Fourth Assessment Report which used the A2 scenario from the IPCC Special Report on Emissions Scenarios, assessing whether different regional responses can be seen in models categorized as 'high-end' (those projecting 4°C or more by the end of the twenty-first century relative to the preindustrial). It also identifies regions where the largest climate changes are projected under high-end warming. The mean spatial patterns of change, normalized against the global rate of warming, are generally similar in high-end and 'non-high-end' simulations. The exception is the higher latitudes, where land areas warm relatively faster in boreal summer in high-end models, but sea ice areas show varying differences in boreal winter. Many continental interiors warm approximately twice as fast as the global average, with this being particularly accentuated in boreal summer, and the winter-time Arctic Ocean temperatures rise more than three times faster than the global average. Large temperature increases and precipitation decreases are projected in some of the regions that currently experience water resource pressures, including Mediterranean fringe regions, indicating enhanced pressure on water resources in these areas. PMID:21115514

  8. Case study of a complex active-region filament eruption

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Qu, Z. Q.; Kong, D. F.; Deng, L. H.; Xue, Z. K.

    2013-09-01

    Context. We investigated a solar active-region filament eruption associated with a C6.6 class flare and a coronal mass ejection (CME) in NOAA active region 08858 on 2000 February 9. Aims: We aim to better understand the relationship between filament eruptions and the associated flares and CMEs. Methods: Using BBSO, SOHO/EIT, and TRACE observational data, we analyzed the process of the active-region filament eruption in the chromosphere and the corona. Using the SOHO/MDI magnetograms, we investigated the change of the magnetic fields in the photosphere. Using the GOES soft X-ray flux and the SOHO/LASCO images, we identified the flare and CME, which were associated with this active-region filament eruption. Results: The brightenings in the chromosphere are a precursor of the filament expansion. The eruption itself can be divided into four phases: In the initial phase, the intertwined bright and dark strands of the filament expand. Then, the bright strands are divided into three parts with different expansion velocity. Next, the erupting filament-carrying flux rope expands rapidly and combines with the lower part of the expanding bright strands. Finally, the filament erupts accompanied by other dark strands overlying the filament.The overlying magnetic loops and the expansion of the filament strands can change the direction of the eruption. Conclusions: The time delay between the velocity peaks of the filament and that of the two parts of the bright strands clearly demonstrates that the breakup of the bright loops tying on the filament into individual strands is important for its eruption. The eruption is a collection of multiple processes that are physically coupled rather than a single process.

  9. Temperature dependence of HNO3 absorption in the 11.3-micron region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Bonomo, F. S.; Valero, F. P. J.; Goorvitch, D.; Boese, R. W.

    1981-01-01

    Laboratory spectra have been obtained for HNO3 with a Michelson-type Fourier transform interferometer using absorption cells with path lengths of 10.3, 25.5, and 49.8 cm at temperatures of 240, 248, 283, and 294 K. The measurements lead to a total band intensity value of 642 plus or minus 5% per sq cm amagat, which is a temperature independent value after the gas density correction has been made. However, the temperature dependence of the spectral absorption coefficients is apparent in the 885 kayser region.

  10. Simulation of Active-Region-Scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Manchester, W.; van der Holst, B.

    2015-12-01

    Shear flows long observed in solar active regions are now understood to be a consequence of the Lorentz force that develops from a complex interaction between magnetic fields and the thermal pressure of the Sun's gravitationally stratified atmosphere. The shearing motions transport magnetic flux and energy from the submerged portion of the field to the corona providing the necessary energy for flares, filament eruptions and CMEs. To further examine this shearing process, we simulate flux emergence on the scale of active regions with a large-scale model of the near surface convection zone constructed on an adaptive spherical grid. This model is designed to simulate flux emerging on the scale of active regions from a depth of 30 Mm. Here, we show results of a twisted flux rope emerging through the hierarchy of granular convection, and examine the flow patterns that arise as the flux approaches the photosphere. We show how these organized flows driven by the Lorentz force cause the coronal field evolve to a highly non-potential configuration capable of driving solar eruptions such as CMEs and flares.

  11. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    NASA Astrophysics Data System (ADS)

    Feng, Tai-Chen; Zhang, Ke-Quan; Su, Hai-Jing; Wang, Xiao-Juan; Gong, Zhi-Qiang; Zhang, Wen-Yu

    2015-10-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak; the number of lasted days has decreased; and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter. Project supported by the National Natural Science Foundation of China (Grant No. 41305075), the National Basic Research Program of China (Grant Nos. 2012CB955203 and 2012CB955902), and the Special Scientific Research on Public Welfare Industry, China (Grant No. GYHY201306049).

  12. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2016-02-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  13. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase

    NASA Astrophysics Data System (ADS)

    Butler, Ethan E.; Huybers, Peter

    2015-03-01

    Maize yield is sensitive to high temperatures, and most large scale analyses have used a single, fixed sensitivity to represent this vulnerability over the course of a growing season. Field scale studies, in contrast, highlight how temperature sensitivity varies over the course of development. Here we couple United States Department of Agriculture yield and development data from 1981-2012 with weather station data to resolve temperature sensitivity according to both region and growth interval. On average, temperature sensitivity peaks during silking and grain filling, but there are major regional variations. In Northern states grain filling phases are shorter when temperatures are higher, whereas Southern states show little yield sensitivity and have longer grain filling phases during hotter seasons. This pattern of grain filling sensitivity and duration accords with the whole-season temperature sensitivity in US maize identified in recent studies. Further exploration of grain filling duration and its response to high temperatures may be useful in determining the degree to which maize agriculture can be adapted to a hotter climate.

  14. Evaluations of the saltwater-groundwater interface from borehole temperature in a coastal region

    NASA Astrophysics Data System (ADS)

    Taniguchi, Makoto

    2000-03-01

    An interface between saltwater and groundwater was evaluated by monitoring the vertical groundwater temperature profiles. The temperature gradients were found to be constant below certain depths in boreholes, however the gradients decreased above the depths and the temperature profiles were convex in a coastal region. The depth to change in the vertical thermal gradient indicates a hydrological boundary, where upward groundwater flow exists above the boundary and no water flow exists below the boundary. Estimated depths to the interface between saltwater and fresh water using groundwater temperature agreed well with the depths calculated by traditional methods using groundwater potentials and with the results of the groundwater salinity. Results suggest that temperature may be an economical and reliable alternative to traditional methods.

  15. Regional and Local Scale Modeling of Stream Temperatures and Spatio-Temporal Variation in Thermal Sensitivities

    NASA Astrophysics Data System (ADS)

    Hilderbrand, Robert H.; Kashiwagi, Michael T.; Prochaska, Anthony P.

    2014-07-01

    Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air-water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R 2 for stream-specific models was positively related to a stream's thermal sensitivity. Both the regional and the stream-specific air-water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream's thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.

  16. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage. PMID:25010206

  17. Altered regional activity and inter-regional functional connectivity in psychogenic non-epileptic seizures.

    PubMed

    Li, Rong; Li, Yibo; An, Dongmei; Gong, Qiyong; Zhou, Dong; Chen, Huafu

    2015-01-01

    Although various imaging studies have focused on detecting the cerebral function underlying psychogenic non-epileptic seizures (PNES), the nature of PNES remains poorly understood. In this study, we combined the resting state fMRI with fractional amplitude of low-frequency fluctuations (fALFF) and functional connectivity based on the seed voxel linear correlation approach to examine the alterations of regional and inter-regional network cerebral functions in PNES. A total of 20 healthy controls and 18 patients were enrolled. The PNES patients showed significantly increased fALFF mainly in the dorsolateral prefrontal cortex (DLPFC), parietal cortices, and motor areas, as well as decreased fALFF in the triangular inferior frontal gyrus. Thus, our results add to literature suggesting abnormalities of neural synchrony in PNES. Moreover, PNES exhibited widespread inter-regional neural network deficits, including increased (DLPFC, sensorimotor, and limbic system) and decreased (ventrolateral prefrontal cortex) connectivity, indicating that changes in the regional cerebral function are related to remote inter-regional network deficits. Correlation analysis results revealed that the connectivity between supplementary motor area and anterior cingulate cortex correlated with the PNES frequency, further suggesting the skewed integration of synchronous activity could predispose to the occurrence of PNES. Our findings provided novel evidence to investigate the pathophysiological mechanisms of PNES. PMID:26109123

  18. Improving Shade Modelling in a Regional River Temperature Model Using Fine-Scale LIDAR Data

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Loicq, P.; Moatar, F.; Beaufort, A.; Melin, E.; Jullian, Y.

    2015-12-01

    Air temperature is often considered as a proxy of the stream temperature to model the distribution areas of aquatic species water temperature is not available at a regional scale. To simulate the water temperature at a regional scale (105 km²), a physically-based model using the equilibrium temperature concept and including upstream-downstream propagation of the thermal signal was developed and applied to the entire Loire basin (Beaufort et al., submitted). This model, called T-NET (Temperature-NETwork) is based on a hydrographical network topology. Computations are made hourly on 52,000 reaches which average 1.7 km long in the Loire drainage basin. The model gives a median Root Mean Square Error of 1.8°C at hourly time step on the basis of 128 water temperature stations (2008-2012). In that version of the model, tree shadings is modelled by a constant factor proportional to the vegetation cover on 10 meters sides the river reaches. According to sensitivity analysis, improving the shade representation would enhance T-NET accuracy, especially for the maximum daily temperatures, which are currently not very well modelized. This study evaluates the most efficient way (accuracy/computing time) to improve the shade model thanks to 1-m resolution LIDAR data available on tributary of the LoireRiver (317 km long and an area of 8280 km²). Two methods are tested and compared: the first one is a spatially explicit computation of the cast shadow for every LIDAR pixel. The second is based on averaged vegetation cover characteristics of buffers and reaches of variable size. Validation of the water temperature model is made against 4 temperature sensors well spread along the stream, as well as two airborne thermal infrared imageries acquired in summer 2014 and winter 2015 over a 80 km reach. The poster will present the optimal length- and crosswise scale to characterize the vegetation from LIDAR data.

  19. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  20. Similarity between turbulent kinetic energy and temperature spectra in the near-wall region

    NASA Technical Reports Server (NTRS)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.

  1. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  2. The solar extreme ultra-violet corona: Resolved loops and the unresolved active region corona

    NASA Astrophysics Data System (ADS)

    Cirtain, Jonathan Wesley

    In this work, physical characteristics of the solar corona as observed in the Extreme Ultra-Violet (EUV) regime are investigated. The focus will be the regions of intense EUV radiation generally found near the locations of sunspots. These regions are commonly called active regions. Multiple space- based observing platforms have been deployed in the last decade; it is possible to use several of these observatories in combination to develop a more complete picture of the solar corona. Joint Observing Program 146 was created to collect spectroscopic intensities using the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory and EUV images using NASA's Transition Region and Coronal Explorer. The emission line intensities are analyzed to develop an understanding of the temperature and density of the active region coronal plasma. However, the performance of the CDS instrument in the spatial and temporal domains is limited and to compensate for these limitations, data collected by the TRACE instrument provide a high spatial and temporal resolution set of observations. One of the most exciting unsolved problems in solar astrophysics is to understand why the corona maintains a temperature roughly two orders of magnitude higher than the underlying material. A detailed investigation of the coronal emission has provided constraints on models of the heating mechanism, since the temperature, density and evolution of emission rates for multiple ionic species are indicative of the mechanism(s) working to heat the corona. The corona appears to consist of multiple unresolved structures as well as resolved active region structures, called coronal loops. The purpose of the present work is to determine the characteristics of the unresolved background corona. Using the characterizations of the coronal unresolved background, results for loops after background subtraction are also presented. This work demonstrates the magnitude of the unresolved coronal emission with

  3. Active region upflows. II. Data driven magnetohydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    Galsgaard, K.; Madjarska, M. S.; Vanninathan, K.; Huang, Z.; Presmann, M.

    2015-12-01

    Context. Observations of many active regions show a slow systematic outflow/upflow from their edges lasting from hours to days. At present no physical explanation has been proven, while several suggestions have been put forward. Aims: This paper investigates one possible method for maintaining these upflows assuming, that convective motions drive the magnetic field to initiate them through magnetic reconnection. Methods: We use Helioseismic and Magnetic Imager (HMI) data to provide an initial potential 3D magnetic field of the active region NOAA 11123 on 2010 November 13 where the characteristic upflow velocities are observed. A simple 1D hydrostatic atmospheric model covering the region from the photosphere to the corona is derived. Local correlation tracking of the magnetic features in the HMI data is used to derive a proxy for the time dependent velocity field. The time dependent evolution of the system is solved using a resistive 3D magnetohydrodynamic code. Results: The magnetic field contains several null points located well above the photosphere, with their fan planes dividing the magnetic field into independent open and closed flux domains. The stressing of the interfaces between the different flux domains is expected to provide locations where magnetic reconnection can take place and drive systematic flows. In this case, the region between the closed and open flux is identified as the region where observations find the systematic upflows. Conclusions: In the present experiment, the driving only initiates magneto-acoustic waves without driving any systematic upflows at any of the flux interfaces. Movie is available in electronic form at http://www.aanda.org

  4. High Temperature Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; Steinetz, Bruce M.; Oswald, Jay J.

    2006-01-01

    A mechanically actuated blade tip clearance control concept was evaluated in a nonrotating test rig to quantify secondary seal leakage at elevated temperatures. These tests were conducted to further investigate the feasibility of actively controlling the clearance between the rotor blade tips and the surrounding shroud seal in the high pressure turbine (HPT) section of a turbine engine. The test environment simulates the state of the back side of the HPT shroud seal with pressure differentials as high as 120 psig and temperatures up to 1000 F. As expected, static secondary seal leakage decreased with increasing temperature. At 1000 F, the test rig's calculated effective clearance (at 120 psig test pressure) was 0.0003 in., well within the industry specified effective clearance goal.

  5. Sea surface temperature and torrential rains in the Valencia region: modelling the role of recharge areas

    NASA Astrophysics Data System (ADS)

    Pastor, Francisco J.

    2016-04-01

    Heavy rain events are frequently recorded in the Western Mediterranean causing economic and human losses. A main factor in the development of torrential rains is ocean-atmosphere exchange of heat and moisture that can destabilize air masses travelling over the sea. The study of air mass trajectories previous to the rain event permits the identification of sea areas that could probably contribute to the development or intensification of rainfall. From a Mediterranean sea surface temperature climatology, its spatio-temporal distribution patterns have been studied showing two main distribution modes in winter and summer and transitional regimes in spring and autumn. Hence, three heavy precipitation events, for such winter and summer sea temperature regimes and for fall transition, affecting the Valencia region have been selected to study the effect of sea surface temperature in torrential rains. Simulations with perturbed sea surface temperature in different areas along the air mass path were run to compare results with unperturbed simulation. The variation of sea surface temperature in certain areas caused significant changes in model accumulated values and its spatial distribution. Therefore, the existence of areas that at a greater extent favour air-sea interaction leading to the development of torrential rainfall in the Valencia region is shown. This methodology could be extended to other Mediterranean regions to look for such potential recharge areas. The identification of sea areas that contribute to the development or intensification of heavy rain events in the Mediterranean countries could be a useful prognosis and/or monitoring tool.

  6. RESOLVING THE ELECTRON TEMPERATURE DISCREPANCIES IN H II REGIONS AND PLANETARY NEBULAE: {kappa}-DISTRIBUTED ELECTRONS

    SciTech Connect

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.

    2012-06-20

    The measurement of electron temperatures and metallicities in H II regions and planetary nebulae (PNe) has-for several decades-presented a problem: results obtained using different techniques disagree. What is worse, they disagree consistently. There have been numerous attempts to explain these discrepancies, but none has provided a satisfactory solution to the problem. In this paper, we explore the possibility that electrons in H II regions and PNe depart from a Maxwell-Boltzmann equilibrium energy distribution. We adopt a '{kappa}-distribution' for the electron energies. Such distributions are widely found in solar system plasmas, where they can be directly measured. This simple assumption is able to explain the temperature and metallicity discrepancies in H II regions and PNe arising from the different measurement techniques. We find that the energy distribution does not need to depart dramatically from an equilibrium distribution. From an examination of data from H II regions and PNe, it appears that {kappa} {approx}> 10 is sufficient to encompass nearly all objects. We argue that the kappa-distribution offers an important new insight into the physics of gaseous nebulae, both in the Milky Way and elsewhere, and one that promises significantly more accurate estimates of temperature and metallicity in these regions.

  7. Temperature-sensitive mutants identify crucial structural regions of simian virus 40 large T antigen.

    PubMed Central

    Loeber, G; Tevethia, M J; Schwedes, J F; Tegtmeyer, P

    1989-01-01

    We have completed the cloning and sequencing of all known temperature-sensitive, amino acid substitution mutants of simian virus 40 large T antigen (tsA mutants). Surprisingly, many of the mutants isolated from distinct viral strains by different laboratories are identical. Thus, 17 independently isolated mutants represent only eight distinct genotypes. This remarkable clustering of tsA mutations in a few "hot spots" in the amino acid sequence of T antigen and the temperature-sensitive phenotypes of the mutations strongly suggest that these amino acids play crucial roles in organizing the structure of one or more functional domains. Most of the mutations are located in highly conserved regions of T antigen that correlate with DNA binding, protein-protein interactions, or ATP binding. With the exception of one mutant with a lesion in the putative ATP-binding region, all the mutants are temperature sensitive for DNA replication. PMID:2778883

  8. Forward Modeling Transient Brightenings and Microflares around an Active Region Observed with Hi-C

    NASA Astrophysics Data System (ADS)

    Kobelski, Adam R.; McKenzie, David E.

    2014-10-01

    Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C) sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.

  9. Forward modeling transient brightenings and microflares around an active region observed with Hi-C

    SciTech Connect

    Kobelski, Adam R.; McKenzie, David E.

    2014-10-20

    Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C) sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.

  10. Modeling Lunar Borehole Temperature in order to Reconstruct Historical Total Solar Irradiance and Estimate Surface Temperature in Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.

    2007-12-01

    The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is

  11. Trends in temperature extremes over nine integrated agricultural regions in China, 1961-2011

    NASA Astrophysics Data System (ADS)

    Wu, Xushu; Wang, Zhaoli; Zhou, Xiaowen; Lai, Chengguang; Chen, Xiaohong

    2016-06-01

    By characterizing the patterns of temperature extremes over nine integrated agricultural regions (IARs) in China from 1961 to 2011, this study performed trend analyses on 16 extreme temperature indices using a high-resolution (0.5° × 0.5°) daily gridded dataset and the Mann-Kendall method. The results show that annually, at both daytime and nighttime, cold extremes significantly decreased but warm extremes significantly increased across all IARs. Overall, nighttimes tended to warm faster than daytimes. Diurnal temperature ranges (DTR) diminished, apart from the mid-northern Southwest China Region and the mid-Loess Plateau Region. Seasonally, DTR widely diminished across all IARs during the four seasons except for spring. Higher minimum daily minimum temperature (TNn) and maximum daily maximum temperature (TXx), in both summer and winter, were recorded for most IARs except for the Huang-Huai-Hai Region; in autumn, all IARs generally encountered higher TNn and TXx. In all seasons, warming was observed at daytime and nighttime but, again, nighttimes warmed faster than daytimes. The results also indicate a more rapid warming trend in Northern and Western China than in Southern and Eastern China, with accelerated warming at high elevations. The increases in TNn and TXx might cause a reduction in agriculture yield in spring over Northern China, while such negative impact might occur in Southern China during summer. In autumn and winter, however, the negative impact possibly occurred in most of the IARs. Moreover, increased TXx in the Pearl River Delta and Yangtze River Delta is possibly related to rapid local urbanization. Climatically, the general increase in temperature extremes across Chinese IARs may be induced by strengthened Northern Hemisphere Subtropical High or weakened Northern Hemisphere Polar Vortex.

  12. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M.M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, reactive nitrogen oxides (NOx), volatile organic compounds and carbon monoxide). We calculate the global climate metrics: global warming potentials (GWPs) and global temperature change potentials (GTPs). For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs). The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions.

  13. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  14. FORMATION OF CORONAL HOLES ON THE ASHES OF ACTIVE REGIONS

    SciTech Connect

    Karachik, Nina V.; Pevtsov, Alexei A.; Abramenko, Valentyna I. E-mail: apevtsov@nso.ed

    2010-05-10

    We investigate the formation of isolated non-polar coronal holes (CHs) on the remnants of decaying active regions (ARs) at the minimum/early ascending phase of sunspot activity. We follow the evolution of four bipolar ARs and measure several parameters of their magnetic fields including total flux, imbalance, and compactness. As regions decay, their leading and following polarities exhibit different dissipation rates: loose polarity tends to dissipate faster than compact polarity. As a consequence, we see a gradual increase in flux imbalance inside a dissipating bipolar region, and later a formation of a CH in place of more compact magnetic flux. Out of four cases studied in detail, two CHs had formed at the following polarity of the decaying bipolar AR, and two CHs had developed in place of the leading polarity field. All four CHs contain a significant fraction of magnetic field of their corresponding AR. Using potential field extrapolation, we show that the magnetic field lines of these CHs were closed on the polar CH at the North, which at the time of the events was in imbalance with the polar CH at the South. This topology suggests that the observed phenomenon may play an important role in transformation of toroidal magnetic field to poloidal field, which is a key step in transitioning from an old solar cycle to a new one. The timing of this observed transition may indicate the end of solar cycle 23 and the beginning of cycle 24.

