Science.gov

Sample records for active research scientists

  1. Assessing the Impact of Education and Outreach Activities on Research Scientists

    ERIC Educational Resources Information Center

    McCann, Brian M.; Cramer, Catherine B.; Taylor, Lisa G.

    2015-01-01

    The purpose of this study was to investigate the attitudes of university-level research scientists toward educational and outreach activities that aim to help the general public understand more about their scientific endeavors. Interviews, observations, and survey results from 12 university research scientists, their colleagues, students, and the…

  2. Another Kind of Scientist Activism

    ERIC Educational Resources Information Center

    Marino, Lori

    2009-01-01

    In a well-cited 1996 editorial in "Science," "The Activist Scientist," Jaleh Daie calls for scientists to take an assertive role in educating politicians and the public about the importance of government support for research. She writes that most scientists are reluctant to become involved in political lobbying for a variety of reasons--time…

  3. Understanding Scientists' Involvement in Education--Their Interests, Activities, and Needs: Research Results from the ReSciPE Project

    NASA Astrophysics Data System (ADS)

    Thiry, H.; Hunter, A.; Laursen, S.; Melton, G.

    2006-12-01

    The involvement of scientists in education has been cited by national leaders as essential for strengthening US science education at the K-12 and higher levels. While many individuals and groups have developed expertise in designing and implementing programs that engage scientists with students or teachers, there is little research evidence that helps us understand what motivates or discourages scientists from such involvement, the benefits and costs to them of participating, and the barriers they face that must be addressed to involve them effectively. The ReSciPE Project (Resources for Scientists in Partnership with Education) has offered a workshop on "Scientific Inquiry in the K-12 Classroom" to over 300 scientists and science educators across the US. These workshops have reached a wide audience of science professionals who undertake activities in science education, whether individual or institution-based work, for work or as a volunteer. The project aims to help these "education-engaged scientists" pursue their education work more effectively, but has also drawn on this group as a research sample for an evaluation-with-research study to investigate scientists' involvement in education. Pre- and post-surveys have enabled us to characterize the demographics of the participants and measure their self-reported knowledge and learning about education, especially inquiry-based science. Follow- up interviews have provided insight into their education activities, motivations, interests, difficulties, and needs. We will report on recent research findings from this study and place them in context of national needs and efforts to engage scientists in education.

  4. Research Integrity of Individual Scientist

    NASA Astrophysics Data System (ADS)

    Haklak, Rockbill

    We are discussing about many aspects of research integrity of individual scientist, who faces the globalization of research ethics in the traditional culture and custom of Japan. Topics are scientific misconduct (fabrication, falsification, and plagiarism) in writing paper and presenting research results. Managements of research material, research record, grant money, authorship, and conflict of interest are also analyzed and discussed. Finally, we make 5 recommendations to improve research integrity in Japan.

  5. An Inquiry-Based Vision Science Activity for Graduate Students and Postdoctoral Research Scientists

    NASA Astrophysics Data System (ADS)

    Putnam, N. M.; Maness, H. L.; Rossi, E. A.; Hunter, J. J.

    2010-12-01

    The vision science activity was originally designed for the 2007 Center for Adaptive Optics (CfAO) Summer School. Participants were graduate students, postdoctoral researchers, and professionals studying the basics of adaptive optics. The majority were working in fields outside vision science, mainly astronomy and engineering. The primary goal of the activity was to give participants first-hand experience with the use of a wavefront sensor designed for clinical measurement of the aberrations of the human eye and to demonstrate how the resulting wavefront data generated from these measurements can be used to assess optical quality. A secondary goal was to examine the role wavefront measurements play in the investigation of vision-related scientific questions. In 2008, the activity was expanded to include a new section emphasizing defocus and astigmatism and vision testing/correction in a broad sense. As many of the participants were future post-secondary educators, a final goal of the activity was to highlight the inquiry-based approach as a distinct and effective alternative to traditional laboratory exercises. Participants worked in groups throughout the activity and formative assessment by a facilitator (instructor) was used to ensure that participants made progress toward the content goals. At the close of the activity, participants gave short presentations about their work to the whole group, the major points of which were referenced in a facilitator-led synthesis lecture. We discuss highlights and limitations of the vision science activity in its current format (2008 and 2009 summer schools) and make recommendations for its improvement and adaptation to different audiences.

  6. Oxidation of Ethidium Using TAML Activators: A Model for High School Research Performed in Partnership with University Scientists

    ERIC Educational Resources Information Center

    Pueyo, Natalie C.; Raub, Andrew G.; Jackson, Sean; Metz, Madalyn M.; Mount, Allegra C.; Naughton, Kyle L.; Eaton, Ashley L.; Thomas, Nicole M.; Hastings, Peter; Greaves, John; Blumberg, Bruce; Collins, Terrence J.; Sogo, Steven G.

    2013-01-01

    A chemical research program at a public high school has been developed. The full-year Advanced Chemical Research class (ACR) in the high school enrolls 20-30 seniors each year, engaging them in long-term experimental projects. Through partnerships involving university scientists, ACR high school students have had the opportunity to explore a…

  7. Scientist, researchers, and acid rain

    SciTech Connect

    Alm, L.R. )

    1989-01-01

    The role of the hidden participants in agenda-setting for environmental issues is discussed. These personnel involve academics, researchers, career bureaucrats, congressional staffers, consultants, and administration appointees below the top level. Scientists have been publicly involved in the acid rain issue from the beginning, using the media to dramatize the possible catastrophic consequences of acid rain. Presently, the scientific community is not in consensus about the solutions to the problem. Since the initial enactment of the National Acid Precipitation Act in 1980, not a single acid rain law has been passed, although many bills have been proposed. Spokesman for the coal and utility industries and Reagan administration personnel have used the scientific disagreements to delay abatement actions and refute claims that acid rain is a severe problem. Another result of the confusion is a distrust and even disdain for academic work. One possible solution to the stalemate is an accurate form for resolving scientific disputes that have a strong political component and that the forum should have a mechanism for converging on accurate science. 19 refs.

  8. Oxidation of Ethidium using TAML Activators: A Model for High School Research Performed in Partnership with University Scientists

    PubMed Central

    Pueyo, Natalie C.; Raub, Andrew G.; Jackson, Sean; Metz, Madalyn M.; Mount, Allegra C.; Naughton, Kyle L.; Eaton, Ashley L.; Thomas, Nicole M.; Hastings, Peter; Greaves, John; Blumberg, Bruce; Collins, Terrence J.; Sogo, Steven G.

    2013-01-01

    A chemical research program at a public high school has been developed. The full-year Advanced Chemical Research class (ACR) in the high school enrolls 20 to 30 seniors each year, engaging them in long-term experimental projects. Through partnerships involving university scientists, ACR high school students have had the opportunity to explore a number of highly sophisticated original research projects. As an example of the quality of experimental work made possible through these high school–university partnerships, this article describes the development of a novel method for the oxidation of ethidium bromide, a mutagen commonly used in molecular biology. Data collected from ACR alumni show that the ACR program is instrumental in encouraging students to pursue careers in scientific fields and in creating life-long problem-solvers. PMID:23585695

  9. Helping early career research scientists ascend the professional ladder.

    PubMed

    King, Laina

    2013-08-01

    The Keystone Symposia Early Career Investigator Travel Award initiative is a unique successful research mentoring program tailored for 'end of the pipeline' life and biomedical scientists from academia and industry. Using targeted educational, mentoring, and networking activities, the program benefits early career scientists in solving a specific laboratory-based research question that is limiting their evolving research and could increase their ability to obtain new grants and improve their career progression. PMID:23889774

  10. Name that Gene: A Meaningful Computer-Based Genetics Classroom Activity that Incorporates Tolls Used by Real Research Scientists

    ERIC Educational Resources Information Center

    Wefer, Stephen H.

    2003-01-01

    "Name That Gene" is a simple classroom activity that incorporates bioinformatics (available biological information) into the classroom using "Basic Logical Alignment Search Tool (BLAST)." An excellent classroom activity involving bioinformatics and "BLAST" has been previously explored using sequences from bacteria, but it is tailored for college…

  11. Researchers Dispute Notion that America Lacks Scientists and Engineers

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2007-01-01

    Researchers who track the American labor market told Congress last week that, contrary to conventional wisdom, the United States has more than enough scientists and engineers and that federal agencies and universities should reform the way they train young scientists to better match the supply of scientists with the demand for researchers. At a…

  12. Interview With Steve Platts, Lead Scientist, Cardiovascular Research

    NASA Video Gallery

    NASA Public Affairs Officer Josh Byerly talks with Steven Platts, a lead scientist for cardiovascular research at the Johnson Space Center where scientists are studying the effects of long-duration...

  13. Climate Literacy Through Student-Teacher-Scientist Research Partnerships

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Brooks, D.; Lefer, B.; Linsley, A.; Duckenfield, K.

    2006-12-01

    Expanding on the GLOBE Program's Atmosphere and Aerosol investigations, high school students can conduct Earth System scientific research that promotes scientific literacy in both content and the science process. Through the use of Student-Teacher-Scientist partnerships, Earth system scientific investigations can be conducted that serve the needs of the classroom as well as participating scientific investigators. During the proof-of-concept phase of this partnership model, teachers and their students developed science plans, through consultation with scientists, and began collecting atmospheric and aerosol data in support of the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) campaign in Houston Texas. This effort uses some pre-existing GLOBE materials, but draws on a variety of other resources to tailor the teacher development activities and intended student participation in a way that addresses local and regional problems. Students and teachers have learned about best practices in scientific inquiry and they also helped to expand the pipeline of potential future scientists and researchers for industry, academia, and government. This work began with a Student-Teacher-Scientist partnership started in 2002 during a GLOBE Aerosol Protocol Cross- Ground Validation of AERONET with MODIS Satellite Aerosol Measurements. Several other GLOBE schools, both national and international, have contributed to this research. The current project support of the intensive GoMACCS air quality and atmospheric dynamics field campaign during September and October of 2006. This model will be evaluated for wider use in other project-focused partnerships led by NOAA's Climate Program Office.

  14. Scientists in the Classroom Activities at LLNL

    NASA Astrophysics Data System (ADS)

    Correll, Donald; Albala, Joanna; Farnsworth, Richard; Meyer, William

    2013-10-01

    LLNL fusion and plasma education activities are broadening into the ``Scientists in the Classroom'' collaboration between LLNL's Science Education Program (http://education.llnl.gov) and California's San Joaquin County Office of Education (SJCOE). Initial activities involved Grades 6-12 teachers attending the SCJOE 2013 summer workshop addressing the physical sciences content within the Next Generation Science Standards (NGSS) as described at http://www.nextgenscience.org/. The NGSS Science and Engineering Practices in Physics workshop (June 22-26, 2013) that took place at the University of the Pacific included participation by the first author using video conferencing facilities recently added to the Edward Teller Education Center adjacent to LLNL. ETEC (http://etec.llnl.gov/) is a partnership between LLNL and the UC Davis School of Education to provide professional development for STEM teachers. Current and future activities using fusion science and plasma physics to enhance science education associated with ``Scientists in the Classroom'' and NGSS will be presented. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-639990.

  15. Swedish scientists take acid-rain research to developing nations

    SciTech Connect

    Abate, T.

    1995-12-01

    In the realm of acid-rain research, Sweden looms large on the world stage. It is the country where scientists first proved more than 30 years ago that airborne chemicals could and did cross international boundaries to acidify lakes and forests far from where the pollution was generated. Now, Swedish scientists are leading an international effort to map acid-rain patterns in the developing countries of Asia, where new industrial activity seems to be recreating problems that European and North American policy makers have already taken steps to solve. Topics covered in this article include acid rain on the rise in Asia; visualizing and validating the data; funding as the key to steady research.

  16. Expedition Earth and Beyond: Student Scientist Guidebook. Model Research Investigation

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama

    2009-01-01

    The Expedition Earth and Beyond Student Scientist Guidebook is designed to help student researchers model the process of science and conduct a research investigation. The Table of Contents listed outlines the steps included in this guidebook

  17. Creation of Educational Resources: A Research Scientist's Role

    NASA Astrophysics Data System (ADS)

    Christian, Carol A.

    2004-06-01

    Material and resources for use in science education must contain accurate, up-to-date data and research results. Clearly when curricula and other materials for use in informal science education and for public understanding of science are developed, the direct interaction and influence of research scientists is beneficial. What is the role of scientists in resource development? In colleges and universities, educational materials are scientist-centric since scientists are the principal science educators and therefore create the specific courseware they need. In a pre-college educational environment, and in science museums (for example), appropriate product creation is driven by experienced educators and other experts. The research scientist, drawn from a research environment, may not be the best instigator of those resources.

  18. Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles

    PubMed Central

    2012-01-01

    This report is based on the Federation of American Societies for Experimental Biology’s symposium, “Engaging basic Scientists in Translational Research: Identifying Opportunities, Overcoming Obstacles,” held in Chevy Chase, MD, March 24–25, 2011. Meeting participants examined the benefits of engaging basic scientists in translational research, the challenges to their participation in translational research, and the roles that research institutions, funding organizations, professional societies, and scientific publishers can play to address these challenges. PMID:22500917

  19. Research project management 101: insiders' tips from Early Career Scientists

    NASA Astrophysics Data System (ADS)

    Cristini, Luisa; Pabortsava, Katsiaryna; Stichel, Torben

    2016-04-01

    From the very beginning of their career, it is important for Early Career Scientists (ECS) to develop project management skills to be able to organise their research efficiently. ECS are often in charge of specific tasks within their projects or for their teams. However, without specific training or tools, the successful completion of these assignments will depend entirely on the organisational skills of individual researchers. ECS are thus facing "sink-or-swim" situations, which can be either instructive or disastrous for their projects. Here we provide experience-based tips from fellow ECS that can help manage various project activities, including: 1. Communication with supervisors and peers 2. Lab management 3. Field trips (e.g., oceanographic campaigns) 4. Internships and collaborations with other institutions 5. Literature/background research 6. Conference convening These are potential "life buoys" for ECS, which will help them to carry out these tasks efficiently and successfully.

  20. Elementary School Children Contribute to Environmental Research as Citizen Scientists

    PubMed Central

    Miczajka, Victoria L.; Klein, Alexandra-Maria; Pufal, Gesine

    2015-01-01

    Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to the project as citizen scientists. Specifically, we compared data estimating vegetation cover, measuring vegetation height and counting seeds from a seed removal experiment, that were collected by children and scientists in schoolyards. Children counted seeds similarly to scientists but under- or overestimated vegetation cover and measured different heights. We conclude that children can be involved as citizen scientists in research projects according to their skill level. However, more sophisticated tasks require specific training to become familiarized with scientific experiments and the development of needed skills and methods. PMID:26581087

  1. Elementary School Children Contribute to Environmental Research as Citizen Scientists.

    PubMed

    Miczajka, Victoria L; Klein, Alexandra-Maria; Pufal, Gesine

    2015-01-01

    Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to the project as citizen scientists. Specifically, we compared data estimating vegetation cover, measuring vegetation height and counting seeds from a seed removal experiment, that were collected by children and scientists in schoolyards. Children counted seeds similarly to scientists but under- or overestimated vegetation cover and measured different heights. We conclude that children can be involved as citizen scientists in research projects according to their skill level. However, more sophisticated tasks require specific training to become familiarized with scientific experiments and the development of needed skills and methods.

  2. Epistemological undercurrents in scientists' reporting of research to teachers

    NASA Astrophysics Data System (ADS)

    Glasson, George E.; Bentley, Michael L.

    2000-07-01

    Our investigation focused upon how scientists, from both a practical and epistemological perspective, communicated the nature and relevance of their research to classroom teachers. Six scientists were observed during presentations of cutting-edge research at a conference for science teachers. Following the conference, these scientists were interviewed to discern how each perceived the nature of science, technology, and society in relation to his particular research. Data were analyzed to determine the congruence and/or dissimilarity in how scientists described their research to teachers and how they viewed their research epistemologically. We found that a wide array of scientific methodologies and research protocols were presented and that all the scientists expressed links between their research and science-technology-society (STS) issues. When describing their research during interviews, the scientists from traditional content disciplines reflected a strong commitment to empiricism and experimental design, whereas engineers from applied sciences were more focused on problem-solving. Implicit in the data was a commitment to objectivity and the tacit assumption that science may be free of values and ethical assumptions. More dialogue is recommended between the scientific community, science educators, and historians/philosophers of science about the nature of science, STS, and curriculum issues.

  3. Creatiing a Collaborative Research Network for Scientists

    NASA Astrophysics Data System (ADS)

    Gunn, W.

    2012-12-01

    This abstract proposes a discussion of how professional science communication and scientific cooperation can become more efficient through the use of modern social network technology, using the example of Mendeley. Mendeley is a research workflow and collaboration tool which crowdsources real-time research trend information and semantic annotations of research papers in a central data store, thereby creating a "social research network" that is emergent from the research data added to the platform. We describe how Mendeley's model can overcome barriers for collaboration by turning research papers into social objects, making academic data publicly available via an open API, and promoting more efficient collaboration. Central to the success of Mendeley has been the creation of a tool that works for the researcher without the requirement of being part of an explicit social network. Mendeley automatically extracts metadata from research papers, and allows a researcher to annotate, tag and organize their research collection. The tool integrates with the paper writing workflow and provides advanced collaboration options, thus significantly improving researchers' productivity. By anonymously aggregating usage data, Mendeley enables the emergence of social metrics and real-time usage stats on top of the articles' abstract metadata. In this way a social network of collaborators, and people genuinely interested in content, emerges. By building this research network around the article as the social object, a social layer of direct relevance to academia emerges. As science, particularly Earth sciences with their large shared resources, become more and more global, the management and coordination of research is more and more dependent on technology to support these distributed collaborations.

  4. Patenting for the research scientist: an update.

    PubMed

    Crespi, R Stephen

    2004-12-01

    Academic institutional research constantly produces results worthy of patent protection, but coping with the demands of patent law presents considerable challenges to bioscientists working in these institutions. Inventors need, however, to be aware of recent patent office guidelines and court decisions if they are to seek useful intellectual property as a basis for technology transfer to industry.

  5. Evolving research misconduct policies and their significance for physical scientists

    NASA Astrophysics Data System (ADS)

    Dooley, James J.; Kerch, Helen M.

    2000-03-01

    Scientific misconduct includes the fabrication, falsification, and plagiarism (FFP) of concepts, data or ideas; some institutions in the United States have expanded this concept to include "other serious deviations (OSD) from accepted research practice." It is the absence of this OSD clause that distinguishes scientific misconduct policies of the past from the "research misconduct" policies that should be the basis of future federal policy in this area. This paper introduces a standard for judging whether an action should be considered research misconduct as distinguished from scientific misconduct: by this standard, research misconduct must involve activities unique to the practice of science and must have the potential to negatively affect the scientific record. Although the number of cases of scientific misconduct is uncertain (only the NIH and the NSF keep formal records), the costs are high in terms of the integrity of the scientific record, diversions from research to investigate allegations, ruined careers of those eventually exonerated, and erosion of public confidence in science. Existing scientific misconduct policies vary from institution to institution and from government agency to government agency; some have highly developed guidelines that include OSD, others have no guidelines at all. One result has been that the federal False Claims Act has been used to pursue allegations of scientific misconduct. As a consequence, such allegations have been adjudicated in federal courts, rather than judged by scientific peers. The federal government is now establishing a first-ever research misconduct policy that would apply to all research funded by the federal government regardless of which agency funded the research or whether the research was carried out in a government, industrial or university laboratory. Physical scientists, who up to now have only infrequently been the subject of scientific misconduct allegations, must none! theless become active in the

  6. Scientists' perspectives on consent in the context of biobanking research

    PubMed Central

    Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy

    2015-01-01

    Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking. PMID:25074466

  7. Scientists' perspectives on consent in the context of biobanking research.

    PubMed

    Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy

    2015-05-01

    Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking.

  8. A guide to understanding social science research for natural scientists.

    PubMed

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes.

  9. A guide to understanding social science research for natural scientists.

    PubMed

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. PMID:24962114

  10. Scientist to Expose Students to Wetlands Research

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dr. Marco Giardino, chief of the Applications Integration Division for NASA Stennis Space Center's Earth Science Applications Directorate, has been chosen by the JASON Project to be one of six host researchers for Disappearing Wetlands, which will run through the 2004-05 school year. In the photo, Giardino (left) interprets satellite imagery on the way to an archeological site near Lake Salvador, La., in November 2002. With him is his local guide, Michael Comardelle.

  11. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    PubMed

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research.

  12. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    PubMed

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research. PMID:25721444

  13. How scientists use social media to communicate their research

    PubMed Central

    2011-01-01

    Millions of people all over the world are constantly sharing an extremely wide range of fascinating, quirky, funny, irrelevant and important content all at once. Even scientists are no strangers to this trend. Social media has enabled them to communicate their research quickly and efficiently throughout each corner of the world. But which social media platforms are they using to communicate this research and how are they using them? One thing is clear: the range of social media platforms that scientists are using is relatively vast and dependent on discipline and sentiment. While the future of social media is unknown, a combination of educated speculation and persuasive fact points to the industry's continual growth and influence. Thus, is that not only are scientists utilizing social media to communicate their research, they must. The ability to communicate to the masses via social media is critical to the distribution of scientific information amongst professionals in the field and to the general population. PMID:22085450

  14. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research

  15. Training Chief Scientists for the Ocean Research of Tomorrow

    NASA Astrophysics Data System (ADS)

    Reimers, C. E.; Alberts, J.

    2012-12-01

    The UNOLS Early Career Chief Scientist Training Program is designed to instruct participants in all of the "cradle to grave" phases of expeditionary oceanography, from the initial proposal, to science and cruise logistics planning, to cruise execution and post-cruise reporting. During the past 2-years, with support from NSF, the program has sponsored three participant-led multi-disciplinary cruises on UNOLS vessels together with pre-cruise informational short courses. Two Senior Scientists and two Marine Technicians work with 14 participants per cruise to accomplish well-scrutinized science plans led by two participant co-chief scientists. Participants are chosen from a pool of applicants based on their passion for oceanography, their desire to take on cruise leadership, the quality and feasibility of a research project they bring to the cruise, and long-term research aims. To date the participants have come from 28 different academic institutions and have included graduate students, post-docs, research scientists, teaching faculty and a center director. Hallmarks of the program lauded by the participants include insight into cruise leadership and ship operations not provided by any other means; new appreciation for other marine science disciplines and sampling techniques; the establishment of collaborations and newly inspired science questions based on shared data; and understanding of what UNOLS is and how UNOLS staff and marine technicians can assist with future seagoing projects.; Multi-coring on R/V Wecoma during September 2011 training cruise (photo P. Suprenand) ; Science party W1109C

  16. Career research opportunities for the medical laboratory scientist.

    PubMed

    McGlasson, David L

    2011-01-01

    Medical Laboratory Scientists (MLS) typically practice in hospital laboratories; however there are multiple alternatives in research. This article details the advantages of working in a variety of research laboratory settings. These include public institutions, federal laboratory workplaces, private facilities, and industry settings. A view of the different research laboratory settings such as public institutions, federal laboratory workplaces, private facilities, and industry settings will be provided. An assessment on how MLS professionals can prepare for a career in research is outlined and the report concludes with a brief summary of the various aspects of the research setting.

  17. A Guide for Scientists Interested in Researching Student Outcomes

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn R.; Anbar, Ariel; Semken, Steve; Mead, Chris; Horodyskyj, Lev; Perera, Viranga; Bruce, Geoffrey; Schönstein, David

    2015-11-01

    Scientists spend years training in their scientific discipline and are well versed the literature, methods, and innovations in their own field. Many scientists also take on teaching responsibilities with little formal training in how to implement their courses or assess their students. There is a growing body of literature of what students know in space science courses and the types of innovations that can work to increase student learning but scientists rarely have exposure to this body of literature. For scientists who are interested in more effectively understanding what their students know or investigating the impact their courses have on students, there is little guidance. Undertaking a more formal study of students poses more complexities including finding robust instruments and employing appropriate data analysis. Additionally, formal research with students involves issues of privacy and human subjects concerns, both regulated by federal laws.This poster details the important decisions and issues to consider for both course evaluation and more formal research using a course developed, facilitated, evaluated and researched by a hybrid team of scientists and science education researchers. HabWorlds, designed and implemented by a team of scientists and faculty at Arizona State University, has been using student data to continually improve the course as well as conduct formal research on students’ knowledge and attitudes in science. This ongoing project has had external funding sources to allow robust assessment not available to most instructors. This is a case study for discussing issues that are applicable to designing and assessing all science courses. Over the course of several years, instructors have refined course outcomes and learning objectives that are shared with students as a roadmap of instruction. The team has searched for appropriate tools for assessing student learning and attitudes, tested them and decided which have worked, or not, for

  18. Research fellowship programs as a pathway for training independent clinical pharmacy scientists.

    PubMed

    Mueller, Eric W; Bishop, Jeffrey R; Kanaan, Abir O; Kiser, Tyree H; Phan, Hanna; Yang, Katherine Y

    2015-03-01

    The American College of Clinical Pharmacy (ACCP) Research Affairs Committee published a commentary in 2013 on training clinical pharmacy scientists in the context of changes in economic, professional, political, and research environments. The commentary centered on the opportunities for pharmacists in clinical/translational research including strategies for ACCP, colleges of pharmacy, and the profession to increase the number and impact of clinical pharmacy scientists. A postdoctoral fellowship is cited as a current training pathway, capable of producing independent and productive pharmacy researchers. However, a decline in the number of programs, decreased funding availability, and variability in fellowship program activities and research focus have brought into question the relevance of this research training pathway to meet demand and opportunities. In response to these points, this commentary examines the state of research fellowship training including the current ACCP research fellowship review process, the need for standardization of research fellowship programs, and strategies to strengthen and promote research fellowships as relevant researcher training pathways.

  19. Scientists, Research Centers and K-12 Science and Mathematics Education

    NASA Astrophysics Data System (ADS)

    Haase, David G.

    2001-11-01

    In recent years the federal funding agencies have put increased emphasis on the involvement of scientists in K-12 education. This emphasis is seen in the program descriptions for NSF Career awards, for NSF collaborative research centers and for NASA Education and Public Outreach supplemental contracts. There is ample motivation Ð e.g. funding, the health of public education, and the future of the scientific enterprise - for scientists and science research centers to connect to K-12. I will review what the education literature and national reports say about how scientists and research centers should be and should not be, involved in K-12 education. These roles and opportunities will be illustrated by examples of K-12 education outreach from The Science House at NC State and the NSF Center for Environmentally Responsible Solvents and Processes. This material is based upon work supported by the STC Program of the National Science Foundation under Agreement No. CHE-9876674 and by the Burroughs Wellcome Fund.

  20. To Crowdfund Research, Scientists Must Build an Audience for Their Work

    PubMed Central

    Byrnes, Jarrett E. K.; Ranganathan, Jai; Walker, Barbara L. E.; Faulkes, Zen

    2014-01-01

    As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or “fanbase” and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public. PMID:25494306

  1. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    PubMed

    Byrnes, Jarrett E K; Ranganathan, Jai; Walker, Barbara L E; Faulkes, Zen

    2014-01-01

    As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  2. Bridging the practitioner-scientist gap in group psychotherapy research.

    PubMed

    Lau, Mark A; Ogrodniczuk, John; Joyce, Anthony S; Sochting, Ingrid

    2010-04-01

    Bridging the practitioner-scientist gap requires a different clinical research paradigm: participatory research that encourages community agency-academic partnerships. In this context, clinicians help define priorities, determine the type of evidence that will have an impact on their practice (affecting the methods that are used to produce the evidence), and develop strategies for translating, implementing, and disseminating their findings into evidence-based practice. Within this paradigm, different roles are assumed by the partners, and sometimes these roles are blended. This paper will consider the perspectives of people who assume these different roles (clinician, researcher, and clinician-researcher) with group psychotherapy as the specific focus. Finally, the establishment of a practice-research network will be discussed as a potentially promising way to better engage group therapists in research.

  3. Identifying Future Scientists: Predicting Persistence into Research Training

    PubMed Central

    2007-01-01

    This study used semistructured interviews and grounded theory to look for characteristics among college undergraduates that predicted persistence into Ph.D. and M.D./Ph.D. training. Participants in the summer undergraduate and postbaccalaureate research programs at the Mayo Clinic College of Medicine were interviewed at the start, near the end, and 8–12 months after their research experience. Of more than 200 themes considered, five characteristics predicted those students who went on to Ph.D. and M.D./Ph.D. training or to M.D. training intending to do research: 1) Curiosity to discover the unknown, 2) Enjoyment of problem solving, 3) A high level of independence, 4) The desire to help others indirectly through research, and 5) A flexible, minimally structured approach to the future. Web-based surveys with different students confirmed the high frequency of curiosity and/or problem solving as the primary reason students planned research careers. No evidence was found for differences among men, women, and minority and nonminority students. Although these results seem logical compared with successful scientists, their constancy, predictive capabilities, and sharp contrast to students who chose clinical medicine were striking. These results provide important insights into selection and motivation of potential biomedical scientists and the early experiences that will motivate them toward research careers. PMID:18056303

  4. Translation of clinical research into practice: defining the clinician scientist.

    PubMed

    Khanna, Niharika; Nesbitt, Laquandra; Roghmann, Mary-Claire; Tacket, Carol

    2009-06-01

    Family medicine has evolved into a specialty deeply rooted in clinical service. Because of high demands for clinical practice productivity, family physicians have drifted away from participation in scientific inquiry. There is even an effort in some institutions to reinvent family medicine as a community-based ambulatory specialty, resulting in a further "disconnect" between research and family physicians. A new movement for the efficient translation of laboratory science into clinical applications in the community supports the need for trained community-based clinician scientists. This translational science seeks to take the findings from bench research and clinical trials and study their introduction and dissemination into community-based clinical practice. There is an opportunity for family physicians to become involved in translational research. But, to develop a cadre of translational researchers within the family medicine community, education programs need to train and develop those researchers. Residency education may be an ideal time to begin that training and development.

  5. Involving Scientists in Outreach: Incentives, Barriers, and Recommendations from Research Findings

    NASA Astrophysics Data System (ADS)

    Melton, G.; Laursen, S.; Andrews, E.; Weaver, A.; Hanley, D.; Shamatha, J. H.

    2004-12-01

    Public agencies that fund scientific research are increasingly requiring that researchers invest some of their funding in education or outreach activities that have a "broader impact." Yet barriers exist that inhibit scientists' motivation to participate in K-12 outreach. We will share findings from a quantitative and qualitative study that examined the motivations, rewards, and obstacles for scientists who participate in outreach. We found that most researchers became interested in doing outreach out of a desire to contribute and an expectation of having fun and enjoying the experience. They typically gave outreach presentations away from work, acted as a resource for school teachers, or helped with teacher professional development. However, scientists viewed outreach as a form of volunteer work that was auxiliary to their other responsibilities. Thus, time constraints, a lack of information about outreach opportunities, and the lower value placed on outreach by departments constituted significant barriers to their participation. Scientists involved in outreach typically found their efforts to be rewarding, but occasionally factors left a negative impression, such as poor audience response, classroom management difficulties, organizational problems, or demonstrations not going as planned. Based upon our findings, we offer recommendations on how scientists' participation and experiences in K-12 outreach can be improved, including how to successfully recruit scientists, create a positive outreach experience, and increase institutional support for outreach work.

  6. Creating Catalytic Collaborations between Theater Artists, Scientists, and Research Institutions

    NASA Astrophysics Data System (ADS)

    Wise, Debra

    2012-02-01

    Catalyst Collaborative@MIT (CC@MIT) is a collaboration between MIT and Underground Railway Theater (URT), a company with 30 years experience creating theater through interdisciplinary inquiry and engaging community. CC@MIT is dedicated to creating and presenting plays that deepen public understanding about science, while simultaneously providing artistic and emotional experiences not available in other forms of dialogue about science. CC@MIT engages audiences in thinking about themes in science of social and ethical concern; provides insight into the culture of science and the impact of that culture on society; and examines the human condition through the lens of science that intersects our lives and the lives of scientists. Original productions range from Einstein's Dreams to From Orchids to Octopi -- an evolutionary love story; classics re-framed include The Life of Galileo and Breaking the Code (about Alan Turing). CC@MIT commissions playwrights and scientists to create plays; engages audiences with scientists; performs at MIT and a professional venue near the campus; collaborates with the Cambridge Science Festival and MIT Museum; engages MIT students, as well as youth and children. Artistic Director Debra Wise will address how the collaboration developed, what opportunities are provided by collaborations between theaters and scientific research institutions, and lessons learned of value to the field.

  7. Views of Translational Research from a Somewhat Translational Scientist

    PubMed Central

    Talman, William T.

    2013-01-01

    This review arose from a talk entitled “Identifying Targets” and given by the author at EB2011 at the invitation of the American Federation for Medical Research (AFMR). The presentation was part of the AFMR workshop entitled “Keys for Translation: Science and Strategy” and focused on identifying clinically relevant targets as a result of observations made during basic scientific studies. The review emphasizes that targets do not have to be the aim that drives basic discovery, but communication between the basic scientist and clinical investigators may aid recognition of such targets and their translation to clinical applications. Using one line of investigator-initiated research from his own laboratory as an example, the author emphasizes that basic discovery must be hypothesis driven and allowed to follow its logical sequence. Finding treatments, while always an aim of biomedical research, may arise as a result of basic studies that were not originally aimed at a target of translational research. PMID:22781556

  8. The Careers and Professional Activities of Graduates of the NIGMS Medical Scientist Training Program.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This study evaluated professional outcomes for graduates of the 32 programs supported by the National Institute of General Medical Sciences under the Medical Scientist Training Program (MSTP). Specifically, it evaluated the success of MSTP graduates in establishing research careers and the types of careers and research activities followed compared…

  9. NASA's SMD Cross-Forum Resources for Supporting Scientist Engagement in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Cobabe-Ammann, E. A.; Hsu, B. C.; Sharma, M.; Peticolas, L. M.; Schwerin, T. G.; Shipp, S. S.; Smith, D.

    2012-12-01

    Sharing the excitement of ongoing scientific discoveries is an important aspect of scientific activity for researchers. Directly engaging scientists in education and public outreach (E/PO) activities has the benefit of directly connecting the public to those who engage in scientific activities. A shortage of training in education methods, public speaking, and working with various public audiences increases barriers to engaging scientists in these types in E/PO activities. NASA's Science Mission Directorate (SMD) Education and Public forums (astrophysics, earth science, heliophysics, and planetary science) support scientists currently involved in E/PO and who are interested in becoming involved in E/PO through a variety of avenues. Over the past three years, the forums have developed a variety of resources to help engage scientists in education and public outreach. We will showcase the following resources developed through the SMD E/PO cross-forum efforts: Professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), ongoing professional development at scientific conferences to increase scientist engagement in E/PO activities, toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), toolkits to inform scientists of science education resources developed within each scientific thematic community, EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research, http://www.lpi.usra.edu/earthspace/), thematic resources for teaching about SMD science topics, and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  10. Is there a glass ceiling for highly cited scientists at the top of research universities?

    PubMed

    Ioannidis, John P A

    2010-12-01

    University leaders aim to protect, shape, and promote the missions of their institutions. I evaluated whether top highly cited scientists are likely to occupy these positions. Of the current leaders of 96 U.S. high research activity universities, only 6 presidents or chancellors were found among the 4009 U.S. scientists listed in the ISIHighlyCited.com database. Of the current leaders of 77 UK universities, only 2 vice-chancellors were found among the 483 UK scientists listed in the same database. In a sample of 100 top-cited clinical medicine scientists and 100 top-cited biology and biochemistry scientists, only 1 and 1, respectively, had served at any time as president of a university. Among the leaders of 25 U.S. universities with the highest citation volumes, only 12 had doctoral degrees in life, natural, physical or computer sciences, and 5 of these 12 had a Hirsch citation index m < 1.0. The participation of highly cited scientists in the top leadership of universities is limited. This could have consequences for the research and overall mission of universities.

  11. Scientists' perspectives on the ethical issues of stem cell research.

    PubMed

    Longstaff, Holly; Schuppli, Catherine A; Preto, Nina; Lafrenière, Darquise; McDonald, Michael

    2009-06-01

    This paper describes findings from an ethics education project funded by the Canadian Stem Cell Network (SCN). The project is part of a larger research initiative entitled "The Stem Cell Research Environment: Drawing the Evidence and Experience Together". The ethics education study began with a series of focus groups with SCN researchers and trainees as part of a "needs assessment" effort. The purpose of these discussions was to identify the main ethical issues associated with stem cell (SC) research from the perspective of the stem cell community. This paper will focus on five prominent themes that emerged from the focus group data including: (1) the source of stem cells; (2) the power of stem cells; (3) working within a charged research environment; (4) the regulatory context; and (5) ethics training for scientists. Additional discussions are planned with others involved in Canadian stem cell research (e.g., research ethics board members, policy makers) to supplement initial findings. These assessment results combined with existing bioethics literature will ultimately inform a web-based ethics education module for the SCN. We believe that our efforts are important for those analyzing the ethical, legal, and social issues (ELSI) in this area because our in depth understanding of stem cell researcher perspectives will enable us to develop more relevant and effective education material, which in turn should help SC researchers address the important ethical challenges in their area.

  12. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast

  13. Research &Discover: A Pipeline of the Next Generation of Earth System Scientists

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Einaudi, F.; Moore, B.; Salomonson, V.; Campbell, J.

    2006-12-01

    In 2002, the University of New Hampshire (UNH) and NASA Goddard Space Flight Center (GSFC) started the educational initiative Research &Discover with the goals to: (i) recruit outstanding young scientists into research careers in Earth science and Earth remote sensing (broadly defined), and (ii) support Earth science graduate students enrolled at UNH through a program of collaborative partnerships with GSFC scientists and UNH faculty. To meet these goals, the program consists of a linked set of educational opportunities that begins with a paid summer research internship at UNH for students following their Junior year of college, and is followed by a second paid summer internship at GSFC for students following their Senior year of college. These summer internships are then followed by two-year fellowship opportunities at UNH for graduate studies jointly supervised by UNH faculty and GSFC scientists. After 5 years of implementation, the program has awarded summer research internships to 22 students, and graduate research fellowships to 6 students. These students have produced more than 78 scientific research presentations, 5 undergraduate theses, 2 Masters theses, and 4 peer-reviewed publications. More than 80% of alums are actively pursuing careers in Earth sciences now. In the process, the program has engaged 19 faculty from UNH and 15 scientists from GSFC as advisors/mentors. New collaborations between these scientists have resulted in new joint research proposals, and the development, delivery, and assessment of a new course in Earth System Science at UNH. Research &Discover represents an educational model of collaboration between a national lab and university to create a pipeline of the next generation of Earth system scientists.

  14. A Comprehensive Approach to Partnering Scientists with Education and Outreach Activities at a National Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.

    2002-12-01

    With the establishment of an Office of Education and Outreach (EO) in 2000 and the adoption of a five-year EO strategic plan in 2001, the University Corporation for Atmospheric Research (UCAR) committed to augment the involvement of AGU scientists and their partners in education and public outreach activities that represent the full spectrum of research in the atmospheric and related sciences. In 2002, a comprehensive program is underway which invites scientists from UCAR, the National Center for Atmospheric Research (NCAR), and UCAR Office of Programs (UOP) into partnership with EO through volunteer orientation workshops, program specific training, skill-building in pedagogy, access to classroom resources, and program and instructor evaluation. Scientists contribute in one or several of the following roles: program partners who bridge research to education through collaborative grant proposals; science content advisors for publications, web sites, exhibits, and informal science events; science mentors for high school and undergraduate students; NCAR Mesa Laboratory tour guides; scientists in the schools; science education ambassadors to local and national community events; science speakers for EO programs, conferences, and meetings of local organization; and science wizards offering demonstrations at public events for children and families. This new EO initiative seeks to match the expertise and specific interests of scientists with appropriate activities, while also serving as a communications conduit through which ideas for new activities and resources can be seeded and eventually developed into viable, fully funded programs.

  15. From Research Scientist to Public Outreach: A Personal Journey

    NASA Astrophysics Data System (ADS)

    Stewart, R.

    2004-12-01

    Over the past six years I have made the transition from research oceanographer to an educator and public outreach specialist. The transition has been rewarding but difficult. On the way I had to learn the vocabulary and concepts of education (e.g. authentic assessment), effective web-page styles, and the difference between science and education--they are very different. I also met many enthusiastic and caring teachers who greatly eased my transition to educator. Some lessons learned. First, partner with experts. Successful outreach is a team effort. I was luck to have the opportunity to work closely with a great professor of education, Robert James, a wonderful middle-school teacher and Presidential Awardee, Margaret Hammer, and talented students, Jon Reisch and Don Johnson, from our School of ArchitectureAƒAøAøâ_sA¬Aøâ_zAøs Visualization Laboratory, who combined art and technology. Second, if you are a scientist, realize that scientists are too critical. We look for the one right answer, and for the flaws in data and theory. Educators look for the many ways to present ideas, all equally valid, and they value the worth of all students. AƒAøAøâ_sA¬A.â_oSo radical are the differences between the worlds of science and human affairs that their demands are sometimes in conflict.AƒAøAøâ_sA¬A_A¿A 1/2 -Philander: Our Affair With El Nino, p.5. Second, the web is a very efficient way of reaching many people. Thus, web skills are essential. Third, I am learning to be humble. There is much I need to learn. The skills necessary to be a successful research scientist are not sufficient for being a successful educator. Fourth, assess, assess, and assess. DonAƒAøAøâ_sA¬Aøâ_zAøt assume that what you create serves its purpose. Get feedback from educators, students, and scientists of all levels of experience.

  16. Shaping the Future of Research: a perspective from junior scientists

    PubMed Central

    MacKellar, Drew C.; Mazzilli, Sarah A.; Pai, Vaibhav P.; Goodwin, Patricia R.; Walsh, Erica M.; Robinson-Mosher, Avi; Bowman, Thomas A.; Kraemer, James; Erb, Marcella L.; Schoenfeld, Eldi; Shokri, Leila; Jackson, Jonathan D.; Islam, Ayesha; Mattozzi, Matthew D.; Krukenberg, Kristin A.; Polka, Jessica K.

