Science.gov

Sample records for active ringing suppression

  1. RF probe recovery time reduction with a novel active ringing suppression circuit

    PubMed Central

    Peshkovsky, A.S.; Forguez, J.; Cerioni, L.; Pusiol, D.J.

    2005-01-01

    A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9. PMID:16111906

  2. RF probe recovery time reduction with a novel active ringing suppression circuit.

    PubMed

    Peshkovsky, A S; Forguez, J; Cerioni, L; Pusiol, D J

    2005-11-01

    A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9.

  3. Discrete Element Model for Suppression of Coffee-Ring Effect

    PubMed Central

    Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan

    2017-01-01

    When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future. PMID:28216639

  4. Discrete Element Model for Suppression of Coffee-Ring Effect

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan

    2017-02-01

    When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.

  5. Reverse wave suppression in unstable ring resonator

    NASA Astrophysics Data System (ADS)

    Mirels, H.; Chodzko, R. A.; Bernard, J. M.; Giedt, R. R.; Coffer, J. G.

    1984-12-01

    Criteria for effective reverse-wave suppression (RWS) in CW and pulsed unstable ring lasers with inhomogeneously broadened media are determined theoretically, and the performance of a CW HF linear ring resonator (Chodzko et al., 1976) and of two configurations of a pulsed CO2 annular beam-rotation/internal-axicon (BRIA) resonator (Bullock et al., 1979) without and with an RWS mirror is evaluated experimentally. In the CW laser, the average forward-wave (FW) and RW power values are shown to be 61 and 39 W without RWS and 110 and 2.7 W with RWS, corresponding to a FW/RW power ratio of 41; in the pulsed BRIA lasers, power ratios of about 20 are achieved, but the RWS effectiveness is found to be highly sensitive to RWS-mirror and cavity misalignment. Graphs, drawings, tables, and photographs of typical waveforms are included.

  6. Photonic ring resonator filters for astronomical OH suppression

    DOE PAGES

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; ...

    2017-01-01

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si3N4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  7. Photonic ring resonator filters for astronomical OH suppression

    SciTech Connect

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; Spinka, H.; Underwood, D.; Gupta, R. R.; Ocola, L.; Liu, P.; Wei, G.; Stern, N. P.; Bland-Hawthorn, J.; Tuthill, P.

    2017-01-01

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials such as Si and Si3N4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.

  8. Biological suppression of potato ring rot by fluorescent pseudomonads.

    PubMed

    de la Cruz, A R; Poplawsky, A R; Wiese, M V

    1992-06-01

    Three strains of fluorescent pseudomonads (IS-1, IS-2, and IS-3) isolated from potato underground stems with roots showed in vitro antibiosis against 30 strains of the ring rot bacterium Clavibacter michiganensis subsp. sepedonicus. On the basis of morphological and biochemical tests and fatty acid analysis, IS-1 and IS-2 were identified as Pseudomonas aureofaciens and IS-3 was identified as P. fluorescens biovar III. IS-1 was the most inhibitory to C. michiganensis subsp. sepedonicus strains in vitro, followed by IS-3 and IS-2. Suppression of ring rot by these antagonists was demonstrated in greenhouse trials with stem-cultured potato (cv. Russet Burbank) seedlings. Although each antagonist significantly reduced C. michiganensis subsp. sepedonicus populations, only IS-1 reduced infection by C. michiganensis subsp. sepedonicus. In a second experiment, treatment with IS-1 (10(9) CFU/ml) significantly reduced ring rot infection by 23.4 to 26.7% after 5 to 8 weeks. The average C. michiganensis subsp. sepedonicus population was also significantly reduced by 50 to 52%. Application of different combinations of antagonist strains was not more effective than single-strain treatment.

  9. Adaptive center determination for effective suppression of ring artifacts in tomography images

    SciTech Connect

    Jha, D. Sørensen, H. O. Dobberschütz, S.; Stipp, S. L. S.; Feidenhans'l, R.

    2014-10-06

    Ring artifacts on tomogram slices hinder image interpretation. They are caused by minor variation in the response from individual elements in a two dimensional (2D) X-ray detector. Polar space decreases the suppression complexity by transforming the rings on the tomogram slice to linear stripes. However, it requires that the center of rings lie at the origin of polar transformation. If this is not the case, all methods employing polar space become ineffective. We developed a method based on Gaussian localization of the ring center in Hough parameter space to assign the origin for the polar transformation. Thus, obtained linear stripes can be effectively suppressed by already existing methods. This effectively suppresses ring artifacts in the data from a variety of experimental setups, sample types and also handles tomograms that are previously cropped. This approach functions automatically, avoids the need for assumptions and preserves fine details, all critical for synchrotron based nanometer resolution tomography.

  10. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis.

    PubMed

    Li, Yueh-Feng; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-06-25

    A ring-shaped stain is frequently left on a substrate by a drying drop containing colloids as a result of contact line pinning and outward flow. In this work, however, different patterns are observed for drying drops containing small solutes or polymers on various hydrophilic substrates. Depending on the surface activity of solutes and the contact angle hysteresis (CAH) of substrates, the pattern of the evaporation stain varies, including a concentrated stain, a ringlike deposit, and a combined structure. For small surface-inactive solutes, the concentrated stain is formed on substrates with weak CAH, for example, copper sulfate solution on silica glass. On the contrary, a ringlike deposit is developed on substrates with strong CAH, for example, a copper sulfate solution on graphite. For surface-active solutes, however, the wetting property can be significantly altered and the ringlike stain is always visible, for example, Brij-35 solution on polycarbonate. For a mixture of surface-active and surface-inactive solutes, a combined pattern of a ringlike and concentrated stain can appear. For various polymer solutions on polycarbonate, similar results are observed. Concentrated stains are formed for weak CAH such as sodium polysulfonate, and ring-shaped patterns are developed for strong CAH such as poly(vinyl pyrrolidone). The stain pattern is actually determined by the competition between the time scales associated with contact line retreat and solute precipitation. The suppression of the coffee-ring effect can thus be acquired by the control of CAH.

  11. Suppression of decoherence in a graphene monolayer ring

    SciTech Connect

    Smirnov, D. Rode, J. C.; Haug, R. J.

    2014-08-25

    The influence of high magnetic fields on coherent transport is investigated. A monolayer graphene quantum ring is fabricated and the Aharonov-Bohm effect is observed. For increased magnitude of the magnetic field, higher harmonics appear. This phenomenon is attributed to an increase of the phase coherence length due to reduction of spin flip scattering.

  12. Harmonics suppression in electromagnets with application to the ALS storage ring corrector magnet design

    SciTech Connect

    Schlueter, R.D.

    1991-01-28

    This memo presents an analytical development for prediction of skew harmonics in a iron core C-magnet to due arbitrarily positioned electromagnet coils. A structured approach is presented for the suppression of an arbitrary number of harmonic components to arbitrarily low values. Application of the analytical harmonic strength calculations coupled to the structured harmonic suppression approach is presented in the context of the design of the ALS storage ring corrector magnets.

  13. miR-935 suppresses gastric signet ring cell carcinoma tumorigenesis by targeting Notch1 expression

    SciTech Connect

    Yan, Chao; Yu, Jianchun; Kang, Weiming; Liu, Yuqin; Ma, Zhiqiang; Zhou, Li

    2016-01-29

    Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis. Expression of microRNAs (miRNAs) has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. The function of miR-935 has never been reported in cancer before. We found, using microRNA array, that expression of miR-935 in GSRCC cell lines is lower than in non-GSRCC cell lines, and enhanced expression of miR-935 in GSRCC cell-lines inhibit cell proliferation, migration and invasion. We also identified Notch1 as a direct target of miR-935. Knockdown of Notch1 reduced proliferation, migration/invasion of GSRCC cells, and overexpression Notch1's activated form (Notch intracellular domain) could rescue miR-935's tumor suppressive effect on GSRCC. Expression of miR-935 was lower in gastric carcinoma tissue than in paired normal tissue samples, and lower in GSRCC than in non-GSRCC. Our results demonstrate the inverse correlation between the expression of miR-935 and Notch1 in gastric tissues. We conclude that miR-935 inhibits gastric carcinoma cell proliferation, migration and invasion by targeting Notch1, suggesting potential applications of the miR-935-Notch1 pathway in gastric cancer clinical diagnosis and therapeutics, especially in gastric signet ring cell carcinoma. - Highlights: • The expression of miR-935 is lower in GC tissue than in paired normal tissue. • The expression of miR-935 is lower in GSRCC tissue than in non-GSRCC. • Enhanced expression of miR-935 suppresses tumorigenesis of GSRCC. • Notch1 is a direct target of miR-935.

  14. An active solid state ring laser gyroscope

    SciTech Connect

    Valle, T.J.

    1992-01-01

    The properties of an active, solid state ring laser gyroscope were investigated. Two laser diode pumped monolithic nonplanar ring oscillators (NPRO), forced to lase in opposite directions, formed the NPRO-Gyro. It was unique in being an active ring laser gyroscope with a homogeneously broadened gain medium. This work examined sources of technical and fundamental noise. Associated calculations accounted for aspects of the NPRO-Gyro performance, suggested design improvements, and outlined limitations. The work brought out the need to stabilize the NPRO environment in order to achieve performance goals. Two Nd:YAG NPROs were mounted within an environment short term stabilized to microdegrees Celsius. The Allan variance of the NPRO-Gyro beat note was 500 Hz for a one second time delay. Unequal treatment of the NPROs appeared as noise on the beat frequency, therefore reducing its rotation sensitivity. The sensitivity to rotation was limited by technical noise sources.

  15. Flattening a puckered cyclohexasilane ring by suppression of the pseudo-Jahn-Teller effect

    NASA Astrophysics Data System (ADS)

    Pokhodnya, Konstantin; Olson, Christopher; Dai, Xuliang; Schulz, Douglas L.; Boudjouk, Philip; Sergeeva, Alina P.; Boldyrev, Alexander I.

    2011-01-01

    We report the experimental and theoretical characterization of neutral Si6X12 (X = Cl, Br) molecules that contain D3d distorted six-member silicon rings due to a pseudo-Jahn-Teller (PJT) effect. Calculations show that filling the intervenient molecular orbitals with electron pairs of adduct suppresses the PJT effect in Si6X12, with the Si6 ring becoming planar (D6h) upon complex formation. The stabilizing role of electrostatic and covalent interactions between positively charged silicon atoms and chlorine atoms of the subject [Si6Cl14]2- dianionic complexes is discussed. The reaction of Si6Cl12 with a Lewis base (e.g., Cl-) to give planar [Si6Cl14]2- dianionic complexes presents an experimental proof that suppression of the PJT effect is an effective strategy in restoring high Si6 ring symmetry. Additionally, the proposed pathway for the PJT suppression has been proved by the synthesis and characterization of novel compounds containing planar Si6 ring, namely, [nBu4N]2[Si6Cl12I2], [nBu4N]2[Si6Br14], and [nBu4N]2[Si6Br12I2]. This work represents the first demonstration that PJT effect suppression is useful in the rational design of materials with novel properties.

  16. miR-935 suppresses gastric signet ring cell carcinoma tumorigenesis by targeting Notch1 expression.

    PubMed

    Yan, Chao; Yu, Jianchun; Kang, Weiming; Liu, Yuqin; Ma, Zhiqiang; Zhou, Li

    2016-01-29

    Gastric signet ring cell carcinoma (GSRCC) is a unique pathological type of gastric carcinoma that is extremely invasive and has a poor prognosis. Expression of microRNAs (miRNAs) has been closely linked to the carcinogenesis of gastric cancer and has been considered as a powerful prognostic marker. The function of miR-935 has never been reported in cancer before. We found, using microRNA array, that expression of miR-935 in GSRCC cell lines is lower than in non-GSRCC cell lines, and enhanced expression of miR-935 in GSRCC cell-lines inhibit cell proliferation, migration and invasion. We also identified Notch1 as a direct target of miR-935. Knockdown of Notch1 reduced proliferation, migration/invasion of GSRCC cells, and overexpression Notch1's activated form (Notch intracellular domain) could rescue miR-935's tumor suppressive effect on GSRCC. Expression of miR-935 was lower in gastric carcinoma tissue than in paired normal tissue samples, and lower in GSRCC than in non-GSRCC. Our results demonstrate the inverse correlation between the expression of miR-935 and Notch1 in gastric tissues. We conclude that miR-935 inhibits gastric carcinoma cell proliferation, migration and invasion by targeting Notch1, suggesting potential applications of the miR-935-Notch1 pathway in gastric cancer clinical diagnosis and therapeutics, especially in gastric signet ring cell carcinoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    DOEpatents

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  18. Measurement of myeloid cell immune suppressive activity.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  19. Praziquantel derivatives with antischistosomal activity: aromatic ring modification.

    PubMed

    Wang, Zhi-xia; Chen, Jing-lei; Qiao, Chunhua

    2013-08-01

    A series of aromatic ring-modified praziquantel derivatives were prepared and evaluated against juvenile and adult stage of Schistosoma japonicumin. Several analogs comparable in activity to the drug praziquantel have been identified based on in vitro and in vivo japonuicum schistosomes worm viability assay. Structure and activity relationship of these praziquantel aromatic ring-modified compounds was revealed. Specifically, a compound in which a bromine has been introduced in the aromatic ring of praziquantel demonstrated close antischistosomal activity to praziquantel in vivo.

  20. Noise suppression by an acoustically treated three-ring inlet on a TF-34 engine

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Goldman, R. G.; Heidelberg, L. J.

    1976-01-01

    Acoustic performance tests were conducted with a three-ring inlet noise suppressor designed for a TF-34 engine. For all tests the aft noise sources were highly suppressed. The measured inlet suppression was large, reaching levels greater than 30 db at the peak. Comparisons of the data and the performance predictions were in reasonably good agreement. The frequency of peak attenuation was well predicted; the magnitude and spectral shape were reasonably well predicted. Agreement was best when the distribution of sound energy across the inlet was taken into account in the performance predictions. Tests in which the length of treatment was varied showed an orderly progression of attenuation with length; performance predictions for the different lengths also showed an orderly progression with length. At the highest speed of the engine, multiple pure tones were present throughout the spectrum in the source noise signature. These tones were effectively suppressed by the inlet liner, even at low frequencies, although the liner was designed to work best at the blade-passing frequency.

  1. Active Suppression Of Vibrations On Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    1995-01-01

    Method of active suppression of nonlinear and nonstationary vibrations developed to reduce sonic fatigue and interior noise in high-speed aircraft. Structure of aircraft exhibits periodic, chaotic, and random vibrations when forced by high-intensity sound from jet engines, shock waves, turbulence, and separated flows. Method of suppressing vibrations involves feedback control: Strain gauges or other sensors mounted in paths of propagation of vibrations on structure sense vibrations; outputs of sensors processed into control signal applied to actuator mounted on structure, inducing compensatory forces.

  2. Active Suppression Of Vibrations On Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    1995-01-01

    Method of active suppression of nonlinear and nonstationary vibrations developed to reduce sonic fatigue and interior noise in high-speed aircraft. Structure of aircraft exhibits periodic, chaotic, and random vibrations when forced by high-intensity sound from jet engines, shock waves, turbulence, and separated flows. Method of suppressing vibrations involves feedback control: Strain gauges or other sensors mounted in paths of propagation of vibrations on structure sense vibrations; outputs of sensors processed into control signal applied to actuator mounted on structure, inducing compensatory forces.

  3. Active suppression after involuntary capture of attention.

    PubMed

    Sawaki, Risa; Luck, Steven J

    2013-04-01

    After attention has been involuntarily captured by a distractor, how is it reoriented toward a target? One possibility is that attention to the distractor passively fades over time, allowing the target to become attended. Another possibility is that the captured location is actively suppressed so that attention can be directed toward the target location. The present study investigated this issue with event-related potentials (ERPs), focusing on the N2pc component (a neural measure of attentional deployment) and the Pd component (a neural measure of attentional suppression). Observers identified a color-defined target in a search array, which was preceded by a task-irrelevant cue array. When the cue array contained an item that matched the target color, this item captured attention (as measured both behaviorally and with the N2pc component). This capture of attention was followed by active suppression (indexed by the Pd component), and this was then followed by a reorienting of attention toward the target in the search array (indexed by the N2pc component). These findings indicate that the involuntary capture of attention by a distractor is followed by an active suppression process that presumably facilitates the subsequent voluntary orienting of attention to the target.

  4. Suppression of Beam-Ion Instability in Electron Rings with Multi-Bunch Train Beam Fillings

    SciTech Connect

    Wang, L.; Cai, Y.; Raubenheimer, T.O.; Fukuma, H.; /KEK, Tsukuba

    2011-08-18

    The ion-caused beam instability in the future light sources and electron damping rings can be serious due to the high beam current and ultra-small emittance of picometer level. One simple and effective mitigation of the instability is a multi-bunch train beam filling pattern which can significantly reduce the ion density near the beam, and therefore reduce the instability growth rate up to two orders of magnitude. The suppression is more effective for high intensity beams with low emittance. The distribution and the field of trapped ions are benchmarked to validate the model used in the paper. The wake field of ion-cloud and the beam-ion instability is investigated both analytically and numerically. We derived a simple formula for the build-up of ion-cloud and instability growth rate with the multi-bunch-train filling pattern. The ion instabilities in ILC damping ring, SuperKEKB and SPEAR3 are used to compare with our analyses. The analyses in this paper agree well with simulations.

  5. Active flutter suppression using dipole filters

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.; Waszak, Martin R.

    1992-01-01

    By using traditional control concepts of gain root locus, the active suppression of a flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable mode towards a critical system zero determines the degree to which the flutter mode can be stabilized. For control situations where the critical zero is adversely placed in the complex plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures that the flutter mode is stabilized with acceptable control energy. The control strategy is illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-tunnel model, where minimal control effort solutions are mandated by control rate saturation problems caused by wind-tunnel turbulence.

  6. Cassini UVIS Observations Show Active Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L.; Colwell, J. E.; UVIS Team

    2004-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the NASA/ESA Cassini spacecraft. This spectrograph includes channels for extreme UV and far UV spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. We report our initial results from UVIS observations of Saturn's rings. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system Oxygen in the Saturn system dominates the magnetosphere. Observed fluctuations indicate close interactions with plasma sources. Stochastic events in the E ring may be the ultimate source. The spectral signature of water ice is seen on Phoebe and in Saturn's rings. Water ice is mixed non-uniformly with darker constituents. The high structure of the UV ring reflectance argues that collisional transport dominates ballistic transport in darkening the rings. Our preliminary results support the idea that rings are recycled fragments of moons: the current processes are more important than history and initial conditions. The spectra along the UVIS SOI radial scan indicate varying amounts of water ice. In the A ring, the ice fraction increases outward to a maximum at the outer edge. This large-scale variation is consistent with initially pure ice that has suffered meteoritic bombardment over the age of the Solar system (Cuzzi and Estrada 1998). We also see variations over scales of 1000 - 3000 km, which cannot be explained by this mechanism. Ballistic transport of spectrally neutral extrinsic pollutants from meteoroids striking the rings has a typical throw distance of 6000 km (Durisen et al 1989), too long to explain this finer structure. We propose a class of smaller renewal events, in which a small moon residing within the rings is shattered by an external impactor (Colwell and Esposito 1993, Barbara and Esposito 2002, Esposito and Colwell 2003). The

  7. Suppression of Ostwald ripening in active emulsions.

    PubMed

    Zwicker, David; Hyman, Anthony A; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  8. Suppression of Ostwald ripening in active emulsions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  9. RING1 and YY1 binding protein suppresses breast cancer growth and metastasis.

    PubMed

    Zhou, Hongyan; Li, Jie; Zhang, Zhanqiang; Ye, Runyi; Shao, Nan; Cheang, Tuckyun; Wang, Shenming

    2016-12-01

    Evidence suggests that RING1 and YY1 binding protein (RYBP) functions as a tumor suppressor. However, its role in breast cancer remains unclear. In the present study, the expression of RYBP was assessed in breast cancer patients and cell lines. Disease-free survival durations of breast cancer patients with high RYBP expression were determined based on the ATCG dataset. The effects of RYBP overexpression on cell growth, migration and invasive potency were also assessed. Nude mouse xenograft and lung metastasis models were also used to confirm the role of RYBP. The involvement of SRRM3 in RYBP-mediated breast cancer suppression was explored using SRRM3 siRNA. The potential relationship between RYBP, SRRM3, and REST-003 was examined by qPCR. The results showed that RYBP was downregulated in breast cancer patients and in several breast cancer cell lines. Breast cancer patients with high expression levels of RYBP displayed better disease-free survival. Overexpression of RYBP in MDA-MB-231 and SK-BR-3 cells significantly decreased cell proliferation, migration, and invasion ability, and increased the proportion of cells arrested in S-phase compared with the negative control cells. Additionally, upregulation of proliferation-related cell cycle proteins (cyclin A and cyclin B1) and E-cadherin, and downregulation of snail were observed in RYBP-overexpressing cells. Overexpression of RYBP reduced tumor volume and weight as well as metastatic foci in the lungs of nude mice. SRRM3 knockdown by siRNA, which is downregulated after RYBP overexpression, suppressed cell growth and metastasis in MDA-MB-231 and SK-BR-3 cells. Furthermore, qPCR analysis revealed that REST-003 ncRNA was downregulated in cells overexpressing RYBP and in SRRM3-inhibited cells. Moreover, cell invasion ability and growth were increased after SRRM3 upregulation in RYBP-overexpressing cells, but they were decreased following si-REST-003 transfection. In conclusion, overexpression of RYBP suppresses breast

  10. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  11. Eigenspace design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, W. L.; Liebst, B. S.

    1984-01-01

    The application of eigenspace design techniques to an active flutter suppression system for the DAST ARW-2 research drone is examined. Eigenspace design techniques allow the control system designer to determine feedback gains which place controllable eigenvalues in specified configurations and which shape eigenvectors to achieve desired dynamic response. Eigenspace techniques were applied to the control of lateral and longitudinal dynamic response of aircraft. However, little was published on the application of eigenspace techniques to aeroelastic control problems. This discussion will focus primarily on methodology for design of full-state and limited-state (output) feedback controllers. Most of the states in aeroelastic control problems are not directly measurable, and some type of dynamic compensator is necessary to convert sensor outputs to control inputs. Compensator design are accomplished by use of a Kalman filter modified if necessary by the Doyle-Stein procedure for full-state loop transfer function recovery, by some other type of observer, or by transfer function matching.

  12. Active vibration suppression of helicopter horizontal stabilizers

    NASA Astrophysics Data System (ADS)

    Cinquemani, Simone; Cazzulani, Gabriele; Resta, Ferruccio

    2017-04-01

    Helicopters are among the most complex machines ever made. While ensuring high performance from the aeronautical point of view, they are not very comfortable due to vibration mainly created by the main rotor and by the interaction with the surrounding air. One of the most solicited structural elements of the vehicle are the horizontal stabilizers. These elements are particularly stressed because of their composite structure which, while guaranteeing lightness and strength, is characterized by a low damping. This work makes a preliminary analysis on the dynamics of the structure and proposes different solutions to actively suppress vibrations. Among them, the best in terms of the relationship between performance and weight / complexity of the system is that based on inertial actuators mounted on the inside of the horizontal stabilizers. The work addresses the issue of the design of the device and its use in the stabilizer from both the numerical and the experimental points of view.

  13. Fuel Treatment Effects on Water Use Efficiency in Western Pine Forests Under Fire Suppression Evaluated Using Tree Ring Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Taylor, A. H.; Belmecheri, S.; Harris, L. B.

    2016-12-01

    We identified variation on water use efficiency interpreted from carbon 13 in tree ring cellulose in dense ponderosa pines forests in Washington and Arizona. Historically, these forests burned every decade until fires were suppressed beginning in the early twentieth century. The reduction in fire caused large increases in forest density and forest biomass and potential for intense fire. Forests with hazardous fuels are common in the western United States and these types of forests are treated with mechanical thinning and mechanical thinning and burning to reduce hazardous fuels and fire intensity. At each site we extracted tree ring samples from five trees in each treatment type and a control to identify the effects of fuel treatment of concentration of carbon 13 in tree ring cellulose. Water use efficiency as measured by carbon 13 increased after fuel treatments. Treatment effects were larger for the mechanical plus burn treatment than for the mechanical treatment in each study area compared to the control stands Our results suggest that fuel treatments reduce sensitivity of tree growth to climate and increase water use efficiency. Since tree ring carbon 13 is related to plant productivity, carbon 13 in tree rings can be used as a metric of change in ecosystem function for evaluating fuel treatments.

  14. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 5: Fire suppression activities

    Treesearch

    Charles W. McHugh; Paul Gleason

    2003-01-01

    The purpose of this report is to document the suppression actions taken during the Hayman Fire. The long duration of suppression activities (June 8 through July 18), and multiple incident management teams assigned to the fire, makes this a challenging task. Original records and reports produced independently by the various teams assigned to different portions of the...

  15. Tree-ring isotope records of tropical cyclone activity.

    PubMed

    Miller, Dana L; Mora, Claudia I; Grissino-Mayer, Henri D; Mock, Cary J; Uhle, Maria E; Sharp, Zachary

    2006-09-26

    The destruction wrought by North Atlantic hurricanes in 2004 and 2005 dramatically emphasizes the need for better understanding of tropical cyclone activity apart from the records provided by meteorological data and historical documentation. We present a 220-year record of oxygen isotope values of alpha-cellulose in longleaf pine tree rings that preserves anomalously low isotope values in the latewood portion of the ring in years corresponding with known 19th and 20th century landfalling/near-coastal tropical storms and hurricanes. Our results suggest the potential for a tree-ring oxygen isotope proxy record of tropical cyclone occurrence extending back many centuries based on remnant pine wood from protected areas in the southeastern U.S.

  16. Tree-ring isotope records of tropical cyclone activity

    PubMed Central

    Miller, Dana L.; Mora, Claudia I.; Grissino-Mayer, Henri D.; Mock, Cary J.; Uhle, Maria E.; Sharp, Zachary

    2006-01-01

    The destruction wrought by North Atlantic hurricanes in 2004 and 2005 dramatically emphasizes the need for better understanding of tropical cyclone activity apart from the records provided by meteorological data and historical documentation. We present a 220-year record of oxygen isotope values of α-cellulose in longleaf pine tree rings that preserves anomalously low isotope values in the latewood portion of the ring in years corresponding with known 19th and 20th century landfalling/near-coastal tropical storms and hurricanes. Our results suggest the potential for a tree-ring oxygen isotope proxy record of tropical cyclone occurrence extending back many centuries based on remnant pine wood from protected areas in the southeastern U.S. PMID:16984996

  17. Suppression of Antigen-Specific Lymphocyte Activation in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, David; Pride, Michael W.; Brown, Eric L.; Risin, Diana; Pellis, Neal R.

    1999-01-01

    Various parameters of immune suppression are observed in astronauts during and after spaceflight, and in isolated immune cells in true and simulated microgravity. Specifically, polyclonal activation of T cells is severely suppressed in true and simulated microgravity. These recent findings with various polyclonal activators suggests a suppression of oligoclonal lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction (MLR), as a model for a primary immune response; a tetanus toxoid (TT) response and a B. burgdorferi (Bb) response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  18. Non‐water‐suppressed short‐echo‐time magnetic resonance spectroscopic imaging using a concentric ring k‐space trajectory

    PubMed Central

    Burns, Brian; Chiew, Mark; Jezzard, Peter; Thomas, M. Albert

    2017-01-01

    Water‐suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non‐water‐suppressed MRS spectrum is used for artefact correction, reconstruction of phased‐array coil data and metabolite quantification. Here, a two‐scan metabolite‐cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short‐echo (T E = 14 ms), two‐dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite‐cycling is counterbalanced by a time‐efficient concentric ring k‐space trajectory. To validate the technique, water‐suppressed MRSI acquisitions were also performed for comparison. The proposed non‐water‐suppressed metabolite‐cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high‐resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non‐water‐suppressed and water‐suppressed techniques. The achieved spectral quality, signal‐to‐noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in‐plane resolution of 10 × 10 mm2 in 8 min and with a Cramér‐Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non‐water‐suppressed technique enabled voxel‐wise single‐scan frequency, phase and eddy current correction. These findings demonstrate that our non‐water‐suppressed metabolite‐cycling MRSI technique can perform robustly on 3 T MRI systems and

  19. Non-water-suppressed short-echo-time magnetic resonance spectroscopic imaging using a concentric ring k-space trajectory.

    PubMed

    Emir, Uzay E; Burns, Brian; Chiew, Mark; Jezzard, Peter; Thomas, M Albert

    2017-03-08

    Water-suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non-water-suppressed MRS spectrum is used for artefact correction, reconstruction of phased-array coil data and metabolite quantification. Here, a two-scan metabolite-cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short-echo (TE  = 14 ms), two-dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite-cycling is counterbalanced by a time-efficient concentric ring k-space trajectory. To validate the technique, water-suppressed MRSI acquisitions were also performed for comparison. The proposed non-water-suppressed metabolite-cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high-resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non-water-suppressed and water-suppressed techniques. The achieved spectral quality, signal-to-noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in-plane resolution of 10 × 10 mm(2) in 8 min and with a Cramér-Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non-water-suppressed technique enabled voxel-wise single-scan frequency, phase and eddy current correction. These findings demonstrate that our non-water-suppressed metabolite-cycling MRSI technique can perform robustly on 3 T MRI systems and within a clinically feasible acquisition time.

  20. Analysis of tracheid development in suppressed-growth Ponderosa Pine using the FPL ring profiler

    Treesearch

    C. Tim Scott; David W. Vahey

    2012-01-01

    The Ring Profiler was developed to examine the cross-sectional morphology of wood tracheids in a 12.5-mm core sample. The instrument integrates a specially designed staging apparatus with an optical imaging system to obtain high-contrast, high-resolution images containing about 200-500 tracheids. These images are further enhanced and analyzed to extract tracheid cross-...

  1. Cross Burg entropy maximization and its application to ringing suppression in image reconstruction.

    NASA Astrophysics Data System (ADS)

    Cao, Yu; Eggermont, P. P. B.; Terebey, S.

    1999-02-01

    The authors present a multiplicative algorithm for image reconstruction, together with a partial convergence proof. The iterative scheme aims to maximize cross Burg entropy between modeled and measured data. Its application to infrared astronomical satellite (IRAS) data shows reduced ringing around point sources, compared to the EM (Richardson-Lucy) algorithm.

  2. Suppression of the Coffee-Ring Effect and Evaporation-Driven Disorder to Order Transition in Colloidal Droplets.

    PubMed

    Das, Shyamashis; Dey, Atreya; Reddy, Govardhan; Sarma, D D

    2017-09-15

    The formation of a ring-like deposit at the periphery of a drying colloidal droplet is a vexing problem in many applications. We show a complete suppression of such deposits when a droplet of aqueous colloidal suspension, deposited on a glass substrate coated with a thin layer of silicone oil, is evaporated. This coating prevents the periphery of the aqueous droplet from getting pinned to the substrate and helps in suppressing the ring formation. It also decreases the surface area of the droplet, thereby decreasing the evaporation rate. These two factors together, driving the colloidal particles slowly to the center of the droplet, contribute to form an ordered crystallite at the end of the evaporation process. Brownian dynamics simulations performed to study ordering in the aggregate show that the spherical colloidal particles form face-centered cubic structures. Experiments and simulations show that slow rates of droplet evaporation and smaller-sized colloidal particles further lead to high-quality ordered colloidal crystallites.

  3. Suppression of the coffee-ring effect by shape-dependent capillary interactions.

    PubMed

    Yunker, Peter J; Still, Tim; Lohr, Matthew A; Yodh, A G

    2011-08-17

    When a drop of liquid dries on a solid surface, its suspended particulate matter is deposited in ring-like fashion. This phenomenon, known as the coffee-ring effect, is familiar to anyone who has observed a drop of coffee dry. During the drying process, drop edges become pinned to the substrate, and capillary flow outward from the centre of the drop brings suspended particles to the edge as evaporation proceeds. After evaporation, suspended particles are left highly concentrated along the original drop edge. The coffee-ring effect is manifested in systems with diverse constituents, ranging from large colloids to nanoparticles and individual molecules. In fact--despite the many practical applications for uniform coatings in printing, biology and complex assembly-the ubiquitous nature of the effect has made it difficult to avoid. Here we show experimentally that the shape of the suspended particles is important and can be used to eliminate the coffee-ring effect: ellipsoidal particles are deposited uniformly during evaporation. The anisotropic shape of the particles significantly deforms interfaces, producing strong interparticle capillary interactions. Thus, after the ellipsoids are carried to the air-water interface by the same outward flow that causes the coffee-ring effect for spheres, strong long-ranged interparticle attractions between ellipsoids lead to the formation of loosely packed or arrested structures on the air-water interface. These structures prevent the suspended particles from reaching the drop edge and ensure uniform deposition. Interestingly, under appropriate conditions, suspensions of spheres mixed with a small number of ellipsoids also produce uniform deposition. Thus, particle shape provides a convenient parameter to control the deposition of particles, without modification of particle or solvent chemistry.

  4. Public key suppression and recovery using a PANDA ring resonator for high security communication

    NASA Astrophysics Data System (ADS)

    Juleang, Pakorn; Phongsanam, Prapas; Mitatha, Somsak; Yupapin, Preecha P.

    2011-03-01

    An interesting security technique that uses the dark-bright soliton conversion control within the microring resonator is proposed. The obtained outputs for a dark-bright soliton dynamic state can be controlled and used to form the public key suppression for communication security application. However, a good design should be possible to be fabricated; therefore, by using the parameters based on the practical device parameters, the simulation results obtained have shown that the proposed system can indeed be achieved. The public key suppression and public key recovery can be used in a highly secure communication system and has potential applications in optical cryptography.

  5. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  6. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  7. Pharmacokinetics and ovarian suppression during use of a contraceptive vaginal ring in normal-weight and obese women.

    PubMed

    Westhoff, Carolyn L; Torgal, Anupama H; Mayeda, Elizabeth Rose; Petrie, Kelsey; Thomas, Tiffany; Dragoman, Monica; Cremers, Serge

    2012-07-01

    Many observational studies indicate higher oral contraceptive failure among obese women, but most clinical trials and physiologic studies do not support these differences. Limited data indicate higher failure rates among obese contraceptive patch users. Data regarding contraceptive vaginal ring performance in obese women are needed. Twenty normal weight (body mass index [BMI] 19.0-24.9; median, 21.65) and 20 obese (BMI 30.0-39.9; median, 33.7) women enrolled in a prospective study of ethinyl estradiol (EE(2)) and etonorgestrel pharmacokinetics and of ovarian follicle development, endometrial thickness, and bleeding patterns, all measured biweekly during the second cycle of contraceptive vaginal ring use. Thirty-seven women completed follow-up. Mean day 0-21 EE(2) concentrations were lower among obese vs normal weight women (15.0 vs 22.0 pg/mL, respectively, P = .004), whereas etonorgestrel concentrations were similar (1138 vs 1256 pg/mL, respectively, P = .39). Follicular development was minimal in both groups, with only 5 women achieving a maximum follicle diameter >13 mm at any time during 3 weeks follow-up (3 normal weight and 2 obese women); these women had serum progesterone levels <1.0. Obese women reported more bleeding or spotting than normal weight women (3.6 vs 1.4 days, respectively, P = .01). Although obese women had lower EE(2) levels during contraceptive vaginal ring use, they had excellent suppression of ovarian follicle development, similar to normal weight women. This predicts that contraceptive vaginal ring effectiveness will be similar in women with a BMI up to 39.9. The lower serum EE(2) levels in the obese women may explain the greater reported bleeding or spotting days. Copyright © 2012 Mosby, Inc. All rights reserved.

  8. Active Suppression Of Vibrations In Stirling-Cycle Coolers

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.

    1995-01-01

    Report presents results of early research directed toward development of active control systems for suppression of vibrations in spacecraft Stirling-cycle cryocoolers. Researchers developed dynamical models of cryocooler compressor.

  9. Active Suppression Of Vibrations In Stirling-Cycle Coolers

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.

    1995-01-01

    Report presents results of early research directed toward development of active control systems for suppression of vibrations in spacecraft Stirling-cycle cryocoolers. Researchers developed dynamical models of cryocooler compressor.

  10. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines.

    PubMed

    Musiol, Robert; Jampilek, Josef; Nycz, Jacek E; Pesko, Matus; Carroll, James; Kralova, Katarina; Vejsova, Marcela; O'Mahony, Jim; Coffey, Aidan; Mrozek, Anna; Polanski, Jaroslaw

    2010-01-12

    In this study, a series of fourteen ring-substituted 8-hydroxyquinoline derivatives were prepared. The synthesis procedures are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity. They were tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than the standards isoniazid or fluconazole. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed.

  11. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  12. CBMG, a novel derivative of mansonone G suppresses adipocyte differentiation via suppression of PPARγ activity.

    PubMed

    Kim, Hyo Kyeong; Hairani, Rita; Jeong, Hana; Jeong, Mi Gyeong; Chavasiri, Warinthorn; Hwang, Eun Sook

    2017-08-01

    Mansorins and mansonones have been isolated from Mansonia gagei heartwoods, a traditional herbal medicine used to treat heart failure, and characterized to have anti-oxidant, anti-bacterial, anti-tumor, and anti-estrogenic activities. However, there is as yet no information on their effects on adipogenesis and lipid storage associated with heart disease. In this study, we investigated the effects of naturally occurring compounds on adipogenic differentiation and sought to develop more potent anti-adipogenic compound. We found that mansonone G (MG) suppressed adipocyte differentiation of 3T3-L1 cells, with a 40% decrease in lipid accumulation at 10 μM. MG derivatives including ether and ester analogues were then synthesized and assayed for their ability to suppress adipogenesis. A novel MG derivative, chlorobenzoyl MG (CBMG) most potently suppressed adipocyte differentiation with the decreased level of aP2 and adiponectin. Interestingly, CBMG treatment decreased the expression of CCAAT enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ). Further analysis confirmed that CBMG suppressed both the expression and activity of PPARγ, a master regulator of adipogenesis, and subsequently led to decreases in transcription of C/EBPα, aP2, and adiponectin in adipogenesis, thereby attenuating adipocyte differentiation. Our results suggest that a novel MG derivative, CBMG may have beneficial applications in the control of obesity through the suppression of PPARγ-induced adipocyte differentiation and lipid accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation

    PubMed Central

    Taylor, AW; Dixit, S; Yu, J

    2015-01-01

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  14. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation.