  15. Sea surface temperature reconstructions over the last 70 kyr off Portugal: Biomarker data and regional modeling

    NASA Astrophysics Data System (ADS)

    Darfeuil, Sophie; Ménot, Guillemette; Giraud, Xavier; Rostek, Frauke; Tachikawa, Kazuyo; Garcia, Marta; Bard, Édouard

    2016-01-01

    This study aims at providing robust temperature reconstructions for a key oceanographic setting in the North Atlantic and at understanding the nature of the temperature signal recorded by the two biomarkers Uk'37 and TEX86, considering season and depth of production. To do so, high-resolution signals of Uk'37 and TEX86 are determined for the last 70 kyr for core MD95-2042, located off Portugal. Signals of Uk'37 and TEX86 present a tight correlation, demonstrating a dominant temperature effect. Uk'37 signals correspond well to the annual mean sea surface temperature (SST), whereas TEXH86-derived temperatures are 5.6°C higher, which is unrealistically warm for this area. Unsuitable TEX86 global linear calibrations on the Iberian Margin may suggest a possible occurrence of archaeal communities with specific temperature response. To assess the impact of different season or depth of production of the biomarkers on the recorded temperature in the sediment, modeled temperature proxies (Tproxies) are introduced in a Regional Oceanic Modeling System and tested for different seasons (annual/summer/winter) and depths (surface and 0-200 m) of production for three climate modes (Present Day (PD), Last Glacial Maximum (LGM), and Heinrich Stadials (HS)). Similar temperature amplitudes between climate modes are found at MD95-2042 core site for observations, for both biomarkers, and for modeled annual surface production Tproxy: 5.5-7°C for ΔT(PD-LGM) and 3-4°C for ΔT(LGM-HS). Therefore, we propose a new TEXH86 regional calibration to reconstruct present and past annual mean SSTs on the Iberian Margin.

  16. Development of a Measurement System for the Figure of Merit in the High-Temperature Region

    NASA Astrophysics Data System (ADS)

    Iwasaki, H.; Yamamoto, T.; Kim, H.; Nakamoto, G.

    2013-07-01

    New equipment has been developed for evaluating the figure of merit, ZT, on the basis of the Harman method in the temperature range between room temperature and 650 K. In this temperature range, the sample holder in the vacuum chamber has a different construction as compared with the sample holder constructed for the temperature range below room temperature. Several issues that need to be considered, such as compensation for the thermal radiation effect, suppression of heat leakage from the lead wires, and the setup method for the lead wires on the sample, are examined in the considered temperature region. Evaluations of ZT are successfully made for typical thermoelectric materials, (Bi,Sb)2Te3 and CeFe3CoSb12. We then demonstrate that the influence of thermal radiation between the high- and low-temperature edges of the sample induced by the Peltier effect on the estimated value of ZT is negligible at around 600 K. Furthermore, the change in the thermoelectric properties due to repetition of the thermal cycle is studied, and a typical hysteresis behavior is observed in the considered thermoelectric materials. It is revealed that heating the sample to a high temperature causes a change in its thermoelectric properties, which one must take into account for practical applications of thermoelectric materials.

  17. Helioseismology of pre-emerging active regions. III. Statistical analysis

    SciTech Connect

    Barnes, G.; Leka, K. D.; Braun, D. C.; Birch, A. C.

    2014-05-01

    The subsurface properties of active regions (ARs) prior to their appearance at the solar surface may shed light on the process of AR formation. Helioseismic holography has been applied to samples taken from two populations of regions on the Sun (pre-emergence and without emergence), each sample having over 100 members, that were selected to minimize systematic bias, as described in Paper I. Paper II showed that there are statistically significant signatures in the average helioseismic properties that precede the formation of an AR. This paper describes a more detailed analysis of the samples of pre-emergence regions and regions without emergence based on discriminant analysis. The property that is best able to distinguish the populations is found to be the surface magnetic field, even a day before the emergence time. However, after accounting for the correlations between the surface field and the quantities derived from helioseismology, there is still evidence of a helioseismic precursor to AR emergence that is present for at least a day prior to emergence, although the analysis presented cannot definitively determine the subsurface properties prior to emergence due to the small sample sizes.

  18. Transparent conductive indium oxide film deposited on low temperature substrates by activated reactive evaporation.

    PubMed

    Marcovitch, O; Klein, Z; Lubezky, I

    1989-07-15

    High quality conductive coatings for the visible region were prepared on low temperature glass substrates. The conductive layer was an indium oxide film deposited by the activated reactive evaporation technique using a glow discharge hollow cathode ion gun. An antireflective layer of MgF(2) was deposited over the conductive layer. The average transmission in the visible region of the coated glass with sheet resistance of < 15 Omega/sq was greater than 90%. The coating was durable and passed a series of environmental tests according to MIL-C-675C. PMID:20555600

  19. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration

    NASA Astrophysics Data System (ADS)

    Batir, Joseph F.; Blackwell, David D.; Richards, Maria C.

    2016-06-01

    The objective of this research is to contribute to the understanding of the thermal regime of Alaska and its relationship to geology, regional tectonics, and to suggest potential sites for future geothermal energy production. New heat flow data were collected and are combined with existing published and unpublished data, although large sections of Alaska still lack data. Fault traces were implemented into the heat flow contouring as an additional gridding constraint, to incorporate both heat flow measurements and geology. New heat flow data supported the use of geologic trends in the heat flow mapping procedure, and a heat flow map of Alaska was produced with this added constraint. The multi-input contouring strategy allows production of a map with a regional interpretation of heat flow, in addition to site-specific heat flow and thermal model interpretations in areas with sufficient data density. Utilizing the new heat flow map, temperature-at-depth curves were created for example areas. Temperature-at-depth curves are calculated to 10 km depth for the areas of Anchorage, Fairbanks, Juneau, the Alaska Peninsula, Bristol Bay, and the Copper River Basin. The temperatures-at-depth predicted near the population centers of Anchorage and Juneau are relatively low, limiting the geothermal resource potential. The Fairbanks area temperature estimates are near conventional power production temperatures (150 °C) between 3.5 and 4 km. All data areas, except at Juneau, have temperatures sufficient for low temperature geothermal applications (40 °C) by 2 km. A high heat flow region exists within the Aleutian Volcanic Arc, although new data show heat flow variations from 59 to 120 mW m‑2, so individual geothermal resources within the arc will be irregularly located.

  20. The effect of using different regions of interest on local and mean skin temperature.

    PubMed

    Maniar, Nirav; Bach, Aaron J E; Stewart, Ian B; Costello, Joseph T

    2015-01-01

    The dynamic nature of tissue temperature and the subcutaneous properties, such as blood flow, fatness, and metabolic rate, leads to variation in local skin temperature. Therefore, we investigated the effects of using multiple regions of interest when calculating weighted mean skin temperature from four local sites. Twenty-six healthy males completed a single trial in a thermonetural laboratory (mean ± SD): 24.0 (1.2)°C; 56 (8%) relative humidity; <0.1 m/s air speed). Mean skin temperature was calculated from four local sites (neck, scapula, hand and shin) in accordance with International Standards using digital infrared thermography. A 50 mm × 50 mm, defined by strips of aluminium tape, created six unique regions of interest, top left quadrant, top right quadrant, bottom left quadrant, bottom right quadrant, centre quadrant and the entire region of interest, at each of the local sites. The largest potential error in weighted mean skin temperature was calculated using a combination of a) the coolest and b) the warmest regions of interest at each of the local sites. Significant differences between the six regions interest were observed at the neck (P<0.01), scapula (P<0.001) and shin (P<0.05); but not at the hand (P = 0.482). The largest difference (± SEM) at each site was as follows: neck 0.2 (0.1)°C; scapula 0.2 (0.0)°C; shin 0.1 (0.0)°C and hand 0.1 (0.1)°C. The largest potential error (mean ± SD) in weighted mean skin temperature was 0.4 (0.1)°C (P<0.001) and the associated 95% limits of agreement for these differences was 0.2-0.5 °C. Although we observed differences in local and mean skin temperature based on the region of interest employed, these differences were minimal and are not considered physiologically meaningful. PMID:25774024

  1. Influence of Saline on Temperature Profile of Laser Lithotripsy Activation

    PubMed Central

    Silva, Igor N.; Donalisio da Silva, Rodrigo; Gustafson, Diedra; Sehrt, David; Kim, Fernando J.

    2015-01-01

    Abstract Purpose: We established an ex vivo model to evaluate the temperature profile of the ureter during laser lithotripsy, the influence of irrigation on temperature, and thermal spread during lithotripsy with the holmium:yttrium-aluminum-garnet (Ho:YAG) laser. Materials and Methods: Two ex vivo models of Ovis aries urinary tract and human calcium oxalate calculi were used. The Open Ureteral Model was opened longitudinally to measure the thermal profile of the urothelium. On the Clinical Model, anterograde ureteroscopy was performed in an intact urinary system. Temperatures were measured on the external portion of the ureter and the urothelium during lithotripsy and intentional perforation. The lithotripsy group (n=20) was divided into irrigated (n=10) and nonirrigated (n=10), which were compared for thermal spread length and values during laser activation. The intentional perforation group (n=10) was evaluated under saline flow. The Ho:YAG laser with a 365 μm laser fiber and power at 10W was used (1J/Pulse at 10 Hz). Infrared Fluke Ti55 Thermal Imager was used for evaluation. Maximum temperature values were recorded and compared. Results: On the Clinical Model, the external ureteral wall obtained a temperature of 37.4°C±2.5° and 49.5°C±2.3° (P=0.003) and in the Open Ureteral Model, 49.7°C and 112.4°C with and without irrigation, respectively (P<0.05). The thermal spread along the external ureter wall was not statically significant with or without irrigation (P=0.065). During intentional perforation, differences in temperatures were found between groups (opened with and without irrigation): 81.8°±8.8° and 145.0°±15.0°, respectively (P<0.005). Conclusion: There is an increase in the external ureteral temperature during laser activation, but ureteral thermal values decreased when saline flow was applied. Ureter thermal spread showed no difference between irrigated and nonirrigated subgroups. This is the first laser lithotripsy thermography study

  2. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (∼0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ∼ 3 km s‑1) as well as modest non-thermal velocities (with an average of ∼24 km s‑1 and the peak of the distribution at ∼15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  3. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  4. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s‑1) as well as modest non-thermal velocities (with an average of ˜24 km s‑1 and the peak of the distribution at ˜15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  5. Limitations When Using Proxies of Atmospheric Circulation to Infer Regional Temperature

    NASA Astrophysics Data System (ADS)

    Kelsey, E. P.; Wake, C. P.; Osterberg, E. C.; Kreutz, K. J.

    2011-12-01

    One objective of ice core paleoclimatology is to reconstruct past variability of climate parameters such as surface air temperature. Stable isotope ratios of ice cores collected from some locations can be used with confidence to reconstruct regional air temperature. Other glaciochemical records (e.g., major ions) have been used as proxies for regional atmospheric circulation patterns, including the Arctic Oscillation and Pacific-North American pattern, typically based on the strength of semi-permanent sea level pressure centers such as the Icelandic Low and Aleutian Low. The Arctic Oscillation and Pacific North American pattern are associated with regional air temperature anomalies, and consequently ice core proxies of these circulation patterns could be used to infer paleotemperature patterns. However, detailed analysis of the 20th Century Reanalysis dataset (1871-2008) for the Northern Hemisphere winter suggests that these atmospheric circulation patterns do not always result in the same regional air temperature anomalies. A principal component analysis of detrended and area-weighted winter (December-March) temperature and sea level pressure was performed, and the leading eigenmodes were compared, along with the winter mean positions of the Icelandic and Aleutian Lows. Robust results based on multiple statistical analyses were obtained only when the extreme seasonal values of these variables were examined. Although statistically significant results were obtained when looking at temperature patterns associated with specific sea level pressure patterns and the positions of the Icelandic and Aleutian Lows, more consistent relationships were found when examining sea level pressure patterns associated with the leading eigenmodes of temperature. The seasons of extreme eigenvalues of the leading temperature eigenmodes are associated with mean positions of the Icelandic and Aleutian Lows at climatologically extreme north/south and west/east locations, respectively

  6. Chromospheric Evolution and the Flare Activity of Super-Active Region NOAA 6555

    NASA Technical Reports Server (NTRS)

    PrasadC, Debi; Ambastha, Ashok; Srivastava, Nandita; Tripathy, Sushanta C.; Hagyard, Mona J.

    1997-01-01

    Super-active region NOAA 6555 was highly flare productive during the period March 21st - 27th, 1991 of its disk passage. We have studied its chromospheric activity using high spatial resolution H alpha filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.

  7. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect

    Morgan, Huw; Jeska, Lauren; Leonard, Drew

    2013-06-01

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  8. Ultraviolet observations of the structure and dynamics of an active region at the limb

    NASA Technical Reports Server (NTRS)

    Korendyke, C. M.; Dere, K. P.; Socker, D. G.; Brueckner, G. E.; Schmieder, B.

    1995-01-01

    The structure and dynamics of active region NOAA 7260 at the limb have been studied using ultraviolet spectra and spectroheliograms obtained during the eighth rocket flight of the Naval Research Laboratory's High Resolution Telescope an Spectrograph (HRTS). The instrument configuration included a narrow-bandpass spectroheliograph to observe the Sun in the lines of C IV lambda 550 and a tandem-Wadsworth mount spectrograph to record the profiles of chromospheric transition region and coronal lines in the 1850-2670 A region. The combination of high spatial resolution and high spectral purity C IV slit jaw images with ultraviolet emission-line spectra corresponding allows examination of a variety of active region phenomena. A time series of spectroheliograms shows large-scale loop systems composed of fine-scale threads with some extending up to 100 Mm above the limb. The proper motion of several supersonic features, including a surge were measured. The accelerated plasmas appear in several different geometries and environments. Spectrograph exposures were taken with the slit positioned at a range of altitudes above the limb and provide a direct comparison between coronal, transition region and chromospheric emission line profiles. The spectral profiles of chromospheric and transition region emission lines show line-of-sight velocities up to 70 km/s. These lower temperature, emission-line spectra show small-scale spatial and velocity variations which are correlated with the threadlike structures seen in C IV. Coronal lines of Fe XII show much lower velocities and no fine structure.

  9. DECONSTRUCTING ACTIVE REGION AR10961 USING STEREO, HINODE, TRACE, AND SOHO

    SciTech Connect

    Noglik, Jane B.; Walsh, Robert W.; Marsh, M. S.; Maclean, Rhona C.

    2009-10-01

    Active region 10961 was observed over a five-day period (2007 July 2-6) by instrumentation on-board STEREO, Hinode, TRACE, and SOHO. As it progressed from Sun's center to the solar limb, a comprehensive analysis of the extreme ultraviolet, X-ray, and magnetic field data reveals clearly observable changes in the global nature of the region. Temperature analyses undertaken using STEREO Extreme Ultraviolet Imager double filter ratios and X-ray imaging telescope single and combined filter ratios demonstrate an overall cooling of the region from between 1.6-3.0 MK to 1.0-2.0 MK over the five days. Similarly, Hinode Extreme Ultraviolet Imaging Spectrograph density measurements show a corresponding increase in density of 27%. Moss, cool (1 MK) outer loop areas, and hotter core loop regions were examined and compared with potential magnetic field extrapolations from SOHO Michelson Doppler Imager magnetogram data. In particular, it was found that the potential field model was able to predict the structure of the hotter X-ray loops and that the larger cool loops seen in 171 A images appeared to follow the separatrix surfaces. The reasons behind the high-density moss regions only observed on one side of the active region are examined further.

  10. The effect of deforestation on the regional temperature in Northeastern China

    NASA Astrophysics Data System (ADS)

    Yu, Lingxue; Zhang, Shuwen; Tang, Junmei; Liu, Tingxiang; Bu, Kun; Yan, Fengqin; Yang, Chaobin; Yang, Jiuchun

    2015-05-01

    Land cover change, as one of the most important driving forces to climate change, has become the research focus of the global environmental change research and global land project. More researchers studied on the global influence of Land-Use and Land-Cover Change and proved that land use change occurred at different temperature zones may produce different climate effects. For example, deforestation in tropical areas would lead to higher temperatures as the decreasing of evapotranspiration caused by the reduction of roughness and the decreasing of drag coefficient and leaf area index while, in boreal areas, similar deforestation would cause lower temperature as the increasing of albedo particularly during winter with the snow cover. However, the impact of deforestation in the temperate regions on the climate still existed uncertainty and the impacts of deforestation at different humidity conditions on climate has not explored yet. From this perspective, this article used Weather Research and Forecasting model to simulate the impact of deforestation on the temperature of Northeastern China. In this study, we designed two scenarios in July and December, respectively: One was simulated without human intervention, and the second one was simulated with the current forest covers. The results showed that the temperature in both summer and winter showed a decreasing trend when the conversion of forest to farmland occurred in northeastern China. In order to further explore the humidity impacts on the temperature, we performed sample analysis on humid, sub-humid, and semi-arid regions. According to the results, the maximum variation of temperature was found in humid areas, especially in December when the temperature decreased around 4-5 °C, while the change in semi-arid and sub-humid areas is relatively small.

  11. Surface Temperature Trends in the Arctic Atlantic Region Over the Last 2,000 Years

    NASA Astrophysics Data System (ADS)

    Korhola, A.; Hanhijarvi, S.; Tingley, M.

    2013-12-01

    We introduce a new reconstruction method that uses the ordering of all pairs of proxy observations within each record to arrive at a consensus time series that best agrees with all proxy records. By considering only pairwise comparisons, this method, which we call PaiCo, facilitates the inclusion of records with differing temporal resolutions, and relaxes the assumption of linearity to the more general assumption of a monotonically increasing relationship between each proxy series and the target climate variable. We apply PaiCo to a newly assembled collection of high-quality proxy data to reconstruct the mean temperature of the Northernmost Atlantic region, which we call Arctic Atlantic, over the last 2,000 years. The Arctic Atlantic is a dynamically important region known to feature substantial temperature variability over recent millennia, and PaiCo allows for a more thorough investigation of the Arctic Atlantic regional climate as we include a diverse array of terrestrial and marine proxies with annual to multidecadal temporal resolutions. Comparisons of the PaiCo reconstruction to recent reconstructions covering larger areas indicate greater climatic variability in the Arctic Atlantic than for the Arctic as a whole. The Arctic Atlantic reconstruction features temperatures during the Roman Warm Period and Medieval Climate Anomaly that are comparable or even warmer than those of the twentieth century, and coldest temperatures in the middle of the nineteenth century, just prior to the onset of the recent warming trend.

  12. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  13. SOI/MDI studies of active region seismology and evolution

    NASA Technical Reports Server (NTRS)

    Tarbell, Ted D.; Title, Alan; Hoeksema, J. Todd; Scherrer, Phil; Zweibel, Ellen

    1995-01-01

    The solar oscillations investigation (SOI) will study solar active regions using both helioseismic and conventional observation techniques. The Michelson Doppler imager (MDI) can perform Doppler continuum and line depth imagery and can produce longitudinal magnetograms, showing either the full disk or a high resolution field of view. A dynamics program of continuous full disk Doppler observations for two months per year, campaign programs of eight hours of continuous observation per day, and a synoptic magnetic program of about 15 full disk magnetograms per day, are planned. The scientific plans, measurements and observation programs, are described.

  14. C IV Doppler shifts observed in active region filaments

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.

    1986-01-01

    The Doppler shift properties of 21 active region filaments were studied using C IV Dopplergram data. Most are associated with corridors of weak magnetic field that separate opposite polarity strong fields seen in photospheric magnetograms. A majority of the filaments are relatively blue shifted, although several lie very close to the dividing lines between blue and red shift. Only one filament in the samples is clearly red shifted. A new calibration procedure for Dopplergrams indicates that sizable zero point offsets are often required. The center-to-limb behavior of the resulting absolute Doppler shifts suggests that filament flows are usually quite small. It is possible that they vanish.

  15. Hinode Observations of an Eruption from a Sigmoidal Active Region

    NASA Astrophysics Data System (ADS)

    Green, L. M.; Wallace, A. J.; Kliem, B.

    2012-08-01

    We analyse the evolution of a bipolar active region which produces an eruption during its decay phase. The soft X-ray arcade develops high shear over a time span of two days and transitions to sigmoidal shortly before the eruption. We propose that the continuous sigmoidal soft X-ray threads indicate that a flux rope has formed which is lying low in the solar atmosphere with a bald patch separatrix surface topology. The formation of the flux rope is driven by the photospheric evolution which is dominated by fragmentation of the main polarities, motion due to supergranular flows and cancellation at the polarity inversion line.

  16. Substrate-emitting semiconductor laser with a trapezoidal active region

    SciTech Connect

    Dikareva, N V; Nekorkin, S M; Karzanova, M V; Zvonkov, B N; Aleshkin, V Ya; Dubinov, A A; Afonenko, A A

    2014-04-28

    Semiconductor lasers with a narrow (∼2°) directional pattern in the planes both parallel and perpendicular to the p–n junction are fabricated. To achieve a low radiation divergence in the p–n junction plane, the active region in this plane was designed in the form of a trapezium. The narrow directional pattern in the plane perpendicular to the p–n junction was ensured by the use of a leaky mode, through which more than 90% of laser power was coupled out. (lasers)

  17. Trends in the mesopause region temperature and our present understanding—an update

    NASA Astrophysics Data System (ADS)

    Beig, Gufran

    A comprehensive review of the long-term changes and trends in the thermal structure of the mesosphere and lower thermosphere (MLT) region has been provided by Beig et al. [Beig, G., Keckhut, P., Lowe, R.P., Roble, R.G., Mlynczak, M.G., Scheer, J., Fomichev, V.I., Offermann, D., French, W.J.R., Shepherd, M.G., Semenov, A.I., Remsberg, E.E., She, C.Y., Lübken, F.J., Bremer, J., Clemesha, B.R., Stegman, J., Sigernes, F., Fadnavis, S., 2003. Review of mesospheric temperature trends. Rev. Geophys. 41 (4), 1015, doi: 10.1029/2002RG000121] in which results and analysis reported until about early 2002 were included. Since then not much new information on the temperature trends has been added. Nevertheless, some new results along with some modified results by revisiting the older data sets have been reported in recent time. Our understanding on the nature of temperature trends in the MLT region is relatively better understood now and model agreements with some of the specific observed feature are better reproduced in recent time. This paper briefly summarizes the progress made over the recent past in the field of mesopause region temperature trends and provide an update to Beig et al. (2003). Some new information is also added in recent time on the seasonal trend variability in temperature of the mesopause region which is also discussed in this article. Finally the new insight into the probable mechanisms to understand the observed trends along with future scope of the work in this field is outlined.