    2015-01-01

    The landscape of scientific research and funding is in flux as a result of tight budgets, evolving models of both publishing and evaluation, and questions about training and workforce stability. As future leaders, junior scientists are uniquely poised to shape the culture and practice of science in response to these challenges. A group of postdocs in the Boston area who are invested in improving the scientific endeavor, planned a symposium held on October 2 nd and 3 rd, 2014, as a way to join the discussion about the future of US biomedical research. Here we present a report of the proceedings of participant-driven workshops and the organizers’ synthesis of the outcomes. PMID:25653845

  17. Fascia Research from a Clinician/Scientist's Perspective.

    PubMed

    Findley, Thomas W

    2011-01-01

    The upcoming Third International Fascia Research Congress will have much exciting information for the clinician, as well as for the clinical and basic science researcher. This paper provides a perspective from a clinician/scientist, including the fascial network of body-wide connections between and within individual cells, and sharing of loads between muscle and fascia. Basic studies of fibroblast cell shape show the impact of manual therapy, acupuncture, and yoga-like stretching at the cellular level. Advances in scientific equipment have made it possible to study a layer of hyaluronan fluid, which allows sliding between deep fascia and muscle. Collagen fibers within fascia affect both blood flow to muscles and lymphatic fluid flow. PMID:22211151

  18. Shaping the Future of Research: a perspective from junior scientists.

    PubMed

    McDowell, Gary S; Gunsalus, Kearney T W; MacKellar, Drew C; Mazzilli, Sarah A; Pai, Vaibhav P; Goodwin, Patricia R; Walsh, Erica M; Robinson-Mosher, Avi; Bowman, Thomas A; Kraemer, James; Erb, Marcella L; Schoenfeld, Eldi; Shokri, Leila; Jackson, Jonathan D; Islam, Ayesha; Mattozzi, Matthew D; Krukenberg, Kristin A; Polka, Jessica K

    2014-01-01

    The landscape of scientific research and funding is in flux as a result of tight budgets, evolving models of both publishing and evaluation, and questions about training and workforce stability. As future leaders, junior scientists are uniquely poised to shape the culture and practice of science in response to these challenges. A group of postdocs in the Boston area who are invested in improving the scientific endeavor, planned a symposium held on October 2 (nd) and 3 (rd), 2014, as a way to join the discussion about the future of US biomedical research. Here we present a report of the proceedings of participant-driven workshops and the organizers' synthesis of the outcomes. PMID:25653845

  19. Evaluating Academic Scientists Collaborating in Team-Based Research: A Proposed Framework.

    PubMed

    Mazumdar, Madhu; Messinger, Shari; Finkelstein, Dianne M; Goldberg, Judith D; Lindsell, Christopher J; Morton, Sally C; Pollock, Brad H; Rahbar, Mohammad H; Welty, Leah J; Parker, Robert A

    2015-10-01

    Criteria for evaluating faculty are traditionally based on a triad of scholarship, teaching, and service. Research scholarship is often measured by first or senior authorship on peer-reviewed scientific publications and being principal investigator on extramural grants. Yet scientific innovation increasingly requires collective rather than individual creativity, which traditional measures of achievement were not designed to capture and, thus, devalue. The authors propose a simple, flexible framework for evaluating team scientists that includes both quantitative and qualitative assessments. An approach for documenting contributions of team scientists in team-based scholarship, nontraditional education, and specialized service activities is also outlined. Although biostatisticians are used for illustration, the approach is generalizable to team scientists in other disciplines.The authors offer three key recommendations to members of institutional promotion committees, department chairs, and others evaluating team scientists. First, contributions to team-based scholarship and specialized contributions to education and service need to be assessed and given appropriate and substantial weight. Second, evaluations must be founded on well-articulated criteria for assessing the stature and accomplishments of team scientists. Finally, mechanisms for collecting evaluative data must be developed and implemented at the institutional level. Without these three essentials, contributions of team scientists will continue to be undervalued in the academic environment. PMID:25993282

  20. Evaluating Academic Scientists Collaborating in Team-Based Research: A Proposed Framework.

    PubMed

    Mazumdar, Madhu; Messinger, Shari; Finkelstein, Dianne M; Goldberg, Judith D; Lindsell, Christopher J; Morton, Sally C; Pollock, Brad H; Rahbar, Mohammad H; Welty, Leah J; Parker, Robert A

    2015-10-01

    Criteria for evaluating faculty are traditionally based on a triad of scholarship, teaching, and service. Research scholarship is often measured by first or senior authorship on peer-reviewed scientific publications and being principal investigator on extramural grants. Yet scientific innovation increasingly requires collective rather than individual creativity, which traditional measures of achievement were not designed to capture and, thus, devalue. The authors propose a simple, flexible framework for evaluating team scientists that includes both quantitative and qualitative assessments. An approach for documenting contributions of team scientists in team-based scholarship, nontraditional education, and specialized service activities is also outlined. Although biostatisticians are used for illustration, the approach is generalizable to team scientists in other disciplines.The authors offer three key recommendations to members of institutional promotion committees, department chairs, and others evaluating team scientists. First, contributions to team-based scholarship and specialized contributions to education and service need to be assessed and given appropriate and substantial weight. Second, evaluations must be founded on well-articulated criteria for assessing the stature and accomplishments of team scientists. Finally, mechanisms for collecting evaluative data must be developed and implemented at the institutional level. Without these three essentials, contributions of team scientists will continue to be undervalued in the academic environment.

  1. Physician scientist research pathway leading to certification by the American Board of Pathology.

    PubMed

    Weiss, Sharon W; Johnson, Rebecca L

    2016-06-01

    In 2014, the American Board of Pathology, in response to the pathology community, approved a physician scientist research pathway (PSRP). This brief report summarizes the history of and objectives for creating the physician scientist research pathway and the requirements of the American Board of Pathology for the certification of physician scientist research pathway trainees. PMID:26980045

  2. Maximizing Research Productivity and Recognition: Strategies for Junior Scientists

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Pfirman, S.; Culligan, P.; Laird, J.

    2007-12-01

    The post-doc and the first six years of the academic lifecycle are crucial: the performance and decisions a scientist makes during this time often set the stage for the rest of his or her career. We frame our presentation around the criteria that reviewers typically use to assess candidates: reputation, impact, and productivity. Publication productivity is one of the most critical aspects of a researcher's success and the number of publications is often the first item that evaluators look for when reviewing files of job applicants and tenure candidates. Citations are typically used as a measure of impact, but they reflect a complicated set of factors besides quality, for example, visibility, size of citing community, and integration in social and professional networks. Letters of recommendation carry significant weight in evaluations for promotion because they are the only external measure that synthesizes all three parameters: reputation, impact and productivity. We have developed strategies for developing a research plan, getting the most out of scientific meetings, identifying potential letter writers, and integrating research into teaching. In this presentation we combine insights from the literature with our own experiences, to outline these strategies for increasing research productivity, recognition, and impact.

  3. Students Engaged in Research - Young Engineers and Scientists (YES)

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.

    2009-09-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including geosciences), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. YES students develop a website (yesserver.space.swri.edu) for topics in space science and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  4. Young Engineers and Scientists (YES) -engaging students in research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel; Reiff, Patricia

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) during the past 18 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including space sciences), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. YES students develop a website (yesserver.space.swri.edu) for topics in space science and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students' preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, Texas Space Grant Consortium, SwRI, and local charitable foundations.

  5. IT Tools for Teachers and Scientists, Created by Undergraduate Researchers

    NASA Astrophysics Data System (ADS)

    Millar, A. Z.; Perry, S.

    2007-12-01

    Interns in the Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) program conduct computer science research for the benefit of earthquake scientists and have created products in growing use within the SCEC education and research communities. SCEC/UseIT comprises some twenty undergraduates who combine their varied talents and academic backgrounds to achieve a Grand Challenge that is formulated around needs of SCEC scientists and educators and that reflects the value SCEC places on the integration of computer science and the geosciences. In meeting the challenge, students learn to work on multidisciplinary teams and to tackle complex problems with no guaranteed solutions. Meantime, their efforts bring fresh perspectives and insight to the professionals with whom they collaborate, and consistently produces innovative, useful tools for research and education. The 2007 Grand Challenge was to design and prototype serious games to communicate important earthquake science concepts. Interns broke themselves into four game teams, the Educational Game, the Training Game, the Mitigation Game and the Decision-Making Game, and created four diverse games with topics from elementary plate tectonics to earthquake risk mitigation, with intended players ranging from elementary students to city planners. The games were designed to be versatile, to accommodate variation in the knowledge base of the player; and extensible, to accommodate future additions. The games are played on a web browser or from within SCEC-VDO (Virtual Display of Objects). SCEC-VDO, also engineered by UseIT interns, is a 4D, interactive, visualization software that enables integration and exploration of datasets and models such as faults, earthquake hypocenters and ruptures, digital elevation models, satellite imagery, global isochrons, and earthquake prediction schemes. SCEC-VDO enables the user to create animated movies during a session, and is now part

  6. Engaging Students in Space Research: Young Engineers and Scientists 2008

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  7. Criteria for Assessing Quality in Academic Research: The Views of Biomedical Scientists, Clinical Scientists and Social Scientists

    ERIC Educational Resources Information Center

    Albert, Mathieu; Laberge, Suzanne; McGuire, Wendy

    2012-01-01

    This study empirically addresses the claim made by Gibbons et al ("The new production of knowledge: The dynamics of science and research in contemporary societies." Sage, Thousand Oaks, 1994) that a novel form of quality control (associated with Mode 2 knowledge production) is supplementing the "traditional" peer-review process (associated with…

  8. A Research Scientist's Perspective on Professional Development of Secondary Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Smith, L. K.

    2001-05-01

    A variety of roles are available for research scientists to become involved with education and public outreach (EPO) activities, ranging from working with K-12 students in the classroom to participating in the informal education venue. I have chosen to devote my EPO efforts primarily to the professional development of secondary Earth science teachers. This sector of educators generally has a good science content knowledge base, but many of these teachers struggle with the implementation of inquiry-based learning in their classrooms. Scientist-teaching pairing - either through workshops, such as the CIRES Earthworks program, or working with teachers in the laboratory - is an effective avenue for guiding teachers through the process of scientific inquiry. When science mentors model the scientific process, teachers develop the techniques of hypothesis formulation, experimental design, data analysis, and communication of data. Teacher workshops add the extra bonus of allowing participants to guide their peers through their personally developed projects. This activity builds confidence in the teacher's abilities to transfer the process of scientific inquiry to their own classroom. Standing on the sidelines, the scientist can offer advice on effective implementation ideas. Benefits to scientists involved in this type of EPO activity include expanding their teaching repertoire, satisfaction in the knowledge that they are effecting science education reform; and having fun!

  9. Climate Action and Activism: Scientists as Citizens and Communicators

    NASA Astrophysics Data System (ADS)

    Brown, M. B.; Peacock, K.

    2015-12-01

    Humans are not particularly good at being rational, either individually or socially; in the case of climate change, our concerns are chiefly social. The denial of climate change and its costs (ranging from denial of basic principles to using high discount rates to reduce the current value of future losses, and supported by fossil fuel companies and their many political allies) has delayed an effective response to a problem that gets worse and more costly the longer action is delayed. The central role of fossil fuels in our economies and of fossil fuel interests in our politics leads many to worry about the costs of change while denying or ignoring the costs of business as usual. Rational decision makers would not be so selective, either about the evidence or about the costs and benefits that hang in the balance. Effective communication can help call attention to the evidence and to the costs and benefits that have been neglected. Our society has no formal rules requiring scientists to become activists, even when the results of their work provide sound reasons for taking action. But ideals of citizenship and humanitarianism provide strong justification for those who choose to engage with the issues. A reticent scientist might feel that her job is done once the results of her research are published. The rest is arguably the responsibility of others—of politicians, journalists and citizens in general, to learn the relevant facts (now available as part of the published literature) and to bring those facts to bear in decisions ranging from the personal to the political and economic. But I urge scientists who feel this way to reconsider—not because their view of where the real responsibility lies is wrong, but because they are in a position to make a difference. In situations like these, where powerful interests are threatened by inconvenient facts, scientists can be very effective communicators: they have high credibility with the public (as deniers' repeated claims

  10. Intra-professional dynamics in translational health research: the perspective of social scientists.

    PubMed

    Currie, Graeme; El Enany, Nellie; Lockett, Andy

    2014-08-01

    In contrast to previous studies, which focus upon the professional dynamics of translational health research between clinician scientists and social scientists (inter-professional contestation), we focus upon contestation within social science (intra-professional contestation). Drawing on the empirical context of Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) in England, we highlight that although social scientists accept subordination to clinician scientists, health services researchers attempt to enhance their position in translational health research vis-à-vis organisation scientists, whom they perceive as relative newcomers to the research domain. Health services researchers do so through privileging the practical impact of their research, compared to organisation scientists' orientation towards development of theory, which health services researchers argue is decoupled from any concern with healthcare improvement. The concern of health services researchers lies with maintaining existing patterns of resource allocation to support their research endeavours, working alongside clinician scientists, in translational health research. The response of organisation scientists is one that might be considered ambivalent, since, unlike health services researchers, they do not rely upon a close relationship with clinician scientists to carry out research, or more generally, garner resource. PMID:24911511

  11. Intra-professional dynamics in translational health research: the perspective of social scientists.

    PubMed

    Currie, Graeme; El Enany, Nellie; Lockett, Andy

    2014-08-01

    In contrast to previous studies, which focus upon the professional dynamics of translational health research between clinician scientists and social scientists (inter-professional contestation), we focus upon contestation within social science (intra-professional contestation). Drawing on the empirical context of Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) in England, we highlight that although social scientists accept subordination to clinician scientists, health services researchers attempt to enhance their position in translational health research vis-à-vis organisation scientists, whom they perceive as relative newcomers to the research domain. Health services researchers do so through privileging the practical impact of their research, compared to organisation scientists' orientation towards development of theory, which health services researchers argue is decoupled from any concern with healthcare improvement. The concern of health services researchers lies with maintaining existing patterns of resource allocation to support their research endeavours, working alongside clinician scientists, in translational health research. The response of organisation scientists is one that might be considered ambivalent, since, unlike health services researchers, they do not rely upon a close relationship with clinician scientists to carry out research, or more generally, garner resource.

  12. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  13. Becoming a Scientist: Research Findings on STEM Students' Gains from Conducting Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Hunter, A.; Laursen, S.; Thiry, H.; Seymour, E.

    2006-12-01

    Undergraduate research is widely believed to enhance STEM students' education and increase their persistence to graduate education and careers in the sciences. Yet until very recently, little evidence from research and evaluation studies was available to substantiate such claims and document what students gain from doing undergraduate research or how these gains come about. We have conducted a three-year qualitative research study of STEM students participating in UR at four liberal arts colleges with a strong tradition of faculty-led summer research apprenticeships. Benefits to students reported by both students and their faculty advisors are categorized into six main categories of gains in skills, knowledge, "thinking like a scientist," career preparation, career development, and personal and professional growth. Student and faculty observations are strongly corroborative, but also differ in interesting ways that reflect the distinct perspectives of each group: students are still in the midst of discovering their own career paths while faculty advisors have observed the later career development of their past research students. While not all students find UR to heighten their interest in graduate school, they do find it a powerful growth experience that clarifies their career ambitions by providing a "real world" experience of science. For students whose interest in science is reinforced, UR has a significant role in their professional socialization into the culture and norms of science, which we call "becoming a scientist," through interactions that draw them into the scientific community and experiences that deepen their understanding of the nature of research. Cumulatively, the qualitative data set of nearly 350 interviews offers a rich portrayal of the UR enterprise from a variety of perspectives. Longitudinal data enable us to track the influence of UR on students' career and education trajectories in the years after college, and comparative data from a group

  14. The role of undergraduate research experiences in producing veterinary scientists.

    PubMed

    Dale, Vicki H M; Pierce, Stephanie E; May, Stephen A

    2010-01-01

    This study retrospectively examined the influence of a science-based, research-oriented degree on the career choices of a group of "early emerger" students who had aspired from an early age to become veterinarians but chose instead to pursue an alternative career in veterinary research. This transformation was in large part because of active participation in research, with supervisors acting as role models and mentors. This finding has important implications for teachers and course designers seeking to influence career decision making in both bioveterinary science and professional veterinary programs.

  15. Recipe for an Eclectic Life as Research Scientist and Mom

    NASA Astrophysics Data System (ADS)

    Harden, J. W.

    2012-12-01

    Recipe for an Eclectic Life as Research Scientist and Mom Fresh ingredients: curiosity, conviction, who knows what else Spices: equal parts ambition, humility, risk Staples: Boundless energy! This recipe requires a lot of prep time. It makes a great first meal but also "keeps on giving" as leftovers for many meals. It can be set aside and rekindled at various stages but requires frequent touch-ups to stay fresh. This recipe is especially great for large gatherings, eclectic palettes, and it includes a mix of cultural opportunities (AGU council member for example!). First, shop for a graduate department as you might for a farmers' market that has a good feel and good mix of "customers" (grad students) who share your attitude and interests. Then seek out professors and later, career mentors, who not only have great methods and recipes but whose lifestyles seem like good examples. I like my mentors and advisees alike to be approachable, supportive, and dedicated to both problem solving and whole-life choices. For the cooking part of the recipe, you'll certainly need a great partner who is hungry for science and appreciative of those pairings between new discoveries and long-awaited accomplishments. My own husband is a geologist. My professors were in their "late career" stages (one had retired 25 years before; another retired within a year of my degree) and this seemed to foster a philosophical perspective rather than a competitive one. Advice? The keys to my child-rearing recipe were efficiency and concentration: I try to organize and sequence and to save the multi-tasking for cleanups and paperwork. Don't take yourself too seriously: we all think of ourselves as frauds and know-nothings; we all are stretched between worry and guilt when it comes to child rearing. Don't give up: who is to say whether your quest for science isn't as fundamental to your goodness as your maternal drive?

  16. Extending the Mertonian Norms: Scientists' Subscription to Norms of Research

    ERIC Educational Resources Information Center

    Anderson, Melissa S.; Ronning, Emily A.; De Vries, Raymond; Martinson, Brian C.

    2010-01-01

    This analysis, based on focus groups and a national survey, assesses scientists' subscription to the Mertonian norms of science and associated counternorms. It also supports extension of these norms to governance (as opposed to administration), as a norm of decision-making, and quality (as opposed to quantity), as an evaluative norm. (Contains 1…

  17. Extending the Mertonian Norms: Scientists' Subscription to Norms of Research.

    PubMed

    Anderson, Melissa S; Ronning, Emily A; Devries, Raymond; Martinson, Brian C

    2010-05-01

    This analysis, based on focus groups and a national survey, assesses scientists' subscription to the Mertonian norms of science and associated counternorms. It also supports extension of these norms to governance (as opposed to administration), as a norm of decision-making, and quality (as opposed to quantity), as a evaluative norm. PMID:21132074

  18. On Being a Scientist: A Guide to Responsible Conduct in Research--Third Edition

    ERIC Educational Resources Information Center

    National Academies Press, 2009

    2009-01-01

    The scientific research enterprise is built on a foundation of trust. Scientists trust that the results reported by others are valid. Society trusts that the results of research reflect an honest attempt by scientists to describe the world accurately and without bias. But this trust will endure only if the scientific community devotes itself to…

  19. Scientists: Engage the Public!

    PubMed

    Shugart, Erika C; Racaniello, Vincent R

    2015-01-01

    Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or "Sagan effect" associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist's career. There are a variety of approaches that scientists can take to become active in science communication. PMID:26695633

  20. Scientists: Engage the Public!

    PubMed

    Shugart, Erika C; Racaniello, Vincent R

    2015-01-01

    Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or "Sagan effect" associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist's career. There are a variety of approaches that scientists can take to become active in science communication.

  1. Improving the Climate for Female Scientists at the National Center for Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Killeen, T. L.

    2003-12-01

    In the summer of 2000, at the invitation of the former Director of the National Center for Atmospheric Research (NCAR), a committee of senior female scientists affiliated with the American Physical Society's Committee on the Status of Women in Physics visited NCAR and NCAR's parent organization, the University Corporation for Atmospheric Research (UCAR). The purpose of the site visit was to develop recommendations designed to improve the climate for women scientists at NCAR. This site visit and the subsequent written report and response from NCAR/UCAR management were instrumental in the establishment of a series of new programs and recruitment/mentoring activities that have had a significant impact at NCAR. The APS Committee's report included recommendations in the areas of: staff recruitment and demographic balance; communication and consistent implementation of policies; mentoring and career development programs; and "family friendliness". The constructive and helpful report of the visiting APS committee was openly shared with staff and led to a series of discussions, debates, actions, and programs at NCAR that continue to this day. This poster will describe the APS Committee's recommendations, the institutional process that occurred in response to this study, and the resulting actions and their impact at the national center. Specific progress since the site visit has included a doubling of the percentage participation by females in the ladder (tenure-equivalent) scientist track at NCAR to a level that now significantly exceeds the national average for tenured or tenure-track female faculty at Ph.D.-granting institutions in the geosciences.

  2. Scientific authority in policy contexts: Public attitudes about environmental scientists, medical researchers, and economists.

    PubMed

    O'Brien, Timothy L

    2013-10-01

    This paper uses data from the US General Social Survey to examine public support for scientists in policy contexts and its link to scientific disciplines. An analysis of attitudes about the amount of influence that environmental scientists, two kinds of medical researchers, and economists should have over policy decisions reveals that in each discipline the extent to which scientists are thought to serve the nation's best interests is the strongest determinant of attitudes about scientists as policy advisors. Perceptions of scientists' technical knowledge and the level of consensus in the scientific community also have direct, albeit weaker effects on opinions about scientists' appropriate roles in policy settings. Whereas previous research has stressed the importance of local variability in understanding the transfer of scientific authority across institutional boundaries, these results point to considerable homogeneity in the social bases of scientific authority in policy contexts.

  3. Network of nanomedicine researches: impact of Iranian scientists

    PubMed Central

    Biglu, Mohammad-Hossein; Riazi, Shukuh

    2015-01-01

    Introduction: We may define the nanomedicine as the use of nanotechnology in the health care, disease diagnoses and treatment in order to maintain and increase the health status of a population through improve pharmacotherapy. The main objective of the current study is to analyze and visualize the co-authorship network of all papers in the field of nanomedicine published throughout 2002-2014 in journals and indexed in the Web of Science database. Methods: The Web of Science database was used to extract all papers indexed as a topic of nanomedicine through 2002-2014. The Science of Science Tool was used to map the co-authorship network of papers. Results: Total number of papers extracted from the Web of Science in the field of nanomedicine was 3092 through 2002-2014. Analysis of data showed that the research activities in the field of nanomedicine increased steadily through the period of study. USA, China, and India were the most prolific countries in the field. The dominant language of publications was English. The co-authorship connection revealed a network with a density of 0.0006. Conclusion: Nanomedicine researches have markedly been increased in Iran. Ninety-five percent of Iranian papers were cooperated with multi-authors. The collaboration coefficient degree was 0.731. PMID:26929924

  4. The Regional Distribution of Energy-Related Scientists and Engineers, 1976. Research Memorandum.

    ERIC Educational Resources Information Center

    Finn, Michael G.; Blair, Philip

    Examined are several factors related to regional variations in the number of energy-related scientists and engineers and how this subgroup differs from the base group of scientists and engineers. The emphasis of this research project was to determine the influence of regional differences in industry mix and in staffing patterns within industries…

  5. Research Education of New Scientists: Implications for Science Teacher Education

    ERIC Educational Resources Information Center

    Feldman, Allan; Divoll, Kent; Rogan-Klyve, Allyson

    2009-01-01

    This study examined an interdisciplinary scientific research project to understand how graduate and undergraduate honors students learn to do science. It was found that the education of the students occurs as part of an apprenticeship. The apprenticeship takes place in research groups. In general, research groups are structured in two ways:…

  6. Earth2Class Overview: An Innovative Program Linking Classroom Educators and Research Scientists

    NASA Astrophysics Data System (ADS)

    Passow, M.; Iturrino, G. J.; Baggio, F. D.; Assumpcao, C. M.

    2005-12-01

    The Earth2Class (E2C) workshops, held at the Lamont-Doherty Earth Observatory (LDEO), provide an effective model for improving knowledge, teaching, and technology skills of middle and high school science educators through ongoing interactions with research scientists and educational technology. With support from an NSF GeoEd grant, E2C has developed monthly workshops, web-based resources, and summer institutes in which classroom teachers and research scientists have produced exemplar curriculum materials about a wide variety of cutting-edge geoscience investigations suitable for dissemination to teachers and students. Some of the goals of this program are focused to address questions such as: (1) What aspects of the E2C format and educational technology most effectively connect research discoveries with classroom teachers and their students? (2) What benefits result through interactions among teachers from highly diverse districts and backgrounds with research scientists, and what benefits do the scientists gain from participation? (3) How can the E2C format serve as a model for other research institution-school district partnerships as a mechanism for broader dissemination of scientific discoveries? E2C workshops have linked LDEO scientists from diverse research specialties-seismology, marine geology, paleoclimatology, ocean drilling, dendrochronology, remote sensing, impact craters, and others-with teachers from schools in the New York metropolitan area. Through the workshops, we have trained teachers to enhance content knowledge in the Earth Sciences and develop skills to incorporate new technologies. We have made a special effort to increase the teaching competency of K-12 Earth Sciences educators serving in schools with high numbers of students from underrepresented groups, thereby providing greater role models to attract students into science and math careers. E2C sponsored Earth Science Teachers Conferences, bringing together educators from New York and New

  7. Student cognitive growth and attitudinal changes through conducting authentic research in the Young Scientist Program at Zoo Atlanta

    NASA Astrophysics Data System (ADS)

    Sharpe, La Tanya Danielle

    This purpose of this study was to determine if authentic research conducted by students in the Young Scientist Program: (a) enhanced scientific research skills, (b) increased cognitive growth in the areas of animal behavior and characteristics, and (c) affected attitudes toward scientific research, science, and zoo-related issues. During the nine-week program, 18 students from Liberty High School completed program-related activities in their classrooms, and at Zoo Atlanta. Here, students completed authentic research in the form of animal behavior research projects. Research-based activities included forming hypotheses based on animal behavior, creating and maintaining ethograms, and making behavioral observations. This was a mixed method study, in which, both quantitative and qualitative data were collected and analyzed in an attempt to answer the following research questions: (1) How does conducting authentic research within the Young Scientist Program enhance student scientific research skills? (2) How does participation in the Young Scientist Program increase student knowledge of animal behavior and characteristics? (3) How does the Young Scientist Program affect student attitudes? Data were collected pre, mid, and post program. Data sources included: (a) surveys, (b) interviews, (c) student research papers, and (d) researcher field notes. The data were analyzed through a framework of four methodological lenses: (a) knowledge of scientific research, (b) knowledge of animals, (c) attitudes toward scientific research, and (d) attitudes toward science and zoo-related issues. Surveys included knowledge tests and attitude scales. Overall, knowledge test results implied that as students progressed through the Young Scientist Program, their research skills, knowledge of scientific research, and knowledge of their animal were enhanced. Attitudinal data obtained from the attitude scales suggested that students' attitudes toward scientific research, science, and zoo

  8. The Continuing Challenges of Translational Research: Clinician-Scientists' Perspective

    PubMed Central

    Homer-Vanniasinkam, Shervanthi; Tsui, Janice

    2012-01-01

    Over the last twenty years, revolutionary advances in biomedicine including gene therapy, stem cell research, proteomics, genomics and nanotechnology have highlighted the progressive need to restructure traditional approaches to basic and clinical research in order to facilitate the rapid, efficient integration and translation of these new technologies into novel effective therapeutics. Over the past ten years, funding bodies in the USA and UK such as the National Institutes of Health (NIH) and the Medical Research Council (MRC) have been driving translational research by defining and tackling the hurdles but more still remains to be achieved. This article discusses the ongoing challenges translational researchers face and outlines recent initiatives to tackle these including the new changes to translational funding schemes proposed by the NIH and the MRC and the launch of the “European Advanced Translational Research InfraStructure in Medicine” (EATRIS). It is anticipated that initiatives such as these will not only strengthen translational biomedical research programmes already initiated but should lead to rapid benefits to patients and society. PMID:23050194

  9. Next Generation Scientists - Creating opportunities for high school students through astronomical research

    NASA Astrophysics Data System (ADS)

    Kelly, Madeline; Cebulla, Hannah; Powers, Lynn

    2015-01-01

    Through various opportunities and experiences with extracurricular scientific research, primarily astronomical research with programs like NASA/IPAC Teacher Archive Research Project (NITARP), and the Mars Exploration Student Data Teams (MESDT), we have noticed a change in our learning style, career path, and general outlook on the scientific community that we strongly believe could also be added to the lives of many other high school students given similar opportunities. The purpose of our poster is to emphasize the importance of granting high school students opportunities to explore different styles and methods of learning. We believe that although crucial, a basic high school education is not enough to expose young adults to the scientific community and create enough interest for a career path. As a result, we wish to show that more of these programs and opportunities should be offered to a greater number of students of all ages, allowing them to explore their passions, develop their understanding of different fields, and determine the paths best suited to their interests. Within our poster, we will emphasize how these programs have specifically impacted our lives, what we hope to see in the future, and how we hope to attain the growth of such opportunities. We include such proposals as; increasing outreach programs, expanding the exposure of young students to the sciences, both in the classroom and out, allowing high school students to participate in active scientific research, and involving students in hands-on activities/experiments within school clubs, the classroom, at home, or at local events. Spreading these opportunities to directly interact with the sciences in similar manners as that of professional scientists will allow students to discover their interests, realize what being a scientist truly entails, and allow them to take the first steps into following their career paths.

  10. Scientists: Engage the Public!

    PubMed Central

    Shugart, Erika C.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or “Sagan effect” associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist’s career. There are a variety of approaches that scientists can take to become active in science communication. PMID:26695633

  11. Scientists researching teaching: Reforming science education and transforming practice

    NASA Astrophysics Data System (ADS)

    Weiss, Tarin Harrar

    Reforming science education is a multidimensional and complex undertaking. Of extreme importance is transforming how teachers teach. Answering the equity call of reform initiatives requires focusing on the underlying values and beliefs guiding teacher action and the promotion of inclusive practices (Brickhouse, 2001; Harding, 1994; Eisenhart, Finkel, & Marion, 1995; Mayberry & Rees, 1999; Rodriguez, 1997). Reform efforts within the last decade are being directed at college level science courses. Course and pedagogical transformations are particularly aimed at increasing the numbers of females and persons of color in science and improving the education of preservice teachers. Facilitating transformations toward these goals at the individual and program level is challenging work. This study explores and describes the conditions of the teacher change process toward an inclusive pedagogy. Two science professors affiliated with a reform collaborative were the main participants of the research. The professors, in collaboration with the primary researcher, engaged in assisted action research that lead to the identification and descriptions of their context and practical teaching theories. Among the questions explored were: "How does placing the professor in a position to conduct an assisted action research project help to foster teacher change conditions?" "How do the practical theories guiding the professors' teaching foster or impede inclusionary practice?" "What necessary conditions of the teacher change process toward an inclusive pedagogy emerged from the study?". Using case study and ethnographic qualitative research strategies for data collection and analysis, this study affords a unique perspective through which to consider why and how science professors change their practice. Data indicated that the assisted action research strategy fostered the conditions of teacher change. In addition, findings revealed that the professors shared a teacher and curriculum

  12. Does Gender Affect a Scientist's Research Output in Evolutionary Ecology?

    NASA Astrophysics Data System (ADS)

    Bonnet, Xavier; Shine, Richard; Lourdais, Olivier

    To examine how an author's gender influences his or her research output, the authors analyzed (not simply scored) more than 900 published articles in nine leading scientific journals in the field of evolutionary ecology. Women were strongly underrepresented in all countries, but this bias is decreasing. Men and women differed significantly in their fields of research, with women preferentially conducting projects on behavior rather than evolution or ecology. Most aspects of the structure of published articles and the level of conceptual generality were unaffected by an author's gender. Because discriminatory practices by reviewers and editors can be manifested in attributes of the articles that survive the review process, the latter result suggests a lack of gender-based discrimination during the review process. Gender differences in research output presumably reflect a complex array of genetic and social influences; a clearer understanding of these causal factors may help identify (and thus reduce) gender-based discrimination.

  13. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    NASA Astrophysics Data System (ADS)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  14. Research Activities.

    ERIC Educational Resources Information Center

    Santa Fe Community Coll., Gainesville, FL.

    The five parts of this report are: research on instruction; faculty dissertations; inter-institutional research; in-college research; and college-endorsed research. The first covers experiments in teaching French, practical nursing, English, math, and chemistry, and in giving examinations. Faculty dissertations include studies of post-graduate…

  15. The Association of Polar Early Career Scientists - A Model for Young Researcher Programs

    NASA Astrophysics Data System (ADS)

    Pope, A.; Baeseman, J. L.

    2010-12-01

    Established in 2006 by young researchers in the early stages of the International Polar Year (IPY), the Association of Polar Early Career Scientists (APECS) has evolved into the pre-eminent international organization for polar researchers at early stages of their careers. Now comprising around 2000 members from approximately 45 countries, APECS represents a body of undergraduate and graduate students, postdoctoral researchers, early faculty members, educators and others with interests in Polar Regions and the cryosphere with the key aim of raising the profile of polar research by providing a continuum of leadership that is both international and interdisciplinary in focus, and stimulating collaborative projects in research, education and outreach. APECS provides a strong voice for young researchers, enabling information sharing between early-career and more established professionals, promoting and organizing science, education and outreach events, and being actively involved with other organizations in the support of polar research activities. These activities are guided by three overarching goals: *Facilitate international and interdisciplinary networking to share ideas and experiences and to develop new research directions and collaborations; *Provide opportunities for professional career development; and *Promote education and outreach as integral components of polar research and to stimulate future generations of polar researchers. This presentation highlights the major achievements of APECS since its inception as well as future steps that APECS plans to take to ensure its sustainability. APECS can serve as a model for other groups looking to encourage the next generation of researchers. Since its founding, APECS has strived to develop strong partnerships with international organizations and scientific bodies. This network has not only facilitated early-career representation on an international level but has also furthered many education and outreach

  16. NIH research funding and early career physician scientists: continuing challenges in the 21st century

    PubMed Central

    Garrison, Howard H.; Deschamps, Anne M.

    2014-01-01

    Physician scientists (researchers with either M.D. or M.D.-Ph.D. degrees) have the unique potential to combine clinical perspectives with scientific insight, and their participation in biomedical research has long been an important topic for policymakers and educators. Given the recent changes in the research environment, an update and extension of earlier studies of this population was needed. Our findings show that physician scientists are less likely to take a major role in biomedical research than they were in the past. The number of physician scientists receiving postdoctoral research training and career development awards is at an all-time low. Physician scientists today, on average, receive their first major research award (R01 equivalent) at a later age than in the 1980s. The number of first-time R01-equivalent awards to physicians is at the same level as it was 30 yr ago, but physicians now represent a smaller percentage of the grant recipients. The long-term decline in the number of physicians entering research careers was temporarily halted during the period of substantial U.S. National Institutes of Health (NIH) budget growth (1998–2003). These gains are lost, however, in the subsequent years when NIH budgets failed to keep pace with rising costs.— Garrison, H. H., Deschamps, A. M. NIH research funding and early career physician scientists: continuing challenges in the 21st century. PMID:24297696

  17. The Voice of Experience: How Social Scientists Communicate Family Research to Policymakers

    ERIC Educational Resources Information Center

    Friese, Bettina; Bogenschneider, Karen

    2009-01-01

    Because scientific understanding of communicating family research to policymakers is incomplete, qualitative interviews were conducted with social scientists experienced in bridging the gulf between research and family policy. In keeping with the tenets of 2 communities and community dissonance theories, the underutilization of research in…

  18. The Elements of Process in the Research Strategies of American Scientists.

    ERIC Educational Resources Information Center

    Hogan, James Royce

    Nine processes of scientific research, (identified from reports of curriculum projects, the philosophy of science literature, and the opinions of science educators), were used to classify 50 strategies that scientists might follow in research. Fifty percent of a stratified random sample of 100 American researchers from each of the physical,…

  19. Survivors and scientists: Hiroshima, Fukushima, and the Radiation Effects Research Foundation, 1975-2014.

    PubMed

    Lindee, Susan

    2016-04-01

    In this article, I reflect on the Radiation Effects Research Foundation and its ongoing studies of long-term radiation risk. Originally called the Atomic Bomb Casualty Commission (1947-1975), the Radiation Effects Research Foundation has carried out epidemiological research tracking the biomedical effects of radiation at Hiroshima and Nagasaki for almost 70 years. Radiation Effects Research Foundation scientists also played a key role in the assessment of populations exposed at Chernobyl and are now embarking on studies of workers at the Fukushima Daiichi Nuclear Power Plant. I examine the role of estimating dosimetry in post-disaster epidemiology, highlight how national identity and citizenship have mattered in radiation risk networks, and track how participants interpreted the relationships between nuclear weapons and nuclear energy. Industrial interests in Japan and the United States sought to draw a sharp line between the risks of nuclear war and the risks of nuclear power, but the work of the Radiation Effects Research Foundation (which became the basis of worker protection standards for the industry) and the activism of atomic bomb survivors have drawn these two nuclear domains together. This is so particularly in the wake of the Fukushima disaster, Japan's 'third atomic bombing'. The Radiation Effects Research Foundation is therefore a critical node in a complex global network of scientific institutions that adjudicate radiation risk and proclaim when it is present and when absent. Its history, I suggest, can illuminate some properties of modern disasters and the many sciences that engage with them.

  20. Survivors and scientists: Hiroshima, Fukushima, and the Radiation Effects Research Foundation, 1975-2014.

    PubMed

    Lindee, Susan

    2016-04-01

    In this article, I reflect on the Radiation Effects Research Foundation and its ongoing studies of long-term radiation risk. Originally called the Atomic Bomb Casualty Commission (1947-1975), the Radiation Effects Research Foundation has carried out epidemiological research tracking the biomedical effects of radiation at Hiroshima and Nagasaki for almost 70 years. Radiation Effects Research Foundation scientists also played a key role in the assessment of populations exposed at Chernobyl and are now embarking on studies of workers at the Fukushima Daiichi Nuclear Power Plant. I examine the role of estimating dosimetry in post-disaster epidemiology, highlight how national identity and citizenship have mattered in radiation risk networks, and track how participants interpreted the relationships between nuclear weapons and nuclear energy. Industrial interests in Japan and the United States sought to draw a sharp line between the risks of nuclear war and the risks of nuclear power, but the work of the Radiation Effects Research Foundation (which became the basis of worker protection standards for the industry) and the activism of atomic bomb survivors have drawn these two nuclear domains together. This is so particularly in the wake of the Fukushima disaster, Japan's 'third atomic bombing'. The Radiation Effects Research Foundation is therefore a critical node in a complex global network of scientific institutions that adjudicate radiation risk and proclaim when it is present and when absent. Its history, I suggest, can illuminate some properties of modern disasters and the many sciences that engage with them. PMID:27263236

  1. In/dependent Collaborations: Perceptions and Experiences of African Scientists in Transnational HIV Research

    PubMed Central

    Moyi Okwaro, Ferdinand; Geissler, P. W.

    2015-01-01

    This article examines collaboration in transnational medical research from the viewpoint of African scientists working in partnerships with northern counterparts. It draws on ethnographic fieldwork in an HIV laboratory of an East African state university, with additional data from interviews with scientists working in related research institutions. Collaboration is today the preferred framework for the mechanisms by which northern institutions support research in the south. The concept signals a shift away from the legacy of unequal (post‐) colonial power relations, although, amid persisting inequalities, the rhetorical emphasis on equality might actually hinder critical engagement with conflicts of interest and injustice. To collaborate, African scientists engage various strategies: They establish a qualified but flexible, non‐permanent workforce, diversify collaborators and research areas, source complementary funding to assemble infrastructures, and maintain prospective research populations to attract transnational clinical trials. Through this labor of collaboration, they sustain their institutions under prevailing conditions of scarcity. PMID:25800667

  2. In/dependent Collaborations: Perceptions and Experiences of African Scientists in Transnational HIV Research.

    PubMed

    Moyi Okwaro, Ferdinand; Geissler, P W

    2015-12-01

    This article examines collaboration in transnational medical research from the viewpoint of African scientists working in partnerships with northern counterparts. It draws on ethnographic fieldwork in an HIV laboratory of an East African state university, with additional data from interviews with scientists working in related research institutions. Collaboration is today the preferred framework for the mechanisms by which northern institutions support research in the south. The concept signals a shift away from the legacy of unequal (post-) colonial power relations, although, amid persisting inequalities, the rhetorical emphasis on equality might actually hinder critical engagement with conflicts of interest and injustice. To collaborate, African scientists engage various strategies: They establish a qualified but flexible, non-permanent workforce, diversify collaborators and research areas, source complementary funding to assemble infrastructures, and maintain prospective research populations to attract transnational clinical trials. Through this labor of collaboration, they sustain their institutions under prevailing conditions of scarcity.

  3. The Association of Polar Early Career Scientists - Developing a Continuum of Polar Research

    NASA Astrophysics Data System (ADS)

    Pope, A.; Baeseman, J. L.

    2011-12-01

    Established in 2006 by young researchers in the early stages of the International Polar Year (IPY), the Association of Polar Early Career Scientists (APECS) has evolved into the pre-eminent international organization for polar researchers at early stages of their careers. Now comprising around 2600 members from approximately 74 countries, APECS represents a body of students, postdoctoral researchers, early faculty members, educators and others with interests in Polar Regions and the cryosphere with the key aim of raising the profile of polar research by providing a continuum of leadership that is both international and interdisciplinary in focus, and stimulating collaborative projects in research, education and outreach. APECS provides a strong voice for young researchers, enabling information sharing between early-career and more established professionals, promoting and organizing science, education and outreach events, and being actively involved with other organizations in the support of polar research. These activities are guided by three overarching goals: *Facilitate international and interdisciplinary networking to share ideas and experiences and to develop new research directions and collaborations; *Provide opportunities for professional career development; and *Promote education and outreach as integral components of polar research and to stimulate future generations of polar researchers. This presentation highlights the major achievements of APECS since its inception as well as future steps that APECS plans to take to ensure its sustainability. Since its founding, APECS has strived to develop strong partnerships with international organizations and scientific bodies. This network has not only facilitated early-career representation on an international level but has also furthered many education and outreach opportunities for young polar researchers. APECS core programs that include career development workshops and panels (including several associated

  4. A successful research-based partnership between university scientists and high school teachers

    SciTech Connect

    Kreuzer, H.W.; Woodworth, D.L.; Kreuzer, K.N.

    1994-12-31

    The goal of this program was to involve students in real-world science through collaboration on a research project with university scientists. The North Carolina Biotechnology Center (NCBC) and a Duke University Medical Center laboratory identified a line of experimentation that was both relevant to the focus of the lab, and technically and intellectually appropriate for the high school setting. The investigations involve restriction mapping of transposon insertions in thegenome of bacteriophage T4. Teachers involved in the project were already familiar with restriction analysis through prior attendance at labs. In summer 1992, NCBC staff and the Duke scientists held a workshop to orient ten teachers to the project and prepare materials for analysis by their students. During the school year, a member of the lab visited each classroom and discusses the project. Students conducted mapping experiments and presented their data at a conference in the spring of 1993. Twenty insertions were mapped in the first year. In the 1993 teacher workshop, teachers isolated new mutants and screened them for sensitivity to the anti-tumor drug studied by the Duke group, identifying several mutants of interest. Now in its second year, the collaboration has generated valuable scientific results and inspired independent spin-off activities. Impact on teachers and students has been evaluated through questionnaires.

  5. A partnership between biologic/biomedical research scientists and precollege educators

    SciTech Connect

    Willett, N.P.