    PubMed

    Taylor, A W; Dixit, S; Yu, J

    2015-01-29

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  15. Cold Suppresses Agonist-induced Activation of TRPV1

    PubMed Central

    Chung, M.-K.; Wang, S.

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction. PMID:21666106

  16. Cold suppresses agonist-induced activation of TRPV1.

    PubMed

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  17. Suppression of antigen-specific lymphocyte activation in modeled microgravity.

    PubMed

    Cooper, D; Pride, M W; Brown, E L; Risin, D; Pellis, N R

    2001-02-01

    Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  18. Suppression of antigen-specific lymphocyte activation in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  19. Suppression of antigen-specific lymphocyte activation in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  20. Absence of Suppression in the Persistent Current by Delocalization in Random-dimer Mesoscopic Rings

    NASA Astrophysics Data System (ADS)

    Liu, Y. M.; Peng, R. W.; Huang, X. Q.; Wang, Mu; Hu, A.; Jiang, S. S.

    2003-02-01

    We study the persistent current (PC) in one-dimensional (1D) magnetic-flux threaded mesoscopic rings, which is constructed according to the random-dimer (RD) model. It is found that the PC varies significantly when the Fermi energy is changed in the system. The PC can approach the behaviour of free electrons regardless of the disorder if there is the extended electronic state at the Fermi level; while the PC can be depressed dramatically if the highest-occupied electronic state is localized or in the intermediate case between the extended state and localized one. This property provides a possible explanation to the anomalously large PC observed in some experiments. Furthermore, it is demonstrated that the electronic delocalization leads to unsuppressed persistent currents and \\sqrt{N} unscattered states exist around the resonant energy in the RD model from the viewpoint of the PC. The possibility to use 1D random-dimer mesoscopic rings as quantum-switch devices is also discussed.

  1. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances

    PubMed Central

    Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504

  2. A diode for accelerating hydrogen nuclides with electron conductivity suppressed by an internal ring magnet

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2015-05-01

    We present new experimental data on the acceleration of deuterons in a small-size magnetically insulated diode. Plasma containing deuterons was created at the anode during irradiation of a TiD target by a focused laser beam with a wavelength of 1.06 μm. The accelerating voltage pulse was formed by an Arkadiev-Marx generator. A circular cathode was arranged symmetrically relative to the anode and represented a permanent ring magnet with an inner radius not exceeding 0.02 m and a magnetic induction of up to 0.4 T at the center, which ensured magnetic insulation of the accelerating gap. The experiments showed that the current of accelerated deuterons with energies of up to 300 eV can reach a level of 0.5 kA at pulse durations of ≤0.5 μs.

  3. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    PubMed

    Sabran, Mursyidul Idzam; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A E

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  4. Flood Plain Aggradation Rates Based on Tree-Ring Growth-Suppression Dates

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.

    2003-12-01

    When woody riparian plants are partially buried subsequent tree rings of the buried stems resemble those of roots. Annual rings in a buried stem are narrower and have larger vessels then those in unburied sections of the same stem. We have used this phenomenon to date flood plain sediments exposed in trenches, along two ephemeral streams in New Mexico (Rio Puerco and Chaco Wash) where the sediments are predominantly silt and very fine sand and the plants are predominantly tamarisk and willow. Cross dating down the stem allows dating of the first growth-season following burial by thick beds, and constrains the age of all stratigraphic units deposited since germination of the tree. We observed that the anatomical reaction to burial increases with bed thickness and cumulative deposition. Beds that are thicker than 30 cm can be dated to the year of the deposition event. Beds 10 to 30 cm thick can usually be dated to within several years. The period of deposition of multiple very thin beds can be constrained to the decade. Results can be improved by analyzing multiple stems from one tree and multiple trees linked together by the stratigraphy. Along our study streams, sites far from the channel tend to have moderate and relatively steady point-aggradation rates. Levees next to the channel tend to have the thickest deposits per flood and variable long-term rates, which can differ from the whole flood plain aggradation rates by several fold. Cross-sectionally averaged flood plain aggradation has been as large as a meter per decade along our study streams.

  5. [Suppression of epileptiform activity by micropolarizing brain structures].

    PubMed

    Tsukunov, S G; Gal'dinov, G V

    1980-05-01

    Penicillin administration elicited epileptiform responses whereas micropolarization (MCP) affected the epileptogenic foci in cats with indwelled electrodes and chemotrodes. Three types of experimental epilepsy models were obtained: focal petit mal seizures, adversive, and grand mal seizures. The MCP of amygdala and caudate nucleus completely suppressed all three types of seizures whereas MCP of hippocampus enhanced the pathology. Two mechanisms of seizure suppression seem to exist: the inhibitory and the activating ones.

  6. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  7. Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    A method of feedback control has been proposed as a means of suppressing thermo-acoustic instabilities in a liquid- fueled combustor of a type used in an aircraft engine. The basic principle of the method is one of (1) sensing combustor pressure oscillations associated with instabilities and (2) modulating the rate of flow of fuel to the combustor with a control phase that is chosen adaptively so that the pressure oscillations caused by the modulation oppose the sensed pressure oscillations. The need for this method arises because of the planned introduction of advanced, lean-burning aircraft gas turbine engines, which promise to operate with higher efficiencies and to emit smaller quantities of nitrogen oxides, relative to those of present aircraft engines. Unfortunately, the advanced engines are more susceptible to thermoacoustic instabilities. These instabilities are hard to control because they include large dead-time phase shifts, wide-band noise characterized by amplitudes that are large relative to those of the instabilities, exponential growth of the instabilities, random net phase walks, and amplitude fluctuations. In this method (see figure), the output of a combustion-pressure sensor would be wide-band-pass filtered and then further processed to generate a control signal that would be applied to a fast-actuation valve to modulate the flow of fuel. Initially, the controller would rapidly take large phase steps in order to home in, within a fraction of a second, to a favorable phase region within which the instability would be reduced. Then the controller would restrict itself to operate within this phase region and would further restrict itself to operate within a region of stability, as long as the power in the instability signal was decreasing. In the phase-shifting scheme of this method, the phase of the control vector would be made to continuously bounce back and forth from one boundary of an effective stability region to the other. Computationally

  8. Active and passive vibration suppression for space structures

    NASA Technical Reports Server (NTRS)

    Hyland, David C.

    1991-01-01

    The relative benefits of passive and active vibration suppression for large space structures (LSS) are discussed. The intent is to sketch the true ranges of applicability of these approaches using previously published technical results. It was found that the distinction between active and passive vibration suppression approaches is not as sharp as might be thought at first. The relative simplicity, reliability, and cost effectiveness touted for passive measures are vitiated by 'hidden costs' bound up with detailed engineering implementation issues and inherent performance limitations. At the same time, reliability and robustness issues are often cited against active control. It is argued that a continuum of vibration suppression measures offering mutually supporting capabilities is needed. The challenge is to properly orchestrate a spectrum of methods to reap the synergistic benefits of combined advanced materials, passive damping, and active control.

  9. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes.

  10. Endogenous GABAA receptor activity suppresses glioma growth.

    PubMed

    Blanchart, A; Fernando, R; Häring, M; Assaife-Lopes, N; Romanov, R A; Andäng, M; Harkany, T; Ernfors, P

    2017-02-09

    Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.

  11. Next Generation Active Buffet Suppression System

    NASA Technical Reports Server (NTRS)

    Galea, Stephen C.; Ryall, Thomas G.; Henderson, Douglas A.; Moses, Robert W.; White, Edward V.; Zimcik, David G.

    2003-01-01

    Buffeting is an aeroelastic phenomenon that is common to high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. This paper describes an international collaborative research activity among Australia, Canada and the United States involving the use of active structural control to alleviate the damaging structural response to these loads. The research program is being co-ordinated by the Air Force Research Laboratory (AFRL) and is being conducted under the auspices of The Technical Cooperative Program (TTCP). This truly unique collaborative program has been developed to enable each participating country to contribute resources toward a program that coalesces a broad range of technical knowledge and expertise into a single investigation. This collaborative program is directed toward a full-scale test of an F/A-18 empennage, which is an extension of an earlier initial test. The current program aims at applying advanced directional piezoactuators, the aircraft rudder, switch mode amplifiers and advanced control strategies on a full-scale structure to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration.

  12. Modification of flower colour by suppressing β-ring carotene hydroxylase genes in Oncidium.

    PubMed

    Wang, H-M; To, K-Y; Lai, H-M; Jeng, S-T

    2016-03-01

    Oncidium 'Gower Ramsey' (Onc. GR) is a popular cut flower, but its colour is limited to bright yellow. The β-ring carotene hydroxylase (BCH2) gene is involved in carotenoid biogenesis for pigment formation. However, the role of BCH2 in Onc. GR is poorly understood. Here, we investigated the functions of three BCH2 genes, BCH-A2, BCH-B2 and BCH-C2 isolated from Onc. GR, to analyse their roles in flower colour. RT-PCR expression profiling suggested that BCH2 was mainly expressed in flowers. The expression of BCH-B2 remained constant while that of BCH-A2 gradually decreased during flower development. Using Agrobacterium tumefaciens to introduce BCH2 RNA interference (RNAi), we created transgenic Oncidium plants with down-regulated BCH expression. In the transgenic plants, flower colour changed from the bright yellow of the wild type to light and white-yellow. BCH-A2 and BCH-B2 expression levels were significantly reduced in the transgenic flower lips, which make up the major portion of the Oncidium flower. Sectional magnification of the flower lip showed that the amount of pigmentation in the papillate cells of the adaxial epidermis was proportional to the intensity of yellow colouration. HPLC analyses of the carotenoid composition of the transgenic flowers suggested major reductions in neoxanthin and violaxanthin. In conclusion, BCH2 expression regulated the accumulation of yellow pigments in the Oncidium flower, and the down-regulation of BCH-A2 and BCH-B2 changed the flower colour from bright yellow to light and white-yellow. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Active Suppression Of Vibrations On Elastic Beams

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Fuller, Chris R.; Gibbs, Gary P.

    1993-01-01

    Pairs of colocated piezoelectric transducers, independently controlled by multichannel adaptive controller, employed as actuators and sensors to achieve simultaneous attenuation of both extensional and flexural motion. Single pair used to provide simultaneous control of flexural and extensional waves, or two pairs used to control torsional motion also. Capability due to nature of piezoelectric transducers, when bonded to surfaces of structures and activated by oscillating voltages, generate corresponding oscillating distributions of stresses in structures. Phases and amplitudes of actuator voltages adjusted by controller to impede flow of vibrational energy simultaneously, in waves of various forms, beyond locations of actuators. Concept applies equally to harmonic or random response of structure and to multiple responses of structure to transverse bending, torsion, and compression within structural element. System has potential for many situations in which predominant vibration transmission path through framelike structure.

  14. Active Suppression Of Vibrations On Elastic Beams

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Fuller, Chris R.; Gibbs, Gary P.

    1993-01-01

    Pairs of colocated piezoelectric transducers, independently controlled by multichannel adaptive controller, employed as actuators and sensors to achieve simultaneous attenuation of both extensional and flexural motion. Single pair used to provide simultaneous control of flexural and extensional waves, or two pairs used to control torsional motion also. Capability due to nature of piezoelectric transducers, when bonded to surfaces of structures and activated by oscillating voltages, generate corresponding oscillating distributions of stresses in structures. Phases and amplitudes of actuator voltages adjusted by controller to impede flow of vibrational energy simultaneously, in waves of various forms, beyond locations of actuators. Concept applies equally to harmonic or random response of structure and to multiple responses of structure to transverse bending, torsion, and compression within structural element. System has potential for many situations in which predominant vibration transmission path through framelike structure.

  15. A fluorometric microarray with ZnO substrate-enhanced fluorescence and suppressed ``coffee-ring'' effects for fluorescence immunoassays

    NASA Astrophysics Data System (ADS)

    Li, Shuying; Dong, Minmin; Li, Rui; Zhang, Liyan; Qiao, Yuchun; Jiang, Yao; Qi, Wei; Wang, Hua

    2015-11-01

    A glass slide was first patterned with hydrophobic hexadecyltrimethoxysilane (HDS) and then microspotted with hydrophilic ZnO nanoparticles in an aminopropyltriethoxysilane (APS) matrix. The resulting HDS-ZnO-APS microarray could present the capability of suppressing the undesirable ``coffee-ring'' effects through its hydrophobic pattern so as to allow the fabrication of ZnO-APS testing microspots with a highly dense and uniform distribution. The lotus-like ``self-cleaning'' function could also be expected to effectively curb the cross contamination of multiple sample droplets. More importantly, the introduction of ZnO nanoparticles could endow the testing microspots with substrate-enhanced fluorescence leading to signal-amplification microarray fluorometry. The practical application of the developed HDS-ZnO-APS microarray was investigated by the sandwiched fluorometric immunoassays of human IgG, showing a linear detection range from 0.010 to 10.0 ng mL-1. Such a throughput-improved fluorometric microarray could be tailored for probing multiple biomarkers in complicated media like serum or blood.A glass slide was first patterned with hydrophobic hexadecyltrimethoxysilane (HDS) and then microspotted with hydrophilic ZnO nanoparticles in an aminopropyltriethoxysilane (APS) matrix. The resulting HDS-ZnO-APS microarray could present the capability of suppressing the undesirable ``coffee-ring'' effects through its hydrophobic pattern so as to allow the fabrication of ZnO-APS testing microspots with a highly dense and uniform distribution. The lotus-like ``self-cleaning'' function could also be expected to effectively curb the cross contamination of multiple sample droplets. More importantly, the introduction of ZnO nanoparticles could endow the testing microspots with substrate-enhanced fluorescence leading to signal-amplification microarray fluorometry. The practical application of the developed HDS-ZnO-APS microarray was investigated by the sandwiched fluorometric

  16. Sigma Receptors Suppress Multiple Aspects of Microglial Activation

    PubMed Central

    Hall Aaron, A.; Yelenis, Herrera; Ajmo Craig, T.; Javier, Cuevas; Pennypacker Keith, R.

    2009-01-01

    During brain injury, microglia become activated and migrate to areas of degenerating neurons. These microglia release pro-inflammatory cytokines and reactive oxygen species causing additional neuronal death. Microglia express high levels of sigma receptors, however, the function of these receptors in microglia and how they may affect the activation of these cells remain poorly understood. Using primary rat microglial cultures, it was found that sigma receptor activation suppresses the ability of microglia to rearrange their actin cytoskeleton, migrate, and release cytokines in response to the activators adenosine triphosphate (ATP), monocyte chemoattractant protein 1 (MCP-1), and lipopolysaccharide (LPS). Next, the role of sigma receptors in the regulation of calcium signaling during microglial activation was explored. Calcium fluorometry experiments in vitro show that stimulation of sigma receptors suppressed both transient and sustained intracellular calcium elevations associated with the microglial response to these activators. Further experiments showed that sigma receptors suppress microglial activation by interfering with increases in intracellular calcium. In addition, sigma receptor activation also prevented membrane ruffling in a calcium-independent manner, indicating that sigma receptors regulate the function of microglia via multiple mechanisms. PMID:19031439

  17. Suppression of CMEs on active stars by overlying magnetic field

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Garraffo, Cecilia; Cohen, Ofer; Alvarado-Gomez, Julian; Moschou, Sofia-Paraskevi

    2017-08-01

    On the Sun, the association rate of flares with coronal mass ejections (CMEs) increases with flare energy such that energetic X-class flares are nearly all associated with CMEs. Flares on active stars are commonly orders of magnitude more energetic than their solar counterparts, and extrapolating the solar trend suggests that all the flares we observe on active stars should be associated with CMEs. Such an association can imply uncomfortably high CME mass loss rates of more than 10^-11 Msun/yr for the most active stars. We suggest that, instead, only the more energetic CMEs escape and most are suppressed by strong overlying magnetic field. Here, we investigate the suppression threshold and its implications for CME rates and mass loss on active stars.

  18. Potent cough suppression by physiologically active substance in human plasma.

    PubMed

    Akaike, Norio; Ito, Yushi; Ogawa, Sachie K; Maeda, Megumi; Wakita, Masahito; Takahama, Kazuo; Noguchi, Tetsuro; Kamei, Shintaro; Hamamoto, Takayoshi; Umehashi, Misako; Maeda, Hiroaki

    2014-01-01

    Human plasma contains wide variety of bioactive proteins that have proved essential in therapeutic discovery. However many human plasma proteins remain orphans with unknown biological functions. Evidences suggest that some plasma components target the respiratory system. In the present study we adapted heparin affinity chromatography to fractionate human plasma for functional bioassay. Fractions from pooled human plasma yielded particular plasma fractions with strong cough suppressing effects. Purification yielded a fraction that was finally identified as an activated blood coagulation factor fXIa using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF-MS). The fraction almost completely suppressed coughs induced by either chemical or mechanical stimulation applied to larynx or bifurcation of guinea-pig trachea. Cough suppressing effect of the fraction and commercially available fXIa were one million times stronger than codeine and codeine only partially suppressed the mechanically triggered coughing in animal model. Recent reviews highlighted prominent shortcomings of current available antitussives, including narcotic opioids such as codeine and their unpleasant or intolerable side effects. Therefore, safer and more effective cough suppressants would be welcome, and present findings indicate that fXIa in human plasma as a very promising, new therapeutic candidate for effective antitussive action.

  19. Molecular hydrogen suppresses activated Wnt/β-catenin signaling

    PubMed Central

    Lin, Yingni; Ohkawara, Bisei; Ito, Mikako; Misawa, Nobuaki; Miyamoto, Kentaro; Takegami, Yasuhiko; Masuda, Akio; Toyokuni, Shinya; Ohno, Kinji

    2016-01-01

    Molecular hydrogen (H2) is effective for many diseases. However, molecular bases of H2 have not been fully elucidated. Cumulative evidence indicates that H2 acts as a gaseous signal modulator. We found that H2 suppresses activated Wnt/β-catenin signaling by promoting phosphorylation and degradation οf β-catenin. Either complete inhibition of GSK3 or mutations at CK1- and GSK3-phosphorylation sites of β-catenin abolished the suppressive effect of H2. H2 did not increase GSK3-mediated phosphorylation of glycogen synthase, indicating that H2 has no direct effect on GSK3 itself. Knock-down of adenomatous polyposis coli (APC) or Axin1, which form the β-catenin degradation complex, minimized the suppressive effect of H2 on β-catenin accumulation. Accordingly, the effect of H2 requires CK1/GSK3-phosphorylation sites of β-catenin, as well as the β-catenin degradation complex comprised of CK1, GSK3, APC, and Axin1. We additionally found that H2 reduces the activation of Wnt/β-catenin signaling in human osteoarthritis chondrocytes. Oral intake of H2 water tended to ameliorate cartilage degradation in a surgery-induced rat osteoarthritis model through attenuating β-catenin accumulation. We first demonstrate that H2 suppresses abnormally activated Wnt/β-catenin signaling, which accounts for the protective roles of H2 in a fraction of diseases. PMID:27558955

  20. Suppression of NF-κB Activation By Gentian Violet Promotes Osteoblastogenesis and Suppresses Osteoclastogenesis

    PubMed Central

    Yamaguchi, M.; Vikulina, T.; Arbiser, J.L.; Weitzmann, M.N.

    2015-01-01

    Skeletal mass is regulated by the coordinated action of bone forming osteoblasts and bone resorbing osteoclasts. Accelerated rates of bone resorption relative to bone formation lead to net bone loss and the development of osteoporosis, a devastating disease that predisposes the skeleton to fractures. Bone fractures are associated with significant morbidity and in the case of hip fractures, high mortality. Gentian violet (GV), a cationic triphenylmethane dye, has long been used as an antifungal and antibacterial agent and is presently under investigation as a potential chemotherapeutic and antiangiogenic agent. However, effects on bone cells have not been previously reported and the mechanisms of action of GV, are poorly understood. In this study we show that GV suppresses receptor activator of NF-κB ligand (RANKL)-induced differentiation of RAW264.7 osteoclast precursors into mature osteoclasts, but paradoxically stimulates the differentiation of MC3T3 cells into mineralizing osteoblasts. These actions stem from the capacity of GV to suppress activation of the nuclear factor kappa B (NF-κB) signal transduction pathway that is required for osteoclastogenesis, but inhibitory to osteoblast differentiation and activity. Our data reveal that GV is an inhibitor of NF-κB activation and may hold promise for modulation of bone turnover to promote a balance between bone formation and bone resorption, favorable to gain of bone mass. PMID:25056540

  1. Pleuromutilin derivatives having a purine ring. Part 3: synthesis and antibacterial activity of novel compounds possessing a piperazine ring spacer.

    PubMed

    Hirokawa, Yoshimi; Kinoshita, Hironori; Tanaka, Tomoyuki; Nakamura, Takanori; Fujimoto, Koichi; Kashimoto, Shigeki; Kojima, Tsuyoshi; Kato, Shiro

    2009-01-01

    SAR studies on the water-soluble thioether pleuromutilin analogue 6, which has excellent in vitro and in vivo antibacterial activities, led to discovery of the novel pleuromutilin derivatives having a piperazine ring spacer. These derivatives displayed potent and well-balanced in vitro antibacterial activity against various drug-susceptible and -resistant Gram-positive bacteria. In particular, the promising pleuromutilin analogues 37 and 40 were found to exhibit strong in vivo efficacy against Staphylococcus aureus Smith.

  2. The Lord of Rings - the mysterious case of the stolen rings: a critical analysis of an informal education activity

    NASA Astrophysics Data System (ADS)

    Sandrelli, S.

    2011-10-01

    the real physical properties of that celestial object. After collecting the ingredients, they must carry them to the "The Red Giant" and indicate their best recipe to Mr Schioppanelli. Depending on the recipe, rings can be too strict or too luminous or too fast rotating and so on. The winning group is the one which prepares the best recipe to cook the rings in the smallest amount of time. After introducing this specific (and mysterious) game, we analyze the advantage-disadvantage ratio of such an activity, which is as funny as dispersive [2]. The key expression of the whole activity is, of course, "informal education". But, as a best practice result, we organize also 1 or 2 very simple laboratories about the solar system before playing the game. One of these, called The Olmicomics, allows the pupils to understand the dimensions of the planets with respect to their distances, providing them the correct introduction to "The Lord of Rings". The pupils are simply requested to pone the planets in a correct scale on a map of the city where they live. Then we coherently calculate together dimension of the Solar System planets and the Sun, according to the scale they chose. The second activity provide the pupils hints about the physical properties of the planets, touching the points a)-d) listed above. We believe this two-faces strategy is a quite effective tool for an education suited to our target group. They really do things, touch things, use their own body as a meter to understand distances and physical properties as the gravitational force. In the meanwhile, they are also asked to think about what they are doing, to make calculation and to build a representation of the Solar System by numbers, turning it into a visual representation only after their calculation. And, finally, to play with all these conceipts.

  3. Occipital TMS has an activity-dependent suppressive effect

    PubMed Central

    Perini, Francesca; Cattaneo, Luigi; Carrasco, Marisa; Schwarzbach, Jens V.

    2012-01-01

    The effects of transcranial magnetic stimulation (TMS) vary depending on the brain state at the stimulation moment. Four mechanisms have been proposed to underlie these effects: (i) virtual lesion–TMS suppresses neural signals; (ii) preferential activation of less active neurons–TMS drives up activity in the stimulated area, but active neurons are saturating, (iii) noise generation–TMS adds random neuronal activity and its effect interacts with stimulus-intensity; (iv) noise generation–TMS adds random neuronal activity and its effect depends on TMS-intensity. Here we explore these hypotheses by investigating the effects of TMS on early visual cortex on the contrast response function while varying adaptation state of the observers. We tested human participants in an orientation discrimination task, in which performance is contingent upon contrast sensitivity. Before each trial, neuronal activation of visual cortex was altered through contrast adaptation to two flickering gratings. In a factorial design, with or without adaptation, a single TMS pulse was delivered simultaneously with targets of varying contrast. Adaptation decreased contrast sensitivity. The effect of TMS on performance was state-dependent: TMS decreased contrast sensitivity in the absence of adaptation but increased it after adaptation. None of the proposed mechanisms can account for the results in their entirety, in particular, for the facilitatory effect at intermediate to high contrasts after adaptation. We propose an alternative hypothesis: TMS effects are activity-dependent, so that TMS suppresses the most active neurons and thereby changes the balance between excitation and inhibition. PMID:22956826

  4. Apigenin blocks IKKα activation and suppresses prostate cancer progression.

    PubMed

    Shukla, Sanjeev; Kanwal, Rajnee; Shankar, Eswar; Datt, Manish; Chance, Mark R; Fu, Pingfu; MacLennan, Gregory T; Gupta, Sanjay

    2015-10-13

    IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.

  5. Apigenin blocks IKKα activation and suppresses prostate cancer progression

    PubMed Central

    Shukla, Sanjeev; Kanwal, Rajnee; Shankar, Eswar; Datt, Manish; Chance, Mark R.; Fu, Pingfu; MacLennan, Gregory T.; Gupta, Sanjay

    2015-01-01

    IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways. PMID:26435478

  6. Active vibration suppression for maneuvering spacecraft with high flexible appendages

    NASA Astrophysics Data System (ADS)

    Yuan, Qiufan; Liu, Yanfang; Qi, Naiming

    2017-10-01

    The rotational and translational coupling effects that exist in the dynamics of the maneuvering spacecraft with high flexible structures are considered in this paper. The active vibration suppression using the modified positive position feedback control law is applied to the maneuvering spacecraft. The active vibration controller is designed based on the coupling dynamics. Using the calculated coupling parameters, the controller parameters are optimized via the M-norm optimization method. The controller is verified mathematically and experimentally. An air bearing spacecraft simulator is built to carry out the experiment. Simulation and experiment results show that the vibration of the flexible structures is efficiently suppressed by the designed controller and more residual vibration is reduced compared with the same controller without considering the coupling effects. The stability of the angular velocity is improved. As a conclusion, the proposed controller is efficient. The rotational and translational coupling effects should be considered in designing the vibration controller of maneuvering spacecraft.

  7. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1975-01-01

    Application of the aerodynamic energy approach to some problems of flutter suppression and gust alleviation were considered. A simple modification of the control-law is suggested for achieving the required pitch control in the use of a leading edge - trailing edge activated strip. The possible replacement of the leading edge - trailing edge activated strip by a trailing edge - tab strip is also considered as an alternate solution. Parameters affecting the performance of the activated leading edge - trailing edge strip were tested on the Arava STOL Transport and the Westwind Executive Jet Transport and include strip location, control-law gains and a variation in the control-law itself.

  8. Small Molecules that Suppress IGF-Activated Prostate Cancers

    DTIC Science & Technology

    2006-04-01

    organic molecules that suppress IGF-activated prostate cancers by cell-based screening and to analyze their action mechanisms . During the funding...prostate cancer cells but not serum-dependent growth. We analyzed the mechanism of action of 125B11 to gain molecular insights into how IGF1 stimulates the...screening and to analyze their action mechanisms . We have been taking a unique two-step approach to discovering such molecules: we first examine the

  9. Laboratory experiments on active suppression of advanced turboprop noise

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    The noise generated by supersonic tip speed propellers may be a cabin environment problem for future propeller-driven airplanes. Active suppression from speakers inside the airplane cabin has been proposed for canceling out this noise. The potential of active suppression of advanced turboprop noise was tested by using speakers in a rectangular duct. Experiments were first performed with sine wave signals. The results compared well with the ideal cancellation curve of noise as a function of phase angle. Recorded noise signals from subsonic and supersonic tip speed propellers were than used in the duct to deterthe potential for canceling their noise. The subsonic propeller data showed significant cancellations but less than those obtained with the sine wave. The blade-passing-tone cancellation curve for the supersonic propeller was very similar to the subsonic curve, indicating that it is potentially just as easy to cancel supersonic as subsonic propeller blade-passing-tone noise. Propeller duct data from a recorded propeller source and spatial data taken on a propeller-drive airplane showed generally good agreement when compared versus phase angle. This agreement, combined with the similarity of the subsonic and supersonic duct propeller data, indicates that the area of cancellation for advanced supersonic propellers will be similar to that measured on the airplane. Since the area of cancellation on the airplane was small, a method for improving the active noise suppression by using outside speakers is discussed.

  10. Vibrissa motor cortex activity suppresses contralateral whisking behavior.

    PubMed

    Ebbesen, Christian Laut; Doron, Guy; Lenschow, Constanze; Brecht, Michael

    2017-01-01

    Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.

  11. Structure and E3-ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b

    PubMed Central

    Buchwald, Gretel; van der Stoop, Petra; Weichenrieder, Oliver; Perrakis, Anastassis; van Lohuizen, Maarten; Sixma, Titia K

    2006-01-01

    Polycomb group proteins Ring1b and Bmi1 (B-cell-specific Moloney murine leukaemia virus integration site 1) are critical components of the chromatin modulating PRC1 complex. Histone H2A ubiquitination by the PRC1 complex strongly depends on the Ring1b protein. Here we show that the E3-ligase activity of Ring1b on histone H2A is enhanced by Bmi1 in vitro. The N-terminal Ring-domains are sufficient for this activity and Ring1a can replace Ring1b. E2 enzymes UbcH5a, b, c or UbcH6 support this activity with varying processivity and selectivity. All four E2s promote autoubiquitination of Ring1b without affecting E3-ligase activity. We solved the crystal structure of the Ring–Ring heterodimeric complex of Ring1b and Bmi1. In the structure the arrangement of the Ring-domains is similar to another H2A E3 ligase, the BRCA1/BARD1 complex, but complex formation depends on an N-terminal arm of Ring1b that embraces the Bmi1 Ring-domain. Mutation of a critical residue in the E2/E3 interface shows that catalytic activity resides in Ring1b and not in Bmi1. These data provide a foundation for understanding the critical enzymatic activity at the core of the PRC1 polycomb complex, which is implicated in stem cell maintenance and cancer. PMID:16710298

  12. Suppression of spontaneous epileptiform activity with applied currents.

    PubMed

    Nakagawa, M; Durand, D

    1991-12-20

    It has been well established that both applied and endogenous electric fields can modulate neuronal activity in various preparations. In this paper, we present the effects of applied currents on spontaneous epileptiform activity in the CA1 region of the rat hippocampus. A computer-controlled system was designed to detect the spontaneous abnormal activity and then apply current pulses of programmable amplitude with monopolar electrodes in the stratum pyramidale. The epileptiform activity was generated by subperfusion of the neural tissue with an elevated potassium artificial cerebrospinal fluid (CSF) solution. Extracellular recordings showed that the interictal bursts could be fully suppressed in 90% of the slices by subthreshold currents with an average amplitude of 12.5 microA. Intracellular recordings showed that the anodic currents generated hyperpolarization of the somatic membrane thereby suppressing neuronal firing. This inhibitory effect of applied current pulses is important for the understanding of electric field effects on abnormal neuronal activity and could be an effective means of preventing the spread of epileptiform activity.

  13. The Magnaporthe oryzae Effector AvrPiz-t Targets the RING E3 Ubiquitin Ligase APIP6 to Suppress Pathogen-Associated Molecular Pattern–Triggered Immunity in Rice[W][OA

    PubMed Central

    Park, Chan-Ho; Chen, Songbiao; Shirsekar, Gautam; Zhou, Bo; Khang, Chang Hyun; Songkumarn, Pattavipha; Afzal, Ahmed J.; Ning, Yuese; Wang, Ruyi; Bellizzi, Maria; Valent, Barbara; Wang, Guo-Liang

    2012-01-01

    Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants. PMID:23204406

  14. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, John J.

    1988-01-01

    A method is developed that determines the placement of an active control surface for maximum effectiveness in suppressing flutter. No specific control law is required by this method which is based on the aerodynamic energy concept. It is argued that the spanwise placement of the active controls should coincide with the locations where maximum energy per unit span is fed into the system. The method enables one to determine the distribution, over the different surfaces of the aircraft, of the energy input into the system as a result of the unstable fluttering mode. The method is illustrated using three numerical examples.

  15. Suppressive Activity of Quercetin on Periostin Functions In Vitro.

    PubMed

    Irie, Shinji; Kashiwabara, Misako; Yamada, Asako; Asano, Kazuhito

    2016-01-01

    Periostin, a 90-kDa extracellular matrix protein, has been attracting attention as a novel biomarker of airway inflammatory diseases such as allergic rhinitis (AR) and asthma. Although oral administration of quercetin to patients with AR can favorably modify the clinical condition of this disease, the influence of quercetin on periostin functions is not well understood. The present study was, therefore, undertaken to examine the influence of quercetin on the production of both periostin and periostin-induced eosinophil chemoattractants from human nasal epithelial cells (HNEpC) in vitro. HNEpC were stimulated with 15.0 ng/ml interleukin (IL)-4 in the absence or presence of quercetin for 72 h. Periostin levels in the culture supernatants were measured using enzyme-linked immunosorbent assay (ELISA). Addition of 4.0 μM quercetin into cell cultures suppressed periostin production from HNEpC that was induced by IL-4 stimulation through inhibitation of signal transducer and activator of transcription 6 (STAT6) activation. We then examined whether quercetin could inhibit production of the periostin-induced eosinophil chemoattractants, regulated on activation, normal T-cell expressed and secreted (RANTES) and eotaxin, from HNEpC. HNEpC were stimulated with 2.0 ng/ml periostin in the absence or presence of quercetin for 72 h. RANTES and eotaxin levels in culture supernatants were examined using ELISA. Treatment of HNEpC with quercetin at a concentration of 4.0 μM suppressed the ability of cells to produce RANTES and eotaxin. This suppression was mediated through suppression of activation of the transcription factor nuclear factor-kappa B (NF-κB) p65, as measured using ELISA, and of chemokine mRNA expression, as measured using reverse transcriptase-polymerase chain reaction (RT-PCR). These results strongly suggest that quercetin suppresses the production of both periostin and periostin-induced eosinophil chemoattractants from HNEpC and results in improvement of the

  16. Retinal Pigment Epithelial Cells Suppress Phagolysosome Activation in Macrophages

    PubMed Central

    Wang, Eric; Choe, Yoona; Ng, Tat Fong; Taylor, Andrew W.

    2017-01-01

    Purpose The eye is an immune-privileged microenvironment that has adapted several mechanisms of immune regulation to prevent inflammation. One of these potential mechanisms is retinal pigment epithelial cells (RPE) altering phagocytosis in macrophages. Methods The conditioned media of RPE eyecups from eyes of healthy mice and mice with experimental autoimmune uveitis (EAU) were used to treat primary macrophage phagocytizing pHrodo bacterial bioparticles. In addition, the neuropeptides were depleted from the conditioned media of healthy RPE eyecups and used to treat phagocytizing macrophages. The conditioned media from healthy and EAU RPE eyecups were assayed for IL-6, and IL-6 was added to the healthy conditioned media, and neutralized in the EAU conditioned media. The macrophages were treated with the conditioned media and assayed for fluorescence. The macrophages were imaged, and the fluorescence intensity, relative to active phagolysosomes, was measured. Also, the macrophages were assayed using fluorescent viability dye staining. Results The conditioned media from healthy, but not from EAU RPE eyecups suppressed phagolysosome activation. Depletion of the neuropeptides alpha-melanocyte–stimulating hormone and neuropeptide Y from the healthy RPE eyecup conditioned media resulted in macrophage death. In the EAU RPE eyecup conditioned media was 0.96 ± 0.18 ng/mL of IL-6, and when neutralized the conditioned media suppressed phagolysosome activation. Conclusions The healthy RPE through soluble molecules, including alpha-melanocyte–stimulating hormone and neuropeptide Y, suppresses the activation of the phagolysosome in macrophages. In EAU, the IL-6 produced by the RPE promotes the activation of phagolysosomes in macrophages. These results demonstrate that under healthy conditions, RPE promotes an altered pathway of phagocytized material in macrophages with implications on antigen processing and clearance. PMID:28241314

  17. Tuning BRCA1 and BARD1 activity to investigate RING ubiquitin ligase mechanisms.

    PubMed

    Stewart, Mikaela D; Duncan, Emily D; Coronado, Ernesto; DaRosa, Paul A; Pruneda, Jonathan N; Brzovic, Peter S; Klevit, Rachel E

    2017-03-01

    The tumor-suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N-terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain-containing proteins. RING domains bind and activate E2 ubiquitin-conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer-associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1. © 2017 The Protein Society.

  18. Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity

    PubMed Central

    Baradaran-Heravi, Alireza; Niesser, Jürgen; Balgi, Aruna D.; Choi, Kunho; Zimmerman, Carla; South, Andrew P.; Anderson, Hilary J.; Strynadka, Natalie C.; Bally, Marcel B.; Roberge, Michel

    2017-01-01

    Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders. PMID:28289221

  19. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    SciTech Connect

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  20. IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression.

    PubMed

    Liu, Mo; Lee, Dung-Fang; Chen, Chun-Te; Yen, Chia-Jui; Li, Long-Yuan; Lee, Hong-Jen; Chang, Chun-Ju; Chang, Wei-Chao; Hsu, Jung-Mao; Kuo, Hsu-Ping; Xia, Weiya; Wei, Yongkun; Chiu, Pei-Chun; Chou, Chao-Kai; Du, Yi; Dhar, Debanjan; Karin, Michael; Chen, Chung-Hsuan; Hung, Mien-Chie

    2012-01-27

    Proinflammatory cytokine TNFα plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFα-mediated tumor development remains unclear. Here, we show that IKKα, an important downstream kinase of TNFα, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKα, pFOXA2 (S107/111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKα and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFα/IKKα-associated FOXA2 inhibition likely contributes to inflammation-mediated cancer pathogenesis. Here, we report a TNFα/IKKα/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.