  18. Data-driven modeling of surface temperature anomaly and solar activity trends

    USGS Publications Warehouse

    Friedel, Michael J.

    2012-01-01

    A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.

  19. Topside electron temperature models for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Pandey, V. K.; Sethi, N. K.; Mahajan, K. K.

    It is now well known that in the topside ionosphere thermal conduction from the protonosphere becomes the dominant factor over the heating and loss terms in shaping the ionospheric electron temperature (Te) profile. By analyzing a limited database of incoherent scatter (IS) Te measurements, Mahajan and Pandey [J. Geophys. Res. 85 (1980) 213] reported a correlation between the electron heat flux and electron density in the topside ionosphere. Since attention has been steadily mounting for the empirical modeling of Te, we now exploit the large database of IS measurements of Te and Ne at Arecibo during 1989-1990 (high solar activity), as well as during 1975-1976 (low solar activity) for this purpose. We again find a functional relationship between heat flux and electron density in the topside ionosphere during both the solar activities. These functional relationships are used to generate topside Te profiles.

  20. Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region

    PubMed Central

    Zhang, Kai; Oswald, Evan M.; Brown, Daniel G.; Brines, Shannon J.; Gronlund, Carina J.; White-Newsome, Jalonne L.; Rood, Richard B.; O’Neill, Marie S.

    2015-01-01

    Background Because of the warming climate urban temperature patterns have been receiving increased attention. Temperature within urban areas can vary depending on land cover, meteorological and other factors. High resolution satellite data can be used to understand this intra-urban variability, although they have been primarily studied to characterize urban heat islands at a larger spatial scale. Objective This study examined whether satellite-derived impervious surface and meteorological conditions from multiple sites can improve characterization of spatial variability of temperature within an urban area. Methods Temperature was measured at 17 outdoor sites throughout the Detroit metropolitan area during the summer of 2008. Kriging and linear regression were applied to daily temperatures and secondary information, including impervious surface and distance-to-water. Performance of models in predicting measured temperatures was evaluated by cross-validation. Variograms derived from several scenarios were compared to determine whether high-resolution impervious surface information could capture fine-scale spatial structure of temperature in the study area. Results Temperatures measured at the sites were significantly different from each other, and all kriging techniques generally performed better than the two linear regression models. Impervious surface values and distance-to-water generally improved predictions slightly. Restricting models to days with lake breezes and with less cloud cover also somewhat improved the predictions. In addition, incorporating high-resolution impervious surface information into cokriging or universal kriging enhanced the ability to characterize fine-scale spatial structure of temperature. Conclusions Meteorological and satellite-derived data can better characterize spatial variability in temperature across a metropolitan region. The data sources and methods we used can be applied in epidemiological studies and public health

  1. Temperature rise during experimental light-activated bleaching.

    PubMed

    Klaric, Eva; Rakic, Mario; Sever, Ivan; Tarle, Zrinka

    2015-02-01

    The purpose of this study was to evaluate the surface and intrapulpal temperatures after treatments with different bleaching gels subjected to different types of light activation. A K-type thermocouple and infrared thermometer were used to measure the temperature increase during the 15- or 30-min treatment period. Light-emitting diode with a center wavelength of 405 nm (LED405), organic light-emitting diode (OLED), and femtosecond laser were tested and compared to ZOOM2. The tooth surface was treated with five bleaching agents and Vaseline which served as a control.The generalized estimating equation (GEE) model was applied for testing the differences in temperature increase. The ZOOM2 light source led to the largest increase in mean pulpal and tooth surface temperatures of 21.1 and 22.8 °C, followed by focused femtosecond laser which increased the pulpal and surface temperatures by up to 15.7 and 16.8 °C. Treatments with unfocused femtosecond laser, LED405, and OLED induced significantly lower mean temperature increases (p < 0.001 for each comparison with ZOOM2 and focused femtosecond laser), both in the pulp chamber (up to 2.7, 2.5, and 1.4 °C) and at the tooth surface (up to 3.2, 3.4, and 1.8 °C). Significant differences between pulp chamber and tooth surface measurements were obtained for all types of bleaching gel, during treatments with ZOOM2 (p < 0.001), LED405 (p < 0.001), and unfocused (p < 0.001) and focused femtosecond laser (p ≤ 0.002). Different bleaching agents or Vaseline can serve as an isolating layer. Focused femtosecond laser and ZOOM2 produced large temperature increases in the pulp chamber and at the tooth surface. Caution is advised when using these types of light activation, while LED405, OLED, and unfocused femtosecond laser could be safely used. PMID:23780710

  2. Evolution of Mediterranean sea surface temperatures 3.5-1.5 Ma: Regional and hemispheric influences

    NASA Astrophysics Data System (ADS)

    Herbert, Timothy D.; Ng, Gideon; Cleaveland Peterson, Laura

    2015-01-01

    We present a composite time series of Mediterranean sea surface temperature (SST) and marine biomarker accumulation for the time span from 3.5 to 1.525 Ma, based on alkenone unsaturation and concentration from hemipelagic sediments outcropping in southern Italy and Sicily. Paleotemperature data define three regimes: a late Pliocene climate on average 4- 5 °C warmer than modern, a latest Pliocene to early Pleistocene onset of 41 kyr cycles, and a major increase in the range of glacial-interglacial temperature change at ∼ 1.84 Ma that shortly precedes the former definition of the Plio-Pleistocene boundary in the Crotone sequence. Pliocene sea surface temperature (SST) cycles are dominated by precession, with a ∼ 1.5 °C range. Obliquity-related rhythms influence SST significantly shortly after ∼ 2.8 Ma (equivalent to MIS G10) and dominate after ∼ 2.51 Ma (equivalent to MIS 100). However, little, if any, long-term cooling occurred on an interglacial basis until after ∼ 1.85 Ma. Alkenone concentrations provide a good proxy for the accumulation of marine organic matter, and primarily reflect regional hydrology. Organic sedimentation, including the formation of layers highly enriched in organic matter ("sapropels") was paced throughout by precessional variations despite changes in both average regional temperature, and the shift in temperature variance to the 41 kyr obliquity cycle in the latest Pliocene and early Pleistocene. Our reconstruction therefore highlights the intermingling of both hemispheric-wide changes in temperature and regional variations in the hydrological cycle that combined to force major evolutionary changes in the fauna and flora of northern Africa and the southern Mediterranean in late Pliocene to mid-Pleistocene time.

  3. Peptides of the constant region of antibodies display fungicidal activity.

    PubMed

    Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C; Pinto, Marcia R; Travassos, Luiz R; Pertinhez, Thelma A; Spisni, Alberto; Conti, Stefania

    2012-01-01

    Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523

  4. Space Charge Formation and Electrical Breakdown at High Temperature Region in PVC for Electrical Wiring Assembly

    NASA Astrophysics Data System (ADS)

    Miura, Masakazu; Fukuma, Masumi; Kishida, Satoru

    The Polyvinyl chloride (PVC), the most popular insulating material, is used as an insulating material of various electric products. When using an electrical wiring assembly code over the power capacity, PVC could melt by the joule heating and cause an electrical breakdown. Therefore, it is necessary to clarify the electrical breakdown phenomena near the melting point (170°C) in PVC. In this paper, space charge distribution and conduction current have been measured in PVC sheets up to the electrical breakdown in the range from room temperature to 200°C under DC electric field. The breakdown strength decreases with temperature in PVC. Small hetero-space charges are accumulated near both of the electrodes at room temperature region. At high temperature region above 100°C, it is observed that positive charges are injected from anode and move toward the cathode; the electric field is emphasized near the cathode due to the packet-like positive charge in PVC. It shows a thermal breakdown process of the electric fields due to positive charge behavior and conduction current increase with temperature near the melting point in PVC.

  5. Measurements of Non-thermal Line Widths in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Brooks, David H.; Warren, Harry P.

    2016-03-01

    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1-4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s-1, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  6. USING A DIFFERENTIAL EMISSION MEASURE AND DENSITY MEASUREMENTS IN AN ACTIVE REGION CORE TO TEST A STEADY HEATING MODEL

    SciTech Connect

    Winebarger, Amy R.; Schmelz, Joan T.; Warren, Harry P.; Saar, Steve H.; Kashyap, Vinay L.

    2011-10-10

    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high-temperature active region loops close to equilibrium. In this paper, we couple observations of active region (AR) 10955 made with the X-Ray Telescope and the EUV Imaging Spectrometer on board Hinode to test a simple steady heating model. First we calculate the differential emission measure (DEM) of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3 MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6.3 < log T < 6.7. This model, for the first time, accounts for the base pressure, loop length, and distribution of apex temperatures of the core loops. We find that the density-sensitive spectral line intensities and the bulk of the hot emission in the active region core are consistent with steady heating. We also find, however, that the steady heating model cannot address the emission observed at lower temperatures. This emission may be due to foreground or background structures, or may indicate that the heating in the core is more complicated. Different heating scenarios must be tested to determine if they have the same level of agreement.

  7. The inner region of the unstable boundary layer over hilly prairie for temperature and humidity

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Sugita, Michiaki

    1990-01-01

    The analytical treatment of wind-speed, temperature, and humidity data above nonuniform surfaces is utilized to test the Monin-Obukhov similarity at the inner region of the atmospheric boundary layer. The data profiles are analyzed, and independent measurements of the surface fluxes of sensible heat and water vapor are incorporated into the analysis. It is shown that the mean profiles of the potential temperature and specific humidity can be described using the Monin-Obukhov similarity functions in an area with unstable conditions.

  8. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  9. Modeling of Intrinsic Josephson Junctions in High Temperature Superconductors under External Radiation in the Breakpoint Region

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Rahmonov, I. R.; Plecenik, A.; Streltsova, O. I.; Zuev, M. I.; Ososkov, G. A.

    2016-02-01

    The current-voltage (IV) characteristics of the intrinsic Josephson junctions in high temperature superconductors under external electromagnetic radiation are calculated numerically in the parametric resonance region. We discuss a numerical method for calculation of the Shapiro step width on the amplitude of radiation. In order to accelerate computations we used parallelization by task parameter via Simple Linux Utility for Resource Management (SLURM) arrays and tested it in the case of a single junction. An analysis of the junction transitions between rotating and oscillating states in the branching region of IV-characteristics is presented.

  10. Plasma Beta Above a Solar Active Region: Rethinking the Paradigm

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In this paper, we present a model of the plasma beta above an active region and discuss its consequences in terms of coronal magnetic field modeling. The beta-plasma model is representative and derived from a collection of sources. The resulting beta variation with height is used to emphasize the assumption that the magnetic pressure dominates over the plasma pressure must be carefully considered depending on what part of the solar atmosphere is being considered. This paper points out (1) that the paradigm that the coronal magnetic field can be constructed from a force-free magnetic field must be used in the correct context, since the forcefree region is sandwiched between two regions which have beta greater than 1, (2) that the chromospheric MgIICIV magnetic measurements occur near the beta-minimum, and (3) that, moving from the photosphere upwards, beta can return to 1 at relatively low coronal heights, e.g. R approximately 1.2R(sub)s.

  11. Behaviour of oscillations in loop structures above active regions

    NASA Astrophysics Data System (ADS)

    Kolobov, D. Y.; Kobanov, N. I.; Chelpanov, A. A.; Kochanov, A. A.; Anfinogentov, S. A.; Chupin, S. A.; Myshyakov, I. I.; Tomin, V. E.

    2015-12-01

    In this study we combine the multiwavelength ultraviolet-optical (Solar Dynamics Observatory, SDO) and radio (Nobeyama Radioheliograph, NoRH) observations to get further insight into space-frequency distribution of oscillations at different atmospheric levels of the Sun. We processed the observational data on NOAA 11711 active region and found oscillations propagating from the photospheric level through the transition region upward into the corona. The power maps of low-frequency (1-2 mHz) oscillations reproduce well the fan-like coronal structures visible in the Fe IX 171 Å line. High frequency oscillations (5-7 mHz) propagate along the vertical magnetic field lines and concentrate inside small-scale elements in the umbra and at the umbra-penumbra boundary. We investigated the dependence of the dominant oscillation frequency upon the distance from the sunspot barycentre to estimate inclination of magnetic tubes in higher levels of sunspots where it cannot be measured directly, and found that this angle is close to 40° above the umbra boundaries in the transition region.

  12. The Magnetic Classification of Solar Active Regions 1992-2015

    NASA Astrophysics Data System (ADS)

    Jaeggli, S. A.; Norton, A. A.

    2016-03-01

    The purpose of this Letter is to address a blindspot in our knowledge of solar active region (AR) statistics. To the best of our knowledge, there are no published results showing the variation of the Mount Wilson magnetic classifications as a function of solar cycle based on modern observations. We show statistics for all ARs reported in the daily Solar Region Summary from 1992 January 1 to 2015 December 31. We find that the α and β class ARs (including all sub-groups, e.g., βγ, βδ) make up fractions of approximately 20% and 80% of the sample, respectively. This fraction is relatively constant during high levels of activity however, an increase in the α fraction to about 35% and and a decrease in the β fraction to about 65% can be seen near each solar minimum and are statistically significant at the 2σ level. Over 30% of all ARs observed during the years of solar maxima were appended with the classifications γ and/or δ, while these classifications account for only a fraction of a percent during the years near the solar minima. This variation in the AR types indicates that the formation of complex ARs may be due to the pileup of frequent emergence of magnetic flux during solar maximum, rather than the emergence of complex, monolithic flux structures.

  13. Active Region Filaments Might Harbor Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A.

    2016-05-01

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between them being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.

  14. Magnetic field measurements in and above a limb active region

    NASA Astrophysics Data System (ADS)

    Philip, Judge

    2013-07-01

    We analyze spectropolarimetric data of a limb active region (NOAA 11302) obtained on September 22nd 2011 using the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope (DST). Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm were obtained in three scans over a 45"x75" area. Simultaneous narrow band Ca II K and G-band intensity data were acquired with a cadence of 5s at the DST. The He I data show not only typical active region polarization signatures, but also signatures in plumes -- cool post flare loops -- which extend many Mm into the corona across the visible limb. The plumes have remarkably uniform brightness, and the plume plasma is significantly Doppler shifted as it drains from the corona. Using carefully constructed observing and calibration sequences and applying Principal Component Analysis to remove instrumental artifacts, we achieved a polarization sensitivity approaching 0.02%. With this sensitivity we attempt to diagnose the vector magnetic fields and plasma properties of chromospheric and cool coronal material in and above NOAA 11302. Inversions using various radiative transfer models in the HAZEL code are remarkably consistent with the idea that plume spectra are formed in a simple, slab-like geometry, but that the ``disk'' spectra are formed under more traditional models (Milne-Eddington). The inverted magnetic data of He I lines are compared with photospheric inversions of DST Si I and Fe I data from the Solar Dynamics Observatory.

  15. High power VCSEL device with periodic gain active region

    NASA Astrophysics Data System (ADS)

    Ning, Y. Q., II; Qin, L.; Sun, Y. F.; Li, T.; Cui, J. J.; Peng, B.; Liu, G. Y.; Zhang, Y.; Liu, Y.; Wang, L. J.; Cui, D. F.; Xu, Z. Y.

    2007-11-01

    High power vertical cavity surface emitting lasers with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structure, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the cavity to enhance the coupling between the optical field and the gain region. Large aperture and bottom-emitting configuration was used to improve the beam quality and the heat dissipation. A maximum output power of 1.4W was demonstrated at CW operation for a 400μm-diameter device. The lasing wavelength shifted to 995.5nm with a FWHM of 2nm at a current of 4.8A due to the internal heating and the absence of active water cooling. A ring-shape farfield pattern was induced by the non-homogeneous lateral current distribution in large diameter device. The light intensity at the center of the ring increased with increasing current. A symmetric round light spot at the center and single transverse mode operation with a divergence angle of 16° were observed with current beyond 4.8A.

  16. Active wireless temperature sensors for aerospace thermal protection systems

    NASA Astrophysics Data System (ADS)

    Milos, Frank S.; Karunaratne, K. S. G.

    2003-07-01

    Vehicle system health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint effort by NASA Ames and Korteks to develop active "wireless" sensors that can be embedded in the thermal protection system to monitor subsurface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuits to enable non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 25-mm square integrated circuit and can communicate through 7 to 10 cm thickness of thermal protection materials.

  17. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  18. Low Temperature Nitridation of Si Oxide Utilizing Activated Nitrogen

    NASA Astrophysics Data System (ADS)

    Uraoka, Yukiharu; Yano, Hiroshi; Hatayama, Tomoaki; Fuyuki, Takashi

    2002-06-01

    Oxynitride or nitride films are promising materials as a substitute for silicon dioxide because of their high dielectric constant and blocking effect on B penetration. The purpose of this work is to fabricate ultrathin oxynitride films by nitridation of thermal oxide utilizing activated nitrogen at very low temperature. We analyzed nitrogen concentration in the films using X-ray photoelectron spectroscopy. It was confirmed that 9.6 at.%nitrogen was introduced, and that NSi2O was dominant in nitrided films at temperatures as low as 400°C. We succeeded in decreasing the leakage current by one order of magnitude by nitridation of films with thicknesses of 40-60 nm.

  19. A regional neural network model for predicting mean daily river water temperature

    USGS Publications Warehouse

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  20. A regional neural network ensemble for predicting mean daily river water temperature

    NASA Astrophysics Data System (ADS)

    DeWeber, Jefferson Tyrell; Wagner, Tyler

    2014-09-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May-October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate and land use

  1. Developing Temperature Forcing for Snow and Ice Melt Runoff Models in High Mountain Regions

    NASA Astrophysics Data System (ADS)

    Barrett, A. P.; Armstrong, R. L.; Brodzik, M. J.; Khalsa, S. J. S.; Raup, B. H.; Rittger, K.

    2014-12-01

    Glaciers and snow cover are natural storage reservoirs that delay runoff on seasonal and longer time-scales. Glacier wastage and reduced snow packs will impact the volume and timing of runoff from mountain basins. Estimates of the contributions of glacier and snow melt to runoff in river systems draining mountain regions are critical for water resources planning. The USAID funded CHARIS project aims to estimate the contributions of glacier and snow melt to streamflow in the Ganges, Indus, Brahmaputra, Amu Darya and Syr Darya rivers. Most efforts to estimate glacier and snow melt contributions use temperature-index or degree-day approaches. Near-surface air temperature is a key forcing variable for such models. As with all mountain regions, meteorological stations are sparse and may have short records. Few stations exist at high elevations, with most stations located in valleys below the elevations of glaciers and seasonal snow cover. Reanalyses offer an alternative source of temperature data. However, reanalyses have coarse resolution and simplified topography, especially in the Himalaya. Surface fields are often biased. Any reanalysis product must be both bias-corrected and "downscaled" to the resolution of the melt-runoff model. We present a combined empirically-based bias-correction and downscaling procedure that uses near-surface air temperature from global atmospheric reanalyses to generate near-surface temperature forcing fields for the five river basins in the CHARIS study area. We focus on three 3rd Generation reanalyses; NASA MERRA, NCEP CFSR and ECMWF ERA-Interim. Evaluation of reanalysis temperature fields reveals differences between seasonal means of 500 hPa air temperatures for the three products are of the order of 1 °C, indicating choice of reanalysis can impact model results. The procedure accounts for these seasonal variations in biases of the reanalysis products and in lapse rates.

  2. Radio-derived three-dimensional structure of a solar active region

    NASA Astrophysics Data System (ADS)

    Tun, Samuel D.

    Solar active regions are the source of the most violent events observed on the Sun, some of which have a direct impact to modern civilization. Efforts to understand and predict such events require determination of the three-dimensional distributions of density, temperature, and magnetic fields above such active regions. This thesis presents the structure of the solar atmosphere above active region AR 10923, observed on 2006 Nov 10, as deduced from multi-wavelength studies including combined microwave observations from the Very Large Array (VLA) and the Owens Valley Solar Array (OVSA). The VLA observations provide excellent image quality at a few widely spaced frequencies while the OVSA data provide information at many intermediate frequencies to fill in the spectral coverage. In order to optimize the OVSA data for spectroscopic studies, the L1 method of self-calibration was implemented at this observatory, producing the best single frequency maps produced to date. Images at the 25 distinct, available frequencies are used to provide spatially resolved spectra along many lines of sight in the active region, from which microwave spectral diagnostics are obtained for deducing two-dimensional maps of temperature, magnetic field strength, and column density. The derived quantities are compared with multi-wavelength observations from SoHO and Hinode spacecraft, and with a standard potential magnetic field extrapolation. It is found that a two component temperature model is required to fit the data, in which a hot (> 2 MK) lower corona above the strong-field plage and sunspot regions (emitting via the gyroresonance process) is overlaid with somewhat cooler (˜ 1 MK) coronal loops that partially absorb the gyroresonance emission through the free-free (Bremsstrahlung) process. It is also found that the potential magnetic field extrapolation model can quantitatively account for the observed gyroresonance emission over most of the active region, but in a few areas a higher

  3. Temperature Activated Diffusion of Radicals through Ion Implanted Polymers.

    PubMed

    Wakelin, Edgar A; Davies, Michael J; Bilek, Marcela M M; McKenzie, David R

    2015-12-01

    Plasma immersion ion implantation (PIII) is a promising technique for immobilizing biomolecules on the surface of polymers. Radicals generated in a subsurface layer by PIII treatment diffuse throughout the substrate, forming covalent bonds to molecules when they reach the surface. Understanding and controlling the diffusion of radicals through this layer will enable efficient optimization of this technique. We develop a model based on site to site diffusion according to Fick's second law with temperature activation according to the Arrhenius relation. Using our model, the Arrhenius exponential prefactor (for barrierless diffusion), D0, and activation energy, EA, for a radical to diffuse from one position to another are found to be 3.11 × 10(-17) m(2) s(-1) and 0.31 eV, respectively. The model fits experimental data with a high degree of accuracy and allows for accurate prediction of radical diffusion to the surface. The model makes useful predictions for the lifetime over which the surface is sufficiently active to covalently immobilize biomolecules and it can be used to determine radical fluence during biomolecule incubation for a range of storage and incubation temperatures so facilitating selection of the most appropriate parameters. PMID:26562064

  4. Photospheric electric current and transition region brightness within an active region

    NASA Technical Reports Server (NTRS)

    Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.