    1994-12-31

    A model program has been developed to provide a mechanism for precollege educators to interact with university faculty who are working scientists. Components of the program included an in-depth laboratory experience which involved pairing active research faculty in the biomedical sciences with the educators for a seven week period during the summer; a supportive curriculum in the biomedical sciences to enhance and enrich the laboratory experience; construction of a teaching module by the educators which can be brought back to their schools to improve their science education programs; and development of means of disseminating the modules at the local, regional, and national levels. Excellent modules were developed by the teachers in a wide variety of disciplines. Formative evaluation of the program by the teachers indicated a very high degree of enthusiasm for all aspects of the program. This model will support the development of programs that join working scientists and precollege educators in enhancing science education in the biomedical sciences. It will have a multiplier effect far beyond the participants, impacting on fellow educators, students considering careers in the sciences, and the lay public.

  6. Science Coordination in Support of the US Weather Research Program Office of the Lead Scientist (OLS) and for Coordination with the World Weather Research (WMO) Program

    NASA Technical Reports Server (NTRS)

    Gall, Robert

    2005-01-01

    This document is the final report of the work of the Office of the Lead Scientist (OLS) of the U.S. Weather Research Program (USWRP) and for Coordination of the World Weather Research Program (WWRP). The proposal was for a continuation of the duties and responsibilities described in the proposal of 7 October, 1993 to NSF and NOAA associated with the USWRP Lead Scientist then referred to as the Chief Scientist. The activities of the Office of the Lead Scientist (OLS) ended on January 31, 2005 and this report describes the activities undertaken by the OLS from February 1, 2004 until January 3 1, 2005. The OLS activities were under the cosponsorship of the agencies that are members of the Interagency Working Group (IWG) of the US WRP currently: NOAA, NSF, NASA, and DOD. The scope of the work described includes activities that were necessary to develop, facilitate and implement the research objectives of the USWRP consistent with the overall program goals and specific agency objectives. It included liaison with and promotion of WMO/WWW activities that were consistent with and beneficial to the USWRP programs and objectives. Funds covered several broad categories of activity including meetings convened by the Lead Scientist, OLS travel, partial salary and benefits support, publications, hard-copy dissemination of reports and program announcements and the development and maintenance of the USWRP website. In addition to funding covered by this grant, NCAR program funds provided co-sponsorship of half the salary and benefits resources of the USWRP Lead Scientist (.25 FTE) and the WWRP Chairman/Liaison (.167 FTE). Also covered by the grant were partial salaries for the Science Coordinator for the hurricane portion of the program and partial salary for a THORPEX coordinator.

  7. Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 2: Statistical Tables.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.

    Volume Two of a three volume set of the Biomedical and Behavioral Research Scientists study presents tables of data which were required for the study's development by the National Research Council. Data from these tables were obtained from the Association of American Medical Colleges, the American Dental Association, the American Medical…

  8. Modelling the Information Seeking Patterns of Engineers and Research Scientists in an Industrial Environment.

    ERIC Educational Resources Information Center

    Ellis, David; Haugan, Merete

    1997-01-01

    Engineers and research scientists at Statoil's Research Center in Trondheim, Norway were interviewed to determine information-seeking patterns. Eight characteristics were identified: surveying, chaining, monitoring, browsing, distinguishing, filtering, extracting, and ending. The results showed that although there were differences in the features…

  9. Development of Teachers as Scientists in Research Experiences for Teachers Programs

    ERIC Educational Resources Information Center

    Faber, Courtney; Hardin, Emily; Klein-Gardner, Stacy; Benson, Lisa

    2014-01-01

    This study examined the teachers' development as scientists for participants in three National Science Foundation Research Experiences for Teachers. Participants included secondary science and math teachers with varying levels of education and experience who were immersed in research environments related to engineering and science topics.…

  10. Questions Students Ask: Bridging the Gap between Scientists and Students in a Research Institute Classroom

    ERIC Educational Resources Information Center

    France, Bev; Bay, Jacquie L.

    2010-01-01

    It was proposed that an analysis of the questions students anticipate asking, and ask, could provide information about an enculturation encounter between Year 13 biology students and scientists working in a biomedical-clinical research unit. As part of a day-long intervention at this research institute, small groups of students (10-15) met with…

  11. Quantifying the Burden of Writing Research Articles in a Second Language: Data from Mexican Scientists

    ERIC Educational Resources Information Center

    Hanauer, David I.; Englander, Karen

    2011-01-01

    This article provides quantitative data to establish the relative, perceived burden of writing research articles in English as a second language. Previous qualitative research has shown that scientists writing English in a second language face difficulties but has not established parameters for the degree of this difficulty. A total of 141…

  12. A Teacher Research Experience: Immersion Into the World of Practicing Ocean Scientists

    NASA Astrophysics Data System (ADS)

    Payne, D. L.

    2006-12-01

    Professional development standards for science teachers encourage opportunities for intellectual professional growth, including participation in scientific research (NRC, 1996). Strategies to encourage the professional growth of teachers of mathematics and science include partnerships with scientists and immersion into the world of scientists and mathematicians (Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). A teacher research experience (TRE) can often offer a sustained relationship with scientists over a prolonged period of time. Research experiences are not a new method of professional development (Dubner, 2000; Fraser-Abder & Leonhardt, 1996; Melear, 1999; Raphael et al., 1999). Scientists serve as role models and "coaches" for teachers a practice which has been shown to dramatically increase the transfer of knowledge, skill and application to the classroom (Joyce & Showers, 2002). This study investigated if and how secondary teachers' beliefs about science, scientific research and science teaching changed as a result of participation in a TRE. Six secondary science teachers participated in a 12 day research cruise. Teachers worked with scientists, the ships' crew and other teachers conducting research and designing lessons for use in the classroom. Surveys were administered pre and post TRE to teachers and their students. Additionally, teachers were interviewed before, during and after the research experience, and following classroom observations before and after the research cruise. Teacher journals and emails, completed during the research cruise, were also analyzed. Results of the study highlight the use of authentic research experiences to retain and renew science teachers, the impact of the teachers' experience on students, and the successes and challenges of implementing a TRE during the academic year.

  13. "ocean Discovery": At-Sea Research Opportunities for the Next Generation of Scientists

    NASA Astrophysics Data System (ADS)

    Hanisak, M.; Frank, T. M.

    2012-12-01

    The Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) explores and studies the nation's ocean frontiers using innovation and cutting edge technologies. CIOERT is committed to bringing "science at sea" experiences to university students, in the context of a complete research project-from data collection to presentation. Multidisciplinary :Ocean Discovery" cruises, designed to communicate the excitement of research and discovery to university students at a critical stage of their career decision-making have been incorporated into CIOERT's two Florida Shelf Edge Explorations , including use of the Johnson-Sea-Link II submersible (2010) and the University of Connecticut's K2 ROV (2011) CIOERT's "Ocean Discovery. "Ocean Discovery" provides a high-quality research experience for students by engagement in ocean research through shipboard data collections and analyses. Student research questions are created in association with CIOERT research projects and result in a written paper and poster presentation. Through active engagement in the entire process of research, students not only increase their understanding of the scientific process, but they will also observe, study, and characterize ocean conditions and selected benthic and pelagic habitats across the continental shelf. Student presentations impact their peers and younger students who may then also aspire to ocean-related careers. Student experiences and knowledge are transferred to the general public, college students, pre-college teachers, and their students via presentations and web-based resources. There is a high probability the Ocean Discovery students will become tomorrow's marine scientists, educators, and managers, all working, directly or indirectly, in support of NOAA's mission.;

  14. Sandbox Scientist: Real Science Activities for Little Kids.

    ERIC Educational Resources Information Center

    Ross, Michael E.

    This guide for adults provides directions for setting up activities to help children ages two to eight discover scientific facts using familiar materials. The activities are child centered and are presented from a constructivist perspective which acknowledges that children and adults need to form their own hypotheses and keep applying them through…

  15. Promoting seismology education through collaboration between university research scientists and school teachers

    NASA Astrophysics Data System (ADS)

    Brunt, M. R.; Ellins, K. K.; Boyd, D.; Mote, A. S.; Pulliam, J.; Frohlich, C. A.

    2012-12-01

    Participation in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development project paved the way for several teachers to receive educational seismometers and join the IRIS Seismograph in Schools program. This, in turn, has led to secondary school teachers working with university seismologists on research projects. Examples are the NSF-EarthScope SIEDCAR (Seismic Investigation of Edge Driven Convection Associated with the Rio Grande Rift) project; field studies to compile felt-reports for Texas earthquakes, some which may have been induced by human activities; and a seismic study of the Texas Gulf Coast to investigate ocean-continent transition processes along a passive margin. Such collaborations are mutually beneficial in nature. They help scientists to accomplish their research objectives, involve teachers and their students in the authentic, inquiry-based science, promote public awareness of such projects, and open the doors to advancement opportunities for those teachers involved. In some cases, bringing together research scientists and teachers results in collaborations that produce publishable research. In order to effectively integrate seismology research into 7-12 grade education, one of us (Brunt) established the Eagle Pass Junior High Seismology Team in connection with IRIS Seismograph in Schools, station EPTX (AS-1 seismograph), to teach students about earthquakes using authentic real-time data. The concept has sparked interest among other secondary teachers, leading to the creation of two similarly organized seismology teams: WPTX (Boyd, Williams Preparatory School, Dallas) and THTX (Mote, Ann Richards School for Young Women Leaders, Austin). Although the educational seismometers are basic instruments, they are effective educational tools. Seismographs in schools offer students opportunities to learn how earthquakes are recorded and how modern seismometers work, to collect and interpret seismic data, and to

  16. Modeling the Skills and Practices of Scientists through an 'All-Inclusive' Comparative Planetology Student Research Investigation

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Bandfield, J. L.; Stefanov, W. L.; Vanderbloemen, L.; Willis, K. J.; Runco, S.

    2013-12-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an 'all-inclusive' comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting

  17. Modeling the Skills and Practices of Scientists through an “All-Inclusive” Comparative Planetology Student Research Investigation

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Bandfield, J.; Stefanov, W.; Vanderbloemen, L.; Willis, K.; Runco, S.

    2013-01-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an "allinclusive" comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting

  18. National Science Foundation Facilitation of AGU Scientists' K-14 Education and Outreach Activities

    NASA Astrophysics Data System (ADS)

    Leinen, M.; Prendeville, J.

    2002-12-01

    The National Science Foundation encourages the participation of geoscientists in K-14 education and outreach and provides support for that participation through a wide variety of programs. At the most general level, NSF requires that scientists describe the broader impacts of their research in their proposals. While broader impacts are not restricted to education and outreach, this requirement has encouraged many scientists to consider opportunities for K-14 education and outreach. Many NSF-wide programs provide financial support for K-14 education and outreach. Some are long-standing programs like Research Experiences for Undergraduates (REU), which have been used effectively by the geoscience community to introduce undergraduates to our field. Other programs, like CAREER, encourage faculty to develop innovative teaching and curricular approaches and to relate them to their research program. The Education and Human Resources Directorate (EHR) of NSF provides funds for a variety of undergraduate education improvements, and for elementary and secondary education activities. EHR also provides opportunities for informal education that have been used by the geoscience community to develop museum exhibits, IMAX films, television programs, and other high visibility outreach activities. The Directorate for Geosciences (GEO) holds competitions in the Geoscience Education Program and Opportunities to Enhance Diversity in the Geosciences that provide funds focused on development in our own field. Other specialized competitions, like awards associated with the Center for Ocean Science Education Excellence, have targeted the specific K-14 education and outreach needs of portions of our community. Finally, GEO has facilitated the development of the Digital Library for Earth System Education (DLESE) that has established a digital portal to age-appropriate, peer-reviewed curricular material for teachers.

  19. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    ERIC Educational Resources Information Center

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  20. Engaging Scientists in Education; the benefits of teacher-researcher pairs.

    NASA Astrophysics Data System (ADS)

    Mayo, L.

    2015-12-01

    There are many benefits to developing and nurturing teacher-scientist collaborations within schools and school systems. Scientists understand the content, are up to date on the latest, most current information and discoveries, and generally convey a real excitement about their work. Teachers understand effective teaching as well as behavioral methods, have access to school resources, understand school policies and procedures, and can follow through for sustained learning. However, teachers and scientists also come from very different cultures with generally different values, expectations, and approaches. In this talk, we will examine the existing research on teacher-researcher pairs, identify programs that have been successful using this formalism, and build a model for effective team building, planning, and execution.

  1. To a young basic scientist, about to embark on a program of translational research.

    PubMed

    Critchfield, Thomas S

    2011-01-01

    From recent commentaries about the role of basic behavior scientists in translational research, I distill some advice to young investigators who seek to apply their basic science training to translational studies. Among the challenges are (a) devising use-inspired research programs that complement, and are not redundant with, existing efforts in basic and applied behavior analysis; and (b) making tactical decisions, such as the selection of methods and collaborators, based on the research topic rather than, necessarily, the existing traditions in behavioral research. Finally, it must be recognized that although use-inspired basic research has the potential to attract support to basic laboratories and contribute to "saving the world," neither of these outcomes is guaranteed. I discuss the relative risks for basic scientists who proceed with use-inspired basic research rather than ignore such translational questions.

  2. Lost in Translation: Communications of Natural Hazards Research by Physical Scientists

    NASA Astrophysics Data System (ADS)

    Malamud, B. D.; Petley, D.

    2009-09-01

    Financial losses due to natural hazards have increased dramatically over recent years, placing an increasing strain on national and global resources, particularly those in developing areas of the world. The number of scientists and amount of resources committed to natural hazards has also increased, as is illustrated by the surge of scientific conferences and groups worldwide that have a natural hazards focus. Here we reflect briefly on four key issues facing the science community with respect to the natural hazards community: (i) Communication between natural and social scientists; (ii) Interdisciplinary approaches to research; (iii) Knowledge to practice; (iv) Uncertainty. For each of these four major areas of immediate concern, which we recognize have been broadly addressed by other bodies (e.g., the ProVentium Consortium), we discuss the issue from our perspective as physical scientists. We conclude: (i) Wider integration and discussion between physical and social scientists is essential, supported by realistic analyses of the approaches used and their efficacy in different contexts; (ii) That although interdisciplinary research between physical scientists in a given field (e.g. landslides, earthquakes) and those in a cognate area (e.g. mathematics, statistics, biology) is laudable, more efforts are needed to increase actual exchange of knowledge between the groups (vs. a bolt on approach to one group working in isolation of the other); (iii) There continues to be a need to find new and innovative ways to exchange information between the science and practitioner communities, increasing the speed and quantity of knowledge that finds its way to practice; (iv) More, better funded, and larger concentrated efforts are urgently needed on the communication of scientific uncertainty from scientists to non-scientists.

  3. The clinician-scientist: professional dynamics in clinical stem cell research.

    PubMed

    Wilson-Kovacs, Dana M; Hauskeller, Christine

    2012-05-01

    Clinical applications of biomedical research rely on specialist knowledge provided by professionals who straddle research and therapy, and possess both medical and scientific expertise. To date, this professional group remains under-explored in sociology. Our article presents a case study of clinician-scientists working in stem cell research for heart repair in the UK and Germany who are engaged in double-blind randomised clinical trials using patients' own stem cells. The analysis draws on sociological and medical literature, interviews and ethnographic fieldwork to analyse the experiences and self-rationalisations of a small number of clinician-scientists and the ways in which these professionals portray, explain and justify their role in the wider clinical research environment. We examine our participants' views on the clinical trials they conduct, the challenges they encounter and the ways through which they negotiate a complex disciplinary terrain, and argue that the recent clinical implementation of stem cell research brings clinician-scientists to the fore and provides a renewed platform for their professional legitimisation. The article helps increase our understanding of how randomised clinical trials are involved in consolidating the individual status of actors and the collective standing of clinician-scientists as leaders of change in translational medicine.

  4. Questions Students Ask: Bridging the gap between scientists and students in a research institute classroom

    NASA Astrophysics Data System (ADS)

    France, Bev; Bay, Jacquie L.

    2010-01-01

    It was proposed that an analysis of the questions students anticipate asking, and ask, could provide information about an enculturation encounter between Year 13 biology students and scientists working in a biomedical-clinical research unit. As part of a day-long intervention at this research institute, small groups of students (10-15) met with scientists (two) for a 15-minute discussion period. Pre- and post-questionnaires from 398 students provided data on intended, and judged best questions that were categorised and analysed into five categories: nature of science, science information, citizen decisions, personal, and no response/other. Chi Square analysis showed that students' areas of interest shifted to a personal perspective as a result of the intervention. Twenty students were interviewed who provided explanations for their questions. Analysis of their responses showed students were: developing an understanding of scientific practice as a journey, making identity links, using the personal as a knowledge bridge, acknowledging a commonality of values, and demonstrating that such an enculturation can be a transformative experience. These students engaged with a community of scientists at a physical, cognitive, and personal level. Physically they engaged with the practice of science in the laboratory, cognitively they were able to develop an understanding about how science knowledge was developed, and personally they were able to identify with science and scientists. The shift in students' questions showed that the intervention influenced their views on science and scientists to a broader understanding of scientific literacy.

  5. NASA GSFC Science Communication Working Group: Addressing Barriers to Scientist and Engineer Participation in Education and Public Outreach Activities

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Hsu, B. C.; Campbell, B. A.; Hess, M.

    2011-12-01

    The Science Communication Working Group (SCWG) at NASA Goddard Space Flight Center (GSFC) has been in existence since late 2007. The SCWG is comprised of education and public outreach (E/PO) professionals, public affairs specialists, scientists, and engineers. The goals of the SCWG are to identify barriers to scientist and engineer engagement in E/PO activities and to enable those scientists and engineers who wish to contribute to E/PO to be able to do so. SCWG members have held meetings with scientists and engineers across GSFC to determine barriers to their involvement in E/PO. During these meetings, SCWG members presented examples of successful, ongoing E/PO projects, encouraged active research scientists and engineers to talk about their own E/PO efforts and what worked for them, discussed the E/PO working environment, discussed opportunities for getting involved in E/PO (particularly in high-impact efforts that do not take much time), handed out booklets on effective E/PO, and asked scientists and engineers what they need to engage in E/PO. The identified barriers were consistent among scientists in GSFC's four science divisions (Earth science, planetary science, heliophysics, and astrophysics). Common barriers included 1) lack of time, 2) lack of funding support, 3) lack of value placed on doing E/PO by supervisors, 4) lack of training on doing appropriate/effective E/PO for different audiences, 5) lack of awareness and information about opportunities, 6) lack of understanding of what E/PO really is, and 7) level of effort required to do E/PO. Engineers reported similar issues, but the issues of time and funding support were more pronounced due to their highly structured work day and environment. Since the barriers were identified, the SCWG has taken a number of steps to address and rectify them. Steps have included holding various events to introduce scientists and engineers to E/PO staff and opportunities including an E/PO Open House, brown bag seminars on

  6. U. K. Scientists Fret Over Slide in Funding for University Research.

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1986-01-01

    The declining level of government support for research has provoked concern regarding the impact on British science and scientists' morale and has triggered the formation of a lobbying group called Save British Science. Major issues (including financial considerations) are reported and discussed. (JN)

  7. AGU scientists urge Congress to invest in research and science education

    NASA Astrophysics Data System (ADS)

    Rothacker, Catherine

    2012-10-01

    With the "fiscal cliff" of sequestration drawing closer and threatening to hit basic science research funding with an 8.2% cut, according to an estimate by the Office of Management and Budget, congressional compromise on a budget plan is more urgent than ever. To discuss the value of scientific research and education with their senators and representatives, 55 Earth and space scientists from 17 states came to Washington, D. C., on 11-12 September to participate in the fifth annual Geosciences Congressional Visits Day sponsored by AGU and six other geoscience organizations. Although their specialties varied from space weather to soil science, the scientists engaged members of Congress and their staff in a total of 116 meetings to discuss a common goal: securing continued, steady investment in the basic scientific research that allows scientists to monitor natural hazards, manage water and energy resources, and develop technologies that spur economic growth and job creation. To make the most of these visits on 12 September, participants attended a training session the previous day, during which they learned about the details of the policy- making process and current legislative developments and practiced conducting a congressional meeting. Congressional Science Fellows, including past AGU fellow Rebecca French, described their experiences as scientists working on Capitol Hill, and White House policy analyst Bess Evans discussed the president's stance on sequestration and funding scientific research.

  8. Promoting an Inclusive Image of Scientists among Students: Towards Research Evidence-Based Practice

    ERIC Educational Resources Information Center

    Cakmakci, Gultekin; Tosun, Ozge; Turgut, Sebnem; Orenler, Sefika; Sengul, Kubra; Top, Gokce

    2011-01-01

    This study aims at investigating the effects of a teaching intervention, the design of which is informed by evidence from educational theories and research data, on students' images of scientists. A quasi-experimental design with a non-equivalent pre-test-post-test control group (CG) was used to compare the outcomes of the intervention. The…

  9. Scientific Uncertainty in News Coverage of Cancer Research: Effects of Hedging on Scientists' and Journalists' Credibility

    ERIC Educational Resources Information Center

    Jensen, Jakob D.

    2008-01-01

    News reports of scientific research are rarely hedged; in other words, the reports do not contain caveats, limitations, or other indicators of scientific uncertainty. Some have suggested that hedging may influence news consumers' perceptions of scientists' and journalists' credibility (perceptions that may be related to support for scientific…

  10. Scientist-Teacher Partnerships as Professional Development: An Action Research Study

    ERIC Educational Resources Information Center

    Willcuts, Meredith Harris

    2009-01-01

    The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership…

  11. A Community of Practice among Educators, Researchers and Scientists for Improving Science Teaching in Southern Mexico

    ERIC Educational Resources Information Center

    Cisneros-Cohernour, Edith J.; Lopez-Avila, Maria T.; Barrera-Bustillos, Maria E.

    2007-01-01

    This paper presents findings of a project aimed to improve the quality of science education in Southeast Mexico by the creation of a community of practice among scientists, researchers and teachers, involved in the design, implementation and evaluation of a professional development program for mathematics, chemistry, biology and physics secondary…

  12. Young Scientists Explore the World Around Them. Book 1--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of scientists. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  13. Scientists Shaping the Discussion

    NASA Astrophysics Data System (ADS)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  14. Conducting research in risk communication that is both beneficial for stakeholders and scientists

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik

    2015-04-01

    the lead in advertising the activity, gathering participants and they helped designing the scientific survey. The benefits of this exhibition for the community included triggering memories, encouraging exchanges, especially inter-generational, reinforcing stakeholders-to-stakeholders relationships and promote further communication on the topic. The scientific benefits are that we have an experiment that allows us to measure the impact of a communication effort, not in a laboratory setting but in real life. But more importantly this research highlights the responsibility of scientists that are researching in the disaster risk reduction field to involve the stakeholders in order to produce results that not only improve scientific knowledge but also have a social impact in the case studies they choose.

  15. Hypercompetition in biomedical research evaluation and its impact on young scientist careers.

    PubMed

    Kamerlin, Shina Caroline Lynn

    2015-12-01

    Recent years have seen tremendous changes in the modes of publication and dissemination of biomedical information, with the introduction of countless new publishers and publishing models, as well as alternative modes of research evaluation. In parallel, we are witnessing an unsustainable explosion in the amount of information generated by each individual scientist, at the same time as many countries' shrinking research budgets are greatly increasing the competition for research funding. In such a hypercompetitive environment, how does one measure excellence? This contribution will provide an overview of some of the ongoing changes in authorship practices in the biomedical sciences, and also the consequences of hypercompetition to the careers of young scientists, from the perspective of a tenured young faculty member in the biomedical sciences. It will also provide some suggestions as to alternate dissemination and evaluation practices that could reverse current trends. [Int Microbiol 18(4):253-261 (2015)].

  16. Hypercompetition in biomedical research evaluation and its impact on young scientist careers.

    PubMed

    Kamerlin, Shina Caroline Lynn

    2015-12-01

    Recent years have seen tremendous changes in the modes of publication and dissemination of biomedical information, with the introduction of countless new publishers and publishing models, as well as alternative modes of research evaluation. In parallel, we are witnessing an unsustainable explosion in the amount of information generated by each individual scientist, at the same time as many countries' shrinking research budgets are greatly increasing the competition for research funding. In such a hypercompetitive environment, how does one measure excellence? This contribution will provide an overview of some of the ongoing changes in authorship practices in the biomedical sciences, and also the consequences of hypercompetition to the careers of young scientists, from the perspective of a tenured young faculty member in the biomedical sciences. It will also provide some suggestions as to alternate dissemination and evaluation practices that could reverse current trends. [Int Microbiol 18(4):253-261 (2015)]. PMID:27611678

  17. Scientist-teacher partnerships as professional development: An action research study

    NASA Astrophysics Data System (ADS)

    Willcuts, Meredith Harris

    The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership program by developing a set of recommendations based on the study's findings. This action research study relied on qualitative data including field notes recorded at the summer academies and data from two focus groups with teachers and scientists. Additionally, the participating teachers submitted written reflections in science notebooks, participated in open-ended telephone interviews that were transcribed verbatim, and wrote journal summaries to the Department of Energy at the end of the summer academy. The analysis of the data, collaboratively examined by the teachers, the scientists, and the science education specialist acting as co-researchers on the project, revealed five elements critical to the success of the professional development of science teachers. First, scientist-teacher partnerships are a unique contribution to the professional development of teachers of science that is not replicated in other forms of teacher training. Second, the role of the science education specialist as a bridge between the scientists and teachers is a unique and vital one, impacting all aspects of the professional development. Third, there is a paradox for classroom teachers as they view the professional development experience from two different lenses -- that of learner and that of teacher. Fourth, learning for science teachers must be designed to be constructivist in nature. Fifth, the principles of the nature of science must be explicitly showcased to be seen and understood by the classroom teacher.

  18. Scientist-Teacher Partnerships as Professional Development: An Action Research Study

    SciTech Connect

    Willcuts, Meredith H.

    2009-04-01

    The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership program by developing a set of recommendations based on the study’s findings. This action research study relied on qualitative data including field notes recorded at the summer academies and data from two focus groups with teachers and scientists. Additionally, the participating teachers submitted written reflections in science notebooks, participated in open-ended telephone interviews that were transcribed verbatim, and wrote journal summaries to the Department of Energy at the end of the summer academy. The analysis of the data, collaboratively examined by the teachers, the scientists, and the science education specialist acting as co-researchers on the project, revealed five elements critical to the success of the professional development of science teachers. First, scientist-teacher partnerships are a unique contribution to the professional development of teachers of science that is not replicated in other forms of teacher training. Second, the role of the science education specialist as a bridge between the scientists and teachers is a unique and vital one, impacting all aspects of the professional development. Third, there is a paradox for classroom teachers as they view the professional development experience from two different lenses – that of learner and that of teacher. Fourth, learning for science teachers must be designed to be constructivist in nature. Fifth, the principles of the nature of science must be explicitly showcased to be seen and understood by the classroom teacher.

  19. Crocodile years: the traditional image of science and physical scientists' participation in weapons research

    SciTech Connect

    Crews, R.J.

    1985-01-01

    This thesis examines one dimension of the relationship between science and the arms race. More specifically, it develops and empirically examines a theoretical model of the relationship between the social demand for defense-related and weapons research, traditional scientific values related to the worldview of classical physics, and differential participation by physical scientists in such research. The theoretical model suggests that an antiquated traditional image of science exists, and that it may explain, in part, participation by physical scientists in defense-related or weapons research. Two major hypotheses are suggested by the model: first, that a constellation of values representing a traditional image of science obtains today among young physical scientists; and second, that those who currently engage (or are willing to engage) in defense-related or weapons research are more likely to agree with the values implicit in the traditional image of science than those who do not (or would not) engage in such research. The theoretical model is located within the sociologies of knowledge and science. This study includes chapters that provide an overview of the literature of these subdisciplines. This investigation concludes with an empirical examination of the model and hypotheses.

  20. The Year of the Solar System Undergraduate Research Conference: Bringing Student Researchers and Scientists Together in a Professional Conference Setting

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Buxner, S.; Joseph, E.; CoBabe-Ammann, E.

    2015-12-01

    The Year of the Solar System (YSS) Undergraduate Research Conference (URC) brought together undergraduate researchers from across the U.S. to interact with each other and with researchers in planetary science. Held in conjunction with the Lunar and Planetary Science Conference (2011-2014), the YSS URC provided undergraduate researchers the opportunity to present to their research to their peers, and provided practicing scientists the chance to connect with students. Scientists could interact with students in multiple ways. Some provided insight into a planetary science career as an invited panelist; panel topics being 1) Choosing the Graduate School That's Right for You, 2) Women in Planetary Science, and 3) Alternative Careers in Science. Others provided feedback to students on their research during the URC poster session, and still others served as Meeting Mentors during the first day of LPSC. Over the four years of the program more than 50 scientists across NASA, academia and industry participated in the URC. Scientists reported in follow-up evaluations that they participated because they felt it was important to meet and help students, and that it was a way to serve the community. More evaluation data, and instruments, will be discussed.

  1. Projects on Education, Research and International Training for Students and Junior Scientists in Atmospheric Sciences

    NASA Astrophysics Data System (ADS)

    Kuo, Y.; Chen, F.

    2003-12-01

    Stimulated by rapid economic development and the need for better environmental prediction, the atmospheric science communities in East Asia countries have enjoyed considerable growth over the past 10 years. As a result, the East Asia countries have established many exciting and innovative research facilities and projects focusing on atmospheric sciences. Two outstanding examples are the Earth Simulation System facility in Japan and the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Project in Taiwan. These facilities and projects hold great promise for significant advancement in atmospheric sciences, and present important opportunities for education, research, and international training for American scientists, engineers and educators. Under the support of the International Programs Division of the National Science Foundation, we have established an AWARE (American Workforce and Research and Education, program at the University Corporation for Atmospheric Research (UCAR). The purpose of this program is to establish an international linkage between the National Center for Atmospheric Research (NCAR), the U.S. university community and educational, research and operational institutions in East Asia. Through this program, we provide opportunities for U.S. students and junior scientists to participate in important collaborative research projects between the U.S. and East Asia countries. In this paper, we will describe the program and the various ongoing collaborative research projects. We will also discuss the education, research, and international training experiences of U.S. students in these collaborative research projects.

  2. Implementing 'translational' biomedical research: convergence and divergence among clinical and basic scientists.

    PubMed

    Morgan, Myfanwy; Barry, Christine A; Donovan, Jenny L; Sandall, Jane; Wolfe, Charles D A; Boaz, Annette

    2011-10-01

    Universities are increasingly regarded as key actors in the new 'knowledge economy', with requirements to produce market-oriented knowledge and engage in commercialization. This is of particular significance in the biomedical field, reflecting the perceived gap between success in terms of scientific discoveries and its transformation into products. The dominant discourse attributes this situation to 'blocks' in the translational pathway from 'bench to bedside', leading to policies to 'reengineer' the research enterprise. This study examines a pilot initiative established by the UK's Medical Research Council (MRC). This involved employing a change agent (Research Translator) supported by a small amount of translational funding to promote the culture and practice of translational research at a university/hospital site in England. An ethnographically informed case study involving semi-structured and open exploratory interviews, observation and document review, was conducted in 2008. Analysis and interpretation were informed by Bourdieu's logic of practice applied to science. The requirements of translational research promoted by the Research Translator and its sources of capital (authority, prestige etc) were largely congruent with the 'field' of clinical science. In contrast, translational research diverged from perceptions of 'legitimate' science and requirements for capital accumulation held by the majority of basic scientists who often described this research as 'high risk' and were resistant to the Research Translator's advice. However some differences in motivations and practices were identified within groups of scientists associated with career stage, work environment and specialty. We argue that there are convergent and divergent forces that influence scientists' readiness to adopt a market-oriented translational research model and in turn facilitate or constrain the effectiveness of a knowledge broker. We also identify ways in which current structures and

  3. Implementing 'translational' biomedical research: convergence and divergence among clinical and basic scientists.

    PubMed

    Morgan, Myfanwy; Barry, Christine A; Donovan, Jenny L; Sandall, Jane; Wolfe, Charles D A; Boaz, Annette

    2011-10-01

    Universities are increasingly regarded as key actors in the new 'knowledge economy', with requirements to produce market-oriented knowledge and engage in commercialization. This is of particular significance in the biomedical field, reflecting the perceived gap between success in terms of scientific discoveries and its transformation into products. The dominant discourse attributes this situation to 'blocks' in the translational pathway from 'bench to bedside', leading to policies to 'reengineer' the research enterprise. This study examines a pilot initiative established by the UK's Medical Research Council (MRC). This involved employing a change agent (Research Translator) supported by a small amount of translational funding to promote the culture and practice of translational research at a university/hospital site in England. An ethnographically informed case study involving semi-structured and open exploratory interviews, observation and document review, was conducted in 2008. Analysis and interpretation were informed by Bourdieu's logic of practice applied to science. The requirements of translational research promoted by the Research Translator and its sources of capital (authority, prestige etc) were largely congruent with the 'field' of clinical science. In contrast, translational research diverged from perceptions of 'legitimate' science and requirements for capital accumulation held by the majority of basic scientists who often described this research as 'high risk' and were resistant to the Research Translator's advice. However some differences in motivations and practices were identified within groups of scientists associated with career stage, work environment and specialty. We argue that there are convergent and divergent forces that influence scientists' readiness to adopt a market-oriented translational research model and in turn facilitate or constrain the effectiveness of a knowledge broker. We also identify ways in which current structures and

  4. Development of Teachers as Scientists in Research Experiences for Teachers Programs

    NASA Astrophysics Data System (ADS)

    Faber, Courtney; Hardin, Emily; Klein-Gardner, Stacy; Benson, Lisa

    2014-11-01

    This study examined the teachers' development as scientists for participants in three National Science Foundation Research Experiences for Teachers. Participants included secondary science and math teachers with varying levels of education and experience who were immersed in research environments related to engineering and science topics. Teachers' functionality as scientists was assessed in terms of independence, focus, relationships with mentors, structure, and ability to create new concepts. Hierarchies developed within these constructs allowed tracking of changes in functionality throughout the 6-week programs. Themes were further identified in teachers' weekly journal entries and exit interviews through inductive coding. Increases in functionality as scientists were observed for all teachers who completed both the program and exit interview ( n = 27). Seven of the 27 teachers reached high science functionality; however, three of the teachers did not reach high functionality in any of the constructs during the program. No differences were observed in demographics or teaching experience between those who did and did not reach high functionality levels. Inductive coding revealed themes such as teachers' interactions with mentors and connections made between research and teaching, which allowed for descriptions of experiences for teachers at high and low levels of functionality. Teachers at high functionality levels adjusted to open-ended environments, transitioned from a guided experience to freedom, felt useful in the laboratory, and were self-motivated. In contrast, teachers at low functionality levels did not have a true research project, primarily focused on teaching aspects of the program, and did not display a transition of responsibilities.

  5. CosmoQuest – Scientist Engagement with the Public and Schools via a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Buxner, Sanlyn; Gay, Pamela L.; Grier, Jennifer A.; Lehan, Cory; CosmoQuest Team

    2016-06-01

    CosmoQuest is a virtual research facility where science data can be analyzed by teams of interested citizen scientists from across the world. Scientists can apply to have their data analyzed through crowdsourcing in our online observatory, which generates validated and publishable results (Robbins et al 2014). Scientists have the opportunity to provide connections to teachers in classrooms so that students can analyze original data and understand the process that astronomers go through from image to result. Scientists can also teach online classes for different audiences including formal classroom teachers, informal educators, and lifelong learners to further the broader impacts of their work and increase engagement in their scientific endeavors. We provide training, through online and in-person workshops, on how to incorporate your datasets into the observatory and how to deliver online classes through our CosmoAcademy. This work is funded in part by NASA Cooperative Agreement Notice number NNX16AC68A. For more information, visit http://cosmoquest.org/.

  6. CosmoQuest - Scientist Engagement with the Public and Schools via a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Buxner, Sanlyn; Gay, Pamela L.; Grier, Jennifer A.; Lehan, Cory; CosmoQuest Team

    2016-06-01

    CosmoQuest is a virtual research facility where science data can be analyzed by teams of interested citizen scientists from across the world. Scientists can apply to have their data analyzed through crowdsourcing in our online observatory, which generates validated and publishable results (Robbins et al 2014). Scientists have the opportunity to provide connections to teachers in classrooms so that students can analyze original data and understand the process that astronomers go through from image to result. Scientists can also teach online classes for different audiences including formal classroom teachers, informal educators, and lifelong learners to further the broader impacts of their work and increase engagement in their scientific endeavors. We provide training, through online and in-person workshops, on how to incorporate your datasets into the observatory and how to deliver online classes through our CosmoAcademy. This work is funded in part by NASA Cooperative Agreement Notice number NNX16AC68A. For more information, visit http://cosmoquest.org/.

  7. Using Citizen Scientists to Gather, Analyze, and Disseminate Information About Neighborhood Features That Affect Active Living.

    PubMed

    Winter, Sandra J; Goldman Rosas, Lisa; Padilla Romero, Priscilla; Sheats, Jylana L; Buman, Matthew P; Baker, Cathleen; King, Abby C

    2016-10-01

    Many Latinos are insufficiently active, partly due to neighborhoods with little environmental support for physical activity. Multi-level approaches are needed to create health-promoting neighborhoods in disadvantaged communities. Participant "citizen scientists" were adolescent (n = 10, mean age = 12.8 ± 0.6 years) and older adult (n = 10, mean age = 71.3 ± 6.5 years), low income Latinos in North Fair Oaks, California. Citizen scientists conducted environmental assessments to document perceived barriers to active living using the Stanford Healthy Neighborhood Discovery Tool, which records GPS-tracked walking routes, photographs, audio narratives, and survey responses. Using a community-engaged approach, citizen scientists subsequently attended a community meeting to engage in advocacy training, review assessment data, prioritize issues to address and brainstorm potential solutions and partners. Citizen scientists each conducted a neighborhood environmental assessment and recorded 366 photographs and audio narratives. Adolescents (n = 4), older adults (n = 7) and community members (n = 4) collectively identified reducing trash and improving personal safety and sidewalk quality as the priority issues to address. Three adolescent and four older adult citizen scientists volunteered to present study findings to key stakeholders. This study demonstrated that with minimal training, low-income, Latino adolescent and older adult citizen scientists can: (1) use innovative technology to gather information about features of their neighborhood environment that influence active living, (2) analyze their information and identify potential solutions, and (3) engage with stakeholders to advocate for the development of healthier neighborhoods.

  8. International scientists' priorities for research on pharmaceutical and personal care products in the environment.

    PubMed

    Rudd, Murray A; Ankley, Gerald T; Boxall, Alistair B A; Brooks, Bryan W

    2014-10-01

    Pharmaceuticals and personal care products (PPCPs) are widely discharged into the environment via diverse pathways. The effects of PPCPs in the environment have potentially important human and ecosystem health implications, so credible, salient, and legitimate scientific evidence is needed to inform regulatory and policy responses that address potential risks. A recent "big questions" exercise with participants largely from North America identified 22 important research questions around the risks of PPCP in the environment that would help address the most pressing knowledge gaps over the next decade. To expand that analysis, we developed a survey that was completed by 535 environmental scientists from 57 countries, of whom 49% identified environmental or analytical chemistry as their primary disciplinary background. They ranked the 22 original research questions and submitted 171 additional candidate research questions they felt were also of high priority. Of the original questions, the 3 perceived to be of highest importance related to: 1) the effects of long-term exposure to low concentrations of PPCP mixtures on nontarget organisms, 2) effluent treatment methods that can reduce the effects of PPCPs in the environment while not increasing the toxicity of whole effluents, and 3) the assessment of the environmental risks of metabolites and environmental transformation products of PPCPs. A question regarding the role of cultural perspectives in PPCP risk assessment was ranked as the lowest priority. There were significant differences in research orientation between scientists who completed English and Chinese language versions of the survey. We found that the Chinese respondents were strongly orientated to issues of managing risk profiles, effluent treatment, residue bioavailability, and regional assessment. Among English language respondents, further differences in research orientation were associated with respondents' level of consistency when ranking the survey

  9. Veterans Administration support for medical research: opinions of the endangered species of physician-scientists.

    PubMed

    Zucker, Stanley; Crabbe, John C; Cooper, George; Finkelman, Fred; Largman, Corey; McCarley, Robert W; Rice, Louis; Rubin, Janet; Richardson, Bruce; Seil, Frederick; Snider, Gordon L; Vandenbark, Arthur A

    2004-10-01

    Over the past three decades the Veterans Affairs (VA) Research program has evolved into a powerful, peer-reviewed funding mechanism for basic and translational research that has resulted in numerous important contributions to medical science and improvements in patient care. Continuity in VA Merit Review funding has fostered and nurtured the scientific careers of a large number of physician-scientists who have remained devoted to the mission of performing creative and innovative research that affects the patient care mission of the VA. VA medical research policies have undergone a major overhaul in the past year. Although many of these changes (de-emphasizing bench research and revamping the peer review process) have recently been reversed, the future direction of VA research remains in flux. The goal of this manuscript is to demonstrate the importance of the Merit Review medical research funding mechanism not just to the VA, but to the entire nation's health care system. To achieve this goal, the opinions of 65 established VA medical investigators were obtained regarding the past success and future direction of VA research. The conclusions reached include the following. 1) Merit Review research funding has been essential to the training, recruitment, and retention of productive VA physician-scientists. 2) The VA research program has contributed both basic and clinical innovations that have led to improvements in medical care. Contributions of VA researchers to excellence in many aspects of patient care at VA hospitals have been extraordinary. 3) Development of initiatives that entice outstanding Ph.D.'s to develop their careers in the VA has been crucial to the success of the program. 4) The VA research program has fostered a mutually beneficial relationship with affiliated medical schools. 5) Better methods to quantify VA research contributions and outcomes are essential for future program development. PMID:15466355

  10. Activities of Asian Students and Young Scientists on Photogrammetry and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Lo, C.-Y.; Cho, K.

    2012-07-01

    This paper reports a history and future prospects of the activities by Asian students and young scientists on photogrammetry and remote sensing. For future growths of academic fields, active communications among students and young scientists are indispensable. In some countries and regions in Asia, local communities are already established by youths and playing important roles of building networks among various schools and institutes. The networks are expected to evolve innovative cooperations after the youths achieve their professions. Although local communities are getting solid growth, Asian youths had had little opportunities to make contacts with youths of other countries and regions. To promote youth activities among Asian regions, in 2007, Asian Association on Remote Sensing (AARS) started a series of programs involving students and young scientists within the annual conferences, the Asian Conference on Remote Sensing (ACRS). The programs have provided opportunities and motivations to create networks among students and young scientists. As a result of the achievements, the number of youth interested and involved in the programs is on growing. In addition, through the events held in Asian region by ISPRS Student Consortium (ISPRSSC) and WG VI/5, the Asian youths have built friendly partnership with ISPRSSC. Currently, many Asian youth are keeping contacts with ACRS friends via internet even when they are away from ACRS. To keep and expand the network, they are planning to establish an Asian youth organization on remote sensing. This paper describes about the proposals and future prospects on the Asian youth organization.

  11. Personality Traits Are Associated with Research Misbehavior in Dutch Scientists: A Cross-Sectional Study

    PubMed Central

    Tijdink, Joeri K.; Bouter, Lex M.; Veldkamp, Coosje L. S.; van de Ven, Peter M.; Wicherts, Jelte M.; Smulders, Yvo M.

