Science.gov

Sample records for active regions based

  1. Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint.

    PubMed

    Appia, Vikram; Yezzi, Anthony

    2011-11-01

    We present an active geodesic contour model in which we constrain the evolving active contour to be a geodesic with respect to a weighted edge-based energy through its entire evolution rather than just at its final state (as in the traditional geodesic active contour models). Since the contour is always a geodesic throughout the evolution, we automatically get local optimality with respect to an edge fitting criterion. This enables us to construct a purely region-based energy minimization model without having to devise arbitrary weights in the combination of our energy function to balance edge-based terms with the region-based terms. We show that this novel approach of combining edge information as the geodesic constraint in optimizing a purely region-based energy yields a new class of active contours which exhibit both local and global behaviors that are naturally responsive to intuitive types of user interaction. We also show the relationship of this new class of globally constrained active contours with traditional minimal path methods, which seek global minimizers of purely edge-based energies without incorporating region-based criteria. Finally, we present some numerical examples to illustrate the benefits of this approach over traditional active contour models.

  2. Medical Image Segmentation Based on a Hybrid Region-Based Active Contour Model

    PubMed Central

    Liu, Tingting; Xu, Haiyong; Liu, Zhen; Zhao, Yiming; Tian, Wenzhe

    2014-01-01

    A novel hybrid region-based active contour model is presented to segment medical images with intensity inhomogeneity. The energy functional for the proposed model consists of three weighted terms: global term, local term, and regularization term. The total energy is incorporated into a level set formulation with a level set regularization term, from which a curve evolution equation is derived for energy minimization. Experiments on some synthetic and real images demonstrate that our model is more efficient compared with the localizing region-based active contours (LRBAC) method, proposed by Lankton, and more robust compared with the Chan-Vese (C-V) active contour model. PMID:25028593

  3. From snakes to region-based active contours defined by region-dependent parameters.

    PubMed

    Jehan-Besson, Stéphanie; Gastaud, Muriel; Precioso, Frédéric; Barlaud, Michel; Aubert, Gilles; Debreuve, Eric

    2004-01-10

    Image and sequence segmentation of a the segmentation task are discussed from the point of view of optimizing the segmentation criterion. Such a segmentation criterion involves so-called (boundary and region) descriptors, which, in general, may depend on their respective boundaries or regions. This dependency must be taken into account when one is computing the criterion derivative with respect to the unknown object domain (defined by its boundary). If this dependency not considered, some correctional terms may be omitted. Computing the derivative of the segmentation criterion with a dynamic scheme is described. The scheme is general enough to provide a framework for a wide variety of applications in segmentation. It also provides a theoretical meaning to the philosophy of active contours.

  4. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    NASA Astrophysics Data System (ADS)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  5. Locally constrained active contour: a region-based level set for ovarian cancer metastasis segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Yao, Jianhua; Wang, Shijun; Linguraru, Marius George; Summers, Ronald M.

    2014-03-01

    Accurate segmentation of ovarian cancer metastases is clinically useful to evaluate tumor growth and determine follow-up treatment. We present a region-based level set algorithm with localization constraints to segment ovarian cancer metastases. Our approach is established on a representative region-based level set, Chan-Vese model, in which an active contour is driven by region competition. To reduce over-segmentation, we constrain the level set propagation within a narrow image band by embedding a dynamic localization function. The metastasis intensity prior is also estimated from image regions within the level set initialization. The localization function and intensity prior force the level set to stop at the desired metastasis boundaries. Our approach was validated on 19 ovarian cancer metastases with radiologist-labeled ground-truth on contrast-enhanced CT scans from 15 patients. The comparison between our algorithm and geodesic active contour indicated that the volume overlap was 75+/-10% vs. 56+/-6%, the Dice coefficient was 83+/-8% vs. 63+/-8%, and the average surface distance was 2.2+/-0.6mm vs. 4.4+/-0.9mm. Experimental results demonstrated that our algorithm outperformed traditional level set algorithms.

  6. A fast region-based active contour model for boundary detection of echocardiographic images.

    PubMed

    Saini, Kalpana; Dewal, M L; Rohit, Manojkumar

    2012-04-01

    This paper presents the boundary detection of atrium and ventricle in echocardiographic images. In case of mitral regurgitation, atrium and ventricle may get dilated. To examine this, doctors draw the boundary manually. Here the aim of this paper is to evolve the automatic boundary detection for carrying out segmentation of echocardiography images. Active contour method is selected for this purpose. There is an enhancement of Chan-Vese paper on active contours without edges. Our algorithm is based on Chan-Vese paper active contours without edges, but it is much faster than Chan-Vese model. Here we have developed a method by which it is possible to detect much faster the echocardiographic boundaries. The method is based on the region information of an image. The region-based force provides a global segmentation with variational flow robust to noise. Implementation is based on level set theory so it easy to deal with topological changes. In this paper, Newton-Raphson method is used which makes possible the fast boundary detection.

  7. Active region seismology

    NASA Technical Reports Server (NTRS)

    Bogdan, Tom; Braun, D. C.

    1995-01-01

    Active region seismology is concerned with the determination and interpretation of the interaction of the solar acoustic oscillations with near-surface target structures, such as magnetic flux concentration, sunspots, and plage. Recent observations made with a high spatial resolution and a long temporal duration enabled measurements of the scattering matrix for sunspots and solar active regions to be carried out as a function of the mode properties. Based on this information, the amount of p-mode absorption, partial-wave phase shift, and mode mixing introduced by the sunspot, could be determined. In addition, the possibility of detecting the presence of completely submerged magnetic fields was raised, and new procedures for performing acoustic holography of the solar interior are being developed. The accumulating evidence points to the mode conversion of p-modes to various magneto-atmospheric waves within the magnetic flux concentration as being the unifying physical mechanism responsible for these diverse phenomena.

  8. Chromosphere Active Region Plasma Diagnostics Based On Observations Of Millimeter Radiation

    NASA Astrophysics Data System (ADS)

    Loukitcheva, M.; Nagnibeda, V.

    1999-10-01

    In this paper we present the results of millimeter radiation calculations for different elements of chromospheric and transition region structures of the quiet Sun and S-component - elements of chromosphere network, sunspot groups and plages. The calculations were done on the basis of standard optical and UV models ( models by Vernazza et al. (1981,VAL), their modifications by Fontenla et al. (1993,FAL)). We also considered the sunspot model by Lites and Skumanich (1982,LS), S-component model by Staude et al.(1984) and modification of VAL and FAL models by Bocchialini and Vial - models NET and CELL. We compare these model calculations with observed characteristics of components of millimeter Solar radiation for the quiet Sun and S-component obtained with the radiotelescope RT-7.5 MGTU (wavelength 3.4 mm) and radioheliograph Nobeyama (wavelength 17.6 mm). From observations we derived spectral characteristics of millimeter sources and active region source structure. The comparison has shown that observed radio data are clearly in dissagrement with all the considered models. Finally, we propose further improvement of chromospheric and transition region models based on optical and UV observations in order to use for modelling information obtained from radio data.

  9. Application of the active camber morphing concept based on compliant structures to a regional aircraft

    NASA Astrophysics Data System (ADS)

    De Gaspari, Alessandro; Ricci, Sergio

    2014-04-01

    The present work addresses the optimal design of a morphing mechanism based on compliant structures used to implement the active camber morphing concept. The subject of the work is part of the FP7-NOVEMOR project (Novel Air Vehicle Configurations: From Fluttering Wings to Morphing Flight) which is one of the many projects from the seventh European Framework Programme. The implementation of active camber concept is based on the use of conformable morphing control surfaces. Aiming at the optimal design of such as morphing devices, two dedicated tools called PHORMA and SPHERA, respectively, are introduced. The definition of the optimal shape taking into account both aerodynamic and structural constraints is done by PHORMA. Then SPHERA, based on the load path approach codified by coupling a non linear beam solver to a genetic multi- objective optimizer, is adopted to generate the optimal internal structure able to produce, when loaded, the target optimal shape. The paper is mainly focused on the optimal design of the compliant structures starting from the optimal shape already available for a Reference Aircraft (RA) developed inside NOVEMOR project and representative of a typical regional jet capable to carry 113 PAX in a single economic class.

  10. Segmentation of Bone with Region Based Active Contour Model in PD Weighted MR Images of Shoulder

    PubMed Central

    Sezer, Aysun; Sezer, Hasan Basri; Albayrak, Songul

    2015-01-01

    Proton density (PD) weighted MR images present inhomogeneity problem, low signal to noise ratio (SNR) and cannot define bone borders clearly. Segmentation of PD weighted images is hampered with these properties of PD weighted images which even limit the visual inspection. The purpose of this study is to determine the effectiveness of segmentation of humeral head from axial PD MR images with active contour without edge (ACWE) model. We included 219 images from our original data set. We extended the use of speckle reducing anisotropic diffusion (SRAD) in PD MR images by estimation of standard deviation of noise (SDN) from ROI. To overcome the problem of initialization of the initial contour of these region based methods, the location of the initial contour was automatically determined with use of circular Hough transform. For comparison, signed pressure force (SPF), fuzzy C-means, and Gaussian mixture models were applied and segmentation results of all four methods were also compared with the manual segmentation results of an expert. Experimental results on our own database show promising results. This is the first study in the literature to segment normal and pathological humeral heads from PD weighted MR images. PMID:26064185

  11. Region-based geometric active contour for classification using hyperspectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Yan, Lin

    2011-12-01

    The high spectral resolution of hyperspectral imaging (HSI) systems greatly enhances the capabilities of discrimination, identification and quantification of objects of different materials from remote sensing images, but they also bring challenges to the processing and analysis of HSI data. One issue is the high computation cost and the curse of dimensionality associated with the high dimensions of HSI data. A second issue is how to effectively utilize the information including spectral and spatial information embedded in HSI data. Geometric Active Contour (GAC) is a widely used image segmentation method that utilizes the geometric information of objects within images. One category of GAC models, the region-based GAC models (RGAC), have good potential for remote sensing image processing because they use both spectral and geometry information in images are robust to initial contour placement. These models have been introduced to target extractions and classifications on remote sensing images. However, there are some restrictions on the applications of the RGAC models on remote sensing. First, the heavy involvement of iterative contour evolutions makes GAC applications time-consuming and inconvenient to use. Second, the current RGAC models must be based on a certain distance metric and the performance of RGAC classifiers are restricted by the performance of the employed distance metrics. According to the key features of the RGAC models analyzed in this dissertation, a classification framework is developed for remote sensing image classifications using the RGAC models. This framework allows the RGAC models to be combined with conventional pixel-based classifiers to promote them to spectral-spatial classifiers and also greatly reduces the iterations of contour evolutions. An extended Chan-Vese (ECV) model is proposed that is able to incorporate the widely used distance metrics in remote sensing image processing. A new type of RGAC model, the edge-oriented RGAC model

  12. Space-born and ground-based observations of a solar active region and a flare

    NASA Astrophysics Data System (ADS)

    Chiuderi Drago, F.

    Observational data of the active solar region AR 2490 are discussed with an eye to underlying physical processes. Ground- and spaceborne measurements were made by radio, optical, and XUV instrumentation. A double structure observed at 6 and 20 cm wavelengths was overlying a sunspot group which displayed north polarity. The 6 cm emission was attributed to free-free emission, while the 20 cm feature was thought to be caused by gyroresonance absorption. An analytical formulation was developed which described the thermal component for maximum X ray intensities. A flare observed on June 10, 1980 was detected on H-alpha and C IV spectrographic bands. The origin of the emissions was fixed at the two feet of the X ray loop, with a radio emission coming from the top of the loop.

  13. Genome-Based Identification of Active Prophage Regions by Next Generation Sequencing in Bacillus licheniformis DSM13

    PubMed Central

    Hertel, Robert; Rodríguez, David Pintor; Hollensteiner, Jacqueline; Dietrich, Sascha; Leimbach, Andreas; Hoppert, Michael; Liesegang, Heiko; Volland, Sonja

    2015-01-01

    Prophages are viruses, which have integrated their genomes into the genome of a bacterial host. The status of the prophage genome can vary from fully intact with the potential to form infective particles to a remnant state where only a few phage genes persist. Prophages have impact on the properties of their host and are therefore of great interest for genomic research and strain design. Here we present a genome- and next generation sequencing (NGS)-based approach for identification and activity evaluation of prophage regions. Seven prophage or prophage-like regions were identified in the genome of Bacillus licheniformis DSM13. Six of these regions show similarity to members of the Siphoviridae phage family. The remaining region encodes the B. licheniformis orthologue of the PBSX prophage from Bacillus subtilis. Analysis of isolated phage particles (induced by mitomycin C) from the wild-type strain and prophage deletion mutant strains revealed activity of the prophage regions BLi_Pp2 (PBSX-like), BLi_Pp3 and BLi_Pp6. In contrast to BLi_Pp2 and BLi_Pp3, neither phage DNA nor phage particles of BLi_Pp6 could be visualized. However, the ability of prophage BLi_Pp6 to generate particles could be confirmed by sequencing of particle-protected DNA mapping to prophage locus BLi_Pp6. The introduced NGS-based approach allows the investigation of prophage regions and their ability to form particles. Our results show that this approach increases the sensitivity of prophage activity analysis and can complement more conventional approaches such as transmission electron microscopy (TEM). PMID:25811873

  14. Active region flows

    NASA Technical Reports Server (NTRS)

    Foukal, Peter

    1987-01-01

    A wide range of observations has shown that active region phenomena in the photospheric, chromospheric and coronal temperature regimes are dynamical in nature. At the photosphere, recent observations of full line profiles place an upper limit of about + or - 20/msec on any downflows at supergranule cell edges. Observations of the full Stokes 5 profiles in the network show no evidence for downflows in magnetic flux tubes. In the area of chromospheric dynamics, several models were put forward recently to reproduce the observed behavior of spicules. However, it is pointed out that these adiabatic models do not include the powerful radiative dissipation which tend to damp out the large amplitude disturbances that produce the spicular acceleration in the models. In the corona, loop flows along field lines clearly transport mass and energy at rates important for the dynamics of these structures. However, advances in understanding the heating and mass balance of the loop structures seem to require new kinds of observations. Some results are presented using a remote sensing diagnostic of the intensity and orientation of macroscopic plasma electric fields predicted by models of reconnective heating and also wave heating.

  15. Pain acceptance-based coping in complex regional pain syndrome Type I: daily relations with pain intensity, activity, and mood.

    PubMed

    Cho, Sungkun; McCracken, Lance M; Heiby, Elaine M; Moon, Dong-Eon; Lee, Jang-Han

    2013-10-01

    This study aimed to examine the temporal patterning of pain acceptance-based coping, activity, and mood in patients with complex regional pain syndrome Type I (CRPS-I), by using a daily diary method. A total of 30 patients with CRPS-I seeking treatment in a tertiary pain management center located in Seoul, Korea participated in the study. Multilevel random effects analyses indicated that (a) engagement in pain acceptance-based coping was significantly associated with lower same-day pain and negative mood and greater same-day activity and positive mood; (b) pain acceptance-based coping predicted increases in activity on the following day; (c) greater pain intensity was significantly associated with lower same-day pain acceptance-based coping and activity and greater same-day negative mood; and (d) pain intensity did not predict pain acceptance-based coping, activity, or mood on the following day. These findings suggest that patients with CRPS-I may benefit from responding to pain with acceptance. Further study and eventual application of this process in CRPS-I may improve upon the success of current approaches to this problem. PMID:22854886

  16. Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design

    SciTech Connect

    Meng, Bo; Zeng, Yong Quan; Liang, Guozhen; Hu, Xiao Nan; Rodriguez, Etienne; Wang, Qi Jie

    2015-09-14

    We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.

  17. Markov random field driven region-based active contour model (MaRACel): application to medical image segmentation.

    PubMed

    Xu, Jun; Monaco, James P; Madabhushi, Anant

    2010-01-01

    In this paper we present a Markov random field (MRF) driven region-based active contour model (MaRACel) for medical image segmentation. State-of-the-art region-based active contour (RAC) models assume that every spatial location in the image is statistically independent of the others, thereby ignoring valuable contextual information. To address this shortcoming we incorporate a MRF prior into the AC model, further generalizing Chan & Vese's (CV) and Rousson and Deriche's (RD) AC models. This incorporation requires a Markov prior that is consistent with the continuous variational framework characteristic of active contours; consequently, we introduce a continuous analogue to the discrete Potts model. To demonstrate the effectiveness of MaRACel, we compare its performance to those of the CV and RD AC models in the following scenarios: (1) the qualitative segmentation of a cancerous lesion in a breast DCE-MR image and (2) the qualitative and quantitative segmentations of prostatic acini (glands) in 200 histopathology images. Across the 200 prostate needle core biopsy histology images, MaRACel yielded an average sensitivity, specificity, and positive predictive value of 71%, 95%, 74% with respect to the segmented gland boundaries; the CV and RD models have corresponding values of 19%, 81%, 20% and 53%, 88%, 56%, respectively.

  18. Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity

    PubMed Central

    Liu, Jun; Sun, Tao; Shen, Qun-Tai

    2016-01-01

    Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients. PMID:26978777

  19. Regional Activities Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library network activities in Canada, the Third World, Japan, Malaysia, Brazil, and Sweden which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Canada: A Voluntary and Flexible Network," a review by Guy Sylvestre of the political, social, and economic structures affecting…

  20. Automated recognition and characterization of solar active regions based on the SOHO/MDI images

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Turmon, M.; Mukhtar, S.; Bogart, R.; Ulrich, R.; Froehlich, C.; Wehrli, C.

    1997-01-01

    The first results of a new method to identify and characterize the various surface structures on the sun, which may contribute to the changes in solar total and spectral irradiance, are shown. The full disk magnetograms (1024 x 1024 pixels) of the Michelson Doppler Imager (MDI) experiment onboard SOHO are analyzed. Use of a Bayesian inference scheme allows objective, uniform, automated processing of a long sequence of images. The main goal is to identify the solar magnetic features causing irradiance changes. The results presented are based on a pilot time interval of August 1996.

  1. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design

    PubMed Central

    Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh

    2016-01-01

    Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. PMID:27270634

  2. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design.

    PubMed

    Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh

    2016-06-08

    Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm(-1)) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing.

  3. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh

    2016-06-01

    Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm‑1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing.

  4. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design.

    PubMed

    Zhou, Wenjia; Bandyopadhyay, Neelanjan; Wu, Donghai; McClintock, Ryan; Razeghi, Manijeh

    2016-01-01

    Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm(-1)) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. PMID:27270634

  5. Active Region Release Two CMEs

    NASA Video Gallery

    Solar material can be seen blowing off the sun in this video captured by NASA’s Solar Dynamics Observatory (SDO) on the night of Feb. 5, 2013. This active region on the sun sent out two coronal ...

  6. EVOLUTION OF MAGNETIC FIELD AND ENERGY IN A MAJOR ERUPTIVE ACTIVE REGION BASED ON SDO/HMI OBSERVATION

    SciTech Connect

    Sun Xudong; Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Wiegelmann, Thomas; Thalmann, Julia; Chen Qingrong

    2012-04-01

    We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magnetic free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.

  7. Suppression of Active-Region CME Production by the Presence of Other Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor

    2009-01-01

    From the SOHO mission s data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region s total magnetic flux), and (2) a gauge of the active region s free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region s expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region s flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

  8. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2016-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  9. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2015-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: International

  10. Region-based Active Contour Model based on Markov Random Field to Segment Images with Intensity Non-Uniformity and Noise.

    PubMed

    Shahvaran, Zahra; Kazemi, Kamran; Helfroush, Mohammad Sadegh; Jafarian, Nassim

    2012-01-01

    This paper represents a new region-based active contour model that can be used to segment images with intensity non-uniformity and high-level noise. The main idea of our proposed method is to use Gaussian distributions with different means and variances with incorporation of intensity non-uniformity model for image segmentation. In order to integrate the spatial information between neighboring pixels in our proposed method, we use Markov Random Field. Our experiments on synthetic images and cerebral magnetic resonance images show the advantages of the proposed method over state-of-art methods, i.e. local Gaussian distribution fitting.

  11. SDO Sees Active Region Outbursts

    NASA Video Gallery

    This close up video by NASA’s Solar Dynamics Observatory shows an active region near the right-hand edge of the sun’s disk, which erupted with at least a dozen minor events over a 30-hour period fr...

  12. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.; Romanovsky, V. E.; Cable, W.; Kholodov, A. L.

    2015-12-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  13. Ab Initio Active Region Formation

    NASA Astrophysics Data System (ADS)

    Stein, Robert F.; Nordlund, A.

    2013-01-01

    The tachocline is not necessary to produce active regions with their global properties. Dynamo action within the convection zone can produce large scale reversing polarity magnetic fields as shown by ASH code and Charboneau et al simulations. Magneto-convection acting on this large scale field produces Omega-loops which emerge through the surface to produce active regions. The field first emerges as small bipoles with horizontal field over granules anchored in vertical fields in the intergranular lanes. The fields are quickly swept into the intergranular lanes and produce a mixed polarity "pepper and salt" pattern. The opposite polarities then migrate toward separate unipolar regions due to the underlying large scale loop structure. When sufficient flux concentrates, pores and sunspots form. We will show movies of magneto-convection simulations of the emerging flux, its migration, and concentration to form pores and spots, as well as the underlying magnetic field evolution. In addition, the same atmospheric data has been used as input to the LILIA Stokes Inversion code to calculate Stokes spectra for the Fe I 630 nm lines and then invert them to determine the magnetic field. Comparisons of the inverted field with the simulation field shows that small-scale, weak fields, less than 100 G, can not be accurately determined because of vertical gradients that are difficult to match in fitting the line profiles. Horizontal smoothing by telescope diffraction further degrades the inversion accuracy.

  14. Solar active region display system

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  15. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

    SciTech Connect

    Piprek, Joachim

    2014-07-07

    This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410 nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

  16. CME Productivity of Active Regions.

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, Y.; Wang, J.; Shen, C.; Ye, P.; Zhang, Q.; Liu, R.; Wang, S.

    2015-12-01

    Solar active regions (ARs) are the major sources of two kinds of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). Although they are believed to be two phenomena in the same eruptive process, the productivity of them could be quiet different for various ARs. Why is an AR productive? And why is a flare-rich AR CME-poor? To answer these questions, we compared the recent super flare-rich but CME-poor AR 12192, with other four ARs; two were productive in both flares and CMEs and the other two were inert to produce any M-class or intenser flares or CMEs. By investigating the photospheric parameters based on the SDO/HMI vector magnetogram, we find the three productive ARs have larger magnetic flux, current and free magnetic energy than the inert ARs. Furthermore, the two ARs productive in both flares and CMEs contain higher current helicity, concentrating along both sides of the flaring neutral lines, indicating the presence of a seed magnetic structure( that is highly sheared or twisted) of a CME; they also have higher decay index in the low corona, showing weak constraint. The results suggest that productive ARs are always large and have strong current system and sufficient free energy to power flares, and more importantly whether or not a flare is accompanied by a CME is seemingly related to (1) if there is significant sheared or twisted core field serving as the seed of the CME and (2) if the constraint of the overlying arcades is weak enough. Moreover, some productive ARs may frequently produce more than one CME. How does this happen? We do a statistical investigation of waiting times of quasi-homologous CMEs ( CME ssuccessive originating from the same ARs within short intervals) from super ARs in solar cycle 23 to answer this question. The waiting times of quasi-homologous CMEs have a two-component distribution with a separation at about 18 hours, the first component peaks at 7 hours. The correlation analysis among CME waiting times

  17. What makes active regions grow.

    NASA Technical Reports Server (NTRS)

    Weart, S.

    1972-01-01

    A study of magnetic flux growth or growth failure in over 100 active regions is shown to indicate that most growth is connected with the emergence of a large batch of flux in the shape of a new arch filament system (AFS). During the recent sunspot maximum, new AFSs appeared at a rate of nearly one per day over the entire sun. Evidence is presented for two proposed hypotheses, namely: (1) a twist in the flux tubes of new AFSs is a key factor in determining which new AFSs will grow; and (2) this twist is related to the well-known asymmetry of sunspot groups.

  18. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  19. Organized Subsurface Flows near Active Regions

    NASA Astrophysics Data System (ADS)

    Haber, D. A.; Hindman, B. W.; Toomre, J.; Thompson, M. J.

    2004-04-01

    Local helioseismic techniques, such as ring analysis and time-distance helioseismology, have already shown that large-scale flows near the surface converge towards major active regions. Ring analysis has further demonstrated that at greater depths some active regions exhibit strong outflows. A critique leveled at the ring-analysis results is that the Regularized Least Squares (RLS) inversion kernels on which they are based have negative sidelobes near the surface. Such sidelobes could result in a surface inflow being misidentified as a diverging outflow at depth. In this paper we show that the Optimally Located Averages (OLA) inversion technique, which produces kernels without significant sidelobes, generates flows markedly similar to the RLS results. Active regions are universally zones of convergence near the surface, while large complexes evince strong outflows deeper down.

  20. Evolution of active region outflows throughout an active region lifetime

    NASA Astrophysics Data System (ADS)

    Zangrilli, L.; Poletto, G.

    2016-10-01

    Context. We have shown previously that SOHO/UVCS data allow us to detect active region (AR) outflows at coronal altitudes higher than those reached by other instrumentation. These outflows are thought to be a component of the slow solar wind. Aims: Our purpose is to study the evolution of the outflows in the intermediate corona from AR 8100, from the time the AR first forms until it dissolves, after several transits at the solar limb. Methods: Data acquired by SOHO/UVCS at the time of the AR limb transits, at medium latitudes and at altitudes ranging from 1.5 to 2.3 R⊙, were used to infer the physical properties of the outflows through the AR evolution. To this end, we applied the Doppler dimming technique to UVCS spectra. These spectra include the H i Lyα line and the O vi doublet lines at 1031.9 and 1037.6 Å. Results: Plasma speeds and electron densities of the outflows were inferred over several rotations of the Sun. AR outflows are present in the newly born AR and persist throughout the entire AR life. Moreover, we found two types of outflows at different latitudes, both possibly originating in the same negative polarity area of the AR. We also analyzed the behavior of the Si xii 520 Å line along the UVCS slit in an attempt to reveal changes in the Si abundance when different regions are traversed. Although we found some evidence for a Si enrichment in the AR outflows, alternative interpretations are also plausible. Conclusions: Our results demonstrate that outflows from ARs are detectable in the intermediate corona throughout the whole AR lifetime. This confirms that outflows contribute to the slow wind.

  1. Trust-region based instantaneous optimal semi-active control of long-span spatially extended structures with MRF-04K damper

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Li, Zhongxian; Ding, Yang

    2008-12-01

    In the field of civil engineering, magneto rheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semiactive control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc-Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.

  2. Structure and Stability of Magnetic Fields in Solar Active Region 12192 Based on the Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Hayashi, K.; Kusano, K.

    2016-02-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  3. Brain aneurysm segmentation in CTA and 3DRA using geodesic active regions based on second order prototype features and nonparametric density estimation

    NASA Astrophysics Data System (ADS)

    Hernandez, Monica; Frangi, Alejandro F.

    2005-04-01

    Coupling the geodesic active contours model with statistical information based on regions introduces robustness in the segmentation of images with weak or inhomogeneous gradients. In the estimation of the probability density function for each region take part the definition of the features that describe the image inside the different regions and the method of density estimation itself. A Gaussian Mixture Model is frequently proposed for density estimation. This approach is based on the assumption that the intensity distribution of the image is the most discriminant feature in a region. However, the use of second order features provides a better discrimination of the different regions, as these features represent more accurately the local properties of the image manifold. Due to the high dimensionality of the problem, the use of non parametric density estimation methods becomes necessary. In this article, we present a novel method of introducing the second order information of an image for non parametric estimation of the probability density functions of the different tissues that are present in medical images. The novelty of the method stems on the use of the response of the image under an orthogonal harmonic operator set projected onto a prototype space for feature generation. The technique described here is applied to the segmentation of brain aneurysms in Computed Tomography Angiography (CTA) and 3D Rotational Angiography (3DRA) showing a qualitative improvement from the Gaussian Mixture Model approach.

  4. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  5. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Morton, D. C.; Defries, R. S.; Giglio, L.; Randerson, J. T.; Collatz, G. J.; Kasibhatla, P. S.

    2009-02-01

    Tropical deforestation contributes to the build-up of atmospheric carbon dioxide in the atmosphere. Within the deforestation process, fire is frequently used to eliminate biomass in preparation for agricultural use. Quantifying these deforestation-induced fire emissions represents a challenge, and current estimates are only available at coarse spatial resolution with large uncertainty. Here we developed a biogeochemical model using remote sensing observations of plant productivity, fire activity, and deforestation rates to estimate emissions for the Brazilian state of Mato Grosso during 2001-2005. Our model of DEforestation CArbon Fluxes (DECAF) runs at 250-m spatial resolution with a monthly time step to capture spatial and temporal heterogeneity in fire dynamics in our study area within the ''arc of deforestation'', the southern and eastern fringe of the Amazon tropical forest where agricultural expansion is most concentrated. Fire emissions estimates from our modelling framework were on average 90 Tg C year-1, mostly stemming from fires associated with deforestation (74%) with smaller contributions from fires from conversions of Cerrado or pastures to cropland (19%) and pasture fires (7%). In terms of carbon dynamics, about 80% of the aboveground living biomass and litter was combusted when forests were converted to pasture, and 89% when converted to cropland because of the highly mechanized nature of the deforestation process in Mato Grosso. The trajectory of land use change from forest to other land uses often takes more than one year, and part of the biomass that was not burned in the dry season following deforestation burned in consecutive years. This led to a partial decoupling of annual deforestation rates and fire emissions, and lowered interannual variability in fire emissions. Interannual variability in the region was somewhat dampened as well because annual emissions from fires following deforestation and from maintenance fires did not covary, although

  6. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Morton, D. C.; Defries, R. S.; Giglio, L.; Randerson, J. T.; Collatz, G. J.; Kasibhatla, P. S.

    2008-09-01

    Tropical deforestation contributes to the build-up of atmospheric carbon dioxide in the atmosphere. Within the deforestation process, fire is frequently used to eliminate biomass in preparation for agricultural use. Quantifying these deforestation-induced fire emissions represents a challenge, and current estimates are only available at coarse spatial resolution with large uncertainty. Here we developed a biogeochemical model using remote sensing observations of plant productivity, fire activity, and deforestation rates to estimate emissions for the Brazilian state of Mato Grosso during 2001 2005. Our model of DEforestation CArbon Fluxes (DECAF) runs at 250-m spatial resolution with a monthly time step to capture spatial and temporal heterogeneity in fire dynamics in our study area within the "arc of deforestation", the southern and eastern fringe of the Amazon tropical forest where agricultural expansion is most concentrated. Fire emissions estimates from our modelling framework were on average 90 Tg C year-1, mostly stemming from fires associated with deforestation (74%) with smaller contributions from fires from conversions of Cerrado or pastures to cropland (19%) and pasture fires (7%). In terms of carbon dynamics, about 80% of the aboveground living biomass and litter was combusted when forests were converted to pasture, and 89% when converted to cropland because of the highly mechanized nature of the deforestation process in Mato Grosso. The trajectory of land use change from forest to other land uses often takes more than one year, and part of the biomass that was not burned in the dry season following deforestation burned in consecutive years. This led to a partial decoupling of annual deforestation rates and fire emissions, and lowered interannual variability in fire emissions. Interannual variability in the region was somewhat dampened as well because annual emissions from fires following deforestation and from maintenance fires did not covary, although

  7. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  8. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  9. Examining Activity-Based Learning (ABL) Practices in Public Basic Schools in the Northern Region of Ghana

    ERIC Educational Resources Information Center

    Nudzor, Hope P.; Dare, Albert; Oduro, George K. T.; Bosu, Rosemary; Addy, Nii

    2015-01-01

    Background: Ghana has been the testing ground for many teaching and learning initiatives over the past 15-20 years. These initiatives, largely funded by donors, have sought to improve learning by introducing and reinforcing valuable teaching skills, materials and approaches, most of them child-friendly, learner-centred and involving activity-based…

  10. Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: a study based on spaceborne active remote sensing

    NASA Astrophysics Data System (ADS)

    Mioche, G.; Jourdan, O.; Ceccaldi, M.; Delanoë, J.

    2015-03-01

    The Arctic region is known to be very sensitive to climate change. Clouds and in particular mixed-phase clouds (MPCs) remain one of the greatest sources of uncertainties in the modelling of the Arctic response to climate change due to an inaccurate representation of their variability and their quantification. In this study, we present a characterisation of the vertical, spatial and seasonal variability of Arctic clouds and MPCs over the entire Arctic region based on satellite active remote sensing observations. MPC properties in the region of the Svalbard archipelago (78° N, 15° E) are also investigated. The occurrence frequency of clouds and MPCs are determined from CALIPSO/CLOUDSAT measurements processed with the DARDAR retrieval algorithm, which allow for a reliable cloud thermodynamic phase classification (warm liquid, supercooled liquid, ice, mixing of ice and supercooled liquid). Significant differences are observed between MPC properties over the entire Arctic region and over the Svalbard region. Results show that MPCs are encountered all year long, with a minimum occurrence of 30% in winter and 50% during the rest of the year on average over the entire Arctic. Over the Svalbard region, MPC occurrence is more constant with time with larger values (55%) compared to the average observed in the Arctic. MPCs are especially located at low altitudes, below 3000 m, where their frequency of occurrence reaches 90%, particularly during winter, spring and autumn. Moreover, results highlight that MPCs are statistically more frequent above open sea than land or sea ice. The temporal and spatial distribution of MPCs over the Svalbard region seems to be linked to the supply of moister air and warmer water from the North Atlantic Ocean, which contribute to the initiation of the liquid water phase. Over the whole Arctic, and particularly in western regions, the increase of MPC occurrence from spring to autumn could be connected to the sea ice melting. During this period

  11. Optimizing the growth process of the active zone in GaN based laser structures for the long wavelength region

    NASA Astrophysics Data System (ADS)

    Rossow, U.; Kruse, A.; Jönen, H.; Hoffmann, L.; Ketzer, F.; Langer, T.; Buss, R.; Bremers, H.; Hangleiter, A.; Mehrtens, T.; Schowalter, M.; Rosenauer, A.

    2013-05-01

    InxGaN/GaN quantum well (QW) structures grown on c-plane surfaces for long wavelength laser structures have been investigated. We found that temperature ramping in the barriers improves the layer structure in avoiding V-pit formation and improves the homogeneity of indium incorporation. In choosing proper temperature profiles degradation of the QWs can be avoided. We demonstrate optical gain for wavelengths larger than 500 nm using structures with an active zone grown in such way.

  12. A Case of Filament - Active Region Interaction

    NASA Astrophysics Data System (ADS)

    Dumitrache, C.; Dumitru, L.

    2010-09-01

    We analyze a huge filament observed between 5 and 19 September 2001. In its evolution it is linked to the active region 9612, observed between 7 and 16 September 2001. The filament has a strange morphology and dynamics: starting as two parallel components (A and B), it becomes a double sigmoid filament when a third component (C ) appears linking the other two. An unusual magnetic topology characterizes this evolution: the active region is located between the parallel components. When the third component becomes observable, it links these ones first below the active region. After a spectacular plasma movement registered in filament (A), this one becomes linked to (B) above the active region. In spite of these dramatically changes of the magnetic topology and filament -- active region switch, no CME is observed. Only a few flares occurring in AR9612 are registered and these ones can be seen in the dynamics of the filament as an expression of large scale magnetic reconnections.

  13. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  14. Following solar activity with geomagnetic and cosmic-ray ground-based stations in the Iberian Peninsula region

    NASA Astrophysics Data System (ADS)

    Villasante-Marcos, Victor; José Blanco, Juan; Miquel Torta, Joan; Catalán, Manuel; Ribeiro, Paulo; Morozova, Anna; Tordesillas, José Manuel; Solé, Germán; Gomis-Moreno, Almudena

    2016-04-01

    The Iberian Peninsula is located in the South-West of Europe between 36°00' N and 43°47' N and between 9°29' W and 3°19' E. There are four Geomagnetic Observatories currently operative in this area devoted to the observation of the Earth's magnetic field: Observatori de l'Ebre (NE Spain); Observatorio de San Pablo de los Montes (central Spain); Observatorio de San Fernando (southern Spain); Observatório de Coimbra (central Portugal); plus another one, Observatorio de Güímar, in Tenerife (Canary Islands, Spain). There is also one neutron monitor located in Guadalajara (central Spain; 40°38' N, 3°9' W at 708 m asl) continuously measuring the arrival of cosmic rays to the Earth's surface. In this work we show combined observations of these six stations during events caused by solar activity. We analyze them looking for differences that could imply extremely local effects caused by the response of the Earth's magnetosphere and ionosphere to solar activity.

  15. Fault-based PSHA of an active tectonic region characterized by low deformation rates: the case of the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Vleminckx, Bart; Camelbeeck, Thierry

    2016-04-01

    The Lower Rhine Graben (LRG) is one of the few regions in intraplate NW Europe where seismic activity can be linked to active faults, yet probabilistic seismic hazard assessments of this region have hitherto been based on area-source models, in which the LRG is modeled as a single or a small number of seismotectonic zones with uniform seismicity. While fault-based PSHA has become common practice in more active regions of the world (e.g., California, Japan, New Zealand, Italy), knowledge of active faults has been lagging behind in other regions, due to incomplete tectonic inventory, low level of seismicity, lack of systematic fault parameterization, or a combination thereof. The past few years, efforts are increasingly being directed to the inclusion of fault sources in PSHA in these regions as well, in order to predict hazard on a more physically sound basis. In Europe, the EC project SHARE ("Seismic Hazard Harmonization in Europe", http://www.share-eu.org/) represented an important step forward in this regard. In the frame of this project, we previously compiled the first parameterized fault model for the LRG that can be applied in PSHA. We defined 15 fault sources based on major stepovers, bifurcations, gaps, and important changes in strike, dip direction or slip rate. Based on the available data, we were able to place reasonable bounds on the parameters required for time-independent PSHA: length, width, strike, dip, rake, slip rate, and maximum magnitude. With long-term slip rates remaining below 0.1 mm/yr, the LRG can be classified as a low-deformation-rate structure. Information on recurrence interval and elapsed time since the last major earthquake is lacking for most faults, impeding time-dependent PSHA. We consider different models to construct the magnitude-frequency distribution (MFD) of each fault: a slip-rate constrained form of the classical truncated Gutenberg-Richter MFD (Anderson & Luco, 1983) versus a characteristic MFD following Youngs

  16. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  17. 5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%

    NASA Astrophysics Data System (ADS)

    Lyakh, A.; Suttinger, M.; Go, R.; Figueiredo, P.; Todi, A.

    2016-09-01

    5.6 μm quantum cascade lasers based on the Al0.78In0.22As/In0.69Ga0.31As active region composition with the measured pulsed room temperature wall plug efficiency of 28.3% are reported. Injection efficiency for the upper laser level of 75% was measured for the design by testing devices with variable cavity lengths. A threshold current density of 1.7 kA/cm2 and a slope efficiency of 4.9 W/A were measured for uncoated 3.15 mm × 9 μm lasers. Threshold current density and slope efficiency dependence on temperature in the range from 288 K to 348 K for the structure can be described by characteristic temperatures T0 ˜ 140 K and T1 ˜ 710 K, respectively.

  18. Active Region Emergence and Remote Flares

    NASA Astrophysics Data System (ADS)

    Fu, Yixing; Welsch, Brian T.

    2016-02-01

    We study the effect of new emerging solar active regions on the large-scale magnetic environment of existing regions. We first present a theoretical approach to quantify the "interaction energy" between new and pre-existing regions as the difference between i) the summed magnetic energies of their individual potential fields and ii) the energy of their superposed potential fields. We expect that this interaction energy can, depending upon the relative arrangements of newly emerged and pre-existing magnetic flux, indicate the existence of "topological" free magnetic energy in the global coronal field that is independent of any "internal" free magnetic energy due to coronal electric currents flowing within the newly emerged and pre-existing flux systems. We then examine the interaction energy in two well-studied cases of flux emergence, but find that the predicted energetic perturbation is relatively small compared to energies released in large solar flares. Next, we present an observational study of the influence of the emergence of new active regions on flare statistics in pre-existing active regions, using NOAA's Solar Region Summary and GOES flare databases. As part of an effort to precisely determine the emergence time of active regions in a large event sample, we find that emergence in about half of these regions exhibits a two-stage behavior, with an initial gradual phase followed by a more rapid phase. Regarding flaring, we find that the emergence of new regions is associated with a significant increase in the occurrence rate of X- and M-class flares in pre-existing regions. This effect tends to be more significant when pre-existing and new emerging active regions are closer. Given the relative weakness of the interaction energy, this effect suggests that perturbations in the large-scale magnetic field, such as topology changes invoked in the "breakout" model of coronal mass ejections, might play a significant role in the occurrence of some flares.

  19. Hinode Captures Images of Solar Active Region

    NASA Video Gallery

    In these images, Hinode's Solar Optical Telescope (SOT) zoomed in on AR 11263 on August 4, 2011, five days before the active region produced the largest flare of this cycle, an X6.9. We show images...

  20. Tracked Active Region Patches for MDI and HMI

    NASA Astrophysics Data System (ADS)

    Turmon, Michael; Hoeksema, J. Todd; Bobra, Monica

    2014-06-01

    We describe tracked active-region patch data products that have been developed for HMI (HMI Active Region Patches, or HARPs) and for MDI (MDI Tracked Active Region Patches, or MDI TARPs). Both data products consist of tracked magnetic features on the scale of solar active regions. The now-released HARP data product covers 2010-present (>2000 regions to date). Like the HARPs, the MDI TARP data set is a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. The TARPs contain 6170 regions spanning 72000 images taken over 1996-2010, and will be availablein the MDI resident archive (RA).MDI TARPs are computed based on the 96-minute synoptic magnetograms and intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that they are in. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Also, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a cross-calibration between the HMI and MDI magnetograms (Liu et al. 2012), it is straightforward to use the same classification and tracking rules for the HMI HARPs and the MDI TARPs. We show results demonstrating region correspondence, region boundary agreement, and agreement of flux metadata using the approximately 140 regions in the May 2010-October 2010 time period. We envision several uses for these data

  1. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-07-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  2. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  3. IS ACTIVE REGION CORE VARIABILITY AGE DEPENDENT?

    SciTech Connect

    Ugarte-Urra, Ignacio; Warren, Harry P.

    2012-12-10

    The presence of both steady and transient loops in active region cores has been reported from soft X-ray and extreme-ultraviolet observations of the solar corona. The relationship between the different loop populations, however, remains an open question. We present an investigation of the short-term variability of loops in the core of two active regions in the context of their long-term evolution. We take advantage of the nearly full Sun observations of STEREO and Solar Dynamics Observatory spacecraft to track these active regions as they rotate around the Sun multiple times. We then diagnose the variability of the active region cores at several instances of their lifetime using EIS/Hinode spectral capabilities. We inspect a broad range of temperatures, including for the first time spatially and temporally resolved images of Ca XIV and Ca XV lines. We find that the active region cores become fainter and steadier with time. The significant emission measure at high temperatures that is not correlated with a comparable increase at low temperatures suggests that high-frequency heating is viable. The presence, however, during the early stages, of an enhanced emission measure in the ''hot'' (3.0-4.5 MK) and ''cool'' (0.6-0.9 MK) components suggests that low-frequency heating also plays a significant role. Our results explain why there have been recent studies supporting both heating scenarios.

  4. Precursors of the solar X flare on march 29, 2014, in the active region NOAA 12017 based on microwave radiation and magnetographic data

    NASA Astrophysics Data System (ADS)

    Abramov-Maximov, V. E.; Borovik, V. N.; Opeikina, L. V.; Tlatov, A. G.