    1984-01-01

    Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.

  5. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms.

    PubMed

    Martinez, A; Cavello, I; Garmendia, G; Rufo, C; Cavalitto, S; Vero, S

    2016-09-01

    Various microbial groups are well known to produce a range of extracellular enzymes and other secondary metabolites. However, the occurrence and importance of investment in such activities have received relatively limited attention in studies of Antarctic soil microbiota. Sixty-one yeasts strains were isolated from King George Island, Antarctica which were characterized physiologically and identified at the molecular level using the D1/D2 region of rDNA. Fifty-eight yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Rhodotorula, Guehomyces, Candida, Metschnikowia and Debaryomyces) were screened for extracellular amylolytic, proteolytic, esterasic, pectinolytic, inulolytic xylanolytic and cellulolytic activities at low and moderate temperatures. Esterase activity was the most common enzymatic activity expressed by the yeast isolates regardless the assay temperature and inulinase was the second most common enzymatic activity. No cellulolytic activity was detected. One yeast identified as Guehomyces pullulans (8E) showed significant activity across six of seven enzymes types tested. Twenty-eight yeast isolates were classified as oleaginous, being the isolate 8E the strain that accumulated the highest levels of saponifiable lipids (42 %). PMID:27469174

  6. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect

    Schweitzer, Martin

    2010-08-01

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This

  7. Estimating the Sensitivity of Regional Dust Sources to Sea Surface Temperature Anomaly Patterns

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Forest, C. E.

    2014-12-01

    Mineral aerosols are an increasingly important component of the climate system that affect the radiative budget, nutrient cycles, and human environments. Dust emissions are largely controlled by regional climate factors such as atmospheric stability, precipitation, soil moisture, and vegetation. Regional climates, particularly within the tropics, are affected by teleconnections excited by sea surface temperatures. We therefore explore the impact of sea surface temperature (SST) anomaly patterns on local climates in major dust source regions (including southern Africa, the Arabian Desert, the Lake Eyre basin, and three others in North Africa) to help understand variability in the global dust cycle. We investigate the sensitivity of regional climate variables impacting mineral aerosol emissions to global SST anomaly patterns by estimating the global teleconnection operator (GTO), which relates regional climate responses to SST anomaly patterns. We estimate the GTO using the NCAR Community Atmosphere Model version 5.0 (CAM5.0) forced by an ensemble of randomly perturbed climatological SST fields. Variability in dust emissions are connected to SST anomaly patterns in the tropical oceans, particularly in the Indian and western Pacific Oceans. Teleconnections excited by remote SST anomalies typically modify dust emissions via near-surface circulation changes that impact friction velocity. However, the impact of SST-driven changes on threshold friction velocity can be on the same order of magnitude as those of friction velocity, suggesting the impact of SST anomalies on surface conditions are also significant. We reconstruct historical climates using the GTO and compare the results to a non-linear model and observations to assess the GTO capabilities and to identify ocean basins with the strongest influence on major dust source regions. Recognizing SST anomaly patterns as a component of internal variability in regional dust emissions helps characterize the impact of human

  8. A new river discharge and river temperature climatology data set for the pan-Arctic region

    NASA Astrophysics Data System (ADS)

    Whitefield, Jonathan; Winsor, Peter; McClelland, James; Menemenlis, Dimitris

    2015-04-01

    Most regional ocean models that use discharge as part of the forcing use relatively coarse river discharge data sets (1°, or ∼110 km) compared to the model resolution (typically 1/4° or less), and do not account for seasonal changes in river water temperature. We introduce a new climatological data set of river discharge and river water temperature with 1/6° grid spacing over the Arctic region (Arctic River Discharge and Temperature; ARDAT), incorporating observations from 30 Arctic rivers. The annual mean discharge for all rivers in ARDAT is 2817 ± 330 km3 yr-1. River water temperatures range between 0 °C in winter to 14.0-17.6 °C in July, leading to a long-term mean monthly heat flux from all rivers of 3.2 ± 0.6 TW, of which 31% is supplied by Alaskan rivers and 69% is supplied by Eurasian rivers. This riverine heat flux is equivalent to 44% of the estimated ocean heat flux associated with the Bering Strait throughflow, but during the spring freshet can be ∼10 times as large, suggesting that heat flux associated with Arctic rivers is an important component of the Arctic heat budget on seasonal time scales. We apply the ARDAT data set to a high-resolution regional ocean-ice model, and compare results to a model integration using a 1° resolution discharge data set. Integrated freshwater content on the Arctic shelves (<200 m) increases by ∼3600 km3 in the ARDAT forced model run compared to the coarser forcing, suggesting that river discharge is contained on the Arctic shelves when forced with the ARDAT data set. Modelled summer heat fluxes over the shelves increase by 8 TW when river water temperature is included, which subsequently reduces basin-wide September sea ice extent by ∼10%. Regional differences are larger, where e.g., sea ice extent on the Beaufort shelf is reduced by ∼36%. Using a non-linear free surface parameterization along with the ARDAT data set, we find an increase in the sea surface height gradient around river mouths

  9. Infrared absorption by acetylene in the 12-14 micron region at low temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1983-01-01

    Spectral transmittance measurements have been performed on N2-broadened lines of (C-12)2H2 and (C-12)(C-13)H2 in the 13.7 micron region at 153, 200, and 296 K. From line-by-line comparison of observed and computed spectral transmittance, line strengths, half-widths, and their dependence on temperature have been deduced for conditions relevant to the atmospheres of Jupiter, Saturn, Titan, and earth.

  10. Explosion of heterogeneous water droplet in a high-temperature gaseous region

    NASA Astrophysics Data System (ADS)

    Piskunov, M. V.; Shcherbinina, A. A.

    2015-11-01

    Using high-speed video recording tools (up to 105 frames per second) and «TEMA Automotive» and «Phantom Camera Control» software packages the experimental features of explosive disintegration, boiling and evaporation of water droplets with comparably sized solid inclusions heated in high-temperature (more than 650 K) gaseous region were determined. The necessary and sufficient conditions of explosive vapor formation achievement with the next heterogeneous water droplet disintegration were found.

  11. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  12. Global and regional temperature metrics under a two-basket approach

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumasa; Cherubini, Francesco

    2015-04-01

    Climate and environmental policies and assessments including the Life Cycle Assessments (LCA) commonly employ a single basket approach, in which emissions of non-CO2 components are aggregated into their CO2 equivalents through emission metrics. Such metrics entail various assumptions, which can give rise to a large difference in metric values particularly for near-term climate forcers (NTCFs) (e.g., Tanaka et al., 2013). The difficulties in equating emissions of CO2 and NTCFs led to a proposal of a two-basket approach, which allows emission conversions among species with comparable atmospheric lifetimes (e.g., Cherubini et al., 2014). Here we explore the feasibility of a two-basket approach in the context of LCA. We extract from a LCA database several representative energy-related emissions occurring at four different locations of the world and calculate their effects on the global and regional radiative forcing and temperature change. Such results are also used to derive emission metrics such as the Global Warming Potential (GWP), Global Temperature change Potential (GTP), and Regional Temperature change Potential (RTP) and we test the performance of the metrics under a two-basket framework. Computations are performed by the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate model (ACC2) (Tanaka et al., 2013) combined with results shown in Collins et al. (2013). References Cherubini, F., T. Gasser, R. M. Bright, P. Ciais and A, H. Stromman. (2014) Linearity between temperature peak and bioenergy CO2 emission rates. Nature Climate Change, 4, 983-987. Collins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell and J. J. West. (2013) Global and regional temperature-change potentials for near-term climate forcers. Atmospheric Chemistry and Physics, 13, 2471-2485. Tanaka, K., D. J. A. Johansson, B. C. O'Neill, and J. S. Fuglestvedt (2013) Emission metrics under the 2°C climate stabilization target. Climatic Change, 117, 933-941.

  13. The Propagation of Nonlinear Pressure Waves Through Regions of Non-Uniform Temperature

    NASA Astrophysics Data System (ADS)

    Dizinno, Nicholas; Vradis, George; Otugen, Volkan

    2006-11-01

    A numerical study of wave propagation through gases with non-uniform temperature distributions will be presented. The aim of this study is to determine the impact of temperature gradients on high-intensity pressure waves of various initial wave forms. Emphasis is paid to wave reflection and transmission. Ultimately, the performance of thermal barriers in attenuating nonlinear waves is evaluated. The concept of using regions of hot gas inside an ambient environment has potential in aeroacoustic applications, such as jet screech mitigation. This analysis considers the one-dimensional compressible unsteady Euler's equations with an ideal gas state equation. The domain is composed of two regions with uniform and equal gas properties separated by a third region with higher gas temperature (lower density). Pressure is uniform throughout the domain. We introduce various high-intensity wave forms into this medium. Our investigation studies how the shape and extent of the thermal zone affect transmission and reflection of the wave. This is done for a range of wave and thermal field parameters. A Fourier analysis will study the frequency content of the incident, transmitted and reflected waves. These results will help determine the effectiveness of using thermal barriers for nonlinear wave attenuation.

  14. D region meteoric smoke and neutral temperature retrieval using the poker flat incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Fentzke, J. T.; Hsu, V.; Brum, C. G. M.; Strelnikova, I.; Rapp, M.; Nicolls, M.

    2012-11-01

    This brief note describes the first measurement of the microphysical properties and variability of meteoric smoke particles (MSPs) at high latitude using the Poker Flat ISR (65.1°N, 147.5°W). We present a novel technique for determining height resolved daytime D region neutral temperatures, which takes into account the presence of charged dust. We discuss the temporal/spatial variability and the relation to meteoric input observed and MSP microphysical properties in the polar mesopause region. The derived nanometer sized MSPs are consistent with size profiles derived previously using radar/rocket techniques and we note that our results imply a lack of heavy cluster ions below 85 km during the observing period. This provides a template for potential use at many other radar sites for the determination of microphysical properties of MSPs and day-time neutral temperature in the D region that show good general agreement with model and satellite temperature data during the observing period.

  15. Radiation, temperature, and vacuum effects on piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Postolache, Cristian; Tudose, Mihai

    2016-03-01

    The effect of radiation, temperature, and vacuum (RTV) on piezoelectric wafer active sensors (PWASs) is discussed. This study is relevant for extending structural health monitoring (SHM) methods to space vehicle applications that are likely to be subjected to harsh environmental conditions such as extreme temperatures (hot and cold), cosmic radiation, and interplanetary vacuums. This study contains both theoretical and experimental investigations with the use of electromechanical impedance spectroscopy (EMIS). In the theoretical part, analytical models of circular PWAS resonators were used to derive analytical expressions for the temperature sensitivities of EMIS resonance and antiresonance behavior. Closed-form expressions for frequency and peak values at resonance and antiresonance were derived as functions of the coefficients of thermal expansion, {α }1, {α }2, {α }3; the Poisson ratio, ν and its sensitivity, \\partial ν /\\partial T; the relative compliance gradient (\\partial {s}11E/\\partial T)/{s}11E; and the Bessel function root, z and its sensitivity, \\partial z/\\partial T. In the experimental part, tests were conducted to subject the PWAS transducers to RTV conditions. In one set of experiments, several RTV exposure, cycles were applied with EMIS signatures recorded at the beginning and after each of the repeated cycles. In another set of experiments, PWAS transducers were subjected to various temperatures and the EMIS signatures were recorded at each temperature after stabilization. The processing of measured EMIS data from the first set of experiments revealed that the resonance and antiresonance frequencies changed by less than 1% due to RTV exposure, whereas the resonance and antiresonance amplitudes changed by around 15%. After processing an individual set of EMIS data from the second set of experiments, it was determined that the relative temperature sensitivity of the antiresonance frequency ({f}{{AR}}/{f}{{AR}}) is approximately 63.1× {10

  16. The Temperature and Distribution of Organic Molecules in the Inner Regions of T Tauri Disks

    NASA Technical Reports Server (NTRS)

    Mandell, Avi

    2012-01-01

    "High-resolution NIR spectroscopic observations of warm molecular gas emission from young circumstellar disks allow us to constrain the temperature and composition of material in the inner planet-forming region. By combining advanced data reduction algorithms with accurate modeling of the terrestrial atmospheric spectrum and a novel double-differencing data analysis technique, we have achieved very high-contrast measurements (S/N approx. 500-1000) of molecular emission at 3 microns. In disks around low-mass stars, we have achieved the first detections of emission from HCN and C2H2 at near-infrared wavelengths from several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope. We spectrally resolve the line shape, showing that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We used a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we then compared these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU)."

  17. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2015-06-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  18. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2016-08-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  19. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  20. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    USGS Publications Warehouse

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  1. Causes of Ocean Surface temperature Changes in Atlantic andPacific Topical Cyclogenesis Regions

    SciTech Connect

    Santer, B.D.; Wigley, T.M.L.; Gleckler, P.J.; Bonfils, C.; Wehner, M.F.; AchutaRao, K.; Barnett, T.P.; Boyle, J.S.; Bruggemann, W.; Fiorino, M.; Gillett, N.; Hansen, J.E.; Jones, P.D.; Klein, S.A.; Meehl,G.A.; Raper, S.C.B.; Reynolds, R.W.; Stott, P.A.; Taylor, K.E.; Washington, W.M.

    2006-01-31

    Previous research has identified links between changes in sea surface temperature (SST) and hurricane intensity. We use climate models to study the possible causes of SST changes in Atlantic and Pacific tropical cyclogenesis regions. The observed SST increases in these regions range from 0.32 to 0.67 C over the 20th century. The 22 climate models examined here suggest that century-timescale SST changes of this magnitude cannot be explained solely by unforced variability of the climate system, even under conservative assumptions regarding the magnitude of this variability. Model simulations that include external forcing by combined anthropogenic and natural factors are generally capable of replicating observed SST changes in both tropical cyclogenesis regions.

  2. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  3. Regions of abnormally low proton temperature as signatures of ejecta: Solar cycle dependence and association with other ejecta signatures

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    1995-01-01

    Solar wind proton temperatures lower than expected for 'normal' solar wind expansion are a common signature of 'ejecta' (i.e. interplanetary coronal mass ejections). We have surveyed the OMNI solar wind data base for 1965-1991, and Helios data for 1974-1980, to identify regions of abnormally low temperatures. Their occurrence rate is clearly dependent on solar activity levels, in particular when the minority of events associated with encounters with the heliospheric plasma sheet are excluded. The analysis of the OMNI data may provide an indication of the rate of ejecta at the Earth, and hence of the CME rate, extending back to before spacecraft coronagraph observations became available in the early 1970's. We discuss the association of these solar wind structures with cosmic ray depressions bidirectional particle flows, and other ejecta signatures. Our impression is that no one ejecta signature provides a truly comprehensive indication of the presence of ejecta, but that abnormally low temperature depressions encompass most of the regions identified by these other individual signatures.

  4. AMOLED (active matrix OLED) functionality and usable lifetime at temperature

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan

    2005-05-01

    Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.

  5. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  6. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  7. Projected increases in near-surface air temperature over Ontario, Canada: a regional climate modeling approach

    NASA Astrophysics Data System (ADS)

    Wang, Xiuquan; Huang, Guohe; Liu, Jinliang

    2015-09-01

    As the biggest economy in Canada, the Province of Ontario is now suffering many consequences caused by or associated with global warming, such as frequent and intense heat waves, floods, droughts, and wind gust. Planning of mitigation and adaptation strategies against the changing climate, which requires a better understanding of possible future climate outcomes over the Province in the context of global warming, is of great interest to local policy makers, stakeholders, and development practitioners. Therefore, in this study, high-resolution projections of near-surface air temperature outcomes including mean, maximum, and minimum daily temperature over Ontario are developed, aiming at investigating how the global warming would affect the local climatology of the major cities as well as the spatial patterns of air temperature over the entire Province. The PRECIS modeling system is employed to carry out regional climate ensemble simulations driven by the boundary conditions of a five-member HadCM3-based perturbed-physics ensemble (i.e., HadCM3Q0, Q3, Q10, Q13, and Q15). The ensemble simulations are then synthesized through a Bayesian hierarchical model to develop probabilistic projections of future temperature outcomes with consideration of some uncertain parameters involved in the regional climate modeling process. The results suggest that there would be a consistent increasing trend in the near-surface air temperature with time periods from 2030s to 2080s. The most likely mean temperature in next few decades (i.e., 2030s) would be [-2, 2] °C in northern Ontario, [2, 6] °C in the middle, and [6, 12] °C in the south, afterwards the mean temperature is likely to keep rising by ~ 2 °C per 30-years period. The continuous warming across the Province would drive the lowest mean temperature up to 2 °C in the north and the highest mean temperature up to 16 °C in the south. In addition, the spread of the most likely ranges of future outcomes shows a consistent

  8. REGION 4-SESD TRAINING ACTIVITIES: OCTOBER 2006 – JULY 2007

    EPA Science Inventory

    Each year, the Region 4 Science and Ecosystem Support Division (SESD) provides training and technical assistance to hundreds of students. Training courses are presented to Region 4 employees, Region 4 States, Indian Tribes, Universities, Federal Agencies, and other audiences outs...

  9. Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska

    NASA Astrophysics Data System (ADS)

    Davi, Nicole K.; Jacoby, Gordon C.; Wiles, Gregory C.

    2003-11-01

    Variations in both width and density of annual rings from a network of tree chronologies were used to develop high-resolution proxies to extend the climate record in the Wrangell Mountain region of Alaska. We developed a warm-season (July-September) temperature reconstruction that spans A.D. 1593-1992 based on the first eigenvector from principal component analysis of six maximum latewood density (MXD) chronologies. The climate/tree-growth model accounts for 51% of the temperature variance from 1958 to 1992 and shows cold in the late 1600s-early 1700s followed by a warmer period, cooling in the late 1700s-early 1800s, and warming in the 20th century. The 20th century is the warmest of the past four centuries. Several severely cold warm-seasons coincide with major volcanic eruptions. The first eigenvector from a ring-width (RW) network, based on nine chronologies from the Wrangell Mountain region (A.D. 1550-1970), is correlated positively with both reconstructed and recorded Northern Hemisphere temperatures. RW shows a temporal history similar to that of MXD by increased growth (warmer) and decreased growth (cooler) intervals and trends. After around 1970 the RW series show a decrease in growth, while station data show continued warming, which may be related to increasing moisture stress or other factors. Both the temperature history based on MXD and the growth trends from the RW series are consistent with well-dated glacier fluctuations in the Wrangell Mountains and some of the temperature variations also correspond to variations in solar activity.

  10. Topside electron temperature models for low and high solar activity

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Sethi, N.; Mahajan, K.

    It is now well known that in the topside ionosphere, thermal conduction from the protonosphere becomes the dominant factor over the "heating" and "loss" terms in shaping the ionospheric electron temperature (Te) profile. By analyzing a limited data base of incoherent scatter (i.s.) Te measurements , Mahajan and Pandey (1980) reported a correlation between the topside electron heat flux and electron density, Ne at 400 km. In the recent years, since attention has been steadily mounting for the empirical modelling of Te, in this paper we exploit the large data base of i.s. measurements of Te and Ne at Arecibo, during 1989 -90 (high solar activity), as well as during 1975-76 ( low solar activity). We again find a functional relationship between heat flux and electron density in the topside ionosphere during both the solar activities. These functional relationships are used to generate topside Te profiles. As the current IRI Te model does not include variations with solar activity, the present work can contribute in improving the topside Te model.

  11. On the modified active region design of interband cascade lasers

    SciTech Connect

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J.; Weih, R.; Dallner, M.; Kamp, M.; Höfling, S.

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  12. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  13. Active region studies with coordinated SOHO, microwave, and magnetograph observations

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1992-01-01

    The scientific justification for an observing campaign to study the quantitative magnetic and plasma properties of coronal loops in active regions is presented. The SOHO (Solar and Heliospheric Observatory) instruments of primary relevance are CDS (Coronal Diagnostic Spectrometer), EIT, SUMER (Solar Ultraviolet Measurement of Emitted Radiation), and MDI. The primary ground based instruments would be the VLA (Very Large Array), the Owens Valley Radio Observatory, and vector and longitudinal field magnetographs. Similar campaigns have successfully been carried out with the Solar Maximum Mission x-ray polychromator and the Soft X-ray Imaging Sounding Rocket Payload (CoMStOC '87), the Goddard Solar EUV Rocket Telescope and Spectrograph, the Lockheed Solar Plasma Diagnostics Experiment rocket payload, and the Soft X-ray Telescope in Yohkoh (CoMStoc '92). The scientific payoff from such a campaign is discussed in light of the results from these previous campaigns.