    2016-01-01

    Background Personality influences decision making and ethical considerations. Its influence on the occurrence of research misbehavior has never been studied. This study aims to determine the association between personality traits and self-reported questionable research practices and research misconduct. We hypothesized that narcissistic, Machiavellianistic and psychopathic traits as well as self-esteem are associated with research misbehavior. Methods Included in this cross-sectional study design were 535 Dutch biomedical scientists (response rate 65%) from all hierarchical layers of 4 university medical centers in the Netherlands. We used validated personality questionnaires such as the Dark Triad (narcissism, psychopathy, and Machiavellianism), Rosenberg's Self-Esteem Scale, the Publication Pressure Questionnaire (PPQ), and also demographic and job-specific characteristics to investigate the association of personality traits with a composite research misbehavior severity score. Findings Machiavellianism was positively associated (beta 1.28, CI 1.06–1.53) with self-reported research misbehavior, while narcissism, psychopathy and self-esteem were not. Exploratory analysis revealed that narcissism and research misconduct were more severe among persons in higher academic ranks (i.e., professors) (p<0.01 and p<0.001, respectively), and self-esteem scores and publication pressure were lower (p<0.001 and p<0.01, respectively) as compared to postgraduate PhD fellows. Conclusions Machiavellianism may be a risk factor for research misbehaviour. Narcissism and research misbehaviour were more prevalent among biomedical scientists in higher academic positions. These results suggest that personality has an impact on research behavior and should be taken into account in fostering responsible conduct of research. PMID:27684371

  12. Epidemiologists, social scientists, and the structure of medical research on AIDS in Africa.

    PubMed

    Packard, R M; Epstein, P

    1991-01-01

    The development of medical research on AIDS in Africa resembles earlier efforts to understand the epidemiology of TB and syphilis in Africa. In all three cases early research focused on why these diseases exhibited different epidemiological patterns in Africa than in the west. Early explanations of these differences focused on the peculiarities of African behavior, while largely excluding from vision a range of environmental factors. These parallels provide a framework for examining how western ideas about AIDS in Africa developed, the role of social scientists in the formation of these ideas, and how these initial perceptions shaped the subsequent development of AIDS research, encouraging a premature narrowing of research questions. The paper warns that, as in the histories of TB and syphilis research, this early closure may generate inadequate and inappropriate responses to the African AIDS epidemic and limit our understanding of the disease.

  13. 2013 Occupant Protection Risk Standing Review Panel Status Review Comments to the Human Research Program, Chief Scientist

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    On December 17, 2013, the OP Risk SRP, participants from the JSC, HQ, and NRESS participated in a WebEx/teleconference. The purpose of the call was to allow the SRP members to: 1. Receive an update by the Human Research Program (HRP) Chief Scientist or Deputy Chief Scientist on the status of NASA's current and future exploration plans and the impact these will have on the HRP. 2. Receive an update on any changes within the HRP since the 2012 SRP meeting. 3. Receive an update by the Element or Project Scientist(s) on progress since the 2012 SRP meeting. 4. Participate in a discussion with the HRP Chief Scientist, Deputy Chief Scientist, and the Element regarding possible topics to be addressed at the next SRP meeting.

  14. Research Orientations and Sources of Influence: Agricultural Scientists in the U.S. Land-Grant System.

    ERIC Educational Resources Information Center

    Goldberger, Jessica R.

    2001-01-01

    Uses data from a 1995-96 national survey of agricultural scientists at land-grant universities to investigate the relative importance of 19 sources of influence on agricultural scientists engaged in six areas of agricultural research: productionist-oriented, sustainable agriculture, environmental, basic, consumer-oriented, and rural…

  15. Connections, Productivity and Funding: An Examination of Factors Influencing Scientists' Perspectives on the Market Orientation of Academic Research

    ERIC Educational Resources Information Center

    Ronning, Emily Anne

    2012-01-01

    This study examines scientists' perceptions of the environment in which they do their work. Specifically, this study examines how academic and professional factors such as research productivity, funding levels for science, connections to industry, type of academic appointment, and funding sources influence scientists' perceptions of the…

  16. Building Successful Partnerships Between Scientists and Educators to Bridge Scientific Research to Education and Outreach Audiences at a National Research Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Henderson, S.; Carbone, L.; Eastburn, T.; Russell, R.; Gardiner, L.; Ammann, C.; Carlson, D.; Deluca, C.; Fried, A.; Killeen, T.; Laursen, K.; Lopez, R.; Lu, G.; Marsh, D.; Mearns, L.; Otto-Bleisner, B.; Richmond, A.; Richter, D.; Hughes, J.; Alexander, C.; Gombosi, T.; Haines-Stiles, G.

    2003-12-01

    The scientific missions of National Center for Atmospheric Research (NCAR) and the University Corporation for Atmospheric Research (UCAR) community offer numerous opportunities to integrate content on atmospheric, climate, and related sciences into formal and informal public education and outreach programs. The UCAR Office of Education and Outreach currently coordinates a variety of partnerships with science PI's catalyzing activities that include work-study experiences for teachers and students in the laboratory; creation of EO resources for scientists to utilize when visiting K-12 classrooms; extension of exhibit content in K-12 teacher guides; topic-specific web site content for the public, K-12, and undergraduates; professional development for K-12 educators; and public broadcast quality documentation of emerging technology. This presentation will review how these partnerships are developed, what works best, and plans for the future drawing from examples of collaborations with scientists. The scientists represent the NSF-funded Analytical Photonics and Optoelectronics Laboratory (APOL), the Boston University Center for Integrated Space Weather Modeling, and the High Altitude Instrumented Platform for Environmental Research Program (HIAPER); the NASA-funded Earth System Modeling Framework; collaborations with the Windows to the Universe project sponsored by multiple agencies; the NCAR Climate Assessment Initiative; and several NASA-funded Sun-Earth Connection Research Programs.

  17. Women scientists in typhus research during the first half of the twentieth century.

    PubMed

    Lindenmann, Jean

    2005-01-01

    Several women scientists have contributed to typhus research, which carried an exceptionally high risk of laboratory infection. The work of five of them, Ida Bengtson (1881-1952), Muriel Robertson (1883-1973), Hilda Sikora (1889-1974), Hélène Sparrow (1891-1970) and Clara Nigg (1897-1986), is reviewed and the names of several others are mentioned. The lives of these women seem typical of rickettsiologists and reflect the disasters that befell the world during the first half of the twentieth century.

  18. The talent process of successful academic women scientists at elite research universities in New York state

    NASA Astrophysics Data System (ADS)

    Kaenzig, Lisa M.

    women scientists at elite research universities in New York. A criterion sample (n=94) was selected resulting in forty-one successful academic women scientists as the study participants, representing a response rate of 43.6%. Findings include the important roles of parents, teachers, mentors and collaborators on the talent development process of the participants. The perception of the study participants was that there were multiple facilitators to their talent development process, while few barriers were acknowledged. The most important barriers cited by participants were perceptions of institutional culture and sexism. Implications for practice in both gifted and higher education are suggested, based on the findings of the study. For gifted education, these suggestions include the need to provide parental education programs emphasizing the importance of intellectual engagement at home, providing dedicated time for science in primary education, and fostering science and mathematics opportunities, particularly for girls and young women. Stressing the importance of hard work, persistence and intelligent risk-taking are also important for encouraging girls in science. For higher education, the study provides models of success of academic women scientists, outlines the importance of mentors and collaborators, and emphasizes the critical role that institutions and departments play in facilitating or impeding women's career development as academics. The current study suggests several areas for further research to continue the exploration of the talent development influences on academic women scientists. Based on the findings of this study, recommended studies include examining the differences of generational cohorts; probing the roles of collaborators/mentor colleagues; exploring differences for women from various ethnic and racial backgrounds; replicating the current study with larger populations of women scientists; investigating the role of facilitative school environments

  19. The talent process of successful academic women scientists at elite research universities in New York state

    NASA Astrophysics Data System (ADS)

    Kaenzig, Lisa M.

    women scientists at elite research universities in New York. A criterion sample (n=94) was selected resulting in forty-one successful academic women scientists as the study participants, representing a response rate of 43.6%. Findings include the important roles of parents, teachers, mentors and collaborators on the talent development process of the participants. The perception of the study participants was that there were multiple facilitators to their talent development process, while few barriers were acknowledged. The most important barriers cited by participants were perceptions of institutional culture and sexism. Implications for practice in both gifted and higher education are suggested, based on the findings of the study. For gifted education, these suggestions include the need to provide parental education programs emphasizing the importance of intellectual engagement at home, providing dedicated time for science in primary education, and fostering science and mathematics opportunities, particularly for girls and young women. Stressing the importance of hard work, persistence and intelligent risk-taking are also important for encouraging girls in science. For higher education, the study provides models of success of academic women scientists, outlines the importance of mentors and collaborators, and emphasizes the critical role that institutions and departments play in facilitating or impeding women's career development as academics. The current study suggests several areas for further research to continue the exploration of the talent development influences on academic women scientists. Based on the findings of this study, recommended studies include examining the differences of generational cohorts; probing the roles of collaborators/mentor colleagues; exploring differences for women from various ethnic and racial backgrounds; replicating the current study with larger populations of women scientists; investigating the role of facilitative school environments

  20. Citizen Scientists

    ERIC Educational Resources Information Center

    Bennett, Katherine

    2010-01-01

    The Harvard Forest Schoolyard Ecology Program provides teachers and students with the opportunity and materials to participate in regionally focused ecological studies under the guidance of a mentor scientist working on a similar study. The Harvard Forest is part of a national network of ecological research sites known as the Long Term Ecological…

  1. The Continuing Umbrella of Research Experiences (CURE): a model for training underserved scientists in cancer research.

    PubMed

    Franco, Idalid; Bailey, LeeAnn O; Bakos, Alexis D; Springfield, Sanya A

    2011-03-01

    Mentoring is a critical aspect of research and training; and the adoption of a successful mentoring model for guiding researchers through the educational pipeline is lacking. The Continuing Umbrella of Research Experiences (CURE) program was established in the Comprehensive Minority Biomedical Branch; which is part of the National Cancer Institute. This program offers unique training and career development opportunities to enhance diversity in cancer research. The CURE initiative focuses on broadening the cadre of underserved investigators engaging in cancer research. CURE begins with high school students and fosters scientific, academic and research excellence throughout the trainee's educational progression. The program supports students throughout the entirety of their training career. During this period, the trainee matures into a competitive early stage investigator; capable of securing advanced research project funding in academic and industry workforces. Thus, the CURE program provides a comprehensive vehicle for training and reinforces the critical mass of underserved investigators conducting cancer research.

  2. Quality assurance and quality control of geochemical data—A primer for the research scientist

    USGS Publications Warehouse

    Geboy, Nicholas J.; Engle, Mark A.

    2011-01-01

    Geochemistry is a constantly expanding science. More and more, scientists are employing geochemical tools to help answer questions about the Earth and earth system processes. Scientists may assume that the responsibility of examining and assessing the quality of the geochemical data they generate is not theirs but rather that of the analytical laboratories to which their samples have been submitted. This assumption may be partially based on knowledge about internal and external quality assurance and quality control (QA/QC) programs in which analytical laboratories typically participate. Or there may be a perceived lack of time or resources to adequately examine data quality. Regardless of the reason, the lack of QA/QC protocols can lead to the generation and publication of erroneous data. Because the interpretations drawn from the data are primary products to U.S. Geological Survey (USGS) stakeholders, the consequences of publishing erroneous results can be significant. The principal investigator of a scientific study ultimately is responsible for the quality and interpretation of the project's findings, and thus must also play a role in the understanding, implementation, and presentation of QA/QC information about the data. Although occasionally ignored, QA/QC protocols apply not only to procedures in the laboratory but also in the initial planning of a research study and throughout the life of the project. Many of the tenets of developing a sound QA/QC program or protocols also parallel the core concepts of developing a good study: What is the main objective of the study? Will the methods selected provide data of enough resolution to answer the hypothesis? How should samples be collected? Are there known or unknown artifacts or contamination sources in the sampling and analysis methods? Assessing data quality requires communication between the scientists responsible for designing the study and those collecting samples, analyzing samples, treating data, and

  3. The Tobacco Industry's Abuse of Scientific Evidence and Activities to Recruit Scientists During Tobacco Litigation.

    PubMed

    Lee, Sungkyu

    2016-01-01

    South Korea's state health insurer, the National Health Insurance Service (NHIS), is in the process of a compensation suit against tobacco industry. The tobacco companies have habitually endeavored to ensure favorable outcomes in litigation by misusing scientific evidence or recruiting scientists to support its interests. This study analyzed strategies that tobacco companies have used during the NHIS litigation, which has been receiving world-wide attention. To understand the litigation strategies of tobacco companies, the present study reviewed the existing literature and carried out content analysis of petitions, preparatory documents, and supporting evidence submitted to the court by the NHIS and the tobacco companies during the suit. Tobacco companies misrepresented the World Health Organization (WHO) report's argument and misused scientific evidence, and removed the word "deadly" from the title of the citation. Tobacco companies submitted the research results of scientists who had worked as a consultant for the tobacco industry as evidence. Such litigation strategies employed by the tobacco companies internationally were applied similarly in Korean lawsuits. Results of tobacco litigation have a huge influence on tobacco control policies. For desirable outcomes of the suits, healthcare professionals need to pay a great deal of attention to the enormous volume of written opinions and supporting evidence that tobacco companies submit. They also need to face the fact that the companies engage in recruitment of scientists. Healthcare professionals should refuse to partner with tobacco industry, as recommended by Article 5.3 of the WHO Framework Convention on Tobacco Control.

  4. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    NASA Astrophysics Data System (ADS)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  5. “A Good Personal Scientific Relationship”: Philip Morris Scientists and the Chulabhorn Research Institute, Bangkok

    PubMed Central

    MacKenzie, Ross; Collin, Jeff

    2008-01-01

    Background This paper examines the efforts of consultants affiliated with Philip Morris (PM), the world's leading transnational tobacco corporation, to influence scientific research and training in Thailand via the Chulabhorn Research Institute (CRI). A leading Southeast Asian institute for environmental health science, the CRI is headed by Professor Dr. Her Royal Highness Princess Chulabhorn, the daughter of the King of Thailand, and it has assumed international significance via its designation as a World Health Organization (WHO) Collaborating Centre in December 2005. Methods and Findings This paper analyses previously confidential tobacco industry documents that were made publicly available following litigation in the United States. PM documents reveal that ostensibly independent overseas scientists, now identified as industry consultants, were able to gain access to the Thai scientific community. Most significantly, PM scientist Roger Walk has established close connections with the CRI. Documents indicate that Walk was able to use such links to influence the study and teaching of environmental toxicology in the institute and to develop relations with key officials and local scientists so as to advance the interests of PM within Thailand and across Asia. While sensitivities surrounding royal patronage of the CRI make public criticism extremely difficult, indications of ongoing involvement by tobacco industry consultants suggest the need for detailed scrutiny of such relationships. Conclusions The establishment of close links with the CRI advances industry strategies to influence scientific research and debate around tobacco and health, particularly regarding secondhand smoke, to link with academic institutions, and to build relationships with national elites. Such strategies assume particular significance in the national and regional contexts presented here amid the globalisation of the tobacco pandemic. From an international perspective, particular concern is

  6. Engaging Scientists with the CosmoQuest Citizen Science Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Grier, Jennifer A.; Gay, Pamela L.; Buxner, Sanlyn; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    NASA Science Mission Directorate missions and research return more data than subject matter experts (SMEs – scientists and engineers) can effectively utilize. Citizen scientist volunteers represent a robust pool of energy and talent that SMEs can draw upon to advance projects that require the processing of large quantities of images, and other data. The CosmoQuest Virtual Research Facility has developed roles and pathways to engage SMEs in ways that advance the education of the general public while producing science results publishable in peer-reviewed journals, including through the CosmoQuest Facility Small Grants Program and CosmoAcademy. Our Facility Small Grants Program is open to SMEs to fund them to work with CosmoQuest and engage the public in analysis. Ideal projects have a specific and well-defined need for additional eyes and minds to conduct basic analysis and data collection (such as crater counting, identifying lineaments, etc.) Projects selected will undergo design and implementation as Citizen Science Portals, and citizen scientists will be recruited and trained to complete the project. Users regularly receive feedback on the quality of their data. Data returned will be analyzed by the SME and the CQ Science Team for joint publication in a peer-reviewed journal. SMEs are also invited to consider presenting virtual learning courses in the subjects of their choice in CosmoAcademy. The audience for CosmoAcademy are lifelong-learners and education professionals. Classes are capped at 10, 15, or 20 students. CosmoAcademy can also produce video material to archive seminars long-term. SMEs function as advisors in many other areas of CosmoQuest, including the Educator's Zone (curricular materials for K-12 teachers), Science Fair Projects, and programs that partner to produce material for podcasts and planetaria. Visit the CosmoQuest website at cosmoquest.org to learn more, and to investigate current opportunities to engage with us. CosmoQuest is funded

  7. Stakeholder participation in research design and decisions: scientists, fishers, and mercury in saltwater fish.

    PubMed

    Burger, Joanna; Gochfeld, Michael; Fote, Tom

    2013-03-01

    Individuals who fish and eat self-caught fish make decisions about where to fish, the type to eat, and the quantity to eat. Federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, but seldom provide either the actual metal levels to the general public, or identify the fish that have low contaminant levels. Community participatory research is of growing importance in defining, studying, and resolving complex exposure and risk issues, and this paper is at the intersection of traditional stakeholder approaches and community-based participatory research. The objective of this paper is to describe the process whereby stakeholders (fishers), were involved in directing and refining research questions to address their particular informational needs about mercury levels in fish, potential risks, and methods to maintain health, by balancing the risks and benefits of fish consumption. A range of stakeholders, mainly individual fishers, fishing organizations, and other scientists, were involved at nearly every stage. Community participants influenced many aspects of the design and implementation of the research, in the determination of which fish species to sample, in the collection of the samples, and in the final analyses and synthesis, as well as the communication of results and implications of the research through their fishing club publications, talks and gatherings. By involving the most interested and affected communities, the data and conclusions are relevant to their needs because the fish examined were those they ate and wanted information about, and directly address concerns about the risk from consuming self-caught fish. Although mercury levels in fish presumed to be high in mercury are known, little information was available to the fishermen on mercury levels in fish that were low and thus provided little risk to their families. While community participatory research is more time-consuming and expensive

  8. Stakeholder Participation in Research Design and Decisions: Scientists, Fishers, and Mercury in Saltwater Fish

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Fote, Tom

    2015-01-01

    Individuals who fish and eat self-caught fish make decisions about where to fish, the type to eat, and the quantity to eat. Federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, but seldom provide either the actual metal levels to the general public, or identify the fish that have low contaminant levels. Community participatory research is of growing importance in defining, studying, and resolving complex exposure and risk issues, and this paper is at the intersection of traditional stakeholder approaches and community-based participatory research. The objective of this paper is to describe the process whereby stakeholders (fishers), were involved in directing and refining research questions to address their particular informational needs about mercury levels in fish, potential risks, and methods to maintain health, by balancing the risks and benefits of fish consumption. A range of stakeholders, mainly individual fishers, fishing organizations, and other scientists, were involved at nearly every stage. Community participants influenced many aspects of the design and implementation of the research, in the determination of which fish species to sample, in the collection of the samples, and in the final analyses and synthesis, as well as the communication of results and implications of the research through their fishing club publications, talks and gatherings. By involving the most interested and affected communities, the data and conclusions are relevant to their needs because the fish examined were those they ate and wanted information about, and directly address concerns about the risk from consuming self-caught fish. Although mercury levels in fish presumed to be high in mercury are known, little information was available to the fishermen on mercury levels in fish that were low and thus provided little risk to their families. While community participatory research is more time-consuming and expensive

  9. Expedition Earth and Beyond: Engaging Classrooms in Student-Led Research Using NASA Data, Access to Scientists, and Integrated Educational Strategies

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.

    2011-01-01

    Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.

  10. Young Engineers and Scientists (YES) - Engaging Students and Teachers in Research

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Reiff, P.

    2012-10-01

    Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI) for the past 20 years. The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering and to enhance their success in entering the college and major of their choice. This is accomplished by expanding career awareness, including information on "hot" career areas through seminars and laboratory tours by SwRI staff, and allowing students to interact on a continuing basis with role models at SwRI in a real-world research experiences in physical sciences (including astronomy), information sciences, and a variety of engineering fields. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment and 2) a collegial mentorship where students complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Twenty-one YES 2012 students developed a website for the Dawn Mission (yesserver.space.swri.edu) and five high school science teachers are developing space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, positively affect students’ preparation for STEM careers via real-world research experiences with mentorship teams consisting of professional staff and qualified teachers. Acknowledgements. We acknowledge support from the NASA MMS Mission, SwRI, and local charitable foundations.

  11. 1990 National Compensation Survey of Research and Development Scientists and Engineers

    SciTech Connect

    Not Available

    1990-11-01

    This report presents the results of the fourth in a new series of surveys of compensation and benefits for research and development (R D) scientists and engineers (S Es). The 1990 Survey represents the largest nationwide database of its kind, covering 104 establishments which provided data on almost 41,000 degreed researchers in the hard'' sciences. The fundamental nature of the survey has not changed: the focus is still on medium- and large-sized establishments which employ at least 100 degreed S Es in R D. The 1990 Survey contains data which cover about 18% of all establishments eligible to participate, encompassing approximately 18% of all eligible employees. As in the last three years, the survey sample constitutes a fairly good representation of the entire population of eligible establishments on the basis of business sector, geographic location, and size. Maturity-based analyses of salaries for some 34,000 nonsupervisory researchers are provided, as are job content-based analyses of more than 27,000 individual contributors and almost 5000 first level supervisors and division directors. Compensation policies and practices data are provided for 102 establishments, and benefits plans for 62 establishments are analyzed.

  12. Governing the lithosphere: Insights from Eyjafjallajökull concerning the role of scientists in supporting decision-making on active volcanoes

    NASA Astrophysics Data System (ADS)

    Donovan, Amy; Oppenheimer, Clive

    2012-03-01

    The 2010 eruption of Eyjafjallajökull volcano, and the social consequences across the world, demonstrated some key issues in volcanological science and its application. Scientists in several nations were called upon to advise governments, to justify models and to give guidance about likely future activity. This is symptomatic of many other fields: scientists increasingly have a role in governance, and their work may be driven by questions that arise as a result. This article considers the role of scientists in different national contexts and the challenges faced in formulating scientific advice for policymakers. It concludes by assessing future challenges, and the key role that social scientific research can play. While this is a research paper and presents new data, it takes a commentary approach to elucidate some of the challenges involved in governing volcanic hazards.

  13. Increasing the public health potential of basic research and the scientist satisfaction. An international survey of bioscientists.

    PubMed

    Scita, Giorgio; Sorrentino, Carmen; Boggio, Andrea; Hemenway, David; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method.  Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries.  This survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists.  In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  14. Increasing the public health potential of basic research and the scientist satisfaction. An international survey of bioscientists.

    PubMed

    Scita, Giorgio; Sorrentino, Carmen; Boggio, Andrea; Hemenway, David; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method.  Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries.  This survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists.  In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug. PMID:27347372

  15. Secondary Students' Attitudes to Animal Research: Examining the Potential of a Resource to Communicate the Scientist's Perspective

    ERIC Educational Resources Information Center

    France, Bev; Birdsall, Sally

    2015-01-01

    A DVD resource that provided a scientist's perspective on the use of animals in research and teaching was evaluated with a questionnaire that asked students' views pre and post their access to the resource. Thirty-nine secondary students (Y10-Y13) took part in three different teaching programmes that provided information about animal research and…

  16. Every scientist is a memory researcher: Suggestions for making research more memorable.

    PubMed

    Madan, Christopher R

    2015-01-01

    Independent of the actual results, some scientific articles are more memorable than others. As anyone who has written an article collaboratively knows, there are numerous ways a manuscript can be written to convey the same general ideas. To aid with this, many scientific writing books and editorials provide advice, often anecdotal, on how to make articles more memorable. Here I ground these suggestions with empirical support from memory research. Specifically, I suggest that researchers consider how to emphasize their work's novelty, strive to describe their work using concrete, easy-to-understand terms, and use caution when attempting to evoke an emotional response in the reader. I also discuss considerations in title selections and conference presentations.

  17. Continuing to conduct research in nursing homes despite controversial findings: reflections by a research scientist.

    PubMed

    Kayser-Jones, Jeanie

    2003-01-01

    To illustrate the potential controversial nature of the research findings, the author first presents data from an ongoing study on the care of terminally ill nursing home residents, then responds to the question: "How can you go into nursing homes, find out all that you do, publish your findings, and continue to gain access to nursing homes?" Strategies used over the past 20 years to gain this access and to develop and maintain harmonious relationships during and after the data collection process are presented. The author emphasizes the importance of conducting research in settings that may generate controversial findings. Furthermore, she states that these findings should be presented to advocates and policy makers who are in a position to bring about changes that will improve the quality of care.

  18. Becoming a scientist: The role of undergraduate research in students' cognitive, personal, and professional development

    NASA Astrophysics Data System (ADS)

    Hunter, Anne-Barrie; Laursen, Sandra L.; Seymour, Elaine

    2007-01-01

    In this ethnographic study of summer undergraduate research (UR) experiences at four liberal arts colleges, where faculty and students work collaboratively on a project of mutual interest in an apprenticeship of authentic science research work, analysis of the accounts of faculty and student participants yields comparative insights into the structural elements of this form of UR program and its benefits for students. Comparison of the perspectives of faculty and their students revealed considerable agreement on the nature, range, and extent of students' UR gains. Specific student gains relating to the process of becoming a scientist were described and illustrated by both groups. Faculty framed these gains as part of professional socialization into the sciences. In contrast, students emphasized their personal and intellectual development, with little awareness of their socialization into professional practice. Viewing study findings through the lens of social constructivist learning theories demonstrates that the characteristics of these UR programs, how faculty practice UR in these colleges, and students' outcomes - including cognitive and personal growth and the development of a professional identity - strongly exemplify many facets of these theories, particularly, student-centered and situated learning as part of cognitive apprenticeship in a community of practice.

  19. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  20. Goddard Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under this Indefinite Delivery Indefinite Quantity (IDIQ) contract, USRA was expected to provide short term (from I day up to I year) personnel as required to provide a Visiting Scientists Program to support the Earth Sciences Directorate (Code 900) at the Goddard Space Flight Center. The Contractor was to have a pool, or have access to a pool, of scientific talent, both domestic and international, at all levels (graduate student to senior scientist), that would support the technical requirements of the following laboratories and divisions within Code 900: 1) Global Change Data Center (902); 2) Laboratory for Atmospheres (Code 910); 3) Laboratory for Terrestrial Physics (Code 920); 4) Space Data and Computing Division (Code 930); 5) Laboratory for Hydrospheric Processes (Code 970). The research activities described below for each organization within Code 900 were intended to comprise the general scope of effort covered under the Visiting Scientist Program.

  1. Perceptions of Research Scientists and Science Educators Regarding Science Education: Call for Synergy.

    ERIC Educational Resources Information Center

    Melear, Claudia T.

    Improvement in science teacher education has been called for by several scientists and science education organizations. The concept of synergy is suggested as a model for enhanced improvements in the overall preparation of science teachers due to positive interactions between groups responsible for science teacher education, scientists, and…

  2. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real

  3. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with

  4. Increasing the public health potential of basic research and the scientist satisfaction. An international survey of bioscientists

    PubMed Central

    Scita, Giorgio; Sorrentino, Carmen; Boggio, Andrea; Hemenway, David; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method.  Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries.  This survey asked about the scientists’ motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists.  In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a “basic bibliography” for each new approved drug. PMID:27347372

  5. Exploring the Potential of Using Stories about Diverse Scientists and Reflective Activities to Enrich Primary Students' Images of Scientists and Scientific Work

    ERIC Educational Resources Information Center

    Sharkawy, Azza

    2012-01-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15-week…

  6. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  7. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  8. Networks of Collaboration among Scientists in a Center for Diabetes Translation Research

    PubMed Central

    Harris, Jenine K.; Wong, Roger; Thompson, Kellie; Haire-Joshu, Debra; Hipp, J. Aaron

    2015-01-01

    Background Transdisciplinary collaboration is essential in addressing the translation gap between scientific discovery and delivery of evidence-based interventions to prevent and treat diabetes. We examined patterns of collaboration among scientists at the Washington University Center for Diabetes Translation Research. Methods Members (n = 56) of the Washington University Center for Diabetes Translation Research were surveyed about collaboration overall and on publications, presentations, and grants; 87.5% responded (n = 49). We used traditional and network descriptive statistics and visualization to examine the networks and exponential random graph modeling to identify predictors of collaboration. Results The 56 network members represented nine disciplines. On average, network members had been affiliated with the center for 3.86 years (s.d. = 1.41). The director was by far the most central in all networks. The overall and publication networks were the densest, while the overall and grant networks were the most centralized. The grant network was the most transdisciplinary. The presentation network was the least dense, least centralized, and least transdisciplinary. For every year of center affiliation, network members were 10% more likely to collaborate (OR: 1.10; 95% CI: 1.00–1.21) and 13% more likely to write a paper together (OR: 1.13; 95% CI: 1.02–1.25). Network members in the same discipline were over twice as likely to collaborate in the overall network (OR: 2.10; 95% CI: 1.40–3.15); however, discipline was not associated with collaboration in the other networks. Rank was not associated with collaboration in any network. Conclusions As transdisciplinary centers become more common, it is important to identify structural features, such as a central leader and ongoing collaboration over time, associated with scholarly productivity and, ultimately, with advancing science and practice. PMID:26301873

  9. 2010 NASA-AIHEC Summer Research Experience: Students and Teachers from TCUs Engage in GIS/Remote Sensing with Researchers and Scientists--Lessons Learned

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Carlson, M.; Mell, V.; Maynard, N.

    2010-12-01

    Researchers and scientists from the University of New Hampshire (UNH) and the Confederated Tribes of Grand Ronde joined with the National Aeronautics and Space Administration (NASA) to develop and present a Summer Research Experience (SRE) that trained 21 students and 10 faculty members from 9 of the 36 Tribal Colleges and Universities (TCUs) which comprise the American Indian Higher Education Council (AIHEC). The 10-week SRE program was an inquiry-based introduction to remote sensing, geographic information systems (GIS) and field science research methods. Teams of students and TCU faculty members developed research projects that explored climate change, energy development, contamination of water and air, fire damage in forests, and lost cultural resources on tribal lands. The UNH-Grand Ronde team presented SRE participants with an initial three-week workshop in the use of research tools and development of research projects. During the following seven weeks, the team conferred weekly with SRE participants to monitor and support their progress. Rock provided specific guidance on numerous scientific questions. Carlson coached students on writing and organization and provided laboratory analysis of foliar samples. Mell provided support on GIS technology. Eight of the SRE college teams completed substantial research projects by the end of the SRE while one other team developed a method for future research. Seventeen students completed individual research papers, oral presentations and posters. Nineteen students and all teachers maintained regular and detailed communication with the UNH-Grand Ronde mentors throughout the ten-week program. The SRE produced several significant lessons learned regarding outreach educational programs in inquiry-based science and technology applications. These include: Leadership by an active research scientist (Rock) inspired and supported students and teachers in developing their own scientific inquiries. An intensive schedule of

  10. Why do scientists do outreach, what do we achieve, and how can we better learn from each other, and from research in this field?

    NASA Astrophysics Data System (ADS)

    Salmon, R. A.; Roop, H. A.

    2014-12-01

    Using four very different polar outreach case studies, we will discuss scientists' motivations, expectations, and institutional incentives (and dis-incentives) to engage with the public, and argue that improved training, evaluation, and academic value needs to be associated with scientist-led communication efforts - as well as clearer fora for sharing best practice in this field. We will illustrate our argument using examples from an Antarctic festival with public lectures and science cafes, outreach associated with an Antarctic expedition, the global launch of a climate change documentary that had a significant focus on Antarctica, and a series of "Polar Weeks" led by an international community of scientists and educators. While there is an excellent culture of accountability in both formal and informal science communication sectors, the same rigour is not applied to the majority of 'outreach' activities that are initiated by the science research community. Many of these activities are undertaken based on 'what feels right' and opportunism, and are proclaimed to be a success based on little or no formal evaluation. As a result, much of this work goes undocumented, is not evaluated from the perspective of the science community, and is rarely subject to peer-review and its associated benefits, including professional rewards. We therefore conclude with suggestions of new opportunities for publication in this field that would encourage science communication theory and practice to better inform each other, and for scientists to gain professional recognition for their efforts in this arena.

  11. Research and Development in Industry: 1979. Funds, 1979. Scientists and Engineers, January 1980. Surveys of Science Resources Series. Final Report.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This report analyzes data on research and development (R&D) performed by industry during 1979, examines historical trends for key R&D funding variables, and presents information on industry-employed R&D scientists and engineers. Areas addressed in the first section on R&D funds include: major R&D industries (aircraft/missiles, electrical…

  12. The Role of Scientist Mentors on Teachers' Perceptions of the Community of Science during a Summer Research Experience

    ERIC Educational Resources Information Center

    Hughes, Roxanne; Molyneaux, Kristen; Dixon, Pat

    2012-01-01

    This study focuses on the mentor relationships between science teachers and their scientist mentors in a summer Research Experience for Teachers program at a United States national laboratory facility. Using mixed methods, the authors surveyed and interviewed (semi-structured) the eleven participating teachers before and after the program. The…

  13. Sustainable Scientists

    SciTech Connect

    Mills, Evan

    2008-12-31

    Scientists are front and center in quantifying and solving environmental problems. Yet, as a spate of recent news articles in scientific journals point out, much can be done to enhance sustainability within the scientific enterprise itself, particularly by trimming the energy use associated with research facilities and the equipment therein (i,ii,iii, iv). Sponsors of research unwittingly spend on the order of $10 billion each year on energy in the U.S. alone, and the underlying inefficiencies drain funds from the research enterprise while causing 80 MT CO2-equivalent greenhouse-gas emissions (see Box). These are significant sums considering the opportunity costs in terms of the amount of additional research that could be funded and emissions that could be reduced if the underlying energy was used more efficiently. By following commercially proven best practices in facility design and operation, scientists--and the sponsors of science--can cost-effectively halve these costs, while doing their part to put society on alow-carbon diet.

  14. Inspiring Future Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat; Lee, Richard E., Jr.

    2009-01-01

    In an integrated science/language arts/technology unit called "How Scientists Learn," students researched famous scientists from the past and cutting-edge modern-day scientists. Using biography trade books and the internet, students collected and recorded data on charts, summarized important information, and inferred meaning from text. Then they…

  15. Education and training for radiation scientists: radiation research program and American Society of Therapeutic Radiology and Oncology Workshop, Bethesda, Maryland, May 12-14, 2003.

    PubMed

    Coleman, C Norman; Stone, Helen B; Alexander, George A; Barcellos-Hoff, Mary Helen; Bedford, Joel S; Bristow, Robert G; Dynlacht, Joseph R; Fuks, Zvi; Gorelic, Lester S; Hill, Richard P; Joiner, Michael C; Liu, Fei-Fei; McBride, William H; McKenna, W Gillies; Powell, Simon N; Robbins, Michael E C; Rockwell, Sara; Schiff, Peter B; Shaw, Edward G; Siemann, Dietmar W; Travis, Elizabeth L; Wallner, Paul E; Wong, Rosemary S L; Zeman, Elaine M

    2003-12-01

    Current and potential shortfalls in the number of radiation scientists stand in sharp contrast to the emerging scientific opportunities and the need for new knowledge to address issues of cancer survivorship and radiological and nuclear terrorism. In response to these challenges, workshops organized by the Radiation Research Program (RRP), National Cancer Institute (NCI) (Radiat. Res. 157, 204-223, 2002; Radiat. Res. 159, 812-834, 2003), and National Institute of Allergy and Infectious Diseases (NIAID) (Nature, 421, 787, 2003) have engaged experts from a range of federal agencies, academia and industry. This workshop, Education and Training for Radiation Scientists, addressed the need to establish a sustainable pool of expertise and talent for a wide range of activities and careers related to radiation biology, oncology and epidemiology. Although fundamental radiation chemistry and physics are also critical to radiation sciences, this workshop did not address workforce needs in these areas. The recommendations include: (1) Establish a National Council of Radiation Sciences to develop a strategy for increasing the number of radiation scientists. The strategy includes NIH training grants, interagency cooperation, interinstitutional collaboration among universities, and active involvement of all stakeholders. (2) Create new and expanded training programs with sustained funding. These may take the form of regional Centers of Excellence for Radiation Sciences. (3) Continue and broaden educational efforts of the American Society for Therapeutic Radiology and Oncology (ASTRO), the American Association for Cancer Research (AACR), the Radiological Society of North America (RSNA), and the Radiation Research Society (RRS). (4) Foster education and training in the radiation sciences for the range of career opportunities including radiation oncology, radiation biology, radiation epidemiology, radiation safety, health/government policy, and industrial research. (5) Educate other

  16. Education and training for radiation scientists: radiation research program and American Society of Therapeutic Radiology and Oncology Workshop, Bethesda, Maryland, May 12-14, 2003.

    PubMed

    Coleman, C Norman; Stone, Helen B; Alexander, George A; Barcellos-Hoff, Mary Helen; Bedford, Joel S; Bristow, Robert G; Dynlacht, Joseph R; Fuks, Zvi; Gorelic, Lester S; Hill, Richard P; Joiner, Michael C; Liu, Fei-Fei; McBride, William H; McKenna, W Gillies; Powell, Simon N; Robbins, Michael E C; Rockwell, Sara; Schiff, Peter B; Shaw, Edward G; Siemann, Dietmar W; Travis, Elizabeth L; Wallner, Paul E; Wong, Rosemary S L; Zeman, Elaine M

    2003-12-01

    Current and potential shortfalls in the number of radiation scientists stand in sharp contrast to the emerging scientific opportunities and the need for new knowledge to address issues of cancer survivorship and radiological and nuclear terrorism. In response to these challenges, workshops organized by the Radiation Research Program (RRP), National Cancer Institute (NCI) (Radiat. Res. 157, 204-223, 2002; Radiat. Res. 159, 812-834, 2003), and National Institute of Allergy and Infectious Diseases (NIAID) (Nature, 421, 787, 2003) have engaged experts from a range of federal agencies, academia and industry. This workshop, Education and Training for Radiation Scientists, addressed the need to establish a sustainable pool of expertise and talent for a wide range of activities and careers related to radiation biology, oncology and epidemiology. Although fundamental radiation chemistry and physics are also critical to radiation sciences, this workshop did not address workforce needs in these areas. The recommendations include: (1) Establish a National Council of Radiation Sciences to develop a strategy for increasing the number of radiation scientists. The strategy includes NIH training grants, interagency cooperation, interinstitutional collaboration among universities, and active involvement of all stakeholders. (2) Create new and expanded training programs with sustained funding. These may take the form of regional Centers of Excellence for Radiation Sciences. (3) Continue and broaden educational efforts of the American Society for Therapeutic Radiology and Oncology (ASTRO), the American Association for Cancer Research (AACR), the Radiological Society of North America (RSNA), and the Radiation Research Society (RRS). (4) Foster education and training in the radiation sciences for the range of career opportunities including radiation oncology, radiation biology, radiation epidemiology, radiation safety, health/government policy, and industrial research. (5) Educate other

  17. Reflecting on Scientists' Activity Based on Science Fiction Stories Written by Secondary Students

    ERIC Educational Resources Information Center

    Reis, Pedro; Galvao, Cecilia

    2007-01-01

    In this article the authors resort to a qualitative analysis of the plot of science fiction stories about a group of scientists, written by two 11th-grade Earth and Life Science students (aged 17), and to semi-structured interviews, with the double purpose of diagnosing their conceptions of the nature of science (namely, as regards scientists'…

  18. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    NASA Astrophysics Data System (ADS)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  19. Computer networking for scientists.

    PubMed

    Jennings, D M; Landweber, L H; Fuchs, I H; Farber, D J; Adrion, W R

    1986-02-28

    Scientific research has always relied on communication for gathering and providing access to data; for exchanging information; for holding discussions, meetings, and seminars; for collaborating with widely dispersed researchers; and for disseminating results. The pace and complexity of modern research, especially collaborations of researchers in different institutions, has dramatically increased scientists' communications needs. Scientists now need immediate access to data and information, to colleagues and collaborators, and to advanced computing and information services. Furthermore, to be really useful, communication facilities must be integrated with the scientist's normal day-to-day working environment. Scientists depend on computing and communications tools and are handicapped without them. PMID:17740290

  20. Education: Mutualistic Interactions between Scientists and Children.

    ERIC Educational Resources Information Center

    Condon, Marty

    1991-01-01

    A project that introduced scientists to students and engaged students in creative scientific activities is described. Students were asked to help scientists identify patterns on the wing of a species of fruit fly. A combined research/education program is recommended. (KR)

  1. Reward Systems and NSF University Research Centers: The Impact of Tenure on University Scientists' Valuation of Applied and Commercially Relevant Research

    ERIC Educational Resources Information Center

    Boardman, P. Craig; Ponomariov, Branco L.

    2007-01-01

    Over the past three decades, U.S. science policy has shifted from decentralized support of small, investigator-initiated research projects to more centralized, block grant-based, multidisciplinary research centers. No matter one's take on the "revolutionary" nature of this shift, a major consequence is that university scientists, now more than…

  2. Training and retaining of underrepresented minority physician scientists - a Hispanic perspective: NICHD-AAP workshop on research in neonatology.

    PubMed

    Valcarcel, M; Diaz, C; Santiago-Borrero, P J

    2006-07-01

    In a workshop organized by NICHD and the AAP in January 2004, we addressed and discussed issues related to a Hispanic perspective in Training and Retaining of underrepresented minority physician scientists in the United States. A review of the literature related to training of underrepresented minority physicians in the United States (US) was performed, giving emphasis to those related to the Hispanic population. Success and failure in training and retention of Hispanic physician scientists and trainees was examined. An underrepresentation of Hispanic minorities in medical research workforce was found. This fact has recently resulted in efforts to increase their recruitment and there is a mandate by the National Institute of Health (NIH) for their inclusion. The Hispanic population in the US has increased rapidly, with diversity among the Hispanics in their personal and professional behavior. Significant disparities in health, health risk factors and access to health care manifested by an increased burden of illness and death have been documented. There in an undersupply of academic Hispanic neonatologist. Factors such as availability of academic employment, limited research funding in pediatrics, managed care and large debt burden of the US medical graduates interfere with recruitment of Hispanic trainees and academic physician scientist. Possible solutions, including recognition research awards, revision of NIH policies in awarding funds for neonatology, establishing strategies to improve minorities' acceptance, participation in research and increase accrual of Hispanic population in clinical trials should be given priority. PMID:16801970

  3. Medical Scientists

    MedlinePlus

    ... scientists typically have a Ph.D., usually in biology or a related life science. Some medical scientists ... specialize in this field seek to understand the biology of aging and investigate ways to improve the ...