    2015-12-01

    Precursors of the strong solar flare X1.0 (according to the Geostationary Operational Environmental Satellite (GOES) classification) recorded on March 29, 2014, in the active region (AR) 12017 are investigated. The precursors manifested themselves in the AR microwave radiation and its magnetographic characteristics. This work was carried out as part of the development of an observational database of precursors of large flares (those more powerful than class M5 according to the GOES classification) in different ARs based on an analysis of the microwave radiation and magnetographic characteristics of ARs. Further generalization and systematization of the identified precursors of strong solar flares makes it possible to move on to the development of methods for their forecasting. According to data from Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI), two days before the X flare a new magnetic flux emerged in the analyzed AR 12017 near the main spot of the group with a magnetic field sign opposite that of main spot field (formation of the δ configuration). The study of the evolution of the magnetic field gradient in the AR showed a sharp increase before the X flare, which reached its peak 8 h before the flare with a subsequent decrease before the flare. Analysis of the AR microwave radiation, which was carried out based on the results of multiwavelength multiazimuth (31 daily observations for 4 h with 8-minute intervals) spectral polarization observations of the Sun by the RATAN-600 in the range 1.65-6.0 cm for a few days before the flare, revealed the emergence and development of a microwave source over the region with the δ configuration two days before the X flare. The parameters of the radio-frequency radiation of this source make it possible to classify it as a "peculiar" microwave source that was discovered earlier by the RATAN-600 in a number of eruptive events 1-2 days before large X flares. It was found for the first time that the time

  5. The Magnetic Free Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.; Mickey, Donald L.; LaBonte, Barry J.

    2001-01-01

    The magnetic field permeating the solar atmosphere governs much of the structure, morphology, brightness, and dynamics observed on the Sun. The magnetic field, especially in active regions, is thought to provide the power for energetic events in the solar corona, such as solar flares and Coronal Mass Ejections (CME) and is believed to energize the hot coronal plasma seen in extreme ultraviolet or X-rays. The question remains what specific aspect of the magnetic flux governs the observed variability. To directly understand the role of the magnetic field in energizing the solar corona, it is necessary to measure the free magnetic energy available in active regions. The grant now expiring has demonstrated a new and valuable technique for observing the magnetic free energy in active regions as a function of time.

  6. ON THE FORMATION OF ACTIVE REGIONS

    SciTech Connect

    Stein, Robert F.; Nordlund, Ake E-mail: aake@nbi.dk

    2012-07-01

    Magnetoconvection can produce an active region without an initial coherent flux tube. A simulation was performed where a uniform, untwisted, horizontal magnetic field of 1 kG strength was advected into the bottom of a computational domain 48 Mm wide by 20 Mm deep. The up and down convective motions produce a hierarchy of magnetic loops with a wide range of scales, with smaller loops riding 'piggy-back' in a serpentine fashion on larger loops. When a large loop approaches the surface, it produces a small active region with a compact leading spot and more diffuse following spots.

  7. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-04-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. Using NSO Kitt Peak synoptic magnetograms, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed lagging-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with lagging-polarity flux located poleward of leading-polarity flux. This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  8. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  9. Geomorphic evidence of active tectonics in the San Gorgonio Pass region of the San Andreas Fault system: an example of discovery-based research in undergraduate teaching

    NASA Astrophysics Data System (ADS)

    Reinen, L. A.; Yule, J. D.

    2014-12-01

    Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the

  10. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  11. Asia Section. Regional Activities Division. Paper.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Two papers on library and information activities in developing nations, particularly in India and other Asian countries, were presented at the 1983 International Federation of Library Associations (IFLA) conference. In "IFLA in Asia: A Review of the Work of the Regional Section for Asia," Edward Lim Huck Tee (Malaysia) describes the low level of…

  12. TRACE Observations of Active Region Births

    NASA Astrophysics Data System (ADS)

    Wolfson, C. J.; Shine, R. A.

    2000-05-01

    TRACE has recorded the births of a few bona-fide active regions, as well as many ephemeral regions and so-called X-ray bright points. The observations have usually been made serendipitously while studying a nearby, well formed active region. However, a couple of events have been recorded when deliberately looking for emerging flux in quiet portions of an active region belt. This poster will discuss some of the best observations to date, where the quality ranking of the observation is closely coupled to the observing mode TRACE was in and the availability of high resolution (temporal and/or spatial) MDI magnetograms. Included will be the birth of NOAA AR#8699 on 11 September 1999 at about 14 UT (N22E34), AR#8637 on 17 July 1999 at about 4 UT (N11W1), and AR#8885 on 21 February 2000 at about 6 UT (N11W7); these specifics being provided to encourage coordination with other observations. The temporal relationships between the first appearances of magnetic bipoles, EUV loops, chromospheric plage, pores, and sunspots will be discussed as will the growth rate and spatial relationships of these different features and any associated photospheric flows.

  13. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  14. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  15. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  16. Silicon on insulator with active buried regions

    DOEpatents

    McCarthy, Anthony M.

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  17. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  18. Supergranule Diffusion and Active Region Decay

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2004-01-01

    Models of the Sun's magnetic dynamo include turbulent diffusion to parameterize the effects of convective motions on the evolution of the Sun's magnetic field. Supergranules are known to dominate the evolution of the surface magnetic field structure as evidenced by the structure of both the active and quiet magnetic network. However, estimates for the dif hivity attributed to su perymules differ by an order of magnitude from about 100 km sup2/s to more than 1000 km sup2/s. We examine this question of the e i v i t y using three merent approaches. 1) We study the decay of more than 30,000 active regions by determining the rate of change in the sunspot area of each active region from day-to-day. 2) We study the decay of a single isolated active region near the time of solar minimum by examining the magnetic field evolution over five solar rotations fiom SOHOMDI magnetograms obtained at 96-minute intervals. 3) We study the characteristics of supergranules that influence the estimates of their diffusive properties - flow speeds and lifetimes as functions of size - fiom SOHO/MDI Dopplergrams.

  19. Active region evolution in the chromosphere and transtition region

    NASA Technical Reports Server (NTRS)

    Shine, R. A.; Schrijver, C. J.

    1988-01-01

    Images in the C IV 1548 A and the Si II 1526 S lines taken with the ultraviolet spectrometer polarimeter (UVSP) instrument on board the Solar Maximum Mission (SMM) satellite were combined into movies showing the evolution of active regions and the neighboring supergranulation over several days. The data sets generally consist of 240 by 240 arc second rasters with 3 arc second pixels taken one per orbit (about every 90 minutes). The images are projected on a latitude/longitude grid to remove the forshortening as the region rotates across the solar disk and further processed to remove jitter and gain variations. Movies were made with and without differential rotation. Although there are occasional missing orbits, these series do not suffer from the long nighttime gaps that occur in observations taken at a single groundbased observatory and are excellent for studying changes on time scales of several hours. The longest sequence processed to date runs from 20 Oct. 1980 to 25 Oct. 1980. This was taken during an SMM flare buildup study on AR 2744. Several shorter sequences taken in 1980 and 1984 will also be shown. The results will be presented on a video disk which can be interactively controlled to view the movies.

  20. Solar luminosity fluctuations and active region photometry

    SciTech Connect

    Chapman, G.A.; Herzog, A.D.; Lawrence, J.K.; Shelton, J.C.

    1984-07-15

    We present monochromatic observations, obtained with a 512 element diode array, of the irradiance fluctuations of the sunspots and faculae of an active region during its disk transit in 1982 August. Bolometric and stray light corrections are approximately equal in magnitude but opposite in sign, so they have not been applied. The maximum sunspot fluctuation, as a fraction of the quiet-Sun irradiance, is -800 parts per million (ppm). Faculae have a maximum irradiance fluctuation of about +200 ppm near the limbs. We find that the facular energy excess is more than 50% of the sunspot energy deficit, which is -5.8 x 10/sup 35/ ergs. These observations show that faculae are an important element in active region energy balance.

  1. Axial Tilt Angles of Active Regions

    NASA Astrophysics Data System (ADS)

    Howard, Robert F.

    1996-12-01

    Separate Mount Wilson plage and sunspot group data sets are analyzed in this review to illustrate several interesting aspects of active region axial tilt angles. (1) The distribution of tilt angles differs between plages and sunspot groups in the sense that plages have slightly higher tilt angles, on average, than do spot groups. (2) The distributions of average plage total magnetic flux, or sunspot group area, with tilt angle show a consistent effect: those groups with tilt angles nearest the average values are larger (or have a greater total flux) on average than those farther from the average values. Moreover, the average tilt angles on which these size or flux distributions are centered differ for the two types of objects, and represent closely the actual different average tilt angles for these two features. (3) The polarity separation distances of plages and sunspot groups show a clear relationship to average tilt angles. In the case of each feature, smaller polarity separations are correlated with smaller tilt angles. (4) The dynamics of regions also show a clear relationship with region tilt angles. The spot groups with tilt angles nearest the average value (or perhaps 0-deg tilt angle) have on average a faster rotation rate than those groups with extreme tilt angles. All of these tilt-angle characteristics may be assumed to be related to the physical forces that affect the magnetic flux loop that forms the region. These aspects are discussed in this brief review within the context of our current view of the formation of active region magnetic flux at the solar surface.

  2. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  3. Observations of an active region filament

    NASA Astrophysics Data System (ADS)

    Zong, W. G.; Tang, Y. H.; Fang, C.; Xu, A. A.

    An active region filament was well observed on September 4, 2002 with THEMIS at the Teide observatory and SOHO/MDI. The full Stokes parameters of the filament were obtained in Hα and FeI 6302 Å lines. Using the data, we have studied the fine structure of the filament and obtained the parameters at the barb endpoints, including intensity, velocity and longitudinal magnetic field. Our results indicate: (a) the Doppler velocities are quiet different at barb endpoints; (b) the longitudinal magnetic fields at the barb endpoints are very weak; (c) there is a strong magnetic field structure under the filament spine.

  4. Pederson Current Dissipation In Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, M. G.

    2011-05-01

    Pederson current dissipation in emerging active regions. Certain regions of the solar atmosphere, such as the photosphere and chromosphere, as well as prominences, contain a significant amount of neutral atoms, and a complete description of the plasma requires including the effects of partial ionization. In the chromosphere the dissipation of Pederson currents is important for the evolution of emerging magnetic fields. Due to the relatively high number density in the chromosphere, the ion-neutral collision time-scale is much smaller than timescales associated with flux emergence. Hence we use a single-fluid approach to model the partially ionized plasma. Looking at both the emergence of large-scale sub-surface structures, and the emergence and reconnection of undulatory fields, we investigate the effect of Pederson current dissipation on the state of the emerging field, on magnetic reconnection and on dissipative heating of the atmosphere. Specifically we examine the effect of motions across fieldlines in the partially ionized regions, and how this can increase the free energy supplied to the corona by flux emergence. We also look at reconnection associated with flux emergence in the partially ionized atmosphere, and how this can account for observed small-scale brightenings (Ellerman Bombs).

  5. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  6. Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  7. Active Region Soft X-Ray Spectra and Temperature Analyses based on Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid V.; Wieman, Seth; Woods, Thomas N.; Jones, Andrew; Moore, Christopher

    2016-05-01

    Some initial results of soft x-ray spectral (0.5 to 3.0 nm) observations of active regions (AR11877 and AR11875) from a sounding rocket flight NASA 36.290 on 21 October 2013 at about 18:30 UT are reported. These observations were made by a Solar Aspect Monitor (SAM), a rocket version of the EUV Variability Experiment’s (EVE) channel, a pinhole camera modified for EVE rocket suite of instruments to include a free-standing transmission grating (200 nm period), which provided spectrally-resolved images of the solar disk. Intensity ratios for strong emission lines extracted from temporally averaged SAM spectral profiles of the ARs were compared to appropriately convolved modeled CHIANTI spectra. These ratios represent the AR’s temperature structures, which are compared to the structures derived from some other observations and temperature models.

  8. Footpoint Separation and Evershed Flow of Active Regions

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Jones, E. H.

    2012-05-01

    The bipolar nature of active regions and sunspot groups within the Sun’s photosphere is generally attributed to the emergence of magnetic flux tubes that originate from shear and turbulent pumping at the base of the Sun’s convection zone. There is debate, however, as to exactly how well-connected active regions are to solar interior. A connection to the solar interior during the ascent of a flux tube through the convection zone is a requirement within numerical models designed to describe the observed characteristics of active regions, e.g. Joy’s law tilt and latitude emergence, however, these models also predict post-emergence behavior of sunspots that is not supported observationally (Schussler and Rempel, 1995; Fan, 2009; Toth and Gerlei, 2003). It has been suggested (Rubio et al., 2008; Schussler and Rempel, 1995) that a bipolar magnetic region might lose its connection quickly upon emergence. Using data from SDO/HMI, we examine the footpoint separation and the Evershed flow of a number of active regions over time to detect the disconnection process of a sunspot from its magnetic roots.

  9. FIP bias in a sigmoidal active region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, Lidia; Green, L. M.; Steed, K.; Carlyle, J.

    2014-01-01

    We investigate first ionization potential (FIP) bias levels in an anemone active region (AR) - coronal hole (CH) complex using an abundance map derived from Hinode/EIS spectra. The detailed, spatially resolved abundance map has a large field of view covering 359'' × 485''. Plasma with high FIP bias, or coronal abundances, is concentrated at the footpoints of the AR loops whereas the surrounding CH has a low FIP bias, ~1, i.e. photospheric abundances. A channel of low FIP bias is located along the AR's main polarity inversion line containing a filament where ongoing flux cancellation is observed, indicating a bald patch magnetic topology characteristic of a sigmoid/flux rope configuration.

  10. Three dimensional structures of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1986-01-01

    Three dimensional structure of an active region is determined from observations with the Very Large Array (VLA) at 2, 6, and 20 cm. This region exhibits a single magnetic loop of length approx. 10 to the 10th power cm. The 2 cm radiation is mostly thermal bremsstrahlung and originates from the footpoints of the loop. The 6 and 20 cm radiation is dominated by the low harmonic gyroresonance radiation and originates from the upper portion of the legs or the top of the loop. The loop broadens toward the apex. The top of the loop is not found to be the hottest point, but two temperature maxima on either side of the loop apex are observed, which is consistent with the model proposed for long loops. From 2 and 6 cm observations it can be concluded that the electron density and temperature cannot be uniform in a plane perpendicular to the axis of the loop; the density should decrease away from the axis of the loop.

  11. Multiple Wavelength Observations of Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.

    The radio emission of quiescent active regions at 6 cm wavelength marks the legs of magnetic dipoles, and the emission at 20 cm wavelength delineates the radio wavelength counterpart of the coronal loops previously detected at X-ray wavelengths. At both wavelengths the temperatures have coronal values of a few million degrees. The polarization of the radio emission specifies the structure and strength of the coronal magnetic field (H ≈ 600 Gauss at heights h ≈ 4 x 109 cm above sunspot umbrae). At 6 cm and 20 cm wavelength the solar bursts have angular sizes between 5" and 30", brightness temperatures between 2 x 107 K and 2 x 108 K, and degrees of circular polarization between 10% and 90%. The location of the burst energy release is specified with second-of-arc accuracy. At radio wavelengths the bursts occur within the central regions of magnetic loops, while the flaring Ha kernels are located at the loop footpoints. Coronal loops exhibit enhanced radio emission (preburst heating) a few minutes before the release of burst energy. The radio polarization data indicate magnetic changes before and during solar bursts.

  12. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.

    PubMed

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki

    2013-05-15

    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task.

  13. TARPs: Tracked Active Region Patches from SoHO/MDI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Bobra, M.

    2013-12-01

    We describe progress toward creating a retrospective MDI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated TARPs (Tracked Active Region Patches). The TARPs are being developed as a backward-looking extension (covering approximately 3500 regions spanning 1996-2010) to the HARP (HMI Active Region Patch) data product that has already been released for HMI (2010-present). Like the HARPs, the MDI TARP data set is designed to be a catalog of active regions (ARs), indexed by a region ID number, analogous to a NOAA AR number, and time. TARPs from MDI are computed based on the 96-minute synoptic magnetograms and pseudo-continuum intensitygrams. As with the related HARP data product, the approximate threshold for significance is 100G. Use of both image types together allows faculae and sunspots to be separated out as sub-classes of activity, in addition to identifying the overall active region that the faculae/sunspots are part of. After being identified in single images, the magnetically-active patches are grouped and tracked from image to image. Merges among growing active regions, as well as faint active regions hovering at the threshold of detection, are handled automatically. Regions are tracked from their inception until they decay within view, or transit off the visible disk. The final data product is indexed by a nominal AR number and time. For each active region and for each time, a bitmap image is stored containing the precise outline of the active region. Additionaly, metadata such as areas and integrated fluxes are stored for each AR and for each time. Because there is a calibration between the HMI and MDI magnetograms (Liu, Hoeksema et al. 2012), it is straightforward to use the same classification and tracking rules for the HARPs (from HMI) and the MDI TARPs. We anticipate that this will allow a consistent catalog spanning both instruments. We envision several uses for the TARP data product, which will be

  14. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  15. MATLAB-based program for optimization of quantum cascade laser active region parameters and calculation of output characteristics in magnetic field

    NASA Astrophysics Data System (ADS)

    Smiljanić, J.; Žeželj, M.; Milanović, V.; Radovanović, J.; Stanković, I.

    2014-03-01

    A strong magnetic field applied along the growth direction of a quantum cascade laser (QCL) active region gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a QCL with a static magnetic field, we can selectively inhibit/enhance non-radiative electron relaxation process between the relevant Landau levels of a triple quantum well and realize a tunable surface emitting device. An efficient numerical algorithm implementation is presented of optimization of GaAs/AlGaAs QCL region parameters and calculation of output properties in the magnetic field. Both theoretical analysis and MATLAB implementation are given for LO-phonon and interface roughness scattering mechanisms on the operation of QCL. At elevated temperatures, electrons in the relevant laser states absorb/emit more LO-phonons which results in reduction of the optical gain. The decrease in the optical gain is moderated by the occurrence of interface roughness scattering, which remains unchanged with increasing temperature. Using the calculated scattering rates as input data, rate equations can be solved and population inversion and the optical gain obtained. Incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. However, it resulted in shifting the existing peaks positions and overall reduction of the optical gain. Catalogue identifier: AERL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 37763 No. of bytes in distributed program, including test data, etc.: 2757956 Distribution format: tar.gz Programming language: MATLAB. Computer: Any capable of running MATLAB version R2010a or higher. Operating system: Any platform

  16. The Life Cycle of Active Region Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  17. Structure and polarization of active region microwave emission

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Alissandrakis, C. E.

    1984-01-01

    Active region radio emission observations made at 6.16 cm wavelength during May 20-27, 1980, are the bases of maps of total intensity and circular polarization presented for the three regions whose Hale numbers are 16850, 16863, and 16864. A detailed comparison is made between these maps and on- and off-band H-alpha pictures and magnetograms. The neutral lines with which the strongest sources were associated have their two opposite polarities close to each other, implying a high magnetic field gradient, and are also associated with arch filament systems. A detailed analysis is undertaken of observations of the circular polarization sense inversion in region 16863. The large scale structure of the magnetic field can be approximated by a dipole with its axis inclined by 11 deg with respect to the photosphere, and with a dipole moment of about 2 x 10 to the 31 power cgs units.

  18. IPS observations of heliospheric density structures associated with active regions

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.; Altrock, R.; Woan, G.; Slater, G.

    1996-01-01

    Interplanetary scintillation (IPS) measurements of the 'disturbance factor' g, obtained with the Cambridge (UK) array can be used to explore the heliospheric density structure. We have used these data to construct synoptic (Carrington) maps, representing the large-scale enhancements of the g-factor in the inner heliosphere. These maps emphasize the stable corotating, rather than the transient heliospheric density enhancements. We have compared these maps with Carrington maps of Fe XIV observations National Solar Observatory ((NSO), Sacramento Peak) and maps based on Yohkoh Soft X-Ray Telescope (SXT) X-ray observations. Our results indicate that the regions of enhanced g tend to map to active regions rather than the current sheet. The implication is that act ve regions are the dominant source of the small-scale (approximately equal 200 km) density variations present in the quiet solar wind.

  19. Electron acceleration and radiation in evolving complex active regions

    NASA Astrophysics Data System (ADS)

    Anastasiadis, A.; Gontikakis, C.; Vilmer, N.; Vlahos, L.

    2004-07-01

    We present a model for the acceleration and radiation of solar energetic particles (electrons) in evolving complex active regions. The spatio - temporal evolution of active regions is calculated using a cellular automaton model, based on self-organized criticality. The acceleration of electrons is due to the presence of randomly placed, localized electric fields produced by the energy release process, simulated by the cellular automaton model. We calculate the resulting kinetic energy distributions of the particles and their emitted X-ray radiation spectra using the thick target approximation, and we perform a parametric study with respect to number of electric fields present and thermal temperature of the injected distribution. Finally, comparing our results with the existing observations, we find that they are in a good agreement with the observed X-ray spectra in the energy range 100-1000 keV.

  20. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  1. Biourbanism: Solar based urban and regional design

    SciTech Connect

    Williams, D.

    1999-07-01

    New neighborhoods for an additional one billion people will need to be constructed on the planet within the next 10 years. If the historic patterns of growth continue--the sprawl, the congestion, the draining of swamps, the loss of agricultural land--the requirement for all basic resources will outstrip the availability. While this is of great concern, it is the destruction of an acceptable quality of life--the sense of place--that will be the most difficult and expensive to change. An essential step to reverse the direction of this undesirable future is changing the design and planning of these communities to work with resident solar energies, regional biology, local renewable resources, and sustainable urban planning and design principles. Design can make a difference. This paper develops the view that the solar approach must include urban and regional design and presents solar-based renewable resources example of the design of regions.

  2. Positive and negative symptom scores are correlated with activation in different brain regions during facial emotion perception in schizophrenia patients: a voxel-based sLORETA source activity study.

    PubMed

    Kim, Do-Won; Kim, Han-Sung; Lee, Seung-Hwan; Im, Chang-Hwan

    2013-12-01

    Schizophrenia is one of the most devastating of all mental illnesses, and has dimensional characteristics that include both positive and negative symptoms. One problem reported in schizophrenia patients is that they tend to show deficits in face emotion processing, on which negative symptoms are thought to have stronger influence. In this study, four event-related potential (ERP) components (P100, N170, N250, and P300) and their source activities were analyzed using EEG data acquired from 23 schizophrenia patients while they were presented with facial emotion picture stimuli. Correlations between positive and negative syndrome scale (PANSS) scores and source activations during facial emotion processing were calculated to identify the brain areas affected by symptom scores. Our analysis demonstrates that PANSS positive scores are negatively correlated with major areas of the left temporal lobule for early ERP components (P100, N170) and with the right middle frontal lobule for a later component (N250), which indicates that positive symptoms affect both early face processing and facial emotion processing. On the other hand, PANSS negative scores are negatively correlated with several clustered regions, including the left fusiform gyrus (at P100), most of which are not overlapped with regions showing correlations with PANSS positive scores. Our results suggest that positive and negative symptoms affect independent brain regions during facial emotion processing, which may help to explain the heterogeneous characteristics of schizophrenia.

  3. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information. PMID:26353262

  4. Evidence for coronal turbulence in a quiescent active region

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.; Strong, Keith T.

    1986-01-01

    The first evidence for nonthermal broadening of X-ray lines in a quiescent active region was based on a single observation of a limb active region by the Flat Crystal Spectrometer (FCS) on the SMM satellite, reported by Acton et al. (1981). With the renewal of SMM operations, the FCS has been used to further investigate this phenomenon. On April 28, 1984 a map of Mg XI resonance line profiles was made for a bright area in NOAA Active Region 4474 during a nonflaring period. The narrowest line profiles are consistent with the nominal instrumental width plus a thermal width equivalent to about 3 million K, the temperature derived from line ratios of O VIII, Ne IX, and Mg XI. The broadest line profiles are consistent with the instrumental width plus a thermal width equivalent to about 7 million K, but a substantial amount of plasma at this temperature would result in much greater flux in the FCS higher-temperature channels than was seen. If the excess width is attributed solely to plasma turbulence, the corresponding velocity would be about 40 + or - 10 km/s.

  5. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  6. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods. PMID:26390453

  7. onHigh-peak-power strain-compensated GaInAs/AlInAs quantum cascade lasers (λ ˜4.6 μm) based on a slightly diagonal active region design

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lösch, R.; Bronner, W.; Hugger, S.; Fuchs, F.; Aidam, R.; Wagner, J.

    2008-12-01

    Employing a "slightly diagonal" active region design for the quantum cascade lasers compared to a reference sample based on the conventional vertical transition design [R. Köhler et al., Appl. Phys. Lett. 76, 1092 (2000)], we have improved the maximum operation temperature, room-temperature maximum peak power per facet, and room-temperature slope efficiency from 320 K, 200 mW, and 570 mW/A to higher than 360 K, 3.2 W, and 2200 mW/A, respectively, for the device size of 16 μm×3 mm with as-cleaved facets operated in pulsed mode.

  8. Diagnostics of Coronal Heating in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Fludra, Andrzej; Hornsey, Christopher; Nakariakov, Valery

    2015-04-01

    We aim to develop a diagnostic method for the coronal heating mechanism in active region loops. Observational constraints on coronal heating models have been sought using measurements in the X-ray and EUV wavelengths. Statistical analysis, using EUV emission from many active regions, was done by Fludra and Ireland (2008) who studied power-law relationships between active region integrated magnetic flux and emission line intensities. A subsequent study by Fludra and Warren (2010) for the first time compared fully resolved images in an EUV spectral line of OV 63.0 nm with the photospheric magnetic field, leading to the identification of a dominant, ubiquitous variable component of the transition region EUV emission and a discovery of a steady basal heating, and deriving the dependence of the basal heating rate on the photospheric magnetic flux density. In this study, we compare models of single coronal loops with EUV observations. We assess to what degree observations of individual coronal loops made in the EUV range are capable of providing constraints on the heating mechanism. We model the coronal magnetic field in an active region using an NLFF extrapolation code applied to a photospheric vector magnetogram from SDO/HMI and select several loops that match an SDO/AIA 171 image of the same active region. We then model the plasma in these loops using a 1D hydrostatic code capable of applying an arbitrary heating rate as a function of magnetic field strength along the loop. From the plasma parameters derived from this model, we calculate the EUV emission along the loop in AIA 171 and 335 bands, and in pure spectral lines of Fe IX 17.1 nm and Fe XVI 33.5 nm. We use different spatial distributions of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints, and investigate their effect on the modelled EUV intensities. We find a diagnostics based on the dependence of the total loop intensity on the shape of the heating function

  9. Multi-wavelength Observations of Solar Active Region NOAA 7154

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Nitta, N. V.; Frank. Z. A.; Dame, L.; Suematsu, Y.

    2000-01-01

    We report on observations of a solar active region in May 1992 by the Solar Plasma Diagnostic Experiment (SPDE) in coordination with the Yohkoh satellite (producing soft X-ray images) and ground-based observatories (producing photospheric magnetograms and various filtergrams including those at the CN 3883 A line). The main focus is a study of the physical conditions of hot (T is approximately greater than 3 MK) coronal loops at their foot-points. The coronal part of the loops is fuzzy but what appear to be their footpoints in the transition region down to the photosphere are compact. Despite the morphological similarities, the footpoint emission at 10(exp 5) K is not quantitatively correlated with that at approximately 300 km above the tau (sub 5000) = 1 level, suggesting that the heat transport and therefore magnetic field topology in the intermediate layer is complicated. High resolution imaging observations with continuous temperature coverage are crucially needed.

  10. GLOBAL DYNAMICS OF SUBSURFACE SOLAR ACTIVE REGIONS

    SciTech Connect

    Jouve, L.; Brun, A. S.

    2013-01-01

    We present three-dimensional numerical simulations of a magnetic loop evolving in either a convectively stable or unstable rotating shell. The magnetic loop is introduced into the shell in such a way that it is buoyant only in a certain portion in longitude, thus creating an {Omega}-loop. Due to the action of magnetic buoyancy, the loop rises and develops asymmetries between its leading and following legs, creating emerging bipolar regions whose characteristics are similar to those of observed spots at the solar surface. In particular, we self-consistently reproduce the creation of tongues around the spot polarities, which can be strongly affected by convection. We further emphasize the presence of ring-shaped magnetic structures around our simulated emerging regions, which we call 'magnetic necklace' and which were seen in a number of observations without being reported as of today. We show that those necklaces are markers of vorticity generation at the periphery and below the rising magnetic loop. We also find that the asymmetry between the two legs of the loop is crucially dependent on the initial magnetic field strength. The tilt angle of the emerging regions is also studied in the stable and unstable cases and seems to be affected both by the convective motions and the presence of a differential rotation in the convective cases.

  11. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  12. Subsurface helicity of active regions 12192 and 10486

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; Tripathy, Sushant; Howe, Rachel; Hill, Frank

    2015-04-01

    The active region 10486 that produced the Halloween flares in 2003 initiated our interest in the kinetic helicity of subsurface flows associated with active regions. This lead to the realization that the helicity of subsurface flows is related to the flare activity of active regions. Eleven years later, a similarly enormous active region (12192) appeared on the solar surface. We plan to study the kinetic helicity of the subsurface flows associated with region 12192 and compare it to that of region 10486. For 10486, we have analyzed Dopplergrams obtained with the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO) and the Global Oscillation Network Group (GONG) with a dense-pack ring-diagram analysis. For 12192, we have analyzed Dopplergrams from GONG and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We will present the latest results.

  13. A Fractal Dimension Survey of Active Region Complexity

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  14. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  15. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  16. Helioseismology of pre-emerging active regions. III. Statistical analysis

    SciTech Connect

    Barnes, G.; Leka, K. D.; Braun, D. C.; Birch, A. C.

    2014-05-01

    The subsurface properties of active regions (ARs) prior to their appearance at the solar surface may shed light on the process of AR formation. Helioseismic holography has been applied to samples taken from two populations of regions on the Sun (pre-emergence and without emergence), each sample having over 100 members, that were selected to minimize systematic bias, as described in Paper I. Paper II showed that there are statistically significant signatures in the average helioseismic properties that precede the formation of an AR. This paper describes a more detailed analysis of the samples of pre-emergence regions and regions without emergence based on discriminant analysis. The property that is best able to distinguish the populations is found to be the surface magnetic field, even a day before the emergence time. However, after accounting for the correlations between the surface field and the quantities derived from helioseismology, there is still evidence of a helioseismic precursor to AR emergence that is present for at least a day prior to emergence, although the analysis presented cannot definitively determine the subsurface properties prior to emergence due to the small sample sizes.

  17. The birth and evolution of solar active regions

    NASA Astrophysics Data System (ADS)

    Gaizauskas, V.

    1993-09-01

    The growth of solar active regions is a well-observed surface phenomenon with its origins concealed in the solar interior. We review the salient facts about the emergence of active regions and the consequences of their growth on the solar atmosphere. The most powerful flares, the ones which display a range of phenomena that still pose serious challenges for high-energy astrophysics, are associated with regions of high magnetic complexity. How does that degree of complexity arise when the vast majority of active regions are simple bipolar entities? In order to gain some insight into that problem, we compare the emergence of magnetic flux in ordinary regions with an instance when magnetic complexity is apparent from the very first appearance of a new region - clearly a subsurface prefabrication of complexity - and with others wherein a new region interacts with a pre-existing one to create the complexity in plain view.

  18. IFLA General Conference, 1985. Division on Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on regional library activities which were presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Importance of Information Resources in National Development with Particular Reference to the Asian Scene" (Yogendra P. Dubey, India); (2) "Report of the Activities of the Regional Section for Asia…

  19. Software Displays Data on Active Regions of the Sun

    NASA Technical Reports Server (NTRS)

    Golightly, Mike; Weyland, Mark; Raben, Vern

    2011-01-01

    The Solar Active Region Display System is a computer program that generates, in near real time, a graphical display of parameters indicative of the spatial and temporal variations of activity on the Sun. These parameters include histories and distributions of solar flares, active region growth, coronal mass ejections, size, and magnetic configuration. By presenting solar-activity data in graphical form, this program accelerates, facilitates, and partly automates what had previously been a time-consuming mental process of interpretation of solar-activity data presented in tabular and textual formats. Intended for original use in predicting space weather in order to minimize the exposure of astronauts to ionizing radiation, the program might also be useful on Earth for predicting solar-wind-induced ionospheric effects, electric currents, and potentials that could affect radio-communication systems, navigation systems, pipelines, and long electric-power lines. Raw data for the display are obtained automatically from the Space Environment Center (SEC) of the National Oceanic and Atmospheric Administration (NOAA). Other data must be obtained from the NOAA SEC by verbal communication and entered manually. The Solar Active Region Display System automatically accounts for the latitude dependence of the rate of rotation of the Sun, by use of a mathematical model that is corrected with NOAA SEC active-region position data once every 24 hours. The display includes the date, time, and an image of the Sun in H light overlaid with latitude and longitude coordinate lines, dots that mark locations of active regions identified by NOAA, identifying numbers assigned by NOAA to such regions, and solar-region visual summary (SRVS) indicators associated with some of the active regions. Each SRVS indicator is a small pie chart containing five equal sectors, each of which is color-coded to provide a semiquantitative indication of the degree of hazard posed by one aspect of the activity at

  20. The Atlantic Canada-New England Region and Environment. A Learning Activity Packet.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.

    In this Learning Activity Packet (LAP) students examine the geographic and ecological bases of the Eastern international region. The overall objective of activities is to help students comprehend the man-earth relationship concept. By studying this familiar relevant region students gain geographic knowledge and skills applicable to other areas.…

  1. Representing Solar Active Regions with Triangulations

    NASA Technical Reports Server (NTRS)

    Turmon, M. J.; Mukhtar, S.

    1998-01-01

    The solar chromosphere consists of three classes which contribute differently to ultraviolet radiation reaching the earth. We describe a data set of solar images, means of segmenting the images into the constituent classes, and novel high-level representation for compact objects based on a triangulation spatial 'membership function'.

  2. Science-based Region-of-Interest Image Compression

    NASA Technical Reports Server (NTRS)

    Wagstaff, K. L.; Castano, R.; Dolinar, S.; Klimesh, M.; Mukai, R.

    2004-01-01

    As the number of currently active space missions increases, so does competition for Deep Space Network (DSN) resources. Even given unbounded DSN time, power and weight constraints onboard the spacecraft limit the maximum possible data transmission rate. These factors highlight a critical need for very effective data compression schemes. Images tend to be the most bandwidth-intensive data, so image compression methods are particularly valuable. In this paper, we describe a method for prioritizing regions in an image based on their scientific value. Using a wavelet compression method that can incorporate priority information, we ensure that the highest priority regions are transmitted with the highest fidelity.

  3. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  4. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  5. THE EXPANSION OF ACTIVE REGIONS INTO THE EXTENDED SOLAR CORONA

    SciTech Connect

    Morgan, Huw; Jeska, Lauren; Leonard, Drew

    2013-06-01

    Advanced image processing of Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2 observations reveals the expansion of the active region closed field into the extended corona. The nested closed-loop systems are large, with an apparent latitudinal extent of 50 Degree-Sign , and expanding to heights of at least 12 R{sub Sun }. The expansion speeds are {approx}10 km s{sup -1} in the AIA/SDO field of view, below {approx}20 km s{sup -1} at 2.3 R{sub Sun }, and accelerate linearly to {approx}60 km s{sup -1} at 5 R{sub Sun }. They appear with a frequency of one every {approx}3 hr over a time period of around three days. They are not coronal mass ejections (CMEs) since their gradual expansion is continuous and steady. They are also faint, with an upper limit of 3% of the brightness of background streamers. Extreme ultraviolet images reveal continuous birth and expansion of hot, bright loops from a new active region at the base of the system. The LASCO images show that the loops span a radial fan-like system of streamers, suggesting that they are not propagating within the main coronal streamer structure. The expanding loops brighten at low heights a few hours prior to a CME eruption, and the expansion process is temporarily halted as the closed field system is swept away. Closed magnetic structures from some active regions are not isolated from the extended corona and solar wind, but can expand to large heights in the form of quiescent expanding loops.

  6. Region based Brain Computer Interface for a home control application.

    PubMed

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  7. Physically Based Global Downscaling: Regional Evaluation

    SciTech Connect

    Ghan, Steven J.; Shippert, Timothy R.; Fox, Jared

    2006-02-01

    The climate simulated by a global atmosphere/land model with a physically-based subgrid orography scheme is evaluated in ten selected regions. Climate variables simulated for each of multiple elevation classes within each grid cell are mapped according the high-resolution distribution of surface elevation in each region. Comparison of the simulated annual mean climate with gridded observations leads to the following conclusions. At low to moderate elevations the downscaling scheme correctly simulates increasing precipitation, decreasing temperature, and increasing snow with increasing elevation within regions smaller than 100 km. At high elevations the downscaling scheme correctly simulates a decrease in precipitation with increasing elevation. Too little precipitation is simulated on the windward side of mountain ranges and too much precipitation is simulated on the lee side. The simulated sensitivity of surface air temperature to surface elevation is too strong, particularly in valleys influenced by drainage circulations. Observations show little evidence of a “snow shadow”, so the neglect of the subgrid rainshadow does not produce an unrealistic simulation of the snow distribution. Summertime snow area, which is a proxy for land ice, is much larger than observed. Summertime snow water equivalent is far less than the observed thickness of glaciers because a 1 m upper bound on snow water is applied to the simulations and because snow transport by slides is neglected. The 1 m upper bound on snow water equivalent also causes an underestimate of seasonal snow water during late winter, compared with gridded station measurements. Potential solutions to these problems are discussed.

  8. Magnetic field effects on THz quantum cascade laser: A comparative analysis of three and four quantum well based active region design

    NASA Astrophysics Data System (ADS)

    Daničić, A.; Radovanović, J.; Milanović, V.; Indjin, D.; Ikonić, Z.

    2016-07-01

    We consider the influence of additional carrier confinement, achieved by application of strong perpendicular magnetic field, on inter Landau levels electron relaxation rates and the optical gain, of two different GaAs quantum cascade laser structures operating in the terahertz spectral range. Breaking of the in-plane energy dispersion and the formation of discrete energy levels is an efficient mechanism for eventual quenching of optical phonon emission and obtaining very long electronic lifetime in the relevant laser state. We employ our detailed model for calculating the electron relaxation rates (due to interface roughness and electron-longitudinal optical phonon scattering), and solve a full set of rate equations to evaluate the carrier distribution over Landau levels. The numerical simulations are performed for three- and four-well (per period) based structures that operate at 3.9 THz and 1.9 THz, respectively, both implemented in GaAs/Al0.15Ga0.85As. Numerical results are presented for magnetic field values from 1.5 T up to 20 T, while the band nonparabolicity is accounted for.

  9. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 6: Variability of NGC 3783 from ground-based data

    NASA Technical Reports Server (NTRS)

    Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.

    1994-01-01

    The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.

  10. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  11. Active-region designs in quantum cascade lasers

    SciTech Connect

    Zasavitskii, I I

    2012-10-31

    This paper analyses the development of active-region designs in quantum cascade lasers. Active-region designs have been demonstrated to date that employ various radiative transitions (vertical, diagonal, interminiband and interband). The lower laser level is depopulated through nonradiative transitions, such as one- or two-phonon (and even three-phonon) relaxation or bound state {yields} continuum transitions. Advances in active-region designs and energy diagram optimisation in the past few years have led to significant improvements in important characteristics of quantum cascade lasers, such as their output power, emission bandwidth, characteristic temperature and efficiency. (invited paper)

  12. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  13. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-08-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  14. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  15. Prediction of Active-Region CME Productivity from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2004-01-01

    We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality

  16. Active Ageing Level of Older Persons: Regional Comparison in Thailand.

    PubMed

    Haque, Md Nuruzzaman

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p < 0.001)). Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP), containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons' active ageing level in Thailand. PMID:27375903

  17. Active Ageing Level of Older Persons: Regional Comparison in Thailand.

    PubMed

    Haque, Md Nuruzzaman

    2016-01-01

    Active ageing level and its discrepancy in different regions (Bangkok, Central, North, Northeast, and South) of Thailand have been examined for prioritizing the policy agenda to be implemented. Attempt has been made to test preliminary active ageing models for Thai older persons and hence active ageing index (AAI, ranges from 0 to 1) has been estimated. Using nationally representative data and confirmatory factor analysis approach, this study justified active ageing models for female and male older persons in Thailand. Results revealed that active ageing level of Thai older persons is not high (mean AAIs for female and male older persons are 0.64 and 0.61, resp., and those are significantly different (p < 0.001)). Mean AAI in Central region is lower than North, Northeast, and South regions but there is no significant difference in the latter three regions of Thailand. Special emphasis should be given to Central region and policy should be undertaken for increasing active ageing level. Implementation of an Integrated Active Ageing Package (IAAP), containing policies for older persons to improve their health and economic security, to promote participation in social groups and longer working lives, and to arrange learning programs, would be helpful for increasing older persons' active ageing level in Thailand.

  18. DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Török, T.; Titov, V. S.; Mikić, Z.; Leake, J. E.; Archontis, V.; Linton, M. G.; Dalmasse, K.; Aulanier, G.; Kliem, B.

    2014-02-10

    There has been a long-standing debate on the question of whether or not electric currents in solar active regions are neutralized. That is, whether or not the main (or direct) coronal currents connecting the active region polarities are surrounded by shielding (or return) currents of equal total value and opposite direction. Both theory and observations are not yet fully conclusive regarding this question, and numerical simulations have, surprisingly, barely been used to address it. Here we quantify the evolution of electric currents during the formation of a bipolar active region by considering a three-dimensional magnetohydrodynamic simulation of the emergence of a sub-photospheric, current-neutralized magnetic flux rope into the solar atmosphere. We find that a strong deviation from current neutralization develops simultaneously with the onset of significant flux emergence into the corona, accompanied by the development of substantial magnetic shear along the active region's polarity inversion line. After the region has formed and flux emergence has ceased, the strong magnetic fields in the region's center are connected solely by direct currents, and the total direct current is several times larger than the total return current. These results suggest that active regions, the main sources of coronal mass ejections and flares, are born with substantial net currents, in agreement with recent observations. Furthermore, they support eruption models that employ pre-eruption magnetic fields containing such currents.

  19. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  20. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  1. Radio Coronal Magnetography of a Large Active Region

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.; Gary, Dale E.; White, Stephen; Fleishman, Gregory; Chen, Bin

    2015-04-01

    Quantitative knowledge of coronal magnetic fields is fundamental to understanding energetic phenomena such as solar flares. Flares occur in solar active regions where strong, non-potential magnetic fields provide free energy. While constraints on the coronal magnetic field topology are readily available through high resolution SXR and EUV imaging of solar active regions, useful quantitative measurements of coronal magnetic fields have thus far been elusive. Recent progress has been made at infrared (IR) wavelengths in exploiting both the Zeeman and Hanle effects to infer the line-of-sight magnetic field strength or the orientation of the magnetic field vector in the plane of the sky above the solar limb. However, no measurements of coronal magnetic fields against the solar disk are possible using IR observations. Radio observations of gyroresonance emission from active regions offer the means of measuring coronal magnetic fields above the limb and on the solar disk. In particular, for plasma plasma conditions in the solar corona, active regions typically become optically thick to emission over a range of radio frequencies through gyroresonance absorption at a low harmonic of the electron gyrofrequency. The specific range of resonant frequencies depends on the range of coronal magnetic field strengths present in the active region.The Karl G. Jansky Very Large Array was used in November 2014 to image NOAA/USAF active region AR12209 over a continuous frequency range of 1-8 GHz, corresponding to a wavelength range of 3.75-30 cm. This frequency range is sensitive to coronal magnetic field strengths ranging from ~120-1400G. The active region was observed on four different dates - November 18, 20, 22, and 24 - during which the active region longitude ranged from -15 to +70 degrees, providing a wide range of aspect angles. In this paper we provide a preliminary description of the coronal magnetic field measurements derived from the radio observations.

  2. Earth resources-regional transfer activity contracts review

    NASA Technical Reports Server (NTRS)

    Bensko, J., Jr.; Daniels, J. L.; Downs, S. W., Jr.; Jones, N. L.; Morton, R. R.; Paludan, C. T.

    1977-01-01

    A regional transfer activity contracts review held by the Earth Resources Office was summarized. Contracts in the earth resources field primarily directed toward applications of satellite data and technology in solution of state and regional problems were reviewed. A summary of the progress of each contract was given in order to share experiences of researchers across a seven state region. The region included Missouri, Kentucky, Tennessee, Mississippi, Alabama, Georgia, and North Carolina. Research in several earth science disciplines included forestry, limnology, water resources, land use, geology, and mathematical modeling. The use of computers for establishment of information retrieval systems was also emphasized.

  3. Tracking Active Region NOAA 12192 in Multiple Carrington Rotations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, Sushant C.; Hill, Frank

    2015-04-01

    Active region NOAA 12192 appeared on the visible solar disk on October 18, 2014 and grew rapidly into the largest such region since 1990. During its entire transit across the Earth facing side of the Sun, it produced a significant number of X- and M-class flares. The combination of front-side and helioseismic far-side images clearly indicated that it lived through several Carrington rotations. In this paper, using Dopplergrams from GONG and HMI, we present a study on mode parameters, viz. oscillation frequencies, amplitude, and sub-surface flows and investigate how these vary with the evolution of active region in multiple rotations. We also present a detailed comparison between NOAA 10486 (the biggest active region in cycle 23) and NOAA 12192, and discuss the similarities/differences between them.