  14. A supramolecular microgel glutathione peroxidase mimic with temperature responsive activity.

    PubMed

    Yin, Yanzhen; Jiao, Shufei; Lang, Chao; Liu, Junqiu

    2014-05-21

    Glutathione peroxidase (GPx) protects cells from oxidative damage by scavenging surplus reactive oxygen species (ROS). Commonly, an appropriate amount of ROS acts as a signal molecule in the metabolism. A smart artificial GPx exhibits adjustable catalytic activity, which can potentially reduce the amount of ROS to an appropriate degree and maintain its important physiological functions in metabolism. To construct an optimum and excellent smart artificial GPx, a novel supramolecular microgel artificial GPx (SM-Te) was prepared based on the supramolecular host-guest interaction employing the tellurium-containing guest molecule (ADA-Te-ADA) and the cyclodextrin-containing host block copolymer (poly(N-isopropylacrylamide)-b-[polyacrylamides-co-poly(6-o-(triethylene glycol monoacrylate ether)-β-cyclodextrin)], PPAM-CD) as building blocks. Subsequently, based on these building blocks, SM-Te was constructed and the formation of its self-assembled structure was confirmed by dynamic light scattering, NMR, SEM, TEM, etc. Typically, benefitting from the temperature responsive properties of the PNIPAM scaffold, SM-Te also exhibited similar temperature responsive behaviour. Importantly, the GPx catalytic rates of SM-Te displayed a noticeable temperature responsive characteristic. Moreover, SM-Te exhibited the typical saturation kinetics behaviour of a real enzyme catalyst. It was proved that the changes of the hydrophobic microenvironment and the pore size in the supramolecular microgel network of SM-Te played significant roles in altering the temperature responsive catalytic behaviour. The successful construction of SM-Te not only overcomes the insurmountable disadvantages existing in previous covalent bond crosslinked microgel artificial GPx but also bodes well for the development of novel intelligent antioxidant drugs. PMID:24652520

  15. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    NASA Technical Reports Server (NTRS)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  16. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  17. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-08-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  18. Insolation and Resulting Surface Temperatures of the Kuiper-Rudaki Study Region on Mercury.

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald; D'Amore, Mario; Helbert, Jörn; Weinauer, Julia

    2016-04-01

    The imaging spectrometer MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) is part of the payload of ESA's BepiColombo mission, which is scheduled for launch in 2017 [1]. The instrument consists of an IR-spectrometer and radiometer, which observe the surface in the wavelength range of 7-14 and 7-40μm, respectively. The four scientific objectives are to a) study Mercury's surface composition, b) identify rock-forming minerals, c) globally map the surface mineralogy and d) study surface temperature and thermal inertia [1, 2]. In preparation of the MERTIS experiment, we performed detailed thermal models of the lunar surface, which we extrapolated to Mercury. In order to calculate insolation and surface temperatures, we use a numerical model, which has been described by [7]. Surface temperatures are dependent on the surface and subsurface bulk thermophysical properties, such as bulk density, heat capacity, thermal conductivity, emissivity, topography, and albedo. Lunar and Mercurian surface temperatures show the same general characteristics. Both have very steep temperature gradients at sunrise and sunset, due to the lack of an atmosphere. However, there are major differences due to the orbital characteristics. On Mercury the 3:2 resonant rotation rate and the eccentric orbit causes local noon at longitudes 0° and 180° to coincide with perihelion, which leads to "hot poles". At longitudes 90° and 270° , local noon coincides with aphelion, which results in "cold poles" [8]. At these longitudes brief secondary sunrises and sunsets are visible, when Mercury's orbital angular velocity exceeds the spin rate during perihelion [8]. Here we present diurnal temperature curves of the Kuiper-Rudaki study region, based on thermophysical estimates and MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging [9]) albedo data with a resolution of 1000m/px. Our study region spans more than 90° along the equator, thus allowing us to study both, hot and

  19. The high temperature superconductivity in cuprates: physics of the pseudogap region

    NASA Astrophysics Data System (ADS)

    Cea, Paolo

    2016-08-01

    We discuss the physics of the high temperature superconductivity in hole doped copper oxide ceramics in the pseudogap region. Starting from an effective reduced Hamiltonian relevant to the dynamics of holes injected into the copper oxide layers proposed in a previous paper, we determine the superconductive condensate wavefunction. We show that the low-lying elementary condensate excitations are analogous to the rotons in superfluid 4He. We argue that the rotons-like excitations account for the specific heat anomaly at the critical temperature. We discuss and compare with experimental observations the London penetration length, the Abrikosov vortices, the upper and lower critical magnetic fields, and the critical current density. We give arguments to explain the origin of the Fermi arcs and Fermi pockets. We investigate the nodal gap in the cuprate superconductors and discuss both the doping and temperature dependence of the nodal gap. We suggest that the nodal gap is responsible for the doping dependence of the so-called nodal Fermi velocity detected in angle resolved photoemission spectroscopy studies. We discuss the thermodynamics of the nodal quasielectron liquid and their role in the low temperature specific heat. We propose that the ubiquitous presence of charge density wave in hole doped cuprate superconductors in the pseudogap region originates from instabilities of the nodal quasielectrons driven by the interaction with the planar CuO2 lattice. We investigate the doping dependence of the charge density wave gap and the competition between charge order and superconductivity. We discuss the effects of external magnetic fields on the charge density wave gap and elucidate the interplay between charge density wave and Abrikosov vortices. Finally, we examine the physics underlying quantum oscillations in the pseudogap region.

  20. Statistical downscaling and future scenario generation of temperatures for Pakistan Region

    NASA Astrophysics Data System (ADS)

    Kazmi, Dildar Hussain; Li, Jianping; Rasul, Ghulam; Tong, Jiang; Ali, Gohar; Cheema, Sohail Babar; Liu, Luliu; Gemmer, Marco; Fischer, Thomas

    2015-04-01

    Finer climate change information on spatial scale is required for impact studies than that presently provided by global or regional climate models. It is especially true for regions like South Asia with complex topography, coastal or island locations, and the areas of highly heterogeneous land-cover. To deal with the situation, an inexpensive method (statistical downscaling) has been adopted. Statistical DownScaling Model (SDSM) employed for downscaling of daily minimum and maximum temperature data of 44 national stations for base time (1961-1990) and then the future scenarios generated up to 2099. Observed as well as Predictors (product of National Oceanic and Atmospheric Administration) data were calibrated and tested on individual/multiple basis through linear regression. Future scenario was generated based on HadCM3 daily data for A2 and B2 story lines. The downscaled data has been tested, and it has shown a relatively strong relationship with the observed in comparison to ECHAM5 data. Generally, the southern half of the country is considered vulnerable in terms of increasing temperatures, but the results of this study projects that in future, the northern belt in particular would have a possible threat of increasing tendency in air temperature. Especially, the northern areas (hosting the third largest ice reserves after the Polar Regions), an important feeding source for Indus River, are projected to be vulnerable in terms of increasing temperatures. Consequently, not only the hydro-agricultural sector but also the environmental conditions in the area may be at risk, in future.

  1. Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Lamarque, Jean-François; Shindell, Drew T.; Bellouin, Nicolas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-08-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  2. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.

  3. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region

    SciTech Connect

    Fujita, Kazuue Hitaka, Masahiro; Ito, Akio; Edamura, Tadataka; Yamanishi, Masamichi; Jung, Seungyong; Belkin, Mikhail A.

    2015-06-22

    We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2} at room temperature.

  4. Impact of sub-pixel heterogeneity on modelled brightness temperature for an agricultural region

    NASA Astrophysics Data System (ADS)

    Roy, Swapan Kumar; Rowlandson, Tracy L.; Berg, Aaron A.; Champagne, Catherine; Adams, Justin R.

    2016-03-01

    Knowledge of sub-pixel heterogeneity, particularly at the passive microwave scale, can improve the brightness temperature (and ultimately the soil moisture) estimation. However, the impact of surface heterogeneity (in terms of soil moisture, soil temperature and vegetation water content) on brightness temperature in an agricultural setting is relatively unknown. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) provided an opportunity to evaluate sub-pixel heterogeneity at the scale of a Soil Moisture Ocean Salinity (SMOS) or the Soil Moisture Active Passive (SMAP) radiometer footprint using field measured data. The first objective of this study was to determine if accounting for surface heterogeneity reduced the error between estimated brightness temperature (Tb) and Tb measured by SMOS. It was found that when accounting for variation in surface soil moisture, temperature and vegetation water content within the pixel footprint, the error between the modelled Tb and the measured Tb was less than if a homogeneous pixel were modelled. The correlation between the surface parameters and the error associated with not accounting for surface heterogeneity were investigated. It was found that there was low to moderate correlation between the error and the coefficient of variance associated with the measured soil moisture, soil temperature and vegetation volumetric water content during the field campaign. However, it was found that the correlations changed depending on the stage of vegetation growth and the amount of time following a precipitation event. At the start of the field campaign (following a precipitation event), there was strong correlation between the error and all three surface parameters (r ≥ 0.75). Following a precipitation event close to the middle of the field campaign (during which there was rapid growth in vegetation), there was strong correlation between the error and the variability in vegetation water content (r = 0

  5. Sea surface temperature and torrential rains in the Valencia region: modelling the role of recharge areas

    NASA Astrophysics Data System (ADS)

    Pastor, F.; Valiente, J. A.; Estrela, M. J.

    2015-02-01

    Heavy rain events are frequently recorded in the Western Mediterranean causing economic losses and even human casualties. The Western Mediterranean is a deep and almost closed sea surrounded by high mountain ranges and with little exchange of water with the Atlantic ocean. A main factor in the development of torrential rains are ocean-atmosphere exchanges of heat and moisture that can potentially destabilize air masses travelling over the sea. The study of air mass trajectories previous to the rain event permits the identification of sea areas that could probably contribute to the development or intensification of rainfall. From a previous Mediterranean sea surface temperature climatology, its spatio-temporal distribution patterns have been studied showing two main distribution modes in winter and summer and transitional regimes in spring and autumn. Hence, three heavy precipitation events, for such winter and summer sea temperature regimes and for fall transition, affecting the Valencia region have been selected to study the effect of sea surface temperature in torrential rains. Simulations with perturbed sea surface temperature in different areas along the air mass path were run to compare results with unperturbed simulation. The variation of sea surface temperature in certain areas caused significant changes in model accumulated values and its spatial distribution. Therefore, the existence of recharge areas where air-sea interaction favors the development of torrential rainfall in Valencia region has been shown. This methodology could be extended to the whole Mediterranean basin to look for such potential recharge areas. The identification of sea areas that contribute to the development or intensification of heavy rain events in the Mediterranean countries could be a useful prognosis and/or monitoring tool.

  6. Sea surface temperature and torrential rains in the Valencia region: modelling the role of recharge areas

    NASA Astrophysics Data System (ADS)

    Pastor, F.; Valiente, J. A.; Estrela, M. J.

    2015-07-01

    Heavy rain events are frequently recorded in the Western Mediterranean causing economic losses and even human casualties. The Western Mediterranean is a deep and almost closed sea surrounded by high mountain ranges and with little exchange of water with the Atlantic ocean. A main factor in the development of torrential rains is ocean-atmosphere exchanges of heat and moisture that can potentially destabilize air masses travelling over the sea. The study of air mass trajectories previous to the rain event permits the identification of sea areas that could probably contribute to the development or intensification of rainfall. From a previous Mediterranean sea surface temperature climatology, its spatio-temporal distribution patterns have been studied showing two main distribution modes in winter and summer and transitional regimes in spring and autumn. Hence, three heavy precipitation events, for such winter and summer sea temperature regimes and for fall transition, affecting the Valencia region have been selected to study the effect of sea surface temperature in torrential rains. Simulations with perturbed sea surface temperature in different areas along the air mass path were run to compare results with unperturbed simulation. The variation of sea surface temperature in certain areas caused significant changes in model accumulated values and its spatial distribution. Therefore, the existence of areas that at a greater extent favour air-sea interaction leading to the development of torrential rainfall in the Valencia region has been shown. This methodology could be extended to the whole Mediterranean basin to look for such potential recharge areas. The identification of sea areas that contribute to the development or intensification of heavy rain events in the Mediterranean countries could be a useful prognosis and/or monitoring tool.

  7. Dynamics of solar filaments. IV - Structure and mass flow of an active region filament

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Malherbe, J. M.; Simon, G.; Poland, A. I.

    1985-01-01

    An active region filament near the center of the solar disk was observed on September 29-30, 1980, with the Multichannel Subtractive Double Pass Spectrograph of the Meudon solar tower and the UV Spectrograph and Polarimeter aboard the SMM satellite. H-alpha and C IV measurements are presently used to study brightness and material velocity in the 10,000 and 100,000 K temperature ranges, and photospheric magnetograms are used to investigate the underlying magnetic field. Attention is given to the constraints imposed on possible filament structures by observations, as well as the expected MHD relationships.

  8. Long-Period ULF Wave Activity in the Cusp Region

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Belakhovsky, V.; Engebretson, M. J.; Kozlovsky, A.

    2013-12-01

    We compare simultaneous observations of long-period ULF wave activity from the Svalbard/IMAGE and Greenland fluxgate magnetometer profiles covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL) and narrow-band Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of the return signal of the SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, and augmented whenever possible by DMSP identification of magnetospheric boundary domains. The meridional spatial structure of IPCL/Pc5 pulsation spectral power has been found to have a localized latitudinal peak, but not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. Possible mechanisms and their relevance to observational data are discussed. The occurrence of IPCL and Pc5 waves in the dayside boundary layers is a challenge to modelers, because so far their mechanism has not been firmly identified.

  9. Regional Surface Fluxes From Remotely Sensed Skin Temperature and Lower Boundary Layer Measurements

    NASA Astrophysics Data System (ADS)

    Sugita, Michiaki; Brutsaert, Wilfried

    1990-12-01

    During First International Satellite Land Surface Climatology Project Field Experiment in north-eastern Kansas, surface temperature was measured by infrared radiation thermometers at some 12 stations spread over the 15 × 15 km experimental area. These data, together with wind and temperature profiles in the unstable atmospheric boundary layer measured by means of radiosondes, were analyzed within the framework of Monin-Obukhov similarity. The radiometric scalar roughness corresponding to the radiometric surface temperature was found to increase as the season progressed; for the spring campaign the mean value was zoh,r = 4.56 × 10-7 m and for the fall zoh, r = 1.01 × 10 -2 m. The radiometric scalar roughness could also be expressed as a function of solar elevation and to a lesser extent, of canopy height or leaf area index. For an elevation range 10° ≤ α ≤ 75° the regression equation is zoh,r = exp [-0.735 - 3.61 tan (α)]. With this function good agreement (r = 0.87) was obtained between the profile-derived regional surface flux of sensible heat and the mean flux measured independently at ground-based stations under unstable conditions. Similarly, regional values of evaporation, obtained by means of the energy budget method from these sensible heat flux estimates, were in good agreement (r = 0.96).

  10. Evaluation of Multiple Regional Climate Models for Summer Extremes of Temperature and Precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki

    2014-05-01

    The regional climate models (RCMs) have been widely used to generate more detailed information in space and time of climate patterns produced by the global climate models (GCMs). Recently the international collaborative effort has been set up as the CORDEX (Coordinated Regional Climate Downscaling Experiment) project which covers several regional domains including East Asia. In this study, five RCMs (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) participating in the CORDEX-East Asia project are evaluated in terms of their skills at simulating climatology of summer extremes. We examine bias and RMSE and conduct a Taylor diagram analysis using seasonal maxima of daily mean temperature and daily precipitation amount over the East Asia land area from 'historical' experiments of individual RCMs and their multi-model ensemble means (MME). The APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Toward Evaluation) datasets on 0.5° x 0.5° grids are used as observations. Results show similar systematic bias patterns between seasonal means and extremes. A cold bias is found along the coast while a warm bias occurs in the northern China. Overall wet bias appears in East Asia but there is a substantial dry bias in South Korea. This dry bias appears related to be a cold SST (sea surface temperature) around South Korea, positioning the monsoonal front (Changma) further south than observations. Taylor diagram analyses show that temperature has better skill in means than in extremes because of higher spatial correlation whereas precipitation exhibits better skill in extremes than in means due to better spatial variability. The latter implies that extreme rainfall events may be better captured although seasonal mean precipitation tends to be overestimated by RCMs. The model performances between mean and extreme are found to be closely related, but not clearly between temperature and precipitation. Temperatures are always better simulated than

  11. Lithologic descriptions and temperature profiles of five wells in the southwestern Valles caldera region, New Mexico

    SciTech Connect

    Shevenell, L.; Goff, F.; Miles, D.; Waibel, A.; Swanberg, C.

    1988-01-01

    The subsurface stratigraphy and temperature profiles of the southern and western Valles caldera region have been well constrained with the use of data from the VC-1, AET-4, WC 23-4, PC-1 and PC-2 wells. Data from these wells indicate that thermal gradients west of the caldera margin are between 110 and 140)degrees)C/km, with a maximum gradient occurring in the bottom of PC-1 equal to 240)degrees)C/km as a result of thermal fluid flow. Gradients within the caldera reach a maximum of 350)degrees)C/km, while the maximum thermal gradient measured southwest of the caldera in the thermal outflow plume is 140)degrees)C/km. The five wells exhibit high thermal gradients (>60)deghrees)C/km) resulting from high conductive heat flow associated with the Rio Grande rift and volcanism in the Valles caldera, as well as high convective heat flow associated with circulating geothermal fluids. Gamma logs run in four of the five wells appear to be of limited use for stratigraphic correlations in the caldera region. However, stratigraphic and temperature data from the five wells provide information about the structure and thermal regime of the southern and western Valles caldera region. 29 refs., 9 figs. 2 tabs.

  12. Homogeneous temperature and precipitation series for a Peruvian High Andes regions from 1965 to 2009

    NASA Astrophysics Data System (ADS)

    Acuña, D.; Serpa Lopez, B.; Silvestre, E.; Konzelmann, Th.; Rohrer, M.; Schwarb, M.; Salzmann, N.

    2010-09-01

    As a basis of a joint Swiss-Peruvian effort focused on water resources, food security and disaster preparedness (Peruvian Climate Adaptation Project, PACC) clean and homogenized meteorological datasets have been elaborated for the Cusco and Apurimac Regions in the Central Andes. Operational and historical data series of more than 100 stations of the Peruvian Meteorological and Hydrological Service (SENAMHI) were available as a data base. Additionally, meteorological data provided by the National Climatic Data Centre (NCDC) or the Meteorological Aerodrome Records (METAR), have been considered. In contrast to many European countries, where most conventional sensors have been replaced by automated sensors during the last decades, instrumentation of climatological stations remained unchanged in Peru. Station records and station history of the Cusco-Apurimac-region are partially fragmentary or lost, mainly because of armed conflicts, particularly in the 1980ies. Moreover, many stations do observe precipitation as only variable. As a consequence, it was only possible so far to elaborate four complete homogenized air temperature series (Curahuasi 2763m a.s.l., Granja Kcayra-Cusco 3219m, Sicuani, 3574m and La Angostura, 4150m) since 1965. For precipitation a larger number of stations was available for elaboration, which is important because of the small scaled characteristics of the mostly convective type precipitation events in these regions. Based on these homogenized series, linear and gaussian low pass filtered trends have been calculated for all series of precipitation and air temperature records.

  13. Surface activation-based nanobonding and interconnection at room temperature

    NASA Astrophysics Data System (ADS)

    Howlader, M. M. R.; Yamauchi, A.; Suga, T.

    2011-02-01

    Flip chip nanobonding and interconnect system (NBIS) equipment with high precision alignment has been developed based on the surface activated bonding method for high-density interconnection and MEMS packaging. The 3σ alignment accuracy in the IR transmission system was approximately ±0.2 µm. The performance of the NBIS has been preliminarily investigated through bonding between relatively rough surfaces of copper through silicon vias (Cu-TSVs) and gold-stud bumps (Au-SBs), and smooth surfaces of silicon wafers. The Cu-TSVs of 55 µm diameter and the Au-SBs of 35 µm diameter with ~6-10 nm surface roughness (RMS) were bonded at room temperature after surface activation using an argon fast atom beam (Ar-FAB) under 0.16 N per bump. Silicon wafers of 50 mm diameter with ~0.2 nm RMS surface roughness were bonded without heating after surface activation. Void-free interfaces both in Cu-TSV/Au-SB and silicon/silicon with bonding strength equivalent to bulk fracture of Au and silicon, respectively, were achieved. A few nm thick amorphous layers were observed across the silicon/silicon interface that was fabricated by the Ar-FAB. This study in the interconnection and bonding facilitates the required three-dimensional integration on the same surface for high-density electronic and biomedical systems.

  14. Response of rapidly developing extratropical cyclones to sea surface temperature variations over the western Kuroshio-Oyashio confluence region

    NASA Astrophysics Data System (ADS)

    Hirata, Hidetaka; Kawamura, Ryuichi; Kato, Masaya; Shinoda, Taro

    2016-04-01

    The dynamical response of rapidly developing extratropical cyclones to sea surface temperature (SST) variations over the western Kuroshio-Oyashio confluence (WKOC) region was examined by using regional cloud-resolving simulations. This study specifically highlights an explosive cyclone that occurred in early February 2014 and includes a real SST experiment (CNTL run) and two sensitivity experiments with warm and cool SST anomalies over the WKOC region (warm and cool runs). The results derived from the CNTL run indicated that moisture supply from the ocean was enhanced when the dry air associated with the cold conveyor belt (CCB) overlapped with warm currents. Further, the evaporated moisture contributed substantially to latent heat release over the bent-back front with the aid of the CCB, leading to cyclone intensification and strengthening of the asymmetric structure around the cyclone's center. Such successive processes were more active in the warm run than in the cool run. The dominance of the zonally asymmetric structure resulted in a difference in sea level pressure around the bent-back front between the two runs. The WKOC SST variations have the potential to affect strong wind distributions along the CCB through modification of the cyclone's inner system. Additional experiments with two other cyclones showed that the cyclone response to the WKOC SST variations became evident when the CCB north of the cyclone's center overlapped with that region, confirming that the dry nature of the CCB plays an important role in latent heat release by allowing for larger moisture supply from the ocean.