  4. How do scientists perceive the current publication culture? A qualitative focus group interview study among Dutch biomedical researchers

    PubMed Central

    Schipper, K; Bouter, L M; Maclaine Pont, P; de Jonge, J; Smulders, Y M

    2016-01-01

    Objective To investigate the biomedical scientist's perception of the prevailing publication culture. Design Qualitative focus group interview study. Setting Four university medical centres in the Netherlands. Participants Three randomly selected groups of biomedical scientists (PhD, postdoctoral staff members and full professors). Main outcome measures Main themes for discussion were selected by participants. Results Frequently perceived detrimental effects of contemporary publication culture were the strong focus on citation measures (like the Journal Impact Factor and the H-index), gift and ghost authorships and the order of authors, the peer review process, competition, the funding system and publication bias. These themes were generally associated with detrimental and undesirable effects on publication practices and on the validity of reported results. Furthermore, senior scientists tended to display a more cynical perception of the publication culture than their junior colleagues. However, even among the PhD students and the postdoctoral fellows, the sentiment was quite negative. Positive perceptions of specific features of contemporary scientific and publication culture were rare. Conclusions Our findings suggest that the current publication culture leads to negative sentiments, counterproductive stress levels and, most importantly, to questionable research practices among junior and senior biomedical scientists. PMID:26888726

  5. Professor Mansour Ali Haseeb: Highlights from a pioneer of biomedical research, physician and scientist.

    PubMed

    Salih, Mustafa Abdalla M

    2013-01-01

    The article highlights the career of Professor Mansour Ali Haseeb (1910 - 1973; DKSM, Dip Bact, FRCPath, FRCP [Lond]), a pioneer worker in health, medical services, biomedical research and medical education in the Sudan. After his graduation from the Kitchener School of Medicine (renamed, Faculty of Medicine, University of Khartoum [U of K]) in 1934, he devoted his life for the development of laboratory medicine. He became the first Sudanese Director of Stack Medical Research Laboratories (1952 - 1962). He made valuable contributions by his services in the vaccine production and implementation programs, most notably in combating small pox, rabies and epidemic meningitis. In 1963 he became the first Sudanese Professor of Microbiology and Parasitology and served as the first Sudanese Dean of the Faculty of Medicine, U of K (1963-1969). He was an active loyal citizen in public life and served in various fields outside the medical profession. As Mayor of Omdurman, he was invited to visit Berlin in 1963 by Willy Brandt, Mayor of West Berlin (1957-1966) and Chancellor of the Federal Republic of Germany (1969 to 1974). Also as Mayor of Omdurman, he represented the City in welcoming Queen Elizabeth II during her visit to Sudan in February 1965. He also received State Medals from Egypt and Ethiopia. In 1973 he was appointed Chairman of the Sudan Medical Research Council, and was awarded the international Dr. Shousha Foundation Prize and Medal by the WHO for his contribution in the advancement of health, research and medical services.

  6. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    NASA Astrophysics Data System (ADS)

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-04-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher—student teams to engage in cutting edge high-energy physics research. Results showed that teachers and students could acquire enough knowledge about cosmic ray physics and self-efficacy for conducting cosmic ray research during a summer workshop to be full participants in an SSP conducting research in their schools, and a capstone anchoring approach using an authentic research activity was effective for motivating student engagement in didactic classroom learning. CROP demonstrated "proof of concept" that setting up cosmic ray detector arrays in schools run by teachers and students was feasible, but found that set-up and operation in a high-school was technically difficult.

  7. Learning How Scientists Work: Experiential Research Projects to Promote Cell Biology Learning and Scientific Process Skills

    PubMed Central

    2002-01-01

    Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses. PMID:12669101

  8. Learning how scientists work: experiential research projects to promote cell biology learning and scientific process skills.

    PubMed

    DebBurman, Shubhik K

    2002-01-01

    Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses.

  9. Learning how scientists work: experiential research projects to promote cell biology learning and scientific process skills.

    PubMed

    DebBurman, Shubhik K

    2002-01-01

    Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses. PMID:12669101

  10. Preparing the Next Generation of Environmental Scientists to Work at the Frontier of Data-Intensive Research

    NASA Astrophysics Data System (ADS)

    Hampton, S. E.

    2015-12-01

    The science necessary to unravel complex environmental problems confronts severe computational challenges - coping with huge volumes of heterogeneous data, spanning vast spatial scales at high resolution, and requiring integration of disparate measurements from multiple disciplines. But as cyberinfrastructure advances to support such work, scientists in many fields lack sufficient computational skills to participate in interdisciplinary, data-intensive research. In response, we developed innovative training workshops for early-career scientists, in order to explore both the needs and solutions for training next-generation scientists in skills for data-intensive environmental research. In 2013 and 2014 we ran intensive 3-week training workshops for early-career researchers. One of the workshops was run concurrently in California and North Carolina, connected by virtual technologies and coordinated schedules. We attracted applicants to the workshop with the opportunity to pursue data-intensive small-group research projects that they proposed. This approach presented a realistic possibility that publishable products could result from 3 weeks of focused hands-on classroom instruction combined with self-directed group research in which instructors were present to assist trainees. Instruction addressed 1) collaboration modes and technologies, 2) data management, preservation, and sharing, 3) preparing data for analysis using scripting, 4) reproducible research, 5) sustainable software practices, 6) data analysis and modeling, and 7) communicating results to broad communities. The most dramatic improvements in technical skills were in data management, version control, and working with spatial data outside of proprietary software. In addition, participants built strong networks and collaborative skills that later resulted in a successful student-led grant proposal, published manuscripts, and participants reported that the training was a highly influential experience.

  11. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  12. How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data

    PubMed Central

    Fanelli, Daniele

    2009-01-01

    The frequency with which scientists fabricate and falsify data, or commit other forms of scientific misconduct is a matter of controversy. Many surveys have asked scientists directly whether they have committed or know of a colleague who committed research misconduct, but their results appeared difficult to compare and synthesize. This is the first meta-analysis of these surveys. To standardize outcomes, the number of respondents who recalled at least one incident of misconduct was calculated for each question, and the analysis was limited to behaviours that distort scientific knowledge: fabrication, falsification, “cooking” of data, etc… Survey questions on plagiarism and other forms of professional misconduct were excluded. The final sample consisted of 21 surveys that were included in the systematic review, and 18 in the meta-analysis. A pooled weighted average of 1.97% (N = 7, 95%CI: 0.86–4.45) of scientists admitted to have fabricated, falsified or modified data or results at least once –a serious form of misconduct by any standard– and up to 33.7% admitted other questionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12% (N = 12, 95% CI: 9.91–19.72) for falsification, and up to 72% for other questionable research practices. Meta-regression showed that self reports surveys, surveys using the words “falsification” or “fabrication”, and mailed surveys yielded lower percentages of misconduct. When these factors were controlled for, misconduct was reported more frequently by medical/pharmacological researchers than others. Considering that these surveys ask sensitive questions and have other limitations, it appears likely that this is a conservative estimate of the true prevalence of scientific misconduct. PMID:19478950

  13. Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2012-12-01

    Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

  14. Effects of an Educational Intervention on Female Biomedical Scientists' Research Self-Efficacy

    ERIC Educational Resources Information Center

    Bakken, Lori L.; Byars-Winston, Angela; Gundermann, Dawn M.; Ward, Earlise C.; Slattery, Angela; King, Andrea; Scott, Denise; Taylor, Robert E.

    2010-01-01

    Women and people of color continue to be underrepresented among biomedical researchers to an alarming degree. Research interest and subsequent productivity have been shown to be affected by the research training environment through the mediating effects of research self-efficacy. This article presents the findings of a study to determine whether a…

  15. Preparing clinical pharmacy scientists for careers in clinical/translational research: can we meet the challenge?: ACCP Research Affairs Committee Commentary.

    PubMed

    Parker, Robert B; Ellingrod, Vicki; DiPiro, Joseph T; Bauman, Jerry L; Blouin, Robert A; Welage, Lynda S

    2013-12-01

    Developing clinical pharmacists' research skills and their ability to compete for extramural funding is an important component of the American College of Clinical Pharmacy's (ACCP) vision for pharmacists to play a prominent role in generating the new knowledge used to guide patient pharmacotherapy. Given the recent emphasis on clinical/translational research at the National Institutes of Health (NIH) and the key role of drug therapy in the management of many diseases, there is an unprecedented opportunity for the profession to contribute to this enterprise. A crucial question facing the profession is whether we can generate enough appropriately trained scientists to take advantage of these opportunities to generate the new knowledge to advance drug therapy. Since the 2009 publication of the ACCP Research Affairs Committee editorial recommending the Ph.D. degree (as opposed to fellowship training) as the optimal method for preparing pharmacists as clinical/translational scientists, significant changes have occurred in the economic, professional, political, and research environments. As a result, the 2012 ACCP Research Affairs Committee was charged with reexamining the college's position on training clinical pharmacy scientists in the context of these substantial environmental changes. In this commentary, the potential impact of these changes on opportunities for pharmacists in clinical/translational research are discussed as are strategies for ACCP, colleges of pharmacy, and the profession to increase the number and impact of clinical pharmacy scientists. Failure of our profession to take advantage of these opportunities risks our ability to contribute substantively to the biomedical research enterprise and ultimately improve the pharmacotherapy of our patients.

  16. Becoming a scientist: A qualitative study of the educational experience of undergraduates working in an American and a Brazilian research laboratory

    NASA Astrophysics Data System (ADS)

    Pascoa, Maria Beatriz Amorim

    Because the production of scientific and technological innovations has been at the center of debates for economic growth, scientists are recognized as important actors in the current global market. In this study, I will examine the undergraduate education of future scientists by focusing on students working in research projects of faculty members. This research activity has been promoted by American and Brazilian public agencies as an attempt to attract more college students to scientific careers as well as to improve their future performance in science. Evaluations of these programs have focused on important quantitative indicators focusing mainly on the amount of students that later choose to pursue scientific careers. However, these studies fail to address important educational aspects of undergraduates' experience. In this research, I explore the educational processes taking place as students are introduced to the making of science in order to understand how and what they are learning. Three bodies of literature illuminates the formulation and the analysis of the research questions: (1) theories of globalization situate the education of scientists within the dynamics of a broader social, economic, cultural, and historical framework; (2) the critical pedagogy of Paulo Freire is the basis for the understanding of the pedagogical processes shaping undergraduate students' experiences within the research site; (3) Critical and Cultural Studies of Science and Technology illuminate the analysis of the complex interactions and practices constructed within the laboratory. In order to understand the educational processes shaping the experiences of undergraduate students engaged in research activities, I conducted a qualitative investigation based on participant-observation and in-depth interviews in an American and a Brazilian laboratories. The two sites constituted insightful case studies that illuminated the understanding of inquires about the training of students in

  17. Emeritus Scientists, Mathematicians and Engineers (ESME) program. Summary of activities for school year 1991--1992

    SciTech Connect

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children`s natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  18. Research goes to School: understanding the content and the procedures of Science through a new dialogue among students, teachers and scientists

    NASA Astrophysics Data System (ADS)

    L'Astorina, Alba; Tomasoni, Irene

    2015-04-01

    The Education system is increasingly interested in a more interactive dialogue with scientists in order to make science taught at school more aware of the models and the ways in which knowledge is produced, revised and discussed within the scientific community. Not always, in fact, the ministerial programs, the media, and the textbooks adopted by schools seem to be able to grasp the content and the procedures of the scientific knowledge as it is today being developed, sometimes spreading the idea of a monolithic and static science, with no reference to revisions, uncertainties, errors and disputes that, on the opposite, characterize the debate about science. On the other side, scientists, that in several surveys define students and teachers as one of the key groups that are most important to communicate with, often do not seem to be aware that scientific knowledge is continuously revised by the school and its protagonists. Science teaching, in all classes, has a highly educational role, as it offers the opportunity to value individual differences, to make students acquire specific tools and methods that enable them understand the world and critically interact with it. In this process of conscious learning, in which teachers play the role of tutors, the student participates actively bringing his tacit knowledge and beliefs. In this context, an educational proposal has recently been developed by the Italian National Research Council (CNR), aimed at starting a new dialogue between Education and Research. It's a way to encourage the technical and scientific culture among young people and a mutual exchange between the two main actors of the scientific production and promotion, considering weaknesses and strengths of the relationship between these two systems. In this proposal, students and teachers follow side by side a group of CNR scientists involved in an ongoing research project based on the use of innovative methodologies of aerospace Earth Observation (EO) for

  19. Just like Real Scientists

    ERIC Educational Resources Information Center

    Betteley, Pat

    2009-01-01

    How do you inspire students to keep records like scientists? Share the primary research of real scientists and explicitly teach students how to keep records--that's how! Therefore, a group of third-grade students and their teacher studied the work of famous primatologist Jane Goodall and her modern-day counterpart Ian Gilby. After learning about…

  20. Research Training Needs of Scientist-Practitioners: Implications for Counselor Education

    ERIC Educational Resources Information Center

    Peterson, Christina Hamme; Hall, Sean B.; Buser, Juleen K.

    2016-01-01

    Counselors (N = 911) reported the research skills needed for practice and subsequent research training needs. Findings indicate that counselors have a high need for research skills at work, but training needs differ significantly by counselor type. Recommendations include increasing emphasis on single-case design, survey design, and widely…

  1. Research advances made in the avian brain and their relevance to poultry scientists.

    PubMed

    Kuenzel, Wayne J

    2014-12-01

    The year 2014 marked the tenth anniversary since the sequence of the chicken genome was published. Two other publications occurred during that time frame in different disciplines, and all 3 have affected poultry scientists. The purpose of this paper is to briefly review 2 publications that are better known to those in animal agriculture. The third paper will be addressed in more detail because it is one that many in poultry science probably have not read. The subject matter involves the avian brain and its future impact and is related to an announcement made by the president of the United States in April 2013. Due to the recent, rapid advances in the understanding of the vertebrate brain and behavior, a national goal was announced by President Obama to map the human brain in more detail than ever before to accelerate the understanding of brain function in health and disease. The main objective is to review the third paper published a decade ago to show that it laid the foundation for the chicken and other avian species to serve as relevant animal models to advance the understanding of the human brain. Emphasis will be placed on the forebrain. The overall goal is to show that the brain of birds is not that different from the mammalian brain and therefore can serve as an excellent comparative biomodel to understand fundamental principles of brain structure and function.

  2. Research advances made in the avian brain and their relevance to poultry scientists.

    PubMed

    Kuenzel, Wayne J

    2014-12-01

    The year 2014 marked the tenth anniversary since the sequence of the chicken genome was published. Two other publications occurred during that time frame in different disciplines, and all 3 have affected poultry scientists. The purpose of this paper is to briefly review 2 publications that are better known to those in animal agriculture. The third paper will be addressed in more detail because it is one that many in poultry science probably have not read. The subject matter involves the avian brain and its future impact and is related to an announcement made by the president of the United States in April 2013. Due to the recent, rapid advances in the understanding of the vertebrate brain and behavior, a national goal was announced by President Obama to map the human brain in more detail than ever before to accelerate the understanding of brain function in health and disease. The main objective is to review the third paper published a decade ago to show that it laid the foundation for the chicken and other avian species to serve as relevant animal models to advance the understanding of the human brain. Emphasis will be placed on the forebrain. The overall goal is to show that the brain of birds is not that different from the mammalian brain and therefore can serve as an excellent comparative biomodel to understand fundamental principles of brain structure and function. PMID:25352678

  3. The making of a scientist-psychotherapist: the research training environment and the psychotherapist.

    PubMed

    Gelso, Charles J; Baumann, Ellen C; Chui, Harold T; Savela, Alexandra E

    2013-06-01

    A theory of the research training environment (RTE) proposed by Gelso (Counseling Psychologist, 8:7-35, 1979; Professional Psychology: Research and Practice, 24:468-476, 1993; The Counseling Psychologist, 25:307-320, 1997) is updated, and the research evidence that bears upon this theory is reviewed. Evidence accumulated over more than three decades supports the influence of the RTE on the research attitudes, research self-efficacy, and research productivity of graduate students in psychotherapy-related fields in psychology. Both the global RTE and 10 ingredients posited by RTE theory are reviewed. The ingredients that seem to have the greatest association with theorized training outcomes in students are (1) faculty modeling of scientific behavior, (2) positive reinforcement of students' scientific behavior, (3) teaching students, through the advising relationship and research teams, that science can be a partly social-interpersonal experience, and (4) teaching students that all research is flawed and limited. The training program faculty is responsible for arranging the training environment so that it will maximally impact psychotherapy graduate students' research attitudes, research self-efficacy, and productivity. PMID:23773076

  4. The making of a scientist-psychotherapist: the research training environment and the psychotherapist.

    PubMed

    Gelso, Charles J; Baumann, Ellen C; Chui, Harold T; Savela, Alexandra E

    2013-06-01

    A theory of the research training environment (RTE) proposed by Gelso (Counseling Psychologist, 8:7-35, 1979; Professional Psychology: Research and Practice, 24:468-476, 1993; The Counseling Psychologist, 25:307-320, 1997) is updated, and the research evidence that bears upon this theory is reviewed. Evidence accumulated over more than three decades supports the influence of the RTE on the research attitudes, research self-efficacy, and research productivity of graduate students in psychotherapy-related fields in psychology. Both the global RTE and 10 ingredients posited by RTE theory are reviewed. The ingredients that seem to have the greatest association with theorized training outcomes in students are (1) faculty modeling of scientific behavior, (2) positive reinforcement of students' scientific behavior, (3) teaching students, through the advising relationship and research teams, that science can be a partly social-interpersonal experience, and (4) teaching students that all research is flawed and limited. The training program faculty is responsible for arranging the training environment so that it will maximally impact psychotherapy graduate students' research attitudes, research self-efficacy, and productivity.

  5. Biomedical Scientists' Perceptions of Ethical and Social Implications: Is There a Role for Research Ethics Consultation?

    PubMed Central

    McCormick, Jennifer B.; Boyce, Angie M.; Cho, Mildred K.

    2009-01-01

    Background Research ethics consultation programs are being established with a goal of addressing the ethical, societal, and policy considerations associated with biomedical research. A number of these programs are modelled after clinical ethics consultation services that began to be institutionalized in the 1980s. Our objective was to determine biomedical science researchers' perceived need for and utility of research ethics consultation, through examination of their perceptions of whether they and their institutions faced ethical, social or policy issues (outside those mandated by regulation) and examination of willingness to seek advice in addressing these issues. We conducted telephone interviews and focus groups in 2006 with researchers from Stanford University and a mailed survey in December 2006 to 7 research universities in the U.S. Findings A total of 16 researchers were interviewed (75% response rate), 29 participated in focus groups, and 856 responded to the survey (50% response rate). Approximately half of researchers surveyed (51%) reported that they would find a research ethics consultation service at their institution moderately, very or extremely useful, while over a third (36%) reported that such a service would be useful to them personally. Respondents conducting human subjects research were more likely to find such a service very to extremely useful to them personally than respondents not conducting human subjects research (20% vs 10%; chi2 p<0.001). Conclusion Our findings indicate that biomedical researchers do encounter and anticipate encountering ethical and societal questions and concerns and a substantial proportion, especially clinical researchers, would likely use a consultation service if they were aware of it. These findings provide data to inform the development of such consultation programs in general. PMID:19252737

  6. The Public Good vs. Commercial Interest: Research Scientists in Search of an Accommodation

    ERIC Educational Resources Information Center

    Wong, Rose H. C.; Westwood, Robert

    2010-01-01

    The environment for scientific research in public organisations is undergoing radical change, particularly with commercialisation pressures and blurring of the distinction between public and private research. The commercialisation pressures are reflected in government policy frameworks and institutional contexts for scientific work which are…

  7. Including Adults with Intellectual Disabilities in Research: Scientists' Perceptions of Risks and Protections

    ERIC Educational Resources Information Center

    McDonald, Katherine E.; Kidney, Colleen A.; Nelms, Sandra L.; Parker, Michael R.; Kimmel, Ali; Keys, Christopher B.

    2009-01-01

    Social and cognitive characteristics of adults with intellectual disabilities (ID) place them at risk for inappropriate inclusion in or exclusion from research participation. As we grapple with how to include adults with ID in research in order to secure their right to contribute to scientific advancements and be positioned to derive benefit from…

  8. Training Future Scientists: Predicting First-Year Minority Student Participation in Health Science Research

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Eagan, M. Kevin; Cabrera, Nolan L.; Lin, Monica H.; Park, Julie; Lopez, Miguel

    2008-01-01

    Using longitudinal data from the UCLA Cooperative Institutional Research Program (CIRP) and Your First College Year (YFCY) surveys, this study examines predictors of the likelihood that science-oriented students would participate in a health science undergraduate research program during the first year of college. The key predictors of…

  9. Becoming a Scientist: The Role of Undergraduate Research in Students' Cognitive, Personal, and Professional Development

    ERIC Educational Resources Information Center

    Hunter, Anne-Barrie; Laursen, Sandra L.; Seymour, Elaine

    2007-01-01

    In this ethnographic study of summer undergraduate research (UR) experiences at four liberal arts colleges, where faculty and students work collaboratively on a project of mutual interest in an apprenticeship of authentic science research work, analysis of the accounts of faculty and student participants yields comparative insights into the…

  10. Optimising Translational Research Opportunities: A Systematic Review and Narrative Synthesis of Basic and Clinician Scientists' Perspectives of Factors Which Enable or Hinder Translational Research

    PubMed Central

    Sadler, Euan; Fisher, Helen R.; Maher, John; Wolfe, Charles D. A.; McKevitt, Christopher

    2016-01-01

    Introduction Translational research is central to international health policy, research and funding initiatives. Despite increasing use of the term, the translation of basic science discoveries into clinical practice is not straightforward. This systematic search and narrative synthesis aimed to examine factors enabling or hindering translational research from the perspective of basic and clinician scientists, a key stakeholder group in translational research, and to draw policy-relevant implications for organisations seeking to optimise translational research opportunities. Methods and Results We searched SCOPUS and Web of Science from inception until April 2015 for papers reporting scientists’ views of the factors they perceive as enabling or hindering the conduct of translational research. We screened 8,295 papers from electronic database searches and 20 papers from hand searches and citation tracking, identifying 26 studies of qualitative, quantitative or mixed method designs. We used a narrative synthesis approach and identified the following themes: 1) differing concepts of translational research 2) research processes as a barrier to translational research; 3) perceived cultural divide between research and clinical care; 4) interdisciplinary collaboration as enabling translation research, but dependent on the quality of prior and current social relationships; 5) translational research as entrepreneurial science. Across all five themes, factors enabling or hindering translational research were largely shaped by wider social, organisational, and structural factors. Conclusion To optimise translational research, policy could consider refining translational research models to better reflect scientists’ experiences, fostering greater collaboration and buy in from all types of scientists. Organisations could foster cultural change, ensuring that organisational practices and systems keep pace with the change in knowledge production brought about by the

  11. Developmental Potential among Creative Scientists

    ERIC Educational Resources Information Center

    Culross, Rita R.

    2008-01-01

    The world of creative scientists is dramatically different in the 21st century than it was during previous centuries. Whether biologists, chemists, physicists, engineers, mathematicians, or computer scientists, the livelihood of research scientists is dependent on their abilities of creative expression. The view of a solitary researcher who…

  12. Planning and Conducting Research Activities.

    ERIC Educational Resources Information Center

    Christiansen, Richard L.

    1983-01-01

    Some directions and influences on dental research activities in the near future are discussed. Current challenges include international competition, fellowships, and equipment. Potential research activity includes preventive medicine, epidemiology, chronic illness, the elderly, bioengineering, materials research, nutrition, soft tissue research,…

  13. Sir Edward Mellanby (1884-1955) GBE KCB FRCP FRS: nutrition scientist and medical research mandarin.

    PubMed

    Hawgood, Barbara J

    2010-08-01

    Edward Mellanby used the experimental method to investigate medical problems. In 1918, working at King's College for Women, London, he provided conclusive evidence that rickets is a dietary deficiency disease due to lack of a fat-soluble vitamin [D]. In Sheffield he demonstrated that cereals, in an unbalanced diet, produced rickets due to the phytic acid content reducing the availability of calcium. Mellanby became Secretary of the Medical Research Council (1933-49) but continued his research by working at weekends. In the 1930s he campaigned for the results of nutritional research to be used for the benefit of public health. During World War II he acted as a scientific adviser to the War Cabinet and had a strong influence on the food policy which maintained successfully the nutrition of the population during the shipping blockade. Mellanby was a formidable person but with sagacity he promoted new research and guided the expansion of the organization.

  14. Some subjective reactions of a behavioral scientist involved in thanatological research.

    PubMed

    Devins, G M

    Ethical and pragmatic considerations often preclude the application of classical experimental approaches to in vivo thanatological research. While quasi-experimental and correlational designs may be employed to circumvent a number of potential problems, many more empirically testable research questions simply remain unaskable in the applied setting. Clearly, extra-experimental sources of information are of particular value in such situations. The present paper reports some of the observations and subjective reactions experienced by the writer while engaged in a series of experimental thanatological research studies. The issues addressed include the motivations of thanatological investigators and research participants, personal awareness of death, displacement of grief, anxieties about personal utility, paternalism, and honesty (i.e., frankness) as a primary ethic in facilitating a peaceful, "natural," death in the moribund individual.

  15. Scientists' Small Errors in Managing Research Grants Can Mean Big Penalties

    ERIC Educational Resources Information Center

    Kelderman, Eric

    2012-01-01

    James M. Fadool, an associate professor of biology at Florida State University, got a federal grant of more than $300,000 to study eye defects using zebra-fish. Some of that money went to pay another researcher, $1,536 biweekly, to assist with the research and manage the lab where the fish were kept. But an audit by the Office of Inspector General…

  16. Using Authentic Data in High School Earth System Science Research - Inspiring Future Scientists

    NASA Astrophysics Data System (ADS)

    Bruck, L. F.

    2006-05-01

    Using authentic data in a science research class is an effective way to teach students the scientific process, problem solving, and communication skills. In Frederick County Public Schools, MD a course has been developed to hone scientific research skills, and inspire interest in careers in science and technology. The Earth System Science Research course provides eleventh and twelfth grade students an opportunity to study Earth System Science using the latest information developed through current technologies. The system approach to this course helps students understand the complexity and interrelatedness of the Earth system. Consequently students appreciate the dynamics of local and global environments as part of a complex system. This course is an elective offering designed to engage students in the study of the atmosphere, biosphere, cryosphere, geosphere, and hydrosphere. This course allows students to utilize skills and processes gained from previous science courses to study the physical, chemical, and biological aspects of the Earth system. The research component of the course makes up fifty percent of course time in which students perform independent research on the interactions within the Earth system. Students are required to produce a scientific presentation to communicate the results of their research. Posters are then presented to the scientific community. Some of these presentations have led to internships and other scientific opportunities.

  17. How Do Scientists Define Openness? Exploring the Relationship Between Open Science Policies and Research Practice

    PubMed Central

    Levin, Nadine; Leonelli, Sabina; Weckowska, Dagmara; Castle, David; Dupré, John

    2016-01-01

    This article documents how biomedical researchers in the United Kingdom understand and enact the idea of “openness.” This is of particular interest to researchers and science policy worldwide in view of the recent adoption of pioneering policies on Open Science and Open Access by the U.K. government—policies whose impact on and implications for research practice are in need of urgent evaluation, so as to decide on their eventual implementation elsewhere. This study is based on 22 in-depth interviews with U.K. researchers in systems biology, synthetic biology, and bioinformatics, which were conducted between September 2013 and February 2014. Through an analysis of the interview transcripts, we identify seven core themes that characterize researchers’ understanding of openness in science and nine factors that shape the practice of openness in research. Our findings highlight the implications that Open Science policies can have for research processes and outcomes and provide recommendations for enhancing their content, effectiveness, and implementation. PMID:27807390

  18. Scientist - Educator Partnerships

    NASA Astrophysics Data System (ADS)

    Devore, E.

    2003-12-01

    Science is the quest for knowledge about the natural world, and scientists are often characterized as driven by curiosity and the desire to discover, traits they share with children exploring the world through youthful eyes. In contrast, formal science education at the pre-college and college levels frequently distills the joy of scientific research and discovery into a body on known facts, laws, and disciplinary studies, loosing the excitement of doing science. When scientists partner with teachers and other educators, there is an opportunity for engaging students and the public with scientists and their research projects. Further, scientists provide expertise to create up-to-date and accurate materials for use in classrooms, science centers, and youth groups. Scientists also see engagement with teachers, students, and the public through science centers as a means of growing the next generation of scientists to continue the work. Often this process is facilitated by science education professionals who work at the interface between the worlds of scientific research and formal and informal education. The partnership between the research scientist and the science education professional can result in improved science education for a broad community of teachers, students and the public.

  19. The Tobacco Industry’s Abuse of Scientific Evidence and Activities to Recruit Scientists During Tobacco Litigation

    PubMed Central

    2016-01-01

    South Korea’s state health insurer, the National Health Insurance Service (NHIS), is in the process of a compensation suit against tobacco industry. The tobacco companies have habitually endeavored to ensure favorable outcomes in litigation by misusing scientific evidence or recruiting scientists to support its interests. This study analyzed strategies that tobacco companies have used during the NHIS litigation, which has been receiving world-wide attention. To understand the litigation strategies of tobacco companies, the present study reviewed the existing literature and carried out content analysis of petitions, preparatory documents, and supporting evidence submitted to the court by the NHIS and the tobacco companies during the suit. Tobacco companies misrepresented the World Health Organization (WHO) report’s argument and misused scientific evidence, and removed the word “deadly” from the title of the citation. Tobacco companies submitted the research results of scientists who had worked as a consultant for the tobacco industry as evidence. Such litigation strategies employed by the tobacco companies internationally were applied similarly in Korean lawsuits. Results of tobacco litigation have a huge influence on tobacco control policies. For desirable outcomes of the suits, healthcare professionals need to pay a great deal of attention to the enormous volume of written opinions and supporting evidence that tobacco companies submit. They also need to face the fact that the companies engage in recruitment of scientists. Healthcare professionals should refuse to partner with tobacco industry, as recommended by Article 5.3 of the WHO Framework Convention on Tobacco Control. PMID:26841882

  20. Separated at Birth: Statisticians, Social Scientists, and Causality in Health Services Research

    PubMed Central

    Dowd, Bryan E

    2011-01-01

    Objective Health services research is a field of study that brings together experts from a wide variety of academic disciplines. It also is a field that places a high priority on empirical analysis. Many of the questions posed by health services researchers involve the effects of treatments, patient and provider characteristics, and policy interventions on outcomes of interest. These are causal questions. Yet many health services researchers have been trained in disciplines that are reluctant to use the language of causality, and the approaches to causal questions are discipline specific, often with little overlap. How did this situation arise? This paper traces the roots of the division and some recent attempts to remedy the situation. Data Sources and Settings Existing literature. Study Design Review of the literature. PMID:21105867

  1. Predicting scientists' participation in public life.

    PubMed

    Besley, John C; Oh, Sang Hwa; Nisbet, Matthew

    2013-11-01

    This research provides secondary data analysis of two large-scale scientist surveys. These include a 2009 survey of American Association for the Advancement of Science (AAAS) members and a 2006 survey of university scientists by the United Kingdom's Royal Society. Multivariate models are applied to better understand the motivations, beliefs, and conditions that promote scientists' involvement in communication with the public and the news media. In terms of demographics, scientists who have reached mid-career status are more likely than their peers to engage in outreach, though even after controlling for career stage, chemists are less likely than other scientists to do so. In terms of perceptions and motivations, a deficit model view that a lack of public knowledge is harmful, a personal commitment to the public good, and feelings of personal efficacy and professional obligation are among the strongest predictors of seeing outreach as important and in participating in engagement activities.

  2. Obligations of a Pharmaceutical Scientist to Help Bridge the Gap Between Basic Research and Clinical Practice.

    ERIC Educational Resources Information Center

    Benet, Leslie Z.

    1980-01-01

    A chairman of pharmacy in a state university outlines obligations in reducing tensions within the profession: making teaching relevant to the product of the school--clinical pharmacists; making one's own expertise available to faculty to develop research projects; and insuring highest scientific quality of services. (MSE)

  3. The Barrett Foundation: Undergraduate Research Program for Environmental Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Paul, M.; Farmer, C.; Larson, P.; Matt, J.; Sentoff, K.; Vazquez-Spickers, I.; Pearce, A. R.

    2007-12-01

    A new program sponsored by The Barrett Foundation in the University of Vermont College of Engineering and Mathematical Sciences (UVM) supports undergraduate students in Environmental Engineering, Earth and Environmental Sciences to pursue independent summer research projects. The Barrett Foundation, a non-profit organization started by a UVM Engineering alum, provided a grant to support undergraduate research. Students must work with at least two different faculty advisors to develop project ideas, then independently prepare a research proposal and submit it to a faculty panel for review. The program was structured as a scholarship to foster a competitive application process. In the last three years, fourteen students have participated in the program. The 2007 Barrett Scholars projects include: - Using bacteria to change the chemistry of subsurface media to encourage calcite precipitation for soil stability and pollutant sequestration - Assessing structural weaknesses in a historic post and beam barn using accelerometers and wireless data collection equipment - Using image processing filters to 1) evaluate leaf wetness, a leading indicator of disease in crops and 2) assess the movement of contaminants through building materials. - Investigating the impact of increased water temperature on cold-water fish species in two Vermont streams. - Studying the impacts of light duty vehicle tailpipe emissions on air quality This program supports applied and interdisciplinary environmental research and introduces students to real- world engineering problems. In addition, faculty from different research focuses are presented the opportunity to establish new collaborations around campus through the interdisciplinary projects. To date, there is a successful publication record from the projects involving the Barrett scholars, including students as authors. One of the objectives of this program was to provide prestigious, competitive awards to outstanding undergraduate engineers

  4. Global thunderstorm activity research survey

    NASA Technical Reports Server (NTRS)

    Coroniti, S. C.

    1982-01-01

    The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.

  5. Young Otto Struve: The Education and Development of A Research Scientist 1921-1932

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1995-12-01

    Otto Struve arrived at Yerkes Observatory from Turkey in October 1921, the penniless survivor of a defeated army. Then 24 years old, he immediately began his studies and assistantship as the only graduate student at the observatory. Eleven years later he became its "boy director." His education, training, research experience and development are described in the context of Yerkes Observatory, and of American graduate and post-graduate work in astronomy of the time. Under Director Edwin B. Frost, Yerkes Observatory's main program was radial-velocity measurements of O, B, and A stars. Struve worked on it and did his thesis on spectroscopic binaries. A prodigious achiever, he was appointed to the faculty as an instructor as soon as he received his doctorate. On his own he jumped into frontier research on interstellar absorption lines, based in large part on existing spectrograms taken for the radial-velocity program. Reviewing Cecilia Payne's book on stellar atmospheres in 1926 converted Struve to a self-taught observational astrophysicist. Research leaves at Mount Wilson and Harvard, with working visits to Lick and the DAO, plus a Guggenheim year at Cambridge with Arthur S. Eddington, broadened his horizons. Struve always observed diligently, published frequently, attended AAS meetings, presented oral papers, and discussed his research with others. With practically no knowledge of modern physics, he cultivated others who were experts in it, beginning with Pol Swings, a visitor from Belgium. By 1932 Struve was ready to become director of Yerkes Observatory, and to lead it back into its place as a leading astrophysical research center, for which George Ellery Hale had founded it.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1: The value of scientific and technical information (STI), its relationship to Research and Development (R/D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.

    1990-01-01

    This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.

  7. Inspiring future scientists in middle-schools through synergy between classroom learning and water cycle research

    NASA Astrophysics Data System (ADS)

    Noone, D. C.; Kellagher, E.; Berkelhammer, M. B.; Raudzens Bailey, A.; Kaushik, A.

    2012-12-01

    Water is at the core of many issues in environmental change from local to global scales, and learning about the water cycle offers students an opportunity to explore core scientific concepts and their local environment. In climate research, there are significant uncertainties in the role water plays in the climate system. Water also acts as a central theme that provides opportunities for experiential science education at all levels. The "Water Spotters" program underway at University of Colorado exploits the synergy between needs for enrichment of middle-school science education and the needs for water sample collection to provide primary data for climate research. The program takes advantage of the prominent agricultural landscape of the region in eastern Colorado, which is a poignant example of how society influences the climate through irrigation, evaporation/transpiration and run-off and whose productivity is influenced by the climate system. Both natural grasslands and alpine ecosystems in the surrounding regions serve as examples of the native landscape. In coordination with the St. Vrain Valley School District MESA (Math Engineering Science Achievement) program, middle-school students collect rain water samples that are analyzed and used as a core component of the research goals. In concert, new lessons have been developed in coordination with science teachers that emphasize both core scientific standards and application learning about the water cycle. We present the new curriculum modules developed for the program and that are distributed to middle-school teachers. The modules include original lessons and lessons with expanded original material to teach about water and water isotopes. Curriculum packages that include media resources are increasingly important to teachers. The Water Spotters program uses video to teach collection protocols and give background on the project. Weather station data from schools are disseminated online alongside the rainwater

  8. Ethical debates in genetic engineering: U.S. scientists' attitudes on patenting, germ-line research, food labeling, and agri-biotech issues.

    PubMed

    Rabino, I

    1998-09-01

    A 1995 survey of 1,257 scientists working in the field of recombinant DNA research indicates wide areas of agreement as well as some noteworthy divisions when it comes to such thorny questions as patenting, germ-line research, food labeling, and biodiversity. In general, the scientists surveyed approve of patenting living organisms that result from rDNA research, but vary significantly on what should be patentable. They advocate human germ-line therapy, yet have reservations about using it for any but serious diseases. They oppose mandatory labeling of biologically engineered food products, but understand that the public has a right to know and advocate openness. Finally, they favor development of threats to biodiversity and maintain that publicly funded researchers should be legally obligated to consider the potential environmental effects of their research. Some clear differences arise between scientists working in industry and those in academia and between men and women.

  9. Psychology of the scientist: LXXXV. Research on homosexuality: a response to Schumm (and Herek).

    PubMed

    Cameron, Paul; Cameron, Kirk

    2003-02-01

    Because social science is "messy," just about any criticism of any work--including our efforts--has validity. But the empiricist principle is more important than a theoretical search for perfection in research. The findings from our 1983-1984 nationwide random survey are superior to earlier efforts and similar enough to those reported by the 1992 nationwide random survey conducted by University of Chicago investigators, the 1994 British effort, and the 1996 NHSDA to suggest all approximate "a similar truth about reported sexuality."

  10. Sea Changes - ACT : Artists and Scientists collaborating to promote ocean activism and conservation. (www.seachanges.org)

    NASA Astrophysics Data System (ADS)

    Lueker, T.

    2012-12-01

    We are a group of ocean scientists, artists, and educators working to publicize the urgent environmental problems facing our ocean environs, including overfishing, climate change and ocean acidification, and environmental degradation due to plastic and other forms of pollution. Our team leader, Kira Carrillo Corser, is an artist and educator known nationally for affecting policy and social change. Our collaboration results from the DNA of Creativity Project - the brainchild of Patricia Frischer, co-ordinator for the San Diego Visual Arts Network (http://dnaofc.weebly.com). The DNA of Creativity funded teams composed of artists and scientists with the goal of fusing the creative energies of both into projects that will enhance the public's perception of creativity, and make the complexities of art and science collaborations accessible to a new and larger audience. Sea Changes - ACT was funded initially by the DNA of Creativity Project. Our project goals are : 1) To entice people to participate in the joys of discovery of art AND science and 2) To motivate the public to work for real, committed and innovative change to protect our oceans. Part of our strategy for achieving our goals is to create a traveling art installation to illustrate the beauty of the oceans and to instill in our viewers the joys of discovery and creativity that we as scientists and artists pursue. And following this, to make the destructive changes occurring in the ocean and the future consequences more visible and understandable. We will develop lesson plans to integrate our ideas into the educational system and we are documenting our collaborative and creative process to inform future art-science collaborations. Finally, after emotionally connecting with our viewers to provide a means to ACT to make real and positive CHANGES for the future. Our project aims to build commitment and action for environmental conservation and stewardship as we combine scientific research with ways to take action

  11. The effects of inquiry-based summer enrichment activities on rising eighth graders' knowledge of science processes, attitude toward science, and perceptions of scientists

    NASA Astrophysics Data System (ADS)

    Moore, Juanita Martin

    The purpose of this research was to examine the effects of summer science enrichment on eighth-graders' science process skills knowledge, attitude toward science and perceptions of scientists. A single group pre- and post-test design was used to test participants in a summer science enrichment camp, which took place over a three-week period in the summer of 2000. Participants, all of whom were residents of the Mississippi area known as the Delta, lived on the campus of Mississippi Valley State University for the entire course of the camp. Activities included several guided inquiry-based projects such as water rocket design and solar or battery-powered car design. Participants also took trips to an environmental camp in north Mississippi and to the Stennis Space Center on the Mississippi Gulf Coast. Participants worked on their projects in groups, supervised by an undergraduate student "mentor". Participants were encouraged to keep journals of their experiences throughout the camp, and the researcher developed a rubric to evaluate student journals for process knowledge, evidence of planning, reflective thought, and disposition toward science. Tests were used to evaluate student knowledge of process skills, attitude toward science, and perceptions of scientists. On the Test of Integrated Process Skills (Dillashaw & Okey, 1983), the students showed significant improvement overall, but when evaluated separately, males showed significant improvement while females did not. On the Attitude toward Science in School Assessment (Germane, 1988), data indicated that attitude toward science improved significantly for the group as a whole, but upon closer inspection, indicated a significant improvement for the female students only. On Chamber's Draw-a-Scientist Test (1983), analysis of student drawings indicated no significant change in stereotypical images of scientists for the group overall. However, boys' scores indicated a significant improvement when analyzed separately

  12. Discovery and Utilization of Biocatalysts for Chiral Synthesis: An Overview of Chinese Scientists Research and Development

    NASA Astrophysics Data System (ADS)

    Yu, Hui-Lei; Xu, Jian-He; Lu, Wen-Ya; Lin, Guo-Qiang

    The importance of chiral issues in active pharmaceutical ingredients has been widely recognized not only by pharmacologists, but also by chemists, chemical engineers and administrators. In fact, the worldwide sales of single-enantiomer drugs have exceeded US 150 billion. Among them the contribution rate of biocatalysis technology is ever increasing (up to 15-20%). This chapter will focus on the biocatalytic synthesis of chiral compounds useful for pharmaceutical industry. Diverse enzymes, such as oxidoreductases, epoxide hydrolases, nitrilases/nitrile hydratases and hydroxy nitrile lyases which were isolated from various sources including microorganisms and plants, and the methodology for utilizing these enzymes in enantioselective or asymmetric synthesis will be discussed briefly.

  13. Integrating Assessment and Research Strategies on a Large Development and Research Project: Kids as Airborne Mission Scientists (KaAMS).

    ERIC Educational Resources Information Center

    Grabowski, Barbara L.; Koszalka, Tiffany A.

    Combining assessment and research components on a large development and research project is a complex task. There are many descriptions of how either assessment or research should be conducted, but detailed examples illustrating integration of such strategies in complex projects are scarce. This paper provides definitions of assessment,…

  14. Playing Scientist

    ERIC Educational Resources Information Center

    Campbell, Ashley

    2012-01-01

    Engaging students in the study of genetics is essential to building a deep understanding of heredity, a core idea in the life sciences (NRC 2012). By integrating into the curriculum the stories of famous scientists who studied genetics (e.g., Mendel, Franklin, Watson, and Crick), teachers remind their students that science is a human endeavor.…

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  16. Ethics in Physical Activity Research.