  1. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    PubMed

    Zhang, Juan; Tang, Hongju; Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  2. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  3. Design, test, and evaluation of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.

    1992-01-01

    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.

  4. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  5. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, J. J.

    1989-01-01

    All flutter suppression systems require sensors to detect the movement of the lifting surface and to activate a control surface according to a synthesized control law. Most of the work performed to date relates to the development of control laws based on predetermined locations of sensors and control surfaces. These locations of sensors and control surfaces are determined either arbitrarily, or by means of a trial and error procedure. The aerodynamic energy concept indicates that the sensors should be located within the activated strip. Furthermore, the best chordwise location of a sensor activating a T.E. control surface is around the 65 percent chord location. The best chordwise location for a sensor activating a L.E. surface is shown to lie upstream of the wing (around 20 percent upstream of the leading edge), or alternatively, two sensors located along the same chord should be used.

  6. SCAR arrow-wing active flutter suppression system

    NASA Technical Reports Server (NTRS)

    Gordon, C. K.; Visor, O. E.

    1977-01-01

    The potential performance and direct operating cost benefits of an active flutter suppression system (FSS) for the NASA arrow-wing supersonic cruise configuration were determined. A FSS designed to increase the flutter speed of the baseline airplane 20 percent. A comparison was made of the performance and direct operating cost between the FSS equipped aircraft and a previously defined configuration with structural modifications to provide the same flutter speed. Control system synthesis and evaluation indicated that a FSS could provide the increase in flutter speed without degrading airplane reliability, safety, handling qualities, or ride quality, and without increasing repeated loads or hydraulic and electrical power capacity requirements.

  7. Design of an active flutter suppression system for the Active Flexible Wing

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Buttrill, Carey S.

    1991-01-01

    The design of an active flutter suppression controller and wind tunnel validation test results are presented. This controller, designed using Nyquist methods and traditional root locus, is applied to the Active Flexible Wing (AFW) wind tunnel model. Wind tunnel tests were conducted to validate the design and demonstrate flutter suppression at a fixed altitude while performing aggressive rolling maneuvers representative of high-performance military aircraft. The controller succeeded in simultaneous suppression of two distinct flutter modes by significantly increasing the flutter dynamic pressure in spite of errors in the mathematical model.

  8. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  9. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  10. Transient and selective suppression of neural activity with infrared light

    PubMed Central

    Duke, Austin R.; Jenkins, Michael W.; Lu, Hui; McManus, Jeffrey M.; Chiel, Hillel J.; Jansen, E. Duco

    2013-01-01

    Analysis and control of neural circuitry requires the ability to selectively activate or inhibit neurons. Previous work showed that infrared laser light selectively excited neural activity in endogenous unmyelinated and myelinated axons. However, inhibition of neuronal firing with infrared light was only observed in limited cases, is not well understood and was not precisely controlled. Using an experimentally tractable unmyelinated preparation for detailed investigation and a myelinated preparation for validation, we report that it is possible to selectively and transiently inhibit electrically-initiated axonal activation, as well as to both block or enhance the propagation of action potentials of specific motor neurons. Thus, in addition to previously shown excitation, we demonstrate an optical method of suppressing components of the nervous system with functional spatiotemporal precision. We believe this technique is well-suited for non-invasive investigations of diverse excitable tissues and may ultimately be applied for treating neurological disorders. PMID:24009039

  11. [Suppression of cycling activity in sheep using parenteral progestagen treatment].

    PubMed

    Janett, F; Camponovo, L; Lanker, U; Hässig, M; Thun, R

    2004-03-01

    The objective of this study was to evaluate the effect of two synthetic progestagen preparations Chlormadinone acetate (CAP, Chronosyn, Veterinaria AG Zürich) and Medroxyprogesterone acetate (MPA, Nadigest, G Streuli & Co. Uznach) on cycling activity and fertility in sheep. A flock of 28 non pregnant white alpine sheep was randomly divided into three groups, A (n = 10), B (n = 9) and C (n = 9). During a period of 4 weeks the cycling activity was confirmed by blood progesterone analysis. Thereafter, the animals of group A were treated with 50 mg CAP, those of group B with 140 mg MPA and those of group C with physiological saline solution. All injections were given intramuscularly. Suppression of endogenous progesterone secretion lasted from 28 to 49 days (mean = 39 days) in group A and from 42 to 70 days (mean = 50 days) in group B. The synchronization effect of both preparations was unsatisfactory as the occurrence of first estrus was distributed over a period of 3 weeks in group A and 4 weeks in group B. These findings could also be confirmed by the lambing period which lasted 52 days in group A and 36 days in group B. Control animals lambed within 9 days due to the synchronizing effect of the ram. The first fertile estrus was observed 36 days (group A) and 45 days (group B) after the treatment. In group A all 10 animals and in groups B and C 8 of 9 ewes each became pregnant. Parenteral progestagen application with CAP and MPA is a simple, safe and reversible method of estrus suppression in the sheep. The minimal suppressive duration of 4 (CAP) and 5 weeks (MPA) is not sufficient when a period of 3 months (alpine pasture period) is desired.

  12. Optimized geometric configuration of active ring laser gyroscopes

    NASA Astrophysics Data System (ADS)

    Gormley, John; Salloum, Tony

    2016-05-01

    We present a thorough derivation of the Sagnac effect for a ring laser gyroscope of any arbitrary polygonal configuration. We determine optimized alternative geometric configurations for the mirrors. The simulations incur the implementation of a lasing medium with the standard square system, triangular, pentagonal, and oblongated square configuration (diamond). Simulations of possible new geometric configurations are considered, as well as the possibility of adjusting the concavity of the mirrors.

  13. Ferroptosis as a p53-mediated activity during tumour suppression.

    PubMed

    Jiang, Le; Kon, Ning; Li, Tongyuan; Wang, Shang-Jui; Su, Tao; Hibshoosh, Hanina; Baer, Richard; Gu, Wei

    2015-04-02

    Although p53-mediated cell-cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non-apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p53(3KR), an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)-induced stress. Analysis of mutant mice shows that these non-canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS-induced ferroptosis and abrogates p53(3KR)-mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.

  14. Design and test of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Waszak, Martin R.; Adams, William M.; Srinathkumar, S.; Mukhopadhyay, Vivek

    1991-01-01

    Three flutter suppression control law design techniques are presented. Each uses multiple control surfaces and/or sensors. The first uses linear combinations of several accelerometer signals together with dynamic compensation to synthesize the modal rate of the critical mode for feedback to distributed control surfaces. The second uses traditional tools (pole/zero loci and Nyquist diagrams) to develop a good understanding of the flutter mechanism and produce a controller with minimal complexity and good robustness to plant uncertainty. The third starts with a minimum energy Linear Quadratic Gaussian controller, applies controller order reduction, and then modifies weight and noise covariance matrices to improve multi-variable robustness. The resulting designs were implemented digitally and tested subsonically on the Active Flexible Wing (AFW) wind tunnel model. Test results presented here include plant characteristics, maximum attained closed-loop dynamic pressure, and Root Mean Square control surface activity. A key result is that simultaneous symmetric and antisymmetric flutter suppression was achieved by the second control law, with a 24 percent increase in attainable dynamic pressure.

  15. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  16. Suppression of Nonlinear Interactions in Resonant Macroscopic Quantum Devices: The Example of the Solid-State Ring Laser Gyroscope

    SciTech Connect

    Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Gutty, Francois; Bouyer, Philippe

    2008-05-09

    We report fine-tuning of nonlinear interactions in a solid-state ring laser gyroscope by vibrating the gain medium along the cavity axis. We demonstrate both experimentally and theoretically that nonlinear interactions vanish for some values of the vibration parameters, leading to quasi-ideal rotation sensing. We eventually point out that our conclusions can be mapped onto other subfields of physics such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned by using Feshbach resonance.

  17. "Ring-fencing" BRCA1 tumor suppressor activity.

    PubMed

    Patel, Ketan J; Crossan, Gerry P; Hodskinson, Michael R G

    2011-12-13

    BRCA1 is a crucial human breast and ovarian cancer tumor suppressor gene. The article by Drost et al. in this issue of Cancer Cell together with a recent paper in Science now provide a clearer picture of how this large and complex protein suppresses tumorigenesis.

  18. Active flutter suppression using optical output feedback digital controllers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.

  19. Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings.

    PubMed

    Li, Yuhao; Zhu, Hongjun; Chen, Kai; Liu, Rui; Khallaf, Abdalla; Zhang, Xiangning; Ni, Jueping

    2013-06-28

    A series of anthranilic diamides analogs (3–11, 16–24) containing 1,2,4- or 1,3,4-oxadiazole rings were synthesized and characterized by (1)H NMR, MS and elemental analyses. The structure of 3-bromo-N-(2-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (18, CCDC-) was determined by X-ray diffraction crystallography. The insecticidal activities against Plutella xylostella and Spodoptera exigua were evaluated. The results showed that most of title compounds displayed good larvicidal activities against P. xylostella, especially compound 3-bromo-N-(4-chloro-2-methyl-6-(5-(methylthio)-1,3,4-oxadiazol-2-yl)phenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (6), which displayed 71.43% activity against P. xylostella at 0.4 μg mL(-1) and 33.33% against S. exigua at 1 μg mL(-1). The structure-activity relationship showed that compounds decorated with a 1,3,4-oxadiazole were more potent than compounds decorated with a 1,2,4-oxadiazole, and different substituents attached to the oxadiazole ring also affected the insecticidal activity. This work provides some hints for further structure modification and the enhancement of insecticidal activity.

  20. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1974-01-01

    The effects of active controls on the suppression of flutter and gust alleviation of two different types of subsonic aircraft (the Arava, twin turboprop STOL transport, and the Westwind twin-jet business transport) are investigated. The active controls are introduced in pairs which include, in any chosen wing strip, a leading-edge (LE) control and a trailing-edge (TE) control. Each control surface is allowed to be driven by a combined linear-rotational sensor system, located on the activated strip. The control law, which translates the sensor signals into control surface rotations, is based on the concept of aerodynamic energy. The results indicate the extreme effectiveness of the active systems in controlling flutter. A single system spanning 10% of the wing semispan made the Arava flutter-free, and a similar active system, for the Westwind aircraft, yielded a reduction of 75% in the maximum bending moment of the wing and a reduction of 90% in the acceleration of the cg of the aircraft. Results for simultaneous activation of several LE - TE systems are presented. Further work needed to bring the investigation to completion is also discussed.

  1. Thermally activated phase slips from metastable states in mesoscopic superconducting rings

    NASA Astrophysics Data System (ADS)

    Petkovic, Ivana; Lollo, Anthony; Harris, Jack

    In equilibrium, a flux-biased superconducting ring at low temperature can occupy any of several metastable states. The particular state that the ring occupies depends on the history of the applied flux, as different states are separated from each other by flux-dependent energy barriers. There is a critical value of the applied flux at which a given barrier goes to zero, the state becomes unstable, and the system transition into another state. In recent experiments performed on arrays of rings we showed that this transition occurs close to the critical flux predicted by Ginzburg-Landau theory. Here, we will describe experiments in which we have extended these measurements to an individual ring in order to study the thermal activation of the ring over a barrier that has been tuned close to zero. We measure the statistics of transitions as function of temperature and ramp rate.

  2. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses.

  3. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation

    PubMed Central

    Janowski, Ann M.; Colegio, Oscar R.; Hornick, Emma E.; McNiff, Jennifer M.; Martin, Matthew D.; Badovinac, Vladimir P.; Norian, Lyse A.; Zhang, Weizhou; Cassel, Suzanne L.

    2016-01-01

    Members of the NLR family can assemble inflammasome complexes with the adaptor protein ASC and caspase-1 that result in the activation of caspase-1 and the release of IL-1β and IL-18. Although the NLRC4 inflammasome is known to have a protective role in tumorigenesis, there is an increased appreciation for the inflammasome-independent actions of NLRC4. Here, we utilized a syngeneic subcutaneous murine model of B16F10 melanoma to explore the role of NLRC4 in tumor suppression. We found that NLRC4-deficient mice exhibited enhanced tumor growth that was independent of the inflammasome components ASC and caspase-1. Nlrc4 expression was critical for cytokine and chemokine production in tumor-associated macrophages and was necessary for the generation of protective IFN-γ–producing CD4+ and CD8+ T cells. Tumor progression was diminished when WT or caspase-1–deficient, but not NLRC4-deficient, macrophages were coinjected with B16F10 tumor cells in NLRC4-deficient mice. Finally, examination of human primary melanomas revealed the extensive presence of NLRC4+ tumor-associated macrophages. In contrast, there was a paucity of NLRC4+ tumor-associated macrophages observed in human metastatic melanoma, supporting the concept that NLRC4 expression controls tumor growth. These results reveal a critical role for NLRC4 in suppressing tumor growth in an inflammasome-independent manner. PMID:27617861

  4. Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase.

    PubMed

    Hughes, Paul E; Oertli, Beat; Hansen, Malene; Chou, Fan-Li; Willumsen, Berthe M; Ginsberg, Mark H

    2002-07-01

    The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The Ras family of small GTP-binding proteins and their downstream effectors are key players in regulating integrin activation. H-Ras can suppress integrin activation in fibroblasts via its downstream effector kinase, Raf-1. In contrast, to H-Ras, a closely related small GTP-binding protein R-Ras has the opposite activity, and promotes integrin activation. To gain insight into the regulation of integrin activation by Ras GTPases, we created a series of H-Ras/R-Ras chimeras. We found that a 35-amino acid stretch of H-Ras was required for full suppressive activity. Furthermore, the suppressive chimeras were weak activators of the ERK1/2 MAP kinase pathway, suggesting that the suppression of integrin activation may be independent of the activation of the bulk of ERK MAP kinase. Additional data demonstrating that the ability of H-Ras or Raf-1 to suppress integrin activation was unaffected by inhibition of bulk ERK1/2 MAP kinase activation supported this hypothesis. Thus, the suppression of integrin activation is a Raf kinase induced regulatory event that can be mediated independently of bulk activation of the ERK MAP-kinase pathway.

  5. Efficacy of Combined Contraceptive Vaginal Ring Versus Oral Contraceptive Pills in Achieving Hypothalamic-Pituitary-Ovarian Axis Suppression in Egg Donor In Vitro Fertilization Cycles

    PubMed Central

    Thomas, Robin Lynn; Halvorson, Lisa Marie; Carr, Bruce Richard; Doody, Kathleen Marie; Doody, Kevin John

    2013-01-01

    Background Our study compares the efficacy of the combined contraceptive vaginal ring to oral contraceptive pills (OCPs) for hypothalamic-pituitary-ovarian (HPO) axis suppression in egg donor in vitro fertilization (IVF) cycles. Methods Our retrospective cohort study includes patients from the Center for Assisted Reproduction (CARE) in Bedford, Texas undergoing IVF cycles as egg donors from January 2003 through December 2009. Twenty-five and thirty-nine women were treated with OCPs and the combined contraceptive vaginal ring, respectively. Statistical analyses were performed using the SigmaStat Software package (Systat, Chicago, IL). Data were analyzed by t or Mann-whitney test and Chi-square of Fisher exact test. Statistical significance was set at p<0.05. Results Prior to gonadotropin initiation, endometrial thickness and serum estradiol were 5.6±2.6 mm and 33.6±19.9 pg/ml in the OCP group and 6.0±2.4 mm and 36.6±24.3 pg/ml in the combined contraceptive vaginal ring group, respectively (p=0.49 and p=0.33). Average serum FSH and LH were 1.7±1.9 and 1.7±2.5 mIU/ml in the OCP group and 1.7±1.6 and 1.2±1.4 mIU/ml in the combined contraceptive vaginal ring group, respectively (p=0.45 and p=0.95). No significant differences were found for gonadotropin requirement, peak estradiol, maximal endometrial thickness, number of oocytes retrieved, number of normally fertilized embryos, number of cryopreserved embryos, or live birth rates. Conclusion The combined contraceptive vaginal ring is effective for HPO axis suppression in egg donor IVF cycles and associated with cycle characteristics similar to those observed with OCP treatment. The combined contraceptive vaginal ring may provide an important advantage over OCPs due to improved patient compliance. PMID:24551576

  6. Adenine suppresses IgE-mediated mast cell activation.

    PubMed

    Silwal, Prashanta; Shin, Keuna; Choi, Seulgi; Kang, Seong Wook; Park, Jin Bong; Lee, Hyang-Joo; Koo, Suk-Jin; Chung, Kun-Hoe; Namgung, Uk; Lim, Kyu; Heo, Jun-Young; Park, Jong Il; Park, Seung-Kiel

    2015-06-01

    Nucleobase adenine is produced by dividing human lymphoblasts mainly from polyamine synthesis and inhibits immunological functions of lymphocytes. We investigated the anti-allergic effect of adenine on IgE-mediated mast cell activation in vitro and passive cutaneous anaphylaxis (PCA) in mice. Intraperitoneal injection of adenine to IgE-sensitized mice attenuated IgE-mediated PCA reaction in a dose dependent manner, resulting in a median effective concentration of 4.21 mg/kg. In mast cell cultures, only adenine among cytosine, adenine, adenosine, ADP and ATP dose-dependently suppressed FcɛRI (a high affinity receptor for IgE)-mediated degranulation with a median inhibitory concentration of 1.6mM. It also blocked the production of LTB4, an inflammatory lipid mediator, and inflammatory cytokines TNF-α and IL-4. In addition, adenine blocked thapsigargin-induced degranulation which is FcɛRI-independent but shares FcɛRI-dependent signaling events. Adenine inhibited the phosphorylation of signaling molecules important to FcɛRI-mediated allergic reactions such as Syk, PLCγ2, Gab2, Akt, and mitogen activated protein kinases ERK and JNK. From this result, we report for the first time that adenine inhibits PCA in mice and allergic reaction by inhibiting FcɛRI-mediated signaling events in mast cells. Therefore, adenine may be useful for the treatment of mast cell-mediated allergic diseases. Also, the upregulation of adenine production may provide another mechanism for suppressing mast cell activity especially at inflammatory sites.

  7. Transcription through enhancers suppresses their activity in Drosophila

    PubMed Central

    2013-01-01

    Background Enhancer elements determine the level of target gene transcription in a tissue-specific manner, providing for individual patterns of gene expression in different cells. Knowledge of the mechanisms controlling enhancer action is crucial for understanding global regulation of transcription. In particular, enhancers are often localized within transcribed regions of the genome. A number of experiments suggest that transcription can have both positive and negative effects on regulatory elements. In this study, we performed direct tests for the effect of transcription on enhancer activity. Results Using a transgenic reporter system, we investigated the relationship between the presence of pass-through transcription and the activity of Drosophila enhancers controlling the expression of the white and yellow genes. The results show that transcription from different promoters affects the activity of enhancers, counteracting their ability to activate the target genes. As expected, the presence of a transcriptional terminator between the inhibiting promoter and the affected enhancer strongly reduces the suppression. Moreover, transcription leads to dislodging of the Zeste protein that is responsible for the enhancer-dependent regulation of the white gene, suggesting a 'transcription interference’ mechanism for this regulation. Conclusions Our findings suggest a role for pass-through transcription in negative regulation of enhancer activity. PMID:24279291

  8. Active vibration control of a ring-stiffened cylindrical shell in contact with unbounded external fluid and subjected to harmonic disturbance by piezoelectric sensor and actuator

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Yang, Dong-Ho

    2013-09-01

    This paper is concerned with the suppression of vibrations and radiated sound of a ring-stiffened circular cylindrical shell in contact with unbounded external fluid by means of piezoelectric sensors and actuators. The dynamic model of a circular cylindrical shell based on the Sanders shell theory was considered together with a ring stiffener model. The mass and stiffness matrices for a ring stiffener were newly derived in this study and added to the mass and stiffness matrices of the cylindrical shell, respectively. The fluid-added mass matrix, which was derived by using the baffled shell theory, was also added to the mass matrix. Finally, the equations representing the piezoelectric sensor measurement and piezoelectric actuation complete the theoretical model for the addressed problem. The natural vibration characteristics of the ring-stiffened cylindrical shell both in air and in water were investigated both theoretically and experimentally. The theoretical predictions were in good agreement with the experimental results. An active vibration controller which can cope with a harmonic disturbance was designed by considering the modified higher harmonic control, which is, in fact, a band rejection filter. An active vibration control experiment on the submerged cylindrical shell was carried out in a water tank and the digital control system was used. The experimental results showed that both vibrations and radiation sound of the submerged cylindrical shell were suppressed by a pair of piezoelectric sensor and actuator.

  9. Reconstructing Ecosystem-Scale Vegetation Activity Across the Terrestrial Mediterranean using Tree-Ring Width Data

    NASA Astrophysics Data System (ADS)

    Coulthard, B. L.; Touchan, R.; Meko, D. M.; Anchukaitis, K. J.; Sivrikaya, F.; Attalah, S.; Ilmen, R.; Aloui, A.; Attieh, J.; Mitsopoulos, I.; Sabir, M.; Christou, A.; Bozali, N.; Ketmen, M.; Stephan, J.

    2016-12-01

    Connecting radial tree-growth variables with remotely-sensed vegetation indices provides a foundation for using tree-rings as proxies for ecosystem primary productivity over large space and long time scales. Here we explore the association between tree-ring width and Normalized Difference Vegetation Index (NDVI) records across the Mediterranean. In contrast with most previous tree-ring/remote sensing studies, which have focused on temperature-limited boreal and taiga environments, we assess a large network of drought-sensitive tree-ring width chronologies as proxies for ecosystem-scale `greening', which in this region is largely controlled by moisture availability across vegetation cover types. We find that precipitation, elevation, and land-cover type interact to generate a statistical relationship between radial tree growth and NDVI. Specifically, tree-ring chronologies at low-elevation dry sites are strongly correlated with NDVI during the winter (maximum) precipitation season. In these settings land cover is dominated by grass- and shrublands, suggesting tree-ring width operates as a proxy for broader ecosystem-scale vegetation activity as captured by NDVI. Interactions between climate, geography, and land cover modify the extent to which tree-ring data and NDVI are linked across the Mediterranean, and may be capitalized upon to fine-tune spatial reconstructions of vegetation activity here and in other water-limited environments.

  10. Synthesis of Block Copolymers of Varying Architecture Through Suppression of Transesterification during Coordinated Anionic Ring Opening Polymerization

    PubMed Central

    Lipik, Vitali T.; Abadie, Marc J. M.

    2012-01-01

    Well-defined di- and triblock copolymers consisting of ε-caprolactone (CL), L-lactide (LA), and trimethylene carbonate (TMC) were synthesized via “PLA first route” in coordinated anionic ring opening polymerization/copolymerization (CAROP) with tin (II) octoate as catalyst. The desired block structure was preserved by use of protective additive α-methylstyrene by preventing the transesterification side-reactions. MALDI-TOF analysis revealed that the protection mechanism is associated with α-methylstyrene and tin (II) octoate complexation. Additionally, it was shown that use of α-methylstyrene in ring opening polymerization allowed the formation of polyesters with high molar mass. PMID:22844286

  11. C23 promotes tumorigenesis via suppressing p53 activity

    PubMed Central

    Wang, Juan; Hu, Guilin; Fang, Xing; Hu, Yamin; Tao, Tingting; Wei, Xin; Tang, Haitao; Huang, Baojun; Hu, Wanglai

    2016-01-01

    C23 is an abundant and multi-functional protein, which plays an important role in various biological processes, including ribosome biogenesis and maturation, cell cycle checkpoints and transcriptional regulation [1, 2]. However, the role of C23 in controlling tumorigenesis has not been well defined. Here we report that C23 is highly expressed in cancer cells and the elevated expression of C23 facilitates cancer cell proliferation in vitro and tumor xenograft growth in vivo. Notably, C23 binds to p53 through its GAR domain and suppresses the transcriptional activity of p53 under DNA damage and hypoxia. Moreover, the GAR domain is critical for C23-mediated tumor cell proliferation both in vitro and in vivo. Our findings reveal a novel role of C23 in tumorigenesis and suggest that C23 may represent a potential therapeutic target for treating malignancy. PMID:27506938

  12. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling.

    PubMed

    Kang, J M; Park, S; Kim, S J; Hong, H Y; Jeong, J; Kim, H-S; Kim, S-J

    2012-12-13

    Casitas B-lineage lymphoma (CBL) protein family functions as multifunctional adaptor proteins and E3 ubiquitin ligases that are implicated as regulators of signaling in various cell types. Recent discovery revealed mutations of proto-oncogenic CBL in the linker region and RING finger domain in human acute myeloid neoplasm, and these transforming mutations induced carcinogenesis. However, the adaptor function of CBL mediated signaling pathway during tumorigenesis has not been well characterized. Here, we show that CBL is highly expressed in breast cancer cells and significantly inhibits transforming growth factor-β (TGF-β) tumor suppressive activity. Knockdown of CBL expression resulted in the increased expression of TGF-β target genes, PAI-I and CDK inhibitors such as p15(INK4b) and p21(Cip1). Furthermore, we demonstrate that CBL is frequently overexpressed in human breast cancer tissues, and the loss of CBL decreases the tumorigenic activity of breast cancer cells in vivo. CBL directly binds to Smad3 through its proline-rich motif, thereby preventing Smad3 from interacting with Smad4 and blocking nuclear translocation of Smad3. CBL-b, one of CBL protein family, also interacted with Smad3 and knockdown of both CBL and CBL-b further enhanced TGF-β transcriptional activity. Our findings provide evidence for a previously undescribed mechanism by which oncogenic CBL can block TGF-β tumor suppressor activity.

  13. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    SciTech Connect

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-07-11

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies.

  14. Paeonol Suppresses Neuroinflammatory Responses in LPS-Activated Microglia Cells.

    PubMed

    He, Li Xia; Tong, Xiaoyun; Zeng, Jing; Tu, Yuanqing; Wu, Saicun; Li, Manping; Deng, Huaming; Zhu, Miaomiao; Li, Xiucun; Nie, Hong; Yang, Li; Huang, Feng

    2016-12-01

    In this work, we assessed the anti-inflammatory effects of paeonol (PAE) in LPS-activated N9 microglia cells, as well as its underlying molecular mechanisms. PAE had no adverse effect on the viability of murine microglia N9 cell line within a broad range (0.12∼75 μM). When N9 cell line was activated by LPS, PAE (0.6, 3, 15 μM) significantly suppressed the release of proinflammatory products, such as nitric oxide (NO), interleukin-1β (IL-1β), and prostaglandin E2 (PGE2), demonstrated by the ELISA assay. Moreover, the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were significantly reduced in PAE-treated N9 microglia cells. We also examined some proteins involved in immune signaling pathways and found that PAE treatment significantly decreased the expression of TLR4, MyD88, IRAK4, TNFR-associated factor 6 (TRAF6), p-IkB-α, and NF-kB p65, as well as the mitogen-activated protein kinase (MAPK) pathway molecules p-P38, p-JNK, and p-ERK, indicating that PAE might act on these signaling pathways to inhibit inflammatory responses. Overall, we found that PAE had anti-inflammatory effect on LPS-activated N9 microglia cells, possibly via inhibiting the TLR4 signaling pathway, and it could be a potential drug therapy for inflammation-associated neurodegenerative diseases.

  15. Hybrid Active/Passive Jet Engine Noise Suppression System

    NASA Technical Reports Server (NTRS)

    Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.

    1999-01-01

    A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.

  16. Investigation of frequency response of microwave active ring resonator based on ferrite film

    NASA Astrophysics Data System (ADS)

    Martynov, M. I.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2016-11-01

    The complex transmission coefficient of active ring resonators based on ferrite-film delay lines was investigated both theoretically and experimentally. Influence of the parameters of the delay line on the transmission coefficients was investigated. It was shown that the resonant frequencies of the ring depend on the ferrite film thickness and the distance between spin-wave antennae. These dependences give possibility to control the shape of the transmission coefficient that in combination with magnetic tuning provide flexibility for microwave applications.

  17. Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity.

    PubMed

    Miller, Alyson A; Maxwell, Kate F; Chrissobolis, Sophocles; Bullen, Michelle L; Ku, Jacqueline M; Michael De Silva, T; Selemidis, Stavros; Hooker, Elizabeth U; Drummond, Grant R; Sobey, Christopher G; Kemp-Harper, Barbara K

    2013-07-01

    Nox2 oxidase activity underlies the oxidative stress and vascular dysfunction associated with several vascular-related diseases. We have reported that nitric oxide (NO) decreases reactive oxygen species production by endothelial Nox2. This study tested the hypothesis that nitroxyl (HNO), the redox sibling of NO, also suppresses vascular Nox2 oxidase activity. Specifically, we examined the influence of two well-characterized HNO donors, Angeli's salt and isopropylamine NONOate (IPA/NO), on Nox2-dependent responses to angiotensin II (reactive oxygen species production and vasoconstriction) in mouse cerebral arteries. Angiotensin II (0.1μmol/L)-stimulated superoxide (measured by lucigenin-enhanced chemiluminescence) and hydrogen peroxide (Amplex red fluorescence) levels in cerebral arteries (pooled basilar and middle cerebral (MCA)) from wild-type (WT) mice were ~60% lower (P<0.05) in the presence of either Angeli's salt (1μmol/L) or IPA/NO (1μmol/L). Similarly, phorbyl 12,13-dibutyrate (10μmol/L; Nox2 activator)-stimulated hydrogen peroxide levels were ~40% lower in the presence of IPA/NO (1μmol/L; P<0.05). The ability of IPA/NO to decrease superoxide levels was reversible and abolished by the HNO scavenger l-cysteine (3mmol/L; P<0.05), but was unaffected by hydroxocobalamin (100μmol/L; NO scavenger), ODQ (10μmol/L; soluble guanylyl cyclase (sGC) inhibitor), or Rp-8-pCPT-cGMPS (10μmol/L; cyclic guanosine monophosphate (cGMP)-dependent protein kinase inhibitor). Angiotensin II-stimulated superoxide was substantially less in arteries from Nox2-deficient (Nox2(-/y)) versus WT mice (P<0.05). In contrast to WT, IPA/NO (1μmol/L) had no effect on superoxide levels in arteries from Nox2(-/y) mice. Finally, angiotensin II (1-1000μmol/L)-induced constriction of WT MCA was virtually abolished by IPA/NO (1μmol/L), whereas constrictor responses to either the thromboxane A2 mimetic U46619 (1-100 nmol/L) or high potassium (122.7mmol/L) were unaffected. In conclusion, HNO

  18. Record of the Solar Activity and of Other Geophysical Phenomenons in Tree Ring

    NASA Astrophysics Data System (ADS)

    Rigozo, Nivaor Rodolfo

    1999-01-01

    Tree ring studies are usually used to determine or verify climatic factors which prevail in a given place or region and may cause tree ring width variations. Few studies are dedicated to the geophysical phenomena which may underlie these tree ring width variations. In order to look for periodicities which may be associated to the solar activity and/or to other geophysical phenomena which may influence tree ring growth, a new interactive image analysis method to measure tree ring width was developed and is presented here. This method makes use of a computer and a high resolution flatbed scanner; a program was also developed in Interactive Data Language (IDL 5.0) to study ring digitized images and transform them into time series. The main advantage of this method is the tree ring image interactive analysis without needing complex and high cost instrumentation. Thirty-nine samples were collected: 12 from Concordia - S. C., 9 from Canela - R. S., 14 from Sao Francisco de Paula - R. S., one from Nova Petropolis - R. S., 2 from Sao Martinho da Serra - R. S. e one from Chile. Fit functions are applied to ring width time series to obtain the best long time range trend (growth rate of every tree) curves and are eliminated through a standardization process that gives the tree ring index time series from which is performed spectral analysis by maximum entropy method and iterative regression. The results obtained show periodicities close to 11 yr, 22 yr Hale solar cycles and 5.5 yr for all sampling locations 52 yr and Gleissberg cycles for Concordia - S. C. and Chile samples. El Nino events were also observed with periods around 4 e 7 yr.

  19. Monetary reward suppresses anterior insula activity during social pain

    PubMed Central

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François

    2015-01-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. PMID:25964499

  20. Caerulomycin A Suppresses Immunity by Inhibiting T Cell Activity

    PubMed Central

    Chauhan, Arun; Khatri, Neeraj; Vohra, Rakesh M.; Jolly, Ravinder S.; Agrewala, Javed N.

    2014-01-01

    Background Caerulomycin A (CaeA) is a known antifungal and antibiotic agent. Further, CaeA is reported to induce the expansion of regulatory T cell and prolongs the survival of skin allografts in mouse model of transplantation. In the current study, CaeA was purified and characterized from a novel species of actinomycetes, Actinoalloteichus spitiensis. The CaeA was identified for its novel immunosuppressive property by inhibiting in vitro and in vivo function of T cells. Methods Isolation, purification and characterization of CaeA were performed using High Performance Flash Chromatography (HPFC), NMR and mass spectrometry techniques. In vitro and in vivo T cell studies were conducted in mice using flowcytometry, ELISA and thymidine-[methyl-3H] incorporation. Results CaeA significantly suppressed T cell activation and IFN-γ secretion. Further, it inhibited the T cells function at G1 phase of cell cycle. No apoptosis was noticed by CaeA at a concentration responsible for inducing T cell retardation. Furthermore, the change in the function of B cells but not macrophages was observed. The CaeA as well exhibited substantial inhibitory activity in vivo. Conclusion This study describes for the first time novel in vitro and in vivo immunosuppressive function of CaeA on T cells and B cells. CaeA has enough potential to act as a future immunosuppressive drug. PMID:25286329

  1. Cytokine Treatment of Macrophage Suppression of T Cell Activation

    PubMed Central

    Silberman, Daniel; Bucknum, Amanda; Kozlowski, Megan; Matlack, Robin; Riggs, James

    2009-01-01

    High Mφ:T cell ratios suppress the immune response to the retroviral superantigen Mls by IFNγ-triggered production of the arg- and trp-consuming enzymes iNOS and IDO. Attempts to reverse suppression by treatment with pro-inflammatory cytokines revealed that IL-6 improved the T cell response to Mls and the pro-hematopoietic cyokines IL-3 and GM-CSF increased suppression. GM-CSF treatment increased Mφ expression of CD80, a ligand for the immune suppressive B7H1 and CTLA-4 receptors. These results illustrate potential strategies for reversing the suppression of cell-mediated immunity characteristic of the high Mφ:T cell ratios found in many tumors. PMID:19249120

  2. Cytokine treatment of macrophage suppression of T cell activation.

    PubMed

    Silberman, Daniel; Bucknum, Amanda; Kozlowski, Megan; Matlack, Robin; Riggs, James

    2010-01-01

    High Mphi:T cell ratios suppress the immune response to the retroviral superantigen Mls by IFNgamma-triggered production of the arg- and trp-consuming enzymes iNOS and IDO. Attempts to reverse suppression by treatment with pro-inflammatory cytokines revealed that IL-6 improved the T cell response to Mls and the pro-hematopoietic cyokines IL-3 and GM-CSF increased suppression. GM-CSF treatment increased Mphi expression of CD80, a ligand for the immune suppressive B7H1 and CTLA-4 receptors. These results illustrate potential strategies for reversing the suppression of cell-mediated immunity characteristic of the high Mphi:T cell ratios found in many tumors.

  3. Fused-Ring Oxazolopyrrolopyridopyrimidine Systems with Gram-Negative Activity

    PubMed Central

    Chen, Yiyuan; Moloney, Jonathan G.; Christensen, Kirsten E.; Moloney, Mark G.

    2017-01-01

    Fused polyheterocyclic derivatives are available by annulation of a tetramate scaffold, and been shown to have antibacterial activity against a Gram-negative, but not a Gram-positive, bacterial strain. While the activity is not potent, these systems are structurally novel showing, in particular, a high level of polarity, and offer potential for the optimization of antibacterial activity. PMID:28098784

  4. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  5. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  6. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  7. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation.

  8. FANCD2 Activates Transcription of TAp63 and Suppresses Tumorigenesis

    PubMed Central

    Park, Eunmi; Kim, Hyungjin; Kim, Jung Min; Primack, Benjamin; Vidal-Cardenas, Sofia; Xu, Ye; Price, Brendan D.; Mills, Alea A.; D’Andrea, Alan D.