  4. Active Tectonics And Modern Geodynamics Of Sub-Yerevan Region

    NASA Astrophysics Data System (ADS)

    Avanesyan, M.

    2004-05-01

    The given work is dedicated to active tectonics and modern geodynamics of Sub-Yerevan region. This region is interesting as a one of regions with maximal seismic activity in Armenia. The high level of seismic risk of this region is conditioned by high level of seismic hazard, high density of the population, as well as presence of objects of special importance and industrial capacities. The modern structure of Sub-Yerevan region and the adjacent area, as well as the Caucasus entirely, has mosaic-block appearance, typical for collision zone of Arabian and Eurasian plates. Distinctively oriented active faults of various ranges and morphological types are distinguished. These faults, in their turn, form various-scale active blocks of the Earth's crust and their movement defines seismic activity of the region. The researches show, that all strong earthquakes in the region were caused by movements by newest and activated ancient faults. In order to reveal the character of Earth's crust active blocks movement, separation of high gradients of horizontal and vertical movements and definition of stress fields highest concentration regions by GPS observations, high-accuracy leveling and study of earthquake focal mechanisms a new seismotectonic model is developed, which represents a combination of tectonic structure, seismic data, newest and modern movements. On the basis of comparison and analysis of these data zones with potential maximal seismic hazard are separated. The zone of joint of Azat-Sevan active and Yerevan abysmal faults is the most active on the territory of Sub-Yerevan region. The directions relatively the Earth's crust movement in the zones of horizontal and vertical movement gradients lead to conclusion, that Aragats-Tsakhkunian and Gegam active blocks undergo clockwise rotation. This means, that additional concentration of stress must be observed in block corners, that is confirmed by location of strong earthquakes sources. Thus, on the North 1988 Spitak (M

  5. Universities and Economic Development Activities: A UK Regional Comparison

    ERIC Educational Resources Information Center

    Decter, Moira; Cave, Frank; Rose, Mary; Peers, Gill; Fogg, Helen; Smith, Susan M.

    2011-01-01

    A number of UK universities prioritize economic development or regeneration activities and for some of these universities such activities are the main focus of their knowledge transfer work. This study compares two regions of the UK--the North West and the South East of England--which have very different levels of economic performance.…

  6. THz quantum cascade lasers with wafer bonded active regions.

    PubMed

    Brandstetter, M; Deutsch, C; Benz, A; Cole, G D; Detz, H; Andrews, A M; Schrenk, W; Strasser, G; Unterrainer, K

    2012-10-01

    We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.

  7. Kink Waves in an Active Region Dynamic Fibril

    NASA Astrophysics Data System (ADS)

    Pietarila, A.; Aznar Cuadrado, R.; Hirzberger, J.; Solanki, S. K.

    2011-10-01

    We present high spatial and temporal resolution Ca II 8542 Å observations of a kink wave in an on-disk chromospheric active region fibril. The properties of the wave are similar to those observed in off-limb spicules. From the observed phase and period of the wave we determine a lower limit for the field strength in the chromospheric active region fibril located at the edge of a sunspot to be a few hundred gauss. We find indications that the event was triggered by a small-scale reconnection event higher up in the atmosphere.

  8. Structure-Based Predictions of Activity Cliffs

    PubMed Central

    Husby, Jarmila; Bottegoni, Giovanni; Kufareva, Irina; Abagyan, Ruben; Cavalli, Andrea

    2015-01-01

    In drug discovery, it is generally accepted that neighboring molecules in a given descriptors' space display similar activities. However, even in regions that provide strong predictability, structurally similar molecules can occasionally display large differences in potency. In QSAR jargon, these discontinuities in the activity landscape are known as ‘activity cliffs’. In this study, we assessed the reliability of ligand docking and virtual ligand screening schemes in predicting activity cliffs. We performed our calculations on a diverse, independently collected database of cliff-forming co-crystals. Starting from ideal situations, which allowed us to establish our baseline, we progressively moved toward simulating more realistic scenarios. Ensemble- and template-docking achieved a significant level of accuracy, suggesting that, despite the well-known limitations of empirical scoring schemes, activity cliffs can be accurately predicted by advanced structure-based methods. PMID:25918827

  9. Observations of the Growth of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong

    2016-10-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. H α observations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  10. Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    NASA Astrophysics Data System (ADS)

    Moon, Kevin R.; Li, Jimmy J.; Delouille, Véronique; De Visscher, Ruben; Watson, Fraser; Hero, Alfred O.

    2016-01-01

    Context. The flare productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. Aims: We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. Methods: We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from magnetogram to analyze separately the core part of an active region from its surrounding part. Results: We find relationships between the complexity of an active region as measured by its Mount Wilson classification and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. Conclusions: Intrinsic dimension has the potential to distinguish simple from complex active regions. These results also pave the way for patch-based dictionary learning with a view toward automatic clustering of active regions.

  11. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  12. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  13. Geometry of Broad Line Regions of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lü, Xiao-Rong

    2008-02-01

    It has long remained an open question as to the geometry of the broad line region (BLR) in active galactic nuclei (AGNs). The reverberation mapping technique which measures the response of the broad emission lines to the ionizing continuum, when combined with multiwavelength continuum fitted by sophisticated accretion disks, provides a way of probing the BLR geometry. We analyze a sample of 35 AGNs, which have been monitored by the reverberation mapping campaign. In view of energy budget, the reverberation-based BH masses are found to be in agreement with those obtained by accretion disk models in two thirds of the present sample while the reverberation mapping methods underestimate the BH masses in about one third of objects, as also suggested by Collin et al. in a recent work. We point out that there are obviously two kinds of BLR geometry, which are strongly dependent on the Eddington ratio, and separated by the value LBol/LEdd~0.1. These results prefer a scenario of the disk and wind configuration of the BLR and identify the Eddington ratio as the physical driver regulating the wind in the BLR.

  14. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Dalmasse, K.; Kliem, B.; Török, T.

    2015-09-01

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

  15. IFLA General Conference, 1989. Division of Regional Activities. Section on Regional Activities--Africa; Section on Regional Activities--Asia and Oceania; Section on Regional Activities--Latin America and the Caribbean. Booklet 80.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    There are five papers in this collection from the Division of Regional Activities: (1) "Communication and Information in Contemporary African Society" (Bimpe Aboyade), which discusses how libraries can make themselves relevant to other institutions concerned with information transfer; (2) "Libraries and Rural Development: Village Reading Rooms in…

  16. IFLA General Conference, 1987. Division of Regional Activities. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Six of the seven papers in this collection focus on regional library activities in Africa, Asia and Oceania, and Latin America and the Caribbean: (1) "Libraries and Information Services in a Changing World: The Challenges African Information Services Face at the End of the 1980s" (Dejen Abate, Ethiopia); (2) "The Computer and Knowledge Information…

  17. Urban, Rural, and Regional Variations in Physical Activity

    ERIC Educational Resources Information Center

    Martin, Sarah Levin; Kirkner, Gregory J.; Mayo, Kelly; Matthews, Charles E.; Durstine, J. Larry; Hebert, James R.

    2005-01-01

    Purpose: There is some speculation about geographic differences in physical activity (PA) levels. We examined the prevalence of physical inactivity (PIA) and whether US citizens met the recommended levels of PA across the United States. In addition, the association between PIA/PA and degree of urbanization in the 4 main US regions (Northeast,…

  18. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  19. A solar cycle timing predictor - The latitude of active regions

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1990-01-01

    A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.

  20. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  1. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  2. Evolution of two Flaring Active Regions With CME Association

    NASA Astrophysics Data System (ADS)

    Thalmann, J. K.; Wiegelmann, T.

    2008-12-01

    We study the coronal magnetic field structure of two active regions, one during solar activity minimum (June 2007) and another one during a more active time (January 2004). The temporal evolution was explored with the help of nonlinear force-free coronal magnetic field extrapolations of SOLIS/VSM and NAOJ/SFT photospheric vector magnetograms. We study the active region NOAA 10960 observed on 2007 June 7 with three SOLIS/VSM snapshots taken during a small C1.0 flare of time cadence 10 minutes and six snapshots during a quiet period. The total magnetic energy in the active region was approximately 3 × 1025 J. Before the flare the free magnetic energy was about 5~% of the potential field energy. A part of this excess energy was released during the flare, producing almost a potential configuration at the beginning of the quiet period. The return to an almost potential structure can be assigned to a CME as recorded by the SoHO/LASCO instrument on 2007 June 07 around 10 minutes after the flare peaked, so that whatever magnetic helicity was bodily removed from the structure. This was compared with active region 10540 observed on 2004 January 18 -- 21, which was analyzed with the help of vector magnetograph data from the Solar Flare Telescope in Japan of time cadence of about 1 day. The free energy was Efree≈ 66~% of the total energy which was sufficiently high to power a M6.1 flare on January 20, which was associated with a CME 20 minutes later. The activity of AR 10540 was significantly higher than for AR 10960, as was the total magnetic energy. Furthermore, we found the common feature that magnetic energy accumulates before the flare/CME and a significant part of the excess energy is released during the eruption.

  3. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  4. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  5. Active sonar, beaked whales and European regional policy.

    PubMed

    Dolman, Sarah J; Evans, Peter G H; Notarbartolo-di-Sciara, Giuseppe; Frisch, Heidrun

    2011-01-01

    Various reviews, resolutions and guidance from international and regional fora have been produced in recent years that acknowledge the significance of marine noise and its potential impacts on cetaceans. Within Europe, ACCOBAMS and ASCOBANS have shown increasing attention to the issue. The literature highlights concerns surrounding the negative impacts of active sonar on beaked whales in particular, where concerns primarily relate to the use of mid-frequency active sonar (1-10kHz), as used particularly in military exercises. The authors review the efforts that European regional policies have undertaken to acknowledge and manage possible negative impacts of active sonar and how these might assist the transition from scientific research to policy implementation, including effective management and mitigation measures at a national level.

  6. Patterns of Activity Revealed by a Time Lag Analysis of a Model Active Region

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen; Viall, Nicholeen

    2016-05-01

    We investigate the global activity patterns predicted from a model active region heated by distributions of nanoflares that have a range of average frequencies. The activity patterns are manifested in time lag maps of narrow-band instrument channel pairs. We combine an extrapolated magnetic skeleton with hydrodynamic and forward modeling codes to create a model active region, and apply the time lag method to synthetic observations. Our aim is to recover some typical properties and patterns of activity observed in active regions. Our key findings are: 1. Cooling dominates the time lag signature and the time lags between the channel pairs are generally consistent with observed values. 2. Shorter coronal loops in the core cool more quickly than longer loops at the periphery. 3. All channel pairs show zero time lag when the line-of-sight passes through coronal loop foot-points. 4. There is strong evidence that plasma must be re-energized on a time scale comparable to the cooling timescale to reproduce the observed coronal activity, but it is likely that a relatively broad spectrum of heating frequencies operates across active regions. 5. Due to their highly dynamic nature, we find nanoflare trains produce zero time lags along entire flux tubes in our model active region that are seen between the same channel pairs in observed active regions.

  7. Examining auroral downward current region processes using ground based data

    NASA Astrophysics Data System (ADS)

    Michell, Robert Gregory

    observed 7 distinct periods of NEIAL activity. These times correspond to (a) when the polar cap boundary of the auroral arcs passed through the magnetic zenith and (b) when small-scale filamentary dark structure was present in the magnetic zenith. These observations are consistent with NEIALs occurring within the same auroral morphology which is known to contain broad-band extremely low frequency (BBELF) wave activity. By comparing the densities at which NEIALs have been observed by previous studies, it is found that NEIALs occur at densities roughly between 5 and 30 x1010 m-3. The observations presented in this dissertation support the hypothesis that NEIALs and BBELF are differently observed aspects of the same auroral phenomenon. It is a goal of this thesis to connect these ground-based observations with previous in situ measurements and identify DCRs from the ground. A relation between NEIALs and the in situ signature of BBELF wave activity, provides a link between the in situ measurements and the ground-based observations. There are no actual ground-based/in situ conjugate events in this study. The focus here is to compare the optical observations to the morphology and auroral context of DCRs as measured in situ by previous studies. The use of ground-based observational techniques for observing DCR processes has many implications. These include identifying and following the temporal and spatial evolution of DCRs as well as being able to identify regions of potential ion outflow on a large spatial and temporal scale using ground based optical observations.

  8. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Hill, F. E-mail: stripathy@nso.edu

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  9. THE EVOLUTION OF DARK CANOPIES AROUND ACTIVE REGIONS

    SciTech Connect

    Wang, Y.-M.; Robbrecht, E.; Muglach, K. E-mail: eva.robbrecht@oma.be

    2011-05-20

    As observed in spectral lines originating from the chromosphere, transition region, and low corona, active regions are surrounded by an extensive 'circumfacular' area which is darker than the quiet Sun. We examine the properties of these dark moat- or canopy-like areas using Fe IX 17.1 nm images and line-of-sight magnetograms from the Solar Dynamics Observatory. The 17.1 nm canopies consist of fibrils (horizontal fields containing extreme-ultraviolet-absorbing chromospheric material) clumped into featherlike structures. The dark fibrils initially form a quasiradial or vortical pattern as the low-lying field lines fanning out from the emerging active region connect to surrounding network and intranetwork elements of opposite polarity. The area occupied by the 17.1 nm fibrils expands as supergranular convection causes the active-region flux to spread into the background medium; the outer boundary of the dark canopy stabilizes where the diffusing flux encounters a unipolar region of opposite sign. The dark fibrils tend to accumulate in regions of weak longitudinal field and to become rooted in mixed-polarity flux. To explain the latter observation, we note that the low-lying fibrils are more likely to interact with small loops associated with weak, opposite-polarity flux elements in close proximity, than with high loops anchored inside strong unipolar network flux. As a result, the 17.1 nm fibrils gradually become concentrated around the large-scale polarity inversion lines (PILs), where most of the mixed-polarity flux is located. Systematic flux cancellation, assisted by rotational shearing, removes the field component transverse to the PIL and causes the fibrils to coalesce into long PIL-aligned filaments.

  10. Fine thermal structure of a coronal active region.

    PubMed

    Reale, Fabio; Parenti, Susanna; Reeves, Kathy K; Weber, Mark; Bobra, Monica G; Barbera, Marco; Kano, Ryouhei; Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro; Peres, Giovanni; Golub, Leon

    2007-12-01

    The determination of the fine thermal structure of the solar corona is fundamental to constraining the coronal heating mechanisms. The Hinode X-ray Telescope collected images of the solar corona in different passbands, thus providing temperature diagnostics through energy ratios. By combining different filters to optimize the signal-to-noise ratio, we observed a coronal active region in five filters, revealing a highly thermally structured corona: very fine structures in the core of the region and on a larger scale further away. We observed continuous thermal distribution along the coronal loops, as well as entangled structures, and variations of thermal structuring along the line of sight.

  11. Armenia as a Regional Centre for Astronomy for Development activities

    NASA Astrophysics Data System (ADS)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  12. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  13. Evidence of active region imprints on the solar wind structure

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B. V.

    1995-01-01

    A common descriptive framework for discussing the solar wind structure in the inner heliosphere uses the global magnetic field as a reference: low density, high velocity solar wind emanates from open magnetic fields, with high density, low speed solar wind flowing outward near the current sheet. In this picture, active regions, underlying closed magnetic field structures in the streamer belt, leave little or no imprint on the solar wind. We present evidence from interplanetary scintillation measurements of the 'disturbance factor' g that active regions play a role in modulating the solar wind and possibly contribute to the solar wind mass output. Hence we find that the traditional view of the solar wind, though useful in understanding many features of solar wind structure, is oversimplified and possibly neglects important aspects of solar wind dynamics

  14. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  15. MAGNETIC HELICITY AND ENERGY SPECTRA OF A SOLAR ACTIVE REGION

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2014-04-01

    We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during 2011 February 11-15 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ≈ 0.4 Mm{sup –1}, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k {sup –11/3} power law at large wavenumbers, which implies a k {sup –5/3} spectrum for the modulus of the current helicity. A k {sup –5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm{sup –1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artifacts at small scales.

  16. Simulation of Active-Region-Scale Flux Emergence

    NASA Astrophysics Data System (ADS)

    Manchester, W.; van der Holst, B.

    2015-12-01

    Shear flows long observed in solar active regions are now understood to be a consequence of the Lorentz force that develops from a complex interaction between magnetic fields and the thermal pressure of the Sun's gravitationally stratified atmosphere. The shearing motions transport magnetic flux and energy from the submerged portion of the field to the corona providing the necessary energy for flares, filament eruptions and CMEs. To further examine this shearing process, we simulate flux emergence on the scale of active regions with a large-scale model of the near surface convection zone constructed on an adaptive spherical grid. This model is designed to simulate flux emerging on the scale of active regions from a depth of 30 Mm. Here, we show results of a twisted flux rope emerging through the hierarchy of granular convection, and examine the flow patterns that arise as the flux approaches the photosphere. We show how these organized flows driven by the Lorentz force cause the coronal field evolve to a highly non-potential configuration capable of driving solar eruptions such as CMEs and flares.

  17. A theoretical approach to spot active regions in antimicrobial proteins

    PubMed Central

    2009-01-01

    Background Much effort goes into identifying new antimicrobial compounds able to evade the increasing resistance of microorganisms to antibiotics. One strategy relies on antimicrobial peptides, either derived from fragments released by proteolytic cleavage of proteins or designed from known antimicrobial protein regions. Results To identify these antimicrobial determinants, we developed a theoretical approach that predicts antimicrobial proteins from their amino acid sequence in addition to determining their antimicrobial regions. A bactericidal propensity index has been calculated for each amino acid, using the experimental data reported from a high-throughput screening assay as reference. Scanning profiles were performed for protein sequences and potentially active stretches were identified by the best selected threshold parameters. The method was corroborated against positive and negative datasets. This successful approach means that we can spot active sequences previously reported in the literature from experimental data for most of the antimicrobial proteins examined. Conclusion The method presented can correctly identify antimicrobial proteins with an accuracy of 85% and a sensitivity of 90%. The method can also predict their key active regions, making this a tool for the design of new antimicrobial drugs. PMID:19906288

  18. The Intermediate-line Region in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Czerny, B.; Hryniewicz, K.; Ferland, G. J.

    2016-11-01

    We show that the recently observed suppression of the gap between the broad-line region (BLR) and the narrow-line region (NLR) in some active galactic nuclei (AGNs) can be fully explained by an increase of the gas density in the emitting region. Our model predicts the formation of the intermediate-line region (ILR) that is observed in some Seyfert galaxies by the detection of emission lines with intermediate-velocity FWHM ∼ 700–1200 km s‑1. These lines are believed to be originating from an ILR located somewhere between the BLR and NLR. As was previously proved, the apparent gap is assumed to be caused by the presence of dust beyond the sublimation radius. Our computations with the use of the cloudy photoionization code show that the differences in the shape of the spectral energy distribution from the central region of AGNs do not diminish the apparent gap in the line emission in those objects. A strong discontinuity in the line emission versus radius exists for all lines at the dust sublimation radius. However, increasing the gas density to ∼{10}11.5 cm‑3 at the sublimation radius provides the continuous line emission versus radius and fully explains the recently observed lack of apparent gap in some AGNs. We show that such a high density is consistent with the density of upper layers of an accretion disk atmosphere. Therefore, the upper layers of the disk atmosphere can give rise to the formation of observed emission-line clouds.

  19. Classification of Regional Ionospheric Disturbances Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil

    2016-07-01

    Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification

  20. Plasma outflows at the border of active regions and the solar wind

    NASA Astrophysics Data System (ADS)

    Nuevo, F. A.; Mandrini, C. H.; Vásquez, A. M.; Deumoulin, P.; Van Driel-Gesztely, L.; Baker, D.; Cristiani, G. D.; Pick, M.; Culhane, J. L.

    We present a detailed topological analysis of active region (AR) 10978; based on a Potential Field Source Surface (PFSS) model. AR 10978 is a standard bipolar region which appears fully covered by the magnetic field lines of a coronal streamer. Despite this simple magnetic configuration; our analysis shows that it is possible for the AR plasma; contained in the outflows observed at the AR borders; to be released into the solar wind via magnetic reconnection.

  1. Regional differences in muscle activation during hamstrings exercise.

    PubMed

    Schoenfeld, Brad J; Contreras, Bret; Tiryaki-Sonmez, Gul; Wilson, Jacob M; Kolber, Morey J; Peterson, Mark D

    2015-01-01

    It is believed that regional activation within a muscle may lead to greater site-specific muscular adaptations in the activated portion of the muscle. Because the hamstrings are a biarticular muscle, it can be theorized that single-joint exercises where movement originates at the hip vs. the knee will result in differential activation of the muscle complex. The purpose of the present study was to assess electromyographic activity in the proximal and distal aspects of the medial and lateral hamstrings during performance of the stiff-legged deadlift (SLDL), a hip-dominant exercise, and the lying leg curl (LLC), a knee-dominant exercise. Ten young, resistance-trained men were recruited from a university population to participate in the study. Employing a within-subject design, participants performed the SLDL and LLC to muscular failure using a load equating to their 8 repetition maximum for each exercise. The order of performance of exercises was counterbalanced between participants so that approximately half of the subjects performed SLDL first and the other half performed LLC first. Surface electromyography was used to record mean normalized muscle activity of the upper lateral hamstrings, lower lateral hamstrings, upper medial hamstrings, and lower medial hamstrings. Results showed that the LLC elicited significantly greater normalized mean activation of the lower lateral and lower medial hamstrings compared with the SLDL (p ≤ 0.05). These findings support the notion that the hamstrings can be regionally targeted through exercise selection. Further investigations are required to determine whether differences in activation lead to greater muscular adaptations in the muscle complex. PMID:24978835

  2. Active region upflows. II. Data driven magnetohydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    Galsgaard, K.; Madjarska, M. S.; Vanninathan, K.; Huang, Z.; Presmann, M.

    2015-12-01

    Context. Observations of many active regions show a slow systematic outflow/upflow from their edges lasting from hours to days. At present no physical explanation has been proven, while several suggestions have been put forward. Aims: This paper investigates one possible method for maintaining these upflows assuming, that convective motions drive the magnetic field to initiate them through magnetic reconnection. Methods: We use Helioseismic and Magnetic Imager (HMI) data to provide an initial potential 3D magnetic field of the active region NOAA 11123 on 2010 November 13 where the characteristic upflow velocities are observed. A simple 1D hydrostatic atmospheric model covering the region from the photosphere to the corona is derived. Local correlation tracking of the magnetic features in the HMI data is used to derive a proxy for the time dependent velocity field. The time dependent evolution of the system is solved using a resistive 3D magnetohydrodynamic code. Results: The magnetic field contains several null points located well above the photosphere, with their fan planes dividing the magnetic field into independent open and closed flux domains. The stressing of the interfaces between the different flux domains is expected to provide locations where magnetic reconnection can take place and drive systematic flows. In this case, the region between the closed and open flux is identified as the region where observations find the systematic upflows. Conclusions: In the present experiment, the driving only initiates magneto-acoustic waves without driving any systematic upflows at any of the flux interfaces. Movie is available in electronic form at http://www.aanda.org

  3. Venezuelan Equine Encephalitis Virus Activity in the Gulf Coast Region of Mexico, 2003–2010

    PubMed Central

    Adams, A. Paige; Navarro-Lopez, Roberto; Ramirez-Aguilar, Francisco J.; Lopez-Gonzalez, Irene; Leal, Grace; Flores-Mayorga, Jose M.; Travassos da Rosa, Amelia P. A.; Saxton-Shaw, Kali D.; Singh, Amber J.; Borland, Erin M.; Powers, Ann M.; Tesh, Robert B.; Weaver, Scott C.; Estrada-Franco, Jose G.

    2012-01-01

    Venezuelan equine encephalitis virus (VEEV) has been the causative agent for sporadic epidemics and equine epizootics throughout the Americas since the 1930s. In 1969, an outbreak of Venezuelan equine encephalitis (VEE) spread rapidly from Guatemala and through the Gulf Coast region of Mexico, reaching Texas in 1971. Since this outbreak, there have been very few studies to determine the northward extent of endemic VEEV in this region. This study reports the findings of serologic surveillance in the Gulf Coast region of Mexico from 2003–2010. Phylogenetic analysis was also performed on viral isolates from this region to determine whether there have been substantial genetic changes in VEEV since the 1960s. Based on the findings of this study, the Gulf Coast lineage of subtype IE VEEV continues to actively circulate in this region of Mexico and appears to be responsible for infection of humans and animals throughout this region, including the northern State of Tamaulipas, which borders Texas. PMID:23133685

  4. On the Periodicity of Energy Release in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Goldvarg, T. B.; Nagovitsyn, Yu. A.; Solov'Ev, A. A.

    2005-06-01

    We investigate the periodic regimes of energy release on the Sun, namely, the recurrence of solar flares in active regions using the Solar Geophysical Data Journal on Hα flares from 1979 until 1981, which corresponds to the maximum of solar cycle 21. We obtained the following series of periods in the manifestation of flare activity bymeans of a correlation periodogram analysis, a self-similarity function, and a wavelet analysis: ˜1, 2, 3 h as well as ˜0.4, 1, 2, 5 days. We suggest a diffusive model for the quasi-periodic transfer of toroidal magnetic fields from under the photosphere to interpret the retrieved sequence of periods in the enhancement of flare activity. We estimated the typical spatial scales of the magnetic field variations in the solar convection zone: ˜17 000 km.

  5. Activity cliffs and activity cliff generators based on chemotype-related activity landscapes.

    PubMed

    Pérez-Villanueva, Jaime; Méndez-Lucio, Oscar; Soria-Arteche, Olivia; Medina-Franco, José L

    2015-11-01

    Activity cliffs have large impact in drug discovery; therefore, their detection and quantification are of major importance. This work introduces the metric activity cliff enrichment factor and expands the previously reported activity cliff generator concept by adding chemotype information to representations of the activity landscape. To exemplify these concepts, three molecular databases with multiple biological activities were characterized. Compounds in each database were grouped into chemotype classes. Then, pairwise comparisons of structure similarities and activity differences were calculated for each compound and used to construct chemotype-based structure-activity similarity (SAS) maps. Different landscape distributions among four major regions of the SAS maps were observed for different subsets of molecules grouped in chemotypes. Based on this observation, the activity cliff enrichment factor was calculated to numerically detect chemotypes enriched in activity cliffs. Several chemotype classes were detected having major proportion of activity cliffs than the entire database. In addition, some chemotype classes comprising compounds with smooth structure activity relationships (SAR) were detected. Finally, the activity cliff generator concept was applied to compounds grouped in chemotypes to extract valuable SAR information.

  6. FORMATION OF CORONAL HOLES ON THE ASHES OF ACTIVE REGIONS

    SciTech Connect

    Karachik, Nina V.; Pevtsov, Alexei A.; Abramenko, Valentyna I. E-mail: apevtsov@nso.ed

    2010-05-10

    We investigate the formation of isolated non-polar coronal holes (CHs) on the remnants of decaying active regions (ARs) at the minimum/early ascending phase of sunspot activity. We follow the evolution of four bipolar ARs and measure several parameters of their magnetic fields including total flux, imbalance, and compactness. As regions decay, their leading and following polarities exhibit different dissipation rates: loose polarity tends to dissipate faster than compact polarity. As a consequence, we see a gradual increase in flux imbalance inside a dissipating bipolar region, and later a formation of a CH in place of more compact magnetic flux. Out of four cases studied in detail, two CHs had formed at the following polarity of the decaying bipolar AR, and two CHs had developed in place of the leading polarity field. All four CHs contain a significant fraction of magnetic field of their corresponding AR. Using potential field extrapolation, we show that the magnetic field lines of these CHs were closed on the polar CH at the North, which at the time of the events was in imbalance with the polar CH at the South. This topology suggests that the observed phenomenon may play an important role in transformation of toroidal magnetic field to poloidal field, which is a key step in transitioning from an old solar cycle to a new one. The timing of this observed transition may indicate the end of solar cycle 23 and the beginning of cycle 24.

  7. Decoding Brain States Based on Magnetoencephalography From Prespecified Cortical Regions.

    PubMed

    Zhang, Jinyin; Li, Xin; Foldes, Stephen T; Wang, Wei; Collinger, Jennifer L; Weber, Douglas J; Bagić, Anto

    2016-01-01

    Brain state decoding based on whole-head MEG has been extensively studied over the past decade. Recent MEG applications pose an emerging need of decoding brain states based on MEG signals originating from prespecified cortical regions. Toward this goal, we propose a novel region-of-interest-constrained discriminant analysis algorithm (RDA) in this paper. RDA integrates linear classification and beamspace transformation into a unified framework by formulating a constrained optimization problem. Our experimental results based on human subjects demonstrate that RDA can efficiently extract the discriminant pattern from prespecified cortical regions to accurately distinguish different brain states.

  8. Active tectonics and earthquake potential of the Myanmar region

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  9. Time Dependence of Joy's Law for Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Zhang, J.; Liu, Y.

    2013-07-01

    Joy's law governs the tilt of Active Regions (ARs) with respect to their absolute heliographic latitude. Together with Hale's law of hemispheric polarity, it is essential in constraining solar dynamo models. However, previous studies on Joy's law show only a weak positive trend between AR tilt angles and latitudes. In this study, we are focusing on the time dependence of Joy's law, for the cases of emerging ARs of Solar Cycle 24. We selected 40 ARs that emerge on the East hemisphere, effectively maximizing the observing time for each AR. Then, by converting the helioprojective maps into heliographic, we determine the geometrical as well as the magnetic-flux-weighted centroids for each emergence case. That way we are able to track the temporal evolution of their physical properties, including locations, fluxes of positive and negative polarities, as well as the tilt angles of these regions in a continuous manner until emergence stops and the ARs assume their final state.

  10. Bootstrap-based intercomparison of regional flood estimation procedures

    SciTech Connect

    Ouarda, T.B.M.J.; Ashkar, F.

    1995-12-31

    The present paper describes a methodology, based on the regional bootstrap procedure, for the intercomparison of some of the most frequently used regional flood frequency estimation models. The results of the application of this methodology, with Canadian flood data, for comparing the different regional estimation models are also presented. A regional model C{sub ij} = [DRH]{sub i} x [MER]{sub j} (i=1,...,L ; j=1,...,M) is obtained by combining a methodology for the delineation of homogeneous regions [DRH]{sub i} and a regional estimation method [MER]{sub j}. These regional models are compared with respect to their ability to provide reliable estimates of certain flood quantiles (floods with return periods of 10 and 100 years). Two types of bootstrapping have been applied within the framework of this project: the classical scalar bootstrap used in at-site estimation, and the vector (or regional) bootstrap procedure applied in the intercomparison between the different regional models. This last technique is illustrated with an example, and all the details of the procedure are presented. The performance indices that were employed for the purpose of the intercomparison are also detailed. One important feature of regional bootstrapping is that it preserves the regional dependence structure between annual flood values at the different sites of an {open_quote}homogeneous{close_quote} region. Three versions of the regional bootstrap algorithm are presented and applied to the three cases of estimation-regional estimation for ungauged sites, regional estimation for gauged sites with a short record, and at-site estimation. It will be shown how at-site estimates can be used as basis for the intercomparison between the regional models. Results of the application of the bootstrap procedure, with flood data from the Provinces of Quebec and Ontario, are presented in the final section of the paper.

  11. Influence of the Cardiac Myosin Hinge Region on Contractile Activity

    NASA Astrophysics Data System (ADS)

    Margossian, Sarkis S.; Krueger, John W.; Sellers, James R.; Cuda, Giovanni; Caulfield, James B.; Norton, Paul; Slayter, Henry S.

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the antihinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  12. Influence of the cardiac myosin hinge region on contractile activity.

    PubMed

    Margossian, S S; Krueger, J W; Sellers, J R; Cuda, G; Caulfield, J B; Norton, P; Slayter, H S

    1991-06-01

    The participation of cardiac myosin hinge in contractility was investigated by in vitro motility and ATPase assays and by measurements of sarcomere shortening. The effect on contractile activity was analyzed using an antibody directed against a 20-amino acid peptide within the hinge region of myosin. This antibody bound specifically at the hinge at a distance of 55 nm from the S1/S2 junction, was specific to human, dog, and rat cardiac myosins, did not crossreact with gizzard or skeletal myosin, and had no effect on ATPase activity of purified S1 and myofibrils. However, it completely suppressed the movement of actin filaments in in vitro motility assays and reduced active shortening of sarcomeres of skinned cardiac myocytes by half. Suppression of motion by the anti-hinge antibody may reflect a mechanical constraint imposed by the antibody upon the mobility of the S2 region of myosin. The results suggest that the steps in the mechanochemical energy transduction can be separately influenced through S2.

  13. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s‑1) as well as modest non-thermal velocities (with an average of ˜24 km s‑1 and the peak of the distribution at ˜15 km s‑1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  14. High Spatial Resolution Fe XII Observations of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Hansteen, Viggo

    2016-08-01

    We use UV spectral observations of active regions with the Interface Region Imaging Spectrograph (IRIS) to investigate the properties of the coronal Fe xii 1349.4 Å emission at unprecedented high spatial resolution (˜0.33″). We find that by using appropriate observational strategies (i.e., long exposures, lossless compression), Fe xii emission can be studied with IRIS at high spatial and spectral resolution, at least for high-density plasma (e.g., post-flare loops and active region moss). We find that upper transition region (TR; moss) Fe xii emission shows very small average Doppler redshifts ({v}{{D}} ˜ 3 km s-1) as well as modest non-thermal velocities (with an average of ˜24 km s-1 and the peak of the distribution at ˜15 km s-1). The observed distribution of Doppler shifts appears to be compatible with advanced three-dimensional radiative MHD simulations in which impulsive heating is concentrated at the TR footpoints of a hot corona. While the non-thermal broadening of Fe xii 1349.4 Å peaks at similar values as lower resolution simultaneous Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) measurements of Fe xii 195 Å, IRIS observations show a previously undetected tail of increased non-thermal broadening that might be suggestive of the presence of subarcsecond heating events. We find that IRIS and EIS non-thermal line broadening measurements are affected by instrumental effects that can only be removed through careful analysis. Our results also reveal an unexplained discrepancy between observed 195.1/1349.4 Å Fe xii intensity ratios and those predicted by the CHIANTI atomic database.

  15. The coronal and transition region temperature structure of a solar active region

    NASA Technical Reports Server (NTRS)

    Levine, R. H.; Pye, J. P.

    1980-01-01

    Using measurements of EUV and X-ray spectral lines, the differential emission measure vs electron temperature from the transition region to the corona of an active region (electron temperature between 100,000 and 5,000,000 K) is derived. The total emission measure and radiative losses are of the order 3 x 10 to the 48th/cu cm and 4 x 10 to the 26th ergs/sec, respectively. The emission measure at electron temperatures greater than approximately 1,000,000 K (i.e. that mainly responsible for the X-ray emission) is about 75% of the total. The use of the Mg x line at 625 A as an indicator of coronal electron density is also examined. A set of theoretical energy balance models of coronal loops in which the loop divergence is a variable parameter is presented and compared with the observations.

  16. Implications of Special Regions to Conducting Human Activities on Mars

    NASA Astrophysics Data System (ADS)

    Rummel, J. D.; Barlow, N. G.; Beaty, D. W.; Jones, M. A.; Hipkin, V.

    2014-12-01

    A MEPAG Science Analysis Group (SAG) has undertaken an analysis of Special Regions (SR) on Mars—regions where indigenous martian life could exist or where Earth microbes, if introduced, could survive and reproduce. The SR-SAG has considered the impact of SR on future human activities on the martian surface. Human exploration requires access to in-situ resources, some of which may be found in SR. Water and oxygen for ISRU are found in the atmosphere, surface/near-surface ice, hydrated minerals, and perchlorates. Water ice is most abundant at latitudes poleward of ~60 degrees, but polar darkness, cold temperatures, and CO2 degassing present hazards to human operations in these regions. Accessible water is more limited toward the equator, though temperature and solar energy conditions become more favorable. The possible presence of liquid water in Recurring Slope Lineae and active gullies leads to their treatment as SR. Fuel for surface operations and propellants for crew ascent could be manufactured from the martian atmosphere and surface materials, but dust in the atmosphere may clog ISRU equipment and perchlorate is toxic to humans. Power may be produced from solar or nuclear energy. Reliance on solar energy limits operations to the equatorial zone where easily accessible ice resources are limited. Nuclear power allows surface operations at a range of latitudes, but waste heat could convert some non-SR into SR. Radiation shielding is necessary for long-term human operations on Mars and could be obtained by deposition of regolith or by water storage in tanks or as ice around habitats, or the use of underground habitats. SR-SAG recognizes that it will be impossible for all human-associated processes and operations to be conducted within entirely closed systems. Protocols need to be established so (1) human missions to Mars will not contaminate SR nor be contaminated by materials from them, and (2) human activities on Mars will avoid converting areas into SR.

  17. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  18. Chromospheric Evolution and the Flare Activity of Super-Active Region NOAA 6555

    NASA Technical Reports Server (NTRS)

    PrasadC, Debi; Ambastha, Ashok; Srivastava, Nandita; Tripathy, Sushanta C.; Hagyard, Mona J.

    1997-01-01

    Super-active region NOAA 6555 was highly flare productive during the period March 21st - 27th, 1991 of its disk passage. We have studied its chromospheric activity using high spatial resolution H alpha filtergrams taken at Udaipur along with MSFC vector magnetograms. A possible relationship of flare productivity and the variation in shear has been explored. Flares were generally seen in those subareas of the active region which possessed closed magnetic field configuration, whereas only minor flares and/or surges occurred in subareas showing open magnetic field configuration. Physical mechanisms responsible for the observed surges are also discussed.

  19. Hinode Observations of an Eruption from a Sigmoidal Active Region

    NASA Astrophysics Data System (ADS)

    Green, L. M.; Wallace, A. J.; Kliem, B.

    2012-08-01

    We analyse the evolution of a bipolar active region which produces an eruption during its decay phase. The soft X-ray arcade develops high shear over a time span of two days and transitions to sigmoidal shortly before the eruption. We propose that the continuous sigmoidal soft X-ray threads indicate that a flux rope has formed which is lying low in the solar atmosphere with a bald patch separatrix surface topology. The formation of the flux rope is driven by the photospheric evolution which is dominated by fragmentation of the main polarities, motion due to supergranular flows and cancellation at the polarity inversion line.

  20. SOI/MDI studies of active region seismology and evolution

    NASA Technical Reports Server (NTRS)

    Tarbell, Ted D.; Title, Alan; Hoeksema, J. Todd; Scherrer, Phil; Zweibel, Ellen

    1995-01-01

    The solar oscillations investigation (SOI) will study solar active regions using both helioseismic and conventional observation techniques. The Michelson Doppler imager (MDI) can perform Doppler continuum and line depth imagery and can produce longitudinal magnetograms, showing either the full disk or a high resolution field of view. A dynamics program of continuous full disk Doppler observations for two months per year, campaign programs of eight hours of continuous observation per day, and a synoptic magnetic program of about 15 full disk magnetograms per day, are planned. The scientific plans, measurements and observation programs, are described.

  1. The distribution of maximum temperatures of coronal active region loops

    NASA Technical Reports Server (NTRS)

    Teske, R. G.; Mayfield, E. B.

    1981-01-01

    Starting with the integrated emission measure distributions of solar active regions, the distribution of the maximum temperature parameter which characterizes individual plasma loops is determined. The observed emission measure distributions were determined by combining EUV and X-ray data from two separate experiments on ATM/Skylab. The present work sets some limits on such an approach. It is found that the distribution of maximum temperature has approximately the same shape as the integrated emission measure distributions, a result which is expected since most of the loop emission measure is near their maximum temperatures.

  2. Substrate-emitting semiconductor laser with a trapezoidal active region

    SciTech Connect

    Dikareva, N V; Nekorkin, S M; Karzanova, M V; Zvonkov, B N; Aleshkin, V Ya; Dubinov, A A; Afonenko, A A

    2014-04-28

    Semiconductor lasers with a narrow (∼2°) directional pattern in the planes both parallel and perpendicular to the p–n junction are fabricated. To achieve a low radiation divergence in the p–n junction plane, the active region in this plane was designed in the form of a trapezium. The narrow directional pattern in the plane perpendicular to the p–n junction was ensured by the use of a leaky mode, through which more than 90% of laser power was coupled out. (lasers)

  3. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  4. Peptides of the Constant Region of Antibodies Display Fungicidal Activity

    PubMed Central

    Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C.; Pinto, Marcia R.; Travassos, Luiz R.; Pertinhez, Thelma A.; Spisni, Alberto; Conti, Stefania

    2012-01-01

    Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523

  5. An efficient and effective region-based image retrieval framework.

    PubMed

    Jing, Feng; Li, Mingjing; Zhang, Hong-Jiang; Zhang, Bo

    2004-05-01

    An image retrieval framework that integrates efficient region-based representation in terms of storage and complexity and effective on-line learning capability is proposed. The framework consists of methods for region-based image representation and comparison, indexing using modified inverted files, relevance feedback, and learning region weighting. By exploiting a vector quantization method, both compact and sparse (vector) region-based image representations are achieved. Using the compact representation, an indexing scheme similar to the inverted file technology and an image similarity measure based on Earth Mover's Distance are presented. Moreover, the vector representation facilitates a weighted query point movement algorithm and the compact representation enables a classification-based algorithm for relevance feedback. Based on users' feedback information, a region weighting strategy is also introduced to optimally weight the regions and enable the system to self-improve. Experimental results on a database of 10,000 general-purposed images demonstrate the efficiency and effectiveness of the proposed framework.

  6. Quadrupole beam-based alignment in the RHIC interaction regions

    SciTech Connect

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  7. Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions

    PubMed Central

    Gredilla, Ricardo; Garm, Christian; Holm, Rikke; Bohr, Vilhelm A.; Stevnsner, Tinna

    2008-01-01

    Aging in the brain is characterized by increased susceptibility to neuronal loss and functional decline, and mitochondrial DNA (mtDNA) mutations are thought to play an important role in these processes. Due to the proximity of mtDNA to the main sites of mitochondrial free radical generation, oxidative stress is a major source of DNA mutations in mitochondria. The base excision repair (BER) pathway removes oxidative lesions from mtDNA, thereby constituting an important mechanism to avoid accumulation of mtDNA mutations. The complexity of the brain implies that exposure and defence against oxidative stress varies among brain regions and hence some regions may be particularly prone to accumulation of mtDNA damages. In the current study we investigated the efficiency of the BER pathway throughout the murine lifespan in mitochondria from cortex and hippocampus, regions that are central in mammalian cognition, and which are severely affected during aging and in neurodegenerative diseases. A regional specific regulation of mitochondrial DNA repair activities was observed with aging. In cortical mitochondria, DNA glycosylase activities peaked at middle-age followed by a significant drop at old age. However, only minor changes were observed in hippocampal mitochondria during the whole lifespan of the animals. Furthermore, DNA glycosylase activities were lower in hippocampal than in cortical mitochondria. Mitochondrial AP endonuclease activity increased in old animals in both brain regions. Our data suggest an important regional specific regulation of mitochondrial BER during aging. PMID:18701195

  8. Npn double heterostructure bipolar transistor with ingaasn base region

    DOEpatents

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  9. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  10. Active Region Magnetic Structure Observed in the Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Metcalf, Thomas R.

    2001-01-01

    The magnetic flux above sunspots and plage in NOAA (National Oceanic and Atmospheric Administration) Active Region 8299 has been measured in the photosphere and the chromosphere. We investigate the vertical magnetic structure above the umbrae, penumbrae and plage regions using quantitative statistical comparisons of the photospheric and chromospheric vector magnetic flux data. The results include: (1) a decrease in flux with height, (2) the direct detection of the superpenumbral canopy in the chromosphere, (3) values for dB/dz which are consistent with earlier investigations when derived from a straight difference between the two datasets but quite low when derived from the delta x B = 0 condition, (4) a monolithic structure in the umbra which extends well into the upper chromosphere with a very complex and varied structure in the penumbra and plage, as evidenced by (5) a uniform magnetic scale height in the umbrae with an abrupt jump to widely varying scale heights in the penumbral and plage regions. Further, we find (6) evidence for a very large (delta z approximately equals 3Mm) height difference between the atmospheric layers sampled in the two magnetograms, almost a factor of three larger than that implied by atmospheric models. We additionally test the apropriateness of using photospheric magnetic flux as a boundary for field-line extrapolations, and find a better agreement with observed coronal structure when the chromospheric flux is used as a boundary.