    ERIC Educational Resources Information Center

    Kroll, Walter; And Others

    1993-01-01

    Four conference papers on ethics in physical activity research are presented: (1) "Ethical Issues in Human Research" (W. Kroll); (2) "Ethical Issues in Animal Research" (K. Matt); (3) "Oh What a Tangled Web We Have" (M. Safrit); and (4) "Ethical Issues in Conducting and Reporting Research: A Reaction to Kroll, Matt, and Safrit" (H. Zelaznik). (SM)

  17. Open Research Challenges with Big Data - A Data-Scientist s Perspective

    SciTech Connect

    Sukumar, Sreenivas R

    2015-01-01

    In this paper, we discuss data-driven discovery challenges of the Big Data era. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical data mining and machine learning under more scrutiny and evaluation for gleaning insights from the data than ever before. In that context, we pose and debate the question - Are data mining algorithms scaling with the ability to store and compute? If yes, how? If not, why not? We survey recent developments in the state-of-the-art to discuss emerging and outstanding challenges in the design and implementation of machine learning algorithms at scale. We leverage experience from real-world Big Data knowledge discovery projects across domains of national security, healthcare and manufacturing to suggest our efforts be focused along the following axes: (i) the data science challenge - designing scalable and flexible computational architectures for machine learning (beyond just data-retrieval); (ii) the science of data challenge the ability to understand characteristics of data before applying machine learning algorithms and tools; and (iii) the scalable predictive functions challenge the ability to construct, learn and infer with increasing sample size, dimensionality, and categories of labels. We conclude with a discussion of opportunities and directions for future research.

  18. Young Scientists Explore Rocks & Minerals. Book 11--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of rocks and minerals. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  19. Young Scientists Explore Nature. Book 10--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of nature. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  20. Young Scientists Explore Inner & Outer Space. Book 6--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of space (inner and outer). Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for…

  1. Young Scientists Explore Animals. Book 2--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of animals. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  2. Young Scientists Explore Light & Color. Book 12--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of light and color. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  3. Young Scientists Explore the Weather. Book 5--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the weather. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student.…

  4. Young Scientists Explore the World of Water. Book 9--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of water. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  5. Young Scientists Explore the Five Senses. Book 4--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of the five senses. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each…

  6. Scientists as writers

    NASA Astrophysics Data System (ADS)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  7. Education and Outreach: Advice to Young Scientists

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  8. Your Students Can Be Rocket Scientists! A Galaxy of Great Activities about Astronauts, Gravity, and Motion.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1994-01-01

    Presents activities for a springtime Space Day that can teach students about astronauts, gravity, and motion. Activities include creating a paper bag spacecraft to study liftoff and having students simulate gravity's effects by walking in various manners and recording pulse rates. A list of resources is included. (SM)

  9. Thirty Years of Participatory Watershed Research: Engaging Citizen Scientists Through the NH Lakes Lay Monitoring Program (Invited)

    NASA Astrophysics Data System (ADS)

    Schloss, J. A.

    2009-12-01

    While it began as a citizen water quality monitoring program to document long-term trends and find problem areas impacting lake watersheds the New Hampshire Lakes Lay Monitoring Program soon evolved into a model effort for engaging the participants to help investigate a wide range of scientific questions primarily derived through their concerns. As a true participatory effort, community members were involved in the design as well as the implementation of the research and also in the interpretation of the results. The research outcomes have provided benefits to both the local and scientific communities. In many cases productive partnerships between the research community and participants were initiated that continue to last to this day. In addition, participants have been empowered through their experience and have become local experts and community leaders. Collaborative research projects to date have explored fish condition, recreational impacts, nutrient loadings from watershed land use, morphometric determinants of lake productivity, ground truth for remote sensing of water quality, biological controls for invasive aquatic plants, in-lake resource co-occurrences, and cyanobacteria bloom toxin ecology. Participants were also instrumental in confirming a more accurate method for water clarity measurement. Results have not only provided the community with the information they require for the informed local stewardship of their resources but also have been useful to state agencies and decision-makers. Our success can be attributed to the development of quality assured methods acceptable to regional and state agencies, the cost efficiencies of using volunteer scientists, support from the University and Cooperative Extension, capturing the "local expertise" of our participants, providing timely feedback and support, and making sure the study results are reported back to the local community through the participants involved.

  10. Advances in Activity Cliff Research.

    PubMed

    Dimova, Dilyana; Bajorath, Jürgen

    2016-05-01

    Activity cliffs, i.e. similar compounds with large potency differences, are of interest from a chemical and informatics viewpoint; as a source of structure-activity relationship information, for compound optimization, and activity prediction. Herein, recent highlights of activity cliff research are discussed including studies that have further extended our understanding of activity cliffs, yielded unprecedented insights, or paved the way for practical applications.

  11. Advances in Activity Cliff Research.

    PubMed

    Dimova, Dilyana; Bajorath, Jürgen

    2016-05-01

    Activity cliffs, i.e. similar compounds with large potency differences, are of interest from a chemical and informatics viewpoint; as a source of structure-activity relationship information, for compound optimization, and activity prediction. Herein, recent highlights of activity cliff research are discussed including studies that have further extended our understanding of activity cliffs, yielded unprecedented insights, or paved the way for practical applications. PMID:27492084

  12. Deaf students and scientists side-by-side: Self-efficacy and modeling in real-world earth science research

    NASA Astrophysics Data System (ADS)

    Jepson, Patricia Jane

    Deaf and hard of hearing students from five high schools were involved in an earth science project on geological faults. Variables of interest were self-efficacy in science and self-efficacy in career decision-making. The influence and characteristics of role models for deaf and hard of hearing students were also examined. Social cognitive career theory (Lent, Brown, & Hackett, 1994) was used as the theoretical base in this mixed method study. The fault curriculum unit was a collaborative project between Geosciences faculty at the University of Massachusetts and SOAR-High, an earth science program coordinated by the Clerc Center at Gallaudet University. Students participated in three interconnected learning components: (a) classroom experiments using a specially designed sandbox unit to model changes that take place in the earth's crust; (b) videoconferences with geoscientists; and (c) a five-day field trip where students, teachers, and scientists worked side-by-side in the field studying faults in Utah. Quantitative and qualitative data focused on science self-efficacy, career decision-making self-efficacy, and the influence of role models. Results suggested that active, student-centered learning activities had a positive impact on science self-efficacy and career decision making self-efficacy.

  13. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    PubMed

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. PMID:23890623

  14. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    PubMed

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  18. The Dentist Scientist Award program and prosthodontics.

    PubMed

    Lipton, J A

    1996-06-01

    The Dentist Scientist Award (DSA) program was started by the National Institute of Dental Research (NIDR) in 1984 to prepare dentists for careers as clinical research scientists who would be highly skilled investigators and potential leaders in the full scope of oral health research. The DSA program provides support for dentists to undertake 5 years of intensive preparation in a course of study that includes basic and clinical science components integrated with a supervised research experience. From 1984 to 1994, the NIDR has invested +66.1 million dollars in the individual and institutional Dentist Scientist Award programs. Almost 250 people have been or are involved now in the DSA career development activity. Men comprise 72% of the recipients and women 28%. PMID:8725844

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  20. Teaming Up with Scientists.

    ERIC Educational Resources Information Center

    Moreno, Nancy P.; Chang, Kimberly A.; Tharp, Barbara Z.; Denk, James P.; Roberts, J. Kyle; Cutler, Paula H.; Rahmati, Sonia

    2001-01-01

    Introduces the Science Education Leadership Fellows (SELF) program which is an innovative cooperation program between teachers and scientists. Engages teachers in subject areas such as microbiology, molecular biology, immunology, and other professional development activities. Presents an activity in which students observe bacteria cultures and…

  1. Research Advances: Pacific Northwest National Laboratory Finds New Way to Detect Destructive Enzyme Activity--Hair Dye Relies on Nanotechnology--Ways to Increase Shelf Life of Milk

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    Recent advances in various research fields are described. Scientists at the Pacific Northwest National Laboratory have found a new way to detect destructive enzyme activity, scientists in France have found that an ancient hair dye used by ancient people in Greece and Rome relied on nanotechnology and in the U.S. scientists are developing new…

  2. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    ERIC Educational Resources Information Center

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-01-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher-student teams to…

  3. Nutritional scientist or biochemist?

    PubMed

    Suttie, J W

    2011-08-21

    When invited by the editors to provide a prefatory article for the Annual Review of Nutrition, I attempted to decide what might be unique about my experiences as a nutritional biochemist. Although a large proportion of contemporary nutritional scientists were trained as biochemists, the impact of the historical research efforts related to nutrition within the Biochemistry Department at the University of Wisconsin 50 to 60 years ago was, I think, unique, and I have tried to summarize that historical focus. My scientific training was rather standard, but I have tried to review the two major, but greatly different, areas of research that I have been involved in over my career: inorganic fluorides as an industrial pollutant and the metabolic role of vitamin K. I have also had the opportunity to become involved with the activities of the societies representing the nutritional sciences (American Society for Nutrition), biochemistry (American Society for Biochemistry and Molecular Biology), Federation of American Societies for Experimental Biology, the Food and Nutrition Board, the Board on Agriculture and Natural Resources, and the U.S. Department of Agriculture National Agricultural Research, Extension, Education, and Economics. These interactions can be productive or frustrating but are always time-consuming. PMID:21756131

  4. Nutritional scientist or biochemist?

    PubMed

    Suttie, J W

    2011-08-21

    When invited by the editors to provide a prefatory article for the Annual Review of Nutrition, I attempted to decide what might be unique about my experiences as a nutritional biochemist. Although a large proportion of contemporary nutritional scientists were trained as biochemists, the impact of the historical research efforts related to nutrition within the Biochemistry Department at the University of Wisconsin 50 to 60 years ago was, I think, unique, and I have tried to summarize that historical focus. My scientific training was rather standard, but I have tried to review the two major, but greatly different, areas of research that I have been involved in over my career: inorganic fluorides as an industrial pollutant and the metabolic role of vitamin K. I have also had the opportunity to become involved with the activities of the societies representing the nutritional sciences (American Society for Nutrition), biochemistry (American Society for Biochemistry and Molecular Biology), Federation of American Societies for Experimental Biology, the Food and Nutrition Board, the Board on Agriculture and Natural Resources, and the U.S. Department of Agriculture National Agricultural Research, Extension, Education, and Economics. These interactions can be productive or frustrating but are always time-consuming.

  5. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  6. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    SciTech Connect

    Gorenstein, David

    2013-12-23

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  7. Join the NASA Science Mission Directorate Scientist Speaker's Bureau!

    NASA Astrophysics Data System (ADS)

    Dalton, H.; Shupla, C. B.; Buxner, S.; Shipp, S. S.

    2013-12-01

    Join the new NASA SMD Scientist Speaker's Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker's Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. Aside from name, organization, location, bio, and (optional) photo and website, the information that scientists enter into this database will not be made public; instead, it will be used to help match scientists with the requests being placed. One of the most common ways for scientists to interact with students, adults, and general public audiences is to give presentations about or related to their science. However, most educators do not have a simple way to connect with those planetary scientists, Earth scientists, heliophysicists, and astronomers who are interested and available to speak with their audiences. This system is designed to help meet the need for connecting potential audiences to interested scientists. The information input into the database (availability to travel, willingness to present online or in person, interest in presenting to different age groups and sizes of audience, topics, and more) will be used to help match scientists (you!) with the requests being placed by educators. All NASA-funded Earth and space scientists engaged in active research are invited to fill out the short registration form, including those who are involved in missions, institutes, grants, and those who are using NASA science data in their research, and more. There is particular need for young scientists, such as graduate students and post-doctoral researchers, and women and people of diverse backgrounds. Submit your information at http://www.lpi.usra.edu/education/speaker.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  9. Doctoral Scientists in Oceanography.

    ERIC Educational Resources Information Center

    National Academy of Sciences-National Research Council, Washington, DC. Assembly of Mathematical and Physical Sciences.

    The purpose of this report was to classify and count doctoral scientists in the United States trained in oceanography and/or working in oceanography. Existing data from three sources (National Research Council's "Survey of Earned Doctorates," and "Survey of Doctorate Recipients," and the Ocean Sciences Board's "U.S. Directory of Marine…

  10. Developing Scientists' "Soft" Skills

    NASA Astrophysics Data System (ADS)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  11. Young Scientists Explore an Encyclopedia of Energy Activities. Book 8--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of energy. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  12. NASA Chief Scientist Sharnon Lucid at STS-107 outreach event

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Chief Scientist Shannon Lucid, a former astronaut, introduces Northern Virginia students to the research that will be conducted on the STS-107 mission. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  13. Reconciling Scientists and Journalists

    NASA Astrophysics Data System (ADS)

    Rosner, H.

    2006-12-01

    The very nature of scientists' and journalists' jobs can put them at cross-purposes. Scientists work for years on one research project, slowly accumulating data, and are hesitant to draw sweeping conclusions without multiple rounds of hypothesis-testing. Journalists, meanwhile, are often looking for "news"—a discovery that was just made ("scientists have just discovered that...") or that defies conventional wisdom and is therefore about to turn society's thinking on its head. The very criteria that the mediamakers often use to determine newsworthiness can automatically preclude some scientific progress from making the news. There are other built-in problems in the relationship between journalists and scientists, some of which we can try to change and others of which we can learn to work around. Drawing on my personal experience as a journalist who has written for a wide variety of magazines, newspapers, and web sites, this talk will illustrate some of the inherent difficulties and offer some suggestions for how to move beyond them. It will provide a background on the way news decisions are made and how the journalist does her job, with an eye toward finding common ground and demonstrating how scientists can enjoy better relationships with journalists—relationships that can help educate the public on important scientific topics and avoid misrepresentation of scientific knowledge in the media.

  14. Talk Like a Scientist

    ERIC Educational Resources Information Center

    Marcum-Dietrich, Nanette

    2010-01-01

    In the scientific community, the symposium is one formal structure of conversation. Scientists routinely hold symposiums to gather and talk about a common topic. To model this method of communication in the classroom, the author designed an activity in which students conduct their own science symposiums. This article presents the science symposium…

  15. Earth 2 Class: The role of technology in providing structure for science content delivery from the research scientist to the secondary (6--12) classroom teacher

    NASA Astrophysics Data System (ADS)

    Assumpcao, Cristiana Mattos

    The objective of this study is to identify how technology, with a focus on the website, can enhance the delivery of science content, bridging the distance now existent between research scientists and the secondary classroom teacher. Through action research, the effectiveness of the model being developed by the Earth 2 Class program was studied in order for a pedagogically sound distance learning curriculum and delivery model to be designed. The efficacy of this model was looked at both from the participating teachers' point of view, as well as the contributing scientists' perspective, as technology provided a communication channel that allowed them to approach each other in ways that would not have been possible otherwise. Consequently, this study provided a framework for developing efficient distance-learning modules based upon: (a) themes echoed through research using the Earth 2 Class model; and (b) principles of postmodern learning theories, curriculum development, educational outreach models, and instructional design theories.

  16. The effects of conducting authentic field-geology research on high school students' understanding of the nature of science, and their views of themselves as research scientists

    NASA Astrophysics Data System (ADS)

    Millette, Patricia M.

    Authentic field geology research is a inquiry method that encourages students to interact more with their local environment, and by solving genuine puzzles, begin to increase their intuitive understanding of the nature and processes of science. The goal of the current study was to determine if conducting authentic field research and giving high school students the opportunity to present findings to adult audiences outside of the school setting 1) enhances students' understanding of the nature of science, and 2) affects students views of themselves as researchers. To accomplish this, ninth-grade students from a public school in northern New England engaged in a community-initiated glacial geology problem, completed a field research investigation, and presented their findings at several professional conferences. Following the completion of this student-centered field research, I investigated its effects by using a mixed methods approach consisting of qualitative and quantitative data from two sources. These included selected questions from an open-response survey (VNOS-c), and interviews that were conducted with fifteen of the students of different ages and genders. Findings show that conducting original field research seems to have a positive influence on these students' understanding of the NOS as well as the processes of science. Many of the students reported feelings of accomplishment, acceptance of responsibility for the investigation, a sense of their authentic contribution to the body of scientific knowledge in the world, and becoming scientists. This type of authentic field investigation is significant because recent reforms in earth-science education stress the importance of students learning about the nature and processes of scientific knowledge along with science content.

  17. Activities report of PTT Research

    NASA Astrophysics Data System (ADS)

    In the field of postal infrastructure research, activities were performed on postcode readers, radiolabels, and techniques of operations research and artificial intelligence. In the field of telecommunication, transportation, and information, research was made on multipurpose coding schemes, speech recognition, hypertext, a multimedia information server, security of electronic data interchange, document retrieval, improvement of the quality of user interfaces, domotics living support (techniques), and standardization of telecommunication prototcols. In the field of telecommunication infrastructure and provisions research, activities were performed on universal personal telecommunications, advanced broadband network technologies, coherent techniques, measurement of audio quality, near field facilities, local beam communication, local area networks, network security, coupling of broadband and narrowband integrated services digital networks, digital mapping, and standardization of protocols.

  18. Evaluation of a Computer-Based Current Awareness Service for Swedish Social Scientists. Research Report No. 29.

    ERIC Educational Resources Information Center

    Persson, Olle; Hoglund, Lars

    This report presents results from an evaluation of a current awareness service for Swedish social scientists. The service was based on the computerized version of Social Science Citation Index (SSCI). For the study an evaluation model was developed where the interaction between user and system is evaluated according to specific criteria for each…

  19. Inquiry-Based Research Published in "I Wonder: The Journal for Elementary School Scientists" (1992-2000).

    ERIC Educational Resources Information Center

    Beeth, Michael E.; Huziak, Tracy

    Scientific inquiry has been stressed as necessary for all students in science education reform efforts. "I Wonder: The Journal for Elementary School Scientists" provides a unique opportunity for elementary school students to disseminate their scientific investigations in the analog form of print journals. The Heron Network has published this…

  20. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2002-01-01

    The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.

  1. An Analysis of the Impact of Student-Scientist Interaction in a Technology Design Activity, Using the Expectancy-Value Model of Achievement Related Choice

    ERIC Educational Resources Information Center

    Masson, Anne-Lotte; Klop, Tanja; Osseweijer, Patricia

    2016-01-01

    Many education initiatives in science and technology education aim to create enthusiasm among young people to pursue a career in Science, Technology, Engineering, and Mathematics (STEM). Research suggests that personal interaction between secondary school students and scientists could be a success factor, but there is a need for more in-depth…

  2. Developing the Talents of Teacher/Scientists

    ERIC Educational Resources Information Center

    Robinson, George

    2004-01-01

    Going on an expedition enables teachers to become better scientists and researchers and, thus, better classroom instructors. Teachers have the opportunities to go on exotic field trips around the world as amateur research assistants, do hands on research in their own backyards, or vicariously experience another scientist?s work via the Internet. A…

  3. Funding to Support the Participation of Scientists Engaged in DOE Research in the 2008 AGU Chapman Conference on Biogeophysics. Final Report

    SciTech Connect

    Slater, Lee D.

    2009-05-11

    This project provided travel awards for scientists engaged in research relevant to the DOE mission to participate in the American Geophysical Union (AGU) Chapman Conference on Biogeophysics held October 13-16, 2008, in Portland, Maine (http://www.agu.org/meetings/chapman/2008/fcall/). The objective of this Chapman Conference was to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists that are leaders in their field and have a personal interest in exploring this new interdisciplinary field or are conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community and to generate a roadmap for establishing biogeophysics as a critical subdiscipline of earth science research. The sixty participants were an international group of academics, graduate students and scientists at government laboratories engaged in biogeophysics related research. Scientists from Europe, Israel and China traveled to engage North American colleagues in this highly focused 3.5 day meeting. The group included an approximately equal mix of microbiologists, biogeochemists and near surface geophysicists. The recipients of the DOE travel awards were [1] Dennis Bazylinski (University of Nevada, Las Vegas), [2] Yuri Gorby (Craig Venter Institute), [3] Carlos Santamarina (Georgia Tech), [4] Susan Hubbard (Lawrence Berkeley Laboratory), [5] Roelof Versteeg (Idaho National Laboratory), [6] Eric Roden (University of Wisconsin), [7] George Luther (University of Delaware), and [8] Jinsong Chen (Lawrence Berkeley Laboratory)

  4. Business development activities at academic institutions as related to the education, training, and career development of the next generation of scientists and professionals

    NASA Astrophysics Data System (ADS)

    Mobarhan, Kamran S.

    2007-06-01

    Every year large sums of tax payers money are used to fund scientific research at various universities. The result is outstanding new discoveries which are published in scientific journals. However, more often than not, once the funding for these research programs end, the results of these new discoveries are buried deep within old issues of technical journals which are archived in university libraries and are consequently forgotten. Ideally, these scientific discoveries and technological advances generated at our academic institutions should lead to the creation of new jobs for our graduating students and emerging scientists and professionals. In this fashion the students who worked hard to produce these new discoveries and technological advances, can continue with their good work at companies that they helped launch and establish. This article explores some of the issues related to new business development activities at academic institutions. Included is a discussion of possible ways of helping graduating students create jobs for themselves, and for their fellow students, through creation of new companies which are based on the work that they did during their course of university studies.

  5. Natural Scientists: Observers or Participants?

    ERIC Educational Resources Information Center

    Leopold, Estella B.

    1971-01-01

    The course a scientist takes when he turns toward activism in an ecological crisis is described. Three models of motivation, steps toward implementing the action, and the role the scientist plays in his concern for nature and the conservation movement are enumerated. (BL)

  6. AN INTERACTIVE WEB-BASED RESEARCH PLAN/QUALITY ASSURANCE PLAN IS LINKED WITH HELPFUL QUALITY ASSURANCE/QUALITY CONTROL HINTS AND USED BY THE RESEARCH SCIENTISTS TO DEVELOP PLANS/QAPP

    EPA Science Inventory

    A web based Research Plan/Quality Assurance Project Plan (RP/QAPP) Document is interactively linked to documentation that asks pertinent questions and gives suggested examples and formats to assist the Research Scientist develop a RP/QAPP that will answer the necessary questions ...

  7. Promoting Science Outdoor Activities for Elementary School Children: Contributions from a Research Laboratory

    ERIC Educational Resources Information Center

    Boaventura, Diana; Faria, Claudia; Chagas, Isabel; Galvao, Cecilia

    2013-01-01

    The purposes of the study were to analyse the promotion of scientific literacy through practical research activities and to identify children's conceptions about scientists and how they do science. Elementary school children were engaged in two scientific experiments in a marine biology research laboratory. A total of 136 students answered a…

  8. Physiological-behavioral coupling research in the Soviet science of higher nervous activity: a visitation report.

    PubMed

    Ray, R D

    1977-01-01

    Behavioral research paradigms presently used by Soviet scientists to explore relations between behavioral and physiological activities are discussed. Each laboratory represented was physically visited by the author during a six month exhange visit to the Soviet Union. Research ranging from central concommitants of language and meaning to biofeedback and peripheral autonomic functions are described. PMID:854371

  9. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  10. Scientists Talking to Students through Videos

    ERIC Educational Resources Information Center

    Chen, Junjun; Cowie, Bronwen

    2014-01-01

    The benefits of connecting school students with scientists are well documented. This paper reports how New Zealand teachers brought scientists into the classrooms through the use of videos of New Zealand scientists talking about themselves and their research. Two researchers observed lessons in 9 different classrooms in which 23 educational videos…

  11. Surgeon scientist.

    PubMed

    Murray, J E

    2000-07-01

    The origins and development of the renal transplant program at the Peter Bent Brigham Hospital (now the Brigham and Women's Hospital) from the late 1940s to the present are reviewed. The program was initiated as a effort to understand hypertension as a cause of renal failure. The initial transplants were unmodified allogeneic grafts placed in the thigh, followed by extensive laboratory experiments on dogs. This research culminated with the first successful human transplant of a kidney between identical twins in 1954. In 1959 the first successful fraternal allogeneic graft was accomplished as part of a protocol utilizing total body irradiation and bone marrow replacement. Finally, with the development of immunosuppressive drugs, we were able to transplant a cadaveric kidney successfully in 1962. This was a major impetus in the study of organ transplantation worldwide, which currently involves kidneys, liver, heart, pancreas, heart/lung, and bone marrow.

  12. From Atmospheric Scientist to Data Scientist

    NASA Astrophysics Data System (ADS)

    Knuth, S. L.

    2015-12-01

    Most of my career has been spent analyzing data from research projects in the atmospheric sciences. I spent twelve years researching boundary layer interactions in the polar regions, which included five field seasons in the Antarctic. During this time, I got both a M.S. and Ph.D. in atmospheric science. I learned most of my data science and programming skills throughout this time as part of my research projects. When I graduated with my Ph.D., I was looking for a new and fresh opportunity to enhance the skills I already had while learning more advanced technical skills. I found a position at the University of Colorado Boulder as a Data Research Specialist with Research Computing, a group that provides cyber infrastructure services, including high-speed networking, large-scale data storage, and supercomputing, to university students and researchers. My position is the perfect merriment between advanced technical skills and "softer" skills, while at the same time understanding exactly what the busy scientist needs to understand about their data. I have had the opportunity to help shape our university's data education system, a development that is still evolving. This presentation will detail my career story, the lessons I have learned, my daily work in my new position, and some of the exciting opportunities that opened up in my new career.

  13. Ames Scientists Develop MSL Instrument

    NASA Video Gallery

    David Blake, a research scientist at NASA Ames, led the development of CheMin, one of ten scientific instruments onboard Curiosity, the Mars Scientific Laboratory. The Powder X-Ray Diffraction tool...

  14. Research projects in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016): a cohort study

    PubMed Central

    Goldenberg, Neil M.; Steinberg, Benjamin E.; Rutka, James T.; Chen, Robert; Cabral, Val; Rosenblum, Norman D.; Kapus, Andras; Lee, Warren L.

    2016-01-01

    Background: Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. Methods: We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Results: Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 (p = 0.005). Interpretation: Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years. PMID:27730108

  15. Overcoming the obstacles: Life stories of scientists with learning disabilities

    NASA Astrophysics Data System (ADS)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  16. The HIV and Drug Abuse Prevention Research Ethics Training Institute: Training Early-Career Scientists to Conduct Research on Research Ethics.

    PubMed

    Fisher, Celia B; Yuko, Elizabeth

    2015-12-01

    The responsible conduct of HIV/drug abuse prevention research requires investigators with both the knowledge of and ability to generate empirical data that can enhance global ethical practices and policies. This article describes a multidisciplinary program offering early-career professionals a 2-year intensive summer curriculum along with funding to conduct a mentored research study on a wide variety of HIV/drug abuse research ethics topics. Now in its fifth year, the program has admitted 29 trainees who have to date demonstrated increased knowledge of research ethics, produced 17 peer-reviewed publications, 46 professional presentations, and submitted or been awarded five related federal grants. The institute also hosts a global information platform providing general and HIV/drug abuse relevant research ethics educational and research resources that have had more than 38,800 unique visitors from more than 150 countries.

  17. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah.

    PubMed

    Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B

    2016-04-01

    Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce.

  18. Scientist-teacher collaboration: Integration of real data from a coastal wetland into a high school life science ecology-based research project

    NASA Astrophysics Data System (ADS)

    Hagan, Wendy L.

    Project G.R.O.W. is an ecology-based research project developed for high school biology students. The curriculum was designed based on how students learn and awareness of the nature of science and scientific practices so that students would design and carry out scientific investigations using real data from a local coastal wetland. This was a scientist-teacher collaboration between a CSULB biologist and high school biology teacher. Prior to implementing the three-week research project, students had multiple opportunities to practice building requisite skills via 55 lessons focusing on the nature of science, scientific practices, technology, Common Core State Standards of reading, writing, listening and speaking, and Next Generation Science Standards. Project G.R.O.W. culminated with student generated research papers and oral presentations. Outcomes reveal students struggle with constructing explanations and the use of Excel to create meaningful graphs. They showed gains in data organization, analysis, teamwork and aspects of the nature of science.

  19. The professional and the scientist in nineteenth-century America.

    PubMed

    Lucier, Paul

    2009-12-01

    In nineteenth-century America, there was no such person as a "professional scientist". There were professionals and there were scientists, but they were very different. Professionals were men of science who engaged in commercial relations with private enterprises and took fees for their services. Scientists were men of science who rejected such commercial work and feared the corrupting influences of cash and capitalism. Professionals portrayed themselves as active and useful members of an entrepreneurial polity, while scientists styled themselves as crusading reformers, promoters of a purer science and a more research-oriented university. It was this new ideology, embodied in these new institutions, that spurred these reformers to adopt a special name for themselves--"scientists". One object of this essay, then, is to explain the peculiar Gilded Age, American origins of that ubiquitous term. A larger goal is to explore the different social roles of the professional and the scientist. By attending to the particular vocabulary employed at the time, this essay tries to make clear why a "professional scientist" would have been a contradiction in terms for both the professional and the scientist in nineteenth-century America. PMID:20380344

  20. The professional and the scientist in nineteenth-century America.

    PubMed

    Lucier, Paul

    2009-12-01

    In nineteenth-century America, there was no such person as a "professional scientist". There were professionals and there were scientists, but they were very different. Professionals were men of science who engaged in commercial relations with private enterprises and took fees for their services. Scientists were men of science who rejected such commercial work and feared the corrupting influences of cash and capitalism. Professionals portrayed themselves as active and useful members of an entrepreneurial polity, while scientists styled themselves as crusading reformers, promoters of a purer science and a more research-oriented university. It was this new ideology, embodied in these new institutions, that spurred these reformers to adopt a special name for themselves--"scientists". One object of this essay, then, is to explain the peculiar Gilded Age, American origins of that ubiquitous term. A larger goal is to explore the different social roles of the professional and the scientist. By attending to the particular vocabulary employed at the time, this essay tries to make clear why a "professional scientist" would have been a contradiction in terms for both the professional and the scientist in nineteenth-century America.

  1. Clean Coal Program Research Activities

    SciTech Connect

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  2. Matching software practitioner needs to researcher activities

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Menzies, T.; Connelly, J. R.

    2003-01-01

    We present an approach to matching software practitioners' needs to software researchers' activities. It uses an accepted taxonomical software classfication scheme as intermediary, in terms of which practitioners express needs, and researchers express activities.

  3. Training the translational scientist.

    PubMed

    Jackson, Rebecca D; Gabriel, Sherine; Pariser, Anne; Feig, Peter

    2010-12-22

    A Clinical and Translational Science Awards Industry Forum titled "Promoting Efficient and Effective Collaborations Among Academia, Government, and Industry" was held in February 2010. A session at this forum was organized to address the training and skills needed to develop a biomedical scientific workforce that interfaces academia, government agencies, and industry to support the process of translating science into applicable means to improve health. By examining the requisite competencies and training resources for scientists in each of these sectors, opportunities for collaboration and adoption of new educational strategies were identified that could help to address barriers to translational research education and career development.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  5. Two-Year Community: Developing Scientists--A Multiyear Research Experience at a Two-Year College

    ERIC Educational Resources Information Center

    Powell, Nichole L.; Harmon, Brenda B.

    2014-01-01

    Oxford College is a small liberal-arts intensive 2-year undergraduate division of Emory University, where inquiry-based courses are a required part of the general education program. We have developed an authentic research experience for undergraduates that mimics--as much as possible--a real undergraduate research experience. Our program provides…

  6. A Teacher-Scientist Partnership as a Vehicle to Incorporate Climate Data in Secondary Science Curriculum

    NASA Astrophysics Data System (ADS)

    Hatheway, B.

    2013-12-01

    After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  8. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah.

    PubMed

    Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B

    2016-04-01

    Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce. PMID:26650676

  9. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah

    PubMed Central

    Keenan, Heather; Phillips, John D.; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K.; Abramson, Jan; Lee, Vivian; Clark, Edward B.

    2016-01-01

    Physician–scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician–scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce. PMID:26650676

  10. Build infrastructure in publishing scientific journals to benefit medical scientists

    PubMed Central

    Dai, Ni; Xu, Dingyao; Zhong, Xiyao; Li, Li; Ling, Qibo

    2014-01-01

    There is urgent need for medical journals to optimize their publishing processes and strategies to satisfy the huge need for medical scientists to publish their articles, and then obtain better prestige and impact in scientific and research community. These strategies include optimizing the process of peer-review, utilizing open-access publishing models actively, finding ways of saving costs and getting revenue, smartly dealing with research fraud or misconduct, maintaining sound relationship with pharmaceutical companies, and managing to provide relevant and useful information for clinical practitioners and researchers. Scientists, publishers, societies and organizations need to work together to publish internationally renowned medical journals. PMID:24653634

  11. Dissemination of Health-Related Research among Scientists in Three Countries: Access to Resources and Current Practices

    PubMed Central

    Tabak, Rachel G.; Reis, Rodrigo S.; Wilson, Paul; Brownson, Ross C.

    2015-01-01

    Objectives. In public health and clinical settings insufficient dissemination of evidence-based practices limits the reach of new discoveries to broad populations. This study aimed to describe characteristics of the dissemination process by researchers across three countries (Brazil, United Kingdom, and United States), explore how designing for dissemination practices has been used, and analyze factors associated with dissemination. Methods. A similar online survey was used to query researchers across the three countries; data were pooled to draw cross-country conclusions. Findings. This study identified similarities and differences between countries. Importance of dissemination to nonresearcher audiences was widely recognized as important; however, traditional academic venues were the main dissemination method. Several factors were associated with self-rated dissemination effort in the pooled sample, but these predictive factors (e.g., support and resources for dissemination) had low prevalence. Less than one-third of researchers rated their level of effort for dissemination as excellent. Respondents reported limited support and resources to make it easier for researchers who might want to disseminate their findings. Conclusion. Though intentions show the importance of dissemination, researchers across countries lack supports to increase dissemination efforts. Additional resources and training in designing for dissemination along with improved partnerships could help bridge the research-practice gap. PMID:26495287

  12. Relating practitioner needs to research activities

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Menzies, T.; Connelly, J. R.

    2003-01-01

    We present an approach to matching needs (practioner requirements) to solutions (researcher activities). A taxonomical classification scheme acts as intermediary between needs and activities. Expert practitioners exprss their needs in terms of this taxonomy. Researchers express their activities in the same terms. A decision support tool is used to assist in the combination and study of their expressions of needs and activities.

  13. An Earth System Scientist Network for Student and Scientist Partnerships

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  14. Scientists need political literacy

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Scientists need to sharpen their political literacy to promote public and congressional awareness of science policy issues. This was the message of a panel of politically savvy scientists at a recent workshop at the American Association for the Advancement of Science's annual meeting in Washington, D.C. Researchers can maximize their lobbying efforts by targeting critical points of the legislative and federal funding cycles, the panel said, and by understanding the differences between the science and policy processes.Drastic modifications to the federal budget process this year will influence how much funding flows to research and development. A new feature for FY 1991-1993 is caps on federal expenditure in three areas: defense, foreign aid, and domestic “discretionary” spending. (Most of the agencies that fund geophysics fall into the domestic category.) Money cannot now be transferred from one of these areas to another, said Michael L. Telson, analyst for the House Budget Committee, and loopholes will be “very tough to find.” What is more, non-defense discretionary spending has dropped over a decade from 24% of the budget to the present 15%. Another new requirement is the “pay-as-you-go” system. Under this, a bill that calls for an increase in “entitlement” or other mandatory spending must offset this by higher taxes or by a cut in other spending.

  15. Scientists View Battery Under Microscope

    SciTech Connect

    2015-04-10

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  16. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  17. OCLC Research: 2012 Activity Report

    ERIC Educational Resources Information Center

    OCLC Online Computer Library Center, Inc., 2013

    2013-01-01

    The mission of the Online Computer Library Center (OCLC) Research is to expand knowledge that advances OCLC's public purposes of furthering access to the world's information and reducing library costs. OCLC Research is dedicated to three roles: (1)To act as a community resource for shared research and development (R&D); (2) To provide advanced…

  18. The Value of Applied Research: Retrieval Practice Improves Classroom Learning and Recommendations from a Teacher, a Principal, and a Scientist

    ERIC Educational Resources Information Center

    Agarwal, Pooja K.; Bain, Patrice M.; Chamberlain, Roger W.

    2012-01-01

    Over the course of a 5-year applied research project with more than 1,400 middle school students, evidence from a number of studies revealed that retrieval practice in authentic classroom settings improves long-term learning (Agarwal et al. 2009; McDaniel et al., "Journal of Educational Psychology" 103:399-414, 2011; McDaniel et al. 2012; Roediger…

  19. Military Utilization of a Sample of Graduate Scientists and Engineers 1968-1971. Research Memorandum 74-1.

    ERIC Educational Resources Information Center

    Vetter, Betty M.

    This publication is an informal report on a technical research problem, that of manpower utilization. This report is based on the results of a questionnaire sent out in 1973 and completed and returned by 621 men. The sample was the result of a steady attrition of the 3,000 men who responded to a short news item in "Science" magazine inviting…

  20. Mission and Research Scientists in NASA EPO and STEM Education: The Results of 15 Years of EPO

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; McCarthy, D. W.; Higgins, M. L.; Mueller, B.; Lebofsky, N. R.

    2014-07-01

    Exploration of the Solar System and beyond is a team effort, from research programs to space missions. The same is true for science education. James Webb Space Telescope's Near InfraRed Camera EPO Team has been teamed with Girl Scouts of Southern Arizona for nearly a decade. We now have collaborations throughout Arizona and across the nation.

  1. Diversity and Equity in the Lab: Preparing Scientists and Engineers for Inclusive Teaching in Courses and Research Environments

    NASA Astrophysics Data System (ADS)

    Hunter, L.; Seagroves, S.; Metevier, A. J.; Kluger-Bell, B.; Raschke, L.; Jonsson, P.; Porter, J.; Brown, C.; Roybal, G.; Shaw, J.

    2010-12-01

    Despite high attrition rates in college-level science, technology, engineering, and math (STEM) courses, with even higher rates for women and underrepresented minorities, not enough attention has been given to higher education STEM classroom practices that may limit the retention of students from diverse backgrounds. The Professional Development Program (PDP) has developed a range of professional development activities aimed at helping participants learn about diversity and equity issues, integrate inclusive teaching strategies into their own instructional units, and reflect on their own teaching practices. In the PDP, all participants develop and teach a STEM laboratory activity that enables their students to practice scientific inquiry processes as they gain an understanding of scientific concepts. In addition, they are asked to consider diversity and equity issues in their activity design and teaching. The PDP supports participants in this challenging endeavor by engaging them in activities that are aligned with a PDP-defined Diversity & Equity Focus Area that includes five emphases: 1) Multiple ways to learn, communicate and succeed; 2) Learners' goals, interests, motivation, and values; 3) Beliefs and perceptions about ability to achieve; 4) Inclusive collaboration and equitable participation; 5) Social identification within STEM culture. We describe the PDP Diversity & Equity focus, the five emphases, and the supporting activities that have been designed and implemented within the PDP, as well as future directions for our diversity and equity efforts.

  2. American Indian and Indigenous Geoscience Program: Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2013-05-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one component of a cultural geoscience program in ensuring diverse students complete with excellence and success their route to research and education. The critical components of a cultural geoscience program and the role of cultural mentors are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational geoscience program approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The program model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  3. The Navigator: Role of the Cultural Mentor in Ensuring the Evolution of Diverse STEM Scientists and Researchers in the 21st Century and Beyond.

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2012-12-01

    Have you ever been lost? Knowing where you want to go yet unsure how to get there? In today's contemporary society you deploy the use of a navigator or navigation system. This is also one role of the cultural mentor in ensuring diverse students complete with excellence and success their route to research and education. The responsibilities of the cultural mentor are broad and the opportunity to expand one's own personal and professional success in science and society is immense. There remains a critical need and challenge to increase the representation of underrepresented people in the sciences. To address this challenge a navigational mentoring approach was developed centered on the incorporation of traditional knowledge into modern research and education. The approach incorporates defining cultural/personal choices for a STEM vocation, developing science research with a "purpose", and refining leadership. The model incorporates a mentor's personal oral histories and experiences in education, research and life. The goal is to ensure the next generation of scientists and researchers are more diverse, highly educated, experienced and leadership orientated by the time they complete STEM programs - then by the time they are our age, have our level of education and experience.

  4. Field-Based Teacher Research: How Teachers and Scientists Working Together Answers Questions about Turtle Nesting Ecology while Enhancing Teachers' Inquiry Skills

    NASA Astrophysics Data System (ADS)

    Winters, J. M.; Jungblut, D.; Catena, A. N.; Rubenstein, D. I.

    2013-12-01

    Providing rigorous academic supplement to a professional development program for teachers, QUEST is a fusion of Drexel University's environmental science research department with Princeton University's Program in Teacher Preparation. Completed in the summers of 2012 (in partnership with Earthwatch) and 2013 in Barnegat Bay, New Jersey, QUEST's terrapin field research program enhances K-12 teachers' ecological knowledge, develops inquiry-based thinking in the classroom, and builds citizen science engagement. With a focus on quality question development and data analysis to answer questions, teachers are coached in developing, implementing, and presenting independent research projects on diamondback terrapin nesting ecology. As a result, teachers participating in QUEST's week long program bring a realistic example of science in action into their classrooms, helping to develop their own students' critical thinking skills. For teachers, this program provides training towards educating students on how to do real and imaginative science - subsequently sending students to university better prepared to engage in their own independent research. An essential component of the collaboration through QUEST, in addition to the teacher's experience during and after the summer institute, is the research data collected which supplements that of the Principal Investigator. In 2012, by documenting terrapin nest site predators, teachers gained valuable scientific experience, while Drexel acquired important ecological data which would have not been able to be collected otherwise. In 2013, teachers helped answer important questions about terrapin nesting success post Superstorm Sandy. In fact, the 2013 QUEST teachers are the first to visualize the frighteningly increased erosion of a primary terrapin nesting site due to Sandy; showing how most terrapin nests now lie in the bay, instead of safe on shore. Teachers comment that interacting with scientists in the field, and contributing to

  5. David Shakow and schizophrenia research at Worcester State Hospital: the roots of the scientist-practitioner model.

    PubMed

    Cautin, Robin L

    2008-01-01

    As Chief Psychologist and Director of Psychological Research at Worcester State Hospital (WSH), David Shakow (1901-1981) made substantial contributions to the scientific study of schizophrenia and by extension to the study of psychopathology in general. His methodological innovations--particularly on issues of diagnosis and conditions of testing-set a new standard for experimental rigor in the field. Shakow helped to establish many of what are considered basic facts about schizophrenia. His empirical work at WSH-specifically on the crossover effect--provided the scientific foundation for his theory of schizophrenic cognition, known as segmental set. Moreover, Shakow's schizophrenia work informed his developing ideas on the synergy between clinical practice and research.

  6. Semantic Support Environment for Research Activity

    ERIC Educational Resources Information Center

    Ismail, Maizatul Akmar; Yaacob, Mashkuri; Kareem, Sameem Abdul

    2008-01-01

    Scholarly activities are a collection of academic related activities such as research, teaching and consultation work which result in research outputs such as journals, theses and articles in proceedings. The output will then be disseminated to researchers all over the world by means of the WWW. The four pillars of this scholarship i.e. discovery,…

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  8. Supporting Student Research Group Activities.