    2013-01-01

    SUMMARY Fanconi Anemia (FA) is a rare genetic disorder characterized by an increased susceptibility to squamous cell cancers. Fifteen FA genes are known, and the encoded proteins cooperate in a common DNA repair pathway. A critical step is the monoubiquitination of the FANCD2 protein, and cells from most FA patients are deficient in this step. How monoubiquitinated FANCD2 suppresses squamous cell cancers is unknown. Here we show that Fancd2-deficient mice are prone to Ras oncogene-driven skin carcinogenesis, while Usp1-deficient mice, expressing elevated cellular levels of Fancd2-Ub, are resistant to skin tumors. Moreover, Fancd2-Ub activates the transcription of the tumor suppressor TAp63, thereby promoting cellular senescence and blocking skin tumorigenesis. For FA patients, the reduction of FANCD2-Ub and TAp63 protein levels may account for their susceptibility to squamous cell neoplasia. Taken together, Usp1 inhibition may be a useful strategy for upregulating TAp63 and preventing or treating squamous cell cancers in the general non-FA population. PMID:23806336

  9. Modeling Extraction of VLF Energy from Localized Ion Ring Beams for Space Based Active Experiments

    NASA Astrophysics Data System (ADS)

    Scales, Wayne; Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid; Mithaiwala, Manish

    2012-07-01

    Waves in the VLF range are of considerable interest in the magnetosphere since they are responsible for transporting energy and momentum and therefore impacting space weather. Ion ring beams can efficiently generate waves in the VLF frequency range between the electron and ion gyro-frequency (Mithaiwala et al., 2010). Generation of VLF waves by infinite extent ion ring beams have been extensively treated for a broad range of space plasma applications. However, ion ring distributions created by chemical release experiments in the ionosphere (Koons and Pongratz, 1981) and those that occur naturally during storms/substorms or solar-wind comet interactions are localized over a spatial extent. This presentation will consider a new computational model for the nonlinear evolution of VLF waves generated by a spatially localized ion ring beam. The model, though quite general, will have application to generation of VLF waves in the radiation belts by localized creation of an ion ring beam. The model includes the convective loss of energy through phenomenological electron-ion collisions, which models nonlinear scattering of electrostatic lower hybrid waves into large group velocity electromagnetic whistler/magnetosonic waves (Ganguli et al., 2010). Therefore the model, though electrostatic, includes critical electromagnetic effects in a computationally efficient fashion. An emphasis is placed on the determining the efficiency of extraction of VLF energy from the ion ring beam due to the spatial localization of the ion ring beam. It is shown that due to the convection of the VLF waves out of the source region, the efficiency of wave energy extraction is greatly enhanced. This is accompanied by a reduction in background and ion ring beam heating. The results will be used to highlight the importance of non-linear scattering to future active experiments in space. Mithaiwala et al. Phys. Plasma, doi.org/10.1063/1.3372842, 2010 Koons and Pongratz, JGR, 1981. Ganguli et al., Phys

  10. Structure-activity relationship studies of 1,7-diheteroarylhepta-1,4,6-trien-3-ones with two different terminal rings in prostate epithelial cell models.

    PubMed

    Wang, Rubing; Zhang, Xiaojie; Chen, Chengsheng; Chen, Guanglin; Sarabia, Cristian; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2017-06-16

    To systematically investigate the structure-activity relationships of 1,7-diheteroarylhepta-1,4,6-trien-3-ones in three human prostate cancer cell models and one human prostate non-neoplastic epithelial cell model, thirty five 1,7-diarylhepta-1,4,6-trien-3-ones with different terminal heteroaromatic rings have been designed for evaluation of their anti-proliferative potency in vitro. These target compounds have been successfully synthesized through two sequential Horner-Wadsworth-Emmons reactions starting from the appropriate aldehydes and tetraethyl (2-oxopropane-1,3-diyl)bis(phosphonate). Their anti-proliferative potency against PC-3, DU-145 and LNCaP human prostate cancer cell lines can be significantly enhanced by the manipulation of the terminal heteroaromatic rings, further demonstrating the utility of 1,7-diarylhepta-1,4,6-trien-3-one as a potential scaffold for the development of anti-prostate cancer agents. The optimal analog 40 is 82-, 67-, and 39-fold more potent than curcumin toward the three prostate cancer cell lines, respectively. The experimental data also reveal that the trienones with two different terminal aromatic rings possess greater potency toward three prostate cancer cell lines, but also have greater capability of suppressing the proliferation of PWR-1E benign human prostate epithelial cells, as compared to the corresponding counterparts with two identical terminal rings and curcumin. The terminal aromatic rings also affect the cell apoptosis perturbation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Molecular modeling, synthesis, and activity studies of novel biaryl and fused-ring BACE1 inhibitors.

    PubMed

    Chirapu, Srinivas Reddy; Pachaiyappan, Boobalan; Nural, Hikmet F; Cheng, Xin; Yuan, Hongbin; Lankin, David C; Abdul-Hay, Samer O; Thatcher, Gregory R J; Shen, Yong; Kozikowski, Alan P; Petukhov, Pavel A

    2009-01-01

    A series of transition state analogues of beta-secretases 1 and 2 (BACE1, 2) inhibitors containing fused-ring or biaryl moieties were designed computationally to probe the S2 pocket, synthesized, and tested for BACE1 and BACE2 inhibitory activity. It has been shown that unlike the biaryl analogs, the fused-ring moiety is successfully accommodated in the BACE1 binding site resulting in the ligands with excellent inhibitory activity. Ligand 5b reduced 65% of Abeta40 production in N2a cells stably transfected with Swedish human APP.

  12. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway.

    PubMed

    Lv, Xiaowen; Qiu, Min; Chen, Deyan; Zheng, Nan; Jin, Yu; Wu, Zhiwei

    2014-09-01

    Enterovirus 71 (EV71) is a member of genus Enterovirus in Picornaviridae family, which is one of the major causative agents for hand, foot and mouth disease (HFMD), and sometimes associated with severe central nervous system diseases in children. Currently there are no effective therapeutic medicines or vaccines for the disease. In this report, we found that apigenin and luteolin, two flavones that differ only in the number of hydroxyl groups could inhibit EV71-mediated cytopathogenic effect (CPE) and EV71 replication with low cytotoxicity. Both molecules also showed inhibitory effect on the viral polyprotein expression. They prevented EV71-induced cell apoptosis, intracellular reactive oxygen species (ROS) generation and cytokines up-regulation. Time-of-drug addition study demonstrated that apigenin and luteolin acted after viral entry. We examined the effect of apigenin and luteolin on 2A(pro) and 3C(pro) activity, two viral proteases responsible for viral polyprotein processing, and found that they showed less inhibitory activity on 2A(pro) or 3C(pro). Further studies demonstrated that apigenin, but not luteolin could interfere with viral IRES activity. Also, apigenin inhibited EV71-induced c-Jun N-terminal kinase (JNK) activation which is critical for viral replication, in contrast to luteolin that did not. This study demonstrated that apigenin may inhibit EV71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. It also provided evidence that one hydroxyl group difference in the B ring between apigenin and luteolin resulted in the distinct antiviral mechanisms. This study will provide the basis for better drug development and further identification of potential drug targets.

  13. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis

    SciTech Connect

    Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B. Tracy

    2013-12-10

    It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54–RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase and the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.

  14. Chains, Rings, and Dendrites of Active Colloidal Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Granick, Steve

    2015-03-01

    In order to better understand active polymeric matter, colloidal polymers are imaged, in situ in real time, obtaining not only temporal and spatial information about each ``monomer'' in these living polymers but also about the time-dependent and orientation-dependent correlations between them. Our reversible colloidal polymer system is assembled from self-propelled monomeric Janus particles with dynamic ``plug and play'' self-assembly and programmed direction-specific interactions between the particles. Enabling this, AC voltage induces dipoles on the monomeric Janus particles that link them into chains while also generating active phoretic motility. Unique features of this system relative to conventional Brownian polymers are emphasized.

  15. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity

    PubMed Central

    Zhang, Xu; Zhou, Youyou; Luo, Zhongling; Zeng, Weiqi; Su, Juan; Peng, Cong; Chen, Xiang

    2016-01-01

    TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma. PMID:27791197

  16. Honokiol suppresses survival signals mediated by Ras-dependent phospholipase D activity in human cancer cells.

    PubMed

    Garcia, Avalon; Zheng, Yang; Zhao, Chen; Toschi, Alfredo; Fan, Judy; Shraibman, Natalie; Brown, H Alex; Bar-Sagi, Dafna; Foster, David A; Arbiser, Jack L

    2008-07-01

    Elevated phospholipase D (PLD) activity provides a survival signal in several human cancer cell lines and suppresses apoptosis when cells are subjected to the stress of serum withdrawal. Thus, targeting PLD survival signals has potential to suppress survival in cancer cells that depend on PLD for survival. Honokiol is a compound that suppresses tumor growth in mouse models. The purpose of this study was to investigate the effect of honokiol on PLD survival signals and the Ras dependence of these signals. The effect of honokiol upon PLD activity was examined in human cancer cell lines where PLD activity provides a survival signal. The dependence of PLD survival signals on Ras was investigated, as was the effect of honokiol on Ras activation. We report here that honokiol suppresses PLD activity in human cancer cells where PLD has been shown to suppress apoptosis. PLD activity is commonly elevated in response to the stress of serum withdrawal, and, importantly, the stress-induced increase in PLD activity is selectively suppressed by honokiol. The stress-induced increase in PLD activity was accompanied by increased Ras activation, and the stress-induced increase in PLD activity in MDA-MB-231 breast cancer cells was dependent on a Ras. The PLD activity was also dependent on the GTPases RalA and ADP ribosylation factor. Importantly, honokiol suppressed Ras activation. The data provided here indicate that honokiol may be a valuable therapeutic reagent for targeting a large number of human cancers that depend on Ras and PLD for their survival.

  17. Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting.

    PubMed

    Serences, John T; Yantis, Steven; Culberson, Andrew; Awh, Edward

    2004-12-01

    The deployment of spatial attention induces retinotopically specific increases in neural activity that occur even before a target stimulus is presented. Although this preparatory activity is thought to prime the attended regions, thereby improving perception and recognition, it is not yet clear whether this activity is a manifestation of signal enhancement at the attended locations or suppression of interference from distracting stimuli (or both). We investigated the functional role of these preparatory shifts by isolating a distractor suppression component of selection. Behavioral data have shown that manipulating the probability that visual distractors will appear modulates distractor suppression without concurrent changes in signal enhancement. In 2 experiments, functional magnetic resonance imaging revealed increased cue-evoked activity in retinotopically specific regions of visual cortex when increased distractor suppression was elicited by a high probability of distractors. This finding directly links cue-evoked preparatory activity in visual cortex with a distractor suppression component of visual selective attention.

  18. Iron deficiency suppresses ileal nitric oxide synthase activity.

    PubMed

    Goldblatt, M I; Choi, S H; Swartz-Basile, D A; Nakeeb, A; Sarna, S K; Pitt, H A

    2001-01-01

    (3) a normal excitatory response. We conclude that iron deficiency suppresses ileal NOS activity.

  19. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups.

    PubMed

    Salian, Sumantha; Matt, Tanja; Akbergenov, Rashid; Harish, Shinde; Meyer, Martin; Duscha, Stefan; Shcherbakov, Dmitri; Bernet, Bruno B; Vasella, Andrea; Westhof, Eric; Böttger, Erik C

    2012-12-01

    The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2' and 6' substituents of ring I. The functional activities of the kanamycins and the synthesized analogues were investigated (i) in cell-free translation assays on wild-type and mutant bacterial ribosomes to study drug-target interaction, (ii) in MIC assays to assess antibacterial activity, and (iii) in rabbit reticulocyte translation assays to determine activity on eukaryotic ribosomes. Position 2' forms an intramolecular H bond with O5 of ring II, helping the relative orientations of the two rings with respect to each other. This bond becomes critical for drug activity when a 6'-OH substituent is present.

  20. Mechanisms underlying the active self-assembly of microtubule rings and spools

    SciTech Connect

    VanDelinder, Virginia; Brener, Stephanie; Bachand, George D.

    2016-02-04

    Here, active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly. Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.

  1. Mechanisms underlying the active self-assembly of microtubule rings and spools

    DOE PAGES

    VanDelinder, Virginia; Brener, Stephanie; Bachand, George D.

    2016-02-04

    Here, active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly.more » Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.« less

  2. Mastering tricyclic ring systems for desirable functional cannabinoid activity

    PubMed Central

    Petrov, Ravil R.; Knight, Lindsay; Chen, Shao-Rui; Wager-Miller, Jim; McDaniel, Steven W.; Diaz, Fanny; Barth, Francis; Pan, Hui-Lin; Mackie, Ken; Cavasotto, Claudio N.; Diaz, Philippe

    2013-01-01

    There is growing interest in using cannabinoid receptor 2 (CB2) agonists for the treatment of neuropathic pain and other indications. In continuation of our ongoing program aiming for the development of new small molecule cannabinoid ligands, we have synthesized a novel series of carbazole and γ-carboline derivatives. The affinities of the newly synthesized compounds were determined by a competitive radioligand displacement assay for human CB2 cannabinoid receptor and rat CB1 cannabinoid receptor. Functional activity and selectivity at human CB1 and CB2 receptors were characterized using receptor internalization and [35S]GTP-γ-S assays. The structure-activity relationship and optimization studies of the carbazole series have led to the discovery of a non-selective CB1 and CB2 agonist, compound 4. Our subsequent research efforts to increase CB2 selectivity of this lead compound have led to the discovery of CB2 selective compound 64, which robustly internalized CB2 receptors. Compound 64 had potent inhibitory effects on pain hypersensitivity in a rat model of neuropathic pain. Other potent and CB2 receptor–selective compounds, including compounds 63 and 68, and a selective CB1 agonist, compound 74 were also discovered. In addition, we identified the CB2 ligand 35 which failed to promote CB2 receptor internalization and inhibited compound CP55,940-induced CB2 internalization despite a high CB2 receptor affinity. The present study provides novel tricyclic series as a starting point for further investigations of CB2 pharmacology and pain treatment. PMID:24125850

  3. A pixel read-out architecture implementing a two-stage token ring, zero suppression and compression

    NASA Astrophysics Data System (ADS)

    Heuvelmans, S.; Boerrigter, M.

    2011-01-01

    Increasing luminosity in high energy physics experiments leads to new challenges in the design of data acquisition systems for pixel detectors. With the upgrade of the LHCb experiment, the data processing will be changed; hit data from every collision will be transported off the pixel chip, without any trigger selection. A read-out architecture is proposed which is able to obtain low hit data loss on limited silicon area by using the logic beneath the pixels as a data buffer. Zero suppression and redundancy reduction ensure that the data rate off chip is minimized. A C++ model has been created for simulation of functionality and data loss, and for system development. A VHDL implementation has been derived from this model.

  4. Why the white bear is still there: electrophysiological evidence for ironic semantic activation during thought suppression.

    PubMed

    Giuliano, Ryan J; Wicha, Nicole Y Y

    2010-02-26

    Much research has focused on the paradoxical effects of thought suppression, leading to the viewpoint that increases in unwanted thoughts are due to an ironic monitoring process that increases the activation of the very thoughts one is trying to rid from consciousness. However, it remains unclear from behavioral findings whether suppressed thoughts become more accessible during the act of suppression. In the current study, event-related potentials were recorded while participants suppressed or expressed thoughts of a focus word during a simple lexical decision task. Modulations in the N400 component reported here demonstrate the paradoxical effects occurring at the semantic level during suppression, as well as some evidence for the rebound effect after suppression periods. Interestingly, semantic activation was greater for focus words during suppression than expression, despite differences in the N1 window suggesting that expression elicited greater perceptual processing than suppression. Results provide electrophysiological evidence for the Ironic Process model and support recent claims of asymmetric network activation during thought suppression. (c) 2009 Elsevier B.V. All rights reserved.

  5. Why the White Bear is Still There: Electrophysiological Evidence for Ironic Semantic Activation during Thought Suppression

    PubMed Central

    Giuliano, Ryan J.; Wicha, Nicole Y. Y.

    2010-01-01

    Much research has focused on the paradoxical effects of thought suppression, leading to the viewpoint that increases in unwanted thoughts are due to an ironic monitoring process which increases the activation of the very thoughts one is trying to rid from consciousness. However, it remains unclear from behavioral findings whether suppressed thoughts become more accessible during the act of suppression. In the current study, event-related potentials were recorded while participants suppressed or expressed thoughts of a focus word during a simple lexical decision task. Modulations in the N400 component reported here demonstrate the paradoxical effects occurring at the semantic level during suppression, as well as some evidence for the rebound effect after suppression periods. Interestingly, semantic activation was greater for focus words during suppression than expression, despite differences in the N1 window suggesting that expression elicited greater perceptual processing than suppression. Results provide electrophysiological evidence for the Ironic Process model and support recent claims of asymmetric network activation during thought suppression. PMID:20044982

  6. Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator.

    PubMed

    Cuadrado-Laborde, C; Bello-Jiménez, M; Díez, A; Cruz, J L; Andrés, M V

    2014-01-01

    We demonstrate low-frequency active mode locking of an erbium-doped all-fiber ring laser. As the mode locker, we used a new in-fiber bandpass acousto-optic modulator showing 74% modulation depth, 3.7 dB power insertion losses, 4.5 nm of optical bandwidth, and 20 dB of nonresonant light suppression. The laser generates 330 ps mode-locked pulses over a 10 ns pedestal, at a 1.538 MHz frequency, with 130 mW of pump power.

  7. Wavelength-tunable actively mode-locked erbium-doped fiber ring laser using a distributed feedback semiconductor laser as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-07-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a distributed feedback semiconductor laser as an intensity mode locker and a tunable optical filter. Very stable optical pulse trains at gigabit repetition rates were generated using harmonica mode locking. The supermode noise was suppressed to 60 dB below the signal level and the root-mean-square timing jitter (0.45 kHz-1 MHz) was found to be about 1% of the pulse duration. A continuous wavelength tuning range of 1.8 nm was achieved by changing the semiconductor laser temperature from 11.4 to 30 °C.

  8. Development and Flight Test of an Active Flutter Suppression System for the F-4F with Stores. Part I. Design of the Active Flutter Suppression System.

    DTIC Science & Technology

    1982-09-01

    extensive research programs accompanied by wind tunnel tests in the field of active flutter and elastic mode suppression. In 1975, MBB conducted a successful...Pro- gram," Paper presented at the 51th SMP of AGARD, Athens 13-18 April 1980. 6. 0. Sensburg, J. Becker, H. Honlinger, "Active Control of Flutter and

  9. Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency.

    PubMed

    Salem, Bahey; Miner, Samantha; Hensel, Nancy F; Battiwalla, Minoo; Keyvanfar, Keyvan; Stroncek, David F; Gee, Adrian P; Hanley, Patrick J; Bollard, Catherine M; Ito, Sawa; Barrett, A John

    2015-12-01

    With the increasing use of cell therapies involving immune modulatory cells, there is a need for a simple standardized method to evaluate and compare the suppressive potency of different cell products. We used the Karpas 299 (K299) cell line as the reference suppressor cell to develop a standardized suppression assay to quantify the immune-modulatory capacity of bone marrow-derived mesenchymal stromal cells (BM-MSCs). Healthy donor CD4 T cells were co-cultured with the K299 cell line or with third-party BM-MSCs. After stimulation with anti-CD3/CD28 beads, CD154 activation and proliferation of CD4 T cells were measured to calculate suppression. The K299 cell line reproducibly suppressed both the activation and proliferation of healthy donor CD4 T cells in a dose-dependent manner. A rapid (16-h) assay that was based on activation-suppression was selected for development. In replicate testing, there was an inherent variability of suppression of 11% coefficient of variation between different responder T cells. Suppression by BM-MSCs on different responders correlated with suppression by K299. We therefore used K299 suppression as the reference to define suppression potency of BM-MSCs in K299 Suppression Units. We found that inter-donor variability, passage number, method of manufacture and exposure of BM-MSCs to steroids or interferon-γ all affected BM-MSC potency of suppression. This method provides a platform for standardizing suppressor function to facilitate comparisons between laboratories and for use as a cell product release assay. Published by Elsevier Inc.

  10. Report on a Cooperative Programme on Active Flutter Suppression,

    DTIC Science & Technology

    1980-08-01

    assistance to member nations for the purpose of increasing their scientific and technical potential ; - Recommending effective ways for the member nations to ...experience gained in the above-mentioned wind tunnel tests pointed the way to further improve- ments that could be made in the flutter suppression system...console at Northrop’s Hawthorne facility prior to test entry. The wind tunnel tests were performed in September-October 1979 at the NASA Langley Center

  11. Influence of ring size on the cognition-enhancing activity of DM235 and MN19, two potent nootropic drugs.

    PubMed

    Guandalini, L; Martini, E; Di Cesare Mannelli, L; Dei, S; Manetti, D; Scapecchi, S; Teodori, E; Ghelardini, C; Romanelli, M N

    2012-03-01

    A series of analogs of DM235 and MN19, characterized by rings with different size, have been prepared and evaluated for their nootropic activity in the mouse passive-avoidance test. It was found that the optimal ring size for the analogs of DM235, showing endocyclic both amidic groups, is 6 or 7 atoms. For the compounds structurally related to MN19, carrying an exocyclic amide group, the piperidine ring is the moiety which gives the most interesting compounds.

  12. Semisynthesis and insecticidal activity of some fraxinellone derivatives modified in the B ring.

    PubMed

    Guo, Yong; Qu, Huan; Zhi, Xiaoyan; Yu, Xiang; Yang, Chun; Xu, Hui

    2013-12-11

    A series of novel fraxinellone derivatives modified at the C-1 or C-8 position in the B ring were prepared as insecticidal agents against the pre-third-instar larvae of oriental armyworm, Mythimna separata Walker at 1 mg/mL. Five key steric configurations of compounds 2, 3, and 8f,g,j were further determined by single-crystal X-ray diffraction. It was found that the kinds and the amount of the reduction products of fraxinellone were related to the molar ratio between the reduction agent Red-Al and the substrate fraxinellone. Among all of the derivatives, compounds 2 and 8i,j,o displayed more promising insecticidal activity than their precursors fraxinellone and toosendanin. The preliminary structure-activity relationships revealed that the lactone (B-ring) of fraxinellone contributed to the observed insecticidal activity; the double bond at the C-2 position of fraxinellone was not necessary for the insecticidal activity; conversion of the oxygen atom of carbonyl group on the lactone of fraxinellone to a sulfur one does not improve the insecticidal activity; introduction of electron-withdrawing groups on the phenyl ring of 8f, to the benzoyloxy series, could result in more potent compounds.

  13. Growth suppressing activity for endothelial cells induced from macrophages by carboxymethylated curdlan.

    PubMed

    Usui, S; Matsunaga, T; Ukai, S; Kiho, T

    1997-11-01

    A carboxymethylated derivative of a linear (1-->3)-beta-D-glucan (CMCD) from Alcaligenes faecalis var. myxogenes acted directly on mouse peritoneal macrophages and mouse lymphoma P388D1 cells, and induced a growth suppressing activity for bovine artery endothelial cells (BAEs) from themselves at a concentration of 100 micrograms/ml. The suppressing activity was also detected in the mouse serum administered as an i.p. injection of CMCD at a dose of 100 mg/kg, suggesting that the growth suppressing activity was induced from macrophages potentiated by CMCD in vivo.

  14. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation.

    PubMed

    Yamaguchi, Masayoshi; Weitzmann, M Neale

    2011-01-01

    Several bone protective factors are reported to exhibit stimulatory activities on bone formation coupled with inhibitory effects on bone resorption; one such factor is vitamin K2. Vitamin K species [K1 (phylloquinone) and K2 (menaquinone)] have long been associated with bone protective activities and are receiving intense interest as nutritional supplements for the prevention or amelioration of bone disease in humans. However, the mechanisms of vitamin K action on the skeleton are poorly defined. Activation of the nuclear factor κB (NF-κB) signal transduction pathway is essential for osteoclast formation and resorption. By contrast, NF-κB signaling potently antagonizes osteoblast differentiation and function, prompting us to speculate that NF-κB antagonists may represent a novel class of dual anti-catabolic and pro-anabolic agents. We now show that vitamin K2 action on osteoblast and osteoclast formation and activity is accomplished by down-regulating basal and cytokine-induced NF-κB activation, by increasing IκB mRNA, in a γ-carboxylation-independent manner. Furthermore, vitamin K2 prevented repression by tumor necrosis factor α (TNFα) of SMAD signaling induced by either transforming growth factor ß (TGFß) or bone morphogenetic protein-2 (BMP-2). Vitamin K2 further antagonized receptor activator of NF-κB (RANK) ligand (RANKL)-induced NF-κB activation in osteoclast precursors. Our data provide a novel mechanism to explain the dual pro-anabolic and anti-catabolic activities of vitamin K2, and may further support the concept that pharmacological modulation of NF-κB signal transduction may constitute an effective mechanism for ameliorating pathological bone loss and for promoting bone health.

  15. Design and experimental validation of a flutter suppression controller for the active flexible wing

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1992-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and extensive simulation based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite modeling errors in predicted flutter dynamic pressure and flutter frequency. The flutter suppression controller was also successfully operated in combination with another controller to perform flutter suppression during rapid rolling maneuvers.

  16. Flutter suppression for the Active Flexible Wing - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Srinathkumar, S.

    1992-01-01

    The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  17. Flutter suppression for the Active Flexible Wing - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Srinathkumar, S.

    1992-01-01

    The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  18. Oscillation regimes of a solid-state ring laser with active beat-note stabilization: From a chaotic device to a ring-laser gyroscope

    SciTech Connect

    Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Lariontsev, Evguenii

    2007-08-15

    We report an experimental and theoretical study of a rotating diode-pumped Nd-YAG ring laser with active beat-note stabilization. Our experimental setup is described in the usual Maxwell-Bloch formalism. We analytically derive a stability condition and some frequency response characteristics for the solid-state ring-laser gyroscope, illustrating the important role of mode coupling effects on the dynamics of such a device. Experimental data are presented and compared with the theory on the basis of realistic laser parameters, showing very good agreement. Our results illustrate the duality between the very rich nonlinear dynamics of the diode-pumped solid-state ring laser (including chaotic behavior) and the possibility to obtain a very stable beat note, resulting in a potentially new kind of rotation sensor.

  19. Helicopter air resonance modeling and suppression using active control

    NASA Technical Reports Server (NTRS)

    Takahashi, M. D.; Friedmann, P. P.

    1991-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected with an air resonance instability throughout most of its flight envelope. A multivariable compensator is then designed using two swashplate inputs and a single-body roll rate measurement. The controller design is based on the linear quadratic Gaussian technique and the loop transfer recovery method. The controller is shown to suppress the air resonance instability throughout a wide range of helicopter loading conditions and forward flight speeds.

  20. Helicopter air resonance modeling and suppression using active control

    NASA Technical Reports Server (NTRS)

    Takahashi, M. D.; Friedmann, P. P.

    1991-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected with an air resonance instability throughout most of its flight envelope. A multivariable compensator is then designed using two swashplate inputs and a single-body roll rate measurement. The controller design is based on the linear quadratic Gaussian technique and the loop transfer recovery method. The controller is shown to suppress the air resonance instability throughout a wide range of helicopter loading conditions and forward flight speeds.

  1. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    NASA Astrophysics Data System (ADS)

    Grishin, S. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2014-02-01

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.

  2. Design, synthesis, and antibacterial activity of novel pleuromutilin derivatives bearing an amino thiazolyl ring.

    PubMed

    Ling, Yong; Wang, Xinyang; Wang, Hui; Yu, Jianghe; Tang, Junming; Wang, Donggeng; Chen, Guangtong; Huang, Jinhua; Li, Yuqin; Zheng, Heng

    2012-08-01

    A series of novel pleuromutilin derivatives containing the amino thiazolyl ring were designed, synthesized, and evaluated for their antibacterial activities in vitro against Gram-positive clinical bacteria. All the target compounds showed better aqueous solubility compared with the lead compound (10). Most compounds displayed strong antibacterial activities against both susceptible and resistant bacteria, particularly for the compound (12f) which showed extraordinary antibacterial properties superior to amoxicillin and tiamulin. Molecular docking studies revealed that the amino thiazolyl ring, the side chains of the pleuromutilin derivatives, can be adopted in the binding pocket of the 50S ribosomal subunit near the mutilin core. Therefore, our novel findings may provide new insights into the design of novel pleuromutilin derivatives and lay the basis for further studies on these promising antibiotics for human clinical use. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rotation sensing with Er3+-doped active ring resonator slow light structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqin

    2016-10-01

    An optical gyroscope, which is constituted by Er3+-doped active ring resonator (EDARR) slow light structure, is presented for the first time. The principle of improving the sensitivity of the detection of angular velocity is analysed in detail. The expression of the rotation phase difference of EDARR between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in the cavity is far greater than the input light power. We designed an experimental scheme of Er3+-doped active ring resonator slow light system. Two additional bias phases ϕb = ±π/2 were introduced in the optical path, by recording the light intensity difference ? and I0 at the resonant frequency ?, the input angular velocity can be obtained. The slow light structure based on EDARR can enhance the sensitivity of the detection of the angular velocity by three orders of magnitude.

  4. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    SciTech Connect

    Grishin, S. V. Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2014-02-07

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.

  5. Feasibility of an electrodermal activity ring prototype as a research tool.

    PubMed

    Torniainen, Jari; Cowley, Benjamin; Henelius, Andreas; Lukander, Kristian; Pakarinen, Satu

    2015-01-01

    Electrodermal activity is an indicator of sympathetic activation and a useful tool for investigating psychological and physiological arousal. Novel wearable skin conductivity sensors offer portable low-cost solutions for long-term monitoring. In this article we compare the similarity of signals between a prototype of the wearable Moodmetric EDA Ring and a laboratory-grade skin conductance sensor in a psychophysiological experiment. The similarity of the signals was estimated by calculating the cosine distance between phasic features extracted from decomposed signals. The similarity was on average 83.3% ± 16.4%. The compound error of the decomposition process was also investigated and no systematic bias was observed towards either device. We conclude that the prototype ring is a promising device for ecologically valid field studies.

  6. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells.

    PubMed

    Parker, Katherine H; Sinha, Pratima; Horn, Lucas A; Clements, Virginia K; Yang, Huan; Li, Jianhua; Tracey, Kevin J; Ostrand-Rosenberg, Suzanne

    2014-10-15

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSCs may define an element of the pathogenic inflammatory processes that drives immune escape. The secreted alarmin HMGB1 is a proinflammatory partner, inducer, and chaperone for many proinflammatory molecules that MDSCs develop. Therefore, in this study, we examined HMGB1 as a potential regulator of MDSCs. In murine tumor systems, HMGB1 was ubiquitous in the tumor microenvironment, activating the NF-κB signal transduction pathway in MDSCs and regulating their quantity and quality. We found that HMGB1 promotes the development of MDSCs from bone marrow progenitor cells, contributing to their ability to suppress antigen-driven activation of CD4(+) and CD8(+) T cells. Furthermore, HMGB1 increased MDSC-mediated production of IL-10, enhanced crosstalk between MDSCs and macrophages, and facilitated the ability of MDSCs to downregulate expression of the T-cell homing receptor L-selectin. Overall, our results revealed a pivotal role for HMGB1 in the development and cancerous contributions of MDSCs. ©2014 American Association for Cancer Research.

  7. Tumour-suppression activity of the proapoptotic regulator Par4.

    PubMed

    García-Cao, Isabel; Duran, Angeles; Collado, Manuel; Carrascosa, Maria J; Martín-Caballero, Juan; Flores, Juana M; Diaz-Meco, Maria T; Moscat, Jorge; Serrano, Manuel

    2005-06-01

    The proapoptotic protein encoded by Par4 (prostate apoptosis response 4) has been implicated in tumour suppression, particularly in the prostate. We report here that Par4-null mice are prone to develop tumours, both spontaneously and on carcinogenic treatment. The endometrium and prostate of Par4-null mice were particularly sensitive to the development of proliferative lesions. Most (80%) Par4-null females presented endometrial hyperplasia by 9 months of age, and a significant proportion (36%) developed endometrial adenocarcinomas after 1 year of age. Similarly, Par4-null males showed a high incidence of prostate hyperplasia and prostatic intraepithelial neoplasias, and were extraordinarily sensitive to testosterone-induced prostate hyperplasia. Finally, the uterus and prostate of young Par4-null mice have increased levels of the apoptosis inhibitor XIAP (X-chromosome-linked inhibitor of apoptosis), supporting the previously proposed function of Par4 as an inhibitor of the (zeta)PKC (atypical protein kinase)-NF-(kappa)B (nuclear factor-(kappa)B)-XIAP pathway. These data show that Par4 has an important role in tumour suppression, with a particular relevance in the endometrium and prostate.

  8. Tumour-suppression activity of the proapoptotic regulator Par4

    PubMed Central

    García-Cao, Isabel; Duran, Angeles; Collado, Manuel; Carrascosa, Maria J.; Martín-Caballero, Juan; Flores, Juana M.; Diaz-Meco, Maria T.; Moscat, Jorge; Serrano, Manuel

    2005-01-01

    The proapoptotic protein encoded by Par4 (prostate apoptosis response 4) has been implicated in tumour suppression, particularly in the prostate. We report here that Par4-null mice are prone to develop tumours, both spontaneously and on carcinogenic treatment. The endometrium and prostate of Par4-null mice were particularly sensitive to the development of proliferative lesions. Most (80%) Par4-null females presented endometrial hyperplasia by 9 months of age, and a significant proportion (36%) developed endometrial adenocarcinomas after 1 year of age. Similarly, Par4-null males showed a high incidence of prostate hyperplasia and prostatic intraepithelial neoplasias, and were extraordinarily sensitive to testosterone-induced prostate hyperplasia. Finally, the uterus and prostate of young Par4-null mice have increased levels of the apoptosis inhibitor XIAP (X-chromosome-linked inhibitor of apoptosis), supporting the previously proposed function of Par4 as an inhibitor of the ζPKC (atypical protein kinase)–NF-κB (nuclear factor-κB)–XIAP pathway. These data show that Par4 has an important role in tumour suppression, with a particular relevance in the endometrium and prostate. PMID:15877079

  9. Neuroligin-1 Knockdown Suppresses Seizure Activity by Regulating Neuronal Hyperexcitability.

    PubMed

    Fang, Min; Wei, Jin-Lai; Tang, Bo; Liu, Jing; Chen, Ling; Tang, Zhao-Hua; Luo, Jing; Chen, Guo-Jun; Wang, Xue-Feng

    2016-01-01

    Abnormally synchronized synaptic transmission in the brain leads to epilepsy. Neuroligin-1 (NL1) is a synaptic cell adhesion molecule localized at excitatory synapses. NL1 modulates synaptic transmission and determines the properties of neuronal networks in the mammalian central nervous system. We showed that the expression of NL1 and its binding partner neurexin-1β was increased in temporal lobe epileptic foci in patients and lithium-pilocarpine-treated epileptic rats. We investigated electrophysiological and behavioral changes in epileptic rats after lentivirally mediated NL1 knockdown in the hippocampus to determine whether NL1 suppression prevented seizures and, if so, to explore the probable underlying mechanisms. Our behavioral studies revealed that NL1 knockdown in epileptic rats reduced seizure severity and increased seizure latency. Whole-cell patch-clamp recordings of CA1 pyramidal neurons in hippocampal slices from NL1 knockdown epileptic rats revealed a decrease in spontaneous action potential frequency and a decrease in miniature excitatory postsynaptic current (mEPSC) frequency but not amplitude. The amplitude of N-methyl-D-aspartate receptor (NMDAR)-dependent EPSCs was also selectively decreased. Notably, NL1 knockdown reduced total NMDAR1 expression and the surface/total ratio in the hippocampus of epileptic rats. Taken together, these data indicate that NL1 knockdown in epileptic rats may reduce the frequency and severity of seizures and suppress neuronal hyperexcitability via changes in postsynaptic NMDARs.

  10. Dissipative soliton generation in an active ring resonator based on magnonic quasicrystal with Fibonacci type structure

    NASA Astrophysics Data System (ADS)

    Grishin, S. V.; Beginin, E. N.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2013-07-01

    This study reports on the experimental investigations of a magnetostatic surface wave (MSSW) propagation in a magnonic quasicrystal (MQC) with Fibonacci type structure. It is shown that such structure has a greater number of band gaps and narrower pass bands located between them than a periodic structure. These features of the MQC and three-wave decay of the MSSW are used in a MQC active ring resonator for the eigenmode selection and dissipative soliton self-generation.

  11. D-ring modified novel isosteviol derivatives: design, synthesis and cytotoxic activity evaluation.

    PubMed

    Zhang, Tao; Lu, Li-Hui; Liu, Hao; Wang, Jun-Wei; Wang, Rui-Xue; Zhang, Yun-Xiao; Tao, Jing-Chao

    2012-09-15

    A series of polyhydric, amino alcohol and tricyclic derivatives were facilely synthesized by D-ring modification of isosteviol. These compounds were screened for their cytotoxic activities against four human tumor cell lines in vitro. Among them, the 15-α-aminomethyl-16-β-hydroxyl isosteviol 23 exhibits significant cytotoxicity superior to the positive control (cisplatin) against EC9706, PC-3 and HCT-116 cell lines.

  12. A 4500 year Southern Hemisphere record of ENSO activity from kauri tree rings

    NASA Astrophysics Data System (ADS)

    Fowler, Anthony; Boswijk, Gretel; Lorrey, Andrew

    2013-04-01

    Kauri (Agathis australis (D. Don) Lindl.) is a long-lived closed-canopy emergent conifer endemic to northern New Zealand. Its clear annual rings carry a regional-scale climate signal which is amplified by pooling data across the modern growth range. Annual rings are predominantly laid down in September through December, coincident with El Niño and La Niña events peaking and with the strongest El Niño - Southern Oscillation (ENSO) teleconnection to New Zealand. Statistical analyses indicate that ENSO was the dominant 20th century driver of inter-annual variability of kauri growth with El Niño and La Niña events usually associated with wide and narrow tree rings respectively. A consequence is that the waxing and waning of ENSO activity through time is registered in kauri master tree-ring chronologies as evolving time series variance (variance increases during ENSO active periods). A multi-millennial master kauri tree-ring chronology has been built from samples extracted from living trees, historic building timbers, logging relics, and wood preserved in swamps. Recent work has extended the chronology to 2489 BCE and has increased sample depth to a minimum of nine trees from 1589 BCE (to 2002 CE). We describe this chronology and critically evaluate the utility of its running variance as a proxy for ENSO activity and/or regional teleconnection changes. Issues related to signal contamination, associated with complex evolving sample mix and depth, are highlighted. Inferred changes in past ENSO activity and/or teleconnections are related to plausible climate drivers (solar activity, volcanism, and global warming). In line with multi-proxy ENSO studies, our results indicate increasing ENSO activity as the world has warmed over the last 500 years or so, with superimposed quasi-periodic multi-decadal oscillations. We also find evidence of decadal-scale spectral features emerging at times of high chronology variance, consistent with the results of wavelet analysis of 20th

  13. Honokiol Suppresses Survival Signals Mediated by Ras-Dependent Phospholipase D Activity in Human Cancer Cells

    PubMed Central

    Garcia, Avalon; Zheng, Yang; Zhao, Chen; Toschi, Alfredo; Fan, Judy; Shraibman, Natalie; Brown, H. Alex; Bar-Sagi, Dafna; Foster, David A.; Arbiser, Jack L.