  15. 77 FR 24952 - Agency Information Collection Activities; Proposed Collection; Comment Request; Regional Haze...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... ICR (August 26, 2009; 74 FR 43118). The last collection request anticipated the program progressing... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Regional Haze... organizations and facilities potentially regulated under the regional haze rule. Title: Regional...

  16. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  17. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. III - NOAA active region 6233 (1990 August)

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.

    1993-01-01

    We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.

  18. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas, Jr.; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  19. Promoting Climate Literacy through Collaborative Temperature Investigations at Local, Regional, and Global Scales

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Charlevoix, D.; Hoffman, M.

    2009-12-01

    One of the fundamental challenges in promoting student and citizen climate literacy is developing awareness and understanding of the time and spatial scales on which climate changes occur. Students and citizens living in polar regions are now able to observe changes in sea ice extent, permafrost depth, and local ecosystems that have occurred in their lifetimes. In other parts of the world, environmental changes related to climate tend to be more subtle making it more challenging for students and citizens to recognize how changes in climate are affecting their communities. The GLOBE program, an international science and education program operating in 110 countries, implements field-based research and education programs that directly involve students and citizens in observations of their local environment as well as online collaboration using Web 2.0 communication tools to share and discuss how their research findings compare to other environments around the world. In fall 2009, secondary students from several GLOBE schools from around the world will use the GLOBE Minimum-Maximum Temperature protocol to determine daily and monthly average mean air temperatures. Students will collect data in a manner identical to that used by scientists who contributed to the International Panel on Climate Change reports. Students will then use historic weather and climate data from nearby global weather stations to create baseline weather and climate profiles for their communities. Students will use FieldScope, an online GIS tool created by the National Geographic Society to compare their data to temperature trends in their regions for the past 30 to 50 years. Students will share the results of their local temperature investigations with other participating schools via a live Webinar and through asynchronous Web-based conversations held in conjunction with the annual meeting of the Group on Earth Observations. Students participating in this “Great Global Investigation of

  20. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?

    NASA Astrophysics Data System (ADS)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.

    2016-04-01

    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  1. TRACE and SVST Observations of an Active-Region Filament

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.; Deluca, E. E.

    1999-05-01

    In June 1998 the Transition Region and Coronal Explorer (TRACE) observed filaments and prominences in coordination with various ground-based solar observatories, including the Swedish Vacuum Solar Telescope (SVST) on La Palma. Here we present results for an active-region filament observed on June 21-22. This horse-shoe shaped filament had a "barb" that reached down from the filament spine to the chomosphere below. We use high-resolution images obtained at the SVST on June 21 from 18:03 to 19:04 UT to study the fine structure and dynamics of plasmas in the barb and other parts of the filament. The data consist of narrowband Hα images taken with the Lockheed Tunable Filtergraph operating at a cadence of 20 s. We present Doppler maps derived from these images. The filament erupted six hours after the SVST observations. The eruption was observed with TRACE, which obtained images in Fe IX/X 171, Fe XII 195, Fe XV 284 and H I Lyalpha . At the start of the event, a thin bright loop appears high above the filament at the location of the barb. We interpret this feature as the outline of a magnetic "bubble" which forms as a result of kink instability in the magnetic field that supports the filament. The bright loop appears to be due to particle acceleration and impulsive heating along certain field lines on the periphery of this magnetic structure. A few minutes later, the dark filament threads turn into emission and move outward, exhibiting a helical structure. We discuss the magnetic structure of the barb and its possible role in the filament eruption.

  2. Breakout coronal mass ejections from solar active regions

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Lynch, Benjamin; MacNeice, Peter; Olson, Kevin; Antiochos, Spiro

    We are performing magnetohydrodynamic simulations of single bipolar active regions (ARs) embedded in the Sun's global background field and of pairs of ARs interacting with each other. The magnetic flux near the polarity inversion lines (PILs) of the ARs is subjected to twisting footpoint displacements that introduce strong magnetic shear between the two polarities and gradually inflate the coronal volume occupied by the AR fields. If the initially current-free coronal field contains a magnetic null, then it is vulnerable to eruptions triggered by magnetic breakout, which reconnects aside the previously restraining field lines overhead. The sheared core flux promptly expands outward at the Alfven speed, opening the magnetic field in the vicinity of the PIL. Flare reconnection below the ejecta, across the vertical current sheet thus established, thereafter reforms the magnetic-null configuration above the AR. This reformation sets the stage for subsequent homologous episodes of breakout reconnection and eruption, if the energizing footpoint motions are sustained. The magnetic flux and energy of an isolated AR, relative to those of the background field, determine whether the eruption is confined or ejective, as the sheared flux either comes to rest in the corona or escapes the Sun to interplanetary space, respectively. In the latter case, the field lines accompanying the coronal mass ejection can comprise a weakly twisted "magnetic bottle" as readily as a strongly twisted flux rope, both of which are observed routinely in situ. The latest developments in this research will be reported. In particular, we will emphasize the observational signatures inferred from the simulations that could be sought in STEREO data, such as multiple three-dimensional views, EUV brightenings at reconnection sites, and coronal dimmings in regions of strong expansion. Our research is sponsored by NASA and ONR.

  3. Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Jaeger, Michael D.

    2013-01-01

    A design of an Active Magnetic Regenerative Refrigeration (AMRR) system has been developed for space applications. It uses an innovative 3He cryogenic circulator to provide continuous remote/distributed cooling at temperatures in the range of 2 K with a heat sink at about 15 K. A critical component technology for this cooling system is a highly efficient active magnetic regenerator, which is a regenerative heat exchanger with its matrix material made of magnetic refrigerant gadolinium gallium garnet (GGG). Creare Inc. is developing a microchannel GGG regenerator with an anisotropic structured bed for high system thermal efficiency. The regenerator core consists of a stack of thin, single-crystal GGG disks alternating with thin polymer insulating layers. The insulating layers help minimize the axial conduction heat leak, since GGG has a very high thermal conductivity in the regenerator s operating temperature range. The GGG disks contain micro channels with width near 100 micrometers, which enhance the heat transfer between the circulating flow and the refrigerant bed. The unique flow configuration of the GGG plates ensures a uniform flow distribution across the plates. The main fabrication challenges for the regenerator are the machining of high-aspect-ratio microchannels in fragile, single-crystal GGG disks and fabrication and assembly of the GGG insulation layers. Feasibility demonstrations to date include use of an ultrashort- pulse laser to machine microchannels without producing unacceptable microcracking or deposition of recast material, as shown in the figure, and attachment of a thin insulation layer to a GGG disk without obstructing the flow paths. At the time of this reporting, efforts were focused on improving the laser machining process to increase machining speed and further reduce microcracking.

  4. Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions

    SciTech Connect

    Mehl, M; Pitz, W J; Westbrook, C K; Yasunaga, K; Curran, H J

    2010-02-22

    In this work, numerical and experimental techniques are used to investigate the effect of the position of the double bond on the ignition properties of pentene and hexene linear isomers. A wide-range kinetic model for the oxidation of C{sub 5}-C{sub 6} linear alkenes has been developed. Literature rapid compression machine data were used to validate the model at low temperatures and new shock tube experiments were performed in order to assess the behavior of the considered alkenes in the high temperature region. Some interesting inversions in the relative reactivity of the isomers were detected. The model successfully reproduced the measured behavior and allowed to explain the reason of these reactivity changes. The information gathered will be applied to the development of the kinetic mechanisms of larger unsaturated surrogate components.

  5. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006

    NASA Astrophysics Data System (ADS)

    Lean, Judith L.; Rind, David H.

    2008-09-01

    To distinguish between simultaneous natural and anthropogenic impacts on surface temperature, regionally as well as globally, we perform a robust multivariate analysis using the best available estimates of each together with the observed surface temperature record from 1889 to 2006. The results enable us to compare, for the first time from observations, the geographical distributions of responses to individual influences consistent with their global impacts. We find a response to solar forcing quite different from that reported in several papers published recently in this journal, and zonally averaged responses to both natural and anthropogenic forcings that differ distinctly from those indicated by the Intergovernmental Panel on Climate Change, whose conclusions depended on model simulations. Anthropogenic warming estimated directly from the historical observations is more pronounced between 45°S and 50°N than at higher latitudes whereas the model-simulated trends have minimum values in the tropics and increase steadily from 30 to 70°N.

  6. Projected changes to high temperature events for Canada based on a regional climate model ensemble

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Il; Sushama, Laxmi; Diro, Gulilat Tefera; Khaliq, M. Naveed; Beltrami, Hugo; Caya, Daniel

    2016-05-01

    Extreme hot spells can have significant impacts on human society and ecosystems, and therefore it is important to assess how these extreme events will evolve in a changing climate. In this study, the impact of climate change on hot days, hot spells, and heat waves, over 10 climatic regions covering Canada, based on 11 regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program for the June to August summer period is presented. These simulations were produced with six RCMs driven by four Atmosphere-Ocean General Circulation Models (AOGCM), for the A2 emission scenario, for the current 1970-1999 and future 2040-2069 periods. Two types of hot days, namely HD-1 and HD-2, defined respectively as days with only daily maximum temperature (Tmax) and both Tmax and daily minimum temperature (Tmin) exceeding their respective thresholds (i.e., period-of-record 90th percentile of Tmax and Tmin values), are considered in the study. Analogous to these hot days, two types of hot spells, namely HS-1 and HS-2, are identified as spells of consecutive HD-1 and HD-2 type hot days. In the study, heat waves are defined as periods of three or more consecutive days, with Tmax above 32 °C threshold. Results suggest future increases in the number of both types of hot days and hot spell events for the 10 climatic regions considered. However, the projected changes show high spatial variability and are highly dependent on the RCM and driving AOGCM combination. Extreme hot spell events such as HS-2 type hot spells of longer duration are expected to experience relatively larger increases compared to hot spells of moderate duration, implying considerable heat related environmental and health risks. Regionally, the Great Lakes, West Coast, Northern Plains, and Maritimes regions are found to be more affected due to increases in the frequency and severity of hot spells and/or heat wave characteristics, requiring more in depth studies for these regions

  7. Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature

    NASA Astrophysics Data System (ADS)

    Silva, Carlos Batista; Silva, Maria Elisa Siqueira; Ambrizzi, Tércio

    2016-03-01

    This paper investigates possible linear relationships between climate, hydrology, and oceanic surface variability in the Pantanal region (in South America's central area), over interannual and interdecadal time ranges. In order to verify the mentioned relations, lagged correlation analysis and linear adjustment between river discharge at the Pantanal region and sea surface temperature were used. Composite analysis for atmospheric fields, air humidity flux divergence, and atmospheric circulation at low and high levels, for the period between 1970 and 2003, was analyzed. Results suggest that the river discharge in the Pantanal region is linearly associated with interdecadal and interannual oscillations in the Pacific and Atlantic oceans, making them good predictors to continental hydrological variables. Considering oceanic areas, 51 % of the annual discharge in the Pantanal region can be linearly explained by mean sea surface temperature (SST) in the Subtropical North Pacific, Tropical North Pacific, Extratropical South Pacific, and Extratropical North Atlantic over the period. Considering a forecast approach in seasonal scale, 66 % of the monthly discharge variance in Pantanal, 3 months ahead of SST, is explained by the oceanic variables, providing accuracy around 65 %. Annual discharge values in the Pantanal region are strongly related to the Pacific Decadal Oscillation (PDO) variability (with 52 % of linear correlation), making it possible to consider an interdecadal variability and a consequent subdivision of the whole period in three parts: 1st (1970-1977), 2nd (1978-1996), and 3rd (1997-2003) subperiods. The three subperiods coincide with distinct PDO phases: negative, positive, and negative, respectively. Convergence of humidity flux at low levels and the circulation pattern at high levels help to explain the drier and wetter subperiods. During the wetter 2nd subperiod, the air humidity convergence at low levels is much more evident than during the other two

  8. Universal inverse power-law distribution for temperature and rainfall in the UK region

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2014-06-01

    Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.

  9. Comparison of Model and Observed Regional Temperature Changes During the Past 40 Years

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Miller, James R.; Rind, David; Ruedy, Reto A.; Schmidt, Gavin A.; Sheth, Sukeshi

    1999-01-01

    Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.

  10. Realistic Modeling of SDO/AIA-discovered Coronal Fast MHD Wave Trains in Active Regions

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Liu, Wei

    2016-05-01

    High-resolution EUV observations by space telescopes have provided plenty of evidence for coronal MHD waves in active regions. In particular, SDO/AIA discovered quasi-periodic, fast-mode propagating MHD wave trains (QFPs), which can propagate at speeds of ~1000 km/s perpendicular to the magnetic field. Such waves can provide information on the energy release of their associated flares and the magnetized plasma structure of the active regions. Before we can use these waves as tools for coronal seismology, 3D MHD modeling is required for disentangling observational ambiguities and improving the diagnostic accuracy. We present new results of observationally contained models of QFPs using our recently upgraded radiative, thermally conductive, visco-resistive 3D MHD code. The waves are excited by time-depended boundary conditions constrained by the spatial (localized) and quasi-periodic temporal evolution of a C-class flare typically associated with QFPs. We investigate the excitation, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, magnetic field structure, and the location of the flaring site within the active region. We synthesize EUV intensities in multiple AIA channels and then obtain the model parameters that best reproduce the properties of observed QFPs. We discuss the implications of our model results for the seismological application of QFPs and for understanding the dynamics of their associated flares.

  11. Models of H II regions - Heavy element opacity, variation of temperature

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.

    1985-01-01

    A detailed set of H II region models that use the same physics and self-consistent input have been computed and are used to examine where in parameter space the effects of heavy element opacity is important. The models are briefly described, and tabular data for the input parameters and resulting properties of the models are presented. It is found that the opacities of C, Ne, O, and to a lesser extent N play a vital role over a large region of parameter space, while S and Ar opacities are negligible. The variation of the average electron temperature T(e) of the models with metal abundance, density, and T(eff) is investigated. It is concluded that by far the most important determinator of T(e) is metal abundance; an almost 7000 K difference is expected over the factor of 10 change from up to down abundances.

  12. Air- and Stream-Water-Temperature Trends in the Chesapeake Bay Region, 1960-2014

    USGS Publications Warehouse

    Jastram, John D.; Rice, Karen C.

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) uses indicators that “represent the state or trend of certain environmental or societal conditions … to track and better understand the effects of changes in the Earth’s climate” (U.S. Environmental Protection Agency, 2014). Updates to these indicators are published biennially by the EPA. The U.S. Geological Survey (USGS), in cooperation with the EPA, has completed analyses of air- and stream-water-temperature trends in the Chesapeake Bay region to be included as an indicator in a future release of the EPA report.

  13. THE ELECTRON TEMPERATURE OF THE SOLAR TRANSITION REGION AS DERIVED FROM EIS AND SUMER

    SciTech Connect

    Muglach, K.; Landi, E.; Doschek, G. A.

    2010-01-01

    We use UV and extreme-UV emission lines observed in quiet regions on the solar disk with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument and the Extreme Ultraviolet Imaging Spectrometer (EIS) to determine the electron temperature in solar transition region plasmas. Prominent emission lines of O IV and O VI are present in the solar spectrum, and the measured intensity line ratios provide electron temperatures in the range of log T = 5.6-6.1. We find that the theoretical O IV and O VI ion formation temperatures are considerably lower than our derived temperatures. The line ratios expected from a plasma in ionization equilibrium are larger by a factor of about 2-5 than the measured line ratios. A careful cross-calibration of SUMER and EIS has been carried out, which excludes errors in the relative calibration of the two instruments. We checked for other instrumental and observational effects, as well as line blending, and can exclude them as a possible source of the discrepancy between theoretical and observed line ratios. Using a multi-thermal quiet-Sun differential emission measure changes the theoretical line ratio by up to 28% which is not sufficient as an explanation. We also explored additional excitation mechanisms. Photoexcitation from photospheric blackbody radiation, self-absorption, and recombination into excited levels cannot be a possible solution. Adding a second Maxwellian to simulate the presence of non-thermal, high-energy electrons in the plasma distribution of velocities also did not solve the discrepancy.

  14. High resolution studies of complex solar active regions

    NASA Astrophysics Data System (ADS)

    Deng, Na

    Flares and Coronal Mass Ejections (CMEs) are energetic events, which can even impact the near-Earth environment and are the principal source of space weather. Most of them originate in solar active regions. The most violent events are produced in sunspots with a complex magnetic field topology. Studying their morphology and dynamics is helpful in understanding the energy accumulation and release mechanisms for flares and CMEs, which are intriguing problems in solar physics. The study of complex active regions is based on high-resolution observations from space missions and new instruments at the Big Bear Solar Observatory (BBSO). Adaptive optics (AO) in combination with image restoration techniques (speckle masking imaging) can achieve improved image quality and a spatial resolution (about 100 km on the solar surface) close to the diffraction limit of BBSO's 65 cm vacuum telescope. Dopplergrams obtained with a two-dimensional imaging spectrometer combined with horizontal flow maps derived with Local Correlation Tracking (LCT) provide precise measurements of the three-dimensional velocity field in sunspots. Magnetic field measurements from ground- and space-based instruments complement these data. At the outset of this study, the evolution and morphology of a typical round sunspot are described in some detail. The sunspot was followed from disk center to the limb, thus providing some insight into the geometry of the magnetic flux system. Having established a benchmark for a stable sunspot, the attention is turned to changes of the sunspot structure associated with flares and CMEs. Rapid penumbral decay and the strengthening of sunspot umbrae are manifestations of photospheric magnetic field changes after a flare. These sudden intensity changes are interpreted as a result of magnetic reconnection during the flare, which causes the magnetic field lines to be turned from more inclined to more vertical. Strong photospheric shear flows along the flaring magnetic

  15. Possibility to discriminate snow types using brightness temperatures in the thermal infrared wavelength region

    NASA Astrophysics Data System (ADS)

    Hori, Masahiro; Tanikawa, Tomonori; Aoki, Teruo; Hachikubo, Akihiro; Sugiura, Konosuke; Kuchiki, Katsuyuki; Niwano, Masashi

    2013-05-01

    Spectral emissivity of snow surface in the thermal infrared (TIR) wavelength region is an important parameter for monitoring snow surface temperature in cold climate regions and also for discriminating clouds and underlying snow surfaces in polar nights using satellite observed brightness temperature data. Past in-situ observations of snow emissivity revealed that the emissivity of snow surfaces varies depending on snow type [1]. Fine dendrite snow exhibits high emissivity over 0.98 in TIR at all exiting angles (θ). As ice granules of snow surface become large, the snow emissivity in TIR decreases and exhibits a wavelength dependence due to enhanced Fresnel reflectance at a wavelength around 12μm. Reduced snow emissivity is further enhanced as exiting angle increases. For example, emissivities of coarse grain snow at wavelengths of 11μm and 12μm are 0.99 and 0.975 for the zenith direction (θ=0°) but 0.965 and 0.93 for the slant direction of θ=75°. For sun crust snow, wavelength and directional dependences of snow emissivity are further enhanced. As the extreme case, emissivity of smooth bare ice can be approximated using the Fresnel reflectance theory. This snow type dependence of TIR emissivity as a function of wavelength and exiting angle is expected to make snow type discrimination possible using TIR brightness temperatures remotely sensed from space. In this study the possibility of snow type discrimination using TIR brightness temperatures is examined. Typical channels employed for satellite TIR image sensors are at wavelengths of 11μm and 12μm. Brightness temperature differences (BTD) at these two TIR channels (11μm-12μm) are calculated using the in-situ measured emissivities. The results showed that at the zenith direction the calculated BTD ranges from 0.5K for fine snow to 1.5K for bare ice, whereas the BTD ranges from 0.5K to over 2.3K at the slant direction of θ=60°. Thus, remotely sensed BTD ranges of around 1.0K at the zenith direction

  16. Regional climate models' performance in representing precipitation and temperature over selected Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Deidda, R.; Marrocu, M.; Caroletti, G.; Pusceddu, G.; Langousis, A.; Lucarini, V.; Puliga, M.; Speranza, A.

    2013-12-01

    This paper discusses the relative performance of several climate models in providing reliable forcing for hydrological modeling in six representative catchments in the Mediterranean region. We consider 14 Regional Climate Models (RCMs), from the EU-FP6 ENSEMBLES project, run for the A1B emission scenario on a common 0.22° (about 24 km) rotated grid over Europe and the Mediterranean region. In the validation period (1951 to 2010) we consider daily precipitation and surface temperatures from the observed data fields (E-OBS) data set, available from the ENSEMBLES project and the data providers in the ECA&D project. Our primary objective is to rank the 14 RCMs for each catchment and select the four best-performing ones to use as common forcing for hydrological models in the six Mediterranean basins considered in the EU-FP7 CLIMB project. Using a common suite of four RCMs for all studied catchments reduces the (epistemic) uncertainty when evaluating trends and climate change impacts in the 21st century. We present and discuss the validation setting, as well as the obtained results and, in some detail, the difficulties we experienced when processing the data. In doing so we also provide useful information and advice for researchers not directly involved in climate modeling, but interested in the use of climate model outputs for hydrological modeling and, more generally, climate change impact studies in the Mediterranean region.

  17. The plasma-wall interaction region: a key low temperature plasma for controlled fusion

    NASA Astrophysics Data System (ADS)

    Counsell, G. F.