    ERIC Educational Resources Information Center

    Lopatin, Dennis E.

    1993-01-01

    This discussion describes methods that foster a healthy Student Research Group (SRG) and permits it to fulfill its responsibility in the development of the student researcher. The model used in the discussion is that of the University of Michigan School of Dentistry SRG. (GLR)

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  10. Science alliance: A scientist/teacher partnership

    SciTech Connect

    Eckstrand, A.

    1994-12-31

    Science Alliance, sponsored by the National Institutes of Health, involves fifty NIH scientists, teachers in six elementary schools, and two school districts. The goals are to: (1) support teachers and schools as they develop science programs; (2) provide role models for students; (3) illustrate what scientists do; and (4) encourage a multidisciplinary approach to learning. Activities include classroom visits, workshops on hands-on science for teachers and scientists, a scientist training program, an electronic bulletin board, a workbook of activities that scientists have developed for classroom visits, and a newsletter. Aided by an annual evaluation, we have identified several elements critical to the success of Science Alliance. Teachers and scientists need a good personal relationship; good communications are fundamental. The responsibilities of participants must be clear, and both scientists and teachers need support and encouragement from their supervisors.

  11. Community-based participatory research helps farmers and scientists to manage invasive pests in the Ecuadorian Andes.

    PubMed

    Dangles, O; Carpio, F C; Villares, M; Yumisaca, F; Liger, B; Rebaudo, F; Silvain, J F

    2010-06-01

    Participatory research has not been a conspicuous methodology in developing nations for studying invasive pests, an increasing threat to the sustainable development in the tropics. Our study presents a community-based monitoring system that focuses on three invasive potato tuber moth species (PTM). The monitoring was developed and implemented by young farmers in a remote mountainous area of Ecuador. Local participants collected data from the PTM invasion front, which revealed clear connection between the abundance of one of the species (Tecia solanivora) and the remoteness to the main market place. This suggests that mechanisms structuring invasive populations at the invasion front are different from those occurring in areas invaded for longer period. Participatory monitoring with local people may serve as a cost-effective early warning system to detect and control incipient invasive pest species in countries where the daily management of biological resources is largely in the hands of poor rural people.

  12. The Biology of Aging: Citizen Scientists and Their Pets as a Bridge Between Research on Model Organisms and Human Subjects.

    PubMed

    Kaeberlein, M

    2016-03-01

    A fundamental goal of research into the basic mechanisms of aging is to develop translational strategies that improve human health by delaying the onset and progression of age-related pathology. Several interventions have been discovered that increase life span in invertebrate organisms, some of which have similar effects in mice. These include dietary restriction and inhibition of the mechanistic target of rapamycin by treatment with rapamycin. Key challenges moving forward will be to assess the extent to which these and other interventions improve healthy longevity and increase life span in mice and to develop practical strategies for extending this work to the clinic. Companion animals may provide an optimal intermediate between laboratory models and humans. By improving healthy longevity in companion animals, important insights will be gained regarding human aging while improving the quality of life for people and their pets. PMID:26077786

  13. WFIRST CGI Adjutant Scientist

    NASA Astrophysics Data System (ADS)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  14. Getting to Yes: Supporting Scientists in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; Lynds, S. E.; Smith, L. K.

    2011-12-01

    Research scientists are busy people, with many demands on their time and few institutional rewards for engagement in education and public outreach (EPO). However, scientist involvement in education has been called for by funding agencies, education researchers and the scientific organizations. In support of this idea, educators consistently rate interaction with scientists as the most meaningful element of an outreach project. What factors help scientists become engaged in EPO, and why do scientists stay engaged? This presentation describes the research-based motivations and barriers for scientists to be engaged in EPO, presents strategies for overcoming barriers, and describes elements of EPO that encourage and support scientist engagement.

  15. Professional Ethics for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  17. Scientists and the 3Rs: attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science.

    PubMed

    Franco, N H; Olsson, I A S

    2014-01-01

    The 3Rs principle of replacement, reduction, and refinement has increasingly been endorsed by legislators and regulatory bodies as the best approach to tackle the ethical dilemma presented by animal experimentation in which the potential benefits for humans stand against the costs borne by the animals. Even when animal use is tightly regulated and supervised, the individual researcher's responsibility is still decisive in the implementation of the 3Rs. Training in laboratory animal science (LAS) aims to raise researchers' awareness and increase their knowledge, but its effect on scientists' attitudes and practice has not so far been systematically assessed. Participants (n = 206) in eight LAS courses (following the Federation of European Laboratory Animal Science Associations category C recommendations) in Portugal were surveyed in a self-administered questionnaire during the course. Questions were related mainly to the 3Rs and their application, attitudes to animal use and the ethical review of animal experiments. One year later, all the respondents were asked to answer a similar questionnaire (57% response rate) with added self-evaluation questions on the impact of training. Our results suggest that the course is effective in promoting awareness and increasing knowledge of the 3Rs, particularly with regard to refinement. However, participation in the course did not change perceptions on the current and future needs for animal use in research.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  20. Educators' Views of Collaboration with Scientists

    ERIC Educational Resources Information Center

    Kim, Chankook; Fortner, Rosanne

    2007-01-01

    This study investigated educators' views of collaboration with scientists, a baseline for COSEE Great Lakes efforts in facilitating dynamic collaborative relationships between Great Lakes researchers and educators. Three research questions guided the study: (1) how are educators in the Great Lakes region involved in collaboration with scientists,…

  1. Scientists in an alternative vision of a globalized world

    NASA Astrophysics Data System (ADS)

    Erzan, Ayse

    2008-03-01

    Why should ``increasing the visibility of scientists in emergent countries'' be of interest? Can increasing the relevance and connectedness of scientific output, both to technological applications at home and cutting edge basic research abroad contribute to the general welfare in such countries? For this to happen, governments, inter-governmental and non-governmental organizations must provide incentives for the local industry to help fund and actively engage in the creation of new technologies, rather than settling for the solution of well understood engineering problems under the rubric of collaboration between scientists and industry. However, the trajectory of the highly industrialized countries cannot be retraced. Globalization facilitates closer interaction and collaboration between scientists but also deepens the contrasts between the center and the periphery, both world wide and within national borders; as it is understood today, it can lead to the redundancy of local technology oriented research, as the idea of a ``local industry'' is rapidly made obsolete. Scientists from all over the world are sucked into the vortex as both the economic and the cultural world increasingly revolve around a single axis. The challenge is to redefine our terms of reference under these rapidly changing boundary conditions and help bring human needs, human security and human happiness to the fore in elaborating and forging alternative visions of a globalized world. Both natural scientists and social scientists will be indispensable in such an endeavor.

  2. Genes, Brain, and Cognition: A Roadmap for the Cognitive Scientist

    ERIC Educational Resources Information Center

    Ramus, Franck

    2006-01-01

    This paper reviews current progress in genetics in relation to the understanding of human cognition. It is argued that genetics occupies a prominent place in the future of cognitive science, and that cognitive scientists should play an active role in the process. Recent research in genetics and developmental neuroscience is reviewed and argued to…

  3. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    NASA Astrophysics Data System (ADS)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  4. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    NASA Astrophysics Data System (ADS)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  5. Scientists as stakeholders in conservation of hydrothermal vents.

    PubMed

    Godet, Laurent; Zelnio, Kevin A; VAN Dover, Cindy L

    2011-04-01

    Hydrothermal vents are deep-sea ecosystems that are almost exclusively known and explored by scientists rather than the general public. Continuing scientific discoveries arising from study of hydrothermal vents are concommitant with the increased number of scientific cruises visiting and sampling vent ecosystems. Through a bibliometric analysis, we assessed the scientific value of hydrothermal vents relative to two of the most well-studied marine ecosystems, coral reefs and seagrass beds. Scientific literature on hydrothermal vents is abundant, of high impact, international, and interdisciplinary and is comparable in these regards with literature on coral reefs and seagrass beds. Scientists may affect hydrothermal vents because their activities are intense and spatially and temporally concentrated in these small systems. The potential for undesirable effects from scientific enterprise motivated the creation of a code of conduct for environmentally and scientifically benign use of hydrothermal vents for research. We surveyed scientists worldwide engaged in deep-sea research and found that scientists were aware of the code of conduct and thought it was relevant to conservation, but they did not feel informed or confident about the respect other researchers have for the code. Although this code may serve as a reminder of scientists' environmental responsibilities, conservation of particular vents (e.g., closures to human activity, specific human management) may effectively ensure sustainable use of vent ecosystems for all stakeholders.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  7. The Gonzo Scientist. Flunking Spore.

    PubMed

    Bohannon, John

    2008-10-24

    The blockbuster video game Spore is being marketed as a science-based adventure that brings evolution, cell biology, and even astrophysics to the masses. But after grading the game's science with a team of researchers, the Gonzo Scientist has some bad news. PMID:18948523

  8. Fundamentalist Scientists Oppose Darwinian Evolution

    ERIC Educational Resources Information Center

    Peter, Walter G., III.

    1970-01-01

    Provides examples of the arguments made by scientist members of the Creation Research Society to the California State Board of Education, which resolved that scientific evidence concerning the origin of life implies at least a dualism." An objection to the board's action by the state Advisory Committee on Science Education is included. (AL)

  9. Activities, accomplishments and research progress of the Center for Theoretical Geoplasma Physics, Center for Space Research, Massachusetts Inst. of Technology

    NASA Astrophysics Data System (ADS)

    Chang, Tom

    1992-02-01

    This annual report contains a detailed description of the activities, accomplishments, and research progress of the MIT Center for Theoretical Geoplasma Physics established under the University Research Initiative Program by AFOSR. During this second phase of the program, the Center has made definite strides toward the goals prescribed in the renewal proposal. The Center now has a staff of twenty-five (25) faculty, research scientists, postdoctoral, graduate and undergraduate students and visiting scientists. Members of the Center published forty-eight (48) scientific papers and five (5) books and proceedings, delivered forty (40) invited lectures and fifty-one (51) contributed papers. We have initiated a number of new research activities to complement our other ongoing research programs. Some of our research efforts have already been utilized by Dr. J. R. Jasperse's group at the Geophysics Directorate of the Phillips Laboratory in practical space technology applications relevant to the missions of the Air Force. In addition to the Phillips Laboratory, the Center has interacted with numerous research organizations and universities. The research publications are generally the direct product of such interactions.

  10. Center for Radiation Research. 1990 technical activities

    SciTech Connect

    Kuyatt, C.E.

    1991-02-01

    The report summarizes research projects, measurement method development, calibration and testing and data evaluation activities that were carried out during Fiscal Year 1990 in the NIST Center for Radiation Research. These activities fall in the areas of radiometric physics, radiation sources and instrumentation, and ionizing radiation.

  11. Promoting Science Software Best Practices: A Scientist's Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Blanton, B. O.

    2013-12-01

    Software is at the core of most modern scientific activities, and as societal awareness of, and impacts from, extreme weather, disasters, and climate and global change continue to increase, the roles that scientific software play in analyses and decision-making are brought more to the forefront. Reproducibility of research results (particularly those that enter into the decision-making arena) and open access to the software is essential for scientific and scientists' credibility. This has been highlighted in a recent article by Joppa et al (Troubling Trends in Scientific Software Use, Science Magazine, May 2013) that describes reasons for particular software being chosen by scientists, including that the "developer is well-respected" and on "recommendation from a close colleague". This reliance on recommendation, Joppa et al conclude, is fraught with risks to both sciences and scientists. Scientists must frequently take software for granted, assuming that it performs as expected and advertised and that the software itself has been validated and results verified. This is largely due to the manner in which much software is written and developed; in an ad hoc manner, with an inconsistent funding stream, and with little application of core software engineering best practices. Insufficient documentation, limited test cases, and code unavailability are significant barriers to informed and intelligent science software usage. This situation is exacerbated when the scientist becomes the software developer out of necessity due to resource constraints. Adoption of, and adherence to, best practices in scientific software development will substantially increase intelligent software usage and promote a sustainable evolution of the science as encoded in the software. We describe a typical scientist's perspective on using and developing scientific software in the context of storm surge research and forecasting applications that have real-time objectives and regulatory constraints

  12. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Research activities. 2.52 Section 2.52 Public... OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52 Research... research if the program director makes a determination that the recipient of the patient...

  13. 38 CFR 1.488 - Research activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disclosed for the purpose of conducting scientific research. (a) Information in individually identifiable... conducting scientific research if the Under Secretary for Health or designee makes a determination that the... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Research activities....

  14. Embedding Research Activities to Enhance Student Learning

    ERIC Educational Resources Information Center

    Webster, Cynthia M.; Kenney, Jacqueline

    2011-01-01

    Purpose: The purpose of this paper's novel, research-oriented approach is to embed research-based activities in a core second-year course of a university business degree program to support and develop student research capabilities. Design/methodology/approach: The design draws on Boud and Prosser's work to foster participation in a…

  15. [Climate chance and research activity].

    PubMed

    Manuel, Celie

    2009-10-26

    There are three main focus areas relevant to health in research related to climate change: 1) disentangling of the complex associations between climate-sensitive risk factors and health 2) guidance as to where, when and how effective health adaptation strategies may be implemented for maximum effect, and 3) health impact assessment (with a focus on health co-benefits) of climate-related policies in other sectors. Further development in each of these areas will provide important opportunities for strengthening health promotion and protection.

  16. An Integrated Extravehicular Activity Research Plan

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human

  17. United States National Sewage Sludge Repository at Arizona State University – A New Resource and Research Tool for Environmental Scientists, Engineers, and Epidemiologists

    PubMed Central

    Venkatesan, Arjun K.; Done, Hansa Y.; Halden, Rolf U.

    2014-01-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic-carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a ‘sink’ for recalcitrant, hydrophobic and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the U.S. Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize new future opportunities and invite collaborative use the NSSR by the research community. The H2O at ASU represents a resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants; (ii) provide spatial and temporal trends of contaminants; (iii) inform and evaluate the effectiveness of environmental policy

  18. United States National Sewage Sludge Repository at Arizona State University--a new resource and research tool for environmental scientists, engineers, and epidemiologists.

    PubMed

    Venkatesan, Arjun K; Done, Hansa Y; Halden, Rolf U

    2015-02-01

    Processed municipal sewage sludges (MSS) are an abundant, unwanted by-product of wastewater treatment, increasingly applied to agriculture and forestry for inexpensive disposal and soil conditioning. Due to their high organic carbon and lipid contents, MSS not only is rich in carbon and nutrients but also represents a "sink" for recalcitrant, hydrophobic, and potentially bioaccumulative compounds. Indeed, many organics sequestered and concentrated in MSS meet the US Environmental Protection Agency's definition of being persistent, bioaccumulative, and toxic (PBT). In a strategic effort, our research team at the Biodesign Institute has created the National Sewage Sludge Repository (NSSR), a large repository of digested MSSs from 164 wastewater treatment plants from across the USA, as part of the Human Health Observatory (H2O) at Arizona State University (ASU). The NSSR likely represents the largest archive of digested MSS specimens in the USA. The present study summarizes key findings gleaned thus far from analysis of NSSR samples. For example, we evaluated the content of toxicants in MSS and computed estimates of nationwide inventories of mass produced chemicals that become sequestrated in sludge and later are released into the environment during sludge disposal on land. Ongoing efforts document co-occurrence of a variety of PBT compounds in both MSS and human samples, while also identifying a large number of potentially harmful MSS constituents for which human exposure data are still lacking. Finally, we summarize future opportunities and invite collaborative use of the NSSR by the research community. The H2O at ASU represents a new resource and research tool for environmental scientists and the larger research community. As illustrated in this work, this repository can serve to (i) identify and prioritize emerging contaminants, (ii) provide spatial and temporal trends of contaminants, (iii) inform and evaluate the effectiveness of environmental policy-making and

  19. Perceptions of collaboration: A comparison of educators and scientists for COSEE Great Lakes

    NASA Astrophysics Data System (ADS)

    Kim, Chankook

    The Great Lakes region of North America, holding 20% of the world's fresh water and home to ¼ of the U.S. population, can provide its 13 million K-12 learners with a relevant context for science learning, unique opportunities for exploring local environmental issues, and connections to global issues. By linking Great Lakes research scientists with educators, students, and the public, the COSEE (Centers for Ocean Sciences Education Excellence) Great Lakes pursues its goal of enhancing science and environmental literacy of both adults and students. This doctoral research had a three-fold purpose in the COSEE Great Lakes context. First, this study aimed to characterize the population of Great Lakes scientists and K-12 teachers in the Great Lakes region targeted as potential audiences for activities of COSEE Great Lakes. Second, this study aimed to identify factors that may affect educational collaboration between teachers and scientists. Third, this study was conducted as a part of an ongoing process of evaluating overall COSEE program outcomes related to increasing educational collaborations. This dissertation consists of three research reports on professional development and interprofessional collaboration of K-12 teachers and scientists. The first report in Chapter 2 investigates primary and secondary teachers' views of collaboration with scientists and incorporates the findings of teacher surveys into discussions about professional development programs for educators. From 180 schools randomly selected in the eight Great Lakes States, 194 primary and secondary educators responded to a mailed survey. Through the survey responses, the educators reported that while they have positive attitudes toward their collaboration with scientists, their professional preparation has not equipped them with enough understanding of the process of science and the professions of scientists. Regression analysis shows that five predictor variables account for a majority of the variance

  20. Scientists at Work. Final Report.

    ERIC Educational Resources Information Center

    Education Turnkey Systems, Inc., Falls Church, VA.

    This report summarizes activities related to the development, field testing, evaluation, and marketing of the "Scientists at Work" program which combines computer assisted instruction with database tools to aid cognitively impaired middle and early high school children in learning and applying thinking skills to science. The brief report reviews…

  1. Volunteer senior scientists wanted

    NASA Astrophysics Data System (ADS)

    The American Association for the Advancement of Science plans to establish a nationwide program to involve older scientists as volunteers in public education, business, and government.The Senior Scientists and Engineers (SSE) program was originated by AAAS in response to projected shortages of experienced scientists in many fields, and to draw on the large and rapidly growing population of post-retirement professional scientists. SSE began in 1988 as a pilot program in the Washington D.C. area run in conjunction with the American Association of Retired Persons.

  2. Activation Theory and Uses and Gratifications Research.

    ERIC Educational Resources Information Center

    Tate, E. D.

    Uses and gratifications research involves a critical appraisal of conceptual and theoretical issues in mass communication and is concerned with what audience members do with the media. Activation theory understands people as active manipulators of their environment. (Activation refers to that level of psychological and physiological excitement an…

  3. Scientists and Scientific Thinking: Understanding Scientific Thinking through an Investigation of Scientists Views about Superstitions and Religious Beliefs

    ERIC Educational Resources Information Center

    Coll, Richard K.; Lay, Mark C.; Taylor, Neil

    2008-01-01

    Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…

  4. Scientists and Science Education: Working at the Interface

    NASA Astrophysics Data System (ADS)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  5. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1984-01-01

    Discusses how to stop a spinning object (such as rotating fan blades) by humming and the perception of curious blue arcs around a light. Background information, relevant research, and activities related to these two topics are provided. (JN)

  6. How the Internet Is Changing the Implementation of Traditional Research Methods, People's Daily Lives, and the Way in Which Developmental Scientists Conduct Research

    ERIC Educational Resources Information Center

    Denissen, Jaap J. A.; Neumann, Linus; van Zalk, Maarten

    2010-01-01

    Recent years have seen an impressive increase in web-based research, of which we review and discuss two main types. First, researchers can create online versions of traditional questionnaires. Using the internet in this way usually does not compromise the psychometric properties of such measures, and participants are typically not less…

  7. Why nursing has not embraced the clinician--scientist role.

    PubMed

    Mackay, Martha

    2009-10-01

    Reasons for the limited uptake of the clinician-scientist role within nursing are examined, specifically: the lack of consensus about the nature of nursing science; the varying approaches to epistemology; and the influence of post-modern thought on knowledge development in nursing. It is suggested that under-development of this role may be remedied by achieving agreement that science is a necessary, worthy pursuit for nursing, and that rigorous science conducted from a clinical perspective serves nursing well. Straddling practice and research is a powerful strategy for ensuring relevant research while forging strong links with practice. The clinician-scientist role, typically requiring a 75:25 ratio between research and clinical activities, is well established in medicine. Nursing, however, has been slow to institute the role; it is rare within North America, Australia, and western European countries, and almost non-existent outside those areas. Beyond structural obstacles, philosophical issues may explain nursing's reluctance to implement the role. Following a survey of clinician-scientist roles throughout the world, the nature of nursing science and epistemology, and the influence of post-modern thought on nursing attitudes to research are examined with respect to their influence on this role. The nurse clinician-scientist role holds promise for making strides in clinically relevant research, and for accelerating the knowledge cycle from clinical problem to research question to change in clinical practice. PMID:19743972

  8. Why nursing has not embraced the clinician--scientist role.

    PubMed

    Mackay, Martha

    2009-10-01

    Reasons for the limited uptake of the clinician-scientist role within nursing are examined, specifically: the lack of consensus about the nature of nursing science; the varying approaches to epistemology; and the influence of post-modern thought on knowledge development in nursing. It is suggested that under-development of this role may be remedied by achieving agreement that science is a necessary, worthy pursuit for nursing, and that rigorous science conducted from a clinical perspective serves nursing well. Straddling practice and research is a powerful strategy for ensuring relevant research while forging strong links with practice. The clinician-scientist role, typically requiring a 75:25 ratio between research and clinical activities, is well established in medicine. Nursing, however, has been slow to institute the role; it is rare within North America, Australia, and western European countries, and almost non-existent outside those areas. Beyond structural obstacles, philosophical issues may explain nursing's reluctance to implement the role. Following a survey of clinician-scientist roles throughout the world, the nature of nursing science and epistemology, and the influence of post-modern thought on nursing attitudes to research are examined with respect to their influence on this role. The nurse clinician-scientist role holds promise for making strides in clinically relevant research, and for accelerating the knowledge cycle from clinical problem to research question to change in clinical practice.

  9. Transmission research activities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Lewicki, D. G.

    1990-01-01

    A joint research program, to advance the technology of rotorcraft transmissions, consists of analytical and experimental efforts to achieve the overall goals of reducing transmission weight and noise, while increasing life and reliability. Recent activities in the areas of transmission and related component research are highlighted. Current areas include specific technologies in support of military rotary wing aviation, gearing technology, transmission noise reduction studies, a recent interest in gearbox diagnostics, and advanced transmission system studies. Results of recent activities are presented along with near term research plans.

  10. Educating the Next Generation of Lunar Scientists

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2010-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA’s and NLSI’s objective to train the next generation of scientists, CLSE’s High School Lunar Research Project is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The High School Lunar Research Project engages teams of high school students in authentic lunar research that envelopes them in the process of science and supports the science goals of the CLSE. Most high school students’ lack of scientific research experience leaves them without an understanding of science as a process. Because of this, each team is paired with a lunar scientist mentor responsible for guiding students through the process of conducting a scientific investigation. Before beginning their research, students undertake “Moon 101,” designed to familiarize them with lunar geology and exploration. Students read articles covering various lunar geology topics and analyze images from past and current lunar missions to become familiar with available lunar data sets. At the end of “Moon 101”, students present a characterization of the geology and chronology of features surrounding the Apollo 11 landing site. To begin their research, teams choose a research subject from a pool of topics compiled by the CLSE staff. After choosing a topic, student teams ask their own research questions, within the context of the larger question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results and, after receiving feedback, create and present a conference style poster to a panel of

  11. Antiviral Drug Research Proposal Activity

    PubMed Central

    Injaian, Lisa; Smith, Ann C.; Shipley, Jennifer German; Marbach-Ad, Gili; Fredericksen, Brenda

    2011-01-01

    The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an “expert” in one aspect of the project. The Antiviral Drug Research Proposal (ADRP) culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity. PMID:23653735

  12. Stories of Scientists.

    ERIC Educational Resources Information Center

    Mascazine, John R.

    2001-01-01

    Presents three biographical sketches of scientists including John Wesley Powell (first to explore the geology of the Grand Canyon), Joseph von Fraunhofer (his work in optics led to the science of spectroscopy), and Gregor Mendel (of Mendelian genetics fame). Other scientists are mentioned along with sources for additional biographical information.…

  13. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  14. Scientists as People

    ERIC Educational Resources Information Center

    Jungwirth, E.

    1973-01-01

    Describes the development of students' images of scientists from high school through college in Israel, and indicates the presence of significant discrepancies between the images held by college students and by scientists themselves as measured by the Test On Understanding Science (TOUS) form W. (CC)

  15. Misquoted Scientists Respond.

    ERIC Educational Resources Information Center

    Cole, John R.

    1981-01-01

    This paper points out that creationists have developed a skill unique to their trade, namely, that of misquotation and quotation out of context from the works of leading evolutionists. This tactic not only frustrates scientists but it misleads school board members, legislators, and the public. A representative sampling of scientists' responses to…

  16. To Support Research Activities Under the NASA Experimental Program to Stimulate Competitive Research

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    2003-01-01

    The Alabama NASA EPSCoR Program is a collaborative venture of The Alabama Space Grant Consortium, The Alabama EPSCoR, and faculty and staff at 10 Alabama colleges and universities as well as the Alabama School of Math and Science in Mobile. There are two Research Clusters which include infrastructure-building and outreach elements embedded in their research activities. Each of the two Research Clusters is in an area of clear and demonstrable relevance to NASA's mission, to components of other Alabama EPSCoR projects, and to the State of Alabama's economic development. This Final Report summarizes and reports upon those additional activities occurring after the first report was submitted in March 2000 (included here as Appendix C). Since the nature of the activities and the manner in which they relate to one another differ by cluster, these clusters function independently and are summarized in parallel in this report. They do share a common administration by the Alabama Space Grant Consortium (ASGC) and by this means, good ideas from each group were communicated to the other, as appropriate. During the past year these research teams, involving 15 scientists, 16 graduate students, 16 undergraduates, and 7 high school students involving 10 Alabama universities had 14 peer reviewed scientific journal articles published, 21 others reviewed for publication or published in proceedings, gave 7 formal presentations and numerous informal presentations to well over 3000 people, received 3 patents and were awarded 14 research proposals for more than $213K dollars in additional research related to these investigations. Each cluster's activities are described and an Appendix summarizes these achievements.

  17. In the trenches: lessons for scientists from California's Proposition 71 campaign

    PubMed Central

    Goldstein, Lawrence S. B.

    2011-01-01

    I describe a number of valuable lessons I learned from participating in California's Proposition 71 effort about the role that scientists and rigorous scientific advice can play in a public political process. I describe how scientists can provide valuable information and advice and how they can also gain a great deal from the experience that is valuable to a practicing research scientist. Finally, I argue that in the future, building similar broad coalitions to support biomedical and other areas of scientific research will be essential to protect publicly funded science. Thus, a key lesson from the Proposition 71 experience is that engagement of scientists with diverse nonscientific groups can make a big difference and that scientists must actively engage with the public in the future if we are to contribute robustly to the medical and economic health of our communities. PMID:22039069

  18. How Middle Schoolers Draw Engineers and Scientists

    ERIC Educational Resources Information Center

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  19. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 1:] The value of Scientific and Technical Information (STI), its relationship to Research and Development (R&D), and its use by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron; Barclay, Rebecca O.; Oliu, Walter E.

    1990-01-01

    The relationship between scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace R&D process is examined. Data are presented from studies of the role of STI in the performance and management of R&D activities and the behavior of engineers when using and seeking information. Consideration is given to the information sources used to solve technical problems, the production and use of technical communications, and the use of libraries, technical information centers, and on-line data bases.

  20. 38 CFR 1.488 - Research activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROVISIONS Disclosures Without Patient Consent § 1.488 Research activities. Subject to the provisions of 38 U.S.C. 5701, 38 CFR 1.500-1.527, the Privacy Act (5 U.S.C. 552a), 38 CFR 1.575-1.584 and the following... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Research activities....

  1. 38 CFR 1.488 - Research activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROVISIONS Disclosures Without Patient Consent § 1.488 Research activities. Subject to the provisions of 38 U.S.C. 5701, 38 CFR 1.500-1.527, the Privacy Act (5 U.S.C. 552a), 38 CFR 1.575-1.584 and the following... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Research activities....

  2. Teaching Research Methodology through Active Learning

    ERIC Educational Resources Information Center

    Lundahl, Brad W.

    2008-01-01

    To complement traditional learning activities in a masters-level research methodology course, social work students worked on a formal research project which involved: designing the study, constructing measures, selecting a sampling strategy, collecting data, reducing and analyzing data, and finally interpreting and communicating the results. The…

  3. Opportunities and Resources for Scientist Participation in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; CoBabe-Ammann, E.; Shipp, S.; Hsu, B.

    2012-10-01

    Active engagement of scientists in Education and Public Outreach (E/PO) activities results in benefits for both the audience and scientists. Most scientists are trained in research but have little formal training in education. The Planetary Science Education and Public Outreach (E/PO) Forum helps the Science Mission Directorate support scientists currently involved in E/PO and to help scientists who are interested in becoming involved in E/PO efforts find ways to do so through a variety of avenues. We will present current and future opportunities and resources for scientists to become engaged in education and public outreach. These include upcoming NASA SMD E/PO funding opportunities, professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research), thematic resources for teaching about the solar system (archived resources from Year of the Solar System), and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  4. Traditional and Nontraditional Sources of Future Research Scientists. Hearing before the Subcommittee on Investigation and Oversight of the Committee on Science, Space, and Technology. U.S. House of Representatives, One Hundred Second Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science, Space and Technology.

    This document presents a transcript of the hearing to examine undergraduate science education in relation to the traditional and nontraditional sources of future research scientists. Two specific aspects of the topic were identified for examination: (1) successful methods of science education employed at small liberal arts schools; and (2) what…

  5. Darwin the scientist.

    PubMed

    Browne, J

    2009-01-01

    Charles Darwin's experimental investigations show him to have been a superb practical researcher. These skills are often underestimated today when assessing Darwin's achievement in the Origin of Species and his other books. Supported by a private income, he turned his house and gardens into a Victorian equivalent of a modern research station. Darwin participated actively in the exchange of scientific information via letters and much of his research was also carried out through correspondence. Although this research was relatively small scale in practice, it was large scale in intellectual scope. Darwin felt he had a strong desire to understand or explain whatever he observed. PMID:20508059

  6. Darwin the scientist.

    PubMed

    Browne, J

    2009-01-01

    Charles Darwin's experimental investigations show him to have been a superb practical researcher. These skills are often underestimated today when assessing Darwin's achievement in the Origin of Species and his other books. Supported by a private income, he turned his house and gardens into a Victorian equivalent of a modern research station. Darwin participated actively in the exchange of scientific information via letters and much of his research was also carried out through correspondence. Although this research was relatively small scale in practice, it was large scale in intellectual scope. Darwin felt he had a strong desire to understand or explain whatever he observed.

  7. One More Legacy of Paul F. Brandwein: Creating Scientists

    NASA Astrophysics Data System (ADS)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  8. Research on Mobile Learning Activities Applying Tablets

    ERIC Educational Resources Information Center

    Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija

    2015-01-01

    The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…

  9. [Research activities in Kobe-Indonesia Collaborative Research Centers].

    PubMed

    Utsumi, Takako; Hayashi, Yoshitake; Hotta, Hak

    2013-01-01

    Kobe-Indonesia Collaborative Research Center was established in Institute of Tropical Disease (ITD), Airlangga University, Surabaya, Indonesia in 2007 under the program of ''Founding Research Centers for Emerging and Reemerging Infectious Diseases'' supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and then it has been under the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) since 2010. Japanese researchers have been stationed at ITD, conducting joint researches on influenza, viral hepatitis, dengue and infectious diarrhea. Also, another Japanese researcher has been stationed at Faculty of Medicine, University of Indonesia, Jakarta, carrying out joint researches on'' Identification of anti-hepatitis C virus (HCV) substances and development of HCV and dengue vaccines'' in collaboration with University of Indonesia and Airlangga University through the Science and Technology Research Partnership for Sustainable Development (SATREPS) supported by the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) since 2009. In this article, we briefly introduce the background history of Kobe University Research Center in Indonesia, and discuss the research themes and outcomes of J-GRID and SATREPS activities.

  10. Integrated Extravehicular Activity Human Research Plan: 2016

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott; Rajulu, Sudhakar; Norcross, Jason R.; Chappell, Steven P.

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Human Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Human Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Report is will also continue at a frequency determined by HRP management. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Human Research Plan are presented including description of ongoing and planned research activities in the areas of

  11. Plans and Activities for NASA's Global Water Cycle Research

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.

    2002-05-01

    Strictly speaking, the water (or hydrologic) cycle is by definition a global phenomenon. To observe, analyze, characterize, understand, and predict its structure and variations requires a coordinated, global effort of observations as well as global prediction systems which can assimilate and predict key fluxes and quantities. The National Aeronautics and Space Administration (NASA) has the unique capability of space-based experimental and research measurements that observe the Earth's system as well as core modelling activities to exploit these space-based observations for assimilation in diagnostic studies and initialization in weather and climate predictions. A summary of NASA's current water-cycle activities and implementation plans will be presented. Currently, NASA's Global Water and Energy Cycle and Terrestrial Hydrology (formally known as the Land Surface Hydrology) Programs are the key funding sources which support relevant scientific research. These programs not only fund individual scientists, but also support large-scale field missions (for example the Cold Land Processes Experiment, CLPX, and the Soil Moisture Experiment, SMEx) which are critical for calibration/validation of space instruments and retrievals as well as gaining fundamental understanding of local-scale processes which comprise the global system. In addition, a new initiative for Water and Energy cycle Research (WatER) is being formulated which responds to the recent charge of USGCRP and NRC scientific panels calling for focused and prioritized research plans that serve to make significant strides in our understanding and prediction of the global water cycle. Following NASA's unique vocation, the WatER initative sets priorities for science/research support for key observable quantities of the water cycle (precipitation and surface wetness) whose instrument technology is tactable and scientfic end-returns not only benefit water-cycle predictions, but also serve to benefit other critical

  12. Research Activity and the Association with Mortality

    PubMed Central

    Ozdemir, Baris A.; Karthikesalingam, Alan; Sinha, Sidhartha; Poloniecki, Jan D.; Hinchliffe, Robert J.; Thompson, Matt M.; Gower, Jonathan D.; Boaz, Annette; Holt, Peter J. E.

    2015-01-01

    Introduction The aims of this study were to describe the key features of acute NHS Trusts with different levels of research activity and to investigate associations between research activity and clinical outcomes. Methods National Institute for Health Research (NIHR) Comprehensive Clinical Research Network (CCRN) funding and number of patients recruited to NIHR Clinical Research Network (CRN) portfolio studies for each NHS Trusts were used as markers of research activity. Patient-level data for adult non-elective admissions were extracted from the English Hospital Episode Statistics (2005-10). Risk-adjusted mortality associations between Trust structures, research activity and, clinical outcomes were investigated. Results Low mortality Trusts received greater levels of funding and recruited more patients adjusted for size of Trust (n = 35, 2,349 £/bed [95% CI 1,855–2,843], 5.9 patients/bed [2.7–9.0]) than Trusts with expected (n = 63, 1,110 £/bed, [864–1,357] p<0.0001, 2.6 patients/bed [1.7–3.5] p<0.0169) or, high (n = 42, 930 £/bed [683–1,177] p = 0.0001, 1.8 patients/bed [1.4–2.1] p<0.0005) mortality rates. The most research active Trusts were those with more doctors, nurses, critical care beds, operating theatres and, made greater use of radiology. Multifactorial analysis demonstrated better survival in the top funding and patient recruitment tertiles (lowest vs. highest (odds ratio & 95% CI: funding 1.050 [1.033–1.068] p<0.0001, recruitment 1.069 [1.052–1.086] p<0.0001), middle vs. highest (funding 1.040 [1.024–1.055] p<0.0001, recruitment 1.085 [1.070–1.100] p<0.0001). Conclusions Research active Trusts appear to have key differences in composition than less research active Trusts. Research active Trusts had lower risk-adjusted mortality for acute admissions, which persisted after adjustment for staffing and other structural factors. PMID:25719608

  13. Ask a Climate Scientist

    NASA Video Gallery

    Have a question that's always confounded you about Earth's climate? Wonder why it matters that the climate is changing now if it has changed before? Or how scientists know changes seen in recent de...

  14. Scientists and Human Rights

    NASA Astrophysics Data System (ADS)

    Makdisi, Yousef

    2012-02-01

    The American Physical Society has a long history of involvement in defense of human rights. The Committee on International Freedom of Scientists was formed in the mid seventies as a subcommittee within the Panel On Public Affairs ``to deal with matters of an international nature that endangers the abilities of scientists to function as scientists'' and by 1980 it was established as an independent committee. In this presentation I will describe some aspects of the early history and the impetus that led to such an advocacy, the methods employed then and how they evolved to the present CIFS responsibility ``for monitoring concerns regarding human rights for scientists throughout the world''. I will also describe the current approach and some sample cases the committee has pursued recently, the interaction with other human rights organizations, and touch upon some venues through which the community can engage to help in this noble cause.

  15. Byurakan Astrophysical Observatory: Active Researches of the Activity Phenomena

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.

    2016-09-01

    Scientific research directions elaborated at the Byurakan astrophysical observatory (BAO) since its foundation are reviewed briefly. Although the wide spectrum of research at BAO we have focused attention on the activity phenomena mainly. Indisputable proof of the existence of newborn stars, as well as the activity phenomena in the galactic nuclei are mentioned as the main scientific attainments of the BAO. These two scientific breakthroughs undoubtedly had also very essential conceptual significance which is not yet estimated at its true worth. Some conceptual changes accompanying the discovery of the accelerated expansion of the Universe are considered from the cosmic objects' activity viewpoint.

  16. Inspiring the next generation of physician-scientists

    PubMed Central

    Lefkowitz, Robert J.

    2015-01-01

    As academic physician-scientists, one of the most important things we do is mentor young trainee-scientists. There obviously is no one right way to mentor or a set of rules one can follow; it’s a very personal matter, and very much depends on one’s personality. For much of my career, I gave very little thought as to how I mentored my trainees or to whether I was any good at it. Like many investigators, perhaps, I was just too busy with the daily activities of research to consider how I was guiding my students. Here, I take a look back and reflect on my experiences as a mentor and the factors that I believe contribute to the success of trainees as independent scientists. PMID:26237039

  17. Training young scientists across empirical and modeling approaches

    NASA Astrophysics Data System (ADS)

    Moore, D. J.

    2014-12-01

    The "fluxcourse," is a two-week program of study on Flux Measurements and Advanced Modeling (www.fluxcourse.org). Since 2007, this course has trained early career scientists to use both empirical observations and models to tackle terrestrial ecological questions. The fluxcourse seeks to cross train young scientists in measurement techniques and advanced modeling approaches for quantifying carbon and water fluxes between the atmosphere and the biosphere. We invited between ten and twenty volunteer instructors depending on the year ranging in experience and expertise, including representatives from industry, university professors and research specialists. The course combines online learning, lecture and discussion with hands on activities that range from measuring photosynthesis and installing an eddy covariance system to wrangling data and carrying out modeling experiments. Attendees are asked to develop and present two different group projects throughout the course. The overall goal is provide the next generation of scientists with the tools to tackle complex problems that require collaboration.

  18. Inspiring the next generation of physician-scientists.

    PubMed

    Lefkowitz, Robert J

    2015-08-01

    As academic physician-scientists, one of the most important things we do is mentor young trainee-scientists. There obviously is no one right way to mentor or a set of rules one can follow; it's a very personal matter, and very much depends on one's personality. For much of my career, I gave very little thought as to how I mentored my trainees or to whether I was any good at it. Like many investigators, perhaps, I was just too busy with the daily activities of research to consider how I was guiding my students. Here, I take a look back and reflect on my experiences as a mentor and the factors that I believe contribute to the success of trainees as independent scientists.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  20. The History of Winter: teachers as scientists

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  1. Scientists Needed! The Year of the Solar System: Opportunities for Scientist Involvement

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Scalice, D.; Bleacher, L.

    2011-12-01

    Spanning a Martian Year - 23 months from October 2010 through August 2012 - the Year of the Solar System (YSS) celebrates the amazing discoveries of numerous new and ongoing NASA missions and research efforts as they explore our near and distant neighbors and probe the outer edges of our solar system. The science revealed by these endeavors is dramatically revising our understanding of the formation and evolution of our solar system. YSS offers opportunities for planetary scientists to become involved in education and public outreach (E/PO) in meaningful ways. By getting involved in YSS E/PO activities, scientists can help to raise awareness of, build excitement in, and make connections with educators, students and the public about current planetary science research and exploration. Each month during YSS a different compelling aspect of the solar system - its formation, volcanism, ice, life - is explored. The monthly topics, tied to the big questions of planetary science, include online resources that can be used by scientists to engage their audiences: hands-on learning activities, demonstrations, connections to solar system and mission events, ideas for partnering with other organizations, and other programming ideas. Resources for past, present, and future YSS monthly topics can be found at: http://solarsystem.nasa.gov/yss. Scientists are encouraged to get involved in YSS through an avenue that best fits their available time and interests. Possible paths include: contacting the YSS organizational team to provide content for or to review the monthly topics; integrating current planetary research discoveries into your introductory college science classes; starting a science club; prompting an interview with the local media, creating a podcast about your science, sharing YSS with educators or program coordinators at your local schools, museums, libraries, astronomical clubs and societies, retirement homes, or rotary club; volunteering to present your science in one

  2. Barriers, Lessons Learned, and Best Practices in Engaging Scientists in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Buxner, S. R.; Sharma, M.; Hsu, B.; Peticolas, L.; Nova, M. A. M.; CoBabe-Ammann, E.

    2012-08-01

    This Astronomical Society of the Pacific conference brought together a group of specialists interested in education and public outreach (EPO) from a wide variety of contexts including NASA centers, non-profits, museums, and universities. Active engagement of scientists in EPO activities results in benefits for both the audience and the scientists. Despite this, education research has shown that many barriers exist that keep scientists from engaging in EPO activities. To counter these barriers, many stakeholders in this community are working to bridge the gap and help scientists make a meaningful contribution to these efforts. There are many documented roles for scientists including giving public talks, classroom visits, large outreach events, radio broadcasts, engaging in curriculum development and teacher workshops. Over the past year, members of the NASA science mission directorate forums have been actively working with their community members to understand the reasons that scientists in our community do and do not participate in EPO activities. This session expanded the discussion to the larger community of stakeholders across science, education, and outreach contexts. It was an open forum for discussion of ideas about barriers and lessons learned regarding engaging scientists in education and public outreach.

  3. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  4. Role and goals of the EUR-OCEANS Consortium - Bringing marine scientists priorities and strategies to the European research planning agenda.