  11. Plasma Beta Above a Solar Active Region: Rethinking the Paradigm

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In this paper, we present a model of the plasma beta above an active region and discuss its consequences in terms of coronal magnetic field modeling. The beta-plasma model is representative and derived from a collection of sources. The resulting beta variation with height is used to emphasize the assumption that the magnetic pressure dominates over the plasma pressure must be carefully considered depending on what part of the solar atmosphere is being considered. This paper points out (1) that the paradigm that the coronal magnetic field can be constructed from a force-free magnetic field must be used in the correct context, since the forcefree region is sandwiched between two regions which have beta greater than 1, (2) that the chromospheric MgIICIV magnetic measurements occur near the beta-minimum, and (3) that, moving from the photosphere upwards, beta can return to 1 at relatively low coronal heights, e.g. R approximately 1.2R(sub)s.

  12. Magnetic helicity and free energy in solar active regions

    NASA Astrophysics Data System (ADS)

    Moraitis, K.; Georgoulis, M.; Tziotziou, K.; Archontis, V.

    2013-09-01

    We study the evolution of the non-potential free magnetic energy and relative magnetic helicity budgets in solar active regions (ARs). For this we use a time-series of a three-dimensional, synthetic AR produced by magnetohydrodynamical (MHD) simulations. As a first step, we calculate the potential magnetic field that has the same normal components with the MHD field along all boundaries of the AR, by solving Laplace's equation. The free magnetic energy of the AR is then easily derived. From the two fields, MHD and potential one, we calculate the corresponding vector potentials with a recently proposed integration method. The knowledge of both fields and their respective vector potentials throughout the AR, allows us to estimate the relative magnetic helicity budget of the AR. Following this procedure for each snapshot of the AR, we reconstruct the evolution of free energy and helicity in the AR. Our method reproduces, for a synthetic AR, the energy/helicity relations known to hold in real active regions.

  13. Multi-Wavelength Study of Active Region Loop Dynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, D.

    2006-11-01

    Observations have revealed the existence of weak transient disturbances in extended coronal loop systems. These propagating disturbances (PDs) originate from small scale brightenings at the footpoints of the loops and propagate upward along the loops. In all cases observed, the projected propagation speed is close to, but below the expected sound speed in the loops. This suggests that the PDs could be interpreted as slow mode MHD waves. Interpreting the oscillation in terms of different wave modes and/or plasma motions always depend on the line of sight as we observe in the limb or on the center of the disk. The JOP 165 campaign will address some of these questions. MDI and TRACE photospheric and UV imaging of TRACE and SPIRIT have been acquired simultaneously with high temporal and spatial coverage along with the spectroscopic data from CDS. EIT was operated in the shutter-less mode to achieve high Cadence. Some of the off- limb active region dynamics and oscillations observed during this JOP campaign will be focused in this presentation. Plasma condensations and temporal variations in active region loops will be also addressed.

  14. Magnetic field measurements in and above a limb active region

    NASA Astrophysics Data System (ADS)

    Philip, Judge

    2013-07-01

    We analyze spectropolarimetric data of a limb active region (NOAA 11302) obtained on September 22nd 2011 using the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope (DST). Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm were obtained in three scans over a 45"x75" area. Simultaneous narrow band Ca II K and G-band intensity data were acquired with a cadence of 5s at the DST. The He I data show not only typical active region polarization signatures, but also signatures in plumes -- cool post flare loops -- which extend many Mm into the corona across the visible limb. The plumes have remarkably uniform brightness, and the plume plasma is significantly Doppler shifted as it drains from the corona. Using carefully constructed observing and calibration sequences and applying Principal Component Analysis to remove instrumental artifacts, we achieved a polarization sensitivity approaching 0.02%. With this sensitivity we attempt to diagnose the vector magnetic fields and plasma properties of chromospheric and cool coronal material in and above NOAA 11302. Inversions using various radiative transfer models in the HAZEL code are remarkably consistent with the idea that plume spectra are formed in a simple, slab-like geometry, but that the ``disk'' spectra are formed under more traditional models (Milne-Eddington). The inverted magnetic data of He I lines are compared with photospheric inversions of DST Si I and Fe I data from the Solar Dynamics Observatory.

  15. Active Region Filaments Might Harbor Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A.

    2016-05-01

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between them being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.

  16. Photospheric electric current and transition region brightness within an active region

    NASA Technical Reports Server (NTRS)

    Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.

    1984-01-01

    Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.

  17. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect

    Schweitzer, Martin

    2010-08-01

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This

  18. Characteristics, location and origin of flare activity in a complex active region

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Gary, G. A.; Hagyard, M. J.; Hernandez, A. M.; Rovira, M. G.

    1986-01-01

    The observational characteristics of series of multiple-loop flares from a complex active region are summarized. The location of the highest observed photospheric magnetic shear is found to be the commonly observed site of flare onset, but not, in many cases, the magnetic region where the largest time-integrated energy release is observed. The observations thus reveal a consistent pattern of energy-release processes related to the magnetic-field topology.

  19. Minifilament Eruptions that Drive Coronal Jets in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-05-01

    Solar coronal jets are common in both coronal holes and in active regions. Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism, such as the hitherto popular ``emerging flux'' model for jets. We present observations of an on-disk active region that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale ~20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode.

  20. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  1. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    NASA Astrophysics Data System (ADS)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  2. Region of interest based analysis of functional imaging data.

    PubMed

    Nieto-Castanon, Alfonso; Ghosh, Satrajit S; Tourville, Jason A; Guenther, Frank H

    2003-08-01

    fMRI analysis techniques are presented that test functional hypotheses at the region of interest (ROI) level. An SPM-compatible Matlab toolbox has been developed that allows the creation of subject-specific ROI masks based on anatomical markers and the testing of functional hypotheses on the regional response using multivariate time-series analysis techniques. The combined application of subject-specific ROI definition and region-level functional analysis is shown to appropriately compensate for intersubject anatomical variability, offering finer localization and increased sensitivity to task-related effects than standard techniques based on whole-brain normalization and voxel or cluster-level functional analysis, while providing a more direct link between discrete brain region hypotheses and the statistical analyses used to test them.

  3. Magnetic Characteristics of Active Region Heating Observed with TRACE, SOHO/EIT, and Yohkoh/SXT

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Falconer, D. A.; Moore, R. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Over the past several years, we have reported results from studies that have compared the magnetic structure and heating of the transition region and corona (both in active regions and in the quiet Sun) by combining X-ray and EUV images from Yohkoh and Solar and Heliospheric Observatory (SOHO) with photospheric magnetograms from ground-based observatories. Our findings have led us to the hypothesis that most heating throughout the corona is driven from near and below the base of the corona by eruptive microflares occurring in compact low-lying "core magnetic fields (i.e., fields rooted along and closely enveloping polarity inversion lines in the photospheric magnetic flux). We now extend these studies, comparing sequences of UV images from Transition Region and Coronal Explorer (TRACE) with longitudinal magnetograms from Kitt Peak and vector magnetograms from MUSIC. These comparisons confirm the previous results regarding the importance of core-field activity to active region heating. Activity in fields associated with satellite polarity inclusions and/or magnetically sheared configurations is especially prominent. This work is funded by NASA's Office of Space Science through the Sun-Earth Connection Guest Investigator Program and the Solar Physics Supporting Research and Technology Program.

  4. Comparison of Solar Active Region Complexity Andgeomagnetic Activity from 1996 TO 2014

    NASA Astrophysics Data System (ADS)

    Tanskanen, E. I.; Nikbakhsh, S.; Perez-Suarez, D.; Hackman, T.

    2015-12-01

    We have studied the influence of magnetic complexity of solar Active Regions (ARs)on geomagnetic activity from 1996 to 2014. Sunspots are visual indicators of ARswhere the solar magnetic field is disturbed. We have used International, American,Space Environment Service Center (SESC) and Space Weather Prediction Center(SWPC) sunspot numbers to examine ARs. Major manifestations of solar magneticactivity, such as flares and Coronal Mass Ejections (CMEs), are associated withARs. For this study we chose the Mount Wilson scheme. It classifies ARs in terms oftheir magnetic topology from the least complex (?) to the most complex one ( ?).Several cases have been found where the more complex structures produce strongerflares and CMEs than the less complex ones. We have a list of identified substormsavailable with different phases and their durations. This will be compared to ourmagnetic complexity data to analyse the effects of active region magnetic complexityto the magnetic activity on the vicinity of the Earth.

  5. On the modified active region design of interband cascade lasers

    SciTech Connect

    Motyka, M.; Ryczko, K.; Dyksik, M.; Sęk, G.; Misiewicz, J.; Weih, R.; Dallner, M.; Kamp, M.; Höfling, S.

    2015-02-28

    Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelength operation.

  6. Investigating Molecular Hydrogen in Active Regions with IRIS

    NASA Astrophysics Data System (ADS)

    Jaeggli, Sarah A.; Saar, Steven H.; Daw, Adrian N.; Innes, Davina

    2014-06-01

    Molecular hydrogen should be the most abundant molecular species in sunspots, but recent observations with IRIS show that its florescent signature is absent from above the sunspot umbra, but appears brightly during flares. In this poster we continue the analysis of FUV observations of H2 in active regions, examining the correlation between the intensity of the H2 lines and the lines of C II and Si IV which are responsible for their excitation. We particularly focus on differentiating places where H2 is abundant, holes in the chromospheric opacity where FUV photons can enter more deeply into the solar atmosphere, and places where the FUV radiation field is intense, as in flares.

  7. Observational analysis of active region on June, 2000

    NASA Astrophysics Data System (ADS)

    Rovira, M. G.; Luoni, M. L.

    In the recent inaugurated German-Argentinian Solar-Observatory at El Leoncito, a H-alpha Telescope (HASTA) and a mirror coronograph (MICA) are obtained daily images of the solar disk and the inner corona. Since its installation on August 1997, MICA has been imaging the inner corona with high temporal and spatial resolution. Its field-of-view ranges 1.05 to 2.0 solar radii above the sun center. HASTA started operations on May 1998. It has a tunable ( [+1,-1] Å) Lyot-filter with a bandwith of 0.3 Å. In high speed mode full frames can be taken every 2 sec. We study the evolution of an Active Region (AR 9026) and we compare different images as taken in defferent wavelengths. These studies tend to relate flares with coronal mass ejection (CME).

  8. Data-driven Simulations of Evolving Active Regions

    NASA Astrophysics Data System (ADS)

    Cheung, M.; DeRosa, M. L.

    2011-12-01

    We present results from numerical simulations of coronal field evolution in response to photospheric driving. In the simulations, the coronal field evolves according to magnetofriction, which ensures that the model field evolves toward a non-linear force-free state. Unlike static field extrapolation methods, this approach takes into account the history of the photospheric field evolution. This allows for the formation of flux ropes as well as current sheets between magnetic domains of connectivity. Using time sequences of HMI magnetograms as the bottom boundary condition, we apply this method to model the emergence and evolution of various active regions. Comparisons of the models with AIA observations and with HMI vector magnetogram inversions will be discussed.

  9. DOME-SHAPED EUV WAVES FROM ROTATING ACTIVE REGIONS

    SciTech Connect

    Selwa, M.; Poedts, S.; DeVore, C. R. E-mail: stefaan.poedts@wis.kuleuven.be

    2012-03-10

    Recent STEREO observations enabled the study of the properties of EUV waves in more detail. They were found to have a three-dimensional (3D) dome-shaped structure. We investigate, by means of 3D MHD simulations, the formation of EUV waves as the result of the interaction of twisted coronal magnetic loops. The numerical simulation is initialized with an idealized dipolar active region and is performed under coronal (low {beta}) conditions. A sheared rotational motion is applied to the central parts of both the positive and negative flux regions at the photosphere so that the flux tubes in between them become twisted. We find that the twisting motion results in a dome-shaped structure followed in space by a dimming and in time by an energy release (flare). The rotation of the sunspots is the trigger of the wave which initially consists of two fronts that later merge together. The resulting EUV wave propagates nearly isotropically on the disk and {approx}2 times faster in the upward direction. The initial stage of the evolution is determined by the driver, while later the wave propagates freely with a nearly Alfvenic speed.

  10. Sunspot waves and triggering of homologous active region jets

    NASA Astrophysics Data System (ADS)

    Chandra, R.; Gupta, G. R.; Mulay, Sargam; Tripathi, Durgesh

    2015-02-01

    We present and discuss multiwavelength observations of five homologous recurrent solar jets that occurred in active region NOAA 11133 on 2010 December 11. These jets were well observed by the Solar Dynamic observatory (SDO) with high spatial and temporal resolution. The speed of the jets ranged between 86 and 267 km s-1. A type III radio burst was observed in association with all the five jets. The investigation of the overall evolution of magnetic field in the source regions suggested that the flux was continuously emerging on longer term. However, all the jets but J5 were triggered during a local dip in the magnetic flux, suggesting the launch of the jets during localized submergence of magnetic flux. Additionally, using the PFSS modelling of the photospheric magnetic field, we found that all the jets were ejected in the direction of open field lines. We also traced sunspot oscillations from the sunspot interior to foot-point of jets and found presence of ˜3 min oscillations in all the SDO/AIA (Atmospheric Imaging Assembly) passbands. The wavelet analysis revealed an increase in amplitude of the oscillations just before the trigger of the jets, that decreased after the jets were triggered. The observations of increased amplitude of the oscillation and its subsequent decrease provides evidence of wave-induced reconnection triggering the jets.

  11. Using activity-based costing in surgery.

    PubMed

    Grandlich, Cheryl

    2004-01-01

    ACTIVITY-BASED COSTING is an accounting technique that allows organizations to determine actual costs associated with their services based on the resources they consume. THIS TECHNIQUE can be used in a variety of ways, including targeting high-cost activities, forecasting financial baselines, and supporting resource allocation. FOUR STEPS should be followed when applying activity-based costing to surgical procedures. THIS ARTICLE explores how Froedtert Memorial Lutheran Hospital, Milwaukee, used activity-based costing.

  12. Hydrologic regionalization using wavelet-based multiscale entropy method

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Maheswaran, R.; Sehgal, V.; Khosa, R.; Sivakumar, B.; Bernhofer, C.

    2016-07-01

    Catchment regionalization is an important step in estimating hydrologic parameters of ungaged basins. This paper proposes a multiscale entropy method using wavelet transform and k-means based hybrid approach for clustering of hydrologic catchments. Multi-resolution wavelet transform of a time series reveals structure, which is often obscured in streamflow records, by permitting gross and fine features of a signal to be separated. Wavelet-based Multiscale Entropy (WME) is a measure of randomness of the given time series at different timescales. In this study, streamflow records observed during 1951-2002 at 530 selected catchments throughout the United States are used to test the proposed regionalization framework. Further, based on the pattern of entropy across multiple scales, each cluster is given an entropy signature that provides an approximation of the entropy pattern of the streamflow data in each cluster. The tests for homogeneity reveals that the proposed approach works very well in regionalization.

  13. Octree-based region growing for point cloud segmentation

    NASA Astrophysics Data System (ADS)

    Vo, Anh-Vu; Truong-Hong, Linh; Laefer, Debra F.; Bertolotto, Michela

    2015-06-01

    This paper introduces a novel, region-growing algorithm for the fast surface patch segmentation of three-dimensional point clouds of urban environments. The proposed algorithm is composed of two stages based on a coarse-to-fine concept. First, a region-growing step is performed on an octree-based voxelized representation of the input point cloud to extract major (coarse) segments. The output is then passed through a refinement process. As part of this, there are two competing factors related to voxel size selection. To balance the constraints, an adaptive octree is created in two stages. Empirical studies on real terrestrial and airborne laser scanning data for complex buildings and an urban setting show the proposed approach to be at least an order of magnitude faster when compared to a conventional region growing method and able to incorporate semantic-based feature criteria, while achieving precision, recall, and fitness scores of at least 75% and as much as 95%.

  14. Active region upflow plasma: its relation to small activity and the solar wind

    NASA Astrophysics Data System (ADS)

    Mandrini, Cristina H.; Culhane, J. Leonard; Cristiani, Germán; Vásquez, Alberto; Van Driel-Gesztelyi, Lidia; Baker, Deborah; Pick, Monique; Demoulin, Pascal; Nuevo, Federico

    Recent studies show that active region (AR) upflowing plasma, observed by the Hinode EUV Imaging Spectrometer (EIS), can gain access to open field lines and be released into the solar wind via magnetic interchange reconnection occurring below the source surface at magnetic null-points in pseudo-streamer configurations. When only one simple bipolar AR is present on the Sun and it is fully covered by the separatrix of a streamer, like AR 10978 on December 2007, it seems unlikely that the upflowing AR plasma could find its way into the slow solar wind. However, signatures of plasma with AR composition at 1 AU that appears to originate from the West of AR 10978 were recently found by Culhane and coworkers. We present a detailed topology analysis of AR 10978 based on a linear force-free magnetic field model at the AR scale, combined with a global PFSS model. This allows us, on one hand, to explain the variations observed in the upflows to the West of the AR as the result of magnetic reconnection at quasi-separatrix layers (QSLs). While at a global scale, we show that reconnection, occurring in at least two main steps, first at QSLs and later at a high-altitude coronal null-point, allows the AR plasma to get around the topological obstacle of the streamer separatrix and be released into the solar wind.

  15. Trust regions in Kriging-based optimization with expected improvement

    NASA Astrophysics Data System (ADS)

    Regis, Rommel G.

    2016-06-01

    The Kriging-based Efficient Global Optimization (EGO) method works well on many expensive black-box optimization problems. However, it does not seem to perform well on problems with steep and narrow global minimum basins and on high-dimensional problems. This article develops a new Kriging-based optimization method called TRIKE (Trust Region Implementation in Kriging-based optimization with Expected improvement) that implements a trust-region-like approach where each iterate is obtained by maximizing an Expected Improvement (EI) function within some trust region. This trust region is adjusted depending on the ratio of the actual improvement to the EI. This article also develops the Kriging-based CYCLONE (CYClic Local search in OptimizatioN using Expected improvement) method that uses a cyclic pattern to determine the search regions where the EI is maximized. TRIKE and CYCLONE are compared with EGO on 28 test problems with up to 32 dimensions and on a 36-dimensional groundwater bioremediation application in appendices supplied as an online supplement available at http://dx.doi.org/10.1080/0305215X.2015.1082350. The results show that both algorithms yield substantial improvements over EGO and they are competitive with a radial basis function method.

  16. Long-Period ULF Wave Activity in the Cusp Region

    NASA Astrophysics Data System (ADS)

    Pilipenko, V.; Belakhovsky, V.; Engebretson, M. J.; Kozlovsky, A.

    2013-12-01

    We compare simultaneous observations of long-period ULF wave activity from the Svalbard/IMAGE and Greenland fluxgate magnetometer profiles covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL) and narrow-band Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of the return signal of the SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, and augmented whenever possible by DMSP identification of magnetospheric boundary domains. The meridional spatial structure of IPCL/Pc5 pulsation spectral power has been found to have a localized latitudinal peak, but not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. Possible mechanisms and their relevance to observational data are discussed. The occurrence of IPCL and Pc5 waves in the dayside boundary layers is a challenge to modelers, because so far their mechanism has not been firmly identified.

  17. Defining a region of optimization based on engine usage data

    SciTech Connect

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-08-04

    Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.

  18. Storm activity in North Atlantic and precipitation anomalies in European region during winter seasons

    NASA Astrophysics Data System (ADS)

    Vyazilova, N. A.; Vyazilova, A. E.

    2009-09-01

    The purpose of this paper is to show the storm activity influence on the formation of wet and dry zone in North Atlantic and European region during winter seasons 1994/95, 2006/07 and 2007/08 years with positive mode of NAO, 1995/96, 2000/01 and 2005/06 years with negative mode of NAO. The study of storm activity includes the analyses of cyclonic intensity and cyclone track number. Analyses of cyclonic intensity based on calculation cyclone centers number (CCN) and sum of cyclone centers MSLP anomalies (CCMA). This analyses based on automated cyclone tracking algorithm and the 6-hourly MSLP from the NCEP/NCAR reanalyses 2 from 1979 to 2009. Precipitation anomalies were calculated from CMAP archive. Analyses had included the calculation of cyclone track number in all region [30°N-80°N, 50°W-70°E]and selected latitude zone for long cyclones (with lifetime more 2 day) and short cyclones (with lifetime less 2 day). The study had shown the special features of CCN and CCMA patterns in region for long and short cyclones. The study shows, that every winter season short cyclone track number twice as much long cyclone track number. However, the contribution of long cyclones in main determines the CCMA in region. Study had shown that winter seasons with positive NAO mode Nord Europe were outstanding by strong positive precipitation anomalies and strong cyclonic intensity, and during winter seasons with negative NAO mode in this region were observed negative precipitation anomalies and weak cyclonic activity. Standartizide anomalies of integral CCMA for selected latitude zone [55°N-80°N, 50°W-70°E] had shown the intensification of cyclonic activity over North Atlantic and North European region in last years.

  19. 77 FR 24952 - Agency Information Collection Activities; Proposed Collection; Comment Request; Regional Haze...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... ICR (August 26, 2009; 74 FR 43118). The last collection request anticipated the program progressing... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Regional Haze... organizations and facilities potentially regulated under the regional haze rule. Title: Regional...

  20. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. III - NOAA active region 6233 (1990 August)

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.

    1993-01-01

    We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.

  1. ON MAGNETIC ACTIVITY BAND OVERLAP, INTERACTION, AND THE FORMATION OF COMPLEX SOLAR ACTIVE REGIONS

    SciTech Connect

    McIntosh, Scott W.; Leamon, Robert J.

    2014-11-20

    Recent work has revealed a phenomenological picture of the how the ∼11 yr sunspot cycle of the Sun arises. The production and destruction of sunspots is a consequence of the latitudinal-temporal overlap and interaction of the toroidal magnetic flux systems that belong to the 22 yr magnetic activity cycle and are rooted deep in the Sun's convective interior. We present a conceptually simple extension of this work, presenting a hypothesis on how complex active regions can form as a direct consequence of the intra- and extra-hemispheric interaction taking place in the solar interior. Furthermore, during specific portions of the sunspot cycle, we anticipate that those complex active regions may be particularly susceptible to profoundly catastrophic breakdown, producing flares and coronal mass ejections of the most severe magnitude.

  2. Hippocampal sub-regional shape and physical activity in older adults.

    PubMed

    Varma, Vijay R; Tang, Xiaoying; Carlson, Michelle C

    2016-08-01

    Hippocampal atrophy is a hallmark of Alzheimer's disease pathology, and a target biomarker region for testing intervention efficacy. Over the last few decades, a growing body of evidence from animal and human models suggests that physical activity (PA) is associated with structural benefits to the hippocampus in older adults. Very few human studies, however have explored hippocampal sub-regional specificity of PA; this is significant considering that sub-regions of the hippocampus are associated with distinct cognitive tasks and are differentially affected by disease pathology. This study used objective and self-reported measures of daily walking activity and exercise, and surface-based regional shape analysis using high-field hippocampal sub-regional partitions to explore sub-region specific hippocampal associations in a sample of nondemented, community-dwelling older adults at elevated sociodemographic risk for cognitive decline. Vertex-wise surface areas, which may be more sensitive than global volume measures, were calculated using shape diffeomorphometry, and PA was assessed using step activity monitors and PA questionnaires. We found that daily walking activity in a participant's environment was associated in cross-section mainly with larger surface areas of the subiculum in women. Associations remained significant when controlling for self-reported exercise. Prior studies have found that PA related to exercise and aerobic fitness may be most closely associated with the anterior hippocampus, particularly the dentate gyrus of the hippocampus. These novel findings are the first, to our knowledge, in human models to suggest that PA related to navigation that may not reach the level of moderate-intensity exercise may be associated with specific sub-regions of the hippocampus. These findings underscore the importance of better understanding the independent and related biological mechanisms and pathways by which increasing exercise as well as non

  3. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats.

    PubMed

    Shukla, C; Koch, L G; Britton, S L; Cai, M; Hruby, V J; Bednarek, M; Novak, C M

    2015-12-01

    Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.

  4. Ensemble-based Regional Climate Prediction: Political Impacts

    NASA Astrophysics Data System (ADS)

    Miguel, E.; Dykema, J.; Satyanath, S.; Anderson, J. G.

    2008-12-01

    Accurate forecasts of regional climate, including temperature and precipitation, have significant implications for human activities, not just economically but socially. Sub Saharan Africa is a region that has displayed an exceptional propensity for devastating civil wars. Recent research in political economy has revealed a strong statistical relationship between year to year fluctuations in precipitation and civil conflict in this region in the 1980s and 1990s. To investigate how climate change may modify the regional risk of civil conflict in the future requires a probabilistic regional forecast that explicitly accounts for the community's uncertainty in the evolution of rainfall under anthropogenic forcing. We approach the regional climate prediction aspect of this question through the application of a recently demonstrated method called generalized scalar prediction (Leroy et al. 2009), which predicts arbitrary scalar quantities of the climate system. This prediction method can predict change in any variable or linear combination of variables of the climate system averaged over a wide range spatial scales, from regional to hemispheric to global. Generalized scalar prediction utilizes an ensemble of model predictions to represent the community's uncertainty range in climate modeling in combination with a timeseries of any type of observational data that exhibits sensitivity to the scalar of interest. It is not necessary to prioritize models in deriving with the final prediction. We present the results of the application of generalized scalar prediction for regional forecasts of temperature and precipitation and Sub Saharan Africa. We utilize the climate predictions along with the established statistical relationship between year-to-year rainfall variability in Sub Saharan Africa to investigate the potential impact of climate change on civil conflict within that region.

  5. Explorations of electric current system in solar active regions. I - Empirical inferences of the current flows

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.

    1987-01-01

    Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.

  6. CURRENT HELICITY OF ACTIVE REGIONS AS A TRACER OF LARGE-SCALE SOLAR MAGNETIC HELICITY

    SciTech Connect

    Zhang, H.; Gao, Y.; Xu, H.; Moss, D.; Kleeorin, N.; Rogachevskii, I.; Kuzanyan, K.; Sokoloff, D.

    2012-05-20

    We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the large-scale dynamo generated field. We use an advanced two-dimensional mean-field dynamo model with dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic two-dimensional mean-field dynamo model with simple algebraic alpha-quenching only. Using these numerical models we obtained butterfly diagrams both for the small-scale current helicity and also for the large-scale magnetic helicity, and compared them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by -A {center_dot} B evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are, respectively, the dynamo generated mean magnetic field and its vector potential. A theoretical interpretation of these results is given.

  7. Teaching Evidence-Based Medicine: A Regional Dissemination Model.

    ERIC Educational Resources Information Center

    Leipzig, Rosanne M.; Wallace, Eleanor Z.; Smith, Lawrence G.; Sullivant, Jean; Dunn, Kathel; McGinn, Thomas

    2003-01-01

    Described and evaluated an interactive course designed to create a cadre of medical school faculty in New York who could integrate evidence-based medicine into their training programs. Findings for representatives of 30 internal medicine residency programs show the usefulness of the regional dissemination model used. (SLD)

  8. Seismic activity of the San Francisco Bay region

    USGS Publications Warehouse

    Bakun, W.H.

    1999-01-01

    Moment magnitude M with objective confidence-level uncertainties are estimated for felt San Francisco Bay region earthquakes using Bakun and Wentworth's (1997) analysis strategy for seismic intensity observations. The frequency-magnitude distribution is well described for M ???5.5 events since 1850 by a Gutenberg-Richter relation with a b-value of 0.90. The seismic moment rate ??M0/yr since 1836 is 2.68 X 1018 N-m/yr (95% confidence range = 1.29 X 1018 N-m/yr to 4.07 X 1018 N-m/yr); the seismic moment rate since 1850 is nearly the same. ??M0/yr in the 56 years before 1906 is about 10 times that in the 70 years after 1906. In contrast, ??M0/yr since 1977 is about equal that in the 56 years before 1906. 80% (1?? = 14%) of the plate-motion moment accumulation rate is available for release in earthquakes. The historical ??M0/yr and the portion of the plate-motion moment accumulation rate available for release in earthquakes are used in a seismic cycle model to estimate the rate of seismic activity in the twenty-first century. High and low rates of future seismic activity are both permissible given the range of possible seismic-cycle recurrence times T and the uncertainties in the historical ??M0 and in the percentage of plate motion available for release in earthquakes. If the historical seismic moment rate is not greater than the estimated 2.68 X 1018 N-m/yr and the percentage of the plate-motion moment accumulation available for release in earthquakes is not less than the estimated 80%, then for all T, the rate of seismic moment release from now until the next 1906-sized shock will be comparable to the rate from 1836 to 1905 when M 6 1/2 shocks occurred every 15 to 20 years.

  9. FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION

    SciTech Connect

    Baker, D.; Yardley, S. L.; Driel-Gesztelyi, L. van; Long, D. M.; Green, L. M.; Brooks, D. H.; Démoulin, P.

    2015-04-01

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4–6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase, small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.

  10. A multiple-plane approach to measure the structural properties of functionally active regions in the human cortex.

    PubMed

    Wang, Xin; Garfinkel, Sarah N; King, Anthony P; Angstadt, Mike; Dennis, Michael J; Xie, Hong; Welsh, Robert C; Tamburrino, Marijo B; Liberzon, Israel

    2010-02-15

    Advanced magnetic resonance imaging (MRI) techniques provide the means of studying both the structural and the functional properties of various brain regions, allowing us to address the relationship between the structural changes in human brain regions and the activity of these regions. However, analytical approaches combining functional (fMRI) and structural (sMRI) information are still far from optimal. In order to improve the accuracy of measurement of structural properties in active regions, the current study tested a new analytical approach that repeated a surface-based analysis at multiple planes crossing different depths of cortex. Twelve subjects underwent a fear conditioning study. During these tasks, fMRI and sMRI scans were acquired. The fMRI images were carefully registered to the sMRI images with an additional correction for cortical borders. The fMRI images were then analyzed with the new multiple-plane surface-based approach as compared to the volume-based approach, and the cortical thickness and volume of an active region were measured. The results suggested (1) using an additional correction for cortical borders and an intermediate template image produced an acceptable registration of fMRI and sMRI images; (2) surface-based analysis at multiple depths of cortex revealed more activity than the same analysis at any single depth; (3) projection of active surface vertices in a ribbon fashion improved active volume estimates; and (4) correction with gray matter segmentation removed non-cortical regions from the volumetric measurement of active regions. In conclusion, the new multiple-plane surface-based analysis approaches produce improved measurement of cortical thickness and volume of active brain regions. These results support the use of novel approaches for combined analysis of functional and structural neuroimaging. PMID:19922802

  11. Acetylcholine activity in selective striatal regions supports behavioral flexibility.

    PubMed

    Ragozzino, Michael E; Mohler, Eric G; Prior, Margaret; Palencia, Carlos A; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m(2) muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility.

  12. SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION

    SciTech Connect

    Cheung, M. C. M.; Title, A. M.; Rempel, M.; Schuessler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B {proportional_to} rhov{sup 1/2}. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  13. Plasma composition in a sigmoidal anemone active region

    SciTech Connect

    Baker, D.; Van Driel-Gesztelyi, L.; Green, L. M.; Carlyle, J.; Brooks, D. H.; Démoulin, P.; Steed, K.

    2013-11-20

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  14. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  15. Plasma Composition in a Sigmoidal Anemone Active Region

    NASA Astrophysics Data System (ADS)

    Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi, L.; Green, L. M.; Steed, K.; Carlyle, J.

    2013-11-01

    Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated at AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.

  16. Active region emission measure distributions and implications for nanoflare heating

    SciTech Connect

    Cargill, P. J.

    2014-03-20

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ∼ T{sup a} below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (T{sub N} ) and the distribution of nanoflare energies. If T{sub N} is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, T{sub N} must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  17. The distribution of maximum temperatures of coronal active region loops

    NASA Technical Reports Server (NTRS)

    Mayfield, E. B.; Teske, R. G.

    1980-01-01

    The emission measure distribution across the range 4.5 log T 6.5 was derived for several coronal active regions by combining EUV line fluxes with broadband X-ray fluxes. The distributions of the maximum temperature was then derived using a numerical model. It is shown that the emission measure distribution can be represented over the full range 5.6 log Tm 6.5 by the superposition of simple loop models, if the models incorporate a substantial rise in their individual emission measure distributions near the maximum temperature. The unresolved loops may have substantial area ratios, since it is this ratio that fixes the extent of the rise in the emission measure distribution. Since the bulk of the emission measure is then contributed from the loop tops, the distribution of maximum temperatures has approximately the same shape as does the integrated emission measure distributions. The EUV and X-ray data used were obtained by from two separate experiments on ATM/Skylab.

  18. Simulation of the Formation of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; Rempel, M.; Title, A. M.; Schüssler, M.

    2010-09-01

    We present a radiative magnetohydrodynamics simulation of the formation of an active region (AR) on the solar surface. The simulation models the rise of a buoyant magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the solar photosphere. The rise of the magnetic plasma in the convection zone is accompanied by predominantly horizontal expansion. Such an expansion leads to a scaling relation between the plasma density and the magnetic field strength such that B vprop rhov1/2. The emergence of magnetic flux into the photosphere appears as a complex magnetic pattern, which results from the interaction of the rising magnetic field with the turbulent convective flows. Small-scale magnetic elements at the surface first appear, followed by their gradual coalescence into larger magnetic concentrations, which eventually results in the formation of a pair of opposite polarity spots. Although the mean flow pattern in the vicinity of the developing spots is directed radially outward, correlations between the magnetic field and velocity field fluctuations allow the spots to accumulate flux. Such correlations result from the Lorentz-force-driven, counterstreaming motion of opposite polarity fragments. The formation of the simulated AR is accompanied by transient light bridges between umbrae and umbral dots. Together with recent sunspot modeling, this work highlights the common magnetoconvective origin of umbral dots, light bridges, and penumbral filaments.

  19. Application of heat- and steam-generating sheets to the lumbar or abdominal region affects autonomic nerve activity.

    PubMed

    Nagashima, Yoshinao; Oda, Hideshi; Igaki, Michihito; Suzuki, Megumi; Suzuki, Atsushi; Yada, Yukihiro; Tsuchiya, Shuichi; Suzuki, Toshiyuki; Ohishi, Sachiko

    2006-06-30

    Effects of applying a heat- and steam-generating (HSG) sheet on peripheral hemodynamics and autonomic nerve activity were examined. An HSG sheet was applied to the lumbar or abdominal region. Measurements included skin temperature at the lumbar and abdominal regions and the fingertip, total hemoglobin, tissue oxygen saturation ratio (StO2), pupillary light reflex, changes in ECG R-R interval blood pressure and percutaneous electrogastrography (EGG). A heat-generating sheet without steam was used as the control. Based on the present findings, application of the HSG sheet to the lumbar or abdominal region may improve peripheral hemodynamics and inhibit sympathetic nerve activity, resulting in parasympathetic nerve activity dominance.

  20. Attribution of regional flood changes based on scaling fingerprints

    NASA Astrophysics Data System (ADS)

    Viglione, Alberto; Merz, Bruno; Viet Dung, Nguyen; Parajka, Juraj; Nester, Thomas; Blöschl, Günter

    2016-07-01

    Changes in the river flood regime may be due to atmospheric processes (e.g., increasing precipitation), catchment processes (e.g., soil compaction associated with land use change), and river system processes (e.g., loss of retention volume in the floodplains). This paper proposes a new framework for attributing flood changes to these drivers based on a regional analysis. We exploit the scaling characteristics (i.e., fingerprints) with catchment area of the effects of the drivers on flood changes. The estimation of their relative contributions is framed in Bayesian terms. Analysis of a synthetic, controlled case suggests that the accuracy of the regional attribution increases with increasing number of sites and record lengths, decreases with increasing regional heterogeneity, increases with increasing difference of the scaling fingerprints, and decreases with an increase of their prior uncertainty. The applicability of the framework is illustrated for a case study set in Austria, where positive flood trends have been observed at many sites in the past decades. The individual scaling fingerprints related to the atmospheric, catchment, and river system processes are estimated from rainfall data and simple hydrological modeling. Although the distributions of the contributions are rather wide, the attribution identifies precipitation change as the main driver of flood change in the study region. Overall, it is suggested that the extension from local attribution to a regional framework, including multiple drivers and explicit estimation of uncertainty, could constitute a similar shift in flood change attribution as the extension from local to regional flood frequency analysis.

  1. Attribution of regional flood changes based on scaling fingerprints

    PubMed Central

    Merz, Bruno; Viet Dung, Nguyen; Parajka, Juraj; Nester, Thomas; Blöschl, Günter

    2016-01-01

    Abstract Changes in the river flood regime may be due to atmospheric processes (e.g., increasing precipitation), catchment processes (e.g., soil compaction associated with land use change), and river system processes (e.g., loss of retention volume in the floodplains). This paper proposes a new framework for attributing flood changes to these drivers based on a regional analysis. We exploit the scaling characteristics (i.e., fingerprints) with catchment area of the effects of the drivers on flood changes. The estimation of their relative contributions is framed in Bayesian terms. Analysis of a synthetic, controlled case suggests that the accuracy of the regional attribution increases with increasing number of sites and record lengths, decreases with increasing regional heterogeneity, increases with increasing difference of the scaling fingerprints, and decreases with an increase of their prior uncertainty. The applicability of the framework is illustrated for a case study set in Austria, where positive flood trends have been observed at many sites in the past decades. The individual scaling fingerprints related to the atmospheric, catchment, and river system processes are estimated from rainfall data and simple hydrological modeling. Although the distributions of the contributions are rather wide, the attribution identifies precipitation change as the main driver of flood change in the study region. Overall, it is suggested that the extension from local attribution to a regional framework, including multiple drivers and explicit estimation of uncertainty, could constitute a similar shift in flood change attribution as the extension from local to regional flood frequency analysis.

  2. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous

  3. Activity Based Curriculum for Elementary Education. Additional Activities, K-6.

    ERIC Educational Resources Information Center

    Wichita Public Schools, KS.

    This elementary curriculum is a vehicle to provide manipulative activities that reinforce academic skills through meaningful, relevant, activity-based awareness of modern society. The twenty-six activity plans included in the curriculum place a major emphasis upon realistic or concrete experiences that deal with the manipulation and exploration of…

  4. Forecasting the Solar Drivers of Severe Space Weather from Active-Region Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region s magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, and (2) an active region s rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region s present measured value of the free-energy proxy give the active region s expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region s recent productivity of major flares; specifically, whether the active region has produced a major flare (GOES class M or X) during the past 24 hours before the time of the measured magnetogram. By empirically determining the conversion of the value of free-energy proxy measured from a GONG or HMI magnetogram to that which would be measured from an MDI magnetogram, we have made GONG and HMI magnetograms useable with

  5. Horizontal flows concurrent with an X2.2 flare in the active region NOAA 11158

    NASA Astrophysics Data System (ADS)

    Beauregard, L.; Verma, M.; Denker, C.

    2012-02-01

    Horizontal proper motions were measured with local correlation tracking (LCT) techniques in active region NOAA 11158 on 2011 February 15 at a time when a major (X2.2) solar flare occurred. The measurements are based on continuum images and magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The observed shear flows along the polarity inversion line were rather weak (a few 100 m s-1). The counter-streaming region shifted toward the north after the flare. A small circular area with flow speeds of up to 1.2 km s-1 appeared after the flare near a region of rapid penumbral decay. The LCT signal in this region was provided by small-scale photospheric brigthenings, which were associated with fast traveling moving magnetic features. Umbral strengthening and rapid penumbral decay was observed after the flare. Both phenomena were closely tied to kernels of white-light flare emission. The white-light flare only lasted for about 15 min and peaked 4 min earlier than the X-ray flux. In comparison to other major flares, the X2.2 flare in active region NOAA 11158 only produced diminutive photospheric signatures.

  6. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.

  7. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method. PMID:21096819

  8. Particle acceleration in solar active regions being in the state of self-organized criticality.

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas

    We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.

  9. CONTRACTING AND ERUPTING COMPONENTS OF SIGMOIDAL ACTIVE REGIONS

    SciTech Connect

    Liu Rui; Wang Yuming; Liu Chang; Wang Haimin; Toeroek, Tibor

    2012-10-01

    It has recently been noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO). The magnitudes of the flares associated with the eruptions range from GOES class B to class X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) on board SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B- and C-flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm that loop contraction is an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.

  10. Identifying the Main Driver of Active Region Outflows

    NASA Astrophysics Data System (ADS)

    Baker, D.; van Driel-Gesztelyi, L.; Mandrini, C. H.; Démoulin, P.; Murray, M. J.

    2012-08-01

    Hinode's EUV Imaging Spectrometer (EIS) has discovered ubiquitous outflows of a few to 50 km s-1 from active regions (ARs). The characteristics of these outflows are very curious in that they are most prominent at the AR boundary and appear over monopolar magnetic areas. They are linked to strong non-thermal line broadening and are stronger in hotter EUV lines. The outflows persist for at least several days. Whereas red-shifted down flows observed in AR closed loops are well understood, to date there is no general consensus for the mechanism(s) driving blue-shifted AR-related outflows. We use Hinode EIS and X-Ray Telescope observations of AR 10942 coupled with magnetic modeling to demonstrate for the first time that the outflows originate from specific locations of the magnetic topology where field lines display strong gradients of magnetic connectivity, namely quasi-separatrix layers (QSLs), or in the limit of infinitely thin QSLs, separatrices. The strongest AR outflows were found to be in the vicinity of QSL sections located over areas of strong magnetic field. We argue that magnetic reconnection at QSLs, separating closed field lines of the AR and either large-scale externally connected or ‘open’ field lines, is a viable mechanism for driving AR outflows which are potentially sources of the slow solar wind. In fact, magnetic reconnection along QSLs (including separatricies) is the first theory to explain the most puzzling characteristics of the outflows, namely their occurrence over monopolar areas at the periphery of ARs and their longevity.

  11. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS

    SciTech Connect

    Petrie, G. J. D.; Sudol, J. J.

    2010-12-01

    We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

  12. 24-Hour Forecasting of CME/Flare Eruptions from Active-Region Magnetograms (Invited)

    NASA Astrophysics Data System (ADS)

    Falconer, D. A.; Barghouty, A.; Khazanov, I. G.; Moore, R. L.

    2010-12-01

    We have developed an automated tool for forecasting severe space weather from full-disk magnetograms. This tool is now being used on a trial basis by NASA’s Space Radiation Analysis Group (SRAG) at JSC. SRAG is responsible for the monitoring and forecasting of exposure the astronauts to particle radiation. The tool is described in Falconer, Barghouty, Khazanov, and Moore (2010), submitted to Space Weather. The new software tool is designed for the empirical forecasting of M- and X-class flares, coronal mass ejections, and solar energetic particle events. For each of these event types, the algorithm is based on the empirical relationship between the event rate and a proxy of the active region’s free magnetic energy. The relationship is determined from ~40,000 active-region magnetograms from ~1,300 active regions that were observed within 30 heliographic degrees from disk center by SOHO/MDI, and that have known histories of flare, coronal mass ejection, and solar energetic particle event production during disk passage. The tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as a NOAA active region, and measures the proxy of the active region’s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into the active region’s expected event rate (see figure). The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. We can make this tool applicable to the full-disk line-of-sight magnetograms from SDO/HMI or as a backup, from NSO/GONG. By empirically determining the conversion of the value of free-energy proxy measured from an HMI magnetogram to that which would be measured from an MDI magnetogram, we can use the HMI magnetograms with the empirical relationships determined from our MDI data base to make

  13. Secured telemedicine using region-based watermarking with tamper localization.

    PubMed

    Al-Haj, Ali; Amer, Alaa'

    2014-12-01

    Medical images exchanged over public networks require a methodology to provide confidentiality for the image, authenticity of the image ownership and source of origin, and image integrity verification. To provide these three security requirements, we propose in this paper a region-based algorithm based on multiple watermarking in the frequency and spatial domains. Confidentiality and authenticity are provided by embedding robust watermarks in the region-of-non-interest (RONI) of the image using a blind scheme in the discrete wavelet transform and singular value decomposition domain (DWT-SVD). On the other hand, integrity is provided by embedding local fragile watermarks in the region-of-interest (ROI) of the image using a reversible scheme in the spatial domain. The integrity provided by the proposed algorithm is implemented on a block-level of the partitioned-image, thus enabling localized detection of tampered regions. The algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization capability, using MRI, Ultrasound, and X-ray gray-scale medical images. Performance results demonstrate the effectiveness of the proposed algorithm in providing the required security services for telemedicine applications.