    2002-08-01

    The plasma-wall interaction region of a fusion device provides the interface between the hot core plasma and the material surfaces. To obtain acceptably low levels of erosion from these surfaces requires most of the power leaving the core to be radiated. This is accomplished in existing devices by encouraging plasma detachment, in which the hot plasma arriving in the region is cooled by volume recombination and ion-neutral momentum transfer with a dense population of neutrals recycled from the surface. The result is a low temperature (1 eV1019 m-3) but weakly ionized (n0>1020 m-3, ne/n0<0.1) plasma found nowhere else in the fusion environment. This plasma provides many of the conditions found in industrial plasmas exploiting plasma chemistry and the presence of carbon in the region (in the form of carbon-fibre composite used in the plasma facing materials) can result in the formation of deposited hydrocarbon films. The plasma-wall interaction region is therefore among the most difficult in fusion to model, requiring an understanding of atomic, molecular and surface physics issues.

  18. Temperature and Microbial Activity Effects on Soil Carbon Stabilization

    NASA Astrophysics Data System (ADS)

    Fissore, C.; van Diepen, L.; Wixon, D.; Marin-Spiotta, E.; Giardina, C. P.

    2014-12-01

    Uncertainties on the importance of environmental controls on soil C stabilization and turnover limit accurate predictions of the rate and magnitude of the response of soils to climate change. Here we report results from a study of interactions among vegetation and soil microbial communities in North American forests across a highly constrained, 22OC gradient mean annual temperature (MAT) as a proxy for understanding changes with climate. Previous work indicated that turnover and amount of labile SOC responded negatively to MAT, whereas stable SOC was insensitive to temperature variation. Hardwood forests stored a larger amount of stable SOC, but with shorter mean residence times than paired pine forests. Our findings suggest that the interaction between vegetation composition and microbial communities may affect SOC accumulation and stabilization responses to rising temperature. To investigate these relationships, we characterized the microbial communities with Phospholipid Fatty Acid (PLFA) analysis. PLFA analyses indicate complex microbial responses to increased MAT and vegetation composition. Microbial biomass declined with MAT in conifer forests and increased in hardwood forests. Relative abundance of actinomycetes increased with MAT for both forest types, and was correlated with amount and turnover of active SOC. The relative abundance of fungi decreased with increasing MAT, while gram+ bacteria increased, such that fungi:bacteria ratio decreased with MAT, with this trend being more pronounced for hardwood cover type. These results are consistent with a long-term warming experiment in a hardwood forest at the Harvard Forest LTER site, where after 12 years of warming the relative abundance of gram positive bacteria and actinomycetes increased, while fungal biomass decreased. In contrast, relationships between microbial groups and the stable fraction of SOC along the gradient were only observed in conifers. Increases in mean residence time of stable SOC were

  19. FIP Bias Evolution in a Decaying Active Region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; Yardley, S. L.; van Driel-Gesztelyi, L.; Long, D. M.; Green, L. M.

    2015-04-01

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4-6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.

  20. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. PMID:25889542

  1. Contrasting Role of Temperature in Structuring Regional Patterns of Invasive and Native Pestilential Stink Bugs

    PubMed Central

    Venugopal, P. Dilip; Dively, Galen P.; Herbert, Ames; Malone, Sean; Whalen, Joanne; Lamp, William O.

    2016-01-01

    Objectives Assessment and identification of spatial structures in the distribution and abundance of invasive species is important for unraveling the underlying ecological processes. The invasive agricultural insect pest Halyomorpha halys that causes severe economic losses in the United States is currently expanding both within United States and across Europe. We examined the drivers of H. halys invasion by characterizing the distribution and abundance patterns of H. halys and native stink bugs (Chinavia hilaris and Euschistus servus) across eight different spatial scales. We then quantified the interactive and individual influences of temperature, and measures of resource availability and distance from source populations, and their relevant spatial scales. We used Moran’s Eigenvector Maps based on Gabriel graph framework to quantify spatial relationships among the soybean fields in mid-Atlantic Unites States surveyed for stink bugs. Findings Results from the multi-spatial scale, multivariate analyses showed that temperature and its interaction with resource availability and distance from source populations structures the patterns in H. halys at very broad spatial scale. H. halys abundance decreased with increasing average June temperature and distance from source population. H. halys were not recorded at fields with average June temperature higher than 23.5°C. In parts with suitable climate, high H. halys abundance was positively associated with percentage developed open area and percentage deciduous forests at 250m scale. Broad scale patterns in native stink bugs were positively associated with increasing forest cover and, in contrast to the invasive H. halys, increasing mean July temperature. Our results identify the contrasting role of temperature in structuring regional patterns in H. halys and native stink bugs, while demonstrating its interaction with resource availability and distance from source populations for structuring H. halys patterns. Conclusion

  2. Catalyst dispersion and activity under conditions of temperature- staged liquefaction

    SciTech Connect

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1991-09-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation. Liquefaction experiments of solvent-treated and untreated Blind Canyon (DECS-6) and Texas lignite (DECS-1) have been performed using ammonium tetrathiomolybdate (ATTM) and bis (dicarbonylcyclopentadienyl) iron (CPI) as catalyst precursors using temperature-staged conditions (275{degrees}C, 30 min; 425{degrees}C, 30 min). Solid state {sup 13}C NMR analysis was carried out for each coal and for selected residues. 12 refs., 14 figs., 9 tabs.

  3. REGION 4-SESD TRAINING ACTIVITIES: OCTOBER 2005 – SEPTEMBER 2006

    EPA Science Inventory

    Each year, the Science and Ecosytem Support Division (SESD) provides training and technical assistance to hundreds of students in EPA Region 4. Training courses are presented to Region 4 employees, Region 4 States, Indian Tribes, Universities and other Federal Agencies in the are...

  4. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity

    PubMed Central

    Zhou, Liang; van Heel, Auke J.; Kuipers, Oscar P.

    2015-01-01

    Lantibiotics are ribosomally synthesized (methyl)lanthionine containing peptides which can efficiently inhibit the growth of Gram-positive bacteria. As lantibiotics kill bacteria efficiently and resistance to them is difficult to be obtained, they have the potential to be used in many applications, e.g., in pharmaceutical industry or food industry. Nisin can inhibit the growth of Gram-positive bacteria by binding to lipid II and by making pores in their membrane. The C-terminal part of nisin is known to play an important role during translocation over the membrane and forming pore complexes. However, as the thickness of bacterial membranes varies between different species and environmental conditions, this property could have an influence on the pore forming activity of nisin. To investigate this, the so-called “hinge region” of nisin (residues NMK) was engineered to vary from one to six amino acid residues and specific activity against different indicators was compared. Antimicrobial activity in liquid culture assays showed that wild type nisin is most active, while truncation of the hinge region dramatically reduced the activity of the peptide. However, one or two amino acids extensions showed only slightly reduced activity against most indicator strains. Notably, some variants (+2, +1, −1, −2) exhibited higher antimicrobial activity than nisin in agar well diffusion assays against Lactococcus lactis MG1363, Listeria monocytogenes, Enterococcus faecalis VE14089, Bacillus sporothermodurans IC4 and Bacillus cereus 4153 at certain temperatures. PMID:25688235

  5. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  6. Activation of cutaneous immune responses in complex regional pain syndrome

    PubMed Central

    Birklein, Frank; Drummond, Peter D.; Li, Wenwu; Schlereth, Tanja; Albrecht, Nahid; Finch, Philip M.; Dawson, Linda F.; Clark, J. David; Kingery, Wade S.

    2014-01-01

    The pathogenesis of complex regional pain syndrome (CRPS) is unresolved, but TNF-α and IL-6 are elevated in experimental skin blister fluid from CRPS affected limbs, as is tryptase, a marker for mast cells. In the rat fracture model of CRPS exaggerated sensory and sympathetic neural signaling stimulate keratinocyte and mast cell proliferation, causing the local production of high levels of inflammatory cytokines leading to pain behavior. The current investigation used CRPS patient skin biopsies to determine whether keratinocyte and mast cell proliferation occur in CRPS skin and to identify the cellular source of the up-regulated TNF-α, IL-6, and tryptase observed in CRPS experimental skin blister fluid. Skin biopsies were collected from the affected skin and the contralateral mirror site in 55 CRPS patients and the biopsy sections were immunostained for keratinocyte, cell proliferation, mast cell markers, TNF-α, and IL-6. In early CRPS keratinocytes were activated in the affected skin, resulting in proliferation, epidermal thickening, and up-regulated TNF-α and IL-6 expression. In chronic CRPS there was reduced keratinocyte proliferation with epidermal thinning in the affected skin. Acute CRPS patients also had increased mast cell accumulation in the affected skin, but there was no increase in mast cell numbers in chronic CRPS. PMID:24462502

  7. Plasma Composition in a Sigmoidal Anemone Active Region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, L.; Green, L. M.; Steed, K.; Carlyle, J.

    2013-11-01

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  8. Plasma composition in a sigmoidal anemone active region

    SciTech Connect

    Baker, D.; Van Driel-Gesztelyi, L.; Green, L. M.; Carlyle, J.; Brooks, D. H.; Démoulin, P.; Steed, K.

    2013-11-20

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  9. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  10. Theoretical model for calculation of helicity in solar active regions

    NASA Astrophysics Data System (ADS)

    Chatterjee, P.

    We (Choudhuri, Chatterjee and Nandy, 2005) calculate helicities of solar active regions based on the idea of Choudhuri (2003) that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model based on the Babcock--Leighton α-effect to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we find that, during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. Next we (Chatterjee, Choudhuri and Petrovay 2006) use the above idea along with the sunspot decay model of Petrovay and Moreno-Insertis, (1997) to estimate the distribution of helicity inside a flux tube as it keeps collecting more azimuthal flux during its rise through the convection zone and as turbulent diffusion keeps acting on it. By varying parameters over reasonable ranges in our simple 1-d model, we find that the azimuthal flux penetrates the flux tube to some extent instead of being confined to a narrow sheath outside.

  11. Effects of magnetic field intensity on carbon diffusion coefficient in pure iron in γ-Fe temperature region

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Duan, Guosheng; Zhao, Xiang

    2015-03-01

    Effects of magnetic field intensity on carbon diffusion coefficient in pure iron in the γ-Fe temperature region were investigated using carburizing technology. The carbon penetration profiles from the iron surface to interior were measured by field emission electron probe microanalyzer. The carbon diffusion coefficient in pure iron carburized with different magnetic field intensities was calculated according to the Fick's second law. It was found that the magnetic field intensity could obviously affect the carbon diffusion coefficient in pure iron in the γ-Fe temperature region, and the carbon diffusion coefficient decreased obviously with the enhancement of magnetic field intensity, when the magnetic field intensity was higher than 1 T, the carbon diffusion coefficient in field annealed specimen was less than half of that of the nonfield annealed specimen, further enhancing the magnetic field intensity, the carbon diffusion coefficient basically remains unchanged. The stiffening of lattice due to field-induced magnetic ordering was responsible for an increase in activation barrier for jumping carbon atoms. The greater the magnetic field intensity, the stronger the inhibiting effect of magnetic field on carbon diffusion.

  12. The effects of activation temperature on physico-chemical characteristics of activated carbons derived from biomass wastes

    NASA Astrophysics Data System (ADS)

    Sutrisno, Bachrun; Hidayat, Arif

    2015-12-01

    This research focused on investigating in the effect of activation temperature on the physico-chemical properties of palm empty fruit bunch (PEFB) based activated carbon prepared by physical activation with carbon dioxide. The activation temperature was studied in the range of 400-800°C by keeping the activation temperature at 800°C for 120 min. It was found that the porous properties of activated carbon decreased with an increase in carbonization temperature. The activated carbons prepared at the highest activation temperature at 800°C and activation time of 120 min gave the activated carbon with the highest of BET surface area and pore volume of 938 m2/g and 0.4502 cm3/g, respectively

  13. CAN A LONG NANOFLARE STORM EXPLAIN THE OBSERVED EMISSION MEASURE DISTRIBUTIONS IN ACTIVE REGION CORES?

    SciTech Connect

    Mulu-Moore, Fana M.; Winebarger, Amy R.; Warren, Harry P.

    2011-11-20

    All theories that attempt to explain the heating of the high-temperature plasma observed in the solar corona are based on short bursts of energy. The intensities and velocities measured in the cores of quiescent active regions, however, can be steady over many hours of observation. One heating scenario that has been proposed to reconcile such observations with impulsive heating models is the 'long nanoflare storm', where short-duration heating events occur infrequently on many sub-resolution strands; the emission of the strands is then averaged together to explain the observed steady structures. In this Letter, we examine the emission measure distribution predicted for such a long nanoflare storm by modeling an arcade of strands in an active region core. Comparisons of the computed emission measure distributions with recent observations indicate that the long nanoflare storm scenario implies greater than five times more 1 MK emission than is actually observed for all plausible combinations of loop lengths, heating rates, and abundances. We conjecture that if the plasma had 'super coronal' abundances, the model may be able to match the observations at low temperatures.

  14. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    EPA Science Inventory

    We used an extensive dataset of remotely sensed summertime river temperature to compare longitudinal profiles (temperature versus distance) for 54 rivers in the Pacific Northwest. We evaluated (1) how often profiles fit theoretical expectations of asymptotic downstream warming, a...

  15. Active folded structures of the Western Caucasus (Sochi region)

    NASA Astrophysics Data System (ADS)

    Trikhunkov, Yaroslav; Zelenin, Egor

    2014-05-01

    The Western Caucasus as a margin segment of folded system of the Greater Caucasus was formed at the periphery of collision interaction of the Scythian Plate and the Transcaucasian Massif. The estimated age of the primary folded deformations of the initial surface of that territory ranges from the late Eocene to late Neogene. We have obtained new data on modern folded deformations of the anticlinal ridges, which prevail in Sochi region in the southern macroslope of the mountain system. Very similar Alek, Galitsinsky, Akhun, Nikolaevsky anticlinal ridges are uplifting in the main Caucasus direction (NW - SE) and are crossed by narrow antecedent river valleys. These ridges stand out contrasting to sinclinal depressions, where fluviatile accumulation prevails. At the intersection of the Mzymta river and the Galitsinsky anticlinal ridge a narrow Akhshtyr canyon with steep, 150 meters high slopes were formed. Downstream in the neighboring Akhshtyr synclinal depression the valley expands. Here the floodplain and two levels of terraces with the height of 20 - 30 and 50 - 60 m correspondingly were formed. The age of the first terrace was defined by archeologic data of V. Shchelinsky (2007) and by correlation with marine Black Sea Late Karangat terrace as a 135 - 90 ka (Eemian interglacial). The second terrace is apparently older and dates back to Middle Pleistocene. The field research and analysis of the elevations by ASTER GDEM allowed us to trace both terraces in the southern structural slope of the Galitsinsky ridge above the canyon, adjacent to the Akhshtyr depression, at the heights 70 and 110 m correspondingly. Alluvial deposits in outcrops of lower terrace (elongated pebbles, which look like modern alluvium of the Mzymta) were traced on the surface of the slope. Thereby, described fragments of the Mzymta terraces were uplifted above the level of the corresponding terraces in the synclinal depression as a result of dislocation on the slope of the actively uplifting

  16. Photospheric models of solar active regions and the network based on the Mg II h and k line wings

    NASA Technical Reports Server (NTRS)

    Morrison, N. D.; Linsky, J. L.

    1978-01-01

    From a comparison between observed and computed wings of the Mg II resonance lines, distributions of temperature versus mass column density for solar photospheric layers in plages and in the chromospheric network are derived. The theoretical profiles are computed assuming partial coherent scattering. In the active regions, temperatures exceed those in the quiet sun by up to 200 K near the temperature minimum and up to 400 K in deeper layers. In the observed network structure, the temperature is enhanced by 200 K at the temperature minimum but is the same as that in the quiet sun at greater depths. The difference in the slope of the temperature distribution between the network and plages is real, but may refer only to long elements of the network rather than to the brightest portions. Adjacent to the network is a region in which the temperatures are similar to those in the quiet sun, except immediately below the temperature minimum, where the temperatures are depressed by 150 K.

  17. Transcription activation at class II CRP-dependent promoters: the role of different activating regions.

    PubMed Central

    Rhodius, V A; West, D M; Webster, C L; Busby, S J; Savery, N J

    1997-01-01

    Transcription activation by the Escherichia coli cyclic AMP receptor protein (CRP) at Class II promoters is dependent on direct interactions between two surface-exposed activating regions (AR1 and AR2) and two contact sites in RNA polymerase. The effects on transcription activation of disrupting either AR1 or AR2 have been measured at different Class II promoters. AR2 but not AR1 is essential for activation at all the Class II promoters that were tested. The effects of single positive control substitutions in AR1 and AR2 vary from one promoter to another: the effects of the different substitutions are contingent on the -35 hexamer sequence. Abortive initiation assays have been used to quantify the effects of positive control substitutions in each activating region on the kinetics of transcription initiation at the Class II CRP- dependent promoter pmelRcon. At this promoter, the HL159 substitution in AR1 results in a defect in the initial binding of RNA polymerase whilst the KE101 substitution in AR2 reduces the rate of isomerization from the closed to the open complex. PMID:9016561

  18. Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and vegetation component temperatures in non-isothermal pixels encapsulate more physical meaning and are more applicable than composite temperatures. The component temperatures however are difficult to be obtained from thermal infrared (TIR) remote sensing data provided by single view angle obs...

  19. Continental and sea surface temperature variability in southeast Africa (Zambezi River region) since MIS 3

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Tjallingii, R.; Wang, Y. V.; Mets, A.; van der Lubbe, J.; Brummer, G.; Sinninghe Damste, J. S.; Schneider, R. R.; Schouten, S.

    2010-12-01

    At present, few paleoclimate records exist from the region of southeast Africa. The continental climate history of southeast Africa is of much interest since this region falls under the influence of both the Intertropical Convergence Zone (ITCZ) and Congo Air Boundary (CAB) and likely experienced considerably different hydrological conditions when glacial conditions prevailed. Likewise, the paleoceanographic history of the Mozambique Channel of the coast of southeast Africa is of much interest since mesoscale eddies (Agulhas rings) formed in this region transport and release warm and saline Indian Ocean waters into the South Atlantic influencing the buoyancy of Atlantic thermocline waters, deep-water formation, and Atlantic Meridional Overturning Circulation. Sea surface temperatures (SST) of the southern Indian Ocean are additionally important for modulating precipitation in southeast Africa. Here, we utilize multiple organic (TEX86, BIT Index, MBT, CBT) and inorganic (XRF core scanning) geochemical proxies on a sediment core collected from near the Zambezi River (core 64PE304-80; -18.24 °S, 37.87 °E) to examine continental conditions within the Zambezi River catchment as well as the SST history of the Mozambique Channel. Throughout the ~38 kyr record of 64PE304-80, variations in the BIT Index, a proxy for marine vs. soil organic matter input, closely track changes in the log (Ca/Ti) ratio, a proxy for marine vs. lithogenic input. These records indicate increased lithogenic/soil OM contributions in the Late Pleistocene portion of the record whereas the Holocene is characterized by increased marine contributions. This pattern likely reflects closer proximity of the Zambezi river mouth and transport of terrestrial material to the coring site during the last glacial sea-level lowstand. A particularly interesting feature of these records is pronounced millennial-scale fluctuations occurring within Marine Isotope Stages (MIS) 2 and 3, which posses a similar structure

  20. Mean annual temperatures of mid-latitude regions derived from stable hydrogen isotopes of wood lignin

    NASA Astrophysics Data System (ADS)

    Anhäuser, Tobias; Greule, Markus; Bowen, Gabriel J.; Keppler, Frank

    2016-04-01

    Tree rings are widely used climate archives providing annual resolutions on centennial to millennial timescales. Besides plant physiological parameters such as tree-ring width or maximum latewood density, stable isotope compositions (expressed as δ values) complement or even broaden the potential of the climate archive tree rings. A considerable wood constituent are ether-bonded methoxyl groups as part of lignin which can be used for stable hydrogen isotope studies. The δ²H value of the lignin methoxyl groups reflects the δ²H value of the tree source water as a result of a large uniform fractionation. Hence, this relation can be used to infer δ²H values of precipitation which are in temperate regions primarily controlled by temperature. Here, we measured δ²H values of lignin methoxyl groups (n = 111) of tree rings from various species collected along a ~3500 km north-south transect across Europe with mean annual temperatures (MAT) ranging from ‑4 to +17 °C. We found a significant linear correlation between δ²H values of the lignin methoxyl groups and MAT (R² = 0.81, p < 0.01). We used this relationship to predict MATs from randomly collected wood samples and found general agreement between predicted and observed MATs for the mid-latitudes on a global scale. Thus our results indicate that δ²H values of lignin methoxyl groups are a promising tool for mid-latitude temperature reconstruction of the Holocene.

  1. Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Ireland, J.

    2008-05-01

    Context: The relationships between the photospheric magnetic flux and either the X-ray or extreme ultraviolet emission from the solar atmosphere have been studied by several authors. Power-law relations have been found between the total magnetic flux and X-ray flux or intensities of the chromospheric, transition region, and coronal emission lines in solar active regions. These relations were then used to infer the mechanism of the coronal heating. Aims: We derive accurate power laws between EUV line intensities and the total magnetic flux in solar active regions and discuss their applications. We examine whether these global power laws are capable of providing the diagnostics of the coronal heating mechanism. Methods: This analysis is based on EUV lines recorded by the Coronal Diagnostic Spectrometer (CDS) on SOHO for 48 solar active regions, as they crossed the central meridian in years 1996-1998. Four spectral lines are used: He I 584.3 Å (3×104 K), O V 629.7 Å (2.2×105 K), Mg IX 368.06 Å (9.5×105 K), and Fe XVI 360.76 Å (2.0×106 K). In particular, the Fe XVI 360.76 Å line, seen only in areas of enhanced heating in active regions or bright points, has not been used before for this analysis. Results: Empirical power laws are established between the total active region intensity in the lines listed above and the total magnetic flux. We demonstrate the usefulness of some spatially integrated EUV line intensities, I_T, as a proxy for the total magnetic flux, Φ, in active regions. We point out the approximate, empirical nature of the I_T-Φ relationships and discuss the interpretation of the global power index. Different power index values for transition region and coronal lines are explained by their different dependence on pressure under the assumption of hydrostatic loop models. However, the global power laws are dominated by the size of the active regions, and we demonstrate for the first time the difficulties in uniquely relating the power index in the

  2. Exploring New Active Regions for Type 1 InasSb Strained-Layer Lasers

    SciTech Connect

    Biefeld, R.M.; Kurtz, S.R.; Phillips, J.D.