    NASA Astrophysics Data System (ADS)

    Cury, Philippe; Baisnée, Pierre-François

    2010-05-01

    The EUR-OCEANS Consortium is the follow-up structure of the homonym European Network of Excellence (NoE; 2005-2008, FP6 contract number 511106). It is a scientific network, benefiting from and relying upon the institutional commitment of the 27 research performing organisations forming its core (paying) membership. It aims at the long-term harmonization of European research efforts related to ocean ecosystems undergoing anthropogenic and natural forcing. More specifically, its objectives are to facilitate and promote: (1) top-level scientific research on the impacts of anthropogenic and natural forcing on ocean ecosystems, fostering collaborations across the European Research Area; (2) the optimal use of any shared technical infrastructures and scientific facilities; and (3) activities to spread excellence, such as the training of scientific personnel and students, or knowledge dissemination towards the general public and socio-economic users. A particular focus is put during the first scientific coordination mandate on the building of scenarios for marine ecosystems under anthropogenic and natural forcing in the XXI Century, and on the improvement of the science-policy interface. Through calls for projects and networking activities, the Consortium seeks to favour the emergence of coordinated projects on key hot topics on one hand, and the crystallisation of scientific priorities and strategies that could serve as input to ERA-NETs, ESFRI, Joint Programming Initiatives and European Research Planning actors in general. While being an active standalone structure, the Consortium is also engaged in the Euromarine FP7 project (submitted) aiming at the definition of a common coordinating or integrating structure for the three follow-up entities of FP6 marine science NoEs (Marine Genomics Europe, MarBEF, EUR-OCEANS). The 2009-2011 strategy and activity plan of EUR-OCEANS will be presented and the involvement of EUR-OCEANS members in other key projects or programmes will

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  6. An overview of Japanese CELSS research activities.

    PubMed

    Nitta, K

    1987-01-01

    Many research activities regarding Controlled Ecological Life Support System (CELSS) have been conducted and continued all over the world since the 1960's and the concept of CELSS is now changing from Science Fiction to Scientific Reality. Development of CELSS technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned mars flight programs. CELSS functions can be divided into two categories, Environment Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Based on these considerations, Japanese research activities have been conducted and will be continued under the tentative guideline of CELSS research activities as shown in documents /1/, /2/. The status of the over all activities are discussed in this paper.

  7. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    NASA Astrophysics Data System (ADS)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  8. Communicating science in public controversies: Strategic considerations of the German climate scientists.

    PubMed

    Post, Senja

    2016-01-01

    In public controversies on scientific issues, scientists likely consider the effects of their findings on journalists and on the public debate. A representative survey of 123 German climate scientists (42%) finds that although most climate scientists think that uncertainties about climate change should be made clearer in public they do not actively communicate this to journalists. Moreover, the climate scientists fear that their results could be misinterpreted in public or exploited by interest groups. Asking scientists about their readiness to publish one of two versions of a fictitious research finding shows that their concerns weigh heavier when a result implies that climate change will proceed slowly than when it implies that climate change will proceed fast. PMID:24583579

  9. Communicating science in public controversies: Strategic considerations of the German climate scientists.

    PubMed

    Post, Senja

    2016-01-01

    In public controversies on scientific issues, scientists likely consider the effects of their findings on journalists and on the public debate. A representative survey of 123 German climate scientists (42%) finds that although most climate scientists think that uncertainties about climate change should be made clearer in public they do not actively communicate this to journalists. Moreover, the climate scientists fear that their results could be misinterpreted in public or exploited by interest groups. Asking scientists about their readiness to publish one of two versions of a fictitious research finding shows that their concerns weigh heavier when a result implies that climate change will proceed slowly than when it implies that climate change will proceed fast.

  10. Political action committee for scientists

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Spurred by budget proposals that could severely reduce science funding (Eos, March 24, March 3, February 10), seven scientists currently serving as Congressional Science or State Department Fellows recently founded a political action committee (PAC) for scientists. The Science and Technology Political Action Committee (SCITEC-PAC) aims to make scientists more politically aware and better informed about potential legislative actions that affect research. It will also serve to ‘establish a political presence’ with respect to science, said Donald Stein, SCITEC-PAC's chairman.The organization is not a lobbying group, explained Stein, professor of neurology and psychology at Clark University and the University of Massachusetts Medical Center. ‘Lobbyists seek to influence officials by presenting information to them,’ he said, ‘while a PAC tries to influence the outcome of elections through campaign contributions of money, time, and effort in behalf of candidates that share similar goals and aspirations.’ In other words, the PAC will be a vehicle for promoting candidates for federal office who advocate strong support for scientific research and training. In addition, the PAC will develop and study science policy and budget issues and will attempt to stimulate government and private sector interest in these issues.

  11. Engaging scientists in outreach

    NASA Astrophysics Data System (ADS)

    Srinivasan, M.; Richardson, A.; Jasnow, M.

    2003-04-01

    According to a survey reported by the National Science Foundation only 49 percent of high school graduates and 73 percent of those with advanced degrees can correctly answer the question, "How long does it take for the Earth to go around the Sun?" Science literacy in the United States and elsewhere has reached very low levels. In spite of spectacular advances in science and engineering over the past few decades, the wonder and excitement of scientific discovery is not reaching students in the classroom. Scientists can play a critical role in outreach efforts at their home institutions and other organizations, both public and private. NASA has a very clear mission to advance young people's scientific knowledge and, at the same time, "to inspire the next generation of explorers." Acknowledging that doing science is different from teaching science, outreach efforts support scientists who help convey the marvels of science to students, educators and the public. The scientific method raises fundamental questions that can engage students by establishing a baseline of inquiry. Planning and implementing experiments can tap into prior knowledge of students challenged with answering scientific questions. These are a few of the ways that the essential knowledge of scientists can be passed on to the next generation of scientists. Some of the specific roles of scientists can play in the outreach effort include classroom visits, public lectures, high school science curriculum development, media interviews, and web site content, to name only a few.

  12. Statement of American Social Scientists of Research on School Desegregation to the U.S. Supreme Court in "Parents v. Seattle School District" and "Meredith v. Jefferson County"

    ERIC Educational Resources Information Center

    Orfield, Gary; Frankenberg, Erica; Garces, Liliana M.

    2008-01-01

    In June 2006, the U.S. Supreme Court agreed to review two related cases originating from school districts in Louisville, Kentucky and Seattle, Washington that involved voluntarily adopted racial integration plans. Concerned about the outcome of these cases, 553 social scientists submitted a social science statement to the Supreme Court summarizing…

  13. Scientist volunteers: Doing science with children

    SciTech Connect

    Kirwan, G.M.

    1994-12-31

    The number of scientists who are volunteering to visit school classrooms is growing. Unfortunately, scientists have a tendency to cram too much information into their presentation. The result is almost always disastrous. The best thing a scientist can do is provide students with a positive science experience that may cause them to re-evaluate their attitude toward science. One of the best ways to do this is to involve students in a novel hands-on activity that engages and maintains their interest. Guidelines for developing such activities are provided.

  14. Research and technology activities at Ames Research Center's Biomedical Research Division

    NASA Technical Reports Server (NTRS)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  15. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Research activities. 2.52 Section 2.52 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52...

  16. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Research activities. 2.52 Section 2.52 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52...

  17. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Research activities. 2.52 Section 2.52 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52...

  18. 42 CFR 2.52 - Research activities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Research activities. 2.52 Section 2.52 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CONFIDENTIALITY OF ALCOHOL AND DRUG ABUSE PATIENT RECORDS Disclosures Without Patient Consent § 2.52...

  19. The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian

    1996-01-01

    This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the one-year period October 1, 1996 to September 30, 1997. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics, high lift modeling studies and luminescent paint applications. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the noise and high lift activities. The program will be conducted within the general framework of the Memorandum of Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement, the purposes of the institute include the following: To conduct basic and applied research. To promote joint endeavors between Center scientists and those in the academic community To provide training to graduate students in specialized areas of aeronautics and acoustics through participation in the research programs of the Institute. To provide opportunities for Post-Doctoral Fellows to collaborate in research programs of the Institute. To disseminate information about important aeronautical topics and to enable scientists and engineers of the Center to stay abreast of new advances through symposia, seminars and publications.

  20. The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian

    1997-01-01

    This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the one-year period October 1, 1997 to September 30, 1998. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics, high lift modeling studies and luminescent paint applications. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the noise and high lift activities. The program will be conducted within the general framework of the Memorandum of Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement, the purposes of the Institute include the following: (1) To conduct basic and applied research; (2) to promote joint endeavors between Center scientists and those in the academic community; (3) to provide training to graduate students in specialized areas of aeronautics and acoustics through participation in the research programs of the Institute; (4) to provide opportunities for Post-Doctoral Fellows to collaborate in research programs of the Institute; and (5) to disseminate information about important aeronautical topics and to enable scientists and engineers of the Center to stay abreast of new advances through symposia, seminars and publications.

  1. Self-archiving as researchers' outreach activity

    NASA Astrophysics Data System (ADS)

    Todoroki, Shin-Ichi

    Notable dissemination of two self-archived postprints is reported. Even after three years since the original publication, corresponding postprints were downloaded more than 1,500 times in the following three years. The demands would have probably arisen from the readers who do not subscribe to the journals in which my articles were published. The title of my article might have caught the eyes of researchers in different fields and YouTube viewers of my research video who followed the references I mentioned. Thus, self-archiving is one of the useful approaches for researchers' outreach activities. In order to increase voluntary registrations in their institutional repositories, positive aspects of self-archiving as discussed here should receive wide recognition among researchers and repository systems should provide registrants with quick and informative response to their articles.

  2. Integrating Scientists into Teacher Professional Development—Strategies for Success

    NASA Astrophysics Data System (ADS)

    Lynds, S. E.; Buhr, S. M.; Smith, L. K.

    2010-12-01

    Professional development workshops for science teachers can be greatly enhanced by scientist participation. Such workshops may promote a collegial community and mutual understanding between researchers and educators. The CIRES (Cooperative Institute for Research in Environmental Sciences) Education and Outreach (EO) group at the University of Colorado, Boulder, has over a decade of experience in successfully developing and hosting such events. Scientist participation in these workshops varies widely—from giving formal presentations to working one-on-one with educators in designing a research project. Researchers from CIRES, NOAA (National Oceanic and Atmospheric Administration), NSIDC (National Snow and Ice Data Center), and other Colorado agencies and institutions have participated in the workshops. In addition, graduate students in scientific research programs at the University of Colorado are frequently involved. Such workshops can be effective broader impacts components of scientific programs. One example of a long-running successful program was the Earthworks project (1998-2007), a one-week workshop for secondary science teachers from around the country. With the help of practicing geoscientists, participants working in teams designed and conducted a field-based interdisciplinary study. Attendees were so enthusiastic that the ongoing Listserv community (including both scientist and educators) is still active and engaged three years after the last workshop. In a more recent example, since 2009 CIRES EO has been hosting an annual week-long summer workshop as the COSEE (Centers for Ocean Science Education Excellence) West—Colorado Collaborative. The COSEE workshops have had a different theme each year. In 2010, the workshop explored the link between Arctic sea ice, the Greenland ice sheet, sea level, and global climate processes. Extensive evaluation efforts have been included in the design of each workshop and the evaluation results are used to improve

  3. Scientist-Centered Workflow Abstractions via Generic Actors, Workflow Templates, and Context-Awareness for Groundwater Modeling and Analysis

    SciTech Connect

    Chin, George; Sivaramakrishnan, Chandrika; Critchlow, Terence J.; Schuchardt, Karen L.; Ngu, Anne Hee Hiong

    2011-07-04

    A drawback of existing scientific workflow systems is the lack of support to domain scientists in designing and executing their own scientific workflows. Many domain scientists avoid developing and using workflows because the basic objects of workflows are too low-level and high-level tools and mechanisms to aid in workflow construction and use are largely unavailable. In our research, we are prototyping higher-level abstractions and tools to better support scientists in their workflow activities. Specifically, we are developing generic actors that provide abstract interfaces to specific functionality, workflow templates that encapsulate workflow and data patterns that can be reused and adapted by scientists, and context-awareness mechanisms to gather contextual information from the workflow environment on behalf of the scientist. To evaluate these scientist-centered abstractions on real problems, we apply them to construct and execute scientific workflows in the specific domain area of groundwater modeling and analysis.

  4. Investigating How the Biographies of Today's Scientists Affect 8th Graders' Scientist Image

    ERIC Educational Resources Information Center

    Karaçam, Sedat

    2016-01-01

    This study aimed to investigate how a poster study focusing on the biographies of today's scientists affected 8th graders' scientist images. The study utilized a mixed model which combined qualitative and quantitative research techniques. 142 8th graders from a secondary school in Ankara Province Keçiören District participated in the study.…

  5. Scientists and Satisfaction.

    ERIC Educational Resources Information Center

    Hermanowicz, Joseph C.

    2003-01-01

    Presents results from in-depth interviews in which respondents at a range of U.S. universities provided detailed accounts of their experience in, and identification with, academe. Studies satisfaction from the angle of the self-doubts scientists have about their work and careers, and investigates how self-doubts may systematically differ across…

  6. Reading as Scientists

    ERIC Educational Resources Information Center

    Shanahan, Marie-Claire

    2010-01-01

    Using an adapted version of a recently published scientific article, a group of sixth graders worked together identifying conclusions, deciding on appropriate evidence, suggesting improvements for the study, and recommending further investigations for scientists. This experience provided opportunities for these students to use reading to decide on…

  7. Nurturing the Child Scientist

    ERIC Educational Resources Information Center

    Rodgers, Lisa; Basca, Belinda

    2011-01-01

    The natural world fascinates young children. Treasured leaves, shells, stones, and twigs always find their way into the kindergarten classroom. A kindergarten study of collections channels and deepens children's innate impulse to explore and collect. It also lays the foundation for understanding how scientists approach the study of objects in…

  8. Reading about Real Scientists

    ERIC Educational Resources Information Center

    Cummins, Sunday

    2015-01-01

    Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…

  9. Early Primary Invasion Scientists

    ERIC Educational Resources Information Center

    Spellman, Katie V.; Villano, Christine P.

    2011-01-01

    "We really need to get the government involved," said one student, holding his graph up to USDA scientist Steve Seefeldt. Dr. Steve studies methods to control "invasive" plants, plants that have been introduced to an area by humans and have potential to spread rapidly and negatively affect ecosystems. The first grader and his classmates had become…

  10. Becoming a Spider Scientist

    ERIC Educational Resources Information Center

    Patrick, Patricia; Getz, Angela

    2008-01-01

    In this integrated unit, third grade students become spider scientists as they observe spiders in their classroom to debunk some common misconceptions about these intimidating creatures. "Charlotte's Web" is used to capture students' interest. In addition to addressing philosophical topics such as growing-up, death, and friendship; E.B. White's…

  11. Bringing Scientists to Life

    ERIC Educational Resources Information Center

    Casey, Peter

    2010-01-01

    In this article, the author describes how he brings scientists to life when he visits schools. Having retired from teaching Drama and Theatre Studies in Liverpool for more than thirty years, the author set up his one-man Theatre-in-Education company, Blindseer Productions, and now takes his portrayals of Darwin, Galileo and Einstein to schools…

  12. Today's Authors, Tomorrow's Scientists

    ERIC Educational Resources Information Center

    Porter, Diana

    2009-01-01

    Although not all teachers can invite scientists into classrooms on a regular basis, they can invite them into their students' worlds through literature. Here the author shares how she used the nonfiction selection, "Science to the Rescue" (Markle 1994), as an opportunity for students to investigate socially significant problems and empower them to…

  13. Women Scientists. American Profiles.

    ERIC Educational Resources Information Center

    Veglahn, Nancy, J.

    This book contains the life stories of 11 American female scientists who had outstanding achievements in their branch of science. The lives of the 11 women included in this book cover a combined time period of more than 120 years. This book argues against the belief that mathematics and science are not for girls and gives examples of very…

  14. Reinventing Biostatistics Education for Basic Scientists

    PubMed Central

    Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.

    2016-01-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055

  15. Reinventing Biostatistics Education for Basic Scientists.

    PubMed

    Weissgerber, Tracey L; Garovic, Vesna D; Milin-Lazovic, Jelena S; Winham, Stacey J; Obradovic, Zoran; Trzeciakowski, Jerome P; Milic, Natasa M

    2016-04-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students' fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists.

  16. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Two pilot studies were conducted that investigated the technical communications practices of U.S. and European aerospace engineers and scientists. Both studies had the same five objectives: (1) solicit opinions regarding the importance of technical communications; (2) determine the use and production of technical communications; (3) seek views about the appropriate content of an undergraduate course in technical communications; (4) determine use of libraries, information centers, and online database; (5) determine use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected aerospace engineers and scientists, with a slightly modified version sent to European colleagues. Their responses to selected questions are presented in this paper.

  17. Data publication activities in the Natural Environment Research Council

    NASA Astrophysics Data System (ADS)

    Leadbetter, A.; Callaghan, S.; Lowry, R.; Moncoiffé, G.; Donnegan, S.; Pepler, S.; Cunningham, N.; Kirsch, P.; Ault, L.; Bell, P.; Bowie, R.; Harrison, K.; Smith-Haddon, B.; Wetherby, A.; Wright, D.; Thorley, M.

    2012-04-01

    The Natural Environment Research Council (NERC) is implementing its Science Information Strategy in order to provide a world class service to deliver integrated data for earth system science. One project within this strategy is Data Citation and Publication, which aims to put the promotion and recognition stages of the data lifecycle into place alongside the traditional data management activities of NERC's Environmental Data Centres (EDCs). The NERC EDCs have made a distinction between the serving of data and its publication. Data serving is defined in this case as the day-to-day data management tasks of: • acquiring data and metadata from the originating scientists; • metadata and format harmonisation prior to database ingestion; • ensuring the metadata is adequate and accurate and that the data are available in appropriate file formats; • and making the data available for interested parties. Whereas publication: • requires the assignment of a digital object identifier to a dataset which guarantees that an EDC has assessed the quality of the metadata and the file format and will maintain an unchanged version of the data for the foreseeable future • requires the peer-review of the scientific quality of the data by a scientist with knowledge of the scientific domain in which the data were collected, using a framework for peer-review of datasets such as that developed by the CLADDIER project. • requires collaboration with journal publishers who have access to a well established peer-review system The first of these requirements can be managed in-house by the EDCs, while the remainder require collaboration with the wider scientific and publishing communities. It is anticipated that a scientist may achieve a lower level of academic credit for a dataset which is assigned a DOI but does not follow through to the scientific peer-review stage, similar to publication in a report or other non-peer reviewed publication normally described as grey literature, or

  18. Education for life scientists on the dual-use implications of their research : commentary on "implementing biosecurity education: approaches, resources and programmes".

    PubMed

    Nixdorff, Kathryn

    2013-12-01

    Advances in the life sciences are occurring with extreme rapidity and accumulating a great deal of knowledge about life's vital processes. While this knowledge is essential for fighting disease in a more effective way, it can also be misused either intentionally or inadvertently to develop novel and more effective biological weapons. For nearly a decade civil-academic society as well as States Parties to the Biological and Toxin Weapons Convention have recognised the importance of dual-use biosecurity education for life scientists as a means to foster a culture of responsibility and prevent the potential misuse of advances in the life sciences for non-peaceful purposes. Nevertheless, the implementation of dual-use biosecurity education for life scientists has made little progress in institutions of higher learning. Professional societies and academic organizations have worked from the bottom-up in developing online dual-use biosecurity education modules that can be used for instruction. However, top-down help is needed from goverments if further progress is to be made in implementing biosecurity education for life scientists.

  19. Accelerator and Fusion Research Division: 1984 summary of activities

    SciTech Connect

    Not Available

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

  20. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology

  1. MPD thruster research issues, activities, strategies

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  2. TRIGA research reactor activities around the world

    SciTech Connect

    Chesworth, R.H.; Razvi, J.; Whittemore, W.L. )

    1991-11-01

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 53: From student to entry-level professional: Examining the technical communications practices of early career-stage US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information-use skills are one of the key engineering competencies that early career-stage aerospace engineers and scientists must possess to be successful. Feedback from industry rates communications and information-use skills high in terms of their importance to engineering practice; however, this same feedback rates the communications and information-use skills of early career-stage engineers low. To gather adequate and generalizable data about the communications and information-related activities of entry-level aerospace engineers and scientists, we surveyed 264 members of the AIAA who have no more than 1-5 years of aerospace engineering work experience. To learn more about the concomitant communications norms, we compared the results of this study with data (1,673 responses) we collected from student members of the AIAA and with data (341 responses) we collected from a study of aerospace engineering professionals. In this paper, we report selected results from these studies that focused on the communications practices and information-related activities of early career-stage U.S. aerospace engineers and scientists in the workplace.

  4. Lessons Learned at LPI for Scientists in Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Kramer, G. Y.; Gross, J.; Shaner, A. J.; Dalton, H.; Grier, J.; Buxner, S.; Shipp, S. S.; Hackler, A. S.

    2015-12-01

    The Lunar and Planetary Institute (LPI) has engaged scientists in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, communication workshops, and outreach events. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the lessons we have learned through these experiences, including the value of collaborations between scientists and educators, the importance of understanding the audience's interests and knowledge, and the insights that audiences gain during unstructured discussion and interactions with scientists. LPI has also worked with the NASA Science Mission Directorate E/PO community to determine ways to enable scientists and engineers to engage in E/PO and STEM learning, including examining the research and programs for becoming involved in the preparation of future teachers (see the Menu of Opportunities at http://www.lpi.usra.edu/education/pre_service_edu/). We will share key research-based best practices that are recommended for scientists and engineers interested in participating in E/PO activities.

  5. Nicolae C. Paulescu--scientist and politician.

    PubMed

    Laron, Zvi

    2008-07-01

    The question of who discovered insulin is controversial. One of the scientists working on pancreas extracts was Nicolae Paulescu, the so-called forgotten man. In addition to his scientific research he was also active in politics. He was the father of the virulent antisemitic fascist movement "Garda de Fer" in Romania; he raved against the "Jewish peril," claimed in his writings that the Jews are a genetically degenerate people trying to cheat and poison the Rumanian people by alcoholism, and more. His name came up in 2003 when Romanian diabetologists initiated a move to honor him. But voices rose in protest, claiming that persons who incite hatred, support persecution and genocide and distort science as their political tools cannot be accepted or rewarded. The protesters won. PMID:18751624

  6. The Great Scientists

    NASA Astrophysics Data System (ADS)

    Meadows, Jack

    1989-11-01

    This lively history of the development of science and its relationship to society combines vivid biographies of twelve pivotal scientists, commentary on the social and historical events of their time, and over four hundred illustrations, including many in color. The biographies span from classical times to the Atomic Age, covering Aristotle, Galileo, Harvey, Newton, Lavoisier, Humboldt, Faraday, Darwin, Pasteur, Curie, Freud, and Einstein. Through the biographies and a wealth of other material, the volume reveals how social forces have influenced the course of science. Along with the highly informative color illustrations, it contains much archival material never before published, ranging from medieval woodcuts, etchings from Renaissance anatomy texts, and pages from Harvey's journal, to modern false-color x-rays and infrared photographs of solar flares. A beautifully-designed, fact-filled, stimulating work, The Great Scientists will fascinate anyone with an interest in science and how history can influence scientific discovery.

  7. Summary of Chernobyl followup research activities

    SciTech Connect

    Not Available

    1992-06-01

    In NUREG-1251, ``Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States,`` April 1989, the NRC staff concluded that no immediate changes in NRC`s regulations regarding design or operation of US commercial reactors were needed; however, it recommended that certain issues be considered further. NRC`s Chernobyl followup research program consisted of the research tasks undertaken in response to the recommendations in NUREG-1251. It included 23 tasks that addressed potential lessons to be learned from the Chernobyl accident. This report presents summaries of NRC`s Chernobyl followup research tasks. For each task, the Chernobyl-related issues are indicated, the work is described, and the staff`s findings and conclusions are presented. More detailed reports concerning the work are referenced where applicable. This report closes out NRC`s Chernobyl followup research program as such, but additional research will be conducted on some issues as needed. The report includes remarks concerning significant further activity with respect to the issues addressed.

  8. Summary of Chernobyl followup research activities

    SciTech Connect

    Not Available

    1992-06-01

    In NUREG-1251, Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States,'' April 1989, the NRC staff concluded that no immediate changes in NRC's regulations regarding design or operation of US commercial reactors were needed; however, it recommended that certain issues be considered further. NRC's Chernobyl followup research program consisted of the research tasks undertaken in response to the recommendations in NUREG-1251. It included 23 tasks that addressed potential lessons to be learned from the Chernobyl accident. This report presents summaries of NRC's Chernobyl followup research tasks. For each task, the Chernobyl-related issues are indicated, the work is described, and the staff's findings and conclusions are presented. More detailed reports concerning the work are referenced where applicable. This report closes out NRC's Chernobyl followup research program as such, but additional research will be conducted on some issues as needed. The report includes remarks concerning significant further activity with respect to the issues addressed.

  9. Rejuvenating clinician-scientist training.

    PubMed

    Ambati, Balamurali K; Cahoon, Judd

    2014-03-28

    Clinician-scientists are becoming increasingly rare in medicine as a whole, but especially in ophthalmology. There is a structural gap between MD-PhD training and K-series awards where interested candidates go through residency and fellowship without any structured research exposure or involvement. Furthermore, the success rate of the MD-PhD and K awards leaves much to be desired. The authors propose a redeployment of training resources to reconfigure residency and fellowship training programs for interested candidates with sufficient additional time for a credible research project, augmented salary, and sound mentoring. Opportunities for research training in nontraditional pathways to diversify skill sets and build interdisciplinary teams also would be a prime objective of this novel "Learn-and-Earn" approach.

  10. The GLOBE International Scientist Network: Connecting Scientists and Schools to Promote Earth System Science

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Andersen, T.; Mackaro, J.; Malmberg, J.; Randolph, J. G.; Wegner, K.

    2012-12-01

    The GLOBE Program has a rich history of connecting scientists and schools around the world on issues related to Earth System Science. Science teams developed the program's core science protocols, and these and other scientists use the data collected by GLOBE students, following these protocols, in their research projects. GLOBE is an international science and education program working with scientists, teachers, and students in over 110 countries around the world. GLOBE has recently initiated a focus on climate science, as well as unveiled a new technological infrastructure (website, database, online collaboration tools, etc.). These recent technological advances provide new opportunities to increase scientist participation in the program. To better facilitate scientist involvement in GLOBE, The GLOBE International Scientist Network (GISN) was developed. This network aims to connect scientists, teachers, and students around the world to promote Earth System Science. It provides a venue for scientists seeking to engage in education and outreach to connect with schools willing to collaborate, as well as to connect with one another. Via the GLOBE website, scientists in the GISN are provided a profile page to display their bio and interests, the ability to make online "friends" thereby connecting with other registered GLOBE community members (i.e. scientists, teachers), and the ability to participate in online discussions. All interested candidates' credentials are reviewed to ensure that they meet designated criteria to maintain the quality of individuals who work with GLOBE schools. The GLOBE Program Office staff scientists facilitate the network, by creating online accounts for approved new members and responding to inquiries. This presentation will provide an overview of the GISN, including how the network is maintained, the process for membership approval, and a few examples of how scientists in the network are working with GLOBE.

  11. Scientist in residence

    NASA Astrophysics Data System (ADS)

    Thiel, David

    1990-03-01

    In order to enthuse secondary school students about science, and physics in particular, the author spent two one-week periods taking classes in local secondary schools as a `scientist in residence'. Two different private schools were involved and classes were given to students in the last four years preceding tertiary entrance. This article relates some of the motivation, method and implementation of this novel idea and some tentative conclusions are presented.

  12. [The critical scientists' voice].

    PubMed

    Lewgoy, F

    2000-01-01

    The intricate debate over genetically modified organisms (GMOs) involves powerful economic interests, as well as ethical, legal, emotional and scientific aspects, some of which are dealt with in this paper.(It is possible to identify two main groups of scientists across the GMOs divide: the triumphalist and the critical group.) Scientists in the triumphalist group state that GMOs and their derivatives are safe for the environment and do not offer health hazards any more than similar, non-genetically modified, products. This view is disputed by the critical scientists, who are prompted by the scarcity of studies on the environmental impacts and toxicity of GMOs, and who point out flaws in tests performed by the same companies which hold the patents. They are also critical of the current state of the process of gene transference, lacking accuracy, a fact which, coupled with the scant knowledge available about 97% of the genome functions, may produce unforseeable effects with risks for the environment and public health yet to be assessed. Examples of such effects are: the transference of alien genes [??] to other species, the emergence of toxins, the creation of new viruses, the impacts on beneficial insects and on biodiversity in general.

  13. Universities Earth System Scientists Program

    NASA Technical Reports Server (NTRS)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 17: The relationship between seven variables and the use of US government technical reports by US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Nanci; Demerath, Loren

    1991-01-01

    A study was undertaken to investigate the relationship between the use of U.S. government technical reports by U.S. aerospace engineers and scientists and seven selected sociometric variables. Data were collected by means of a self-administered mail survey which was distributed to a randomly drawn sample of American Institute of Aeronautics and Astronautics (AIAA) members. Two research questions concerning the use of conference meeting papers, journal articles, in-house technical reports, and U.S. government technical reports were investigated. Relevance, technical quality, and accessibility were found to be more important determinants of the overall extent to which U.S. government technical reports and three other information products were used by U.S. aerospace engineers and scientists.

  15. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  16. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  17. Unique post-doctoral positions in Master of Arts in Teaching Earth Science program at the American Museum of Natural History: Involving early-career research scientists in Earth science education

    NASA Astrophysics Data System (ADS)

    Flores, K. E.; Nadeau, P. A.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.

    2012-12-01

    -doctoral position's roles, including having a full faculty role in the student admissions process; working alongside doctoral-level professional educators on course design; being exposed to a variety of pedagogical techniques; participating as professional scientists in museum public outreach programs; working in local high schools with MAT candidates and education faculty; and attending workshops with high school teachers. Often the next step for a post-doctoral fellow is academia; the MAT program prepares fellows for such a step via the strong teaching and research components, but also highlights other potential career opportunities, including museum curator, informal science education, or public outreach. Here we report on our experiences in our roles as non-traditional Earth science educators and the integration of such roles with our research activities.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  19. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    NASA Astrophysics Data System (ADS)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  20. Evaluating Teaching and Research Activities--Finding the Right Balance.

    ERIC Educational Resources Information Center

    Vidal, Javier; Mora, Jose-Gines

    2003-01-01

    Analyzes on a national, regional, and institutional level the evaluation systems used to assess teaching and research activities at Spanish universities. Also examines ways in which evaluation systems orient to promote research activities to the detriment of teaching activities. (SWM)

  1. An Israeli Scientist's Approach to Human Values

    ERIC Educational Resources Information Center

    Katzir-Katchalsky, A.

    1972-01-01

    Describes through examples some laboratory research with implications which can be used for asocial ends. Humanitarian values have to be upheld; therefore, scientists and science educators have to modify their techniques and procedures to make their research and programs useful for mankind. (PS)

  2. A University Course in French for Scientists.

    ERIC Educational Resources Information Center

    McNaughton, F.; Todd, A.

    1993-01-01

    Examines language research conducted at Napier. The objective of this research program was to improve the teaching of scientific and technical French that had been identified as a requirement for the specialist groups of scientists, doctors, and engineers interested in the use of French language in their work. (CK)

  3. Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science

    NASA Astrophysics Data System (ADS)

    Avraamidou, Lucy

    2013-04-01

    Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students' views of scientists. Sample An urban, fifth-grade, European elementary school classroom defined the context of this study. Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students' initial views of scientists were investigated through a drawing activity, classroom discussions and interviews. Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist. Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school-scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.

  4. Peace Research

    ERIC Educational Resources Information Center

    Boulding, Kenneth E.

    1977-01-01

    Describes the impact of interdisciplinary thinking on research activities of individuals within the peace research movement. Identifies peace researchers by disciplinary affiliation as 35 percent political scientists, 21 percent sociologists, 14 percent lawyers, 8 percent general systems practitioners, and approximately 6 percent each from the…

  5. Fewer scientists immigrating

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    A recent decline in the number of scientists and engineers immigrating to the United States could indicate that a surge throughout the 1980s and early 1990s may have been temporary.The number of people with science and engineering degrees admitted to the United States on permanent visas with work certificates dropped 26% between 1993 and 1994—from 23,534 to 17,403—according to a new National Science Foundation (NSF) data brief that analyzes information from the Immigration and Naturalization Service. A lack of demand for employment-based admissions caused the decline, according to the INS.

  6. Soviet scientists speak out

    SciTech Connect

    Holloway, D. )

    1993-05-01

    In this article, Russian bomb designers answer the KGB's claim that espionage, not science, produced the Soviet bomb. Yuli Khariton and Yuri Smirnov wholly reject the argument that Soviet scientists can claim little credit for the first Soviet bomb. In a lecture delivered at the Kurchatov Institute, established in 1943 when Igor Kurchatov became the director of the Soviet nuclear weapons project, Khariton and Smironov point to the work done by Soviet nuclear physicists before 1941 and refute assertions that have been made in Western literature regarding the hydrogen bomb.

  7. Astronomer to Data Scientist

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Jessica

    2015-01-01

    Jessica Kirkpatrick received her PhD in Astrophysics from Berkeley in 2012. After an exhaustive job search within academia and beyond, she accepted a job as a data scientist / analyst for the social network Yammer (acquired by Microsoft) and is now the Director of Data Science for Education Company InstaEDU. Now instead of spending her days finding patterns in the large scale structure of galaxies, she finds patterns in the behaviors of people. She'll talk about her transition from astrophysics to tech, compare and contrast the two fields, and give tips about how to land a tech job, and discuss useful tools which helped her with her transition.

  8. Determining the Best Science Blogger: Teachers or Scientists?

    NASA Astrophysics Data System (ADS)

    Timm, K.; Lower, T. A.; Sparrow, E. B.; Niles, B. A.

    2011-12-01

    The International Polar Year (2007-2008) was an international scientific campaign to study and raise awareness of the Earth's polar regions. Several scientists and educators that visited the polar regions during this time used a blog to share their day-to-day and scientific research activities with school children and the general public. Due to advances in technology, scientists and others were able to post their daily stories and photos online to share the science and their adventures from sometimes very remote locations in the polar regions. Not having large budgets for outreach, blogs are a commonly used outreach tool because they can be free or relatively inexpensive to set up and maintain. However, in order for this approach to be successful, the readability and words used must be accessible to the target audience. This study uses the Flesch Reading Ease Analysis and Quantitative Phenomenology to compare blogs from three groups of people, including teachers, scientists, and scientists who had received special blog and multimedia training. Quantitative Phenomenology provides a quantitative means to analyze large quantities of written text and determine relative word frequencies by comparing word counts from a selected body of text with that of the American National Corpus. This method was used to determine the amount of scientific jargon used in the blogs of each group, because cognitively, approaching jargon when reading is like approaching a complex word with several syllables. Despite training, both groups of scientists wrote on average at an eighth to ninth grade reading level and used more scientific jargon in their blogs. Teachers who wrote from the field wrote on average at a seventh grade level, and while they used some scientific jargon they spent more time talking about life in the field than scientists. As funding agencies continue to require and encourage outreach activities by scientists, such as blogs, it is important that proper training and

  9. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  10. Scientists--Geeks and Nerds?

    ERIC Educational Resources Information Center

    McDuffie, Thomas E., Jr.

    2001-01-01

    Investigates teachers' impressions of stereotypes of scientists and science. Uses the Draw a Scientist Test (DAST) for nonverbal assessment and makes recommendations for strategies to build more realistic and positive images. (Contains 12 references.) (YDS)

  11. Electromechanically active polymer transducers: research in Europe

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  12. Positive Activities: Qualitative Research with Parents. Solutions Research. Research Report. DCSF-RR142

    ERIC Educational Resources Information Center

    Department for Children, Schools and Families, 2009

    2009-01-01

    This research was commissioned by COI and DCSF to understand in depth, the barriers, motivators and messages for parents to encourage participation in positive activities for young people. Within this the research was designed to understand the level of influence of parents in whether a young person participates/what a young person might…

  13. ISS Update: Becoming an International Space Station Program Scientist

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Tara Ruttley, Associate International Space Station Program Scientist, about her educational path and her career activities at NASA. She also discuss...

  14. Publications, peer review, and the young scientist

    NASA Astrophysics Data System (ADS)

    Kellett, R. L.

    As scientists and communicators, we all make our living through the expression of our ideas and the results of our scientific research. This expression takes many forms, but, most notably, published articles lie at the heart of our endeavors. I would like to present my opinions on some problems that I, as a young scientist, see in our profession.Several years ago, two wonderful letters appeared in Geology discussing the problems of honorary coauthorship [Zen, 1988, Means, 1988]. Honorary coauthorship is a by-product of the system set up to fund scientific research. More generally, the problem is the need to publish a great number of articles in order to survive.

  15. How scientists view the public, the media and the political process.

    PubMed

    Besley, John C; Nisbet, Matthew

    2013-08-01

    We review past studies on how scientists view the public, the goals of communication, the performance and impacts of the media, and the role of the public in policy decision-making. We add to these past findings by analyzing two recent large-scale surveys of scientists in the UK and US. These analyses show that scientists believe the public is uninformed about science and therefore prone to errors in judgment and policy preferences. Scientists are critical of media coverage generally, yet they also tend to rate favorably their own experience dealing with journalists, believing that such interactions are important both for promoting science literacy and for career advancement. Scientists believe strongly that they should have a role in public debates and view policy-makers as the most important group with which to engage. Few scientists view their role as an enabler of direct public participation in decision-making through formats such as deliberative meetings, and do not believe there are personal benefits for investing in these activities. Implications for future research are discussed, in particular the need to examine how ideology and selective information sources shape scientists' views.

  16. Amateur scientists, the international geophysical year, and the ambitions of Fred Whipple.

    PubMed

    McCray, W Patrick

    2006-12-01

    The contribution of amateur scientists to the International Geophysical Year (IGY) was substantial, especially in the arena of spotting artificial satellites. This article examines how Fred L. Whipple and his colleagues recruited satellite spotters for Moonwatch, a program for amateur scientists initiated by the Smithsonian Astrophysical Observatory (SAO) in 1956. At the same time, however, the administrators with responsibility for the IGY program closely monitored and managed--sometimes even contested--amateur participation. IGY programs like Moonwatch provided valuable scientific information and gave amateurs opportunities to contribute actively to the research of professional scientists. Moonwatch, which operated until 1975, eventually became the public face of a vast satellite-tracking network that expanded the SAO's global reach and helped further Whipple's professional goals. Understanding amateurs' interactions with the professional science community enables us better to understand the IGY as a phenomenon that enlisted broad participation and transcended traditional boundaries between professional and amateur scientists.

  17. Can scientists and policy makers work together?

    PubMed Central

    Choi, B.; Pang, T.; Lin, V.; Puska, P.; Sherman, G.; Goddard, M.; Ackland, M.; Sainsbury, P.; Stachenko, S.; Morrison, H.; Clottey, C.

    2005-01-01

    This paper addresses a fundamental question in evidence based policy making—can scientists and policy makers work together? It first provides a scenario outlining the different mentalities and imperatives of scientists and policy makers, and then discusses various issues and solutions relating to whether and how scientists and policy makers can work together. Scientists and policy makers have different goals, attitudes toward information, languages, perception of time, and career paths. Important issues affecting their working together include lack of mutual trust and respect, different views on the production and use of evidence, different accountabilities, and whether there should be a link between science and policy. The suggested solutions include providing new incentives to encourage scientists and policy makers to work together, using knowledge brokers (translational scientists), making organisational changes, defining research in a broader sense, re-defining the starting point for knowledge transfer, expanding the accountability horizon, and finally, acknowledging the complexity of policy making. It is hoped that further discussion and debate on the partnership idea, the need for incentives, recognising the incompatibility problems, the role of civil society, and other related themes will lead to new opportunities for further advancing evidence based policy and practice. PMID:16020638

  18. How Middle Schoolers Draw Engineers and Scientists

    NASA Astrophysics Data System (ADS)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-02-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are student perceptions of engineers and scientists similar and how are they different?" Approximately 1,600 middle school students from urban and suburban schools in the southeastern United States were asked to draw either an engineer or a scientist at work. Drawings included space for the students to explain what their person was doing in the picture. A checklist to code the drawings was developed and used by two raters. This paper discusses similarities and differences in middle school perceptions of scientists and engineers. Results reveal that the students involved in this study frequently perceive scientists as working indoors conducting experiments. A large fraction of the students have no perception of engineering. Others frequently perceive engineers as working outdoors in manual labor. The findings have implications for the development and implementation of engineering outreach efforts.

  19. Can scientists and policy makers work together?

    PubMed

    Choi, Bernard C K; Pang, Tikki; Lin, Vivian; Puska, Pekka; Sherman, Gregory; Goddard, Michael; Ackland, Michael J; Sainsbury, Peter; Stachenko, Sylvie; Morrison, Howard; Clottey, Clarence

    2005-08-01

    This paper addresses a fundamental question in evidence based policy making--can scientists and policy makers work together? It first provides a scenario outlining the different mentalities and imperatives of scientists and policy makers, and then discusses various issues and solutions relating to whether and how scientists and policy makers can work together. Scientists and policy makers have different goals, attitudes toward information, languages, perception of time, and career paths. Important issues affecting their working together include lack of mutual trust and respect, different views on the production and use of evidence, different accountabilities, and whether there should be a link between science and policy. The suggested solutions include providing new incentives to encourage scientists and policy makers to work together, using knowledge brokers (translational scientists), making organisational changes, defining research in a broader sense, re-defining the starting point for knowledge transfer, expanding the accountability horizon, and finally, acknowledging the complexity of policy making. It is hoped that further discussion and debate on the partnership idea, the need for incentives, recognising the incompatibility problems, the role of civil society, and other related themes will lead to new opportunities for further advancing evidence based policy and practice. PMID:16020638

  20. Using partnerships with scientists to enhance teacher capacity to address the NGSS

    NASA Astrophysics Data System (ADS)

    Pavelsky, T.; Haine, D. B.; Drostin, M.

    2013-12-01

    Increasingly, scientists are seeking outreach experts to assist with the education and outreach components of their research grants. These experts have the skills and expertise to assist with translating scientific research into lessons and activities that are aligned to the Next Generation Science Standards (NGSS) as well as state standards, are STEM-focused and that address the realities of the K-12 science classroom. Since 2007, the Institute for the Environment (IE) at the University of North Carolina at Chapel Hill has been conducting teacher professional development and high school student science enrichment programs to promote climate literacy. Partnering with scientists to deepen content knowledge and promote engagement with technology and real data has been a successful strategy for cultivating increased climate literacy among teachers and students. In this session, we will share strategies for effectively engaging scientists in K-12 educational activities by providing specific examples of the various ways in which scientists can be integrated into programming and their research translated into relevant classroom activities. Engaging scientists and translating their research into classroom activities is an approach that becomes even more relevant with the advent of the NGSS. The NGSS's Disciplinary Core Ideas (DCIs) that encompass climate literacy can be addressed by partnering with scientists to provide teachers with current content knowledge and technological tools needed to promote integration of relevant science and engineering practices and cross-cutting themes. Here we highlight a successful partnership in which IE science educators collaborated with with a faculty member to develop a lesson for North Carolina teachers introducing them to new research on satellite remote sensing of the water cycle, while also promoting student engagement with local data. The resulting lesson was featured during a two-day, IE-led teacher workshop for 21 North Carolina