  14. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A. E-mail: ambastha@prl.res.in

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  15. The solar extreme ultra-violet corona: Resolved loops and the unresolved active region corona

    NASA Astrophysics Data System (ADS)

    Cirtain, Jonathan Wesley

    In this work, physical characteristics of the solar corona as observed in the Extreme Ultra-Violet (EUV) regime are investigated. The focus will be the regions of intense EUV radiation generally found near the locations of sunspots. These regions are commonly called active regions. Multiple space- based observing platforms have been deployed in the last decade; it is possible to use several of these observatories in combination to develop a more complete picture of the solar corona. Joint Observing Program 146 was created to collect spectroscopic intensities using the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory and EUV images using NASA's Transition Region and Coronal Explorer. The emission line intensities are analyzed to develop an understanding of the temperature and density of the active region coronal plasma. However, the performance of the CDS instrument in the spatial and temporal domains is limited and to compensate for these limitations, data collected by the TRACE instrument provide a high spatial and temporal resolution set of observations. One of the most exciting unsolved problems in solar astrophysics is to understand why the corona maintains a temperature roughly two orders of magnitude higher than the underlying material. A detailed investigation of the coronal emission has provided constraints on models of the heating mechanism, since the temperature, density and evolution of emission rates for multiple ionic species are indicative of the mechanism(s) working to heat the corona. The corona appears to consist of multiple unresolved structures as well as resolved active region structures, called coronal loops. The purpose of the present work is to determine the characteristics of the unresolved background corona. Using the characterizations of the coronal unresolved background, results for loops after background subtraction are also presented. This work demonstrates the magnitude of the unresolved coronal emission with

  16. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Moore, Ronald L.; Falconer, D. A.

    2009-05-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are LWLSG, a gauge of the total free energy in an active region's magnetic field, and LΦ, a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 RSun central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size LΦ of the active region, (2) in (Log LWLSG, Log LΦ) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active-region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: áBñ ≡ ΦA ≈ 300 G, where Φ is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (< 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division, NSF's Division of Atmospheric Sciences, and AFOSR's MURI Program.

  17. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  18. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  19. Bioimpedance Harmonic Analysis as a Diagnostic Tool to Assess Regional Circulation and Neural Activity

    NASA Astrophysics Data System (ADS)

    Mudraya, I. S.; Revenko, S. V.; Khodyreva, L. A.; Markosyan, T. G.; Dudareva, A. A.; Ibragimov, A. R.; Romich, V. V.; Kirpatovsky, V. I.

    2013-04-01

    The novel technique based on harmonic analysis of bioimpedance microvariations with original hard- and software complex incorporating a high-resolution impedance converter was used to assess the neural activity and circulation in human urinary bladder and penis in patients with pelvic pain, erectile dysfunction, and overactive bladder. The therapeutic effects of shock wave therapy and Botulinum toxin detrusor injections were evaluated quantitatively according to the spectral peaks at low 0.1 Hz frequency (M for Mayer wave), respiratory (R) and cardiac (C) rhythms with their harmonics. Enhanced baseline regional neural activity identified according to M and R peaks was found to be presumably sympathetic in pelvic pain patients, and parasympathetic - in patients with overactive bladder. Total pulsatile activity and pulsatile resonances found in the bladder as well as in the penile spectrum characterised regional circulation and vascular tone. The abnormal spectral parameters characteristic of the patients with genitourinary diseases shifted to the norm in the cases of efficient therapy. Bioimpedance harmonic analysis seems to be a potent tool to assess regional peculiarities of circulatory and autonomic nervous activity in the course of patient treatment.

  20. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    SciTech Connect

    T. Satogata, J. Ziegler

    2011-03-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  1. ON THE ORIGIN OF THE ASYMMETRIC HELICITY INJECTION IN EMERGING ACTIVE REGIONS

    SciTech Connect

    Fan, Y.; Alexander, D.; Tian, L.

    2009-12-10

    To explore the possible causes of the observed asymmetric helicity flux in emerging active regions between the leading and following polarities reported in a recent study by Tian and Alexander, we examine the subsurface evolution of buoyantly rising OMEGA-shaped flux tubes using three-dimensional, spherical-shell anelastic MHD simulations. We find that due to the asymmetric stretching of the OMEGA-shaped tube by the Coriolis force, the leading side of the emerging tube has a greater field strength, is more buoyant, and remains more cohesive compared to the following side. As a result, the magnetic field lines in the leading leg show more coherent values of local twist alpha ident to (nabla x B) centre dot B/B {sup 2}, whereas the values in the following leg show large fluctuations and are of mixed sign. On average, however, the field lines in the leading leg do not show a systematically greater mean twist compared to the following leg. Due to the higher rise velocity of the leading leg, the upward helicity flux through a horizontal cross section at each depth in the upper half of the convection zone is significantly greater in the leading polarity region than that in the following leg. This may contribute to the observed asymmetric helicity flux in emerging active regions. Furthermore, based on a simplified model of active region flux emergence into the corona by Longcope and Welsch, we show that a stronger field strength in the leading tube can result in a faster rotation of the leading polarity sunspot driven by torsional Alfven waves during flux emergence into the corona, contributing to a greater helicity injection rate in the leading polarity of an emerging active region.

  2. Research on Magnetic Evolution in Solar Active Regions and Related Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Yan, X. L.

    2014-07-01

    Research on sunspot activity and solar eruptions is one of the key and difficult issues in solar physics. The relationship between sunspot formation and its magnetic field evolution, and solar eruptions is not well understood. Magnetic emergence, magnetic cancellation, and sunspot motion can greatly affect the upper solar atmosphere, and even produce flares, coronal mass ejections (CMEs), filament eruptions, surges, and so on. Especially, large solar eruptions toward the earth can exert a huge influence on the Sun-Earth space weather. The observations of the Sun have been developed from those at a single wavelength based on the ground station to those at multi-wavelengths based on both the ground and space stations. In particular, from the launch of rockets in 1940s---1950s to the launch of the current spacecraft, the great achievements have been made based on the multi-wavelength and high resolution observations. This thesis is dedicated to the study of the evolution of active regions and related solar eruptions, especially the exploration on the origin of solar activities by using a great many data obtained by space and ground-based telescopes. Chapter 1 introduces the basic knowledge of sunspots (formation, fine-structure, magnetic field, material flow, and periodicity), filaments (formation, theoretical models, and triggering mechanisms), flares (classification, and theoretical models), and CMEs (structures, and physical models). In chapter 2, we investigate the relationship between magnetic emergence, magnetic cancellation, flares, CMEs, and filament eruptions in active regions by using ground and space observational data. Half of filament eruptions in active regions in our examples are accompanied by CMEs. The occurrence and speed of CMEs have a close relationship with the associated flares accompanied by filament eruptions. The halo CMEs are associated with large flares (≥ M-class flares). Magnetic emergence and cancellation often appear in the active

  3. Data base management systems activities

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Data Management System-1100 is designed to operate in conjunction with the UNIVAC 1100 Series Operating System on any 1100 Series computer. DMS-1100 is divided into the following four major software components: (1) Data Definition Languages (DDL); (2) Data Management Routine (DMR); (3) Data Manipulation Languages (DML); and (4) Data Base Utilities (DBU). These software components are described in detail.

  4. 76 FR 58533 - Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Bureau of Land Management Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper... River Regional Coal Team (RCT) has scheduled a public meeting for October 26, 2011, to review coal management activities in the Powder River Coal Production Region. DATES: The RCT meeting will begin at 9...

  5. Attribution of regional flood changes based on scaling fingerprints

    PubMed Central

    Merz, Bruno; Viet Dung, Nguyen; Parajka, Juraj; Nester, Thomas; Blöschl, Günter

    2016-01-01

    Abstract Changes in the river flood regime may be due to atmospheric processes (e.g., increasing precipitation), catchment processes (e.g., soil compaction associated with land use change), and river system processes (e.g., loss of retention volume in the floodplains). This paper proposes a new framework for attributing flood changes to these drivers based on a regional analysis. We exploit the scaling characteristics (i.e., fingerprints) with catchment area of the effects of the drivers on flood changes. The estimation of their relative contributions is framed in Bayesian terms. Analysis of a synthetic, controlled case suggests that the accuracy of the regional attribution increases with increasing number of sites and record lengths, decreases with increasing regional heterogeneity, increases with increasing difference of the scaling fingerprints, and decreases with an increase of their prior uncertainty. The applicability of the framework is illustrated for a case study set in Austria, where positive flood trends have been observed at many sites in the past decades. The individual scaling fingerprints related to the atmospheric, catchment, and river system processes are estimated from rainfall data and simple hydrological modeling. Although the distributions of the contributions are rather wide, the attribution identifies precipitation change as the main driver of flood change in the study region. Overall, it is suggested that the extension from local attribution to a regional framework, including multiple drivers and explicit estimation of uncertainty, could constitute a similar shift in flood change attribution as the extension from local to regional flood frequency analysis. PMID:27609996

  6. Regional Multi-Fluid-Based Geophysical Excitation of Polar Motion

    NASA Technical Reports Server (NTRS)

    Nastula, Jolanta; Salstein, David A.; Gross, Richard

    2011-01-01

    By analyzing geophysical fluids geographic distribution, we can isolate the regional provenance for some of the important signals in polar motion. An understanding of such will enable us to determine whether certain climate signals can have an impact on polar motion. Here we have compared regional patterns of three surficial fluids: the atmosphere, ocean and land-based hydrosphere. The oceanic excitation function of polar motion was estimated with the ECCO/JPL data - assimilating model, and the atmospheric excitation function was determined from NCEP/NCAR reanalyses. The excitation function due to land hydrology was estimated from the Gravity Recovery and Climate Experiment (GRACE) data by an indirect approach that determines water thickness. Our attention focuses on the regional distribution of atmospheric and oceanic excitation of the annual and Chandler wobbles during 1993-2010, and on hydrologic excitation of these wobbles during 2002.9-2011.5. It is found that the regions of maximum fractional covariance (those exceeding a value of 3 .10 -3) for the annual band are over south Asia, southeast Asia and south central Indian ocean, for hydrology, atmosphere and ocean respectively; and for the Chandler period, areas over North America, Asia, and South America; and scattered across the southern oceans for the atmosphere and oceans respectively

  7. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2013-01-01

    It has been found previously, by measuring from active ]region magnetograms a proxy of the free energy in the active region fs magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main ]sequence path bordering the free ]energy ]limit line in (flux content, free ]energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free ]energy limit, the ratio of magnetic ]shear free energy to the non ]free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. Evidently, most active regions in which this core ]field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

  8. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Falconer, David; Sterling, Alphonse

    2012-01-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  9. THE LIMIT OF MAGNETIC-SHEAR ENERGY IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2012-05-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  10. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  11. Sparse representation based face recognition using weighted regions

    NASA Astrophysics Data System (ADS)

    Bilgazyev, Emil; Yeniaras, E.; Uyanik, I.; Unan, Mahmut; Leiss, E. L.

    2013-12-01

    Face recognition is a challenging research topic, especially when the training (gallery) and recognition (probe) images are acquired using different cameras under varying conditions. Even a small noise or occlusion in the images can compromise the accuracy of recognition. Lately, sparse encoding based classification algorithms gave promising results for such uncontrollable scenarios. In this paper, we introduce a novel methodology by modeling the sparse encoding with weighted patches to increase the robustness of face recognition even further. In the training phase, we define a mask (i.e., weight matrix) using a sparse representation selecting the facial regions, and in the recognition phase, we perform comparison on selected facial regions. The algorithm was evaluated both quantitatively and qualitatively using two comprehensive surveillance facial image databases, i.e., SCfaceandMFPV, with the results clearly superior to common state-of-the-art methodologies in different scenarios.

  12. Regional mutagenesis of the gene encoding the phage Mu late gene activator C identifies two separate regions important for DNA binding

    PubMed Central

    Jiang, Yide; Howe, Martha M.

    2008-01-01

    Lytic development of bacteriophage Mu is controlled by a regulatory cascade and involves three phases of transcription: early, middle and late. Late transcription requires the host RNA polymerase holoenzyme and a 16.5-kDa Mu-encoded activator protein C. Consistent with these requirements, the four late promoters Plys, PI, PP and Pmom have recognizable −10 hexamers but lack typical −35 hexamers. The C protein binds to a 16-bp imperfect dyad-symmetrical sequence element centered at −43.5 and overlapping the −35 region. Based on the crystal structure of the closely related Mor protein, the activator of Mu middle transcription, we predict that two regions of C are involved in DNA binding: a helix-turn-helix region and a β-strand region linking the dimerization and helix-turn-helix domains. To test this hypothesis, we carried out mutagenesis of the corresponding regions of the C gene by degenerate oligonucleotide-directed PCR and screened the resulting mutants for their ability to activate a Plys-galK fusion. Analysis of the mutant proteins by gel mobility shift, β-galactosidase and polyacrylamide gel electrophoresis assays identified a number of amino acid residues important for C DNA binding in both regions. PMID:18838393

  13. MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES

    SciTech Connect

    Yang Xiao; Lin Ganghua; Zhang Hongqi; Mao Xinjie

    2013-09-10

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform well, however, they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of predicting large flares of magnitude {>=}M5.0 and {>=}X1.0.

  14. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  15. Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Ireland, J.

    2008-05-01

    Context: The relationships between the photospheric magnetic flux and either the X-ray or extreme ultraviolet emission from the solar atmosphere have been studied by several authors. Power-law relations have been found between the total magnetic flux and X-ray flux or intensities of the chromospheric, transition region, and coronal emission lines in solar active regions. These relations were then used to infer the mechanism of the coronal heating. Aims: We derive accurate power laws between EUV line intensities and the total magnetic flux in solar active regions and discuss their applications. We examine whether these global power laws are capable of providing the diagnostics of the coronal heating mechanism. Methods: This analysis is based on EUV lines recorded by the Coronal Diagnostic Spectrometer (CDS) on SOHO for 48 solar active regions, as they crossed the central meridian in years 1996-1998. Four spectral lines are used: He I 584.3 Å (3×104 K), O V 629.7 Å (2.2×105 K), Mg IX 368.06 Å (9.5×105 K), and Fe XVI 360.76 Å (2.0×106 K). In particular, the Fe XVI 360.76 Å line, seen only in areas of enhanced heating in active regions or bright points, has not been used before for this analysis. Results: Empirical power laws are established between the total active region intensity in the lines listed above and the total magnetic flux. We demonstrate the usefulness of some spatially integrated EUV line intensities, I_T, as a proxy for the total magnetic flux, Φ, in active regions. We point out the approximate, empirical nature of the I_T-Φ relationships and discuss the interpretation of the global power index. Different power index values for transition region and coronal lines are explained by their different dependence on pressure under the assumption of hydrostatic loop models. However, the global power laws are dominated by the size of the active regions, and we demonstrate for the first time the difficulties in uniquely relating the power index in the

  16. Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region

    NASA Astrophysics Data System (ADS)

    Bourdin, Ph.-A.; Bingert, S.; Peter, H.

    2013-07-01

    Context. Aims: The goal is to employ a 3D magnetohydrodynamics (MHD) model including spectral synthesis to model the corona in an observed solar active region. This will allow us to judge the merits of the coronal heating mechanism built into the 3D model. Methods: Photospheric observations of the magnetic field and horizontal velocities in an active region are used to drive our coronal simulation from the bottom. The currents induced by this heat the corona through Ohmic dissipation. Heat conduction redistributes the energy that is lost in the end through optically thin radiation. Based on the MHD model, we synthesized profiles of coronal emission lines which can be directly compared to actual coronal observations of the very same active region. Results: In the synthesized model data we find hot coronal loops which host siphon flows or which expand and lose mass through draining. These synthesized loops are at the same location as and show similar dynamics in terms of Doppler shifts to the observed structures. This match is shown through a comparison with Hinode data as well as with 3D stereoscopic reconstructions of data from STEREO. Conclusions: The considerable match to the actual observations shows that the field-line braiding mechanism leading to the energy input in our corona provides the proper distribution of heat input in space and time. From this we conclude that in an active region the field-line braiding is the dominant heating process, at least at the spatial scales available to current observations. Parameters and simulation log-files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A123

  17. X-33 Base Region Thermal Protection System Design Study

    NASA Technical Reports Server (NTRS)

    Lycans, Randal W.

    1998-01-01

    The X-33 is an advanced technology demonstrator for validating critical technologies and systems required for an operational Single-Stage-to-Orbit (SSTO) Reusuable Launch Vehicle (RLV). Currently under development by a unique contractor/government team led by Lockheed- Martin Skunk Works (LMSW), and managed by Marshall Space Flight Center (MSFC), the X-33 will be the prototype of the first new launch system developed by the United States since the advent of the space shuttle. This paper documents a design trade study of the X-33 base region thermal protection system (TPS). Two candidate designs were evaluated for thermal performance and weight. The first candidate was a fully reusable metallic TPS using Inconel honeycomb panels insulated with high temperature fibrous insulation, while the second was an ablator/insulator sprayed on the metallic skin of the vehicle. The TPS configurations and insulation thickness requirements were determined for the predicted main engine plume heating environments and base region entry aerothermal environments. In addition to thermal analysis of the design concepts, sensitivity studies were performed to investigate the effect of variations in key parameters of the base TPS analysis.

  18. Antibody Constant Region Peptides Can Display Immunomodulatory Activity through Activation of the Dectin-1 Signalling Pathway

    PubMed Central

    Cenci, Elio; Monari, Claudia; Magliani, Walter; Ciociola, Tecla; Conti, Stefania; Gatti, Rita; Bistoni, Francesco; Polonelli, Luciano; Vecchiarelli, Anna

    2012-01-01

    We previously reported that a synthetic peptide with sequence identical to a CDR of a mouse monoclonal antibody specific for difucosyl human blood group A exerted an immunomodulatory activity on murine macrophages. It was therapeutic against systemic candidiasis without possessing direct candidacidal properties. Here we demonstrate that a selected peptide, N10K, putatively deriving from the enzymatic cleavage of the constant region (Fc) of human IgG1, is able to induce IL-6 secretion and pIkB-α activation. More importantly, it causes an up-regulation of Dectin-1 expression. This leads to an increased activation of β-glucan-induced pSyk, CARD9 and pIkB-α, and an increase in the production of pro-inflammatory cytokines such as IL-6, IL-12, IL-1β and TNF-α. The increased activation of this pathway coincides with an augmented phagocytosis of non opsonized Candida albicans cells by monocytes. The findings suggest that some Fc-peptides, potentially deriving from the proteolysis of immunoglobulins, may cause an unexpected immunoregulation in a way reminiscent of innate immunity molecules. PMID:22952831

  19. LOW-LATITUDE CORONAL HOLES, DECAYING ACTIVE REGIONS, AND GLOBAL CORONAL MAGNETIC STRUCTURE

    SciTech Connect

    Petrie, G. J. D.; Haislmaier, K. J.

    2013-10-01

    We study the relationship between decaying active-region magnetic fields, coronal holes, and the global coronal magnetic structure using Global Oscillations Network Group synoptic magnetograms, Solar TErrestrial RElations Observatory extreme-ultraviolet synoptic maps, and coronal potential-field source-surface models. We analyze 14 decaying regions and associated coronal holes occurring between early 2007 and late 2010, 4 from cycle 23 and 10 from cycle 24. We investigate the relationship between asymmetries in active regions' positive and negative magnetic intensities, asymmetric magnetic decay rates, flux imbalances, global field structure, and coronal hole formation. Whereas new emerging active regions caused changes in the large-scale coronal field, the coronal fields of the 14 decaying active regions only opened under the condition that the global coronal structure remained almost unchanged. This was because the dominant slowly varying, low-order multipoles prevented opposing-polarity fields from opening and the remnant active-region flux preserved the regions' low-order multipole moments long after the regions had decayed. Thus, the polarity of each coronal hole necessarily matched the polar field on the side of the streamer belt where the corresponding active region decayed. For magnetically isolated active regions initially located within the streamer belt, the more intense polarity generally survived to form the hole. For non-isolated regions, flux imbalance and topological asymmetry prompted the opposite to occur in some cases.

  20. A Tale of Two Super-Active Active Regions: On the Magnetic Origin of Flares and CMEs

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dhakal, Suman; Chintzoglou, Georgios

    2015-04-01

    From a comparative study of two super-active active regions, we find that the magnetic origin of CMEs is different from that of flares. NOAA AR 12192 is one of the largest active regions in the recorded history with a sunspot number of 66 and area of 2410 millonths. During its passage through the front disk from Oct. 14-30, 2014, the active region produced 93 C-class, 30 M-class and 6 X-class flares. However, all six X-class flares are confined; in other words, none of them are associated with CMEs; most other flares are also confined. This behavior of low-CME production rate for such as a super active region is rather peculiar, given the usual hand-on-hand occurrence of CMEs with flares. To further strengthen this point, we also investigated the super-active NOAA AR 11429, which had a sunspot number of 28 and area of 1270 millionths. During its passage from March 02-17, 2012, the active region produced 47 C-class, 15 M-class and 3 X-class flares. In this active region, all three X-class flares were accompanied by CMEs, and the same for most M-class flares. Given the relative sizes of the two active regions, the production rates of flares are comparable. But the CME production rates are not. Through a careful study of the magnetic configuration on the surface and the extrapolated magnetic field in the corona, we argue that the generation of flares largely depends on the amount of free energy in the active region. On the other hand, the generation of CMEs largely depends on the complexity, such as measured by magnetic helicity. In particular, we argue that the high CME generation rate in the smaller active region is caused by the emergence and continuous generation of magnetic flux ropes in the region.

  1. New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation

    PubMed Central

    Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2014-01-01

    We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness. PMID:25110513

  2. Knowledge base navigator facilitating regional analysis inter-tool communication.

    SciTech Connect

    Hampton, Jeffery Wade; Chael, Eric Paul; Hart, Darren M.; Merchant, Bion John; Chown, Matthew N.

    2004-08-01

    To make use of some portions of the National Nuclear Security Administration (NNSA) Knowledge Base (KB) for which no current operational monitoring applications were available, Sandia National Laboratories have developed a set of prototype regional analysis tools (MatSeis, EventID Tool, CodaMag Tool, PhaseMatch Tool, Dendro Tool, Infra Tool, etc.), and we continue to maintain and improve these. Individually, these tools have proven effective in addressing specific monitoring tasks, but collectively their number and variety tend to overwhelm KB users, so we developed another application - the KB Navigator - to launch the tools and facilitate their use for real monitoring tasks. The KB Navigator is a flexible, extensible java application that includes a browser for KB data content, as well as support to launch any of the regional analysis tools. In this paper, we will discuss the latest versions of KB Navigator and the regional analysis tools, with special emphasis on the new overarching inter-tool communication methodology that we have developed to make the KB Navigator and the tools function together seamlessly. We use a peer-to-peer communication model, which allows any tool to communicate with any other. The messages themselves are passed as serialized XML, and the conversion from Java to XML (and vice versa) is done using Java Architecture for XML Binding (JAXB).

  3. Characterizing soil preferential flow using iodine--starch staining experiments and the active region model

    SciTech Connect

    Sheng, Feng; Wang, Kang; Zhang, Renduo; Liu, Hui-Hai

    2009-03-01

    -fracture-model parameter and a random-cascade-model parameter. (The latter model is also developed based on the existence of the fractal flow pattern in unsaturated soils.) Furthermore, our test results demonstrate that the active-region-model parameter is not scale-dependent for a range of scales under consideration. Although further studies are needed to confirm this finding, it seems to be consistent with a consideration that some fractal parameters (e.g., fractal dimension) are universal for a large range of scales.

  4. Rotavirus VP2 core shell regions critical for viral polymerase activation.

    PubMed

    McDonald, Sarah M; Patton, John T

    2011-04-01

    The innermost VP2 core shell of the triple-layered, icosahedral rotavirus particle surrounds the viral genome and RNA processing enzymes, including the RNA-dependent RNA polymerase (VP1). In addition to anchoring VP1 within the core, VP2 is also an essential cofactor that triggers the polymerase to initiate double-stranded RNA (dsRNA) synthesis using packaged plus-strand RNA templates. The VP2 requirement effectively couples packaging with genome replication and ensures that VP1 makes dsRNA only within an assembling previrion particle. However, the mechanism by which the rotavirus core shell protein activates the viral polymerase remains very poorly understood. In the current study, we sought to elucidate VP2 regions critical for VP1-mediated in vitro dsRNA synthesis. By comparing the functions of proteins from several different rotaviruses, we found that polymerase activation by the core shell protein is specific. Through truncation and chimera mutagenesis, we demonstrate that the VP2 amino terminus, which forms a decameric, internal hub underneath each 5-fold axis, plays an important but nonspecific role in VP1 activation. Our results indicate that the VP2 residues correlating with polymerase activation specificity are located on the inner face of the core shell, distinct from the amino terminus. Based on these findings, we predict that several regions of VP2 engage the polymerase during the concerted processes of rotavirus core assembly and genome replication.

  5. Fiber-optic based gas sensing in the UV region

    NASA Astrophysics Data System (ADS)

    Eckhardt, H. S.; Graubner, K.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.

    2006-02-01

    The precise analysis of potential hazardous components within gases and the detection of trace gases in exhaled breath for early and non invasive diagnosis of illnesses have a great influence on the well-being of human beings. Besides the existing analysis techniques, which mostly require sample preparation, costly consumables, huge space and skilled personal carrying out the measurement, a measurement system based on optical absorption in the UV wavelength region might offer alternatives to existing techniques. Within this work a feasibility study based on measurements of different test gases at lowest concentrations and requirements for trace gases in exhaled breath in respect to detection limits, signal-to-noise ratio and system drifts were analyzed. A spectral database including over 1000 UV vapor-phase spectra allows the identification of unknown compounds within a mixture, as well as expanding the use of the measurement technique into new areas of application, for example automobile application.

  6. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  7. Object-based landslide detection in different geographic regions

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Hölbling, Daniel; Eisank, Clemens; Blaschke, Thomas

    2015-04-01

    Landslides occur in almost all mountainous regions of the world and rank among the most severe natural hazards. In the last decade - according to the world disaster report 2014 published by the International Federation of Red Cross and Red Crescent Societies (IRFC) - more than 9.000 people were killed by mass movements, more than 3.2 million people were affected and the total amount of disaster estimated damage accounts to more than 1.700 million US dollars. The application of remote sensing data for mapping landslides can contribute to post-disaster reconstruction or hazard mitigation, either by providing rapid information about the spatial distribution and location of landslides in the aftermath of triggering events or by creating and updating landslide inventories. This is especially valid for remote and inaccessible areas, where information on landslides is often lacking. However, reliable methods are needed for extracting timely and relevant information about landslides from remote sensing data. In recent years, novel methods such as object-based image analysis (OBIA) have been successfully employed for semi-automated landslide mapping. Several studies revealed that OBIA frequently outperforms pixel-based approaches, as a range of image object properties (spectral, spatial, morphometric, contextual) can be exploited during the analysis. However, object-based methods are often tailored to specific study areas, and thus, the transferability to regions with different geological settings, is often limited. The present case study evaluates the transferability and applicability of an OBIA approach for landslide detection in two distinct regions, i.e. the island of Taiwan and Austria. In Taiwan, sub-areas in the Baichi catchment in the North and in the Huaguoshan catchment in the southern-central part of the island are selected; in Austria, landslide-affected sites in the Upper Salzach catchment in the federal state of Salzburg are investigated. For both regions

  8. Evidence based guidelines for complex regional pain syndrome type 1

    PubMed Central

    2010-01-01

    Background Treatment of complex regional pain syndrome type I (CRPS-I) is subject to discussion. The purpose of this study was to develop multidisciplinary guidelines for treatment of CRPS-I. Method A multidisciplinary task force graded literature evaluating treatment effects for CRPS-I according to their strength of evidence, published between 1980 to June 2005. Treatment recommendations based on the literature findings were formulated and formally approved by all Dutch professional associations involved in CRPS-I treatment. Results For pain treatment, the WHO analgesic ladder is advised with the exception of strong opioids. For neuropathic pain, anticonvulsants and tricyclic antidepressants may be considered. For inflammatory symptoms, free-radical scavengers (dimethylsulphoxide or acetylcysteine) are advised. To promote peripheral blood flow, vasodilatory medication may be considered. Percutaneous sympathetic blockades may be used to increase blood flow in case vasodilatory medication has insufficient effect. To decrease functional limitations, standardised physiotherapy and occupational therapy are advised. To prevent the occurrence of CRPS-I after wrist fractures, vitamin C is recommended. Adequate perioperative analgesia, limitation of operating time, limited use of tourniquet, and use of regional anaesthetic techniques are recommended for secondary prevention of CRPS-I. Conclusions Based on the literature identified and the extent of evidence found for therapeutic interventions for CRPS-I, we conclude that further research is needed into each of the therapeutic modalities discussed in the guidelines. PMID:20356382

  9. Automatic Tracking of Active Regions and Detection of Solar Flares in Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Caballero, C.; Aranda, M. C.

    2014-05-01

    Solar catalogs are frequently handmade by experts using a manual approach or semi-automated approach. The appearance of new tools is very useful because the work is automated. Nowadays it is impossible to produce solar catalogs using these methods, because of the emergence of new spacecraft that provide a huge amount of information. In this article an automated system for detecting and tracking active regions and solar flares throughout their evolution using the Extreme UV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) spacecraft is presented. The system is quite complex and consists of different phases: i) acquisition and preprocessing; ii) segmentation of regions of interest; iii) clustering of these regions to form candidate active regions which can become active regions; iv) tracking of active regions; v) detection of solar flares. This article describes all phases, but focuses on the phases of tracking and detection of active regions and solar flares. The system relies on consecutive solar images using a rotation law to track the active regions. Also, graphs of the evolution of a region and solar evolution are presented to detect solar flares. The procedure developed has been tested on 3500 full-disk solar images (corresponding to 35 days) taken from the spacecraft. More than 75 % of the active regions are tracked and more than 85 % of the solar flares are detected.

  10. Why activity-based costing works.

    PubMed

    Gabram, S G; Mendola, R A; Rozenfeld, J; Gamelli, R L

    1997-01-01

    With advancing technology and the quest for delineating the true cost of a procedure or diagnostic test, cost accounting techniques are being re-explored in the health care setting. Activity-based costing (ABC), adopted from other businesses, is one such example that has applications in the health industry. The purpose of this paper is to enhance the understanding of health care costs among physician providers, emphasizing a new approach--activity-based costing. PMID:10169347

  11. Why activity-based costing works.

    PubMed

    Gabram, S G; Mendola, R A; Rozenfeld, J; Gamelli, R L

    1997-01-01

    With advancing technology and the quest for delineating the true cost of a procedure or diagnostic test, cost accounting techniques are being re-explored in the health care setting. Activity-based costing (ABC), adopted from other businesses, is one such example that has applications in the health industry. The purpose of this paper is to enhance the understanding of health care costs among physician providers, emphasizing a new approach--activity-based costing.

  12. Contrast enhancement via texture region based histogram equalization

    NASA Astrophysics Data System (ADS)

    Singh, Kuldeep; Vishwakarma, Dinesh K.; Singh Walia, Gurjit; Kapoor, Rajiv

    2016-08-01

    This paper presents two novel contrast enhancement approaches using texture regions-based histogram equalization (HE). In HE-based contrast enhancement methods, the enhanced image often contains undesirable artefacts because an excessive number of pixels in the non-textured areas heavily bias the histogram. The novel idea presented in this paper is to suppress the impact of pixels in non-textured areas and to exploit texture features for the computation of histogram in the process of HE. The first algorithm named as Dominant Orientation-based Texture Histogram Equalization (DOTHE), constructs the histogram of the image using only those image patches having dominant orientation. DOTHE categories image patches into smooth, dominant or non-dominant orientation patches by using the image variance and singular value decomposition algorithm and utilizes only dominant orientation patches in the process of HE. The second method termed as Edge-based Texture Histogram Equalization, calculates significant edges in the image and constructs the histogram using the grey levels present in the neighbourhood of edges. The cumulative density function of the histogram formed from texture features is mapped on the entire dynamic range of the input image to produce the contrast-enhanced image. Subjective as well as objective performance assessment of proposed methods is conducted and compared with other existing HE methods. The performance assessment in terms of visual quality, contrast improvement index, entropy and measure of enhancement reveals that the proposed methods outperform the existing HE methods.

  13. A Revisit of Hale's and Joy's Laws of Active Regions Using SOHO MDI Obsevations

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Zhang, J.

    2011-05-01

    Hale's law of polarity defines the rule of opposite direction of two polarities of solar bipolar Active Regions in the two hemispheres. Another law, Joy's law, governs the tilt of ARs with respect to their heliographic latitudes. Both laws are essential for constraining solar dynamo models. In this study we attempt to examine these laws in great detail using a large sample of ARs. With the help of an automatic AR detection algorithm (based on morphological analysis, Zhang et. al, 2010), we have processed high resolution SOHO/MDI synoptic magnetograms over the entire solar cycle 23, we identified all active regions in a uniform and objective way and determined their physical properties, including locations, fluxes of positive and negative polarities ,as well as the direction angles of these regions. Among 1084 bipolar ARs detected, the majority of them (87%) follow Hale's polarity law, while the other 13% of ARs do not. We attribute this deviation to the complexity of AR emergence from the turbulent convection zone. Regarding the Joy's law, we find that there is only a weak positive trend between AR tilt angles and latitudes. On the other hand, the tilt angle has a broad Gaussian-like distribution, with the peak centered around zero degree, and a width of about 20 degree at half maximum. Implications of these results on solar dynamo theory will be discussed.

  14. A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non-jet major flare eruptions (X and M class) that made no CME. A multiitude of jets occurred from the southeast edge of the active region, and in contrast to the major-flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from multiple SDO/AIA EUV channels, including 304, 171 and 193 Angstrom, and CME observations are taken from SOHO/LASCO C2 coronograph. Each jet-driven CME was relatively slow-moving (approximately 200 - 300 km s(sup-1) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer-puff" variety, whereby a preexisting streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.

  15. A Series of Jets that Drove Streamer-Puff CMEs from Giant Active Region of 2014

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non­-jet major flare eruptions (X and M class) that made no CME. A multitude of jets occurred from the southeast edge of the active region, and in contrast to the major-­flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from SDO/AIA EUV channels and from Hinode/XRT, and CME observations are from the SOHO/LASCO C2 coronograph. Each jet-­driven CME was relatively slow-­moving (approx. 200 - 300 km/s) compared to most CMEs; had angular width (20deg - 50deg) comparable to that of the streamer base; and was of the "streamer­-puff" variety, whereby a pre-existing streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-­temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-­producing jets. We expect that the jets result from eruptions of mini-filaments. We further propose that the CMEs are driven by magnetic twist injected into streamer-­base coronal loops when erupting twisted mini-filament field reconnects with the ambient field at the foot of those loops.

  16. A Series of Streamer-Puff CMEs Driven by Solar Homologous Jets from Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non-jet major flare eruptions (X and M class) that made no CME. A multitude of jets occurred from the southeast edge of the active region, and in contrast to the major-flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from multiple SDO/AIA EUV channels, including 304, 171 and 193Å, and CME observations are taken from SOHO/LASCO C2 coronograph. Each jet-driven CME was relatively slow-moving (~200 - 300 km s-1) compared to most CMEs; had angular width (20° - 50°) comparable to that of the streamer base; and was of the “streamer-puff” variety, whereby a preexisting streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-producing jets. We expect that the jets result from eruptions of minifilaments (Sterling et al. 2015). We further propose that the CMEs are driven by magnetic twist injected into streamer-base coronal loops when erupting-twisted-minifilament field reconnects with the ambient field at the foot of those loops. This research was supported by funding from NASA's LWS program.

  17. Synthetic Physical Interactions Map Kinetochore-Checkpoint Activation Regions

    PubMed Central

    Ólafsson, Guðjón; Thorpe, Peter H.

    2016-01-01

    The spindle assembly checkpoint (SAC) is a key mechanism to regulate the timing of mitosis and ensure that chromosomes are correctly segregated to daughter cells. The recruitment of the Mad1 and Mad2 proteins to the kinetochore is normally necessary for SAC activation. This recruitment is coordinated by the SAC kinase Mps1, which phosphorylates residues at the kinetochore to facilitate binding of Bub1, Bub3, Mad1, and Mad2. There is evidence that the essential function of Mps1 is to direct recruitment of Mad1/2. To test this model, we have systematically recruited Mad1, Mad2, and Mps1 to most proteins in the yeast kinetochore, and find that, while Mps1 is sufficient for checkpoint activation, recruitment of either Mad1 or Mad2 is not. These data indicate an important role for Mps1 phosphorylation in SAC activation, beyond the direct recruitment of Mad1 and Mad2. PMID:27280788

  18. Broca's region and Visual Word Form Area activation differ during a predictive Stroop task.

    PubMed

    Wallentin, Mikkel; Gravholt, Claus Højbjerg; Skakkebæk, Anne

    2015-12-01

    Competing theories attempt to explain the function of Broca's area in single word processing. Studies have found the region to be more active during processing of pseudo words than real words and during infrequent words relative to frequent words and during Stroop (incongruent) color words compared to Non-Stroop (congruent) words. Two related theories explain these findings as reflecting either "cognitive control" processing in the face of conflicting input or a linguistic prediction error signal, based on a predictive coding approach. The latter implies that processing cost refers to violations of expectations based on the statistical distributions of input. In this fMRI experiment we attempted to disentangle single word processing cost originating from cognitive conflict and that stemming from predictive expectation violation. Participants (N = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent vs congruent colors). One of the colors, however, was presented three times as often as the other, making it possible to study both congruency and frequency effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study frequency effects across modalities. We found significant behavioral effects of both incongruency and frequency. A significant effect (p < .05 FWE) of incongruency was found in Broca's region, but no effect of frequency was observed and no interaction. Conjoined effects of incongruency and frequency were found in parietal regions as well as in the Visual Word Form Area (VWFA). No interaction between perceptual modality and frequency was found in VWFA suggesting that the region is not strictly visual. These findings speak against a strong version of the prediction error processing hypothesis in Broca's region. They support the idea that prediction error processes in the intermediate timeframe are allocated to more posterior parts of the brain. PMID:26478962

  19. Broca's region and Visual Word Form Area activation differ during a predictive Stroop task.

    PubMed

    Wallentin, Mikkel; Gravholt, Claus Højbjerg; Skakkebæk, Anne

    2015-12-01

    Competing theories attempt to explain the function of Broca's area in single word processing. Studies have found the region to be more active during processing of pseudo words than real words and during infrequent words relative to frequent words and during Stroop (incongruent) color words compared to Non-Stroop (congruent) words. Two related theories explain these findings as reflecting either "cognitive control" processing in the face of conflicting input or a linguistic prediction error signal, based on a predictive coding approach. The latter implies that processing cost refers to violations of expectations based on the statistical distributions of input. In this fMRI experiment we attempted to disentangle single word processing cost originating from cognitive conflict and that stemming from predictive expectation violation. Participants (N = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent vs congruent colors). One of the colors, however, was presented three times as often as the other, making it possible to study both congruency and frequency effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study frequency effects across modalities. We found significant behavioral effects of both incongruency and frequency. A significant effect (p < .05 FWE) of incongruency was found in Broca's region, but no effect of frequency was observed and no interaction. Conjoined effects of incongruency and frequency were found in parietal regions as well as in the Visual Word Form Area (VWFA). No interaction between perceptual modality and frequency was found in VWFA suggesting that the region is not strictly visual. These findings speak against a strong version of the prediction error processing hypothesis in Broca's region. They support the idea that prediction error processes in the intermediate timeframe are allocated to more posterior parts of the brain.

  20. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    SciTech Connect

    Sheng, F.; Wang, K.; Zhang, R.; Liu, H.H.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.

  1. Magnetic field configuration in a flaring active region

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Balmaceda, L. A.; Vieira, L. E.

    2015-10-01

    The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides continuous monitoring of the Sun's vector magnetic field through full-disk photospheric data with both high cadence and high spatial resolution. Here we investigate the evolution of AR 11249 from March 6 to March 7, 2012. We make use of HMI Stokes imaging, SDO/SHARPs, the HMI magnetic field line-of-sight (LOS) maps and the transverse components of the magnetic field as well as LOS velocity maps in order to detect regions with significant flux emergence and/or cancellation. In addition, we apply the Local Correlation Tracking (LCT) technique to the total and signed magnetic flux data and derive maps of horizontal velocity. From this analysis, we were able to pinpoint localized shear regions (and a shear channel) where penumbrae and pore formation areas, with strong linear polarization signals, are stretched and squeezed, showing also important downflows and upflows. We have also utilized Hinode/SP data and compared them to the HMI-SHARPs and the HMI-Stokes spectrograms. The aforementioned shear channel seems to correspond well with the X-class flare main channel of March 7 2012, as observed in AIA/SDO 171, 304 and 1600 Å.

  2. Time course of regional brain activity accompanying auditory verbal hallucinations in schizophrenia

    PubMed Central

    Hoffman, Ralph E.; Pittman, Brian; Constable, R. Todd; Bhagwagar, Zubin; Hampson, Michelle

    2011-01-01

    Background The pathophysiology of auditory verbal hallucinations remains poorly understood. Aims To characterise the time course of regional brain activity leading to auditory verbal hallucinations. Method During functional magnetic resonance imaging, 11 patients with schizophrenia or schizoaffective disorder signalled auditory verbal hallucination events by pressing a button. To control for effects of motor behaviour, regional activity associated with hallucination events was scaled against corresponding activity arising from random button-presses produced by 10 patients who did not experience hallucinations. Results Immediately prior to the hallucinations, motor-adjusted activity in the left inferior frontal gyrus was significantly greater than corresponding activity in the right inferior frontal gyrus. In contrast, motor-adjusted activity in a right posterior temporal region overshadowed corresponding activity in the left homologous temporal region. Robustly elevated motor-adjusted activity in the left temporal region associated with auditory verbal hallucinations was also detected, but only subsequent to hallucination events. At the earliest time shift studied, the correlation between left inferior frontal gyrus and right temporal activity was significantly higher for the hallucination group compared with non-hallucinating patients. Conclusions Findings suggest that heightened functional coupling between the left inferior frontal gyrus and right temporal regions leads to coactivation in these speech processing regions that is hallucinogenic. Delayed left temporal activation may reflect impaired corollary discharge contributing to source misattribution of resulting verbal images. PMID:21972276

  3. Co-activation based parcellation of the human frontal pole.

    PubMed

    Ray, K L; Zald, D H; Bludau, S; Riedel, M C; Bzdok, D; Yanes, J; Falcone, K E; Amunts, K; Fox, P T; Eickhoff, S B; Laird, A R

    2015-12-01

    Historically, the human frontal pole (FP) has been considered as a single architectonic area. Brodmann's area 10 is located in the frontal lobe with known contributions in the execution of various higher order cognitive processes. However, recent cytoarchitectural studies of the FP in humans have shown that this portion of cortex contains two distinct cytoarchitectonic regions. Since architectonic differences are accompanied by differential connectivity and functions, the frontal pole qualifies as a candidate region for exploratory parcellation into functionally discrete sub-regions. We investigated whether this functional heterogeneity is reflected in distinct segregations within cytoarchitectonically defined FP-areas using meta-analytic co-activation based parcellation (CBP). The CBP method examined the co-activation patterns of all voxels within the FP as reported in functional neuroimaging studies archived in the BrainMap database. Voxels within the FP were subsequently clustered into sub-regions based on the similarity of their respective meta-analytically derived co-activation maps. Performing this CBP analysis on the FP via k-means clustering produced a distinct 3-cluster parcellation for each hemisphere corresponding to previously identified cytoarchitectural differences. Post-hoc functional characterization of clusters via BrainMap metadata revealed that lateral regions of the FP mapped to memory and emotion domains, while the dorso- and ventromedial clusters were associated broadly with emotion and social cognition processes. Furthermore, the dorsomedial regions contain an emphasis on theory of mind and affective related paradigms whereas ventromedial regions couple with reward tasks. Results from this study support previous segregations of the FP and provide meta-analytic contributions to the ongoing discussion of elucidating functional architecture within human FP. PMID:26254112

  4. Gradual tolerance of metabolic activity is produced in mesolimbic regions by chronic cocaine treatment, while subsequent cocaine challenge activates extrapyramidal regions of rat brain.