    1999-05-13

    We report on the metal-organic chemical vapor deposition (MOCVD) of mid- infrared InAsSb/InPSb optically pumped lasers grown using a high speed rotating disk reactor (RDR). The devices contain AlAsSb claddings and strained, type 1, InAsSb/InPSb active regions. By changing the layer thickness and composition of InAsSb/InPSb SLSs, we have prepared structures with low temperature (<20K) photoluminescence wavelengths ranging from 3.4 to 4.8 µm. We find a variation of bandgap from 0.272 to 0.324 eV for layer thicknesses of 9.0 to 18.2 nm. From these data we have estimated a valence band offset for the InAsSb/InPSb interface of about 400 meV. An InAsSb/InPSb SLS, optically pumped laser structure was grown on an InAs substrate with AlAs0.l6Sb0.84 claddings. A lasing threshold and spectrally narrowed laser emission was seen from 80 K through 200 K, the maximum temperature where Iasing occurred. The temperature dependence of the SLS laser threshold is described by a characteristic temperature, T0 = 72 K, from 80 to 200 K.

  3. Estimating the sensitivity of regional dust sources to sea surface temperature patterns

    NASA Astrophysics Data System (ADS)

    Hoffman, Alexis L.; Forest, Chris E.; Li, Wei

    2014-09-01

    Exploring the impact of sea surface temperature (SST) anomaly patterns on local climate in major dust source regions helps clarify our understanding of variability in the global dust cycle. In contrast to previous work, this research focuses explicitly on the influence of SST anomalies on dust emissions and attempts to explain the mechanisms by which SST anomalies affect seasonal dust emissions. This study investigates the seasonal sensitivity of mineral aerosol emissions to SST anomaly patterns from the Bodele Depression, West Africa, Sahel, Kalahari Desert, Arabian Desert, and Lake Eyre basin. The global teleconnection operator, which relates regional climate responses to SST anomaly patterns, is estimated for relevant variables in an ensemble of the National Center for Atmospheric Research Community Atmosphere Model version 5 forced by randomly perturbed climatological SST fields. Variability in dust emissions from major dust sources is linked to tropical SST anomalies, particularly in the Indian and western Pacific Oceans. Teleconnections excited by remote SST anomalies typically impact dust emissions via changes in near-surface wind speeds and friction velocity. However, SST-driven impacts on the threshold friction velocity can be of the same order of magnitude as changes in the friction velocity, suggesting the impact of SST anomalies on precipitation and soil moisture is also significant. Identifying SST anomaly patterns as a component of internal variability in regional dust emissions helps characterize human influences on the dust cycle as well as improve predictions of climate, nutrient cycles, and human environments.

  4. The Effect of Lake Temperatures and Emissions on Ozone Exposure in the Western Great Lakes Region

    SciTech Connect

    Fast, Jerome D. ); Heilman, Warren E.

    2003-09-01

    A meteorological-chemical model with a 12-km horizontal grid spacing was used to simulate the evolution of ozone over the western Great Lakes region during a 30-day period in the summer of 1999. High ozone production rates were produced over the surface of the lakes as a result of stable atmospheric conditions that trapped ozone precursors within a shallow layer during the day. Simulations with lake temperatures derived from either satellite measurements or climatological values produced ozone mixing ratios over the lakes and around the lake shores that differed by as much as 50 ppb while differences over land were usually 10 ppb or less. Through another series of sensitivity studies that varied ozone precursor emissions, it was shown that a reduction of 50% NOx or VOC would lower the 60 ppb ozone exposure by up to 50 h per month in the remote forest regions over the northern Great Lakes. The implications of these results on future climate change and air quality in the region is discussed.

  5. A new nanoscale fin field effect transistor with embedded intrinsic region for high temperature applications

    NASA Astrophysics Data System (ADS)

    Karimi, Fa.; Orouji, Ali A.

    2016-08-01

    The present paper reveals a novel structure of nanoscale Silicon-On-Insulator (SOI) Fin Field Effect Transistor (FinFET) in which an intrinsic region (EIR) is embedded into the buried oxide layer. The key idea in this work is to improve the critical thermal problems raised by the self-heating effect (SHE). The EIR-FinFET device has lower thermal resistance, reduced hot carrier effect, lower threshold voltage roll-off, and lower critical electric field in comparison with the C-FinFET. Also, higher DC transconductance, lower DC conductance and a better gate capacitance are obtained because the intrinsic region is embedded in a suitable place. Moreover, the simulation result with three-dimensional and two-carrier device simulator demonstrates an improved output characteristic of the proposed structure due to the reduced self-heating effect. The intrinsic silicon layer is located under the source and fin regions and provides more space to dissipate the accumulated heat. Due to the high thermal conductivity of the silicon and decreasing corner effects there, the heat will flow easily and the lattice temperature will decrease. All the extracted results attempt to show the superiority of the EIR-FinFET device over the conventional one, and its effect on the operation of nanoscale low power and high speed devices.

  6. Estimating the regional climate responses over river basins to changes in tropical sea surface temperature patterns

    NASA Astrophysics Data System (ADS)

    Tsai, Chii-Yun; Forest, Chris E.; Wagener, Thorsten

    2015-10-01

    We investigate how to identify and assess teleconnection signals between anomalous patterns of sea surface temperature (SST) changes and climate variables related to hydrologic impacts over different river basins. The regional climate sensitivity to tropical SST anomaly patterns is examined through a linear relationship given by the global teleconnection operator (GTO, also generally called a sensitivity matrix or an empirical Green's function). We assume that the GTO defines a multilinear relation between SST forcing and regional climate response of a target area. The sensitivities are computed based on data from a large ensemble of simulations using the NCAR Community Atmospheric Model version 3.1 (CAM 3.1). The linear approximation is evaluated by comparing the linearly reconstructed response with both the results from the full non-linear atmospheric model and observational data. The results show that the linear approximation can capture regional climate variability that the CAM 3.1 AMIP-style simulations produce at seasonal scales for multiple river basins. The linear method can be used potentially for estimating drought conditions, river flow forecasting, and agricultural water management problems.

  7. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  8. Observation and Modelling of Micropore Formation in Active Network Regions

    NASA Astrophysics Data System (ADS)

    Berger, T. E.; Löfdahl, M. G.; Bercik, D. J.

    2002-06-01

    We present phase-diversity corrected G-band 4305 Å and 4364 Å continuum image time series showing the formation of a micropore in a small active region near disk center. The data were acquired at the Swedish Vacuum Solar Telescope on La Palma in June of 1997 and post-processed using the Phase Diverse Speckle (PDS) algorithm to produce diffraction limited images throughout the majority of both time series. The micropore dataset comprises a 29x29 Mm field of view and spans 5.1 hours with a 38 second cadence. The micropore forms in a strong sink area that can be seen to ``collect" many G-band bright points over the first 2 hours of the observation. During this time there is an occasional darkening at the sink point that may be the first unstable phase of the micropore formation. Once a stable dark pore forms in the flowfield, it grows to a maximum diameter of 1.2 Mm in approximately 1.9 hours. The pore persists for another 35 minutes before apparently being broken up by the intergranular flowfield. The total ``lifetime" of the stable pore phase is 2.5 hours. A separate nearby micropore of 1.5 Mm maximum diameter exists for the entire 5.2 hour data span. We show G-band and continuum movies of the micropore formation, correlation tracking flowfield analyses, G-band bright point tracking results, and area versus time plots for the micropore formation lifetime. The observational data are compared with fully compressible 3D MHD numerical simulations which show the development of a similar micropore structure within the computational domain. This research was supported by NASA SR&T grant NASW-98008, The Royal Swedish Academy of Sciences, NSF and NASA funding at Michigan State University, and Lockheed Martin IRAD funding.

  9. ASYMMETRY OF HELICITY INJECTION FLUX IN EMERGING ACTIVE REGIONS

    SciTech Connect

    Tian Lirong; Alexander, David

    2009-04-20

    Observational and modeling results indicate that typically the leading magnetic field of bipolar active regions (ARs) is often spatially more compact, while more dispersed and fragmented in following polarity. In this paper, we address the origin of this morphological asymmetry, which is not well understood. Although it may be assumed that, in an emerging {omega}-shaped flux tube, those portions of the flux tube in which the magnetic field has a higher twist may maintain its coherence more readily, this has not been tested observationally. To assess this possibility, it is important to characterize the nature of the fragmentation and asymmetry in solar ARs and this provides the motivation for this paper. We separately calculate the distribution of the helicity flux injected in the leading and following polarities of 15 emerging bipolar ARs, using the Michelson Doppler Image 96 minute line-of-sight magnetograms and a local correlation tracking technique. We find from this statistical study that the leading (compact) polarity injects several times more helicity flux than the following (fragmented) one (typically 3-10 times). This result suggests that the leading polarity of the {omega}-shaped flux tube possesses a much larger amount of twist than the following field prior to emergence. We argue that the helicity asymmetry between the leading and following magnetic field for the ARs studied here results in the observed magnetic field asymmetry of the two polarities due to an imbalance in the magnetic tension of the emerging flux tube. We suggest that the observed imbalance in the helicity distribution results from a difference in the speed of emergence between the leading and following legs of an inclined {omega}-shaped flux tube. In addition, there is also the effect of magnetic flux imbalance between the two polarities with the fragmented following polarity displaying spatial fluctuation in both the magnitude and sign of helicity measured.

  10. Identifying the Main Driver of Active Region Outflows

    NASA Astrophysics Data System (ADS)

    Baker, D.; van Driel-Gesztelyi, L.; Mandrini, C. H.; Démoulin, P.; Murray, M. J.

    2012-08-01

    Hinode's EUV Imaging Spectrometer (EIS) has discovered ubiquitous outflows of a few to 50 km s-1 from active regions (ARs). The characteristics of these outflows are very curious in that they are most prominent at the AR boundary and appear over monopolar magnetic areas. They are linked to strong non-thermal line broadening and are stronger in hotter EUV lines. The outflows persist for at least several days. Whereas red-shifted down flows observed in AR closed loops are well understood, to date there is no general consensus for the mechanism(s) driving blue-shifted AR-related outflows. We use Hinode EIS and X-Ray Telescope observations of AR 10942 coupled with magnetic modeling to demonstrate for the first time that the outflows originate from specific locations of the magnetic topology where field lines display strong gradients of magnetic connectivity, namely quasi-separatrix layers (QSLs), or in the limit of infinitely thin QSLs, separatrices. The strongest AR outflows were found to be in the vicinity of QSL sections located over areas of strong magnetic field. We argue that magnetic reconnection at QSLs, separating closed field lines of the AR and either large-scale externally connected or ‘open’ field lines, is a viable mechanism for driving AR outflows which are potentially sources of the slow solar wind. In fact, magnetic reconnection along QSLs (including separatricies) is the first theory to explain the most puzzling characteristics of the outflows, namely their occurrence over monopolar areas at the periphery of ARs and their longevity.

  11. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS

    SciTech Connect

    Petrie, G. J. D.; Sudol, J. J.

    2010-12-01

    We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

  12. MAGNETIC HELICITY AND ENERGY SPECTRA OF A SOLAR ACTIVE REGION

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2014-04-01

    We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during 2011 February 11-15 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ≈ 0.4 Mm{sup –1}, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k {sup –11/3} power law at large wavenumbers, which implies a k {sup –5/3} spectrum for the modulus of the current helicity. A k {sup –5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm{sup –1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artifacts at small scales.

  13. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A. E-mail: ambastha@prl.res.in

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  14. Long tails in regional surface temperature probability distributions with implications for extremes under global warming

    NASA Astrophysics Data System (ADS)

    Ruff, Tyler W.; Neelin, J. David

    2012-02-01

    Prior work has shown that probability distributions of column water vapor and several passive tropospheric chemical tracers exhibit longer-than-Gaussian (approximately exponential) tails. The tracer-advection prototypes explaining the formation of these long-tailed distributions motivate exploration of observed surface temperature distributions for non-Gaussian tails. Stations with long records in various climate regimes in National Climatic Data Center Global Surface Summary of Day observations are used to examine tail characteristics for daily average, maximum and minimum surface temperature probability distributions. Each is examined for departures from a Gaussian fit to the core (here approximated as the portion of the distribution exceeding 30% of the maximum). While the core conforms to Gaussian for most distributions, roughly half the cases exhibit non-Gaussian tails in both winter and summer seasons. Most of these are asymmetric, with a long, roughly exponential, tail on only one side. The shape of the tail has substantial implications for potential changes in extreme event occurrences under global warming. Here the change in the probability of exceeding a given threshold temperature is quantified in the simplest case of a shift in the present-day observed distribution. Surface temperature distributions with long tails have a much smaller change in threshold exceedances (smaller increases for high-side and smaller decreases for low-side exceedances relative to exceedances in current climate) under a given warming than do near-Gaussian distributions. This implies that models used to estimate changes in extreme event occurrences due to global warming should be verified regionally for accuracy of simulations of probability distribution tails.

  15. Enhanced thermostability of mesophilic endoglucanase Z with a high catalytic activity at active temperatures.

    PubMed

    Kim, Su Jung; Joo, Ji Eun; Jeon, Sang Duck; Hyeon, Jeong Eun; Kim, Seung Wook; Um, Young Soon; Han, Sung Ok

    2016-05-01

    This is the first study for therrmostable mutants of mesophilic endoglucanase EngZ from Clostridium cellulovorans using by site-directed mutagenesis. K94R, S365P and their double mutant K94R/S365P had a wide range of active temperatures (30-60°C). In addition, the optimal temperature of K94R/S365P was increased by 7.5°C. K94R/S365P retained 78.3% relative activity at 70°C, while the wild type retained only 5.8%. Especially, K94R/S365P remained 45.1-fold higher activity than the wild type at 70°C. In addition, K94R/S365P was 3.1-fold higher activity than the wild type at 42.5°C, which is the optimal temperature of the wild type. K94R/S365P showed also stimulated in 2.5-fold lower concentration of CaCl2 and delayed aggregation temperature in the presence of CaCl2 compared to the wild type. In pH stability, K94R/S365P was not influenced, but the optimum pH was transferred from pH 7 to pH 6. In long-term hydrolysis, K94R/S365P reduced the newly released reducing sugar yields after 12h reaction; however, the yields consistently increased until 72h. Finally, the total reducing sugar of K94R/S365P was 5.0-fold higher than the wild type at 50°C, pH6. EngZ (K94R/S365P) can support information to develop thermostability of GH9 endoglucanase with a high catalytic efficiency as the potential industrial bioprocess candidate. PMID:26808019

  16. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  17. The SeaDataNet data products: regional temperature and salinity historical data collections

    NASA Astrophysics Data System (ADS)

    Simoncelli, Simona; Coatanoan, Christine; Bäck, Orjan; Sagen, Helge; Scoy, Serge; Myroshnychenko, Volodymyr; Schaap, Dick; Schlitzer, Reiner; Iona, Sissy; Fichaut, Michele

    2016-04-01

    Temperature and Salinity (TS) historical data collections covering the time period 1900-2013 were created for each European marginal sea (Arctic Sea, Baltic Sea, Black Sea, North Sea, North Atlantic Ocean and Mediterranean Sea) within the framework of SeaDataNet2 (SDN) EU-Project and they are now available as ODV collections through the SeaDataNet web catalog at http://sextant.ifremer.fr/en/web/seadatanet/. Two versions have been published and they represent a snapshot of the SDN database content at two different times: V1.1 (January 2014) and V2 (March 2015). A Quality Control Strategy (QCS) has been developped and continuously refined in order to improve the quality of the SDN database content and to create the best product deriving from SDN data. The QCS was originally implemented in collaboration with MyOcean2 and MyOcean Follow On projects in order to develop a true synergy at regional level to serve operational oceanography and climate change communities. The QCS involved the Regional Coordinators, responsible of the scientific assessment, the National Oceanographic Data Centers (NODC) and the data providers that, on the base of the data quality assessment outcome, checked and eventually corrected anomalies in the original data. The QCS consists of four main phases: 1) data harvesting from the central CDI; 2) file and parameter aggregation; 3) quality check analysis at regional level; 4) analysis and correction of data anomalies. The approach is iterative to facilitate the upgrade of SDN database content and it allows also the versioning of data products with the release of new regional data collections at the end of each QCS loop. SDN data collections and the QCS will be presented and the results summarized.

  18. Possible cause of enhancement of electron temperature in high electron density region in the dayside ionosphere

    NASA Astrophysics Data System (ADS)

    Kakinami, Yoshihiro; Watanabe, Shigeto

    2016-07-01

    When neutral atmosphere is ionized by solar EUV, energetic electrons named photoelectrons are emitted. The photoelectrons are primary heat source of electrons in the ionosphere in the daytime. The heating rate of electron by photoelectron is proportion to 0.97 power of electron density (Ne) while the heated electron is cooled through the Column collision with ions, the rate of which rate is square of Ne. Therefore, electron temperature (Te) decreases and approach ion temperature (Ti) with increase of Ne. Ions are also cooled through the collision with neutral spices. Finally, these temperatures (Te, Ti and Tn) show very similar values in high Ne region. However, Te enhancement with increase of Ne is found in the satellite observation at 600 km in the daytime ionosphere [Kakinami et al., 2011]. Similar Ti variation is also found around the magnetic dip equator [Kakinami et al., 2014]. One possible cause of the enhancement of Te is enhacement of Tn with increase Ne because both Ne and Tn increase with increase of solar irradiance flux, F10.7 [Lei et al., 2007]. However, since such the enhancements of Te are seen in any F10.7, it is hard to explain the phenomenon. In this paper, we present correlation between Te (Ti) and Ne obtained by the Incoherent Scatter radar at Jicamarca. The similar correlation, namely positive correlation of Te (Ti) with Ne in high Ne region are found above 300 km. Using the observations and Tn and neutral density calculated with MSIS, the Column collision cooling with ions, and inelastic collision cooling with neutral spices for electron are shown. The heat conduction along the magnetic field line is also estimated by using IRI model. Using these information, we discuss possible cause of the enhancement of Te in the high Ne region. References Kakinami et al. (2011), J. Geophys. Res., doi:10.1029/2011JA016905. Kakinami et al. (2014), J. Geophys. Res., 119, doi:10.1002/2014JA020302. Lei et al.(2007), J. Geophys. Res., doi:10.1029/2006JA012041.

  19. Chemical and conformational changes in chromosome regions being actively transcribed.

    PubMed Central

    Pagés, M; Alonso, C

    1978-01-01

    U.V. microspectrophotometry has been used to calculate quantities of nucleic acids and proteins of complete polytene chromosomal sets and specific regions of these chromosomes. It has been found that in chromosomes the ratio of DNA to proteins is approximately 1:4. This ratio however changes when specific regions are compared. The average ratio of DNA to proteins in a puffed region (2-48B4C5) increases to 1:16 in contrast to 1:6 from the same region but in non puffed state. At the same time the RNA quantity increases by a factor of 2. thermal denaturation profiles of formaldehyde fixed chromosomes show that the Tm of this region in puffed and non puffed state differ by 10 degrees C. Moreover these profiles suggest that a large fraction of histone-bound DNA is destabilized during puffing. PMID:634798

  20. Region-Specific Sensitivity of Anemophilous Pollen Deposition to Temperature and Precipitation

    PubMed Central

    Donders, Timme H.; Hagemans, Kimberley; Dekker, Stefan C.; de Weger, Letty A.; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect

  1. Region-specific sensitivity of anemophilous pollen deposition to temperature and precipitation.

    PubMed

    Donders, Timme H; Hagemans, Kimberley; Dekker, Stefan C; de Weger, Letty A; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect

  2. Synthetic 3D modeling of active regions and simulation of their multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory; Kuznetsov, Alexey A.; Loukitcheva, Maria A.; Viall, Nicholeen M.; Klimchuk, James A.; Gary, Dale E.

    2015-04-01

    To facilitate the study of solar active regions, we have created a synthetic modeling framework that combines 3D magnetic structures obtained from magnetic extrapolations with simplified 1D thermal models of the chromosphere, transition region, and corona. To handle, visualize, and use such synthetic data cubes to compute multi-wavelength emission maps and compare them with observations, we have undertaken a major enhancement of our simulation tools, GX_Simulator (ftp://sohoftp.nascom.nasa.gov/solarsoft/packages/gx_simulator/), developed earlier for modeling emission from flaring loops. The greatly enhanced, object-based architecture, which now runs on Windows, Mac, and UNIX platform, offers important new capabilities that include the ability to either import 3D density and temperature distribution models, or to assign to each individual voxel numerically defined coronal or chromospheric temperature and densities, or coronal Differential Emission Measure distributions. Due to these new capabilities, the GX_Simulator can now apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel volume, as well as compute and investigate the spatial and spectral properties of radio (to be compared with VLA or EOVSA data), (sub-)millimeter (ALMA), EUV (AIA/SDO), and X-ray (RHESSI) emission calculated from the model. The application integrates shared-object libr