    2009-01-01

    Purpose Elevated phospholipase D (PLD) activity provides a survival signal in several human cancer cell lines and suppresses apoptosis when cells are subjected to the stress of serum withdrawal. Thus, targeting PLD survival signals has potential to suppress survival in cancer cells that depend on PLD for survival. Honokiol is a compound that suppresses tumor growth in mouse models. The purpose of this study was to investigate the effect of honokiol on PLD survival signals and the Ras dependence of these signals. Experimental Design The effect of honokiol upon PLD activity was examined in human cancer cell lines where PLD activity provides a survival signal. The dependence of PLD survival signals on Ras was investigated, as was the effect of honokiol on Ras activation. Results We report here that honokiol suppresses PLD activity in human cancer cells where PLD has been shown to suppress apoptosis. PLD activity is commonly elevated in response to the stress of serum withdrawal, and, importantly, the stress-induced increase in PLD activity is selectively suppressed by honokiol. The stress-induced increase in PLD activity was accompanied by increased Ras activation, and the stress-induced increase in PLD activity in MDA-MB-231 breast cancer cells was dependent on a Ras. The PLD activity was also dependent on the GTPases RalA and ADP ribosylation factor. Importantly, honokiol suppressed Ras activation. Conclusion The data provided here indicate that honokiol may be a valuable therapeutic reagent for targeting a large number of human cancers that depend on Ras and PLD for their survival. PMID:18594009

  14. Active Flutter Suppression Using Cooperative, High Frequency, Dynamic-Resonant Aero-Effectors

    DTIC Science & Technology

    2006-12-13

    Final 06/15/03-09/14/06 4. TITLE AND SUBTITLE Sa . CONTRACT NUMBER Active Flutter Suppression Using Cooperative, High Frequency, Dynamic Resonant Aero...maneuvering performance. Conventional active vibration control and flutter suppression systems are servo -hydraulic. Conventional servo -hydraulic...technology is burdened by a set of undesirable characteristics that effectively restrict their use to large aircraft. The servo -hydraulic based systems have

  15. Idelalisib and caffeine reduce suppression of T cell responses mediated by activated chronic lymphocytic leukemia cells.

    PubMed

    Hock, Barry D; MacPherson, Sean A; McKenzie, Judith L

    2017-01-01

    Chronic lymphocytic leukemia (CLL) is associated with T cell dysfunction. Activated CLL cells are found within the lymphoid tumor micro-environment and overcoming immuno-suppression induced by these cells may improve anti-CLL immune responses. However, the mechanisms by which activated CLL cells inhibit T cell responses, and reagents targeting such mechanisms have not been identified. Here we demonstrate that the ability of in vitro activated CLL cells to suppress T cell proliferation is not reversed by the presence of ecto-nuclease inhibitors or blockade of IL-10, PD-1 and CTLA-4 pathways. Caffeine is both an adenosine receptor antagonist and a phosphatidylinositol-3-kinase, p110δ (PI3Kδ) inhibitor and, at physiologically relevant levels, significantly reversed suppression. Significant reversal of suppression was also observed with the PI3Kδ specific inhibitor Idelalisib but not with adenosine receptor specific antagonists. Furthermore, addition of caffeine or Idelalisib to activated CLL cells significantly inhibited phosphorylation of AKT, a downstream kinase of PI3K, but did not affect CLL viability. These results suggest that caffeine, in common with Idelalisib, reduces the immuno-suppressive activity of activated CLL cells by inhibiting PI3Kδ. These findings raise the possibility that these compounds may provide a useful therapeutic adjunct by reducing immuno-suppression within the tumor micro-environment of CLL.

  16. Idelalisib and caffeine reduce suppression of T cell responses mediated by activated chronic lymphocytic leukemia cells

    PubMed Central

    Hock, Barry D.; MacPherson, Sean A.; McKenzie, Judith L.

    2017-01-01

    Chronic lymphocytic leukemia (CLL) is associated with T cell dysfunction. Activated CLL cells are found within the lymphoid tumor micro-environment and overcoming immuno-suppression induced by these cells may improve anti-CLL immune responses. However, the mechanisms by which activated CLL cells inhibit T cell responses, and reagents targeting such mechanisms have not been identified. Here we demonstrate that the ability of in vitro activated CLL cells to suppress T cell proliferation is not reversed by the presence of ecto-nuclease inhibitors or blockade of IL-10, PD-1 and CTLA-4 pathways. Caffeine is both an adenosine receptor antagonist and a phosphatidylinositol-3-kinase, p110δ (PI3Kδ) inhibitor and, at physiologically relevant levels, significantly reversed suppression. Significant reversal of suppression was also observed with the PI3Kδ specific inhibitor Idelalisib but not with adenosine receptor specific antagonists. Furthermore, addition of caffeine or Idelalisib to activated CLL cells significantly inhibited phosphorylation of AKT, a downstream kinase of PI3K, but did not affect CLL viability. These results suggest that caffeine, in common with Idelalisib, reduces the immuno-suppressive activity of activated CLL cells by inhibiting PI3Kδ. These findings raise the possibility that these compounds may provide a useful therapeutic adjunct by reducing immuno-suppression within the tumor micro-environment of CLL. PMID:28257435

  17. Suppression of Active-Region CME Production by the Presence of Other Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor

    2009-01-01

    From the SOHO mission s data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region s total magnetic flux), and (2) a gauge of the active region s free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region s expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region s flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

  18. Active suppression of an 'apparent shock induced instability'

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Tiffany, Sherwood H.; Bardusch, Richard E.

    1987-01-01

    A control law was designed, using constrained optimization techniques, to suppress an apparent shock induced instability of a sweptback, aeroelastic wing with supercritical airfoil sections. The controller design was based on an approximate linear plant representation obtained using forced response data from a previous entry in the Langley Transonic Dynamics tunnel. During a second tunnel entry, it was found that there was not an instability in the uncontrolled case but there was a region of very low damping (high dynamic response) near a Mach number of 0.92. Controller performance was obtained during the test in near real-time and revealed that the controller attenuated the open-loop response and provided a small but significant amount of damping over a Mach number range from M = 0.70 to M = 0.92.

  19. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation.

    PubMed

    Cui, Yanji; Wu, Jinji; Jung, Sung-Cherl; Park, Deok-Bae; Maeng, Young-Hee; Hong, Jeong Yun; Kim, Se-Jae; Lee, Sun-Ryung; Kim, Soon-Jong; Kim, Sang Jeong; Eun, Su-Yong

    2010-01-01

    A growing body of evidence suggests that nobiletin (5,6,7,8,3',4'-hexamethoxy flavone) from the peel of citrus fruits, enhances the damaged cognitive function in disease animal models. However, the neuroprotective mechanism has not been clearly elucidated. Since nobiletin has shown anti-inflammatory effects in several tissues, we investigated whether nobiletin suppresses excessive microglial activation implicated in neurotoxicity in lipopolysaccharide (LPS)-stimulated BV-2 microglia cell culture models. Release of nitric oxide (NO), the major inflammatory mediator in microglia, was markedly suppressed in a dose-dependent manner following nobiletin treatment (1-50 µM) in LPS-stimulated BV-2 microglia cells. The inhibitory effect of nobiletin was similar to that of minocycline, a well-known microglial inactivator. Nobiletin significantly inhibited the release of the pro-inflammatory cytokine tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). LPS-induced phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 mitogen-activated protein kinases (MAPKs) were also significantly inhibited by nobiletin treatment. In addition, nobiletin markedly inhibited the LPS-induced pro-inflammatory transcription factor nuclear factor κB (NF-κB) signaling pathway by suppressing nuclear NF-κB translocation from the cytoplasm and subsequent expression of NF-κB in the nucleus. Taken together, these results may contribute to further exploration of the therapeutic potential and molecular mechanism of nobiletin in relation to neuroinflammation and neurodegenerative diseases.

  20. Estimate of Dose and Residual Activity in the SNS Ring Collimation Straight

    NASA Astrophysics Data System (ADS)

    Ludewig, H.; Simos, N.; Davino, D.; Cousineau, S.; Catalan-Lasheras, N.; Brodowski, J.; Tuozzolo, J.; Longo, C.; Mullany, B.; Raparia, D.

    2003-12-01

    The collimation system in the SNS ring includes a two-stage collimator consisting of a halo scraper and an appropriate fixed aperture collimator. This unit is placed between the first quadru-pole and the first doublet in the collimation straight section of the ring. The entire structure is surrounded by an outer shield structure. The downstream dose to the doublet and the attached corrector magnet will be estimated for normal operating conditions. In addition, the activities of cooling water, tunnel air, and dose to cables will be estimated. The dose at the flange locations will be estimated following machine shutdown. Finally, the implied dose to surroundings during the removal of an exposed collimator will be made.

  1. Contemporaneous ring fault activity and surface deformation at subsiding calderas studied using analogue experiments

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Kai; Ruch, Joël; Vasyura-Bathke, Hannes; Jónsson, Sigurjón

    2017-04-01

    Ground deformation analyses of several subsiding calderas have shown complex and overlapping deformation signals, with a broad deflation signal that affects the entire volcanic edifice and localized subsidence focused within the caldera. However, the relation between deep processes at subsiding calderas, including magmatic sources and faulting, and the observed surface deformation is still debated. Several recent examples of subsiding calderas in the Galápagos archipelago and at the Axial seamount in the Pacific Ocean indicate that ring fault activity plays an important role not only during caldera collapse, but also during initial stages of caldera subsidence. Nevertheless, ring fault activity has rarely been integrated into numerical models of subsiding calderas. Here we report on sandbox analogue experiments that we use to study the processes involved from an initial subsidence to a later collapse of calderas. The apparatus is composed of a subsiding half piston section connected to the bottom of a glass box and driven by a motor to control its subsidence. We analyze at the same time during the subsidence the 3D displacement at the model surface with a laser scanner and the 2D ring fault evolution on the side of the model (cross-section) with a side-view digital camera. We further use PIVLab, a time-resolved digital image correlation software tool, to extract strain and velocity fields at both the surface and in cross-section. This setup allows to track processes acting at depth and assess their relative importance as the collapse evolves. We further compare our results with the examples observed in nature as well as with numerical models that integrate ring faults.

  2. Suppression of newborn natural killer cell activity by prostaglandin E2

    SciTech Connect

    Milch, P.O.; Salvatore, W.; Luft, B.; Baker, D.A.

    1988-10-01

    The effect of prostaglandin E2 on natural killer cell activity of cord blood was examined. Natural killer cell activity, determined by chromium 51 release, was significantly reduced after prostaglandin E2 (1 microgram/ml) treatment. Prostaglandin E2 has been found to enhance the cellular spread of herpesvirus. Thus prostaglandins may enhance viral infections indirectly by suppressing natural killer cell activity.

  3. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  4. Active vertical tail buffeting suppression based on macro fiber composites

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  5. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins.

    PubMed

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D; Yan, Chunhong

    2014-03-28

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer.

  6. Tree-ring Oxygen Isotope Records of Climate Modes Influencing North Atlantic Tropical Cyclone Activity

    NASA Astrophysics Data System (ADS)

    Mora, C. I.; Miller, D. L.; Grissino-Mayer, H. D.; Kocis, W. N.; Lewis, D. B.

    2006-12-01

    The relatively short instrumental record hinders our ability to discern the linkages between low frequency modes of climate variability and tropical cyclone activity and to differentiate natural versus anthropogenic components of these trends. The development of biological proxies for tropical cyclone activity and climate provides a basis for evaluation of these linkages over much longer time frames. The oxygen isotope composition of tree-ring cellulose, sampled at high resolution (seasonal or better), provides a new proxy for tropical cyclone activity that preserves a concurrent isotope time series reflecting the influence of climate variability. This proxy archive potentially extends many centuries beyond the instrumental and historical (documentary) record of climate and tropical cyclone activity. Isotope time series for longleaf pines (Pinus palustris Mill.) in southern Georgia and South Carolina preserve distinct tropical cyclone histories, yet similar, long term trends in cellulose δ 18O compositions. The isotope time series correlate to various climate modes proposed to impact hurricane formation and frequency. Tree-ring cellulose δ 18O values at the Georgia study site show a significant negative correlation with AMO indices from 1875 to about 1950, and a weaker, positive correlation from about 1965 to 1990. The "crossover" parallels a change in the predominant ontogeny of North Atlantic tropical cyclones from tropical-only to baroclinically-enhanced hurricanes. The intervening 1950s is marked by greater correspondence to ENSO indices. Reduced seasonality in the isotope record (i.e., the difference between earlywood and latewood δ 18O values) corresponds to warm phases of the PDO. An isotope series for 1580 to 1650 suggests little tropical cyclone activity coinciding with a period (1560-1625) of severe drought in the African Sahel. Although preliminary, these results suggest that tree-ring oxygen isotope compositions are sensitive to changes in climate

  7. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  8. Extinction cross-section suppression and active acoustic invisibility cloaking

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-10-01

    Invisibility in its canonical form requires rendering a zero extinction cross-section (or energy efficiency) from an active or a passive object. This work demonstrates the successful theoretical realization of this physical effect for an active cylindrically radiating acoustic body, undergoing periodic axisymmetric harmonic vibrations near a flat rigid boundary. Radiating, amplification and extinction cross-sections of the active source are defined. Assuming monopole and dipole modal oscillations of the circular source, conditions are found where the extinction energy efficiency factor of the active source vanishes, achieving total invisibility with minimal influence of the source size. It also takes positive or negative values, depending on its size and distance from the boundary. Moreover, the amplification energy efficiency factor is negative for the acoustically-active source. These effects also occur for higher-order modal oscillations of the active source. The results find potential applications in the development of acoustic cloaking devices and invisibility.

  9. Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity.

    PubMed

    Bianchi, Elisabetta; Denti, Simona; Catena, Raffaella; Rossetti, Grazisa; Polo, Simona; Gasparian, Sona; Putignano, Stella; Rogge, Lars; Pardi, Ruggero

    2003-05-30

    RING finger proteins have been implicated in many fundamental cellular processes, including the control of gene expression. A key regulator of light-dependent development in Arabidopsis thaliana is the constitutive photomorphogenesis protein 1 (atCOP1), a RING finger protein that plays an essential role in translating light/dark signals into specific changes in gene transcription. atCOP1 binds the basic leucine zipper factor HY5 and suppresses its transcriptional activity through a yet undefined mechanism that results in HY5 degradation in response to darkness. Furthermore, the pleiotropic phenotype of atCOP1 mutants indicates that atCOP1 may be a central regulator of several transcriptional pathways. Here we report the cloning and characterization of the human orthologue of atCOP1. Human COP1 (huCOP1) distributes both to the cytoplasm and the nucleus of cells and shows a striking degree of sequence conservation with atCOP1, suggesting the possibility of a functional conservation as well. In co-immunoprecipitation assays huCOP1 specifically binds basic leucine zipper factors of the Jun family. As a functional consequence of this interaction, expression of huCOP1 in mammalian cells down-regulates c-Jun-dependent transcription and the expression of the AP-1 target genes, urokinase and matrix metalloproteinase 1. The RING domain of huCOP1 displays ubiquitin ligase activity in an autoubiquitination assay in vitro; however, suppression of AP-1-dependent transcription by huCOP1 occurs in the absence of changes in c-Jun protein levels, suggesting that this inhibitory effect is independent of c-Jun degradation. Our findings indicate that huCOP1 is a novel regulator of AP-1-dependent transcription sharing the important properties of Arabidopsis COP1 in the control of gene expression.

  10. Ring closure activates yeast γTuRC for species-specific microtubule nucleation

    PubMed Central

    Kollman, Justin M.; Greenberg, Charles H.; Li, Sam; Moritz, Michelle; Zelter, Alex; Fong, Kimberly K.; Fernandez, Jose-Jesus; Sali, Andrej; Kilmartin, John; Davis, Trisha N.; Agard, David A.

    2014-01-01

    The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in cells. γTuRC is assembled from repeating γ-tubulin small complex (γTuSC) subunits and is thought to function as a template by presenting a γ-tubulin ring that mimics microtubule geometry. However, a previous yeast γTuRC structure showed γTuSC in an open conformation that prevents matching to microtubule symmetry. By contrast, we show here that γ-tubulin complexes are in a closed conformation when attached to microtubules. To confirm its functional importance we trapped the closed state and determined its structure, showing that the γ-tubulin ring precisely matches microtubule symmetry and providing detailed insight into γTuRC architecture. Importantly, the closed state is a stronger nucleator, suggesting this conformational switch may allosterically control γTuRC activity. Finally, we demonstrate that γTuRCs have a profound preference for tubulin from the same species. PMID:25599398

  11. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  12. Ring current activity during the early Bz<0 phase of the January 1997 magnetic cloud

    NASA Astrophysics Data System (ADS)

    Jordanova, V. K.; Torbert, R. B.; Thorne, R. M.; Collin, H. L.; Roeder, J. L.; Foster, J. C.

    1999-11-01

    The passage at Earth of the January 10-11, 1997, magnetic cloud induced a storm of moderate geomagnetic activity with Dst index reaching minimum values of about -83 nT. We study ring current formation during the early Bz negative phase of this magnetic cloud, using energetic particle data from three instruments on the Polar spacecraft and geosynchronous plasma data from the LANL spacecraft. We use our kinetic drift-loss model to simulate the evolution of ring current H+, He+, and O+ ion distributions and associated aeronomical effects during this period. The results from two Volland-Stern type magnetospheric electric field model formulations are compared: (1) Kp-dependent and (2) interplanetary magnetic field (IMF) dependent. We demonstrate that while both electric field models reproduce well the main trends of ring current formation and decay during the storm, the IMF-dependent model reproduces the rapidity of the main storm growth phase and its strength better. Comparing model results during the main phase of the storm with HYDRA, TIMAS, and CAMMICE data we find that the model reproduces very well the ring current distributions near dawn. The formation of the nose event, i.e., the rise of the 10-30 keV energy particles near dusk due to abruptly increased convection is, however, overestimated by the model. We compute plasmaspheric heating through Coulomb collisions as the storm evolves and find that maximum heating occurs initially on the nightside near L~3.5 and subsequently moves earthward to L~2.75, in agreement with Millstone Hill radar observations of midlatitude electron temperature enhancement on January 10. However, the magnitude of the energy transferred to plasmaspheric electrons through Coulomb collisions appears to be not sufficient to yield the observed elevated electron temperature at ~0830 UT, suggesting that additional energy sources should be considered during this event.

  13. A role for chloride in the suppressive effect of acetylcholine on afferent vestibular activity.

    PubMed

    Pantoja, A M; Holt, J C; Guth, P S

    1997-10-01

    Afferents of the frog semicircular canal (SCC) respond to acetylcholine (ACh) application (0.3-1.0 mM) with a facilitation of their activity while frog saccular afferents respond with suppression (Guth et al., 1994). All recordings are of resting (i.e., non-stimulated) multiunit activity as previously reported (Guth et al., 1994). Substitution of 80% of external chloride (Cl-) by large, poorly permeant anions of different structures (isethionate, methanesulfonate, methylsulfate, and gluconate) reduced the suppressive effect of ACh in the frog saccular afferents. This substitution did not affect the facilitatory response of SCC afferents to ACh. Chloride channel blockers were also used to test further whether Cl- is involved in the ACh suppressive effect. These included: niflumic and flufenamic acids, picrotoxin, 5-nitro-2-(-3-phenylpropylamino)benzoic acid (NPPB), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). As with the Cl- substitutions, all of these agents reduced the suppressive response to ACh in the saccule, but not the facilitatory response seen in the SCC. The suppressive effect of ACh on saccular afferents is considered to be due to activation of a nicotinic-like receptor (Guth et al., 1994; Guth and Norris, 1996). Taking into account the effects of both Cl- substitutions and Cl- channel blockers, we conclude that changes in Cl- availability influence the suppressive effect of ACh and that therefore Cl- may be involved in this effect.

  14. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity.

    PubMed

    Midorikawa, Ryosuke; Takei, Yosuke; Hirokawa, Nobutaka

    2006-04-21

    In brain development, apoptosis is a physiological process that controls the final numbers of neurons. Here, we report that the activity-dependent prevention of apoptosis in juvenile neurons is regulated by kinesin superfamily protein 4 (KIF4), a microtubule-based molecular motor. The C-terminal domain of KIF4 is a module that suppresses the activity of poly (ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme known to maintain cell homeostasis by repairing DNA and serving as a transcriptional regulator. When neurons are stimulated by membrane depolarization, calcium signaling mediated by CaMKII induces dissociation of KIF4 from PARP-1, resulting in upregulation of PARP-1 activity, which supports neuron survival. After dissociation from PARP-1, KIF4 enters into the cytoplasm from the nucleus and moves to the distal part of neurites in a microtubule-dependent manner. We suggested that KIF4 controls the activity-dependent survival of postmitotic neurons by regulating PARP-1 activity in brain development.

  15. Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation

    PubMed Central

    Kubota, Shunsuke; Kurihara, Toshihide; Ebinuma, Mari; Kubota, Miyuki; Yuki, Kenya; Sasaki, Mariko; Noda, Kousuke; Ozawa, Yoko; Oike, Yuichi; Ishida, Susumu; Tsubota, Kazuo

    2010-01-01

    Light damage to the retina accelerates retinal degeneration in human diseases and rodent models. Recently, the polyphenolic phytoalexin resveratrol has been shown to exert various bioactivities in addition to its classical antioxidant property. In the present study, we investigated the effect of resveratrol on light-induced retinal degeneration together with its underlying molecular mechanisms. BALB/c mice with light exposure (5000-lux white light for 3 hours) were orally pretreated with resveratrol at a dose of 50 mg/kg for 5 days. Retinal damage was evaluated by TdT-mediated dUTP nick-end labeling, outer nuclear layer morphometry, and electroretinography. Administration of resveratrol to mice with light exposure led to a significant suppression of light-induced pathological parameters, including TdT-mediated dUTP nick-end labeling-positive retinal cells, outer nuclear layer thinning, and electroretinography changes. To clarify the underlying molecular mechanisms, the nuclear translocation of activator protein−1 subunit c-fos was evaluated by enzyme-linked immunosorbent assay, and the retinal activity of sirtuin 1 was measured by deacetylase fluorometric assay. Retinal activator protein-1 activation, up-regulated following light exposure, was significantly reduced by application of resveratrol. In parallel, retinal sirtuin 1 activity, reduced in animals with light damage, was significantly augmented by resveratrol treatment. Our data suggest the potential use of resveratrol as a therapeutic agent to prevent retinal degeneration related to light damage. PMID:20709795

  16. Evaluation of NO-suppressing activity of several Mediterranean culinary spices.

    PubMed

    Tsai, Po-Jung; Tsai, Tzung-Hsun; Yu, Chun-Hsien; Ho, Su-Chen

    2007-03-01

    Excess nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is implicated in the development of a number of diseases. Due to the absence of any natural specific enzymatic defense system in vivo, the consumption of certain foods which exhibit selective suppressive ability as regards NO overproduction might boost the host's protective effects against NO-mediated toxicity. Spices, rich in phenolics, are speculated conceivably to act as potential NO-scavengers or iNOS suppressors. The relative NO-suppressing activity of methanol extracts deriving from nine Mediterranean culinary spices was determined by measuring their inhibitory effect upon NO production for lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. In addition, the specifics of the suppressing mechanism were further explored. All of the spices tested, with the exception of clove, displayed a rather linear dose-dependent NO-suppressing effect without there appearing to exist any effect upon cell viability. Furthermore, the NO-suppressing capacity of certain spices was able to be ranked based upon their IC(50) (the concentration of spice extracts is required to cause 50% inhibition of NO production by LPS-activated RAW 264.7 cells), the ranking appearing as: rosemary (0.031%)>tarragon (0.052%)>cinnamon (0.059%)>oregano (0.106%)>basil (0.162%)>marjoram (0.236%)>allspice (0.269%)>and thyme (0.270%). Only cinnamon displayed excellent NO-scavenging ability, whereas all of the other spices demonstrated moderate to poor activities in this regard. Moreover, the inhibitory effect of tested spices upon the iNOS protein level was almost equivalent to their suppressive effect upon NO production. It would appear that inhibition of iNOS expression was the primary mechanism of action of spices as regards their exerting NO-suppressing activity.

  17. Suppression of Helicobacter pylori urease activity by sucralfate and sulglycotide.

    PubMed

    Slomiany, B L; Piotrowski, J; Slomiany, A

    1997-06-01

    The effect of gastroprotective agents, sucralfate and sulglycotide, on the in vitro activity of H. pylori urease was investigated. The bacterium was subjected to sonication, centrifuged, and the supernatant used as an enzyme source. The assays revealed that the rate of urea degradation was proportional to enzyme protein up to 100 micrograms and remained constant with time for 10 min. Introduction of sucralfate or sulglycotide to the assay system led to the reduction in the rate of ammonia production. With both drugs the optimal inhibition was attained at 10 micrograms/ml, at which dose a 63.1% decrease in urease activity occurred with sucralfate and a 70.2% inhibition was obtained with sulglycotide. The findings demonstrate that the inhibitory action of sucralfate and sulglycotide on H. pylori urease activity may be of value in the treatment of gastric disease associated with H. pylori infection.

  18. Targeting macrophage anti-tumor activity to suppress melanoma progression

    PubMed Central

    Yang, Luhong; Liu, Chengfang; Zhang, Qi; Zhang, Linjing

    2017-01-01

    By phagocytosing cancer cells and their cellular debris, macrophages play a critical role in nonspecific defense (innate immunity) and, as antigen presenters, they help initiate specific defense mechanisms (adaptive immunity). Malignant melanoma is a lethal disease due to its aggressive capacity for metastasis and resistance to therapy. For decades, considerable effort has gone into development of an effective immunotherapy for treatment of metastatic melanoma. In this review, we focus on the anti-tumor activities of macrophages in melanoma and their potential as therapeutic targets in melanoma. Although macrophages can be re-educated through intercellular signaling to promote tumor survival owing to their plasticity, we expect that targeting the anti-tumor activity of macrophages remains a promising strategy for melanoma inhibition. The combination of tumoricidal macrophage activation and other treatments such as surgery, chemotherapy, and radiotherapy, may provide an effective and comprehensive anti-melanoma strategy. PMID:28060744

  19. Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK.

    PubMed

    Yang, Yan-jing; Hu, Liang; Xia, Ye-peng; Jiang, Chun-yi; Miao, Chen; Yang, Chun-qing; Yuan, Miao; Wang, Lin

    2016-04-19

    Glial activation and neuroinflammation in the spinal trigeminal nucleus (STN) play a pivotal role in the genesis and maintenance of trigeminal neuralgia (TN). Resveratrol, a natural compound from grape and red wine, has a potential anti-inflammatory effect. We hypothesized that resveratrol could significantly suppress neuroinflammation in the STN mediated by glial activation and further relieve TN. In this study, we evaluated whether resveratrol could alleviate trigeminal allodynia and explore the mechanism underlying the antinociceptive effect of resveratrol. Animals were orally injected with resveratrol after chronic constriction injury (CCI) of the infraorbital nerve. Mechanical thresholds of the affected whisker pad were measured to assess nociceptive behaviors. The STN was harvested to quantify the changing levels of p-NR1, p-PKC, TNF-α, and IL1-β by western blotting and detect the expression of calcitonin gene-related peptide (CGRP) and c-Fos by immunofluorescence. Glial activation was observed by immunofluorescence and western blotting. Mitogen-activated protein kinase (MAPK) phosphorylation in vivo and in vitro was examined by western blotting. We found that resveratrol significantly attenuated trigeminal allodynia dose-dependently and decreased the increased expression of CGRP and c-Fos in the STN. Additionally, resveratrol showed an inhibitory effect on CCI-evoked astrocyte and microglia activation and reduced production of pro-inflammatory cytokines in the STN. Furthermore, the antinociceptive effect of resveratrol was partially mediated by reduced phosphorylation of MAP kinases via adenosine monophosphate-activated protein kinase (AMPK) activation. AMPK activation in the STN glia via resveratrol has utility in the treatment of CCI-induced neuroinflammation and further implicates AMPK as a novel target for the attenuation of trigeminal neuralgia.

  20. Physical association with WWOX suppresses c-Jun transcriptional activity.

    PubMed

    Gaudio, Eugenio; Palamarchuk, Alexey; Palumbo, Tiziana; Trapasso, Francesco; Pekarsky, Yuri; Croce, Carlo M; Aqeilan, Rami I

    2006-12-15

    WWOX is a tumor suppressor that functions as a modular protein partner of transcription factors. WWOX contains two WW domains that mediate protein-protein interactions. In this report, we show that WWOX, via its first WW domain, specifically associates with the proline-rich motif of c-Jun proto-oncogene. Our data show that phosphorylation of c-Jun caused by overexpression of mitogen-activated protein kinase kinase kinase 1 (Mekk1), an upstream activator of c-Jun, enhances the interaction of c-Jun with WWOX. Furthermore, exposure of HaCaT keratinocytes to UVC radiation resulted in the association of endogenous WWOX and c-Jun. The WWOX-c-Jun complexes mainly occur in the cytoplasm. Expression of WWOX attenuates the ability of MEKK1 to increase the activity of a c-Jun-driven activating protein-1 (AP-1)-luciferase reporter plasmid. In contrast, a point mutation in the first WW domain of WWOX has no effect on transactivation of AP-1 when coexpressed with c-Jun protein. Our findings reveal a novel functional cross-talk between c-Jun transcription factor and WWOX tumor suppressor protein.

  1. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  2. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  3. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells

    PubMed Central

    Liu, Lucy; Gaboriaud, Nicolas; Vougogianopoulou, Konstantina; Tian, Yan; Wu, Jun; Wen, Wei; Skaltsounis, Leandros; Jove, Richard

    2014-01-01

    Janus kinase (JAK) and Src kinase are the two major tyrosine kinase families upstream of signal transducer and activator of transcription (STAT). Among the seven STAT family proteins, STAT3 is constitutively activated in many diverse cancers. Upon activation, JAK and Src kinases phosphorylate STAT3, and thereby promote cell growth and survival. MLS-2384 is a novel 6-bromoindirubin derivative with a bromo-group at the 6-position on one indole ring and a hydrophilic group at the 3′-position on the other indole ring. In this study, we investigated the kinase inhibitory activity and anticancer activity of MLS-2384. Our data from in vitro kinase assays, cell viability analyses, western blotting analyses, and animal model studies, demonstrate that MLS-2384 is a dual JAK/Src kinase inhibitor, and suppresses growth of various human cancer cells, such as prostate, breast, skin, ovarian, lung, and liver. Consistent with the inactivation of JAK and Src kinases, phosphorylation of STAT3 was inhibited in a dose-dependent manner in the cancer cells treated with MLS-2384. STAT3 downstream proteins involved in cell proliferation and survival, such as c-Myc and Mcl-1, are downregulated by MLS-2384 in prostate cancer cells, whereas survivin is downregulated in A2058 cells. In these two cancer cell lines, PARP is cleaved, indicating that MLS-2384 induces apoptosis in human melanoma and prostate cancer cells. Importantly, MLS-2384 suppresses tumor growth with low toxicity in a mouse xenograft model of human melanoma. Taken together, MLS-2384 demonstrates dual JAK/Src inhibitory activity and suppresses tumor cell growth both in vitro and in vivo. Our findings support further development of MLS-2384 as a potential small-molecule therapeutic agent that targets JAK, Src, and STAT3 signaling in multiple human cancer cells. PMID:24100507

  4. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells.

    PubMed

    Liu, Lucy; Gaboriaud, Nicolas; Vougogianopoulou, Konstantina; Tian, Yan; Wu, Jun; Wen, Wei; Skaltsounis, Leandros; Jove, Richard

    2014-02-01

    Janus kinase (JAK) and Src kinase are the two major tyrosine kinase families upstream of signal transducer and activator of transcription (STAT). Among the seven STAT family proteins, STAT3 is constitutively activated in many diverse cancers. Upon activation, JAK and Src kinases phosphorylate STAT3, and thereby promote cell growth and survival. MLS-2384 is a novel 6-bromoindirubin derivative with a bromo-group at the 6-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. In this study, we investigated the kinase inhibitory activity and anticancer activity of MLS-2384. Our data from in vitro kinase assays, cell viability analyses, western blotting analyses, and animal model studies, demonstrate that MLS-2384 is a dual JAK/Src kinase inhibitor, and suppresses growth of various human cancer cells, such as prostate, breast, skin, ovarian, lung, and liver. Consistent with the inactivation of JAK and Src kinases, phosphorylation of STAT3 was inhibited in a dose-dependent manner in the cancer cells treated with MLS-2384. STAT3 downstream proteins involved in cell proliferation and survival, such as c-Myc and Mcl-1, are downregulated by MLS-2384 in prostate cancer cells, whereas survivin is downregulated in A2058 cells. In these two cancer cell lines, PARP is cleaved, indicating that MLS-2384 induces apoptosis in human melanoma and prostate cancer cells. Importantly, MLS-2384 suppresses tumor growth with low toxicity in a mouse xenograft model of human melanoma. Taken together, MLS-2384 demonstrates dual JAK/Src inhibitory activity and suppresses tumor cell growth both in vitro and in vivo. Our findings support further development of MLS-2384 as a potential small-molecule therapeutic agent that targets JAK, Src, and STAT3 signaling in multiple human cancer cells.

  5. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway

    PubMed Central

    Zhu, Yaqin; Tong, Xing; Li, Kexue; Bai, Hui; Li, Xiaoyu; Ben, Jingjing; Zhang, Hanwen; Yang, Qing; Chen, Qi

    2016-01-01

    Background and Purpose It has been accepted that AMPK (Adenosine monophosphate–activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. Experimental Approach Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. Key Results It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. Conclusions and Implications Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders. PMID:27681040

  6. Saturn's Spectacular Ring System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  7. Chapter 14: Effects of fire suppression and postfire management activities on plant invasions

    Treesearch

    Matthew L. Brooks

    2008-01-01

    This chapter explains how various fire suppression and postfire management activities can increase or decrease the potential for plant invasions following fire. A conceptual model is used to summarize the basic processes associated with plant invasions and show how specific fire management activities can be designed to minimize the potential for invasion. The...

  8. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  9. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    PubMed

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  10. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future

    PubMed Central

    2017-01-01

    Mu suppression studies have been widely used to infer the activity of the human mirror neuron system (MNS) in a number of processes, ranging from action understanding, language, empathy and the development of autism spectrum disorders (ASDs). Although mu suppression is enjoying a resurgence of interest, it has a long history. This review aimed to revisit mu's past, and examine its recent use to investigate MNS involvement in language, social processes and ASDs. Mu suppression studies have largely failed to produce robust evidence for the role of the MNS in these domains. Several key potential shortcomings with the use and interpretation of mu suppression, documented in the older literature and highlighted by more recent reports, are explored here. PMID:28405354

  11. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  12. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.

    PubMed

    Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank

    2012-04-17

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.

  13. Active-Site Structure of the Thermophilic Foc-Subunit Ring in Membranes Elucidated by Solid-State NMR

    PubMed Central

    Kang, Su-Jin; Todokoro, Yasuto; Yumen, Ikuko; Shen, Bo; Iwasaki, Iku; Suzuki, Toshiharu; Miyagi, Atsushi; Yoshida, Masasuke; Fujiwara, Toshimichi; Akutsu, Hideo

    2014-01-01

    FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings. PMID:24461014

  14. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    PubMed Central

    Bojak, Ingo; Stoyanov, Zhivko V.; Liley, David T. J.

    2015-01-01

    Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex. PMID:25767438

  15. Active Vibration Suppression R and D for the NLC

    SciTech Connect

    Frisch, Josef C

    2001-12-17

    The nanometer scale beam sizes at the interaction point in linear colliders limit the allowable motion of the final focus magnets. We have constructed a prototype system to investigate the use of active vibration damping to control magnet motion. Inertial sensors are used to measure the position of a test mass, and a DSP based system provides feedback using electrostatic pushers. Simulation and experimental results for the control of a mechanically simple system are presented.

  16. ACTIVE VIBRATION SUPPRESSION R+D FOR THE NEXT LINEARCOLLIDER

    SciTech Connect

    Eriksson, Leif S.

    2002-08-20

    The nanometer scale beam sizes at the interaction point in linear colliders limit the allowable motion of the final focus magnets. We have constructed a prototype system to investigate the use of active vibration damping to control magnet motion. Inertial sensors are used to measure the position of a test mass, and a DSP based system provides feedback using electrostatic pushers. Simulation and experimental results for the control of a mechanically simple system are presented.

  17. Suppression of generalized seizures activity by intrathalamic 2-chloroadenosine application.

    PubMed

    Ates, Nurbay; Ilbay, Gul; Sahin, Deniz

    2005-07-01

    In the present study, we investigated the effects of micro-injecting 2-chloroadenosine (2-CADO; an adenosine receptor agonist) into the thalamus alone and with theophylline (a nonspecific adenosine receptor antagonist) pretreatment on pentylenetetrazol (PTZ)-induced tonic-clonic seizures in male Wistar albino rats. Following intrathalamic 2-CADO injection alone or theophylline pretreatment, 50 mg kg(-1) PTZ was given ip after 1 and 24 hrs. The duration of epileptic seizure activity was recorded by cortical electroencephalogram (EEG), and seizure severity was behaviorally scored. Intrathalamic 2-CADO administration induced significant decreases in both seizure duration and seizure severity scores at 1 and 24 hrs, but the effects were more abundant on the seizures induced after 24 hrs. On the other hand, pretreatment with theophylline prevented the inhibitor effect of 2-CADO on seizure activity and increased both seizure duration and seizure scores. Present results suggest that the activation of adenosine receptors in the thalamus may represent another anticonvulsant/modulatory site of adenosine action during the course of the PTZ-induced generalized tonic-clonic seizures and provide additional data for the involvement of the adenosinergic system in the generalized seizures model.