    PubMed

    Hammer, R P; Cooke, E S

    1994-07-01

    Acute administration of cocaine is known to enhance extracellular dopamine levels in the striatum and to activate immediate-early gene expression in striatal neurons. Regional cerebral metabolic rate for glucose (rCMRglc) reportedly increases in extrapyramidal and mesolimbic brain regions in response to acute cocaine treatment. However, chronic administration attenuates the cocaine-induced enhancement of regional dopamine response and the induction of immediate-early gene expression in these regions. Chronic treatment also produces tolerance to cocaine's reinforcing effects. Thus, differential responses to cocaine occur with increasing length of treatment. Therefore, we examined the time course of effects of repeated daily cocaine treatment on rCMRglc in rat brain. Acute administration of 10 mg/kg cocaine slightly increased rCMRglc in mesolimbic and extrapyramidal regions. However, no significant effects were observed until more than 7 d of treatment, whereupon rCMRglc was reduced compared to saline treatment in the infralimbic portion of the medial prefrontal cortex, nucleus accumbens, olfactory tubercle, habenula, amygdala, and a few other brain regions. In contrast, after 13 d of 10 mg/kg cocaine treatment, challenge with 30 mg/kg cocaine increased rCMRglc in the striatum, globus pallidus, entopeduncular nucleus, subthalamus, substantia nigra pars reticulata, and a few other regions without affecting limbic or mesolimbic regions. Thus, repeated daily treatment with a low dose of cocaine gradually decreased metabolic activity particularly in mesolimbic regions. Subsequent treatment with a higher dose produced metabolic activation mostly in extrapyramidal regions. This effect of chronic treatment could represent tolerance to the initial metabolic response, which can be replicated thereafter but only by increasing the drug dose. These results suggest that tolerance to the metabolic effects of cocaine in selective mesolimbic circuits may contribute to the

  5. A Participatory Regional Partnership Approach to Promote Nutrition and Physical Activity Through Environmental and Policy Change in Rural Missouri

    PubMed Central

    Baker, Elizabeth A.; Estlund, Amy; Motton, Freda; Hipp, Pamela R.; Brownson, Ross C.

    2015-01-01

    Background Rural residents are less likely than urban and suburban residents to meet recommendations for nutrition and physical activity. Interventions at the environmental and policy level create environments that support healthy eating and physical activity. Community Context Healthier Missouri Communities (Healthier MO) is a community-based research project conducted by the Prevention Research Center in St. Louis with community partners from 12 counties in rural southeast Missouri. We created a regional partnership to leverage resources and enhance environmental and policy interventions to improve nutrition and physical activity in rural southeast Missouri. Methods Partners were engaged in a participatory action planning process that included prioritizing, implementing, and evaluating promising evidence-based interventions to promote nutrition and physical activity. Group interviews were conducted with Healthier MO community partners post intervention to evaluate resource sharing and sustainability efforts of the regional partnership. Outcome Community partners identified the benefits and challenges of resource sharing within the regional partnership as well as the opportunities and threats to long-term partnership sustainability. The partners noted that the regional participatory process was difficult, but the benefits outweighed the challenges. Interpretation Regional rural partnerships may be an effective way to leverage relationships to increase the capacity of rural communities to implement environmental and policy interventions to promote nutrition and physical activity. PMID:26068413

  6. Competency-Based Adult Education Sample Activities.

    ERIC Educational Resources Information Center

    Dauzat, Sam V.; Bryant, Nerissa

    For use by adult basic education teachers, this curriculum guide is intended as a frame of reference for building a total instructional program designed around a competency-based and skill-based curriculum. The 104 sample activities are categorized under subheadings of the following topics: Occupational Knowledge, Health, Government and Law,…

  7. CORONAL MAGNETOGRAPHY OF A SIMULATED SOLAR ACTIVE REGION FROM MICROWAVE IMAGING SPECTROPOLARIMETRY

    SciTech Connect

    Wang, Zhitao; Gary, Dale E.; Fleishman, Gregory D.; White, Stephen M.

    2015-06-01

    We have simulated the Expanded Owens Valley Solar Array (EOVSA) radio images generated at multiple frequencies from a model solar active region, embedded in a realistic solar disk model, and explored the resulting data cube for different spectral analysis schemes to evaluate the potential for realizing one of EOVSA’s most important scientific goals—coronal magnetography. In this paper, we focus on modeling the gyroresonance and free–free emission from an on-disk solar active region model with realistic complexities in electron density, temperature and magnetic field distribution. We compare the magnetic field parameters extrapolated from the image data cube along each line of sight after folding through the EOVSA instrumental profile with the original (unfolded) parameters used in the model. We find that even the most easily automated, image-based analysis approach (Level-0) provides reasonable quantitative results, although they are affected by systematic effects due to finite sampling in the Fourier (UV) plane. Finally, we note the potential for errors due to misidentified harmonics of the gyrofrequency, and discuss the prospects for applying a more sophisticated spectrally based analysis scheme (Level-1) to resolve the issue in cases where improved UV coverage and spatial resolution are available.

  8. Model for the Coupled Evolution of Subsurface and Coronal Magnetic Fields in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.; Mackay, D. H.

    2007-04-01

    According to Babcock's theory of the solar dynamo, bipolar active regions are Ω-shaped loops emerging from a toroidal field located near the base of the convection zone. In this paper, a mean field model for the evolution of a twisted Ω-loop is developed. The model describes the coupled evolution of the magnetic field in the convection zone and the corona after the loop has fully emerged into the solar atmosphere. Such a coupled evolution is required to fully understand what happens to the coronal and subsurface fields as magnetic flux cancels at polarity inversion lines on the photosphere. The jump conditions for the magnetic field at the photosphere are derived from the magnetic stress balance between the convection zone and corona. The model reproduces the observed spreading of active region magnetic flux over the solar surface. At polarity inversion lines, magnetic flux submerges below the photosphere, but the component of magnetic field along the inversion line cannot submerge, because the field in the upper convection zone is nearly radial. Therefore, magnetic shear builds up in the corona above the inversion line, which eventually leads to a loss of equilibrium of the coronal fields and the ``lift-off'' of a coronal flux rope. Fields that submerge are transported back to the base of the convection zone, leading to the repair of the toroidal flux rope. Following Martens and Zwaan, interactions between bipoles are also considered.

  9. Alpha2A adrenergic receptor activation inhibits epileptiform activity in the rat hippocampal CA3 region.

    PubMed

    Jurgens, Chris W D; Hammad, Hana M; Lichter, Jessica A; Boese, Sarah J; Nelson, Brian W; Goldenstein, Brianna L; Davis, Kylie L; Xu, Ke; Hillman, Kristin L; Porter, James E; Doze, Van A

    2007-06-01

    Norepinephrine has potent antiepileptic properties, the pharmacology of which is unclear. Under conditions in which GABAergic inhibition is blocked, norepinephrine reduces hippocampal cornu ammonis 3 (CA3) epileptiform activity through alpha(2) adrenergic receptor (AR) activation on pyramidal cells. In this study, we investigated which alpha(2)AR subtype(s) mediates this effect. First, alpha(2)AR genomic expression patterns of 25 rat CA3 pyramidal cells were determined using real-time single-cell reverse transcription-polymerase chain reaction, demonstrating that 12 cells expressed alpha(2A)AR transcript; 3 of the 12 cells additionally expressed mRNA for alpha(2C)AR subtype and no cells possessing alpha(2B)AR mRNA. Hippocampal CA3 epileptiform activity was then examined using field potential recordings in brain slices. The selective alphaAR agonist 6-fluoronorepinephrine caused a reduction of CA3 epileptiform activity, as measured by decreased frequency of spontaneous epileptiform bursts. In the presence of betaAR blockade, concentration-response curves for AR agonists suggest that an alpha(2)AR mediates this response, as the rank order of potency was 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14304) >or= epinephrine >6-fluoronorepinephrine > norepinephrine > phenylephrine. Finally, equilibrium dissociation constants (K(b)) of selective alphaAR antagonists were functionally determined to confirm the specific alpha(2)AR subtype inhibiting CA3 epileptiform activity. Apparent K(b) values calculated for atipamezole (1.7 nM), MK-912 (4.8 nM), BRL-44408 (15 nM), yohimbine (63 nM), ARC-239 (540 nM), prazosin (4900 nM), and terazosin (5000 nM) correlated best with affinities previously determined for the alpha(2A)AR subtype (r = 0.99, slope = 1.0). These results suggest that, under conditions of impaired GABAergic inhibition, activation of alpha(2A)ARs is primarily responsible for the antiepileptic actions of norepinephrine in the rat hippocampal CA3

  10. High resolution ALMA observations of dense molecular medium in the central regions of active galaxies

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro

    2015-08-01

    I will present recent ALMA results on the dense molecular gas in the central regions of local active galaxies, including NGC 1068, NGC 1097, and NGC 7469, hosting both AGN and circumnuclear starburst regions. Impact of X-ray radiation, outflows, and shocks from active nuclei on the physical and chemical properties of the surrouding dense molecular medium will be discussed.

  11. Perceptual Organization Based on Common Region in Infancy

    ERIC Educational Resources Information Center

    Bhatt, Ramesh S.; Hayden, Angela; Quinn, Paul C.

    2007-01-01

    We examined whether infants organize information according to the newly proposed principle of common region, which states that elements within a region are grouped together and separated from those of other regions. In Experiment 1, 6- to 7-month-olds exhibited sensitivity to regions by discriminating between the displacement of an element within…

  12. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  13. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  14. 50 CFR 216.240 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Active Sonar Training (AFAST) § 216.240 Specified activity and specified geographical region. (a... Navy is only authorized if it occurs incidental to the use of the following mid-frequency active sonar (MFAS) sources, high frequency active sonar (HFAS) sources, explosive sonobuoys, or similar sources,...

  15. Brain region and activity-dependent properties of M for calibrated fMRI.

    PubMed

    Shu, Christina Y; Herman, Peter; Coman, Daniel; Sanganahalli, Basavaraju G; Wang, Helen; Juchem, Christoph; Rothman, Douglas L; de Graaf, Robin A; Hyder, Fahmeed

    2016-01-15

    Calibrated fMRI extracts changes in oxidative energy demanded by neural activity based on hemodynamic and metabolic dependencies of the blood oxygenation level-dependent (BOLD) response. This procedure requires the parameter M, which is determined from the dynamic range of the BOLD signal between deoxyhemoglobin (paramagnetic) and oxyhemoglobin (diamagnetic). Since it is unclear if the range of M-values in human calibrated fMRI is due to regional/state differences, we conducted a 9.4T study to measure M-values across brain regions in deep (α-chloralose) and light (medetomidine) anesthetized rats, as verified by electrophysiology. Because BOLD signal is captured differentially by gradient-echo (R2*) and spin-echo (R2) relaxation rates, we measured M-values by the product of the fMRI echo time and R2' (i.e., the reversible magnetic susceptibility component), which is given by the absolute difference between R2* and R2. While R2' mapping was shown to be dependent on the k-space sampling method used, at nominal spatial resolutions achieved at high magnetic field of 9.4T the M-values were quite homogenous across cortical gray matter. However cortical M-values varied in relation to neural activity between brain states. The findings from this study could improve precision of future calibrated fMRI studies by focusing on the global uniformity of M-values in gray matter across different resting activity levels. PMID:26529646

  16. Steps toward determination of the size and structure of the broad-line region in active galatic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K. T.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1995-01-01

    We present the data and initial results from a combined Hubble Space Telescope (HST)/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-1989. IUE spectra were obtained once every 2 days for a period of 74 days beginning on 1993 March 14. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October-1993 September, although many of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies.

  17. Stereo-Based Region-Growing using String Matching

    NASA Technical Reports Server (NTRS)

    Mandelbaum, Robert; Mintz, Max

    1995-01-01

    We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds.

  18. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions

    PubMed Central

    Wang, Jayson; Shiels, Carol; Sasieni, Peter; Wu, Pei Jun; Islam, Suhail A.; Freemont, Paul S.; Sheer, Denise

    2004-01-01

    The promyelocytic leukemia (PML) protein is aggregated into nuclear bodies that are associated with diverse nuclear processes. Here, we report that the distance between a locus and its nearest PML body correlates with the transcriptional activity and gene density around the locus. Genes on the active X chromosome are more significantly associated with PML bodies than their silenced homologues on the inactive X chromosome. We also found that a histone-encoding gene cluster, which is transcribed only in S-phase, is more strongly associated with PML bodies in S-phase than in G0/G1 phase of the cell cycle. However, visualization of specific RNA transcripts for several genes showed that PML bodies were not themselves sites of transcription for these genes. Furthermore, knock-down of PML bodies by RNA interference did not preferentially change the expression of genes closely associated with PML bodies. We propose that PML bodies form in nuclear compartments of high transcriptional activity, but they do not directly regulate transcription of genes in these compartments. PMID:14970191

  19. Muscle activity in the classical singer's shoulder and neck region.

    PubMed

    Pettersen, V; Westgaard, R H

    2002-01-01

    The objective of this study is to characterize the level of use of the trapezius (TR) and the sternocleidomastoideus (STM) muscles by singing students. We further try to lower the activity in both muscles by use of biofeedback (BF) from electromyographic recordings (EMG). We finally examine whether the experiences from the BF session can be transferred into regular singing by maintaining a mental focus on the experiences made in the BF session. Two groups, each consisting of eight conservatory singing students, all in their first or second year of study, volunteered as subjects. Two singing procedures were used, a song and a sustained tone of maximum possible duration. EMG activity was recorded bilaterally from the TR and STM by use of an ambulatory monitoring system. EMG BF appeared to lower muscle activity in the two muscles, thus the experiences made in the BF session could be transferred into regular singing. We conclude that singers, although having an enhanced awareness of posture, still may have overuse of especially the TR muscle, but probably also the STM muscle.

  20. Barcode localization with region based gradient statistical analysis

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Zhao, Yuming

    2015-03-01

    Barcode, as a kind of data representation method, has been adopted in a wide range of areas. Especially with the rise of the smart phone and the hand-held device equipped with high resolution camera and great computation power, barcode technique has found itself more extensive applications. In industrial field, barcode reading system is highly demanded to be robust to blur, illumination change, pitch, rotation, and scale change. This paper gives a new idea in localizing barcode under a region-based gradient statistical analysis. Making this idea as the basis, four algorithms have been developed for dealing with Linear, PDF417, Stacked 1D1D and Stacked 1D2D barcodes respectively. After being evaluated on our challenging dataset with more than 17000 images, the result shows that our methods can achieve an average localization accuracy of 82.17% with respect to 8 kinds of distortions and within an average time of 12 ms.

  1. Active Oxidation of a UHTC-Based CMC

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Splinter, Scott C.

    2012-01-01

    The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation.

  2. Regional Drought Monitoring Based on Multi-Sensor Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Im, Jungho; Park, Seonyoung

    2014-05-01

    Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety

  3. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the "Present MAG4" technique and each of three alternative techniques, called "McIntosh Active-Region Class," "Total Magnetic Flux," and "Next MAG4." We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4).

  4. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  5. Activated, coal-based carbon foam

    SciTech Connect

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  6. Atmospheric energetics in regions of intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1977-01-01

    Synoptic-scale budgets of kinetic and total potential energy are computed using 3- and 6-h data at nine times from NASA's fourth Atmospheric Variability Experiment (AVE IV). Two intense squall lines occurred during the period. Energy budgets for areas that enclose regions of intense convection are shown to have systematic changes that relate to the life cycles of the convection. Some of the synoptic-scale energy processes associated with the convection are found to be larger than those observed in the vicinity of mature cyclones. Volumes enclosing intense convection are found to have large values of cross-contour conversion of potential to kinetic energy and large horizontal export of kinetic energy. Although small net vertical transport of kinetic energy is observed, values at individual layers indicate large upward transport. Transfer of kinetic energy from grid to subgrid scales of motion occurs in the volumes. Latent heat release is large in the middle and upper troposphere and is thought to be the cause of the observed cyclic changes in the budget terms. Total potential energy is found to be imported horizontally in the lower half of the atmosphere, transported aloft, and then exported horizontally. Although local changes of kinetic energy and total potential energy are small, interaction between volumes enclosing convection with surrounding larger volumes is quite large.

  7. Regional variation in composition and antimicrobial activity of US propolis against Paenibacillus larvae and Ascosphaera apis.

    PubMed

    Wilson, M B; Brinkman, D; Spivak, M; Gardner, G; Cohen, J D

    2015-01-01

    Propolis is a substance derived from antimicrobial plant resins that honey bees use in the construction of their nests. Propolis use in the hive is an important component of honey bee social immunity and confers a number of positive physiological benefits to bees. The benefits that bees derive from resins are mostly due to their antimicrobial properties, but it is unknown how the diversity of antimicrobial activities among resins might impact bee health. In our previous work, we found that resins from different North American Populus spp. differed in their ability to inhibit in vitro growth of the bee bacterial pathogen Paenibacillus larvae. The goal of our current work was to characterize the antimicrobial activity of propolis from 12 climatically diverse regions across the US against the bee pathogens P. larvae and Ascosphaera apis and compare the metabolite profiles among those samples using LC-MS-based metabolomic methods. Samples differed greatly in their ability to inhibit both bacterial and fungal growth in vitro, but propolis from Nevada, Texas, and California displayed high activity against both pathogens. Interestingly, propolis from Georgia, New York, Louisiana, and Minnesota were active against A. apis, but not very active against P. larvae. Metabolomic analysis of regional propolis samples revealed that each sample was compositionally distinct, and LC-FTMS profiles from each sample contained a unique number of shared and exclusive peaks. Propolis from Aspen, CO, Tuscon, AZ, and Raleigh, NC, contained relatively large numbers of exclusive peaks, which may indicate that these samples originated from relatively unique botanical sources. This is the first study to characterize how the diversity of bee preferred resinous plants in the US may affect bee health, and could guide future studies on the therapeutic potential of propolis for bees.

  8. Internet-Based Physical Activity Interventions

    PubMed Central

    Joseph, Rodney P.; Durant, Nefertiti H.; Benitez, Tanya J.; Pekmezi, Dorothy W.

    2014-01-01

    This article provides a comprehensive review of Internet– and Website–based physical activity interventions targeting adult populations. Search procedures identified 72 unique Internet-based physical activity interventions published in peer-reviewed journals. Participants of the studies were predominately White, middle-aged (mean age = 43.3 years), and female (65.9%). Intervention durations ranged from 2 weeks to 13 months (median = 12 weeks). Forty-six of the studies were randomized controlled trials, 21 were randomized trials without a control condition, 2 were non–randomized controlled trials, and 3 used a single-group design. The majority of studies (n = 68) assessed outcomes immediately following the end of the intervention period, and 16 studies provided delayed postintervention assessments. Forty-four of the 72 studies (61.1%) reported significant increases in physical activity. Future directions for Internet-based physical activity interventions include increasing representation of minority and male populations in Internet-based efforts, conducting delayed postintervention follow-up assessments, and incorporating emerging technologies (ie, cellular and Smartphones) into Internet-based physical activity efforts. PMID:25045343

  9. MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS

    SciTech Connect

    Ofman, L.; Liu, W.; Title, A.; Aschwanden, M.

    2011-10-20

    Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.

  10. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats.

  11. High Resolution Simulations of Tearing and Flux-Rope Formation in Active Region Jets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    2015-12-01

    Observations of coronal jets increasingly suggest that local fragmentation and the generation of small-scale structure plays an important role in the dynamics of these events. In the magnetically closed corona, jets most often occur near active regions and are associated with an embedded-bipole topology consisting of a 3D magnetic null point atop a domed fan separatrix surface at the base of a coronal loop. Impulsive reconnection in the vicinity of the null point between the magnetic fluxes inside and outside the dome launches the jet along the loop. Wyper & Pontin 2014 showed that the 3D current layers that facilitate such reconnection are explosively unstable to tearing, generating complex flux-rope structures. Utilizing the adaptive mesh capabilities of the Adaptively Refined Magnetohydrodynamics Solver, we investigate the generation of such fine-scale structure in high-resolution simulations of active-region jets. We observe the formation of multiple flux-rope structures forming across the fan separatrix surface and discuss the photospheric signatures of these flux ropes and the associated local topology change. We also introduce a new way of identifying such flux ropes in the magnetic field, based on structures observed in the magnetic squashing factor calculated on the photosphere. By tracking the position and number of new null points produced by the fragmentation, we also show that the formation of flux ropes can occur away from the main null region on the flanks of the separatrix dome and that the jet curtain has a highly complex magnetic structure. This work was funded through an appointment to the NASA Postdoctoral Program and by NASA's Living With a Star TR&T program.

  12. HELIOSEISMOLOGY OF PRE-EMERGING ACTIVE REGIONS. I. OVERVIEW, DATA, AND TARGET SELECTION CRITERIA

    SciTech Connect

    Leka, K. D.; Barnes, G.; Birch, A. C.; Dunn, T.; Javornik, B.; Braun, D. C.; Gonzalez-Hernandez, I.

    2013-01-10

    This first paper in a series describes the design of a study testing whether pre-appearance signatures of solar magnetic active regions were detectable using various tools of local helioseismology. The ultimate goal is to understand flux-emergence mechanisms by setting observational constraints on pre-appearance subsurface changes, for comparison with results from simulation efforts. This first paper provides details of the data selection and preparation of the samples, each containing over 100 members, of two populations: regions on the Sun that produced a numbered NOAA active region, and a 'control' sample of areas that did not. The seismology is performed on data from the GONG network; accompanying magnetic data from SOHO/MDI are used for co-temporal analysis of the surface magnetic field. Samples are drawn from 2001-2007, and each target is analyzed for 27.7 hr prior to an objectively determined time of emergence. The results of two analysis approaches are published separately: one based on averages of the seismology- and magnetic-derived signals over the samples, another based on Discriminant Analysis of these signals, for a statistical test of detectable differences between the two populations. We include here descriptions of a new potential-field calculation approach and the algorithm for matching sample distributions over multiple variables. We describe known sources of bias and the approaches used to mitigate them. We also describe unexpected bias sources uncovered during the course of the study and include a discussion of refinements that should be included in future work on this topic.

  13. Antibody Complementarity-Determining Regions (CDRs) Can Display Differential Antimicrobial, Antiviral and Antitumor Activities

    PubMed Central

    Polonelli, Luciano; Pontón, José; Elguezabal, Natalia; Moragues, María Dolores; Casoli, Claudio; Pilotti, Elisabetta; Ronzi, Paola; Dobroff, Andrey S.; Rodrigues, Elaine G.; Juliano, Maria A.; Maffei, Domenico Leonardo; Magliani, Walter; Conti, Stefania; Travassos, Luiz R.

    2008-01-01

    Background Complementarity-determining regions (CDRs) are immunoglobulin (Ig) hypervariable domains that determine specific antibody (Ab) binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here. Methodology/Principal Findings CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a) a protein epitope of Candida albicans cell wall stress mannoprotein; b) a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c) a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains. Conclusions/Significance The high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small sized synthetic

  14. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Altiner, Demir

    2016-10-01

    The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.

  15. A nanoflare model for active region radiance: application of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Bazarghan, M.; Safari, H.; Innes, D. E.; Karami, E.; Solanki, S. K.

    2008-12-01

    Context: Nanoflares are small impulsive bursts of energy that blend with and possibly make up much of the solar background emission. Determining their frequency and energy input is central to understanding the heating of the solar corona. One method is to extrapolate the energy frequency distribution of larger individually observed flares to lower energies. Only if the power law exponent is greater than 2 is it considered possible that nanoflares contribute significantly to the energy input. Aims: Time sequences of ultraviolet line radiances observed in the corona of an active region are modelled with the aim of determining the power law exponent of the nanoflare energy distribution. Methods: A simple nanoflare model based on three key parameters (the flare rate, the flare duration, and the power law exponent of the flare energy frequency distribution) is used to simulate emission line radiances from the ions Fe XIX, Ca XIII, and Si III, observed by SUMER in the corona of an active region as it rotates around the east limb of the Sun. Light curve pattern recognition by an Artificial Neural Network (ANN) scheme is used to determine the values. Results: The power law exponents, α≈2.8, 2.8, and 2.6 are obtained for Fe XIX, Ca XIII, and Si III respectively. Conclusions: The light curve simulations imply a power law exponent greater than the critical value of 2 for all ion species. This implies that if the energy of flare-like events is extrapolated to low energies, nanoflares could provide a significant contribution to the heating of active region coronae.

  16. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Altiner, Demir

    2016-03-01

    The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.

  17. Activity based video indexing and search

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Qin; Medasani, Swarup; Allen, David; Lu, Tsai-ching

    2010-04-01

    We describe a method for searching videos in large video databases based on the activity contents present in the videos. Being able to search videos based on the contents (such as human activities) has many applications such as security, surveillance, and other commercial applications such as on-line video search. Conventional video content-based retrieval (CBR) systems are either feature based or semantics based, with the former trying to model the dynamics video contents using the statistics of image features, and the latter relying on automated scene understanding of the video contents. Neither approach has been successful. Our approach is inspired by the success of visual vocabulary of "Video Google" by Sivic and Zisserman, and the work of Nister and Stewenius who showed that building a visual vocabulary tree can improve the performance in both scalability and retrieval accuracy for 2-D images. We apply visual vocabulary and vocabulary tree approach to spatio-temporal video descriptors for video indexing, and take advantage of the discrimination power of these descriptors as well as the scalability of vocabulary tree for indexing. Furthermore, this approach does not rely on any model-based activity recognition. In fact, training of the vocabulary tree is done off-line using unlabeled data with unsupervised learning. Therefore the approach is widely applicable. Experimental results using standard human activity recognition videos will be presented that demonstrate the feasibility of this approach.

  18. Colors of active regions on comet 67P

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.; Besse, S.; Fornasier, S.; Barucci, M. A.; Lara, L.; Scholten, F.; Preusker, F.; Lazzarin, M.; Pajola, M.; La Forgia, F.

    2015-10-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) scientific imager (Keller et al. 2007) is successfully delivering images of comet 67P/Churyumov-Gerasimenko from its both wide angle camera (WAC) and narrow angle camera (NAC) since ESA's spacecraft Rosetta's arrival to the comet. Both cameras are equipped with filters covering the wavelength range of about 200 nm to 1000 nm. The comet nucleus is mapped with different combination of the filters in resolutions up to 15 cm/px. Besides the determination of the surface morphology in great details (Thomas et al. 2015), such high resolution images provided us a mean to unambiguously link some activity in the coma to a series of pits on the nucleus surface (Vincent et al. 2015).

  19. Acceleration and Radiation Model of Particles in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Anastasios; Dauphin, Cyril; Vilmer, Nicole

    2006-08-01

    Cellular Automata (CA) models have successfully reproduced several statistical properties of solar flares such as the peak flux or the total flux distribution. We are using a CA model based on the concept of self organized criticality (SOC) to model the evolution of the magnetic energy released in a solar flare. Each burst of magnetic energy released is assumed to be the consequence of a magnetic reconnection process, where the particles are accelerated by a direct electric field. We relate the difference of energy gain of particles (alpha particles, protons and electrons) to the magnetic energy released and we calculate the resulting kinetic energy distributions and the emitted radiation.

  20. An active region model for capturing fractal flow patterns in unsaturated soils: model development.

    PubMed

    Liu, H H; Zhang, R; Bodvarsson, G S

    2005-11-01

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  1. An Active Region Model for Capturing Fractal Flow Patterns inUnsaturated Soils: Model Development

    SciTech Connect

    Liu, Hui-Hai; Zhang, R.; Bodvarsson, Gudmundur S.

    2005-06-11

    Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the soil surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential patterns observed from fields are fractals. In this study, we developed a relatively simple active region model to incorporate the fractal flow pattern into the continuum approach. In the model, the flow domain is divided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. A new constitutive relationship (the portion of the active region as a function of saturation) was derived. The validity of the proposed model is demonstrated by the consistency between field observations and the new constitutive relationship.

  2. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2012-11-10

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  3. Regional vulnerability of the hippocampus to repeated motor activity deprivation.

    PubMed

    Faraji, Jamshid; Soltanpour, Nabiollah; Moeeini, Reza; Hosseini, Seyed Abedin; Pakdel, Shiva; Moharrerie, Alireza; Arjang, Kaveh; Soltanpour, Nasrin; Metz, Gerlinde A S

    2016-03-15

    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress. PMID:26723539

  4. Regional vulnerability of the hippocampus to repeated motor activity deprivation.

    PubMed

    Faraji, Jamshid; Soltanpour, Nabiollah; Moeeini, Reza; Hosseini, Seyed Abedin; Pakdel, Shiva; Moharrerie, Alireza; Arjang, Kaveh; Soltanpour, Nasrin; Metz, Gerlinde A S

    2016-03-15

    Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress.

  5. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region

    SciTech Connect

    Fujita, Kazuue Hitaka, Masahiro; Ito, Akio; Edamura, Tadataka; Yamanishi, Masamichi; Jung, Seungyong; Belkin, Mikhail A.

    2015-06-22

    We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2} at room temperature.

  6. Photovoltaic Detector Based on Type II Heterostructure with Deep AlSb/InAsSb/AlSb Quantum Well in the Active Region for the Mid-Infrared Spectral Range

    NASA Astrophysics Data System (ADS)

    Konovalov, G. G.; Mikhailova, M. P.; Andreev, I. A.; Moiseev, K. D.; Ivanov, E. V.; Mikhailov, M. Yu; Yakovlev, Yu P.

    2013-08-01

    Photodetectors for the spectral range 2-4 μm, based on an asymmetric type-II heterostructure p-InAs/AlSb/InAsSb/AlSb/(p, n)-GaSb with a single deep quantum well (QW) or three deep QWs at the heterointerface, have been grown by metal-organic vapor phase epitaxy and analysed. The transport, luminescent, photoelectric, current-voltage, and capacitance-voltage characteristics of these structures have been examined. A high-intensity positive and negative luminescence was observed in the spectral range 3-4 μm at high temperatures (300-400 K). The photosensitivity spectra were in the range 1.2-3.6 μm (T = 77 K). Large values of quantum efficiency (η = 0.6-0.7), responsivity (Sλ = 0.9-1.4 A·W1), and detectivity D*λ 3.5·1011 to 1010 cm·Hz1/2·W-1) were obtained at T = 77-200 K. The small capacitance of the structures (C = 1.5 pF at V = -1 V and T = 300 K) enabled an estimate of the response time of the photodetector at τ = 75 ps, which corresponds to a bandwidth of about 6 GHz. Photodetectors of this kind are promising for heterodyne detection of the emission of quantum-cascade lasers and IR spectroscopy.

  7. Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Kliem, Bernhard; Ravindra, B.; Chintzoglou, Georgios

    2015-12-01

    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade ({≈} 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.

  8. THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Xiang, Y. Y.; Kong, D. F.; Yang, L. H.; Pan, G. M.

    2015-08-15

    To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspot with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.

  9. A note on chromospheric fine structure at active region polarity boundaries.

    NASA Technical Reports Server (NTRS)

    Prata, S. W.

    1971-01-01

    High resolution H-alpha filtergrams from Big Bear Solar Observatory reveal that some filamentary features in active regions have fine structure and hence magnetic field transverse to the gross structure and the zero longitudinal field line. These features are distinct from the usual active region filament, in which fine structure, magnetic field, and filament are all parallel to the zero longitudinal field line. The latter occur on boundaries between regions of weaker fields, while the former occur at boundaries between regions of stronger field.

  10. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (˜200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  11. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun; Su Jiangtao; Li Hui; Ichimoto, Kiyoshi; Shibata, Kazunari

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  12. A gigantic coronal jet ejected from a compact active region in a coronal hole

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Nitta, N.; Strong, K. T.; Matsumoto, R.; Yokoyama, T.; Hirayama, T.; Hudson, H.; Ogawara, Y.

    1994-01-01

    A gigantic coronal jet greater than 3 x 10(exp 5) km long (nearly half the solar radius) has been found with the soft X-ray telescope (SXT) on board the solar X-ray satellite, Yohkoh. The jet was ejected on 1992 January 11 from an 'anemone-type' active region (AR) appearing in a coronal hole and is one of the largest coronal X-ray jets observed so far by SXT. This gigantic jet is the best observed example of many other smaller X-ray jets, because the spatial structures of both the jet and the AR located at its base are more easily resolved. The range of apparent translational velocities of the bulk of the jet was between 90 and 240 km s(exp -1), with the corresponding kinetic energy estimated to be of order of 10(exp 28) ergs. A detailed analysis reveals that the jet was associated with a loop brightening (a small flare) that occurred in the active region. Several features of this observation suggest and are consistent with a magnetic reconnection mechanism for the production of such a 'jet-loop-brightening' event.

  13. CAN A LONG NANOFLARE STORM EXPLAIN THE OBSERVED EMISSION MEASURE DISTRIBUTIONS IN ACTIVE REGION CORES?

    SciTech Connect

    Mulu-Moore, Fana M.; Winebarger, Amy R.; Warren, Harry P.

    2011-11-20

    All theories that attempt to explain the heating of the high-temperature plasma observed in the solar corona are based on short bursts of energy. The intensities and velocities measured in the cores of quiescent active regions, however, can be steady over many hours of observation. One heating scenario that has been proposed to reconcile such observations with impulsive heating models is the 'long nanoflare storm', where short-duration heating events occur infrequently on many sub-resolution strands; the emission of the strands is then averaged together to explain the observed steady structures. In this Letter, we examine the emission measure distribution predicted for such a long nanoflare storm by modeling an arcade of strands in an active region core. Comparisons of the computed emission measure distributions with recent observations indicate that the long nanoflare storm scenario implies greater than five times more 1 MK emission than is actually observed for all plausible combinations of loop lengths, heating rates, and abundances. We conjecture that if the plasma had 'super coronal' abundances, the model may be able to match the observations at low temperatures.

  14. The Evolution of the Electric Current during the Formation and Eruption of Active-region Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  15. THE CONFINED X-CLASS FLARES OF SOLAR ACTIVE REGION 2192

    SciTech Connect

    Thalmann, J. K.; Su, Y.; Temmer, M.; Veronig, A. M.

    2015-03-10

    The unusually large active region (AR) NOAA 2192, observed in 2014 October, was outstanding in its productivity of major two-ribbon flares without coronal mass ejections. On a large scale, a predominantly north–south oriented magnetic system of arcade fields served as a strong top and lateral confinement for a series of large two-ribbon flares originating from the core of the AR. The large initial separation of the flare ribbons, together with an almost absent growth in ribbon separation, suggests a confined reconnection site high up in the corona. Based on a detailed analysis of the confined X1.6 flare on October 22, we show how exceptional the flaring of this AR was. We provide evidence for repeated energy release, indicating that the same magnetic field structures were repeatedly involved in magnetic reconnection. We find that a large number of electrons was accelerated to non-thermal energies, revealing a steep power-law spectrum, but that only a small fraction was accelerated to high energies. The total non-thermal energy in electrons derived (on the order of 10{sup 25} J) is considerably higher than that in eruptive flares of class X1, and corresponds to about 10% of the excess magnetic energy present in the active-region corona.

  16. The effects of activation procedures on regional cerebral blood flow in humans

    SciTech Connect

    Rozenfeld, D.; Wolfson, L.I.

    1981-07-01

    Regional cerebral blood flow (r-CBF) can be measured using 133XE and collimated detectors. The radionuclide can be administered either by inhalation or intracarotid injection. Comparison of blood flow determinations at rest and during performance of an activity identifies those brain regions that become active during the performance of the activity. Relatively specific patterns of r-CBF are observed during hand movements, sensory stimulation, eye movements, speech, listening, and reading. Regional CBF changes during reasoning and memorization are less specific and less well characterized. It is clear that brain lesions affect r-CBF responses to various activities, but this effect has not been well correlated with functional deficits or recovery of function. Regional CBF measurement gives information about brain activity and the functional response to experimental manipulation. This approach may well add to our understanding of normal, as well as pathologic, brain functioning.

  17. Evolution of Magnetic Field Twist and Tilt in Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar

    2011-07-01

    Magnetic twist of the active region has been measured over a decade using photospheric vector field data, chromospheric H_alpha data, and coronal loop data. The twist and tilt of the active regions have been measured at the photospheric level with the vector magnetic field measurements. The active region NOAA 10930 is a highly twisted emerging region. The same active region produced several flares and has been extensively observed by Hinode. In this paper, we will show the evolution of twist and tilt in this active region leading up to the two X-class flares. We find that the twist initially increases with time for a few days with a simultaneous decrease in the tilt until before the X3.4 class flare on December 13, 2006. The total twist acquired by the active region is larger than one complete winding before the X3.4 class flare and it decreases in later part of observations. The injected helicity into the corona is negative and it is in excess of 10^43 Mx^2 before the flares.

  18. Synthetic 3D modeling of active regions and simulation of their multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory; Kuznetsov, Alexey A.; Loukitcheva, Maria A.; Viall, Nicholeen M.; Klimchuk, James A.; Gary, Dale E.

    2015-04-01

    To facilitate the study of solar active regions, we have created a synthetic modeling framework that combines 3D magnetic structures obtained from magnetic extrapolations with simplified 1D thermal models of the chromosphere, transition region, and corona. To handle, visualize, and use such synthetic data cubes to compute multi-wavelength emission maps and compare them with observations, we have undertaken a major enhancement of our simulation tools, GX_Simulator (ftp://sohoftp.nascom.nasa.gov/solarsoft/packages/gx_simulator/), developed earlier for modeling emission from flaring loops. The greatly enhanced, object-based architecture, which now runs on Windows, Mac, and UNIX platform, offers important new capabilities that include the ability to either import 3D density and temperature distribution models, or to assign to each individual voxel numerically defined coronal or chromospheric temperature and densities, or coronal Differential Emission Measure distributions. Due to these new capabilities, the GX_Simulator can now apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel volume, as well as compute and investigate the spatial and spectral properties of radio (to be compared with VLA or EOVSA data), (sub-)millimeter (ALMA), EUV (AIA/SDO), and X-ray (RHESSI) emission calculated from the model. The application integrates shared-object libraries containing fast free-free, gyrosynchrotron, and gyroresonance emission codes developed in FORTRAN and C++, and soft and hard X-ray and EUV codes developed in IDL. We use this tool to model and analyze an active region and compare the synthetic emission maps obtained in different wavelengths with observations.This work was partially supported by NSF grants AGS-1250374, AGS-1262772, NASA grant NNX14AC87G, the Marie Curie International Research Staff Exchange Scheme "Radiosun" (PEOPLE-2011-IRSES-295272), RFBR grants 14-02-91157, 15-02-01089, 15-02-03717, 15

  19. Mapping brain region activity during chewing: a functional magnetic resonance imaging study.

    PubMed

    Onozuka, M; Fujita, M; Watanabe, K; Hirano, Y; Niwa, M; Nishiyama, K; Saito, S

    2002-11-01

    Mastication has been suggested to increase neuronal activities in various regions of the human brain. However, because of technical difficulties, the fine anatomical and physiological regions linked to mastication have not been fully elucidated. Using functional magnetic resonance imaging during cycles of rhythmic gum-chewing and no chewing, we therefore examined the interaction between chewing and brain regional activity in 17 subjects (aged 20-31 years). In all subjects, chewing resulted in a bilateral increase in blood oxygenation level-dependent (BOLD) signals in the sensorimotor cortex, supplementary motor area, insula, thalamus, and cerebellum. In addition, in the first three regions, chewing of moderately hard gum produced stronger BOLD signals than the chewing of hard gum. However, the signal was higher in the cerebellum and not significant in the thalamus, respectively. These results suggest that chewing causes regional increases in brain neuronal activities which are related to biting force.

  20. Space based astronomy: Teacher's guide with activities

    NASA Technical Reports Server (NTRS)

    Rosenberg, Carla B. (Editor); Weiler, Edward; Morrow, Cherilyn; Bacon, Pamela M.; Thorne, Muriel; Blanchard, Paul A.; Howard, Sethane; Pengra, Patricia R.; Brown, Deborah A.; Winrich, Ralph

    1994-01-01

    This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy - astronomical observations made from outer space. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. Instead, it tells the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. The guide begins with a survey of astronomy related NASA spacecraft. This is followed by a collection of activities in four units: (1) the atmospheric filter; (2) the electromagnetic spectrum; (3) collecting electromagnetic radiation; and (4) down to Earth. A curriculum index identifies the curriculum areas each activity addresses. The guide concludes with a glossary, reference list, a NASA Resources list, and an evaluation card. It is designed for students in grades 5 through 8.

  1. Rodent model of activity-based anorexia.

    PubMed

    Carrera, Olaia; Fraga, Ángela; Pellón, Ricardo; Gutiérrez, Emilio

    2014-04-10

    Activity-based anorexia (ABA) consists of a procedure that involves the simultaneous exposure of animals to a restricted feeding schedule, while free access is allowed to an activity wheel. Under these conditions, animals show a progressive increase in wheel running, a reduced efficiency in food intake to compensate for their increased activity, and a severe progression of weight loss. Due to the parallelism with the clinical manifestations of anorexia nervosa including increased activity, reduced food intake and severe weight loss, the ABA procedure has been proposed as the best analog of human anorexia nervosa (AN). Thus, ABA research could both allow a better understanding of the mechanisms underlying AN and generate useful leads for treatment development in AN.

  2. Analysis of the characteristics of solar oscillation modes in active regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Basu, Sarbani

    2008-10-01

    We analyze the characteristics of high-degree solar acoustic modes in the vicinity of magnetic active regions and compare with those of magnetically quiet regions at the same latitude and at nearly the same time. We applied ring-diagram analysis to GONG+ and MDI data, using the 13-parameter mode-fitting model of Basu & Antia [1]. We explore the correlations of variations in mode frequencies, amplitudes, widths, and asymmetries with the total magnetic flux of the analyzed regions.

  3. Statistical study of free magnetic energy and flare productivity of solar active regions

    SciTech Connect

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M.; Wiegelmann, T.

    2014-06-20

    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  4. Adult activity and temperature preference drives region-wide damselfly (Zygoptera) distributions under a warming climate

    PubMed Central

    Corser, Jeffrey D.; White, Erin L.; Schlesinger, Matthew D.

    2015-01-01

    We analysed a recently completed statewide odonate Atlas using multivariate linear models. Within a phylogenetically explicit framework, we developed a suite of data-derived traits to assess the mechanistic distributional drivers of 59 species of damselflies in New York State (NYS). We found that length of the flight season (adult breeding activity period) mediated by thermal preference drives regional distributions at broad (105 km2) scales. Species that had longer adult flight periods, in conjunction with longer growing seasons, had significantly wider distributions. These intrinsic traits shape species' responses to changing climates and the mechanisms behind such range shifts are fitness-based metapopulation processes that adjust phenology to the prevailing habitat and climate regime through a photoperiod filter. PMID:25878048

  5. Sejong Open Cluster Survey (SOS) - V. The Active Star Forming Region SH 2-255-257

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Hur, Hyeonoh; Lee, Byeong-Cheol; Bessell, Michael S.; Kim, Jinyoung S.; Lee, Kang Hwan; Park, Byeong-Gon; Jeong, Gwanghui

    2015-12-01

    There is much observational evidence that active star formation is taking place in the H II regions Sh 2-255-257. We present a photometric study of this star forming region (SFR) using imaging data obtained in passbands from the optical to the mid-infrared, in order to study the star formation process. A total of 218 members were identified using various selection criteria based on their observational properties. The SFR is reddened by at least E(B-V) = 0.8 mag, and the reddening law toward the region is normal (R_V = 3.1). From the zero-age main sequence fitting method it is confirmed that the SFR is 2.1 ± 0.3 kpc from the Sun. The median age of the identified members is estimated to be about 1.3 Myr from a comparison of the Hertzsprung-Russell diagram (HRD) with stellar evolutionary models. The initial mass function (IMF) is derived from the HRD and the near-infrared (J, J-H) color-magnitude diagram. The slope of the IMF is about Γ = -1.6 ± 0.1, which is slightly steeper than that of the Salpeter/Kroupa IMF. It implies that low-mass star formation is dominant in the SFR. The sum of the masses of all the identified members provides the lower limit of the cluster mass (169 M_{⊙}). We also analyzed the spectral energy distribution (SED) of pre-main sequence stars using the SED fitting tool of Robitaille et al., and confirm that there is a significant discrepancy between stellar mass and age obtained from two different methods based on the SED fitting tool and the HRD.

  6. The 3’-Jα Region of the TCRα Locus Bears Gene Regulatory Activity in Thymic and Peripheral T Cells

    PubMed Central

    Kučerová-Levisohn, Martina; Knirr, Stefan; Mejia, Rosa I.; Ortiz, Benjamin D.