  18. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  19. An Active Isodicentric X Chromosome in a Case of Refractory Anaemia with Ring Sideroblasts Associated with Marked Thrombocytosis

    PubMed Central

    Morales Camacho, Rosario M.; Sanchez, Javier; Marcos Luque, Irene; Bernal, Ricardo; Falantes, Jose F; Pérez-Simón, Jose A

    2014-01-01

    Refractory anaemia with ring sideroblasts and marked thrombocytosis (RARS-T) is a provisional entity in the World Health Organization (WHO) classification. It displays features characteristic of both myelodysplastic syndrome and myeloproliferative neoplasia plus ring sideroblasts ≥15% and marked thrombocytosis. Most patients with RARS-T show a normal karyotype. We report a 76-year-old woman diagnosed with RARS-T (76% of ring sideroblasts) with JAK2 (V617F) mutation and a load of 30–40%. Classical and molecular cytogenetic (FISH) studies of a bone marrow sample revealed the presence of isodicentric X chromosome [(idic(X)(q13)]. Moreover, HUMARA assay showed the idic(X)(q13) as the active X chromosome. This finding was correlated with the cytochemical finding of ring sideroblasts. To our knowledge, this is the first reported case of an active isodicentric X in a woman with RARS-T. PMID:24592338

  20. RING1A and BMI1 bookmark active genes via ubiquitination of chromatin-associated proteins

    PubMed Central

    Arora, Mansi; Packard, Colin Z.; Banerjee, Tapahsama; Parvin, Jeffrey D.

    2016-01-01

    During mitosis the chromatin undergoes dramatic architectural changes with the halting of the transcriptional processes and evacuation of nearly all transcription associated machinery from genes and promoters. Molecular bookmarking of genes during mitosis is a mechanism of faithfully transmitting cell-specific transcription patterns through cell division. We previously discovered chromatin ubiquitination at active promoters as a potential mitotic bookmark. In this study, we identify the enzymes involved in the deposition of ubiquitin before mitosis. We find that the polycomb complex proteins BMI1 and RING1A regulate the ubiquitination of chromatin associated proteins bound to promoters, and this modification is necessary for the expression of marked genes once the cells enter G1. Depletion of RING1A, and thus inactivation of mitotic bookmarking by ubiquitination, is deleterious to progression through G1, cell survival and proliferation. Though the polycomb complex proteins are thought to primarily regulate gene expression by transcriptional repression, in this study, we discover that these two polycomb proteins regulate the transcription of active genes during the mitosis to G1 transition. PMID:26578590

  1. RING1A and BMI1 bookmark active genes via ubiquitination of chromatin-associated proteins.

    PubMed

    Arora, Mansi; Packard, Colin Z; Banerjee, Tapahsama; Parvin, Jeffrey D

    2016-03-18

    During mitosis the chromatin undergoes dramatic architectural changes with the halting of the transcriptional processes and evacuation of nearly all transcription associated machinery from genes and promoters. Molecular bookmarking of genes during mitosis is a mechanism of faithfully transmitting cell-specific transcription patterns through cell division. We previously discovered chromatin ubiquitination at active promoters as a potential mitotic bookmark. In this study, we identify the enzymes involved in the deposition of ubiquitin before mitosis. We find that the polycomb complex proteins BMI1 and RING1A regulate the ubiquitination of chromatin associated proteins bound to promoters, and this modification is necessary for the expression of marked genes once the cells enter G1. Depletion of RING1A, and thus inactivation of mitotic bookmarking by ubiquitination, is deleterious to progression through G1, cell survival and proliferation. Though the polycomb complex proteins are thought to primarily regulate gene expression by transcriptional repression, in this study, we discover that these two polycomb proteins regulate the transcription of active genes during the mitosis to G1 transition. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Active suppression of a leaf meristem orchestrates determinate leaf growth.

    PubMed

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-10-06

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.

  3. Suppressive activity of acivicin on murine bone marrow hemopoietic progenitors.

    PubMed

    Castello, G; Mencoboni, M; Lerza, R; Cerruti, A; Bogliolo, G; Pannacciulli, I

    1992-01-01

    Acivicin (AVC), a L-glutamine antagonist, is an intriguing antimetabolite coupling cell growth inhibition activity with differentiating effects. In this in vivo study the influence of acivicin on mice bone marrow hemopoietic progenitors was tested. 10 mg/kg b.w./day of acivicin were i.p. injected in B6D2F1 mice for nine days. Leucocyte and reticulocyte level (in peripheral blood), CFU-S (multipotent stem cells) and GM-CFU (granulocyte-macrophage committed progenitors) content in bone marrow were determined during drug administration and for 14 days thereafter. All tested populations decreased severely during the first days of treatment. The drop was particularly striking for bone marrow CFU-S. The recovery of hemopoietic progenitors, however, began while AVC was still administered. These results suggest that the effects of acivicin on normal mouse hemopoietic system are mainly inhibitory, causing considerable myelosuppression.

  4. Maize Bronze 1:Dspm Insertion Mutations That Are Not Fully Suppressed by an Active Spm

    PubMed Central

    Bunkers, G.; Nelson-Jr., O. E.; Raboy, V.

    1993-01-01

    The Suppressor-mutator (Spm) family of maize transposable elements consists of autonomous Spm elements and nonautonomous defective Spm (dSpm) elements. One characteristic of this family is that the insertion of dSpm elements into a structural gene often permits some level of structural gene expression in the absence of Spm activity, and this structural gene expression is suppressed in trans by Spm activity. The Spm's subterminal repetitive regions (SRRs) contain several iterations of a 12-bp repeat motif. It had been proposed that binding of an Spm-encoded protein to these repeat motifs blocks structural gene transcriptional readthrough, thus suppressing gene expression. The bz-m13 allele of the bronze 1 locus contains a 2.24-kb dSpm insertion in the second exon of a Bz allele. In the absence of Spm activity, bz-m13 displays substantial Bz expression, and this expression is fully suppressed by Spm. Four intra-dSpm deletion derivatives are described in which this Bz expression is only partially suppressed by Spm. Each of these derivatives retains at least 12 SRR repeat motifs. Thus the presence of these repeat motifs is not sufficient to guarantee complete suppression by Spm. Some other property such as secondary structure or element size must play a role. PMID:8397136

  5. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  6. Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression.

    PubMed

    Katsukawa, Michiko; Nakata, Rieko; Takizawa, Yoshie; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2010-11-01

    Lemongrass is a widely used herb as a food flavoring, as a perfume, and for its analgesic and anti-inflammatory purposes; however, the molecular mechanisms of these effects have not been elucidated. Previously, we identified carvacrol from the essential oil of thyme as a suppressor of cyclooxygenase (COX)-2, a key enzyme for prostaglandin synthesis, and also an activator of peroxisome proliferator-activated receptor (PPAR), a molecular target for "lifestyle-related" diseases. In this study, we evaluated the essential oil of lemongrass using our established assays for COX-2 and PPARs. We found that COX-2 promoter activity was suppressed by lemongrass oil in cell-based transfection assays, and we identified citral as a major component in the suppression of COX-2 expression and as an activator of PPARα and γ. PPARγ-dependent suppression of COX-2 promoter activity was observed in response to citral treatment. In human macrophage-like U937 cells, citral suppressed both LPS-induced COX-2 mRNA and protein expression, dose-dependently. Moreover, citral induced the mRNA expression of the PPARα-responsive carnitine palmitoyltransferase 1 gene and the PPARγ-responsive fatty acid binding protein 4 gene, suggesting that citral activates PPARα and γ, and regulates COX-2 expression. These results are important for understanding the anti-inflammatory and anti-lifestyle-related disease properties of lemongrass. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Orphanin FQ/nociceptin suppresses motor activity through an action along the mesoaccumbens axis in rats

    PubMed Central

    Narayanan, Shridhar; Lam, Hoa; Carroll, F. Ivy; Lutfy, Kabirullah

    2004-01-01

    Objective Intracerebroventricular administration of orphanin FQ/nociceptin (OFQ/N), the endogenous agonist ligand of the opioid receptor-like (ORL-1) receptor, decreases extracellular levels of dopamine and suppresses motor activity. The presence of the ORL-1 receptor on mesoaccumbal and nigrostriatal dopaminergic neurons raises the possibility that an action along these pathways may be one means by which OFQ/N produces motor suppression. Thus, the present study used local administration of OFQ/N into the ventral tegmental area (VTA), the substantia nigra, the nucleus accumbens and the striatum to determine the contribution of cell-body regions and terminal fields of the dopaminergic neurons to the motor-suppressant effect of OFQ/N. Methods Rats were implanted bilaterally with guide cannulae into one of the brain regions and tested 4 days later. First, the effect of a single dose of OFQ/N (30 μg/0.5 μL per side) on motor activity was determined after direct injection into the VTA, substantia nigra, nucleus accumbens or striatum. Rats were habituated to activity chambers for 1 hour and then injected with either artificial cerebrospinal fluid or OFQ/N into one of the brain regions, and motor activity was recorded for a further 1 hour. Next, the dose–response effect of intra-VTA or intranigral OFQ/N (3 μg or 30 μg/0.5 μL per side) on motor activity was examined. Finally, the effect of intra-VTA OFQ/N (3 μg or 30 μg/0.5 μL per side) on motor activity was determined in the presence of J-113397, an ORL-1 receptor antagonist. Results OFQ/N suppressed motor activity when injected into the VTA and to a lesser extent after direct injection into the nucleus accumbens. However, OFQ/N failed to attenuate motor activity significantly after injection into the substantia nigra or the striatum. Subsequent dose–response studies showed that OFQ/N suppressed motor activity even at a 10-fold-lower dose after intrategmental but not intranigral administration. The motor-suppressant

  8. Active suppression of a leaf meristem orchestrates determinate leaf growth

    PubMed Central

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-01-01

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved. DOI: http://dx.doi.org/10.7554/eLife.15023.001 PMID:27710768

  9. Blue light irradiation suppresses dendritic cells activation in vitro.

    PubMed

    Fischer, Michael R; Abel, Manuela; Lopez Kostka, Susanna; Rudolph, Berenice; Becker, Detlef; von Stebut, Esther

    2013-08-01

    Blue light is a UV-free irradiation suitable for treating chronic skin inflammation, for example, atopic dermatitis, psoriasis, and hand- and foot eczema. However, a better understanding of the mode of action is still missing. For this reason, we investigated whether dendritic cells (DC) are directly affected by blue light irradiation in vitro. Here, we report that irradiation neither induced apoptosis nor maturation of monocyte-derived and myeloid DC. However, subsequent DC maturation upon LPS/IFNγ stimulation was impaired in a dose-dependent manner as assessed by maturation markers and cytokine release. Moreover, the potential of this DC to induce cytokine secretion from allogeneic CD4 T cells was reduced. In conclusion, unlike UV irradiation, blue light irradiation at high and low doses only resulted in impaired DC maturation upon activation and a reduced subsequent stimulatory capacity in allogeneic MLRs with strongest effects at higher doses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks

    PubMed Central

    Soper, Colin; Wicker, Evan; Kulick, Catherine V.; N’Gouemo, Prosper; Forcelli, Patrick A.

    2016-01-01

    Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy. PMID:26721319

  11. Ringed-seal monitoring: Relationships of distribution and abundance to habitat attributes and industrial activities. Final report

    SciTech Connect

    Frost, K.J.; Lowry, L.F.; Gilbert, J.R.; Burns, J.J.

    1988-09-01

    The 3-year study intended to develop a program for monitoring the abundance of ringed seals in Alaska through aerial surveys. The report presents the results of aerial surveys of ringed seals on the shorefast ice of the eastern Chukchi Sea and Beaufort Sea in May-June 1987 and compares them with the results of similar surveys conducted in 1985 and 1986. Ringed seals (Phoca hispida) are a major ecological component of the arctic and subarctic marine fauna. In recognition of the ecological importance of ringed seals and the possibility that they may be impacted by human activites, the Outer Continental Shelf Environmental Assessment Program sponsored studies of the biology and ecology of ringed seals in Alaska. Ringed-seal aerial surveys based upon the 1985 research protocol were flown during May and June of 1985, 1986, and 1987. The surveys were satisfactorily completed and the data was analyzed to determine: factors affecting survey counts; regional and temporal trends in ringed-seal abundance; habitat factors affecting distribution and abundance; and the effects of industrial activities on seal density.

  12. Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses

    PubMed Central

    Castro-Alamancos, Manuel A; Oldford, Elizabeth

    2002-01-01

    The thalamus serves as a gate that regulates the flow of sensory inputs to the neocortex, and this gate is controlled by neuromodulators from the brainstem reticular formation that are released during arousal. Here we show in rats that sensory-evoked responses were suppressed in the neocortex by activating the brainstem reticular formation and during natural arousal. Sensory suppression occurred at the thalamocortical connection and was a consequence of the activity-dependent depression of thalamocortical synapses caused by increased thalamocortical tonic firing during arousal. Thalamocortical suppression may serve as a mechanism to focus sensory inputs to their appropriate representations in neocortex, which is helpful for the spatial processing of sensory information. PMID:12015438

  13. Suppressing Emotions Impairs Subsequent Stroop Performance and Reduces Prefrontal Brain Activation

    PubMed Central

    Luechinger, Roger; Boesiger, Peter; Rasch, Björn

    2013-01-01

    Abundant behavioral evidence suggests that the ability to self-control is limited, and that any exertion of self-control will increase the likelihood of subsequent self-control failures. Here we investigated the neural correlates underlying the aftereffects of self-control on future control processes using functional magnetic resonance imaging (fMRI). An initial act of self-control (suppressing emotions) impaired subsequent performance in a second task requiring control (Stroop task). On the neural level, increased activity during emotion suppression was followed by a relative decrease in activity during the Stroop task in a cluster in the right lateral prefrontal cortex (PFC) including the dorsolateral prefrontal cortex (DLPFC), an area engaged in the effortful implementation of control. There was no reliable evidence for reduced activity in the medial frontal cortex (MFC) including the anterior cingulate cortex (ACC), which is involved in conflict detection processes and has previously also been implicated in self-control. Follow-up analyses showed that the detected cluster in the right lateral PFC and an area in the MFC were involved in both the emotion suppression task and the Stroop task, but only the cluster in the right lateral PFC showed reduced activation after emotion suppression during the Stroop task. Reduced activity in lateral prefrontal areas relevant for the implementation of control may be a critical consequence of prior self-control exertion if the respective areas are involved in both self-control tasks. PMID:23565239

  14. Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.

    PubMed

    He, Ling; Chang, Evan; Peng, Jinghua; An, Hongying; McMillin, Sara M; Radovick, Sally; Stratakis, Constantine A; Wondisford, Fredric E

    2016-05-13

    Metformin is the most commonly prescribed oral anti-diabetic agent worldwide. Surprisingly, about 35% of diabetic patients either lack or have a delayed response to metformin treatment, and many patients become less responsive to metformin over time. It remains unknown how metformin resistance or insensitivity occurs. Recently, we found that therapeutic metformin concentrations suppressed glucose production in primary hepatocytes through AMPK; activation of the cAMP-PKA pathway negatively regulates AMPK activity by phosphorylating AMPKα subunit at Ser-485, which in turn reduces AMPK activity. In this study, we find that metformin failed to suppress glucose production in primary hepatocytes with constitutively activated PKA and did not improve hyperglycemia in mice with hyperglucagonemia. Expression of the AMPKα1(S485A) mutant, which is unable to be phosphorylated by PKA, increased both AMPKα activation and the suppression of glucose production in primary hepatocytes treated with metformin. Intriguingly, salicylate/aspirin prevents the phosphorylation of AMPKα at Ser-485, blocks cAMP-PKA negative regulation of AMPK, and improves metformin resistance. We propose that aspirin/salicylate may augment metformin's hepatic action to suppress glucose production.

  15. Suppressing emotions impairs subsequent stroop performance and reduces prefrontal brain activation.

    PubMed

    Friese, Malte; Binder, Julia; Luechinger, Roger; Boesiger, Peter; Rasch, Björn

    2013-01-01

    Abundant behavioral evidence suggests that the ability to self-control is limited, and that any exertion of self-control will increase the likelihood of subsequent self-control failures. Here we investigated the neural correlates underlying the aftereffects of self-control on future control processes using functional magnetic resonance imaging (fMRI). An initial act of self-control (suppressing emotions) impaired subsequent performance in a second task requiring control (Stroop task). On the neural level, increased activity during emotion suppression was followed by a relative decrease in activity during the Stroop task in a cluster in the right lateral prefrontal cortex (PFC) including the dorsolateral prefrontal cortex (DLPFC), an area engaged in the effortful implementation of control. There was no reliable evidence for reduced activity in the medial frontal cortex (MFC) including the anterior cingulate cortex (ACC), which is involved in conflict detection processes and has previously also been implicated in self-control. Follow-up analyses showed that the detected cluster in the right lateral PFC and an area in the MFC were involved in both the emotion suppression task and the Stroop task, but only the cluster in the right lateral PFC showed reduced activation after emotion suppression during the Stroop task. Reduced activity in lateral prefrontal areas relevant for the implementation of control may be a critical consequence of prior self-control exertion if the respective areas are involved in both self-control tasks.

  16. Actively mode-locked fiber ring laser by intermodal acousto-optic modulation.

    PubMed

    Bello-Jiménez, M; Cuadrado-Laborde, C; Sáez-Rodríguez, D; Diez, A; Cruz, J L; Andrés, M V

    2010-11-15

    We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power.

  17. Synthesis and insecticidal activity of new deoxypodophyllotoxin derivatives modified in the D-ring.

    PubMed

    Wang, Juanjuan; Yu, Xiang; Zhi, Xiaoyan; Xu, Hui

    2014-09-15

    In continuation of our program aimed at the discovery of new natural-product-based insecticidal agents, twenty-six deoxypodophyllotoxin derivatives modified in the D-ring were synthesized and evaluated as insecticidal agents against the pre-third-instar larvae of oriental armyworm, Mythimna separata (Walker) in vivo at 1 mg/mL. The configuration of three compounds 3, 4, and IIIi was unambiguously determined by single-crystal X-ray diffraction. It demonstrated that aminolysis of deoxypodophyllotoxin in the presence of pyrrolidine and piperidine could result in complete inversion of the configuration of the carbonyl group at its C-2 position. Five compounds IIa, IIi-k, and IIIh showed the equal or higher insecticidal activity than toosendanin. Especially IIj displayed the most potent insecticidal activity with the final mortality rate of 65.5%.

  18. Cloud organization and growth during the transition from suppressed to active MJO conditions

    NASA Astrophysics Data System (ADS)

    Rowe, Angela K.; Houze, Robert A.

    2015-10-01

    During the Dynamics of the Madden-Julian Oscillation/Atmospheric Radiation Measurement Madden-Julian Oscillation (MJO) Investigation Experiment field experiment in the Indian Ocean, the National Center for Atmospheric Research dual-polarimetric S- and Ka-band radar (S-PolKa) radar observed three active Madden-Julian Oscillation (MJO) events. These events were separated by suppressed periods characterized by shallower, more isolated convection and relatively little rainfall. The sensitivity of S-PolKa allowed investigation of the initiation and organization of both nonprecipitating and precipitating clouds. Early in the suppressed periods, shallow nonprecipitating clouds occurred in shear-parallel lines along apparent boundary layer rolls during early morning. Once some of the clouds began to precipitate, small cold pools formed below the showers. By afternoon, the lines all but disappeared with nonprecipitating clouds instead forming along the edges of cold pools. All such convection was limited in depth early in suppressed periods. As the suppressed environment gained moisture, the nonprecipitating clouds were able to grow to larger size, with the deepest precipitating clouds occurring in clusters at intersections of cold pool boundaries by afternoon. Upscale growth into mesoscale convective systems was observed as the suppressed periods transitioned into active MJO phases, contributing to overnight precipitation during the later part of the suppressed period. This study demonstrates the need for models to accurately represent the organization and evolution of nonprecipitating clouds in association with boundary layer dynamics under suppressed conditions of the MJO, prior to the occurrence of precipitating clouds and their cold pools.

  19. Crystal structure of a Ba(2+)-bound gating ring reveals elementary steps in RCK domain activation.

    PubMed

    Smith, Frank J; Pau, Victor P T; Cingolani, Gino; Rothberg, Brad S

    2012-12-05

    RCK domains control activity of a variety of K(+) channels and transporters through binding of cytoplasmic ligands. To gain insight toward mechanisms of RCK domain activation, we solved the structure of the RCK domain from the Ca(2+)-gated K(+) channel, MthK, bound with Ba(2+), at 3.1 Å resolution. The Ba(2+)-bound RCK domain was assembled as an octameric gating ring, as observed in structures of the full-length MthK channel, and shows Ba(2+) bound at several positions. One of the Ba(2+) sites, termed C1, overlaps with a known Ca(2+)-activation site, determined by residues D184 and E210. Functionally, Ba(2+) can activate reconstituted MthK channels as observed in electrophysiological recordings, whereas Mg(2+) (up to 100 mM) was ineffective. Ba(2+) activation was abolished by the mutation D184N, suggesting that Ba(2+) activates primarily through the C1 site. Our results suggest a working hypothesis for a sequence of ligand-dependent conformational changes that may underlie RCK domain activation and channel gating. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Suppressive effects of 3-methylcholanthrene on the in vitro antitumor activity of naturally cytotoxic cells

    SciTech Connect

    Lill, P.H.; Gangemi, D.

    1986-01-01

    Transient suppression of splenic natural killer (NK), natural cytotoxic (NC) and peritoneal macrophage cytotoxicity was observed following a single injection of 3-methylcholanthrene (3-MC) into C3H/HeN mice. Natural killer cell activity was depressed by 30-60% 4-6 d after injection of 1.0 mg 3-MC. Levels of NK reactivity returned to normal 8 d post 3-MC injection, and no suppression of natural killing was seen when tested 6 wk after 3-MC treatment. 3-MC did not affect propionibacterium acnes augmentation of NK cell activity when tested both 6 d and 6 wk after carcinogen injection. The results indicate that the observed suppression of naturally cytotoxic cells may not be important in allowing 3-MC-induced tumors to grow, since suppression is not long-lasting. Therefore, any effect on tumor growth mediated by a suppression of naturally cytotoxic cells would have to be exerted at the earliest stages of tumor development.

  1. Maturational Patterns of Iodothyronine Phenolic and Tyrosyl Ring Deiodinase Activities in Rat Cerebrum, Cerebellum, and Hypothalamus

    PubMed Central

    Kaplan, Michael M.; Yaskoski, Kimberlee A.

    1981-01-01

    To explore the control of thyroid hormone metabolism in brain during maturation, we have measured iodothyronine deiodination in homogenates of rat cerebrum, cerebellum, and hypothalamus from 1 d postnatally through adulthood. Homogenates were incubated with 125I-l-thyroxine (T4) + [131I]3,5,3′-l-triiodothyronine (T3) + 100 mM dithiothreitol. Nonradioactive T4, T3, and 3,3′,5′-triiodothyronine (rT3) were included, as appropriate. The net production rate of [125I]T3 from T4 in 1-d cerebral homogenates was similar to the rate in adult cerebral homogenates (9.9±2.5[SEM]% vs. 8.9±1.2% T4 to T3 conversion in 2 h). Production of T3 was not detectable in 1-d cerebellar and hypothalamic homogenates. The net T3 production rate in adult cerebellar homogenates was twice as great as, and that in adult hypothalamic homogenates similar to, the rate in cerebral homogenates. Tyrosyl ring deiodination rates of T4 and T3 were more than three times as great in cerebral homogenates from 1-d-old rats as in adult cerebral homogenates. In cerebellar homogenates from 1-d-old rats, tyrosyl ring deiodination rates were much greater than the rates in adult cerebellar homogenates, but less than those in 1-d cerebral homogenates. In 1-d hypothalamic homogenates, tyrosyl ring deiodination rates were the highest of all the tissues tested, whereas rates in adult hypothalamic homogenates were similar to those in adult cerebral homogenates. During maturation, T4 5′-deiodination rates increased after 7 d and exceeded adult rates between 14 and 35 d in cerebral and cerebellar homogenates, and at 28 and 35 d in hypothalamic homogenates. In cerebral homogenates, the peak in reaction rate at 28 d reflected an increase in the maximum enzyme activity (Vmax) of the reaction. T4 and T3 tyrosyl ring deiodination rates decreased progressively with age down to adult rates, which were attained at 14 d for cerebrum and cerebellum and at 28 d for hypothalamus. These studies demonstrate quantitative

  2. Development and demonstration of a flutter-suppression system using active controls. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Abel, I.; Gray, D. L.

    1975-01-01

    The application of active control technology to suppress flutter was demonstrated successfully in the transonic dynamics tunnel with a delta-wing model. The model was a simplified version of a proposed supersonic transport wing design. An active flutter suppression method based on an aerodynamic energy criterion was verified by using three different control laws. The first two control laws utilized both leading-edge and trailing-edge active control surfaces, whereas the third control law required only a single trailing-edge active control surface. At a Mach number of 0.9 the experimental results demonstrated increases in the flutter dynamic pressure from 12.5 percent to 30 percent with active controls. Analytical methods were developed to predict both open-loop and closed-loop stability, and the results agreed reasonably well with the experimental results.

  3. Oxidative degradation of benzene rings using iron sulfide activated by hydrogen peroxide/ozone.

    PubMed

    Hara, Junko

    2017-09-19

    Mineral pyrites-metal sulfides abundant in the earth's crust-exhibit oxidative ability when exposed to water. This oxidizing ability makes mineral pyrites suitable for the natural and enhanced remediation of environmentally hazardous materials. Herein, we evaluate the benzene ring degradation ability of iron bisulfide activated by H2O2 and O3 and elucidate the corresponding reaction pathways. A set of control experiments was conducted to optimize the reaction conditions, i.e., the FeS2/H2O ratio under aerobic conditions and the H2O2 and/or O3 dosages. Benzene ring was successfully decomposed to CO2 via organic acids even by the simplest FeS2/H2O combination. This process was accelerated by the addition of both O3 and H2O2. The extent of degradation to CO2 increased in the presence of O3, while oxalic acid generation increased in the presence of H2O2. The reaction proceeded via the radicals generated on FeS2/H2O, which is enhanced by O3, and a Fenton-like reaction using the iron obtained from FeS2 dissolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Suppression of Dendritic Cell Activation by Diabetes Autoantigens Linked to the Cholera Toxin B Subunit

    PubMed Central

    Odumosu, Oludare; Payne, Kimberly; Baez, Mavely; Jutzy, Jessica; Wall, Nathan; Langridge, William

    2010-01-01

    Antigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response. In this study, Incubation of human umbilical cord blood monocyte-derived immature DCs with CTB-INS autoantigen fusion protein increased the surface membrane expression of DC toll-like receptor (TLR-2) while no significant upregulation in TLR-4 expression was detected. Inoculation of iDCs with CTB stimulated the biosynthesis of both CD86 and CD83 co-stimulatory factors demonstrating an immunostimulatory role for CTB in both DC activation and maturation. In contrast, incubation of iDCs with proinsulin partially suppressed CD86 co-stimulatory factor mediated DC activation, while incubation of iDCs with CTB-INS fusion protein completely suppressed iDC biosynthesis of both CD86 and CD83 costimulatory factors. The incubation of iDCs with increasing amounts of insulin did not increase the level of immune suppression but rather activated DC maturation by stimulating increased biosynthesis of both CD86 and CD83 costimulatory factors. Inoculation of iDCs with CTB-INS fusion protein dramatically increased secretion of the immunosuppressive cytokine IL-10 and suppressed synthesis of the pro-inflammatory cytokine IL12/23 p40 subunit protein suggesting that linkage of CTB to insulin (INS) may play an important role in mediating DC guidance of cognate naïve Th0 cell development into immunosuppressive T

  5. The protein tyrosine phosphatase SHP-1 modulates the suppressive activity of regulatory T cells

    PubMed Central

    Iype, Tessy; Sankarshanan, Mohan; Mauldin, Ileana S.; Mullins, David W.; Lorenz, Ulrike

    2010-01-01

    The importance of regulatory T cells (Treg) for immune tolerance is well recognized, yet the signaling molecules influencing their suppressive activity are relatively poorly understood. Here, through in vivo studies and complementary ex vivo studies, we make several important observations. First, we identify the cytoplasmic tyrosine phosphatase SHP-1 as a novel ‘endogenous brake’ and modifier of the suppressive ability of Treg cells; consistent with this notion, loss of SHP-1 expression strongly augments the ability of Treg cells to suppress inflammation in a mouse model. Second, specific pharmacological inhibition of SHP-1 enzymatic activity via the cancer drug sodium stibogluconate (SSG) potently augmented Treg cell suppressor activity both in vivo and ex vivo. Finally, through a quantitative imaging approach, we directly demonstrate that Treg cells prevent the activation of conventional T cells, and that SHP-1-deficient Treg cells are more efficient suppressors. Collectively, our data reveal SHP-1 as a critical modifier of Treg cell function, and a potential therapeutic target for augmenting Treg cell-mediated suppression in certain disease states. PMID:20952680

  6. The oncoprotein gankyrin interacts with RelA and suppresses NF-{kappa}B activity

    SciTech Connect

    Higashitsuji, Hiroaki Higashitsuji, Hisako; Liu, Yu; Masuda, Tomoko; Fujita, Takanori; Abdel-Aziz, H. Ismail; Kongkham, Supranee; Dawson, Simon; John Mayer, R.; Itoh, Yoshito; Sakurai, Toshiharu; Itoh, Katsuhiko; Fujita, Jun

    2007-11-23

    Gankyrin is an oncoprotein commonly overexpressed in hepatocellular carcinomas. It interacts with multiple proteins and accelerates degradation of tumor suppressors Rb and p53. Since gankyrin consists of 7 ankyrin repeats and is structurally similar to I{kappa}Bs, we investigated its interaction with NF-{kappa}B. We found that gankyrin directly binds to RelA. In HeLa and 293 cells, overexpression of gankyrin suppressed the basal as well as TNF{alpha}-induced transcriptional activity of NF-{kappa}B, whereas down-regulation of gankyrin increased it. Gankyrin did not affect the NF-{kappa}B DNA-binding activity or nuclear translocation of RelA induced by TNF{alpha} in these cells. Leptomycin B that inhibits nuclear export of RelA suppressed the NF-{kappa}B activity, which was further suppressed by gankyrin. The inhibitory effect of gankyrin was abrogated by nicotinamide as well as down-regulation of SIRT1, a class III histone deacetylase. Thus, gankyrin binds to NF-{kappa}B and suppresses its activity at the transcription level by modulating acetylation via SIRT1.

  7. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  8. Saturn Ring

    NASA Image and Video Library

    2007-12-12

    Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The

  9. Control of cullin-ring ubiquitin ligase activity by nedd8.

    PubMed

    Deshaies, Raymond J; Emberley, Ethan D; Saha, Anjanabha

    2010-01-01

    The Cullin-RING ubiquitin ligase (CRL) family, which may number as many as 350 different enzymes, has an enormous impact on cellular regulation. CRL enzymes regulate cell biology by conjugating ubiquitin onto target proteins that are involved in a multitude of processes. In most cases this leads to degradation of the target, but in some cases CRL-dependent ubiquitination acts as a switch to activate or repress target function. The ubiquitin ligase activity of CRLs is controlled by cycles of attachment and removal of the ubiquitin-like protein Nedd8. Conjugation of Nedd8 onto the cullin subunit of CRLs promotes assembly of an intact CRL complex and switches on ubiquitin ligase activity. Conversely, removal of Nedd8 switches off ubiquitin ligase activity and initiates CRL disassembly. Continuous maintenance of CRL function in vivo requires the activities of both the Nedd8-conjugating and deconjugating enzymes, pointing to a critical role of complex dynamics in CRL function. Here, we review how the Nedd8 cycle controls CRL activity and how perturbations of this cycle can lead to disease.

  10. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production.

    PubMed

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L; Nadel, Jay A; Koff, Jonathan L

    2014-07-15

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.

  11. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production

    PubMed Central

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L.; Nadel, Jay A.

    2014-01-01

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies. PMID:24838750

  12. Local Suppression of Epileptiform Activity by Electrical Stimulation in Rat Hippocampus In Vitro

    PubMed Central

    Lian, Jun; Bikson, Marom; Sciortino, Christopher; Stacey, William C; Durand, Dominique M

    2003-01-01

    High frequency electrical stimulation of deep brain structures (DBS) has been effective at controlling abnormal neuronal activity in Parkinson's patients and is now being applied for the treatment of pharmacologically intractable epilepsy. The mechanisms underlying the therapeutic effects of DBS are unknown. In particular, the effect of the electrical stimulation on neuronal firing remains poorly understood. Previous reports have showed that uniform electric fields with both AC (continuous sinusoidal) or DC waveforms could suppress epileptiform activity in vitro. In the present study, we tested the effects of monopolar electrode stimulation and low-duty cycle AC stimulation protocols, which more closely approximate those used clinically, on three in vitro epilepsy models. Continuous sinusoidal stimulation, 50 % duty-cycle sinusoidal stimulation, and low (1.68 %) duty-cycle pulsed stimulation (120 μs, 140 Hz) could completely suppress spontaneous low-Ca2+ epileptiform activity with average thresholds of 71.11 ± 26.16 μA, 93.33 ± 12.58 μA and 300 ± 100 μA, respectively. Continuous sinusoidal stimulation could also completely suppress picrotoxin- and high-K+-induced epileptiform activity with either uniform or localized fields. The suppression generated by the monopolar electrode was localized to a region surrounding the stimulation electrode. Potassium concentration and transmembrane potential recordings showed that AC stimulation was associated with an increase in extracellular potassium concentration and neuronal depolarization block; AC stimulation efficacy was not orientation-selective. In contrast, DC stimulation blocked activity by membrane hyperpolarization and was orientation-selective, but had a lower threshold for suppression. PMID:12562909

  13. Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity.

    PubMed

    Bello, Nicholas T; Yeh, Chung-Yang; Verpeut, Jessica L; Walters, Amy L

    2014-01-01

    Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable

  14. Highly sensitive detection of E2 activity in ubiquitination using an artificial RING finger.

    PubMed

    Miyamoto, Kazuhide; Sumida, Miho; Yuasa-Sunagawa, Mayumi; Saito, Kazuki

    2017-03-01

    The ubiquitin-conjugating (E2) enzymes of protein ubiquitination are associated with various diseases such as leukemia, lung cancer, and breast cancer. Rapid and accurate detection of E2 enzymatic activities remains poor. Here, we described the detection of E2 activity on a signal accumulation ISFET biosensor (AMIS sensor) using an artificial RING finger (ARF). The use of ARF enables the simplified detection of E2 activity without a substrate. The high-sensitivity quantitative detection of E2 activities was demonstrated via real-time monitoring over a response range of femtomolar to micromolar concentrations. Furthermore, the monitoring of E2 activities was successfully achieved using human acute promyelocytic leukemia cells following treatment with the anticancer drug bortezomib, which allowed the assessment of the pathological conditions. This strategy is extremely simple and convenient, and the present detection could be widely applied to specific E2s for various types of cancers. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  15. Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation

    SciTech Connect

    Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi

    2012-11-06

    Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

  16. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.

  17. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  18. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.

  19. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Irfan; Wagg, David; Sims, Neil D.

    2016-08-01

    This paper presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active and semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device.

  20. ESCRT-0 is not required for ectopic Notch activation and tumor suppression in Drosophila.

    PubMed

    Tognon, Emiliana; Wollscheid, Nadine; Cortese, Katia; Tacchetti, Carlo; Vaccari, Thomas

    2014-01-01

    Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis.

  1. Active Damping of the E-P Instability at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, R.J.; Assadi, S.; Byrd, J.M.; Deibele, C.E.; Henderson, S.D.; Lee, S.Y.; McCrady, R.C.; Pivi, M.F.T.; Plum, M.A.; Walbridge, S.B.; Zaugg, T.J.; /Los Alamos

    2008-03-17

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  2. Active damping of the e-p instability at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, R. J.; Assadi, S.; Byrd, J. M.; Deibele, C. E.; Henderson, S. D.; Lee, S. Y.; McCrady, R. C.; Pivi, M. F. T.; Plum, M. A.; Walbridge, S. B.; Zaugg, T. J.

    2007-12-15

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  3. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    SciTech Connect

    Grishin, S. V. Golova, T. M.; Morozova, M. A.; Romanenko, D. V.; Seleznev, E. P.; Sysoev, I. V.; Sharaevskii, Yu. P.

    2015-10-15

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series.

  4. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer.