    2015-01-01

    Much progress has been made in understanding the important cis-mediated controls on mouse TCRα gene function, including identification of the Eα enhancer and TCRα locus control region (LCR). Nevertheless, previous data have suggested that other cis-regulatory elements may reside in the locus outside of the Eα/LCR. Based on prior findings, we hypothesized the existence of gene regulatory elements in a 3.9-kb region 5’ of the Cα exons. Using DNase hypersensitivity assays and TCRα BAC reporter transgenes in mice, we detected gene regulatory activity within this 3.9-kb region. This region is active in both thymic and peripheral T cells, and selectively affects upstream, but not downstream, gene expression. Together, these data indicate the existence of a novel cis-acting regulatory complex that contributes to TCRα transgene expression in vivo. The active chromatin sites we discovered within this region would remain in the locus after TCRα gene rearrangement, and thus may contribute to endogenous TCRα gene activity, particularly in peripheral T cells, where the Eα element has been found to be inactive. PMID:26177549

  7. Complex active regions as the main source of extreme and large solar proton events

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  8. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  9. Tail reconnection region versus auroral activity inferred from conjugate ARTEMIS plasma sheet flow and auroral observations

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lyons, L. R.; Xing, X.; Angelopoulos, V.; Donovan, E. F.; Mende, S. B.; Bonnell, J. W.; Auster, U.

    2013-09-01

    sheet flow bursts have been suggested to correspond to different types of auroral activity, such as poleward boundary intensifications (PBIs), ensuing auroral streamers, and substorms. The flow-aurora association leads to the important question of identifying the magnetotail source region for the flow bursts and how this region depends on magnetic activity. The present study uses the ARTEMIS spacecraft coordinated with conjugate ground-based auroral imager observations to identify flow bursts beyond 45 RE downtail and corresponding auroral forms. We find that quiet-time flows are directed dominantly earthward with a one-to-one correspondence with PBIs. Flow bursts during the substorm recovery phase and during steady magnetospheric convection (SMC) periods are also directed earthward, and these flows are associated with a series of PBIs/streamers lasting for tens of minutes with similar durations to that of the series of earthward flows. Presubstorm onset flows are also earthward and associated with PBIs/streamers. The earthward flows during those magnetic conditions suggest that the flow bursts, which lead to PBIs and streamers, originate from further downtail of ARTEMIS, possibly from the distant-tail neutral line (DNL) or tailward-retreated near-Earth neutral line (NENL) rather than from the nominal NENL location in the midtail. We find that tailward flows are limited primarily to the substorm expansion phase. They continue throughout the period of auroral poleward expansion, indicating that the expansion-phase flows originate from the NENL and that NENL activity is closely related to the auroral expansion of the substorm expansion phase.

  10. Amygdala atrophy affects emotion-related activity in face-responsive regions in frontotemporal degeneration.

    PubMed

    De Winter, François-Laurent; Van den Stock, Jan; de Gelder, Beatrice; Peeters, Ronald; Jastorff, Jan; Sunaert, Stefan; Vanduffel, Wim; Vandenberghe, Rik; Vandenbulcke, Mathieu

    2016-09-01

    In the healthy brain, modulatory influences from the amygdala commonly explain enhanced activation in face-responsive areas by emotional facial expressions relative to neutral expressions. In the behavioral variant frontotemporal dementia (bvFTD) facial emotion recognition is impaired and has been associated with atrophy of the amygdala. By combining structural and functional MRI in 19 patients with bvFTD and 20 controls we investigated the neural effects of emotion in face-responsive cortex and its relationship with amygdalar gray matter (GM) volume in neurodegeneration. Voxel-based morphometry revealed decreased GM volume in anterior medio-temporal regions including amygdala in patients compared to controls. During fMRI, we presented dynamic facial expressions (fear and chewing) and their spatiotemporally scrambled versions. We found enhanced activation for fearful compared to neutral faces in ventral temporal cortex and superior temporal sulcus in controls, but not in patients. In the bvFTD group left amygdalar GM volume correlated positively with emotion-related activity in left fusiform face area (FFA). This correlation was amygdala-specific and driven by GM in superficial and basolateral (BLA) subnuclei, consistent with reported amygdalar-cortical networks. The data suggests that anterior medio-temporal atrophy in bvFTD affects emotion processing in distant posterior areas. PMID:27389802

  11. A restricted parabrachial pontine region is active during non-REM sleep

    PubMed Central

    Torterolo, Pablo; Sampogna, Sharon; Chase, Michael H.

    2011-01-01

    The principal site that generates both REM sleep and wakefulness is located in the mesopontine reticular formation, whereas non-REM sleep (NREM) is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase or GABA. During NREM, only a few Fos immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral peribrachial region (CLPB). The number of the Fos+ neurons in the CLPB during NREM was significantly greater (67.9 ± 10.9, P < 0.0001) compared to QW (8.0 ± 6.7), AW (5.2 ± 4.2) or REM-carbachol (8.0 ± 4.7). In addition, there was a positive correlation (R = 0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of

  12. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  13. Multiwavelength study of 20 jets that emanate from the periphery of active regions

    NASA Astrophysics Data System (ADS)

    Mulay, Sargam M.; Tripathi, Durgesh; Del Zanna, Giulio; Mason, Helen

    2016-05-01

    T [K] = 6.2/6.3 (~2 MK). In addition, we derived an emission measure and a lower limit of electron density at the location of the spire (jet 1: log EM = 28.6, Ne = 1.3 × 1010 cm-3; jet 2: log EM = 28.0, Ne = 8.6 × 109 cm-3) and the footpoint (jet 1 - log EM = 28.6, Ne = 1.1 × 1010 cm-3; jet 2: log EM = 28.1, Ne = 8.4 × 109 cm-3). These results are in agreement with those obtained earlier by studying individual active region jets. Conclusions: The observation of flux cancellation, the association with HXR emission and emission of nonthermal type-III radio bursts, suggest that the initiation and therefore, heating is taking place at the base of the jet. This is also supported by the high temperature plasma revealed by the DEM analysis in the jet footpoint (peak in the DEM at log T [K] = 6.5). Our results provide substantial constraints for theoretical modeling of the jets and their thermodynamic nature. Movies are available in electronic form at http://www.aanda.org

  14. HARPs: Tracked Active Region Patch Data Product from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Turmon, M.; Hoeksema, J. T.; Sun, X.; Bobra, M.

    2012-12-01

    We describe an HMI data product consisting of tracked magnetic features on the scale of solar active regions, abbreviated HARPs (HMI Active Region Patches). The HARP data series has been helpful for subsetting individual active regions, for development of near-real-time (NRT) space weather indices for individual active regions, and for defining closed magnetic structures for computationally-intensive algorithms like vector field disambiguation. The data series builds upon the 720s cadence activity masks, which identify large-scale instantaneously-observed magnetic features. Using these masks as a starting point, large spatially-coherent structures are identified using convolution with a longitudinally-extended kernel on a spherical domain. The resulting set of identified regions is then tracked from image to image. The metric for inter-image association is area of overlap between the best current estimate of AR location, as predicted by temporally extrapolating each currently tracked object, and the set of instantaneously-observed magnetic structures. Once completed tracks have been extracted, they are made into a standardized HARP data series by finding the smallest constant-angular-velocity box, of constant width in latitude and longitude, that encompasses all appearances of the active region. This data product is currently available, in definitive and near-real-time forms, with accompanying region-strength, location, and NOAA-AR metadata, on HMI's Joint Science Operations Center (JSOC) data portal.; HARP outlines for three days (2001 February 14, 15, and 16, 00:00 TAI, flipped N-S, selected from the 12-minute cadence original data product). HARPs are shown in the same color (some colors repeated) with a thin white box surrounding each HARP. HARPs are tracked and associated from image to image. HARPs, such as the yellow one in the images above, need not be connected regions. Merges and splits, such as the light blue region, are accounted for automatically.

  15. Neotectonic and seismotectonic investigation of seismically active regions in Tunisia: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Bahrouni, N.; Bouaziz, S.; Soumaya, A.; Ben Ayed, N.; Attafi, K.; Houla, Y.; El Ghali, A.; Rebai, N.

    2014-04-01

    Due to its key position within the Africa-Europe convergence zone, Tunisia is marked by thrusting, folding, and faulting and has a major rupture zones associated with active faults. Consequently, most of Tunisian land is seismically active with significant active deformations, showing recent seismic events and their relative surface effects. This paper reports on several aspects of the seismotectonics, historical, and present-day seismicity and places them in the general tectonic and geodynamic framework of Tunisia. Field investigations, based on an integrated multidisciplinary approach, included (1) the identification of active faults, their motion and displacement, geomorphic aspects, and scarps and their relation with the general structural map of Tunisia and (2) an extensive analysis of brittle tectonic deformation affecting Quaternary deposits in several sites throughout Tunisia. The integration of field data within the existing data related to the seismic events that took place during the last decades allowed the establishment of an earthquake distribution map, as well as major seismic zones for better understanding of the seismicity database of Tunisia. To establish microzonation maps in seismic regions such as Gafsa and its surroundings, we have analyzed surface effects and secondary structures associated with active faults and correlated them with deformation rates, reconstructed for significant seismic events. Most faults exhibited typical left-stepping en-echelon with strike-slip component pattern suggesting that Tunisia is presently subjected to NNW-SSE compression. The focal mechanism of most Tunisia earthquakes combined with the existing tectonic and structural information and reconstruction of the Quaternary stress tensor allowed (a) better understanding of seismic zoning, (b) provided better assessment of the seismic hazard, and (c) facilitated the interpretation of the relationship between seismic zones and the geodynamic African-Eurasian plate

  16. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Jansen, Nils; Dürr, Hans H.; Kempe, Stephan; Köhler, Peter

    2010-05-01

    CO2-consumption by chemical weathering of silicates and resulting silicate/carbonate weathering ratios influences the terrestrial lateral inorganic carbon flux to the ocean and long-term climate changes. However, little is known of the spatial extension of highly active weathering regions and their proportion of global CO2-consumption. As those regions may be of significant importance for global climate change, global CO2-consumption is calculated here at high resolution, to adequately represent them. In previous studies global CO2-consumption is estimated using two different approaches: i) a reverse approach based on hydrochemical fluxes from large rivers and ii) a forward approach applying spatially explicit a function for CO2-consumption. The first approach results in an estimate without providing a spatial resolution for highly active regions and the second approach applied six lithological classes while including three sediment classes (shale, sandstone and carbonate rock) based at a 1° or 2° grid resolution. It remained uncertain, if the applied lithological classification schemes represent adequately CO2-consumption from sediments on a global scale (as well as liberation of other elements like phosphorus or silicon by chemical weatheirng). This is due to the large variability of sediment properties, their diagenetic history and the contribution from carbonates apparent in silicate dominated lithological classes. To address these issues, a CO2-consumption model, trained at high-resolution data, is applied here to a global vector based lithological map with 15 lithological classes. The calibration data were obtained from areas representing a wide range of weathering rates. Resulting global CO2-consumption by chemical weathering is similar to earlier estimates (237 Mt C a-1) but the proportion of silicate weathering is 63%, and thus larger than previous estimates (49 to 60%). The application of the enhanced lithological classification scheme reveals that it

  17. Regional activation within the vastus medialis in stimulated and voluntary contractions.

    PubMed

    Gallina, Alessio; Ivanova, Tanya D; Garland, S Jayne

    2016-08-01

    This study examined the contribution of muscle fiber orientation at different knee angles to regional activation identified with high-density surface electromyography (HDsEMG). Monopolar HDsEMG signals were collected using a grid of 13 × 5 electrodes placed over the vastus medialis (VM). Intramuscular electrical stimulation was used to selectively activate two regions within VM. The distribution of EMG responses to stimulation was obtained by calculating the amplitude of the compound action potential for each channel; the position of the peak amplitude was tracked across knee angles to describe shifts of the active muscle regions under the electrodes. In a separate experiment, regional activation was investigated in 10 knee flexion-extension movements against a fixed resistance. Intramuscular stimulation of different VM regions resulted in clear differences in amplitude distribution along the columns of the electrode grid (P < 0.001); changes in knee angle resulted in consistent shifts along the rows (P < 0.01) and negligible shifts along the columns of the electrode grid. Regional VM activation was identified in dynamic movement, with distal shifts of the EMG distribution in the eccentric phase of the movement (P < 0.05) and at more flexed knee angles (P < 0.05). HDsEMG was used to describe regional activation across the VM that was not attributable to anatomic factors. Changes in muscle fiber orientation associated with knee joint angle mainly influence the amplitude distribution along the fiber direction. Future studies are needed to understand possible functional roles for regional activation within the VM in dynamic tasks. PMID:27365281

  18. Regional activation of rapid onset vasodilatation in mouse skeletal muscle: regulation through α-adrenoreceptors.

    PubMed

    Moore, Alex W; Bearden, Shawn E; Segal, Steven S

    2010-09-01

    Exercise onset entails motor unit recruitment and the initiation of vasodilatation. Dilatation can ascend the arteriolar network to encompass proximal feed arteries but is opposed by sympathetic nerve activity, which promotes vasoconstriction and inhibits ascending vasodilatation through activating α-adrenoreceptors. Whereas contractile activity can antagonize sympathetic vasoconstriction, more subtle aspects of this interaction remain to be defined. We tested the hypothesis that constitutive activation of α-adrenoreceptors governs blood flow distribution within individual muscles. The mouse gluteus maximus muscle (GM) consists of Inferior and Superior regions. Each muscle region is supplied by its own motor nerve and feed artery with an anastomotic arteriole (resting diameter 25 microm) that spans both muscle regions. In anaesthetized male C57BL/6J mice (3-5 months old), the GM was exposed and superfused with physiological saline solution (35 degrees C; pH 7.4). Stimulating the inferior gluteal motor nerve (0.1 ms pulse, 100 Hz for 500 ms) evoked a brief tetanic contraction and produced rapid (<1 s) onset vasodilatation (ROV; diameter change, 10 +/- 1 μm) of the anastomotic arteriole along the active (Inferior) muscle region but not along the inactive (Superior) region (n = 8). In contrast, microiontophoresis of acetylcholine (1 μm micropipette tip, 1 μA, 500 ms) initiated dilatation that travelled along the anastomotic arteriole from the Inferior into the Superior muscle region (diameter change, 5 +/- 2 μm). Topical phentolamine (1 μm) had no effect on resting diameter but this inhibition of α-adrenoreceptors enabled ROV to spread along the anastomotic arteriole into the inactive muscle region (dilatation, 7 +/- 1 μm; P < 0.05), where remote dilatation to acetylcholine then doubled (P < 0.05). These findings indicate that constitutive activation of α-adrenoreceptors in skeletal muscle can restrict the spread of dilatation within microvascular resistance

  19. a Region-Based Multi-Scale Approach for Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Kavzoglu, T.; Yildiz Erdemir, M.; Tonbul, H.

    2016-06-01

    Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.

  20. Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning

    PubMed Central

    Pedram, Maysam Z.; Shamloo, Amir; Alasty, Aria; Ghafar-Zadeh, Ebrahim

    2015-01-01

    Resection of the epilepsy foci is the best treatment for more than 15% of epileptic patients or 50% of patients who are refractory to all forms of medical treatment. Accurate mapping of the locations of epileptic neuronal networks can result in the complete resection of epileptic foci. Even though currently electroencephalography is the best technique for mapping the epileptic focus, it cannot define the boundary of epilepsy that accurately. Herein we put forward a new accurate brain mapping technique using superparamagnetic nanoparticles (SPMNs). The main hypothesis in this new approach is the creation of super-paramagnetic aggregates in the epileptic foci due to high electrical and magnetic activities. These aggregates may improve tissue contrast of magnetic resonance imaging (MRI) that results in improving the resection of epileptic foci. In this paper, we present the mathematical models before discussing the simulation results. Furthermore, we mimic the aggregation of SPMNs in a weak magnetic field using a low-cost microfabricated device. Based on these results, the SPMNs may play a crucial role in diagnostic epilepsy and the subsequent treatment of this disease. PMID:26402686

  1. Plant-based active photoprotectants for sunscreens.

    PubMed

    Cefali, L C; Ataide, J A; Moriel, P; Foglio, M A; Mazzola, P G

    2016-08-01

    Excessive exposure to the sun's radiation is the major exogenous mediator of skin damage, which accelerates skin ageing and increases the risk of developing skin cancer. Compounds with photoprotectant activity are extremely useful for decreasing the effect of ultraviolet (UV) radiation on the skin; however, numerous sun filters, especially organic sunscreens, are allergenic. Therefore, the development of formulations containing plant extracts, which may be potentially safer, is extensively being explored. Plant-based cosmetics are commonly used to avoid skin ageing because they contain antioxidant agents that minimize free radical activity, and numerous studies have investigated the skin-protectant effects of related plant species. In addition to their antioxidant properties, plant-based cosmetics protect the skin against solar radiation because they contain polyphenols such as flavonoids and carotenoids. Therefore, this study aims to present a review of plant species commonly used in sunscreens to protect the skin against damage due to sunlight exposure. PMID:26919163

  2. MAG4 versus alternative techniques for forecasting active region flare productivity

    PubMed Central

    Falconer, David A; Moore, Ronald L; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-01-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free magnetic energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region's major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Key Points Quantitative comparison of performance of pairs of forecasting techniques Next MAG4 forecasts major flares more accurately than Present MAG4 Present MAG4 forecast outperforms McIntosh AR Class and total magnetic flux PMID:26213517

  3. Paper-Based Active Tactile Sensor Array.

    PubMed

    Zhong, Qize; Zhong, Junwen; Cheng, Xiaofeng; Yao, Xu; Wang, Bo; Li, Wenbo; Wu, Nan; Liu, Kang; Hu, Bin; Zhou, Jun

    2015-11-25

    A paper-based active tactile sensor -array (PATSA) with a dynamic sensitivity of 0.35 V N(-1) is demonstrated. The pixel position of the PATSA can be routed by analyzing the real-time recording voltages in the pressing process. The PATSA performance, which remains functional when removing partial areas, reveals that the device has a potential application to customized electronic skins. PMID:26450138

  4. Particle acceleration and radiation in flaring complex solar active regions modeled by cellular automata

    NASA Astrophysics Data System (ADS)

    Dauphin, C.; Vilmer, N.; Anastasiadis, A.

    2007-06-01

    Context: We study the acceleration and radiation of electrons and ions interacting with multiple small-scale dissipation regions resulting from the magnetic energy release process. Aims: We aim to calculate the distribution functions of the kinetic energy of the particles and the X-ray spectra and γ-ray fluxes produced by the accelerated particles. Methods: The evolution of the magnetic energy released in an active region is mimicked by a cellular automaton model based on the concept of self-organized criticality. Each burst of magnetic energy release is associated with a reconnecting current sheet (RCS) in which the particles are accelerated by a direct electric field. Results: We calculate the energy gain of the particles (ions and electrons) for three different magnetic configurations of the RCS after their interactions with a given number of RCS. We finally compare our results with existing observations. Conclusions: The results of our simulation can reproduce several properties of the observations such as variable electron and ion energy contents and γ-ray line ratio. Even if very flat X-ray spectra have been reported in a few events, the X-ray spectra produced in this model are too flat when compared to most X-ray observations.

  5. Heating Mechanisms for Intermittent Loops in Active Region Cores from AIA/SDO EUV Observations

    NASA Astrophysics Data System (ADS)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Nigro, G.

    2014-11-01

    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the "warm" contributions to the emission. HMI/SDO data allow us to focus on "inter-moss" regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min-1 and 0.7 min-1. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D "hybrid" shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.

  6. Coronal heating above active regions - 3D MHD model versus multi-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Bingert, Sven; Peter, Hardi

    2014-05-01

    The plasma heating mechanism in the Solar corona is a puzzle since decades. Today high-performance computing together with multi-spacecraft observations offer new insights. We conducted a high-resolution simulation of the corona above an active region and compare synthetic emission deduced from the model with co-temporal observations. Photospheric observations act as a boundary condition for our model that drives magnetic-field braiding by advection and generates a net upwards Poynting flux. In particular, we do not only get a sufficient energy input to the base of the corona, but we also reproduce the observed coronal loops: the 3D structure of the hot AR loops system in the model compares well to joint STEREO-A/-B and Hinode observations. The plasma flows along these loops are similar to observed Doppler maps. Draining and siphon flows along magnetic structures at different temperatures offer a new alternative explanation for the average Doppler red-shifts in the transition region and coronal blue-shifts. This match between model and observations indicates a realistic distribution of the coronal heating in time and space and shows that our 3D MHD model of the corona captures the relevant processes involved.

  7. The Ubiquitous Presence of Looplike Fine Structure inside Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.

    2016-03-01

    Although most of the solar surface outside active regions (ARs) is pervaded by small-scale fields of mixed polarity, this magnetic “carpet” or “junkyard” is thought to be largely absent inside AR plages and strong network. However, using extreme-ultraviolet images and line-of-sight magnetograms from the Solar Dynamics Observatory, we find that unipolar flux concentrations, both inside and outside ARs, often have small, loop-shaped Fe ix 17.1 and Fe xii 19.3 nm features embedded within them, even though no minority-polarity flux is visible in the corresponding magnetograms. Such looplike structures, characterized by horizontal sizes of ˜3-5 Mm and varying on timescales of minutes or less, are seen inside bright 17.1 nm moss, as well as in fainter moss-like regions associated with weaker network outside ARs. We also note a tendency for bright coronal loops to show compact, looplike features at their footpoints. Based on these observations, we suggest that present-day magnetograms may be substantially underrepresenting the amount of minority-polarity flux inside plages and strong network, and that reconnection between small bipoles and the overlying large-scale field could be a major source of coronal heating both in ARs and in the quiet Sun.

  8. Spectropolarimetry of a Limb Active Region and its Cool Coronal Structures

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Kleint, L.; Casini, R.; Schad, T.

    2012-05-01

    During the SDO mission we have regularly used the IBIS and FIRS spectropolarimeters at the Dunn Solar Telescope to measure magnetic fields and plasma parameters from photosphere up to the coronal base. Here we analyze data of a region at and above the east limb (later named NOAA 11302) obtained on September 22nd 2011. The measurements show an erupting prominence, remarkably uniform cool plumes and some material seemingly draining into the active region along post-flare loops. The imaging Fabry-Perot instrument IBIS obtained 30 scans of intensity spectra (30s cadence) and 40 scans of Stokes parameters (90s cadence) in lines of Fe I 630 nm, Na I 596 nm, Ca II 852 nm and H-alpha 656 nm, with an angular resolution near 0.2", over a 40"x80" field of view. The FIRS slit was scanned across the solar image to obtain Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm. We obtained 3 FIRS scans covering a 90"x75" area with cadences of between half an hour and an hour simultaneously with IBIS, at a lower angular resolution. Simultaneous broad band Ca II K and G-band data were obtained with a cadence of 5s. We discuss the vector magnetic fields and plasma properties of NOAA 11302, with emphasis on cool plasma structures extending many Mm into the corona.

  9. A Search for Coriolis Forces Acting on Tilt in Bipolar Active Regions

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.

    2013-12-01

    Bipolar active regions tend to be tilted with respect to the East - West equator of the Sun in accordance with Joy's law that describes the average tilt angle as a function of latitude. As individual bipolar active regions emerge, tilt angles vary with time. Data collected by the Helioseismic and Magnetic Imager aboard the Solar Dynamic Observatory at a higher cadence than previous data allow for a more continuous analysis of emerging regions over their lifetimes. It is theorized that rising magnetic flux-tubes, which emerge as active regions on the surface, are tilted by Coriolis forces acting on the retrograde flow inside the tubes. We will search for and measure any decrease in tilt near the end of emergence, as an indicator of Coriolis forces ending.

  10. The Utility of Auroral Image-based Activities Metrics

    NASA Technical Reports Server (NTRS)

    Germany, G.; Spann, J.; Deverapalli, C.; Hung, C.-C.

    2004-01-01

    Auroral activity indices such as Hemispheric Power and Auroral Boundary are currently key data products used for space weather predictions and nowcasting. However, these products are necessarily based on limited observations which must be extrapolated to provide global coverage. The advent of routine space-based auroral imaging in the last decade offers the seeming advantage of more detailed measures of auroral activity. Examples of image-derived products include energy deposition maps, oval location, cap size, and morphological classification. However, activity metrics derived from auroral images have shortcomings, as well. For example, limited fields-of-view and orbital motion prevent full coverage of the auroral regions. This paper will examine the utility of activity metrics derived h m auroral images for operational purposes. The eight-year collection of Polar UVI images databased in the UVI Online Search Tool (OST) will be used to illustrate the advantages and shortcomings of auroral activity metrics. The potential role of other currently-active imaging missions will also be examined and correlative studies to date using auroral imaging will be summarized.

  11. Lunar base activities and the lunar environment

    NASA Astrophysics Data System (ADS)

    Vondrak, Richard R.

    1992-09-01

    The Moon is an attractive site for astronomical observatories and other facilities because of the absence of a substantial lunar atmosphere and the stability of the lunar surface. The present lunar atmosphere is sufficiently transparent that there is no significant image distortion due to absorption or refraction. This thin atmosphere results from a combination of small sources and prompt losses. The major source that has been identified is the solar wind, whose total mass input into the lunar atmosphere is approximately 50 gm/sec. The major components of the solar wind are light elements (H and He) that promptly escape from the lunar surface by exospheric evaporation (Jeans' escape). The principal atmospheric loss mechanism for heavier gases is photoionization within a period of weeks to months, followed by immediate loss to the solar wind. Lunar base activities will modify the lunar atmosphere if gas is released at a larger rate than that now occurring naturally. Possible gas sources are rocket exhaust, processing of lunar materials, venting of pressurized volumes, and astronaut life support systems. For even modest lunar base activity, such sources will substantially exceed natural sources, although effects are expected to be localized and transient. The Apollo database serves as a useful reference for both measurements of the natural lunar environment and its modification by lunar base activities.

  12. Lunar base activities and the lunar environment

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.

    1992-01-01

    The Moon is an attractive site for astronomical observatories and other facilities because of the absence of a substantial lunar atmosphere and the stability of the lunar surface. The present lunar atmosphere is sufficiently transparent that there is no significant image distortion due to absorption or refraction. This thin atmosphere results from a combination of small sources and prompt losses. The major source that has been identified is the solar wind, whose total mass input into the lunar atmosphere is approximately 50 gm/sec. The major components of the solar wind are light elements (H and He) that promptly escape from the lunar surface by exospheric evaporation (Jeans' escape). The principal atmospheric loss mechanism for heavier gases is photoionization within a period of weeks to months, followed by immediate loss to the solar wind. Lunar base activities will modify the lunar atmosphere if gas is released at a larger rate than that now occurring naturally. Possible gas sources are rocket exhaust, processing of lunar materials, venting of pressurized volumes, and astronaut life support systems. For even modest lunar base activity, such sources will substantially exceed natural sources, although effects are expected to be localized and transient. The Apollo database serves as a useful reference for both measurements of the natural lunar environment and its modification by lunar base activities.

  13. 50 CFR 217.151 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... activity and specified geographical region. (a) Regulations in this subpart apply only to Port Dolphin Energy LLC (Port Dolphin) and those persons it authorizes to conduct activities on its behalf for the... incidental to construction and operation of the Port Dolphin Deepwater Port (Port). (b) The taking of...

  14. 50 CFR 217.151 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... activity and specified geographical region. (a) Regulations in this subpart apply only to Port Dolphin Energy LLC (Port Dolphin) and those persons it authorizes to conduct activities on its behalf for the... incidental to construction and operation of the Port Dolphin Deepwater Port (Port). (b) The taking of...

  15. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Operation and Maintenance of the Neptune Liquefied Natural Gas Facility Off Massachusetts § 217.170 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune LNG LLC (Neptune) and those persons it authorizes to conduct activities on its behalf for the...

  16. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Operation and Maintenance of the Neptune Liquefied Natural Gas Facility Off Massachusetts § 217.170 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune LNG LLC (Neptune) and those persons it authorizes to conduct activities on its behalf for the...

  17. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Operation and Maintenance of the Neptune Liquefied Natural Gas Facility Off Massachusetts § 217.170 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune LNG LLC (Neptune) and those persons it authorizes to conduct activities on its behalf for the...

  18. 50 CFR 217.170 - Specified activity and specified geographical region.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Operation and Maintenance of the Neptune Liquefied Natural Gas Facility Off Massachusetts § 217.170 Specified activity and specified geographical region. (a) Regulations in this subpart apply only to Neptune LNG LLC (Neptune) and those persons it authorizes to conduct activities on its behalf for the...

  19. Regional Quality Assurance Activity in Higher Education in Southeast Asia: Its Characteristics and Driving Forces

    ERIC Educational Resources Information Center

    Umemiya, Naoki

    2008-01-01

    This article analyses the characteristics and driving forces of regional quality assurance activity in Southeast Asia, which has been actively promoted in recent years by the ASEAN University Network, an organisation for higher education under the auspices of the Association of Southeast Asian Nations (ASEAN). There are now more collaborative…

  20. Regional brain activation during meditation shows time and practice effects: an exploratory FMRI study.

    PubMed

    Baron Short, E; Kose, Samet; Mu, Qiwen; Borckardt, Jeffery; Newberg, Andrew; George, Mark S; Kozel, F Andrew

    2010-03-01

    Meditation involves attentional regulation and may lead to increased activity in brain regions associated with attention such as dorsal lateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). Using functional magnetic resonance imaging, we examined whether DLPFC and ACC were activated during meditation. Subjects who meditate were recruited and scanned on a 3.0 Tesla scanner. Subjects meditated for four sessions of 12 min and performed four sessions of a 6 min control task. Individual and group t-maps were generated of overall meditation response versus control response and late meditation response versus early meditation response for each subject and time courses were plotted. For the overall group (n = 13), and using an overall brain analysis, there were no statistically significant regional activations of interest using conservative thresholds. A region of interest analysis of the entire group time courses of DLPFC and ACC were statistically more active throughout meditation in comparison to the control task. Moreover, dividing the cohort into short (n = 8) and long-term (n = 5) practitioners (>10 years) revealed that the time courses of long-term practitioners had significantly more consistent and sustained activation in the DLPFC and the ACC during meditation versus control in comparison to short-term practitioners. The regional brain activations in the more practised subjects may correlate with better sustained attention and attentional error monitoring. In summary, brain regions associated with attention vary over the time of a meditation session and may differ between long- and short-term meditation practitioners.

  1. The Solomon Sea eddy activity from a 1/36° regional model

    NASA Astrophysics Data System (ADS)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is

  2. MAG4 versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Astrophysics Data System (ADS)

    Falconer, David; Moore, Ronald L.; Barghouty, Abdulnasser F; Khazanov, Igor

    2014-06-01

    MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region’s major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Funding for this research came from NASA’s Game Changing Development Program, Johnson Space Center’s Space Radiation Analysis Group (SRAG), and AFOSR’s Multi-University Research Initiative. In particular, funding was facilitated by Dr. Dan Fry (NASA-JSC) and David Moore (NASA-LaRC).

  3. Comparative analysis of antioxidant activity and functional components of the ethanol extract of lotus (Nelumbo nucifera) from various growing regions.

    PubMed

    Zhao, Xu; Shen, Jian; Chang, Kyung Ja; Kim, Sung Hoon

    2014-07-01

    The variations in antioxidant activity and concentration of functional components in the ethanol extracts of lotus seeds and rhizomes based on the growing region and dryness were investigated. Free radical scavenging activity, total phenolic and flavonoid content, and concentration of several specific flavonoids and alkaloids in the ethanol extracts of lotus were measured. Antioxidant activity and its correlative total phenolic content varied characteristically depending on the growing region and dryness. High-perfomance liquid chromatography analysis showed that the ethanol extracts of lotus seeds from Vietnam (Ho Chi Minh City), raw rhizomes from Korea (Siheung), and dried rhizomes from Japan (Nigata) had the greatest specific flavonoid content. The ethanol extracts of seeds from China (Hubei), raw rhizomes from Japan (Nigata), and dried rhizomes from Korea (Siheung) had the greatest specific alkaloid content. Astragaline, rutin, isoquercetin, nuciferine, dauricine, isoliensinine, and neferine were identified in lotus rhizomes for the first time in this study.

  4. THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2011-11-01

    We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial latitudes ranging from 1{sup 0} to 40{sup 0} with a total flux of 10{sup 22} Mx. We find that the dynamic evolution of the flux tube changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from 15 kG to 100 kG. At 100 kG, the development of {Omega}-shaped rising loops is mainly controlled by the growth of the magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising {Omega}-shaped loops is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy's law for initial field strengths of {approx}>40 kG. We also examine other asymmetries that develop between the leading and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of {approx}40-50 kG produce emerging loops that best match the observed properties of solar active regions.

  5. The lightning activity associated with the dry and moist convections in the Himalayan Regions

    NASA Astrophysics Data System (ADS)

    Penki, R. K.; Kamra, A. K.

    2013-06-01

    Lightning activity in the dry environment of northwest India and Pakistan (NW) and in the moist environment of northeast India (NE) has been examined from the Optical Transient Detector and Lightning Imaging Sensor data obtained from the Tropical Rainfall Measuring Mission satellite during 1995-2010. In the NW region, seasonal variation of flash rate is annual with a maximum in July but is semi-annual with a primary maximum in April and a secondary maximum in September, in the NE region. On diurnal scale, flash rate is the maximum in the afternoons, in both the NE and NW regions. The correlation of flash rate with convective parameters, viz. surface temperature, convective available potential energy (CAPE) and outgoing long-wave radiation is better with convective activity in the NW than in the NE region. Mean value of aerosol optical depth at 550 nm is ~ 26% higher and is highly correlated with flash rate in NW as compared to that in NE. Results indicate that CAPE is ~ 120 times more efficient in NW than in the NE region for production of lightning. The empirical orthogonal function analysis of flash rate, surface temperature, and CAPE shows that variance of lightning activity in these regions cannot be fully explained by the variance in the surface temperature and CAPE alone, and that some other factors, such as orographic lifting, precipitation, topography, etc., may also contribute to this variance in these mountainous regions. Further, the increase in CAPE due to orographic lifting in the Himalayan foothills in the NE region may contribute to ~ 7.5% increase in lightning activity. Relative roles of the thermally induced and moisture-induced changes in CAPE are examined in these regions. This study merely raises the questions, and that additional research is required for explaining the fundamental reasons for the reported observations here.

  6. Regional distribution pattern of groundwater heavy metals resulting from agricultural activities

    NASA Astrophysics Data System (ADS)

    Nouri, J.; Mahvi, A. H.; Jahed, G. R.; Babaei, A. A.

    2008-09-01

    Contaminations of groundwater by heavy metals due to agricultural activities are growing recently. The objective of this study was to evaluate and map regional patterns of heavy metals (Cd, Zn and Cu) in groundwater on a plain with high agricultural activities. The study was conducted to investigate the concentration of heavy metals and distribution in groundwater in regions of Shush Danial and Andimeshk aquifers in the southern part of Iran. Presently, groundwater is the only appropriate and widely used source of drinking water for rural and urban communities in this region. The region covers an area of 1,100 km2 between the Dez and Karkhe rivers, which lead to the Persian Gulf. For this study, the region was divided into four sub-regions A, B, C and D. Additionally, 168 groundwater samples were collected from 42 water wells during the earlier months of 2004. The flame atomic absorption spectrometry (AAS-Flame) was used to measure the concentration of heavy metals in water samples and the Surfer software was used for determination of the contour map of metal distribution. The results demonstrated that in all of the samples, Cd and Zn concentrations were below the EPA MCLG and EPA secondary standard, respectively. However, the Cu contents of 4.8 % of all samples were higher than EPA MCL. It is also indicated that the concentrations of metals were more pronounced at the southern part of the studied region than at the others. The analysis of fertilizers applied for agricultural activities at this region also indicated that a great majority of the above-mentioned heavy metals were discharged into the environment. Absence of confining layers, proximity to land surface, excess agricultural activities in the southern part and groundwater flow direction that is generally from the north to the southern parts in this area make the southern region of the Shush plain especially vulnerable to pollution by heavy metals than by other contaminants.

  7. Determining heating timescales in solar active region cores from AIA/SDO Fe XVIII images

    SciTech Connect

    Ugarte-Urra, Ignacio; Warren, Harry P.

    2014-03-01

    We present a study of the frequency of transient brightenings in the core of solar active regions as observed in the Fe XVIII line component of AIA/SDO 94 Å filter images. The Fe XVIII emission is isolated using an empirical correction to remove the contribution of 'warm' emission to this channel. Comparing with simultaneous observations from EIS/Hinode, we find that the variability observed in Fe XVIII is strongly correlated with the emission from lines formed at similar temperatures. We examine the evolution of loops in the cores of active regions at various stages of evolution. Using a newly developed event detection algorithm, we characterize the distribution of event frequency, duration, and magnitude in these active regions. These distributions are similar for regions of similar age and show a consistent pattern as the regions age. This suggests that these characteristics are important constraints for models of solar active regions. We find that the typical frequency of the intensity fluctuations is about 1400 s for any given line of sight, i.e., about two to three events per hour. Using the EBTEL 0D hydrodynamic model, however, we show that this only sets a lower limit on the heating frequency along that line of sight.

  8. On the Dependence of the Ionospheric E-Region Electric Field of the Solar Activity

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Schuch, Nelson Jorge; Moro, Juliano; Araujo Resende, Laysa Cristina; Chen, Sony Su; Costa, D. Joaquim

    2016-07-01

    We have being studying the zonal and vertical E region electric field components inferred from the Doppler shifts of type 2 echoes (gradient drift irregularities) detected with the 50 MHz backscatter coherent (RESCO) radar set at Sao Luis, Brazil (SLZ, 2.3° S, 44.2° W) during the solar cycle 24. In this report we present the dependence of the vertical and zonal components of this electric field with the solar activity, based on the solar flux F10.7. For this study we consider the geomagnetically quiet days only (Kp <= 3+). A magnetic field-aligned-integrated conductivity model was developed for proving the conductivities, using the IRI-2007, the MISIS-2000 and the IGRF-11 models as input parameters for ionosphere, neutral atmosphere and Earth magnetic field, respectively. The ion-neutron collision frequencies of all the species are combined through the momentum transfer collision frequency equation. The mean zonal component of the electric field, which normally ranged from 0.19 to 0.35 mV/m between the 8 and 18 h (LT) in the Brazilian sector, show a small dependency with the solar activity. Whereas, the mean vertical component of the electric field, which normally ranges from 4.65 to 10.12 mV/m, highlight the more pronounced dependency of the solar flux.

  9. Identification of furin pro-region determinants involved in folding and activation.

    PubMed Central

    Bissonnette, Lyne; Charest, Gabriel; Longpré, Jean-Michel; Lavigne, Pierre; Leduc, Richard

    2004-01-01

    The pro-region of the subtilisin-like convertase furin acts early in the biosynthetic pathway as an intramolecular chaperone to enable proper folding of the zymogen, and later on as an inhibitor to constrain the activity of the enzyme until it reaches the trans -Golgi network. To identify residues that are important for pro-region function, we initially identified amino acids that are conserved among the pro-regions of various mammalian convertases. Site-directed mutagenesis of 17 selected amino acids within the 89-residue pro-region and biosynthetic labelling revealed that I60A-furin and H66A-furin were rapidly degraded in a proteasome-dependent manner, while W34A-furin and F67A-furin did not show any autocatalytic activation. Intriguingly, the latter mutants proteolytically cleaved pro-von Willebrand factor precursor to the mature polypeptide, suggesting that the mutations permitted proper folding, but did not allow the pro-region to exercise its role in inhibiting the enzyme. Homology modelling of furin's pro-region revealed that residues Ile-60 and His-66 might be crucial in forming the binding interface with the catalytic domain, while residues Trp-34 and Phe-67 might be involved in maintaining a hydrophobic core within the pro-region itself. These results provide structural insights into the dual role of furin's pro-region. PMID:14741044

  10. Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Fornasier, S.; Pajola, M.; Besse, S.; Davidsson, B. J. R.; Lara, L. M.; Mottola, S.; Naletto, G.; Sierks, H.; Barucci, A. M.; Scholten, F.; Preusker, F.; Pommerol, A.; Masoumzadeh, N.; Lazzarin, M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hall, I.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lin, Z.-Y.; Lopez Moreno, J. J.; Marzari, F.; Moreno, F.; Shi, X.; Thomas, N.; Toth, I.; Tubiana, C.

    2016-02-01

    Aims.We carried out an investigation of the surface variegation of comet 67P/Churyumov-Gerasimenko, the detection of regions showing activity, the determination of active and inactive surface regions of the comet with spectral methods, and the detection of fallback material. Methods: We analyzed multispectral data generated with Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) narrow angle camera (NAC) observations via spectral techniques, reflectance ratios, and spectral slopes in order to study active regions. We applied clustering analysis to the results of the reflectance ratios, and introduced the new technique of activity thresholds to detect areas potentially enriched in volatiles. Results: Local color inhomogeneities are detected over the investigated surface regions. Active regions, such as Hapi, the active pits of Seth and Ma'at, the clustered and isolated bright features in Imhotep, the alcoves in Seth and Ma'at, and the large alcove in Anuket, have bluer spectra than the overall surface. The spectra generated with OSIRIS NAC observations are dominated by cometary emissions of around 700 nm to 750 nm as a result of the coma between the comet's surface and the camera. One of the two isolated bright features in the Imhotep region displays an absorption band of around 700 nm, which probably indicates the existence of hydrated silicates. An absorption band with a center between 800-900 nm is tentatively observed in some regions of the nucleus surface. This absorption band can be explained by the crystal field absorption of Fe2+, which is a common spectral feature seen in silicates.

  11. Hospital-Based Coalition to Improve Regional Surge Capacity

    PubMed Central

    Terndrup, Thomas E.; Leaming, James M.; Adams, R. Jerry; Adoff, Spencer

    2012-01-01

    Introduction Surge capacity for optimization of access to hospital beds is a limiting factor in response to catastrophic events. Medical facilities, communication tools, manpower, and resource reserves exist to respond to these events. However, these factors may not be optimally functioning to generate an effective and efficient surge response. The objective was to improve the function of these factors. Methods Regional healthcare facilities and supporting local emergency response agencies developed a coalition (the Healthcare Facilities Partnership of South Central Pennsylvania; HCFP-SCPA) to increase regional surge capacity and emergency preparedness for healthcare facilities. The coalition focused on 6 objectives: (1) increase awareness of capabilities and assets, (2) develop and pilot test advanced planning and exercising of plans in the region, (3) augment written medical mutual aid agreements, (4) develop and strengthen partnership relationships, (5) ensure National Incident Management System compliance, and (6) develop and test a plan for effective utilization of volunteer healthcare professionals. Results In comparison to baseline measurements, the coalition improved existing areas covered under all 6 objectives documented during a 24-month evaluation period. Enhanced communications between the hospital coalition, and real-time exercises, were used to provide evidence of improved preparedness for putative mass casualty incidents. Conclusion The HCFP-SCPA successfully increased preparedness and surge capacity through a partnership of regional healthcare facilities and emergency response agencies. PMID:23316266

  12. A Telephone Based Regional Adult Education Information Service.

    ERIC Educational Resources Information Center

    Eyler, David R.

    This report describes a cooperative project designed to inform area residents of available adult education opportunities and to establish a central information contact point. The regional Adult Education Coordinating Committee compiled a list of adult education courses and services offered by member institutions, devised newspaper and radio…

  13. Evidence-based medicine for ultrasound-guided regional anesthesia.

    PubMed

    Salinas, Francis V; Hanson, Neil A

    2014-12-01

    Available evidence favoring the use of ultrasound for regional anesthesia is reviewed, updated, and critically assessed. Important outcome advantages include decreased time to block onset; decreased risk of local anesthetic systemic toxicity; and, depending on the outcome definition, increased block success rates. Ultrasound guidance, peripheral nerve blocks, and central neuraxial blocks are discussed.

  14. Different Modes of Turbulence in the Active Regions of the Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Kozak, L. V.; Kostik, R. I.; Cheremnykh, O. K.

    In work the range of different methods for the analysis of characteristics of turbulent processes in the active regions of the solar photosphere has been used. The changes of fluctuations distribution function and its moments were analyzed, spectral analysis was carried out.It was found out from the observations of active region carried out with the 70-cm vacuum tower telescope VTT in Isanie (Tenerife Island, Spain) that the turbulent processes in the sun photosphere are characterized by two different spectra of turbulence. The first one of them is well known Kolmohorov spectrum, which describes the plasma with zero mean magnetic field. The second one is the Kraichnan spectrum with a different from zero mean magnetic field. Transition from one spectrum type to another one occurs at scale of 3 Mm.We have to note that the scale 3 Mm corresponds to one of mesogranulation and testifies about non-zero mean magnetic fields for the consideration of regions exceeding the granulation in active regions of the photosphere. Besides, this clears the possibility of appearance of selforganizing magnetic plasma structures such as spots, active regions and complexes of activity.