    PubMed

    Sutendra, G; Dromparis, P; Kinnaird, A; Stenson, T H; Haromy, A; Parker, J M R; McMurtry, M S; Michelakis, E D

    2013-03-28

    Most solid tumors are characterized by a metabolic shift from glucose oxidation to glycolysis, in part due to actively suppressed mitochondrial function, a state that favors resistance to apoptosis. Suppressed mitochondrial function may also contribute to the activation of hypoxia-inducible factor 1α (HIF1α) and angiogenesis. We have previously shown that the inhibitor of pyruvate dehydrogenase kinase (PDK) dichloroacetate (DCA) activates glucose oxidation and induces apoptosis in cancer cells in vitro and in vivo. We hypothesized that DCA will also reverse the 'pseudohypoxic' mitochondrial signals that lead to HIF1α activation in cancer, even in the absence of hypoxia and inhibit cancer angiogenesis. We show that inhibition of PDKII inhibits HIF1α in cancer cells using several techniques, including HIF1α luciferase reporter assays. Using pharmacologic and molecular approaches that suppress the prolyl-hydroxylase (PHD)-mediated inhibition of HIF1α, we show that DCA inhibits HIF1α by both a PHD-dependent mechanism (that involves a DCA-induced increase in the production of mitochondria-derived α-ketoglutarate) and a PHD-independent mechanism, involving activation of p53 via mitochondrial-derived H(2)O(2), as well as activation of GSK3β. Effective inhibition of HIF1α is shown by a decrease in the expression of several HIF1α regulated gene products as well as inhibition of angiogenesis in vitro in matrigel assays. More importantly, in rat xenotransplant models of non-small cell lung cancer and breast cancer, we show effective inhibition of angiogenesis and tumor perfusion in vivo, assessed by contrast-enhanced ultrasonography, nuclear imaging techniques and histology. This work suggests that mitochondria-targeting metabolic modulators that increase pyruvate dehydrogenase activity, in addition to the recently described pro-apoptotic and anti-proliferative effects, suppress angiogenesis as well, normalizing the pseudo-hypoxic signals that lead to normoxic HIF1

  5. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

    PubMed

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-03-27

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis.

  6. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    PubMed Central

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  7. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant

  8. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.

    PubMed

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  9. Active matter beyond mean-field: Ring-kinetic theory for self-propelled particles

    NASA Astrophysics Data System (ADS)

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013), 10.1103/PhysRevE.88.052309] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N -particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8 , followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  10. Curcumin Suppresses T Cell Activation by Blocking Ca2+ Mobilization and Nuclear Factor of Activated T Cells (NFAT) Activation

    PubMed Central

    Kliem, Christian; Merling, Anette; Giaisi, Marco; Köhler, Rebecca; Krammer, Peter H.; Li-Weber, Min

    2012-01-01

    Curcumin is the active ingredient of the spice turmeric and has been shown to have a number of pharmacologic and therapeutic activities including antioxidant, anti-microbial, anti-inflammatory, and anti-carcinogenic properties. The anti-inflammatory effects of curcumin have primarily been attributed to its inhibitory effect on NF-κB activity due to redox regulation. In this study, we show that curcumin is an immunosuppressive phytochemical that blocks T cell-activation-induced Ca2+ mobilization with IC50 = ∼12.5 μm and thereby prevents NFAT activation and NFAT-regulated cytokine expression. This finding provides a new mechanism for curcumin-mediated anti-inflammatory and immunosuppressive function. We also show that curcumin can synergize with CsA to enhance immunosuppressive activity because of different inhibitory mechanisms. Furthermore, because Ca2+ is also the secondary messenger crucial for the TCR-induced NF-κB signaling pathway, our finding also provides another mechanism by which curcumin suppresses NF-κB activation. PMID:22303019

  11. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    SciTech Connect

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  12. FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors.

    PubMed

    Kino, Tomoshige; Ichijo, Takamasa; Chrousos, George P

    2004-12-01

    We previously reported that tumor necrosis factor alpha receptor- and Fas-associated FLASH interacts with one of the p160 nuclear receptor coactivators, glucocorticoid receptor-interacting protein (GRIP) 1, at its nuclear receptor-binding (NRB) domain, and that inhibits the transcriptional activity of the glucocorticoid receptor (GR) by interfering with association of GR and GRIP1. Here, we further examined the specificity of FLASH suppressive effect and the physical/functional interactions between this protein and two other p160 family subtypes. The suppressive effect of FLASH on GR transactivation was observed in several cell lines and on the chromatin-integrated mouse mammary tumor virus (MMTV) promoter. FLASH strongly interacted with the NRB domain of the thyroid hormone receptor activator molecule (TRAM) 1, a member of the steroid hormone receptor coactivator (SRC) 3/nuclear receptor coactivator (N-CoA) 3 subtypes, as well as with SRC2/N-CoA2 p160 coactivator GRIP1, while its interaction with SRC1a, one of the SRC1/N-CoA1 proteins, was faint in yeast two-hybrid assays. Accordingly, FLASH strongly suppressed TRAM1- and GRIP1-induced enhancement of GR-stimulated transactivation of the MMTV promoter in HCT116 cells, while it did not affect SRC1a-induced potentiation of transcription. Furthermore, FLASH suppressed androgen- and progesterone receptor-induced transcriptional activity, but did not influence estrogen receptor-induced transactivation, possibly due to their preferential use of p160 coactivators in HCT116 and HeLa cells. Thus, FLASH differentially suppresses steroid hormone receptor-induced transcriptional activity by interfering with their association with SRC2/N-CoA2 and SRC3/N-CoA3 but not with SRC1/N-CoA1.

  13. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway.

    PubMed

    Chen, Jiun-Han; Hsiao, George; Lee, An-Rong; Wu, Chin-Chen; Yen, Mao-Hsiung

    2004-04-01

    Andrographolide (Andro), an active component isolated from the Chinese official herbal Andrographis paniculata, which has been reported to prevent oxygen radical production and thus prevent inflammatory diseases. In this study, we investigated the molecular mechanisms and signaling pathways by which Andro protects human umbilical vein endothelial cells (HUVECs) from growth factor (GF) deprivation-induced apoptosis. Results demonstrated that HUVECs undergo apoptosis after 18 hr of GF deprivation but that this cell death was suppressed by the addition of Andro in a concentration-dependent manner (1-100 microM). Andro suppresses the mitochondrial pathway of apoptosis by inhibiting release of cytochrome c into the cytoplasm and dissipation of mitochondrial potential (Deltapsi(m)), as a consequence, prevented caspase-3 and -9 activation. Treatment of endothelial cells with Andro-induced activation of the protein kinase Akt, an anti-apoptotic signal, and phosphorylation of BAD, a down-stream target of Akt. Suppression of Akt activity by wortmannin, by LY-294002 and by using a dominant negative Akt mutant abolished the anti-apoptotic effect of Andro. In contrast, the ERK1/2 activities were not affected by Andro. The ERK1/2 inhibitor, PD98059 failed to antagonize the protective effect of Andro. In conclusion, Andro exerts its anti-apoptotic potential via activation of the Akt-BAD pathway in HUVECs and thus may represent a candidate of therapeutic agent for atherosclerosis.

  14. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  15. Melatonin suppresses activation of hepatic stellate cells through RORα-mediated inhibition of 5-lipoxygenase.

    PubMed

    Shajari, Shiva; Laliena, Almudena; Heegsma, Janette; Tuñón, María Jesús; Moshage, Han; Faber, Klaas Nico

    2015-10-01

    Liver fibrosis is scar tissue resulting from an uncontrolled wound-healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to proliferative and migratory myofibroblasts that produce excessive amounts of extracellular matrix proteins, in particular collagen 1a1 (COL1A1). Although liver fibrosis is reversible, no effective drug therapy is available to prevent or reverse HSC activation. Melatonin has potent hepatoprotective properties in a variety of acute and chronic liver injury models and suppresses liver fibrosis. However, it remains unclear whether melatonin acts indirectly or directly on HSC to prevent liver fibrosis. Here, we studied the effect of melatonin on culture-activated rat HSC. Melatonin dose-dependently suppressed the expression of HSC activation markers Col1a1 and alpha-smooth muscle actin (αSMA, Acta2), as well as HSC proliferation and loss of lipid droplets. The nuclear melatonin sensor retinoic acid receptor-related orphan receptor-alpha (RORα/Nr1f1) was expressed in quiescent and activated HSC, while the membranous melatonin receptors (Mtrn1a and Mtrn1b) were not. The synthetic RORα agonist SR1078 more potently suppressed Col1a1 and αSma expression, HSC proliferation, and lipid droplet loss, while the RORα antagonist SR1001 blocked the antifibrotic features of melatonin. Melatonin and SR1078 inhibited the expression of Alox5, encoding 5-lipoxygenase (5-LO). The pharmacological 5-LO inhibitor AA861 reduced Acta2 and Col1a1 expression in activated HSC. We conclude that melatonin directly suppresses HSC activation via RORα-mediated inhibition of Alox5 expression, which provides novel drug targets to treat liver fibrosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis

    PubMed Central

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-01-01

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC− defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring. PMID:20300061

  17. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.

    PubMed

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-04-21

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.

  18. Structure-activity relationships for vitamin D3-based aromatic a-ring analogues as hedgehog pathway inhibitors.

    PubMed

    Deberardinis, Albert M; Madden, Daniel J; Banerjee, Upasana; Sail, Vibhavari; Raccuia, Daniel S; De Carlo, Daniel; Lemieux, Steven M; Meares, Adam; Hadden, M Kyle

    2014-05-08

    A structure-activity relationship study for a series of vitamin D3-based (VD3) analogues that incorporate aromatic A-ring mimics with varying functionality has provided key insight into scaffold features that result in potent, selective Hedgehog (Hh) pathway inhibition. Three analogue subclasses containing (1) a single substitution at the ortho or para position of the aromatic A-ring, (2) a heteroaryl or biaryl moiety, or (3) multiple substituents on the aromatic A-ring were prepared and evaluated. Aromatic A-ring mimics incorporating either single or multiple hydrophilic moieties on a six-membered ring inhibited the Hh pathway in both Hh-dependent mouse embryonic fibroblasts and cultured cancer cells (IC50 values 0.74-10 μM). Preliminary studies were conducted to probe the cellular mechanisms through which VD3 and 5, the most active analogue, inhibit Hh signaling. These studies suggested that the anti-Hh activity of VD3 is primarily attributed to the vitamin D receptor, whereas 5 affects Hh inhibition through a separate mechanism.

  19. Design, synthesis and structure-activity relationships studies on the D ring of the natural product triptolide.

    PubMed

    Xu, Hongtao; Tang, Huanyu; Feng, Huijin; Li, Yuanchao

    2014-02-01

    Triptolide is a diterpene triepoxide natural product isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal herb. Triptolide has previously been shown to possess antitumor, anti-inflammatory, immunosuppressive, and antifertility activities. Earlier reports suggested that the five-membered unsaturated lactone ring (D ring) is essential for potent cytotoxicity, however, to the best of our knowledge, systematic structure-activity relationship studies have not yet been reported. Here, four types of D ring-modified triptolide analogues were designed, synthesized and evaluated against human ovarian (SKOV-3) and prostate (PC-3) carcinoma cell lines. The results suggest that the D ring is essential to potency, however it can be modified, for example to C18 hydrogen bond acceptor and/or donor furan ring analogues, without complete loss of cytotoxic activity. Interestingly, evaluation of the key series of C19 analogues showed that this site is exquisitely sensitive to polarity. Together, these results will guide further optimization of this natural product lead compound for the development of potent and potentially clinically useful triptolide analogues.

  20. Triterpenoid Saponin W3 from Anemone flaccida Suppresses Osteoclast Differentiation through Inhibiting Activation of MAPKs and NF-κB Pathways

    PubMed Central

    Kong, Xiangying; Yang, Yue; Wu, Wenbin; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Su, Xiaohui; Jia, Shiwei; Lin, Na

    2015-01-01

    Excessive bone resorption by osteoclasts within inflamed joints is the most specific hallmark of rheumatoid arthritis. A. flaccida has long been used for the treatment of arthritis in folk medicine of China; however, the active ingredients responsible for the anti-arthritis effects of A. flaccida are still elusive. In this study, W3, a saponin isolated from the extract of A. flaccida was identified as the major active ingredient by using an osteoclast formation model induced by receptor activator of nuclear factor kappa-B ligand (RANKL). W3 dose-dependently suppressed the actin ring formation and lacunar resorption. Mechanistic investigation revealed that W3 inhibited the RANKL-induced TRAF6 expression, decreased phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and suppressed NF-κB p65 DNA binding activity. Furthermore, W3 almost abrogated the expression of c-Fos and nuclear factor of activated T cells (NFATc1). Therefore, our results suggest that W3 is a potential agent for treating lytic bone diseases although further evaluation in vivo and in clinical trials is needed. PMID:26327814

  1. Synthesis, insecticidal activity, and QSAR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification.

    PubMed

    Tian, Zhongzhen; Shao, Xusheng; Li, Zhong; Qian, Xuhong; Huang, Qingchun

    2007-03-21

    To keep the nitro group in the cis position, a series of nitromethylene neonicotinoids containing a tetrahydropyridine ring with exo-ring ether modifications were designed and synthesized. All of the compounds were characterized and confirmed by 1H NMR, high-resolution mass spectroscopy, elemental analysis, and IR. The bioassay tests showed that some of them exhibited good insecticidal activities against pea aphids. On the basis of 10 nitromethylene derivatives, the quantitative structure-bioactivity relationship (QSAR) was analyzed and established. The results suggested that AlogP98 and Dipole_Mopac might be the important parameters related with biological activities.

  2. Stereospecific Synthesis of 2-Iminothiazolidines via Domino Ring-Opening Cyclization of Activated Aziridines with Aryl- and Alkyl Isothiocyanates.

    PubMed

    Bhattacharyya, Aditya; Kavitha, C V; Ghorai, Manas K

    2016-08-05

    Lewis acid catalyzed domino ring-opening cyclization of activated aziridines with aryl and alkyl isothiocyanates has been accomplished leading to the formation of a wide variety of highly substituted and functionalized 2-iminothiazolidines with excellent diastereo- and enantiospecificity (de, ee up to >99%). The reaction proceeds via a Lewis acid catalyzed SN2-type ring-opening of the activated aziridine followed by a concomitant 5-exo-dig cyclization in a domino fashion to furnish the 2-iminothiazolidine derivative in excellent yields (up to 99%).

  3. Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1981-01-01

    Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.

  4. Activity-Dependent Synaptic Competition in Vitro: Heterosynaptic Suppression of Developing Synapses

    NASA Astrophysics Data System (ADS)

    Lo, Yi-Jiuan; Poo, Mu-Ming

    1991-11-01

    The development and stability of synaptic connections in the nervous system are influenced by the pattern of electrical activity and the competitive interaction between the adjacent nerve terminals. To investigate this influence, a culture system of nerve and muscle cells has been developed in which a single embryonic muscle cell is coinnervated by two spinal neurons. The effect of electrical activity on the synaptic efficacy was examined after repetitive electrical stimulation was applied to one or both neurons. Brief tetanic stimulation of one neuron resulted in immediate functional suppression of the synapse made by the unstimulated neuron innervating the same muscle cell. This heterosynaptic suppression was largely absent when the tetanic stimulation was applied concurrently to both neurons. This result demonstrates that activity-dependent synaptic competition can be studied in vitro at a cellular level.

  5. Trunk postures and upper-body muscle activations during physically demanding wildfire suppression tasks.

    PubMed

    Neesham-Smith, Daniel; Aisbett, Brad; Netto, Kevin

    2014-01-01

    This study examined the trunk postures and upper-body muscle activations during four physically demanding wildfire suppression tasks. Bilateral, wireless surface electromyography was recorded from the trapezius and erector spinae muscles of nine experienced, wildfire fighters. Synchronised video captured two retroreflective markers to allow for quantification of two-dimensional sagittal trunk flexion. In all tasks, significantly longer time was spent in the mild and severe trunk flexion (p ≤ 0.002) compared to the time spent in a neutral posture. Mean and peak muscle activation in all tasks exceeded previously established safe limits. These activation levels also significantly increased through the performance of each task (p < 0.001). The results suggest that the wildfire suppression tasks analysed impose significant musculoskeletal demand on firefighters. Fire agencies should consider developing interventions to reduce the exposure of their personnel to these potentially injurious musculoskeletal demands.

  6. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  7. Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches.

    PubMed

    Sepp, Tuul; Karu, Ulvi; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2011-03-01

    Allocation trade-offs of carotenoids between their use in the immune system and production of integumentary colouration have been suggested as a proximate mechanism maintaining honesty of signal traits. We tested how dietary carotenoid supplementation, immune activation and immune suppression affect intensity of coccidian infection in captive greenfinches Carduelis chloris, a passerine with carotenoid-based plumage. Immune activation with phytohaemagglutinin (PHA) decreased body mass among birds not supplemented with lutein, while among the carotenoid-fed birds, PHA had no effect on mass dynamics. Immune suppression with dexamethasone (DEX) induced loss of body mass and reduced the swelling response to PHA. DEX and PHA increased the concentration of circulating heterophils. Lutein supplementation increased plasma carotenoid levels but had no effect on the swelling response induced by PHA. PHA and DEX treatments did not affect plasma carotenoids. Immune stimulation by PHA suppressed the infection, but only among carotenoid-supplemented birds. Priming of the immune system can thus aid in suppressing chronic infection but only when sufficient amount of carotenoids is available. Our experiment shows the importance of carotenoids in immune response, but also the complicated nature of this impact, which could be the reason for inconsistent results in studies investigating the immunomodulatory effects of carotenoids. The findings about involvement of carotenoids in modulation of an immune response against coccidiosis suggest that carotenoid-based ornaments may honestly signal individuals' ability to manage chronic infections. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    NASA Astrophysics Data System (ADS)

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-04-01

    Objective. The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach. We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results. All eight stimulated AC subregions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance. We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders.

  9. Cationic chlorophyl derivatives with SOD mimicking activity suppress the proliferation of human ovarian cancer cells.

    PubMed

    Kobayashi, Y; Maniki, M; Nakamura, K

    1996-06-01

    Derivatives of chlorophyl, e.g. Fe-chlorin e6-Na, alpha, beta, gamma, delta-Tetraphenylporphine-tetrasulfonic acid disulfonic acid salt tetrahydrate (Fe-TPPTS) and alpha, beta, gamma, delta-Tetrakis (4-N-trimethylaminophenyl) porphine, tetra (p-toluensulfonate (Fe-TTMAPP), express SOD mimicking activity. Examination was made of suppressive effects of human cancer cell lines by derivatives of chlorophyl. Fe-TPPTS and Fe-TTMAPP suppressed proliferation of the human ovarian cancer cell lines but Fe-chlorin e6-Na failed to suppress the proliferation. Lipid peroxide was increased by application of Fe-TPPTS and Fe-TTMAPP, but decreased by application of Fe-chlorin e6-Na. SOD activity of the cancer cells did not change by application of these drugs. TPPTS and TTMAPP have a cationic charge but Fe-chlorin e6-Na has an anionic charge. It is suggested that charge of these drugs relates to the suppressive effects of the cancer cell proliferation.

  10. Hearing an illusory vowel in noise: suppression of auditory cortical activity.

    PubMed

    Riecke, Lars; Vanbussel, Mieke; Hausfeld, Lars; Başkent, Deniz; Formisano, Elia; Esposito, Fabrizio

    2012-06-06

    Human hearing is constructive. For example, when a voice is partially replaced by an extraneous sound (e.g., on the telephone due to a transmission problem), the auditory system may restore the missing portion so that the voice can be perceived as continuous (Miller and Licklider, 1950; for review, see Bregman, 1990; Warren, 1999). The neural mechanisms underlying this continuity illusion have been studied mostly with schematic stimuli (e.g., simple tones) and are still a matter of debate (for review, see Petkov and Sutter, 2011). The goal of the present study was to elucidate how these mechanisms operate under more natural conditions. Using psychophysics and electroencephalography (EEG), we assessed simultaneously the perceived continuity of a human vowel sound through interrupting noise and the concurrent neural activity. We found that vowel continuity illusions were accompanied by a suppression of the 4 Hz EEG power in auditory cortex (AC) that was evoked by the vowel interruption. This suppression was stronger than the suppression accompanying continuity illusions of a simple tone. Finally, continuity perception and 4 Hz power depended on the intactness of the sound that preceded the vowel (i.e., the auditory context). These findings show that a natural sound may be restored during noise due to the suppression of 4 Hz AC activity evoked early during the noise. This mechanism may attenuate sudden pitch changes, adapt the resistance of the auditory system to extraneous sounds across auditory scenes, and provide a useful model for assisted hearing devices.

  11. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    PubMed Central

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-01-01

    Objective The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results All eight stimulated AC regions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders. PMID:25686163

  12. A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus

    PubMed Central

    Scott, L. L.; Brecht, E. J.; Philpo, A.; Iyer, S.; Wu, N. S.; Mihic, S. J.; Aldrich, R. W.; Pierce, J.; Walton, J. P.

    2017-01-01

    Large conductance calcium-activated (BK) channels are broadly expressed in neurons and muscle where they modulate cellular activity. Decades of research support an interest in pharmaceutical applications for modulating BK channel function. Here we report a novel BK channel-targeted peptide with functional activity in vitro and in vivo. This 9-amino acid peptide, LS3, has a unique action, suppressing channel gating rather than blocking the pore of heterologously expressed human BK channels. With an IC50 in the high picomolar range, the apparent affinity is higher than known high affinity BK channel toxins. LS3 suppresses locomotor activity via a BK channel-specific mechanism in wild-type or BK channel-humanized Caenorhabditis elegans. Topical application on the dural surface of the auditory midbrain in mouse suppresses sound evoked neural activity, similar to a well-characterized pore blocker of the BK channel. Moreover, this novel ion channel-targeted peptide rapidly crosses the BBB after systemic delivery to modulate auditory processing. Thus, a potent BK channel peptide modulator is open to neurological applications, such as preventing audiogenic seizures that originate in the auditory midbrain. PMID:28195225

  13. Dexamethasone rapidly suppresses IL-33-stimulated mast cell function by blocking transcription factor activity.

    PubMed

    Paranjape, Anuya; Chernushevich, Oksana; Qayum, Amina Abdul; Spence, Andrew J; Taruselli, Marcela T; Abebayehu, Daniel; Barnstein, Brian O; McLeod, Jamie Josephine Avila; Baker, Bianca; Bajaj, Gurjas S; Chumanevich, Alena P; Oskeritzian, Carole A; Ryan, John J

    2016-12-01

    Mast cells are critical effectors of allergic disease and can be activated by IL-33, a proinflammatory member of the IL-1 cytokine family. IL-33 worsens the pathology of mast cell-mediated diseases, but therapies to antagonize IL-33 are still forthcoming. Because steroids are the mainstay of allergic disease treatment and are well known to suppress mast cell activation by other stimuli, we examined the effects of the steroid dexamethasone on IL-33-mediated mast cell function. We found that dexamethasone potently and rapidly suppressed cytokine production elicited by IL-33 from murine bone marrow-derived and peritoneal mast cells. IL-33 enhances IgE-mediated mast cell cytokine production, an activity that was also antagonized by dexamethasone. These effects were consistent in human mast cells. We additionally observed that IL-33 augmented migration of IgE-sensitized mast cells toward antigen. This enhancing effect was similarly reversed by dexamethasone. Simultaneous addition of dexamethasone with IL-33 had no effect on the phosphorylation of MAP kinases or NFκB p65 subunit; however, dexamethasone antagonized AP-1- and NFκB-mediated transcriptional activity. Intraperitoneal administration of dexamethasone completely abrogated IL-33-mediated peritoneal neutrophil recruitment and prevented plasma IL-6 elevation. These data demonstrate that steroid therapy may be an effective means of antagonizing the effects of IL-33 on mast cells in vitro and in vivo, acting partly by suppressing IL-33-induced NFκB and AP-1 activity.

  14. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo.

    PubMed

    Akhmetshina, Dinara; Zakharov, Andrei; Vinokurova, Daria; Nasretdinov, Azat; Valeeva, Guzel; Khazipov, Roustem

    2016-06-01

    Inhibition of serotonin uptake, which causes an increase in extracellular serotonin levels, disrupts the development of thalamocortical barrel maps in neonatal rodents. Previous in vitro studies have suggested that the disruptive effect of excessive serotonin on barrel map formation involves a depression at thalamocortical synapses. However, the effects of serotonin uptake inhibitors on the early thalamocortical activity patterns in the developing barrel cortex in vivo remain largely unknown. Here, using extracellular recordings of the local field potentials and multiple unit activity (MUA) we explored the effects of the selective serotonin reuptake inhibitor (SSRI) citalopram (10-20mg/kg, intraperitoneally) on sensory evoked activity in the barrel cortex of neonatal (postnatal days P2-5) rats in vivo. We show that administration of citalopram suppresses the amplitude and prolongs the delay of the sensory evoked potentials, reduces the power and frequency of the early gamma oscillations, and suppresses sensory evoked and spontaneous neuronal firing. In the adolescent P21-29 animals, citalopram affected neither sensory evoked nor spontaneous activity in barrel cortex. We suggest that suppression of the early thalamocortical activity patterns contributes to the disruption of the barrel map development caused by SSRIs and other conditions elevating extracellular serotonin levels.

  15. Oral progestin induces rapid, reversible suppression of ovarian activity in the cat

    PubMed Central

    Stewart, R.A.; Pelican, K.M.; Brown, J.L.; Wildt, D.E.; Ottinger, M.A.; Howard, J.G.

    2010-01-01

    The influence of oral progestin (altrenogest; ALT) on cat ovarian activity was studied using non-invasive fecal steroid monitoring. Queens were assigned to various ALT dosages: 1) 0 mg/kg (control; n = 5 cats); 2) 0.044 mg/kg (LOW; n = 5); 3) 0.088 mg/kg (MID; n = 6); or 4) 0.352 mg/kg (HIGH; n = 6). Fecal estrogen and progestagen concentrations were quantified using enzyme immunoassays for 60 days before, 38 days during and 60 days after ALT treatment. Initiation of follicular activity was suppressed in all cats during progestin treatment, whereas controls continued to cycle normally. Females (n = 6) with elevated fecal estrogens at treatment onset completed a normal follicular phase before returning to baseline and remained suppressed until treatment withdrawal. All cats receiving oral progestin reinitiated follicular activity after treatment, although MID cats experienced the most synchronized return (within 10-16 days). Mean baseline fecal estrogens and progestagens were higher (P < 0.05) after treatment in HIGH, but not LOW or MID cats compared to pre-treatment values. Results demonstrate that: 1) oral progestin rapidly suppresses initiation of follicular activity in the cat, but does not influence a follicular phase that exists before treatment initiation; and 2) queens return to normal follicular activity after progestin withdrawal. This study provides foundational information for research aimed at using progestin priming to improve ovarian response in felids scheduled for ovulation induction and assisted breeding. PMID:20051246

  16. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming.

    PubMed

    Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M

    2016-02-01

    Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming.

  17. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    SciTech Connect

    Le Pimpec, F.; Kirby, R.E.; King, F.K.; Pivi, M.; /SLAC

    2006-01-25

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas.

  18. Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect.

    PubMed

    Perini, Francesca; Cattaneo, Luigi; Carrasco, Marisa; Schwarzbach, Jens V

    2012-09-05

    The effects of transcranial magnetic stimulation (TMS) vary depending on the brain state at the stimulation moment. Four mechanisms have been proposed to underlie these effects: (1) virtual lesion--TMS suppresses neural signals; (2) preferential activation of less active neurons--TMS drives up activity in the stimulated area, but active neurons are saturating; (3) noise generation--TMS adds random neuronal activity, and its effect interacts with stimulus intensity; and (4) noise generation--TMS adds random neuronal activity, and its effect depends on TMS intensity. Here we explore these hypotheses by investigating the effects of TMS on early visual cortex by assessing the contrast response function while varying the adaptation state of the observers. We tested human participants in an orientation discrimination task, in which performance is contingent upon contrast sensitivity. Before each trial, neuronal activation of visual cortex was altered through contrast adaptation to two flickering gratings. In a factorial design, with or without adaptation, a single TMS pulse was delivered simultaneously with targets of varying contrast. Adaptation decreased contrast sensitivity. The effect of TMS on performance was state dependent: TMS decreased contrast sensitivity in the absence of adaptation but increased it after adaptation. None of the proposed mechanisms can account for the results in their entirety, in particular, for the facilitatory effect at intermediate to high contrasts after adaptation. We propose an alternative hypothesis: TMS effects are activity dependent, so that TMS suppresses the most active neurons and thereby changes the balance between excitation and inhibition.

  19. Viral microRNAs Target a Gene Network, Inhibit STAT Activation, and Suppress Interferon Responses

    PubMed Central

    Ramalingam, Dhivya; Ziegelbauer, Joseph M.

    2017-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs during latency that are processed to yield ~25 mature microRNAs (miRNAs). We were interested in identifying cellular networks that were targeted by KSHV-miRNAs and employed network building strategies using validated KSHV miRNA targets. Here, we report the identification of a gene network centering on the transcription factor- signal transducer and activator of transcription 3 (STAT3) that is targeted by KSHV miRNAs. KSHV miRNAs suppressed STAT3 and STAT5 activation and inhibited STAT3-dependent reporter activation upon IL6-treatment. KSHV miRNAs also repressed the induction of antiviral interferon-stimulated genes upon IFNα- treatment. Finally, we observed increased lytic reactivation of KSHV from latently infected cells upon STAT3 repression with siRNAs or a small molecule inhibitor. Our data suggest that treatment of infected cells with a STAT3 inhibitor and a viral replication inhibitor, ganciclovir, represents a possible strategy to eliminate latently infected cells without increasing virion production. Together, we show that KSHV miRNAs suppress a network of targets associated with STAT3, deregulate cytokine-mediated gene activation, suppress an interferon response, and influence the transition into the lytic phase of viral replication. PMID:28102325

  20. Icariin potentiates the antitumor activity of gemcitabine in gallbladder cancer by suppressing NF-κB

    PubMed Central

    Zhang, Dian-cai; Liu, Jin-long; Ding, Yong-bin; Xia, Jian-guo; Chen, Guo-yu

    2013-01-01

    Aim: Gemcitabine has been increasingly prescribed for the treatment of gallbladder cancer. However, the response rate is low. The aim of this study is to determine whether icariin, a flavonoid isolated from Epimedi herba, could potentiate the antitumor activity of gemcitabine in gallbladder cancer. Methods: Human gallbladder carcinoma cell lines GBC-SD and SGC-996 were tested. Cell proliferation and apoptosis were analyzed using MTT assay and flow cytometry, respectively. The expression of apoptosis- and proliferation-related molecules was detected with Western blotting. Caspase-3 activity was analyzed using colorimetric assay, and NF-κB activity was measured with ELISA. A gallbladder cancer xenograft model was established in female BALB/c (nu/nu) mice. The mice were intraperitoneally administered gemcitabine (125 mg/kg) in combination with icariin (40 mg/kg) for 2 weeks. Results: Icariin (40–160 μg/mL) dose-dependently suppressed cell proliferation and induced apoptosis in both GBC-SD and SGC-996 cells, with SGC-996 cells being less sensitive to the drug. Icariin (40 μg/mL) significantly enhanced the antitumor activity of gemcitabine (0.5 μmol/L) in both GBC-SD and SGC-996 cells. The mice bearing gallbladder cancer xenograft treated with gemcitabine in combination with icariin exhibited significantly smaller tumor size than the mice treated with either drug alone. In GBC-SD cells, icariin significantly inhibited both the constitutive and gemcitabine-induced NF-κB activity, enhanced caspase-3 activity, induced G0-G1 phase arrest, and suppressed the expression of Bcl-2, Bcl-xL and surviving proteins. Conclusion: Icariin, by suppressing NF-κB activity, exerts antitumor activity, and potentiates the antitumor activity of gemcitabine in gallbladder cancer. Combined administration of gemcitabine and icariin may offer a better therapeutic option for the patients with gallbladder cancer. PMID:23274410

  1. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements.

    PubMed

    Barow, Ewgenia; Neumann, Wolf-Julian; Brücke, Christof; Huebl, Julius; Horn, Andreas; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2014-11-01

    Deep brain stimulation of the globus pallidus internus alleviates involuntary movements in patients with dystonia. However, the mechanism is still not entirely understood. One hypothesis is that deep brain stimulation suppresses abnormally enhanced synchronized oscillatory activity within the motor cortico-basal ganglia network. Here, we explore deep brain stimulation-induced modulation of pathological low frequency (4-12 Hz) pallidal activity that has been described in local field potential recordings in patients with dystonia. Therefore, local field potentials were recorded from 16 hemispheres in 12 patients undergoing deep brain stimulation for severe dystonia using a specially designed amplifier allowing simultaneous high frequency stimulation at therapeutic parameter settings and local field potential recordings. For coherence analysis electroencephalographic activity (EEG) over motor areas and electromyographic activity (EMG) from affected neck muscles were recorded before and immediately after cessation of high frequency stimulation. High frequency stimulation led to a significant reduction of mean power in the 4-12 Hz band by 24.8 ± 7.0% in patients with predominantly phasic dystonia. A significant decrease of coherence between cortical EEG and pallidal local field potential activity in the 4-12 Hz range was revealed for the time period of 30 s after switching off high frequency stimulation. Coherence between EMG activity and pallidal activity was mainly found in patients with phasic dystonic movements where it was suppressed after high frequency stimulation. Our findings suggest that high frequency stimulation may suppress pathologically enhanced low frequency activity in patients with phasic dystonia. These dystonic features are the quickest to respond to high frequency stimulation and may thus directly relate to modulation of pathological basal ganglia activity, whereas improvement in tonic features may depend on long-term plastic changes within the

  2. Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1994-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.

  3. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  4. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  5. The activation and suppression of plant innate immunity by parasitic nematodes.

    PubMed

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.

  6. Does adrenergic activity suppress insulin secretion during surgery? A clinical experiment with halothane anesthesia.

    PubMed Central

    Aärimaa, M; Syvälahti, E; Ovaska, J

    1978-01-01

    Peroperative inhibition of insulin release is widely attributed to increased alpha-adrenergic activity. To test this hypothesis serum insulin and glucose concentrations were measured at short intervals in 11 patients who underwent major surgery. Five patients were anesthetized with halothane and six with general anesthesia without halothane. The results were similar in both patient groups; halothane had no effect on insulin. This suggests that suppression of insulin under operations is probably not due to activation of the alpha-adrenergic receptors of the pancreatic beta-cells. The authors propose that suppression of insulin secretion during surgery may be caused by adrenaline, which, in competing for the glucose receptors, insensitizes the pancreatic beta-cells. PMID:202205

  7. Synthesis of active controls for flutter suppression on a flight research wing

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Murrow, H. N.

    1977-01-01

    This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.

  8. Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference.

    PubMed

    Barras, Caroline; Kerzel, Dirk

    2016-12-01

    In visual search for a shape target, interference from salient-but-irrelevant color singletons can be resisted in feature search mode, but not in singleton detection mode. In singleton detection mode, we observed a contralateral positivity (PD) after 260-340ms, suggesting that the salient distractor was suppressed. Because RTs in singleton detection mode increased when a distractor was present, we conclude that active suppression of distractors takes time. In feature search mode, no increase in RTs and no PD to the distractor was observed, showing that resistance to interference was not accomplished by suppression. Rather, the smaller N2pc to the target in feature search than in singleton detection mode suggests that enhancement of target features avoided interference. Thus, the strong top-down set in feature search mode eliminated the need to suppress the early attend-to-me signal (corresponding to the Ppc, from 160 to 210ms) that was generated by salient stimuli independently of search mode.

  9. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.

  10. Benzodiazepines antagonize central corticotropin releasing hormone-induced suppression of natural killer cell activity.

    PubMed

    Irwin, M; Hauger, R L; Britton, K

    1993-12-17

    Benzodiazepines have anxiolytic properties and attenuate behavioral stress responses induced by corticotropin releasing hormone (CRH). To evaluate the effect of benzodiazepines on CRH-induced immune suppression, potent centrally acting benzodiazepines were administered prior to central infusion of CRH (i.c.v.; 1.0 microgram). CRH induced a significant (P < 0.01) reduction of splenic natural killer cell activity which was completely antagonized by pretreatment with either diazepam or alprazolam.

  11. Indomethacin Inhibits Circulating PGE2 and Reverses Postexercise Suppression of Natural Killer Cell Activity

    DTIC Science & Technology

    1999-01-01

    after the oral administration of a placebo, the PG inhibitor indomethacin (75 mg/day for 5 days), or naltrexone (reported elsewhere). Circulating...which blocks PGE2 biosynthe- sis via inhibition of cyclooxygenase activity (57). Maxi- mal suppression of PG production occurs with doses between 50...and 150 mg (1). In addition to the indepen- dent effects of PGE2 on NKCA, low circulating levels of PGE2 can synergize with endogenous glucocorticoids

  12. Macrophages activated by C-reactive protein through Fc gamma RI transfer suppression of immune thrombocytopenia.

    PubMed

    Marjon, Kristopher D; Marnell, Lorraine L; Mold, Carolyn; Du Clos, Terry W

    2009-02-01

    C-reactive protein (CRP) is an acute-phase protein with therapeutic activity in mouse models of systemic lupus erythematosus and other inflammatory and autoimmune diseases. To determine the mechanism by which CRP suppresses immune complex disease, an adoptive transfer system was developed in a model of immune thrombocytopenic purpura (ITP). Injection of 200 microg of CRP 24 h before induction of ITP markedly decreased thrombocytopenia induced by anti-CD41. CRP-treated splenocytes also provided protection from ITP in adoptive transfer. Splenocytes from C57BL/6 mice were treated with 200 microg/ml CRP for 30 min, washed, and injected into mice 24 h before induction of ITP. Injection of 10(6) CRP-treated splenocytes protected mice from thrombocytopenia, as did i.v. Ig-treated but not BSA-treated splenocytes. The suppressive cell induced by CRP was found to be a macrophage by depletion, enrichment, and the use of purified bone marrow-derived macrophages. The induction of protection by CRP-treated cells was dependent on FcRgamma-chain and Syk activation, indicating an activating effect of CRP on the donor cell. Suppression of ITP by CRP-treated splenocytes required Fc gamma RI on the donor cell and Fc gamma RIIb in the recipient mice. These findings suggest that CRP generates suppressive macrophages through Fc gamma RI, which then act through an Fc gamma RIIb-dependent pathway in the recipient to decrease platelet clearance. These results provide insight into the mechanism of CRP regulatory activity in autoimmunity and suggest a potential new therapeutic approach to ITP.