  15. Spontaneous regional brain activity links restrained eating to later weight gain among young women.

    PubMed

    Dong, Debo; Jackson, Todd; Wang, Yulin; Chen, Hong

    2015-07-01

    Theory and prospective studies have linked restrained eating (RE) to risk for future weight gain and the onset of obesity, but little is known about resting state neural activity that may underlie this association. To address this gap, resting fMRI was used to test the extent to which spontaneous neural activity in regions associated with inhibitory control and food reward account for potential relations between baseline RE levels and changes in body weight among dieters over a one-year interval. Spontaneous regional activity patterns corresponding to RE were assessed among 50 young women using regional homogeneity (ReHo) analysis, which measured temporal synchronization of spontaneous fluctuations within a food deprivation condition. Analyses indicated higher baseline RE scores predicted more weight gain at a one-year follow-up. Furthermore, food-deprived dieting women with high dietary restraint scores exhibited more spontaneous local activity in brain regions associated with the expectation and valuation for food reward [i.e., orbitofrontal cortex (OFC)/ventromedial prefrontal cortex (VMPFC)] and reduced spontaneous local activity in inhibitory control regions [i.e., bilateral dorsal-lateral prefrontal cortex (DLPFC)] at baseline. Notably, the association between baseline RE and follow-up weight gain was mediated by decreased local synchronization of the right DLPFC in particular and, to a lesser degree, increased local synchronization of the right VMPFC. In conjunction with previous research, these findings highlight possible neural mechanisms underlying the relation between RE and risk for weight gain. PMID:26004091

  16. Spontaneous regional brain activity links restrained eating to later weight gain among young women.

    PubMed

    Dong, Debo; Jackson, Todd; Wang, Yulin; Chen, Hong

    2015-07-01

    Theory and prospective studies have linked restrained eating (RE) to risk for future weight gain and the onset of obesity, but little is known about resting state neural activity that may underlie this association. To address this gap, resting fMRI was used to test the extent to which spontaneous neural activity in regions associated with inhibitory control and food reward account for potential relations between baseline RE levels and changes in body weight among dieters over a one-year interval. Spontaneous regional activity patterns corresponding to RE were assessed among 50 young women using regional homogeneity (ReHo) analysis, which measured temporal synchronization of spontaneous fluctuations within a food deprivation condition. Analyses indicated higher baseline RE scores predicted more weight gain at a one-year follow-up. Furthermore, food-deprived dieting women with high dietary restraint scores exhibited more spontaneous local activity in brain regions associated with the expectation and valuation for food reward [i.e., orbitofrontal cortex (OFC)/ventromedial prefrontal cortex (VMPFC)] and reduced spontaneous local activity in inhibitory control regions [i.e., bilateral dorsal-lateral prefrontal cortex (DLPFC)] at baseline. Notably, the association between baseline RE and follow-up weight gain was mediated by decreased local synchronization of the right DLPFC in particular and, to a lesser degree, increased local synchronization of the right VMPFC. In conjunction with previous research, these findings highlight possible neural mechanisms underlying the relation between RE and risk for weight gain.

  17. The study of a spatial relationship between the Equatorial coronal hole and the Active region

    NASA Astrophysics Data System (ADS)

    Karna, Mahendra; Karna, Nishu

    2016-05-01

    The 11-year solar cycle is characterized by the periodic change in the solar activity like sunspot numbers, coronal holes, active regions, eruptions such as flares and coronal mass ejections. We study the relationship between equatorial coronal holes (ECH) and the active regions (AR) as coronal hole positions and sizes change with the solar cycle. We made a detailed study for two solar maximum: Solar Cycle 23 (1999, 2000, 2001 and 2002) and Solar Cycle 24 (2011, 2012 and 2013). We used publically available Heliophysics Feature Catalogue and NOAA Solar Geophysical data for. Moreover, we used daily Solar Region Summary (SRS) data from SWPC/NOAA website. We examined the position of ECH and AR and noted that during a maximum of 23, the majority of ECH were not near active regions. However, in cycle 24 coronal holes and equatorial holes were more close to each other. Moreover, we noticed the asymmetry in AR migrations towards the lower latitude in both Northern and Southern hemisphere in cycle 23. While, no such notable asymmetrical behavior was observed in a maximum of cycle 24. Our goal is to extend the study with cycle 21 and 22 and examine the correlation between equatorial holes, the active regions, and the flares. This combined study will shed light in determining the distribution of flares.

  18. Steep declines in atmospheric base cations in regions of Europe and North America

    NASA Astrophysics Data System (ADS)

    Hedin, Lars O.; Granat, Lennart; Likens, Gene E.; Adri Buishand, T.; Galloway, James N.; Butler, Thomas J.; Rodhe, Henning

    1994-01-01

    HUMAN activities have caused marked changes in atmospheric chemistry over large regions of Europe and North America. Although considerable attention has been paid to the effects of changes in the deposition of acid anions (such as sulphate and nitrate) on terrestrial and aquatic ecosystems1-7, little is known about whether the concentrations of basic components of the atmosphere have changed over time8,9 and what the biogeochemical consequences of such potential changes might be. In particular, there has been some controversy8-12 as to whether declines in base-cation deposition have countered effects of recent reductions in SO2emission. Here we report evidence for steep declines in the atmospheric concentrations of base cations (sum of non-sea-salt Ca2+, Mg2+, K+ and Na+) over the past 10 to 26 years from high-quality precipitation chemistry records in Europe and North America. To varying but generally significant degrees, these base-cation trends have offset recent reductions in sulphate deposition in the regions examined. The observed trends seem to be ecologically important on decadal timescales, and support earlier contentions8-10 that declines in the deposition of base cations may have contributed to increased sensitivity of poorly buffered ecosystems.

  19. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  20. Human body contour data based activity recognition.

    PubMed

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate. PMID:24111015

  1. Human body contour data based activity recognition.

    PubMed

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.

  2. Model-Based Segmentation of Cortical Regions of Interest for Multi-subject Analysis of fMRI Data

    NASA Astrophysics Data System (ADS)

    Engel, Karin; Brechmann, Andr'e.; Toennies, Klaus

    The high inter-subject variability of human neuroanatomy complicates the analysis of functional imaging data across subjects. We propose a method for the correct segmentation of cortical regions of interest based on the cortical surface. First results on the segmentation of Heschl's gyrus indicate the capability of our approach for correct comparison of functional activations in relation to individual cortical patterns.

  3. Major Regional Earthquake as a Trigger for Enhanced Volcanic Activity: Evidence from Satellite Thermal Data

    NASA Astrophysics Data System (ADS)

    Harris, A.; Ripepe, M.; Wright, R.; Dell Donne, D.

    2006-12-01

    links between regional seismic events and eruption onset, thereby answering the question: can a major regional earthquake trigger a volcanic eruption? However, no new eruptions were triggered by the 26 May Java earthquake. Instead, those two eruptions that were under-way within Java experienced significant and coupled repsonses in terms of their eruptive intensity, measured in terms of erupted volume flux. We conclude that regional earthquakes are not always able to trigger an eruption itself, but do have sufficient influence to modify the intensity of activity at on-going eruptions. Our intention is to examine the full 7-year-long MODVOLC data base to search for further correlations.

  4. Activity-Based Protein Profiling of Microbes

    SciTech Connect

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  5. Active-imaging-based underwater navigation

    NASA Astrophysics Data System (ADS)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  6. TWO-DIMENSIONAL CELLULAR AUTOMATON MODEL FOR THE EVOLUTION OF ACTIVE REGION CORONAL PLASMAS

    SciTech Connect

    López Fuentes, Marcelo; Klimchuk, James A.

    2015-02-01

    We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of –2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.

  7. Mechanism of formation of a dipole magnetic field in the central regions of active galaxies

    NASA Astrophysics Data System (ADS)

    Andreasyan, R. R.

    1996-01-01

    A model of the formation of large-scale magnetic fields of dipole configuration in the central regions (r ≈ 100 pc) of active galaxies is studied. It is assumed that these regions contain a rapidly rotating, highly ionized gas (Ω ≈ 5·10-15 sec, Ne ≈ 103 cm-3). Ionized matter escapes from the center of the region with a velocity of several hundred km/sec and is entrained by the rotation of the surrounding medium. Biermann's "battery" effect [L. Biermann, Z. Naturforsch., 5a, 65 (1950)] operates under such conditions, and circular electric currents are formed in the medium, which amplify the dipole magnetic fields. During the active phase of a galaxy, about 108 years, the magnetic field strength at the boundary of this region may reach 10-4 10-3 G.

  8. Temperature structure of active regions deduced from helium-like sulphur lines

    NASA Technical Reports Server (NTRS)

    Watanabe, Tetsuya; Hara, Hirohisa; Shimizu, Toshifumi; Hiei, Eijiro; Bentley, Robert D.; Lang, James; Phillips, Kenneth J. H.; Pike, C. David; Fludra, Andrzej; Bromage, Barbara J. I.

    1995-01-01

    Solar active-region temperatures have been determined from the full-Sun spectra of helium-like sulfur (S XV) observed by the Bragg Crystal Spectrometer on Board the Yohkoh satellite. The average temperature deduced from S XV is demonstrated to vary with the solar activity level: A temperature of 2.5 x 10(exp 6) K is derived from the spectra taken during low solar activity, similar to the general corona, while 4 x 10(exp 6) K is obtained during a higher activity phase. For the latter, the high- temperature tail of the differential emission measure of active regions is found most likely due to the superposition of numerous flare-like events (micro/nano-flares).

  9. Potentially active regions on Titan: New processing of Cassini/VIMS data

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Hirtzig, M.; Bratsolis, E.; Bampasidis, G.; Coustenis, A.; Kyriakopoulos, K.; Le Mouélic, S.; Stephan, K.; Jaumann, R.; Drossart, P.; Sotin, C.; St. Seymour, K.; Moussas, X.

    2012-04-01

    our RT code to verify the varying brightness of Hotei Regio reported by other investigators based on models lacking proper simulation of the atmospheric absorption [10]. Even though we have used exactly the same dataset, we did not detect any significant surface albedo variations over time; this led us to revise the definition of "active" regions: even if these regions have not visually changed over the course of the Cassini mission, the determination of the chemical composition and the correlation with the morphological structures [11] observed in these areas do not rule out that past and/or ongoing cryovolcanic processes are still a possible interpretation. [1] Solomonidou, A. et al. (2011). Potentially active regions on Titan: New processing of Cassini/VIMS data. In preparation. [2] Stephan, K. et al. (2008). Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data. Planetary and Space Science 56, 406-419. [3] Hirtzig, M. et al. (2011). Applications of a new methane linelist to Cassini/VIMS spectra of Titan in the 1.28-5.2 µm range . In preparation. [4] Wall, s. D. et al. (2009). Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Journal of Geophysical Research 36, L04203, [5] Barnes, J.W. et al. (2006). Cassini observations of flow-like features in western Tui Regio, Titan. Geophysical Research Letters 33, L16204. [6] Soderblom, L.A. et al. (2009). The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR. Icarus 204, 610-618. [7] Lopes, R.M.C. et al. (2010). Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus 205, 540-558. [8] Le Mouélic et al. (2008). Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. Journal of Geophysical Research 113, E04003. [9] Campargue, A. et al. (2011). An empirical line list for methane at 80 K

  10. A basic motif in the N-terminal region of RAG1 enhances V(D)J recombination activity.

    PubMed Central

    McMahan, C J; Difilippantonio, M J; Rao, N; Spanopoulou, E; Schatz, D G

    1997-01-01

    The variable portions of antigen receptor genes are assembled from component gene segments by a site-specific recombination reaction known as V(D)J recombination. The RAG1 and RAG2 proteins are the critical lymphoid cell-specific components of the recombination enzymatic machinery and are responsible for site-specific DNA recognition and cleavage. Previous studies had defined a minimal, recombinationally active core region of murine RAG1 consisting of amino acids 384 to 1008 of the 1,040-residue RAG1 protein. No recombination function has heretofore been ascribed to any portion of the 383-amino-acid N-terminal region that is missing from the core, but it seems likely to be of functional significance, based on its evolutionary conservation. Using extrachromosomal recombination substrates, we demonstrate here that the N-terminal region enhances the recombination activity of RAG1 by up to an order of magnitude in a variety of cell lines. Deletion analysis localized a region of the N terminus critical for this effect to amino acids 216 to 238, and further mutagenesis demonstrated that a small basic amino acid motif (BIIa) in this region is essential for enhancing the activity of RAG1. Despite the fact that BIIa is important for the interaction of RAG1 with the nuclear localization factor Srp-1, it does not appear to enhance recombination by facilitating nuclear transport of RAG1. A variety of models for how this region stimulates the recombination activity of RAG1 are considered. PMID:9234712

  11. Active microring based tunable optical power splitters

    NASA Astrophysics Data System (ADS)

    Peter, Eldhose; Thomas, Arun; Dhawan, Anuj; Sarangi, Smruti R.

    2016-01-01

    In this paper we propose a set of novel tunable optical power splitters based on active microring resonators. They work by operating ring resonators in the transient zone between full resonance and off-resonance states for a specific wavelength. We can achieve different split ratios by either varying the bias voltage, or by selectively enabling a given resonator with a specific split ratio among an array of ring resonators. We take 500 ps to tune the resonator, which is at least 10× better that competing designs. Its split ratio varies from 0.4 to 1.8 for an applied voltage range of 0-5 V.

  12. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  13. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world

    PubMed Central

    Dowdy, Andrew J.

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  14. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  15. Active faults and seismogenic models for the Urumqi city, Xinjiang Autonomous Region, China

    NASA Astrophysics Data System (ADS)

    Li, Yingzhen; Yu, Yang; Shen, Jun; Shao, Bo; Qi, Gao; Deng, Mei

    2016-06-01

    We have studied the characteristics of the active faults and seismicity in the vicinity of Urumqi city, the capital of Xinjiang Autonomous Region, China, and have proposed a seismogenic model for the assessment of earthquake hazard in this area. Our work is based on an integrated analysis of data from investigations of active faults at the surface, deep seismic reflection soundings, seismic profiles from petroleum exploration, observations of temporal seismic stations, and the precise location of small earthquakes. We have made a comparative study of typical seismogenic structures in the frontal area of the North Tianshan Mountains, where Urumqi city is situated, and have revealed the primary features of the thrust-fold-nappe structure there. We suggest that Urumqi city is comprised two zones of seismotectonics which are interpreted as thrust-nappe structures. The first is the thrust nappe of the North Tianshan Mountains in the west, consisting of the lower (root) thrust fault, middle detachment, and upper fold-uplift at the front. Faults active in the Pleistocene are present in the lower and upper parts of this structure, and the detachment in the middle spreads toward the north. In the future, M7 earthquakes may occur at the root thrust fault, while the seismic risk of frontal fold-uplift at the front will not exceed M6.5. The second structure is the western flank of the arc-like Bogda nappe in the east, which is also comprised a root thrust fault, middle detachment, and upper fold-uplift at the front, of which the nappe stretches toward the north; several active faults are also developed in it. The fault active in the Holocene is called the South Fukang fault. It is not in the urban area of Urumqi city. The other three faults are located in the urban area and were active in the late Pleistocene. In these cases, this section of the nappe structure near the city has an earthquake risk of M6.5-7. An earthquake M S6.6, 60 km east to Urumqi city occurred along the

  16. Recent Activities on the Embrace Space Weather Regional Warning Center: the New Space Weather Data Center

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Dal Lago, Alisson; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Takahashi, Hisao; Costa, D. Joaquim; Banik Padua, Marcelo; Campos Velho, Haroldo

    2016-07-01

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is known by the acronyms Embrace that stands for the Portuguese statement "Estudo e Monitoramento BRAasileiro de Clima Espacial" Program (Brazilian Space Weather Study and Monitoring program). The mission of the Embrace/INPE program is to monitor the Solar-Terrestrial environment, the magnetosphere, the upper atmosphere and the ground induced currents to prevent effects on technological and economic activities. The Embrace/INPE system monitors the physical parameters of the Sun-Earth environment, such as Active Regions (AR) in the Sun and solar radiation by using radio telescope, Coronal Mass Ejection (CME) information by satellite and ground-based cosmic ray monitoring, geomagnetic activity by the magnetometer network, and ionospheric disturbance by ionospheric sounders and using data collected by four GPS receiver network, geomagnetic activity by a magnetometer network, and provides a forecasting for Total Electronic Content (TEC) - 24 hours ahead - using a version of the SUPIM model which assimilates the two latter data using nudging approach. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. Regarding outreach, it has being published a daily bulletin in Portuguese and English with the status of the space weather environment on the Sun, the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, a comprehensive data bank and an interface layer are under commissioning to allow an easy and direct access to all the space weather data collected by Embrace through the Embrace web Portal. The information being released encompasses data from: (a) the Embrace Digisonde Network (Embrace DigiNet) that monitors

  17. Combining region-based and imprecise boundary-based cues for interactive medical image segmentation.

    PubMed

    Jones, Jonathan-Lee; Xie, Xianghua; Essa, Ehab

    2014-12-01

    In this paper, we present an approach combining both region selection and user point selection for user-assisted segmentation as either an enclosed object or an open curve, investigate the method of image segmentation in specific medical applications (user-assisted segmentation of the media-adventitia border in intravascular ultrasound images, and lumen border in optical coherence tomography images), and then demonstrate the method with generic images to show how it could be utilized in other types of medical image and is not limited to the applications described. The proposed method combines point-based soft constraint on object boundary and stroke-based regional constraint. The user points act as attraction points and are treated as soft constraints rather than hard constraints that the segmented boundary has to pass through. The user can also use strokes to specify region of interest. The probabilities of region of interest for each pixel are then calculated, and their discontinuity is used to indicate object boundary. The combinations of different types of user constraints and image features allow flexible and robust segmentation, which is formulated as an energy minimization problem on a multilayered graph and is solved using a shortest path search algorithm. We show that this combinatorial approach allows efficient and effective interactive segmentation, which can be used with both open and closed curves to segment a variety of images in different ways. The proposed method is demonstrated in the two medical applications, that is, intravascular ultrasound and optical coherence tomography images, where image artefacts such as acoustic shadow and calcification are commonplace and thus user guidance is desirable. We carried out both qualitative and quantitative analysis of the results for the medical data; comparing the proposed method against a number of interactive segmentation techniques. PMID:25377853

  18. A Collaborative Network Model for Agrifood Transactions on Regional Base

    NASA Astrophysics Data System (ADS)

    Volpentesta, Antonio P.; Ammirato, Salvatore

    The paper deals with a collaborative agrifood network in a regional scenario where producers of high typical and quality goods and consumer groups are involved in agrifood transactions as well as information and knowledge exchanges through an e-business platform. While producers are engaged in providing consumers with useful and timely information about healthiness, environmentally friendliness and most importantly, food quality of their products, consumers are engaged in giving prompt and understandable feedbacks to the producers. In this sense, the network is a form of proactive learning community. Starting from some basic socio-economic assumptions on a reference territory, we present an organizational model that can be adopted to foster the development of the regional area where it is applied. An instantiation of the model for a selected territory (the District of High Quality Productions in Sibari, Calabria, Italy) and first results, coming from two pilot tests, have been summarized as well.

  19. Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.

    Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  20. UVCS Observations of Slow Plasma Flow in the Corona Above Active Regions

    NASA Astrophysics Data System (ADS)

    Woo, R.; Habbal, S. R.

    2005-05-01

    The elusive source of slow solar wind has been the subject of ongoing discussion and debate. Observations of solar wind speed near the Earth orbit, first with IPS (interplanetary scintillation) and later with Ulysses in situ measurements, have suggested that some slow solar wind may be associated with active regions (Kojima & Kakinuma 1987; Woo, Habbal & Feldman 2004). The ability of SOHO UVCS Doppler dimming measurements to provide estimates of solar wind speed in the corona (Kohl et al. 1995) has made it possible to investigate the distribution of flow near the Sun. In this paper, we will present results confirming that active regions are one of the sources of slow wind. Insight into the relationship between coronal streamers, active regions and plasma flow will also be discussed.

  1. Time-driven activity-based costing.

    PubMed

    Kaplan, Robert S; Anderson, Steven R

    2004-11-01

    In the classroom, activity-based costing (ABC) looks like a great way to manage a company's limited resources. But executives who have tried to implement ABC in their organizations on any significant scale have often abandoned the attempt in the face of rising costs and employee irritation. They should try again, because a new approach sidesteps the difficulties associated with large-scale ABC implementation. In the revised model, managers estimate the resource demands imposed by each transaction, product, or customer, rather than relying on time-consuming and costly employee surveys. This method is simpler since it requires, for each group of resources, estimates of only two parameters: how much it costs per time unit to supply resources to the business's activities (the total overhead expenditure of a department divided by the total number of minutes of employee time available) and how much time it takes to carry out one unit of each kind of activity (as estimated or observed by the manager). This approach also overcomes a serious technical problem associated with employee surveys: the fact that, when asked to estimate time spent on activities, employees invariably report percentages that add up to 100. Under the new system, managers take into account time that is idle or unused. Armed with the data, managers then construct time equations, a new feature that enables the model to reflect the complexity of real-world operations by showing how specific order, customer, and activity characteristics cause processing times to vary. This Tool Kit uses concrete examples to demonstrate how managers can obtain meaningful cost and profitability information, quickly and inexpensively. Rather than endlessly updating and maintaining ABC data,they can now spend their time addressing the deficiencies the model reveals: inefficient processes, unprofitable products and customers, and excess capacity.

  2. Time-driven activity-based costing.

    PubMed

    Kaplan, Robert S; Anderson, Steven R

    2004-11-01

    In the classroom, activity-based costing (ABC) looks like a great way to manage a company's limited resources. But executives who have tried to implement ABC in their organizations on any significant scale have often abandoned the attempt in the face of rising costs and employee irritation. They should try again, because a new approach sidesteps the difficulties associated with large-scale ABC implementation. In the revised model, managers estimate the resource demands imposed by each transaction, product, or customer, rather than relying on time-consuming and costly employee surveys. This method is simpler since it requires, for each group of resources, estimates of only two parameters: how much it costs per time unit to supply resources to the business's activities (the total overhead expenditure of a department divided by the total number of minutes of employee time available) and how much time it takes to carry out one unit of each kind of activity (as estimated or observed by the manager). This approach also overcomes a serious technical problem associated with employee surveys: the fact that, when asked to estimate time spent on activities, employees invariably report percentages that add up to 100. Under the new system, managers take into account time that is idle or unused. Armed with the data, managers then construct time equations, a new feature that enables the model to reflect the complexity of real-world operations by showing how specific order, customer, and activity characteristics cause processing times to vary. This Tool Kit uses concrete examples to demonstrate how managers can obtain meaningful cost and profitability information, quickly and inexpensively. Rather than endlessly updating and maintaining ABC data,they can now spend their time addressing the deficiencies the model reveals: inefficient processes, unprofitable products and customers, and excess capacity. PMID:15559451

  3. Active tectonics of North Haji Abad (Hormozgan region) in south of Iran

    NASA Astrophysics Data System (ADS)

    shafiei bafti, amir

    2014-05-01

    Zagros Active Fold -thrust Belt is situated in the northern margin of the Arabian Plat and formed due to shortening, thickening and uplift of tethys sedimentary basin between Arabian and Iranian plates. In this study, the rate of uplift in the northern margin of the Zagros Mountains in southern Iran are examined. The Zagros fault zone in this region is composed of a set faults, including Deragah, Haji Abad, Tezerj and several other faults and also we call these branches from F1 to F8. These segments puts from northwest to the East- Southeast. Based on field surveys and Geological maps, we prepared a structural map from major faults of Zagros fault system for identify faults pattern and estimating of uplift rate movements in Zagros fault. Three methods used to calculation of uplift rate: A: Asymmetry index Accordance with the procedure, in studied area, northeast drainage are longer than of southwest drainage and east minor drainages also longer than the west side drainages, Uplifting in this region is characterized by mentioned asymmetry factor. The amount of this index is AF=71.81. B. Interaction between the faults movements and erosion process We comparison contrast between uplifting movement rates and erosion rates in different parts of studied region by Smf and other indexes. Average amount of Smf=1.1. C. Evaluation of Uplift rate of alluvial terraces was performed by sediment ages and terraces height. We surveyed Quaternary facieses which have ages between 17,000 and 30,000 years old. the rate of uplifting for each fault is follows : Deragah fault and F8 fault between 1.0 to 1.85mm per year and F7, F6, F5, and F4 faults, have a rate Uplifting between 0.6 to 1.0 mm per year and the rate of Uplift for other faults is between 0.04 to 0.06 mm per year. According to our studies, uplift rates in north -east and south-west more than other regions The minimum rate at different stations are about 0.5mm/y to 0.93mm/y and its maximum is 0.88 mm/y to 1.47mm/y.

  4. Detailed correlation of type III radio bursts with H alpha activity. I - Active region of 22 May 1970.

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Pasachoff, J. M.

    1973-01-01

    Comparison of observations of type III impulsive radio bursts made at the Clark Lake Radio Observatory with high-spatial-resolution cinematographic observations taken at the Big Bear Solar Observatory. Use of the log-periodic radio interferometer makes it possible to localize the radio emission uniquely. This study concentrates on the particularly active region close to the limb on May 22, 1970. Sixteen of the 17 groups were associated with some H alpha activity, 11 of them with the start of such activity.

  5. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  6. Determining the solar wind speed above active regions using remote radio-wave observations

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.; Bougeret, J.-L.

    1983-01-01

    A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.

  7. A comparison of region-based and pixel-based CEUS kinetics parameters in the assessment of arthritis

    NASA Astrophysics Data System (ADS)

    Grisan, E.; Raffeiner, B.; Coran, A.; Rizzo, G.; Ciprian, L.; Stramare, R.

    2014-03-01

    Inflammatory rheumatic diseases are leading causes of disability and constitute a frequent medical disorder, leading to inability to work, high comorbidity and increased mortality. The gold-standard for diagnosing and differentiating arthritis is based on patient conditions and radiographic findings, as joint erosions or decalcification. However, early signs of arthritis are joint effusion, hypervascularization and synovial hypertrophy. In particular, vascularization has been shown to correlate with arthritis' destructive behavior, more than clinical assessment. Contrast Enhanced Ultrasound (CEUS) examination of the small joints is emerging as a sensitive tool for assessing vascularization and disease activity. The evaluation of perfusion pattern rely on subjective semi-quantitative scales, that are able to capture the macroscopic degree of vascularization, but are unable to detect the subtler differences in kinetics perfusion parameters that might lead to a deeper understanding of disease progression and a better management of patients. Quantitative assessment is mostly performed by means of the Qontrast software package, that requires the user to define a region of interest, whose mean intensity curve is fitted with an exponential function. We show that using a more physiologically motivated perfusion curve, and by estimating the kinetics parameters separately pixel per pixel, the quantitative information gathered is able to differentiate more effectively different perfusion patterns. In particular, we will show that a pixel-based analysis is able to provide significant markers differentiating rheumatoid arthritis from simil-rheumatoid psoriatic arthritis, that have non-significant differences in clinical evaluation (DAS28), serological markers, or region-based parameters.

  8. ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY

    SciTech Connect

    Wang, Y.-M.

    2013-10-01

    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowing a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity.

  9. Light Bridge in a Developing Active Region. I. Observation of Light Bridge and its Dynamic Activity Phenomena

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Katsukawa, Yukio; Cheung, Mark C. M.

    2015-10-01

    Light bridges, the bright structures that divide the umbra of sunspots and pores into smaller pieces, are known to produce a wide variety of activity events in solar active regions (ARs). It is also known that the light bridges appear in the assembling process of nascent sunspots. The ultimate goal of this series of papers is to reveal the nature of light bridges in developing ARs and the occurrence of activity events associated with the light bridge structures from both observational and numerical approaches. In this first paper, exploiting the observational data obtained by Hinode, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory, we investigate the detailed structure of the light bridge in NOAA AR 11974 and its dynamic activity phenomena. As a result, we find that the light bridge has a weak, horizontal magnetic field, which is transported from the interior by a large-scale convective upflow and is surrounded by strong, vertical fields of adjacent pores. In the chromosphere above the bridge, a transient brightening occurs repeatedly and intermittently, followed by a recurrent dark surge ejection into higher altitudes. Our analysis indicates that the brightening is the plasma heating due to magnetic reconnection at lower altitudes, while the dark surge is the cool, dense plasma ejected from the reconnection region. From the observational results, we conclude that the dynamic activity observed in a light bridge structure such as chromospheric brightenings and dark surge ejections are driven by magnetoconvective evolution within the light bridge and its interaction with the surrounding magnetic fields.

  10. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions. PMID:27539656

  11. Chronic stress and moderate physical exercise prompt widespread common activation and limited differential activation in specific brain regions.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-10-01

    Chronic stress in rodents produces depressive behaviors, whereas moderate physical exercise counteracts stress-induced depressive behaviors. Chronic stress and physical exercise appear to produce such opposing effects by changing the neural activity of specific brain regions. However, the detailed mechanisms through which the two different types of stimuli regulate brain function in opposite directions are not clearly understood. In the present study, we attempted to explore the neuroanatomical substrates mediating stress-induced behavioral changes and anti-depressant effects of exercise by examining stimulus-dependent c-Fos induction in the brains of mice that were exposed to repeated stress or exercise in a scheduled manner. Systematic and integrated analyses of c-Fos expression profiles indicated that various brain areas, including the prelimbic cortex, lateral septal area, and paraventricular nuclei of hypothalamus were commonly and strongly activated by both stress and exercise, while the lateral habenula and hippocampus were identified as being preferentially activated by stress and exercise, respectively. Exercise-dependent c-Fos expression in all regions examined in the brain occurred in both glutamatergic and GABAergic neurons. These results suggest that chronic stress and moderate exercise produce counteractive effects on mood behaviors, along with prompting widespread common activation and limited differential activation in specific brain regions.

  12. A regional reconstruction of debris-flow activity in the Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Procter, Emily; Bollschweiler, Michelle; Stoffel, Markus; Neumann, Mathias

    2011-09-01

    Dendrogeomorphic dating of historical debris-flow events is a highly valuable tool for improving historical records in the field of natural hazard management. Previous dendrogeomorphic investigations generally have focused on case studies of single torrents; however, regional investigations may offer a more accurate reconstruction of regional patterns of activity and therefore may have an advantage over individual cases. The aim of the study is to provide a regional reconstruction of debris-flow events for a site in the Northern Calcareous Alps of western Austria (Gamperdonatal, Vorarlberg) and to document spatial and temporal morphological changes in individual and neighboring torrents. Analysis of 442 trees (268 Pinus mugo ssp. uncinata, 164 Picea abies, and 10 Abies alba) allowed identification of 579 growth disturbances corresponding to 63 debris-flow events since A.D. 1839. The majority of growth disturbances were in the form of growth suppression or release (76%) owing to the nature of both the deposited material and the process characteristics. Regional patterns of event frequency indicated a paucity of activity in the early to mid-twentieth century and increased activity since A.D. 1948, whereby large events were followed by subsequent years of continued activity of smaller magnitude. Patterns of frequency could be attributed primarily to spatiotemporal changes in channel morphology, but may also be reflective of changes in transport conditions within the valley. This study provides the first regional investigation in the Austrian Alps and contributes to the documentation of tree responses to geomorphic disturbances in calcareous material.

  13. p190RhoGAP has cellular RacGAP activity regulated by a polybasic region.

    PubMed

    Lévay, Magdolna; Bartos, Balázs; Ligeti, Erzsébet

    2013-06-01

    p190RhoGAP is a GTPase-activating protein (GAP) known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of the intrinsic GTPase activity of Rho. Although the GAP domain of p190RhoGAP stimulates the intrinsic' GTPase activity of several Rho family members (Rho, Rac, Cdc42) under in vitro conditions, p190RhoGAP is generally regarded as a GAP for RhoA in the cell. The cellular RacGAP activity of the protein has not been proven directly. We have previously shown that the in vitro RacGAP and RhoGAP activity of p190RhoGAP was inversely regulated through a polybasic region of the protein. Here we provide evidence that p190RhoGAP shows remarkable GAP activity toward Rac also in the cell. The cellular RacGAP activity of p190RhoGAP requires an intact polybasic region adjacent to the GAP domain whereas the RhoGAP activity is inhibited by the same domain. Our data indicate that through its alternating RacGAP and RhoGAP activity, p190RhoGAP plays a more complex role in the Rac-Rho antagonism than it was realized earlier.

  14. HiRISE Monitoring of Ongoing Activity in the North Polar Region of Mars

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Russell, P. S.; Byrne, S.; Banks, M. E.; Hansen, C. J.; HiRISE Team

    2010-12-01

    The High Resolution Imaging Science Experiment (HiRISE) [1] on the Mars Reconnaissance Orbiter (MRO) has observed the north polar region during 3 summer seasons on Mars. Here we summarize analyses of the north polar data, focusing on active and recent processes including evolution of frost streaks, the north polar residual cap (NPRC), frost avalanches, and scarp erosion. Bright and dark streaks have been observed at the periphery of the NPRC by previous Mars orbiters and were the target of several HiRISE observations. Some of these HiRISE images indicate that formation of the streaks involves processes more complex than the emplacement of dark veneers proposed by Rodriguez et al. [2]. Bright and dark streaks are seen to evolve during the northern summer, evidence for active eolian redistribution of frost and perhaps darker (non-volatile) dust or sand. Based on MRO Context imager observations of craters on the NPRC, accumulation rates are estimated to be 4-5 mm/yr within these craters, with lower rates likely on the intracrater NPRC surface [3]. The observed crater population probably accumulated during the last 20 ka or less. It is likely that NPRC resurfacing is episodic rather than continuous, and that annual changes may be detectable at HiRISE image resolutions. Therefore, a campaign of HiRISE observations of four NPRC targets near 87°N latitude (the maximum latitude of the MRO ground track) was initiated during the Martian northern summer of 2008 and continued during the summer of 2010. The images acquired during this campaign, with nearly nadir viewing geometry and similar solar azimuth, are being searched for evidence for current redistribution of NPRC material. Analyses are ongoing; no changes have been detected to date. We also conducted an early- to mid-spring 2010 survey of circumpolar scarps to monitor for falls and avalanches of CO2 frost and dust, of the type discovered on a scarp in northern spring 2008 [4]. The results confirm the restriction of

  15. A Correlation Between Length of Strong-Shear Neutral Lines and Total X-Ray Brightness in Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.

    1997-01-01

    From a sample of 7 MSFC vector magnetograms,of active regions and 17 Yohkoh SXT soft X-ray images of these active regions, we have found that the total x-ray brightness of an entire active region is correlated with the total length of neutral lines on which the magnetic field is both strong (less than 250 G) and strongly sheared (shear angle greater than 75 deg) in the same active region. This correlation, if not fortuitous, is additional evidence of the importance of strong-shear strong-field neutral lines to strong heating in active regions.

  16. Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation.

    PubMed

    de Prost, Nicolas; Costa, Eduardo L; Wellman, Tyler; Musch, Guido; Winkler, Tilo; Tucci, Mauro R; Harris, R Scott; Venegas, Jose G; Vidal Melo, Marcos F

    2011-11-01

    Inflammation during mechanical ventilation is thought to depend on regional mechanical stress. This can be produced by concentration of stresses and cyclic recruitment in low-aeration dependent lung. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) allows for noninvasive assessment of regional metabolic activity, an index of neutrophilic inflammation. We tested the hypothesis that, during mechanical ventilation, surfactant-depleted low-aeration lung regions present increased regional (18)F-FDG uptake suggestive of in vivo increased regional metabolic activity and inflammation. Sheep underwent unilateral saline lung lavage and were ventilated supine for 4 h (positive end-expiratory pressure = 10 cmH(2)O, tidal volume adjusted to plateau pressure = 30 cmH(2)O). We used PET scans of injected (13)N-nitrogen to compute regional perfusion and ventilation and injected (18)F-FDG to calculate (18)F-FDG uptake rate. Regional aeration was quantified with transmission scans. Whole lung (18)F-FDG uptake was approximately two times higher in lavaged than in nonlavaged lungs (2.9 ± 0.6 vs. 1.5 ± 0.3 10(-3)/min; P < 0.05). The increased (18)F-FDG uptake was topographically heterogeneous and highest in dependent low-aeration regions (gas fraction 10-50%, P < 0.001), even after correction for lung density and wet-to-dry lung ratios. (18)F-FDG uptake in low-aeration regions of lavaged lungs was higher than that in low-aeration regions of nonlavaged lungs (P < 0.05). This occurred despite lower perfusion and ventilation to dependent regions in lavaged than nonlavaged lungs (P < 0.001). In contrast, (18)F-FDG uptake in normally aerated regions was low and similar between lungs. Surfactant depletion produces increased and heterogeneously distributed pulmonary (18)F-FDG uptake after 4 h of supine mechanical ventilation. Metabolic activity is highest in poorly aerated dependent regions, suggesting local increased inflammation.

  17. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    SciTech Connect

    Schweitzer, Martin

    2009-10-01

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and

  18. Directory of International and Regional Organizations Conducting Standards-Related Activities, May 1989

    NASA Astrophysics Data System (ADS)

    Breitenberg, Maureen

    1989-05-01

    The directory contains information on 338 international and regional organizations which conduct standardization, certification, laboratory accreditation, or other standards-related activities. The volume describes their work in these areas, the scope of each organization, national affliations of members, U.S. participants, restrictions on membership, as well as the availability of any standards in English. The volume is designed to serve the needs of Federal agencies and standards writers for information on international and regional organizations involved in standardization and related activities. It may also be useful to manufacturers, engineers, purchasing agents, and others.

  19. Comparison of the activity measurements in nuclear medicine services in the Brazilian northeast region.

    PubMed

    de Farias Fragoso, Maria da Conceição; de Albuquerque, Antônio Morais; de Oliveira, Mércia L; de Lima, Fabiana Farias; Barreto, Flávio Chiappetta Paes; de Andrade Lima, Ricardo

    2013-12-01

    The Northeastern Regional Centre for Nuclear Sciences (CRCN-NE), National Nuclear Energy Commission, has organized for the first time in nuclear medicine services (NMSs) in the Brazilian northeast region a comparison of activity measurements for (99m)Tc, (131)I, (67)Ga, (201)Tl and (57)Co. This tool is widely utilized to evaluate not only the accuracy of radionuclide calibrators, but also the competence of NMSs to measure the activity of the radiopharmaceuticals and the performance of the personnel involved in these measurements. The comparison results showed that 90% of the results received from participants are within the ±10% limit established by the Brazilian Norm.

  20. Magnetic Tilts and Polarity Separations in Sunspot Groups and Active Regions the Cycle 23

    NASA Astrophysics Data System (ADS)

    Zharkov, S. I.; Zharkova, V. V.

    2006-08-01

    We present the analysis of magnetic tilts in active regions and sunspot groups for 1996-2005 that are automatically extracted from the Solar Feature Catalogues (http://solar.inf.brad.ac.uk ). We investigate the statistical variations of magnetic field tilt in sunspot groups and whole active regions, their longitudinal and latitudinal distributions, drifts and daily polarity separation during different phases of the solar cycle 23. The classification results are compared with the similar research for the previous cycles and the specifics on the cycle 23 is discussed in conjunction to the solar dynamo theory.

  1. RESEARCH PAPER: A logistic model for magnetic energy storage in solar active regions

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Ning; Cui, Yan-Mei; He, Han

    2009-06-01

    Previous statistical analyses of a large number of SOHO/MDI full disk longitudinal magnetograms provided a result that demonstrated how responses of solar flares to photospheric magnetic properties can be fitted with sigmoid functions. A logistic model reveals that these fitted sigmoid functions might be related to the free energy storage process in solar active regions. Although this suggested model is rather simple, the free energy level of active regions can be estimated and the probability of a solar flare with importance over a threshold can be forecast within a given time window.

  2. Real-Time CME Forecasting Using HMI Active-Region Magnetograms and Flare History

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser F.; Khazanov, Igor

    2011-01-01

    We have recently developed a method of predicting an active region s probability of producing a CME, an X-class Flare, an M-class Flare, or a Solar Energetic Particle Event from a free-energy proxy measured from SOHO/MDI line-of-sight magnetograms. This year we have added three major improvements to our forecast tool: 1) Transition from MDI magnetogram to SDO/HMI magnetogram allowing us near-real-time forecasts, 2) Automation of acquisition and measurement of HMI magnetograms giving us near-real-time forecasts (no older than 2 hours), and 3) Determination of how to improve forecast by using the active region s previous flare history in combination with its free-energy proxy. HMI was turned on in May 2010 and MDI was turned off in April 2011. Using the overlap period, we have calibrated HMI to yield what MDI would measure. This is important since the value of the free-energy proxy used for our forecast is resolution dependent, and the forecasts are made from results of a 1996-2004 database of MDI observations. With near-real-time magnetograms from HMI, near-real-time forecasts are now possible. We have augmented the code so that it continually acquires and measures new magnetograms as they become available online, and updates the whole-sun forecast from the coming day. The next planned improvement is to use an active region s previous flare history, in conjunction with its free-energy proxy, to forecast the active region s event rate. It has long been known that active regions that have produced flares in the past are likely to produce flares in the future, and that active regions that are nonpotential (have large free-energy) are more likely to produce flares in the future. This year we have determined that persistence of flaring is not just a reflection of an active region s free energy. In other words, after controlling for free energy, we have found that active regions that have flared recently are more likely to flare in the future.

  3. Activity based chemical proteomics: profiling proteases as drug targets.

    PubMed

    Heal, William Percy; Wickramasinghe, Sasala Roshinie; Tate, Edward William

    2008-09-01

    The pivotal role of proteases in many diseases has generated considerable interest in their basic biology, and in the potential to target them for chemotherapy. Although fundamental to the initiation and progression of diseases such as cancer, diabetes, arthritis and malaria, in many cases their precise role remains unknown. Activity-based chemical proteomics-an emerging field involving a combination of organic synthesis, biochemistry, cell biology, biophysics and bioinformatics-allows the detection, visualisation and activity quantification of whole families or selected sub-sets of proteases based upon their substrate specificity. This approach can be applied for drug target/lead identification and validation, the fundamentals of drug discovery. The activity-based probes discussed in this review contain three key features; a 'warhead' (binds irreversibly but selectively to the active site), a 'tag' (allowing enzyme 'handling', with a combination of fluorescent, affinity and/or radio labels), and a linker region between warhead and tag. From the design and synthesis of the linker arise some of the latest developments discussed here; not only can the physical properties (e.g., solubility, localisation) of the probe be tuned, but the inclusion of a cleavable moiety allows selective removal of tagged enzyme from affinity beads etc. The design and synthesis of recently reported probes is discussed, including modular assembly of highly versatile probes via solid phase synthesis. Recent applications of activity-based protein profiling to specific proteases (serine, threonine, cysteine and metalloproteases) are reviewed as are demonstrations of their use in the study of disease function in cancer and malaria.

  4. Lightning activity variation during the evolution of tropical cyclones in the southwest Pacific region

    NASA Astrophysics Data System (ADS)

    Chandra, A.; Kumar, S.; Kumar, A.

    2015-12-01

    The South Pacific Island countries are vulnerable to natural hazards which cause devastating effects on infrastructure, crops and at times loss of lives and many others. Tropical cyclones (TCs) are one type of natural hazard experienced by Pacific Island countries (PICs). The South Pacific region has two seasons, namely: the cyclone season, running from November to April, and the non-cyclone season, running from May to October. Tropical cyclones are associated with strong winds, rainfall, and thunderstorms generating strong lightning discharges. The analysis of lightning data obtained from the World Wide Lightning Locations Network for the southwest Pacific region, defined as the region bounded between geographic coordinates, latitudes 0 - 40°S, longitudes 135°E - 120°W, during 2013 clearly shows the lightning activity to be higher during the cyclone season due to increased convective activity. The change in the lightning activity with the intensity of 41 TCs of categories 2 to 5 occurring in the southwest Pacific region has been analysed for the years 2005 to 2013. The intensity measurements, as determined by maximum sustained winds and the lightning activity, as determined by flash counts were studied during the stages of evolution of these TCs. Taking into account the lag between peak lightning activity and peak maximum sustained wind, the two quantities; lightning activity and intensity for individual TCs were correlated. Square 10° grid sizes were used along with radial sections to quantify lightning.