  13. Formation and dynamics of an artificial ring of dust for active orbital debris removal

    NASA Astrophysics Data System (ADS)

    Crabtree, Chris; Zedd, Michael; Ganguli, Gurudas; Rudakov, Leonid; Healy, Liam

    Recently we suggested a dust-based active debris removal technique to selectively remove small untrackable debris that occupies a very large volume around the Earth. For designing a working system an accurate knowledge of the dynamics of the released dust in orbit is necessary. In this paper we numerically examine the dynamics of non-interacting spherical tungsten dust grains of diameter between 30-60 microns released in a polar low-Earth orbit. We analyze different perturbations due to nonuniform gravity, solar radiation pressure, solar cycles as well as solar and lunar gravity, and dust charging effects, etc., and determine a set of forces adequate to describe the dynamics over the life of the dust in orbit (˜ 12- 15 years). With the resulting force model we analyze the orbits of many dust grains to determine the formation and geometry of the ring. We qualitatively examine the effects of the calculated geometry and dynamics of the dust cloud on the efficiency of the Active Debris Removal scheme.

  14. HORIZONTAL FLOWS IN ACTIVE REGIONS FROM RING-DIAGRAM AND LOCAL CORRELATION TRACKING METHODS

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Komm, R.; Hill, F.; Ravindra, B.

    2016-01-01

    Continuous high-cadence and high spatial resolution Dopplergrams allow us to study subsurface dynamics that may be further extended to explore precursors of visible solar activity on the surface. Since the p-mode power is absorbed in the regions of high magnetic field, the inferences in these regions are often presumed to have large uncertainties. In this paper, using the Dopplergrams from space-borne Helioseismic Magnetic Imager, we compare horizontal flows in a shear layer below the surface and the photospheric layer in and around active regions. The photospheric flows are calculated using the local correlation tracking (LCT) method, while the ring-diagram technique of helioseismology is used to infer flows in the subphotospheric shear layer. We find a strong positive correlation between flows from both methods near the surface. This implies that despite the absorption of acoustic power in the regions of strong magnetic field, the flows inferred from the helioseismology are comparable to those from the surface measurements. However, the magnitudes are significantly different; the flows from the LCT method are smaller by a factor of 2 than the helioseismic measurements. Also, the median difference between the direction of corresponding vectors is 49°.

  15. Determination of ring correction factors for leaded gloves used in grab sampling activities at Hanford tank farms

    SciTech Connect

    RATHBONE, B.A.

    1999-06-24

    This study evaluates the effectiveness of lead lined gloves in reducing extremity dose from two sources specific to tank waste sampling activities: (1) sludge inside glass sample jars and (2) sludge as thin layer contamination on the exterior surface of sample jars. The response of past and present Hanford Extremity Dosimeters (ring) designs under these conditions is also evaluated.

  16. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans

    PubMed Central

    Tyler, William J.; Boasso, Alyssa M.; Mortimore, Hailey M.; Silva, Rhonda S.; Charlesworth, Jonathan D.; Marlin, Michelle A.; Aebersold, Kirsten; Aven, Linh; Wetmore, Daniel Z.; Pal, Sumon K.

    2015-01-01

    We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress. PMID:26353920

  17. CORTICAL METABOLIC ACTIVITY MATCHES THE PATTERN OF VISUAL SUPPRESSION IN STRABISMUS

    PubMed Central

    Adams, Daniel L.; Economides, John R.; Sincich, Lawrence C.; Horton, Jonathan C.

    2013-01-01

    When an eye becomes deviated in early childhood a person does not experience double vision, although the globes are aimed at different targets. The extra image is prevented from reaching perception in subjects with alternating exotropia by suppression of each eye’s peripheral temporal retina. To test the impact of visual suppression on neuronal activity in primary (striate) visual cortex, the pattern of cytochrome oxidase (CO) staining was examined in four macaques raised with exotropia by disinserting the medial rectus muscles shortly following birth. No ocular dominance columns were visible in opercular cortex, where the central visual field is represented, indicating that signals coming from the central retina in each eye were perceived. However, the border strips at the edges of ocular dominance columns appeared pale, reflecting a loss of activity in binocular cells from disruption of fusion. In calcarine cortex, where the peripheral visual field is represented, there were alternating pale and dark bands resembling ocular dominance columns. To interpret the CO staining pattern, [3H]proline was injected into the right eye in two monkeys. In the right calcarine cortex, the pale CO columns matched the labeled proline columns of the right eye. In the left calcarine cortex, the pale CO columns overlapped the unlabeled columns of the left eye in the autoradiograph. Therefore, metabolic activity was reduced in the ipsilateral eye’s ocular dominance columns which serve peripheral temporal retina, in a fashion consistent with the topographic organization of suppression scotomas in humans with exotropia. PMID:23447587

  18. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury.

    PubMed

    Zhou, Xiaogang; Zhou, Jian; Li, Xilei; Guo, Chang'an; Fang, Taolin; Chen, Zhengrong

    2011-07-29

    Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury.

  19. Selective Killing Of Malignant Cancer Cells By Suppression Of Geminin Activity

    PubMed Central

    Zhu, Wenge; DePamphilis, Melvin L.

    2009-01-01

    Eukaryotic cells normally restrict genome duplication to once per cell division. In metazoa, re-replication of DNA during a single S-phase appears to be prevented solely by suppressing CDT1 activity, a protein required for loading the replicative MCM DNA helicase. However, siRNA suppression of geminin (a specific inhibitor of CDT1) arrested proliferation only of cells derived from malignant cancers by inducing DNA re-replication and DNA damage that spontaneously triggered apoptosis. None of these effects were detected either in cells derived from normal human tissues, or in cells immortalized by a viral oncogene. To induce these effects in non-cancer cells required suppression of both geminin and cyclin A, another cell cycle regulator. Therefore, initiating DNA replication in some cancer cells is limited solely by regulating the level of CDT1 activity with geminin, whereas non-cancer cells contain additional safeguards that prevent DNA re-replication. These results demonstrate that inhibition of geminin activity could be used to selectively kill cancer cells without harming other cells. PMID:19487297

  20. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination.

    PubMed

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases.

  1. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    PubMed Central

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases. PMID:28878677

  2. Ligustrazine improves blood circulation by suppressing Platelet activation in a rat model of allergic asthma.

    PubMed

    Wang, Yajuan; Zhu, Huizhi; Tong, Jiabing; Li, Zegeng

    2016-07-01

    Chuan-xiong (Ligusticum wallichii) is a traditional herbal medicine in Eastern Asia, but the effect of its active component ligustrazine remains unclear. We explored its effect and possible mechanism in a well-characterized rat model of allergic asthma. Ligustrazine suppressed bronchial hyper-responsiveness to methacholine, and suppressed lung inflammation in asthmatic rats. Ligustrazine exhibited potent immuno-modulatory and anti-inflammatory effects: it suppressed lymphocyte and eosinophil mobilization, and reduced cytokine IL-5 and IL-13 production significantly in lung tissues from asthmatic rats (P<0.05). Further histological examinations clearly demonstrated that ligustrazine improved blood circulation and ameliorated platelet activation, aggregation and adhesion, which induced sustained infiltration and activation of various inflammatory cells, including lymphocytes and eosinophils, followed by synthesis and release of a variety of pro-inflammatory mediators and cytokines. The present study suggests that ligustrazine is a potent agent for the treatment of allergic asthma due to its strong anti-inflammatory and immuno-modulatory properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Protective effect of carnosine after chronic cerebral hypoperfusion possibly through suppressing astrocyte activation

    PubMed Central

    Ma, Jing; Chen, Jihui; Bo, Shuhong; Lu, Xiaotong; Zhang, Jian

    2015-01-01

    Aim: Subcortical ischemic vascular dementia (SIVD) induced by chronic hypoperfusion is a common cause of vascular dementia. The aim of this study was to determine whether the protective effect of carnosine on white matter lesion after chronic cerebral hypoperfusion through suppressing astrocyte activation. Methods: Adult male mice (C57BL/6 strain) were subjected to permanent occlusion of the right unilateral common carotid arteries (rUCCAO) and treated with carnosine or histidine. Open field test, freezing test, Klüver-Barrera staining, immunohistochemical analyses and western blot were performed after rUCCAO. Results: We found that carnosine ameliorated white matter lesion and cognitive impairment after rUCCAO. Carnosine suppressed the activation of astrocyte in both wide type mice and histidine decarboxylase knockout mice. However, administration of histidine did not show the same effect. We found that there were no differences between rUCCAO group and sham group for the expression of glutamate transporter-1 (GLT-1) and glutamate/aspartate transporter (GLAST). Furthermore, carnosine significantly attenuated the increase of inflammatory cytokine interferon gama. Conclusion: These data suggest carnosine induced neuroprotection during SIVD in mice is not dependent on the histaminergic pathway or the regulation of the expression of GLT-1 and GLAST, but may be due to a suppression of astrocyte activation and inflammatory cytokine release. PMID:26885268

  4. Synthesis and antiproliferative activity of the ring system [1,2]oxazolo[4,5-g]indole.

    PubMed

    Barraja, Paola; Caracausi, Libero; Diana, Patrizia; Spanò, Virginia; Montalbano, Alessandra; Carbone, Anna; Parrino, Barbara; Cirrincione, Girolamo

    2012-11-01

    Brand new ring: A series of 27 derivatives of the new ring system [1,2]oxazolo[4,5-g]indole were conveniently prepared and tested at the NCI for antiproliferative studies. Several of them showed good inhibitory activity toward all tested cell lines, reaching GI50 values generally at the micromolar and sub-micromolar levels and in some cases at nanomolar concentrations. The mean GI50 values, calculated on the full panel, were in the range 0.25-7.08 μM.

  5. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    PubMed

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  6. Cyclosporine A and Rapamycin induce in vitro cholesteryl ester transfer protein activity, and suppress lipoprotein lipase activity in human plasma.

    PubMed

    Tory, Rita; Sachs-Barrable, Kristina; Hill, John S; Wasan, Kishor M

    2008-06-24

    Cyclosporine A (CsA), Rapamycin (RAPA), Tacrolimus (FK-506) and Mycophenolate mofetil (MMF) are immunosuppressants that are widely used in solid organ transplant patients. However, some of these drugs have been reported to cause dyslipidemia in patients. Our aim was to determine the effects of these drugs on in vitro cholesteryl ester transfer protein (CETP), hepatic lipase (HL) and lipoprotein lipase (LPL) activity within human plasma. We measured CETP activity in human normolipidemic plasma with and without drug treatment, by measuring the incorporation of labeled cholesteryl ester into lipoproteins. To further confirm the result, we also measured recombinant CETP (rCETP) activity with and without drug treatment. We measured HL and LPL activity in post-heparin normal human plasma in the presence and absence of the drugs by measuring the release of fatty acids from radiolabeled triolein. We found an increase in CETP activity in human normolipidemic plasma and rCETP treated with CsA and RAPA. By contrast, CETP activity was not altered significantly in the presence of FK-506 and MMF. LPL activity in post-heparin normal human plasma was suppressed following the co-incubation with CsA, RAPA, FK-506 or MMF whereas HL activity remained unaffected. The increase in CETP activity and suppression in LPL activity following CsA and RAPA treatment observed in the present study may be associated with elevated LDL cholesterol levels and hypertriglyceridemia seen in patients administered these drugs.

  7. Intratumoral regulatory T cells with higher prevalence and more suppressive activity in hepatocellular carcinoma patients.

    PubMed

    Wu, Han; Chen, Pei; Liao, Rui; Li, Yi-Wei; Yi, Yong; Wang, Jia-Xing; Cai, Xiao-Yan; He, Hong-Wei; Jin, Jian-Jun; Cheng, Yun-Feng; Fan, Jia; Sun, Jian; Qiu, Shuang-Jian

    2013-09-01

    Regulatory T cells (Treg) play a vital role in immunosuppressive crosstalk; however, Tregs from different locations lead to different clinical outcomes. Our aim was, therefore, to compare the prevalences and suppressive phenotypes of Tregs in the peripheral blood, peritumor, and intratumor of patients with hepatocellular carcinoma (HCC). METHODS : The frequencies and phenotypes of CD4(+) CD25(+) CD127(low/-) CD49d(-) Tregs in the periphery, peritumor, and intratumor of 78 HCC patients and 12 healthy controls were evaluated by flow cytometry. Treg-cell suppressive activity was determined using an in vitro CD154 expression assay. Tregs from tumor and paired peritumor were then hybridized using an Agilent whole genome oligo microarray, and selected genes were validated by real-time polymerase chain reaction. Functional analysis of the microarray data was performed using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses. RESULTS : Intratumoral Tregs exhibited higher frequencies and more suppressive phenotypic functions than those in peritumor and periphery, whereas there was no difference between the latter two. Functional analysis showed that complement cascades, p53, and glycosylphosphatidylinositol-anchor biosynthesis pathways were significantly upregulated in intratumoral Tregs; the salivary secretion pathway was significantly downregulated in intratumoral Tregs, and immune cells and tumor-immuno-related Gene Ontology terms were significantly affected. CONCLUSIONS : Tregs in different locations exhibited different functional statuses. A higher prevalence and more suppressive phenotype suggested a critical role for intratumoral Tregs in the formation of multicellular immunosuppressive networks. HCC immunotherapy may be improved, therefore, by specific locational Tregs elimination or suppression. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  8. Interleukin-37 Enhances the Suppressive Activity of Naturally Occurring CD4+CD25+ Regulatory T Cells

    PubMed Central

    Wang, Da-Wei; Dong, Ning; Wu, Yao; Zhu, Xiao-Mei; Wang, Chun-Ting; Yao, Yong-Ming

    2016-01-01

    Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are essential for the suppression of autoimmunity and can control the immune-mediated pathology during the early phase of sepsis. Our previous data showed that silencing interleukin-37 (IL-37) in human CD4+CD25+ Tregs obviously reduced the suppressive activity of CD4+CD25+ Tregs. Here, we found that rhIL-37 stimulation markedly enhanced the suppressive activity of CD4+CD25+ Tregs isolated from naive C57BL/6 J mice in the absence or presence of lipopolysaccharide (LPS). Treatment with rhIL-37 could significantly upregulate the expression of cytotoxic T-lymphocyte-associated antigen (CTLA)-4 and forkhead/winged helix transcription factor p3 (Foxp3) on CD4+CD25+ Tregs. Also, rhIL-37 stimulation promoted the production of transforming growth factor-β1 (TGF-β1) but not IL-10 in the supernatants of cultured CD4+CD25+ Tregs. Pretreated CD4+CD25+ Tregs with rhIL-37 in the presence or absence of LPS were cocultured with CD4+CD25− T cells, ratio of IL-4/interferon-γ in the supernatants obviously increased in IL-37-stimulated groups. In addition, early administration of IL-37 significantly improved the survival rate of septic mice induced by cecal ligation and puncture. Taken together, we concluded that rhIL-37 enhances the suppressive activity of CD4+CD25+ Tregs and might be a potential immunomodulator for the treatment of septic complications. PMID:27941849

  9. GBF-dependent family genes morphologically suppress the partially active Dictyostelium STATa strain.

    PubMed

    Shimada, Nao; Kanno-Tanabe, Naoko; Minemura, Kakeru; Kawata, Takefumi

    2008-02-01

    Transcription factor Dd-STATa, a functional Dictyostelium homologue of metazoan signal transducers and activators of transcription proteins, is necessary for culmination during development. We have isolated more than 18 putative multicopy suppressors of Dd-STATa using genetic screening. One was hssA gene, whose expression is known to be G-box-binding-factor-dependent and which was specific to prestalk A (pstA) cells, where Dd-STATa is activated. Also, hssA mRNA was expressed in pstA cells in the Dd-STATa-null mutant. At least 40 hssA-related genes are present in the genome and constitute a multigene family. The tagged HssA protein was translated; hssA encodes an unusually high-glycine-serine-rich small protein (8.37 kDa), which has strong homology to previously reported cyclic-adenosine-monophosphate-inducible 2C and 7E proteins. Overexpression of hssA mRNA as well as frame-shifted versions of hssA RNA suppressed the phenotype of the partially active Dd-STATa strain, suggesting that translation is not necessary for suppression. Although overexpression of prespore-specific genes among the family did not suppress the parental phenotype, prestalk-specific family members did. Although overexpression of the hssA did not revert the expression of Dd-STATa target genes, and although its suppression mechanism remains unknown, morphological reversion implies functional relationships between Dd-STATa and hssA.

  10. Suppression of dendritic cell activation by diabetes autoantigens linked to the cholera toxin B subunit.

    PubMed

    Odumosu, Oludare; Payne, Kimberly; Baez, Ineavely; Jutzy, Jessica; Wall, Nathan; Langridge, William

    2011-04-01

    Antigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response. In this study, Incubation of human umbilical cord blood monocyte-derived immature DCs with CTB-INS autoantigen fusion protein increased the surface membrane expression of DC Toll-like receptor (TLR-2) while no significant upregulation in TLR-4 expression was detected. Inoculation of iDCs with CTB stimulated the biosynthesis of both CD86 and CD83 co-stimulatory factors demonstrating an immunostimulatory role for CTB in both DC activation and maturation. In contrast, incubation of iDCs with proinsulin partially suppressed CD86 co-stimulatory factor mediated DC activation, while incubation of iDCs with CTB-INS fusion protein completely suppressed iDC biosynthesis of both CD86 and CD83 costimulatory factors. The incubation of iDCs with increasing amounts of insulin did not increase the level of immune suppression but rather activated DC maturation by stimulating increased biosynthesis of both CD86 and CD83 costimulatory factors. Inoculation of iDCs with CTB-INS fusion protein dramatically increased secretion of the immunosuppressive cytokine IL-10 and suppressed synthesis of the pro-inflammatory cytokine IL12/23 p40 subunit protein suggesting that linkage of CTB to insulin (INS) may play an important role in mediating DC guidance of cognate naïve Th0 cell development into immunosuppressive T

  11. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  12. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways.

    PubMed

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-05-26

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 microM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  13. Physicochemically and pharmacokinetically stable nonapeptide KISS1 receptor agonists with highly potent testosterone-suppressive activity.

    PubMed

    Asami, Taiji; Nishizawa, Naoki; Matsui, Hisanori; Takatsu, Yoshihiro; Suzuki, Atsuko; Kiba, Atsushi; Terada, Michiko; Nishibori, Kimiko; Nakayama, Masaharu; Ban, Junko; Matsumoto, Shin-ichi; Tarui, Naoki; Ikeda, Yukihiro; Yamaguchi, Masashi; Kusaka, Masami; Ohtaki, Tetsuya; Kitada, Chieko

    2014-07-24

    Modifications of metastin(45-54) produced peptide analogues with higher metabolic stability than metastin(45-54). N-terminally truncated nonapeptide 4 ([D-Tyr46,D-Pya(4)47,azaGly51,Arg(Me)53]metastin(46-54)) is a representative compound with both potent agonistic activity and metabolic stability. Although 4 had more potent testosterone-suppressant activity than metastin, it possessed physicochemical instability at pH 7 and insufficient in vivo activity. Instability at pH 7 was dependent upon Asn48 and Ser49; substitution of Ser49 with Thr49 reduced this instability and maintained KISS1 receptor agonistic activity. Furthermore, [D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54) (14) showed 2-fold greater [Ca2+]i-mobilizing activity than metastin(45-54) and an apparent increase in physicochemical stability. N-terminal acetylation of 14 resulted in the most potent analogue, 22 (Ac-[D-Tyr46,D-Trp47,Thr49,azaGly51,Arg(Me)53,Trp54]metastin(46-54)). With continuous administration, 22 possessed 10-50-fold more potent testosterone-suppressive activity in rats than 4. These results suggested that a controlled release of short-length KISS1 receptor agonists can suppress the hypothalamic-pituitary-gonadal axis and reduce testosterone levels. Compound 22 was selected for further preclinical evaluation for hormone-dependent diseases.

  14. Eviprostat Activates cAMP Signaling Pathway and Suppresses Bladder Smooth Muscle Cell Proliferation

    PubMed Central

    Li, Kai; Yao, Jian; Chi, Yuan; Sawada, Norifumi; Araki, Isao; Kitamura, Masanori; Takeda, Masayuki

    2013-01-01

    Eviprostat is a popular phytotherapeutic agent for the treatment of lower urinary tract symptoms (LUTS). At present, the signaling mechanisms underlying its therapeutic effects are still poorly understood. Given that cAMP has been reported to suppress cell hyperplasia and hypertrophy in various pathological situations, we asked whether the effect of Eviprostat could be ascribed to the activation of the cAMP signaling pathway. In the study, exposure of cAMP response element (CRE)-secreted alkaline phosphatase (SEAP) (CRE-SEAP)-reporter cells to Eviprostat elevated SEAP secretion, which was associated with an increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and cAMP-response element-binding protein (CREB), as well as enhanced expression of CRE-regulated protein connexin43, indicating an activation of the cAMP signaling pathway. Consistent with these observations, Eviprostat-induced expression of Cx43 was abolished in the presence of adenylyl cyclase inhibitor SQ22536 or PKA inhibitor H89, whereas it was mimicked by adenylyl cyclase activator, forskolin. Further analysis demonstrated that Eviprostat significantly potentiated the effect of phosphodiesterase 3 (PDE3) inhibitor, but not that of PDE4 inhibitor, on CRE activation. Moreover, Eviprostat suppressed PDGF-induced activation of ERK and Akt and inhibited cell proliferation and hillock formation in both mesangial cells and bladder smooth muscle cells. Collectively, activation of the cAMP signaling pathway could be an important mechanism by which Eviprostat exerts its therapeutic effects for LUTS. PMID:23743824

  15. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    PubMed

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function.

  16. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control.

    PubMed

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K; O'Hanlon, Karen; Quaas, Marianne; Larsen, Brian D; Rolland, Baptiste; Rösner, Heike I; Walter, David; Kousholt, Arne Nedergaard; Menzel, Tobias; Lees, Michael; Johansen, Jens Vilstrup; Rappsilber, Juri; Engeland, Kurt; Sørensen, Claus Storgaard

    2015-01-05

    Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein cyclin F with suppression of the B-Myb/cyclin A pathway to ensure a DNA damage-induced checkpoint response in G2.

  17. The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds

    PubMed Central

    Hall, Margaret I

    2008-01-01

    Activity pattern, or the time of day when an animal is awake and active, is highly associated with that animal's ecology. There are two principal activity patterns: diurnal, or awake during the day in a photopic, or high light level, environment; and nocturnal, awake at night in scotopic, or low light level, conditions. Nocturnal and diurnal birds exhibit characteristic eye shapes associated with their activity pattern, with nocturnal bird eyes optimized for visual sensitivity with large corneal diameters relative to their eye axial lengths, and diurnal birds optimized for visual acuity, with larger axial lengths of the eye relative to their corneal diameters. The current study had three aims: (1) to quantify the nature of the relationship between the avian eye and its associated bony anatomy, the orbit and the sclerotic ring; (2) to investigate how activity pattern is reflected in that bony anatomy; and (3) to identify how much bony anatomy is required to interpret activity pattern reliably for a bird that does not have the soft tissue available for study, specifically, for a fossil. Knowledge of extinct avian activity patterns would be useful in making palaeoecological interpretations. Here eye, orbit and sclerotic ring morphologies of 140 nocturnal and diurnal bird species are analysed in a phylogenetic context. Although there is a close relationship between the avian eye and orbit, activity pattern can only be reliably interpreted for bony-only specimens, such as a fossil, that include both measurements of the sclerotic ring and orbit depth. Any missing data render the fossil analysis inaccurate, including fossil specimens that are flat and therefore do not have an orbit depth available. For example, activity pattern cannot be determined with confidence for Archaeopteryx lithographica, which has a complete sclerotic ring but no orbit depth measurement. Many of the bird fossils currently available that retain a good sclerotic ring tend to be flat specimens

  18. The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds.

    PubMed

    Hall, Margaret I

    2008-06-01

    Activity pattern, or the time of day when an animal is awake and active, is highly associated with that animal's ecology. There are two principal activity patterns: diurnal, or awake during the day in a photopic, or high light level, environment; and nocturnal, awake at night in scotopic, or low light level, conditions. Nocturnal and diurnal birds exhibit characteristic eye shapes associated with their activity pattern, with nocturnal bird eyes optimized for visual sensitivity with large corneal diameters relative to their eye axial lengths, and diurnal birds optimized for visual acuity, with larger axial lengths of the eye relative to their corneal diameters. The current study had three aims: (1) to quantify the nature of the relationship between the avian eye and its associated bony anatomy, the orbit and the sclerotic ring; (2) to investigate how activity pattern is reflected in that bony anatomy; and (3) to identify how much bony anatomy is required to interpret activity pattern reliably for a bird that does not have the soft tissue available for study, specifically, for a fossil. Knowledge of extinct avian activity patterns would be useful in making palaeoecological interpretations. Here eye, orbit and sclerotic ring morphologies of 140 nocturnal and diurnal bird species are analysed in a phylogenetic context. Although there is a close relationship between the avian eye and orbit, activity pattern can only be reliably interpreted for bony-only specimens, such as a fossil, that include both measurements of the sclerotic ring and orbit depth. Any missing data render the fossil analysis inaccurate, including fossil specimens that are flat and therefore do not have an orbit depth available. For example, activity pattern cannot be determined with confidence for Archaeopteryx lithographica, which has a complete sclerotic ring but no orbit depth measurement. Many of the bird fossils currently available that retain a good sclerotic ring tend to be flat specimens

  19. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  20. Cytotoxic activity of a synthetic deoxypodophyllotoxin derivative with an opened D-ring.

    PubMed

    Chen, Chuan; Wang, Cui-Cui; Wang, Zhong; Geng, Wen-Yue; Xu, Hui; Song, Xiao-Mei; Luo, Du-Qiang

    2016-05-01

    Podophyllotoxin and its synthetic derivatives are valuable medicinal agents that have antitumor, insecticidal, and antifungal properties. We previously synthesized a deoxypodophyllotoxin derivative with an opened D-ring (DPD) exhibiting potent insecticidal activity. This article was firstly performed to identify the cytotoxicity of DPD toward human cancer cell lines (SGC7901, HeLa, and A549) and normal cell line (HEK293T) using MTT assay. DPD showed potent cytotoxicity against human cancer lines (HeLa and A549) and less cytotoxicity against normal cell lines HEK293T. DPD could also induce the cell cycle arrest at G2/M phase in HeLa cells and significantly increase the phosphorylation (Tyr 15) of CDC2 leading to inactivation of CDC2. The effects of DPD on cellular microtubule networks were detected using immunofluorescence technique in HeLa cells. The immunofluorescence results showed DPD influenced the arrangement and organization of cellular microtubule networks in HeLa cells. Microtubules are long, hollow cylinders made up of polymerized tubulin dimers. Total microtubules were separated after DPD treatment. Western blot results showed that the free polymerized tubulin dimers were obviously increased after DPD treatment. DPD may be a good drug candidate with the therapeutic potential to human cancer by affecting microtubule polymerization.

  1. Pyrrolo[2,3-h]quinolinones: a new ring system with potent photoantiproliferative activity.

    PubMed

    Barraja, Paola; Diana, Patrizia; Montalbano, Alessandra; Dattolo, Gaetano; Cirrincione, Girolamo; Viola, Giampietro; Vedaldi, Daniela; Dall'Acqua, Francesco

    2006-12-15

    A new class of compounds, the pyrrolo[2,3-h]quinolin-2-ones, nitrogen isosters of the angular furocoumarin Angelicin, was synthesized with the aim of obtaining new photochemotherapeutic agents with increased antiproliferative activity and lower undesired toxic effects than the lead compound. Two synthetic pathways were approached to allow the isolation both of the dihydroderivatives 10-17 and of the aromatic ring system 23. Compounds 10-17 showed a remarkable phototoxicity and a great UVA dose dependence reaching IC(50) values at submicromolar level. Intracellular localization of these compounds has been evaluated by means of fluorescence microscopy using tetramethylrhodamine methyl ester and acridine orange, which are specific fluorescent probes for mitochondria and lysosomes, respectively. A weak co-staining was observed with mitochondrial stain, whereas a specific localization in lysosomes was observed. Studies directed to elucidate the mode of action of this series of compounds revealed that they do not intercalate with DNA and do not induce photodamage to the macromolecule. On the contrary, they induce significative photodamage to lipids and proteins.

  2. Functional characterization of the proteolytic activity of the tomato black ring nepovirus RNA-1-encoded polyprotein.

    PubMed

    Hemmer, O; Greif, C; Dufourcq, P; Reinbolt, J; Fritsch, C

    1995-01-10

    Translation of tomato black ring virus (TBRV) RNA-1 in a rabbit reticulocyte lysate leads to the synthesis of a 250K polyprotein which cleaves itself into smaller proteins of 50, 60, 120, and 190K. Polypeptides synthesized from synthetic transcripts corresponding to different regions of TBRV RNA-1 are processed only when they encode the 23K protein delimited earlier by sequence homology with the cowpea mosaic virus 24K protease. The proteolytic activity of this protein is completely lost by mutating residues C170 (to I) or L188 (to H), residues which align with conserved residues of the viral serine-like proteases. The 120K protein is generated by cleavage of the dipeptide K/A localized in front of the VPg but is not further cleaved in vitro at the K/S site (at the C terminus of the VPg) or between the protease and polymerase domains. However, both the protein VPgProPol (120K) and the protein ProPol (117K) produced in vitro from synthetic transcripts can cleave in trans the RNA-2-encoded 150K polyprotein, but they cannot cleave in trans polypeptides containing a cleavage site expressed from RNA-1 transcripts in which the protease cistron is absent or modified.

  3. Dispersion dependence of linewidth in actively mode-locked ring lasers.

    PubMed

    Takada, Akira; Fujino, Makoto; Nagano, Shigenori

    2012-02-13

    We studied the spectral linewidth narrowing of wavelength-swept actively mode-locked ring lasers (AMLLs). The numerical calculations for the static-state AMLL led us to predict that anomalous dispersion would narrows the linewidth. We examined the effect experimentally using AMLL setups for normal and anomalous dispersive cavities via the normal or inverse use of a linearly chirped fiber Bragg grating. The experiment indicated that the cavity with anomalous dispersion always generates narrower linewidth lasers than its normal dispersion equivalent. The cavity with anomalous dispersion also achieved a 0.08 nm linewidth. Using the anomalous dispersion setup, we observed instantaneous linewidth broadening during wavelength sweeping. Although the coherence of AMLL decreased drastically when the sweep rate became very rapid beyond a single roundtrip, narrow-linewidth lasing was observed within a single roundtrip. In summary, we demonstrated the use of 150 kHz wavelength sweeping with a 40-nm range and a 2.7-m short-length anomalous dispersion cavity.

  4. Direct Ring Fission of Salicylate by a Salicylate 1,2-Dioxygenase Activity from Pseudaminobacter salicylatoxidans

    PubMed Central

    Hintner, Jan-Peter; Lechner, Christa; Riegert, Ulrich; Kuhm, Andrea Elisabeth; Storm, Thomas; Reemtsma, Thorsten; Stolz, Andreas

    2001-01-01

    In cell extracts of Pseudaminobacter salicylatoxidans strain BN12, an enzymatic activity was detected which converted salicylate in an oxygen-dependent but NAD(P)H-independent reaction to a product with an absorbance maximum at 283 nm. This metabolite was isolated, purified, and identified by mass spectrometry and 1H and 13C nuclear magnetic resonance spectroscopy as 2-oxohepta-3,5-dienedioic acid. This metabolite could be formed only by direct ring fission of salicylate by a 1,2-dioxygenase reaction. Cell extracts from P. salicylatoxidans also oxidized 5-aminosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-methylsalicylate, 3- and 5-hydroxysalicylate (gentisate), and 1-hydroxy-2-naphthoate. The dioxygenase was purified and shown to consist of four identical subunits with a molecular weight of about 45,000. The purified enzyme showed higher catalytic constants with gentisate or 1-hydroxy-2-naphthoate than with salicylate. It was therefore concluded that P. salicylatoxidans synthesized a gentisate 1,2-dioxygenase with an extraordinary substrate range, which also allowed the oxidation of salicylate. PMID:11698383

  5. Flutter suppression control law synthesis for the Active Flexible Wing model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Perry, Boyd, III; Noll, Thomas E.

    1989-01-01

    The Active Flexible Wing Project is a collaborative effort between the NASA Langley Research Center and Rockwell International. The objectives are the validation of methodologies associated with mathematical modeling, flutter suppression control law development and digital implementation of the control system for application to flexible aircraft. A flutter suppression control law synthesis for this project is described. The state-space mathematical model used for the synthesis included ten flexible modes, four control surface modes and rational function approximation of the doublet-lattice unsteady aerodynamics. The design steps involved developing the full-order optimal control laws, reducing the order of the control law, and optimizing the reduced-order control law in both the continuous and the discrete domains to minimize stochastic response. System robustness was improved using singular value constraints. An 8th order robust control law was designed to increase the symmetric flutter dynamic pressure by 100 percent. Preliminary results are provided and experiences gained are discussed.

  6. Study on Active Suppression Control of Drivetrain Oscillations in an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Cui, Ying

    2017-07-01

    Due to the low damping in a central driven electric vehicle and lack of passive damping mechanisms as compared with a conventional vehicle, the vehicle may endure torsional vibrations which may deteriorates the vehicle’s drivability. Thus active damping control strategy is required to reduce the undesirable oscillations in an EV. In this paper, the origin of the vibration and the design of a damping control method to suppress such oscillations to improve the drivability of an EV are studied. The traction motor torque that is given by the vehicle controller is adjusted according to the acceleration rate of the motor speed to attenuate the resonant frequency. Simulations and experiments are performed to validate the system. The results show that the proposed control system can effectively suppress oscillations and hence improve drivability.

  7. Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity?

    PubMed

    Askenasy, Enosh M; Askenasy, Nadir

    2013-03-01

    Two competing hypotheses are proposed to cause autoimmunity: evasion of a sporadic self-reactive clone from immune surveillance and ineffective suppression of autoreactive clones that arise physiologically. We question the relevance of these hypotheses to the study of type 1 diabetes, where autoreactivity may accompany the cycles of physiological adjustment of β-cell mass to body weight and nutrition. Experimental evidence presents variable and conflicting data concerning the activities of both effector and regulatory T cells, arguing in favor and against: quantitative dominance and deficit, aberrant reactivity and expansion, sensitivity to negative regulation and apoptosis. The presence of autoantibodies in umbilical cord blood of healthy subjects and low incidence of the disease following early induction suggest that suppression of self-reactivity is the major determinant factor.

  8. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth.

    PubMed

    Luo, Zhongguang; Yu, Guangyang; Lee, Hyuk Woo; Li, Lihui; Wang, Lingyan; Yang, Dongqin; Pan, Yongfu; Ding, Chan; Qian, Jing; Wu, Lijun; Chu, Yiwei; Yi, Jing; Wang, Xiangdong; Sun, Yi; Jeong, Lak Shin; Liu, Jie; Jia, Lijun

    2012-07-01

    Posttranslational neddylation of cullins in the Cullin-Ring E3 ligase (CRL) complexes is needed for proteolytic degradation of CRL substrates, whose accumulation induces cell-cycle arrest, apoptosis, and senescence. The Nedd8-activating enzyme (NAE) is critical for neddylation of CRL complexes and their growth-promoting function. Recently, the anticancer small molecule MLN4924 currently in phase I trials was determined to be an inhibitor of NAE that blocks cullin neddylation and inactivates CRL, triggering an accumulation of CRL substrates that trigger cell-cycle arrest, apoptosis, and senescence in cancer cells. Here, we report that MLN4924 also triggers autophagy in response to CRL inactivation and that this effect is important for the ability of MLN4924 to suppress the outgrowth of liver cancer cells in vitro and in vivo. MLN4924-induced autophagy was attributed partially to inhibition of mTOR activity, due to accumulation of the mTOR inhibitory protein Deptor, as well as to induction of reactive oxygen species stress. Inhibiting autophagy enhanced MLN4924-induced apoptosis, suggesting that autophagy is a survival signal triggered in response to CRL inactivation. In a xenograft model of human liver cancer, MLN4924 was well-tolerated and displayed a significant antitumor effect characterized by CRL inactivation and induction of autophagy and apoptosis in liver cancer cells. Together, our findings support the clinical investigation of MLN4924 for liver cancer treatment and provide a preclinical proof-of-concept for combination therapy with an autophagy inhibitor to enhance therapeutic efficacy.

  9. Pleuromutilin derivatives having a purine ring. Part 1: new compounds with promising antibacterial activity against resistant Gram-positive pathogens.

    PubMed

    Hirokawa, Yoshimi; Kinoshita, Hironori; Tanaka, Tomoyuki; Nakamura, Takanori; Fujimoto, Koichi; Kashimoto, Shigeki; Kojima, Tsuyoshi; Kato, Shiro

    2008-06-15

    In the course of our research aimed at the discovery of metabolic stable pleuromutilin derivatives with more potent antibacterial activity against Gram-positive pathogens than previous analogues, a series of compounds bearing a purine ring were prepared and evaluated. From SAR studies, we identified two promising compounds 85 and 87, which have excellent in vitro activity against a number of Gram-positive pathogens, including existing drug-resistant strains, and potent in vivo efficacy.

  10. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium.

    PubMed

    Shirron, Natali; Yaron, Sima

    2011-04-26

    The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants.

  11. Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons

    PubMed Central

    Estep, Chad M.; Galtieri, Daniel J.; Zampese, Enrico; Goldberg, Joshua A.; Brichta, Lars; Greengard, Paul; Surmeier, D. James

    2016-01-01

    Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) are richly innervated by GABAergic neurons. The postsynaptic effects of GABA on SNc DA neurons are mediated by a mixture of GABAA and GABAB receptors. Although activation of GABAA receptors inhibits spike generation, the consequences of GABAB receptor activation are less well characterized. To help fill this gap, perforated patch recordings were made from young adult mouse SNc DA neurons. Sustained stimulation of GABAB receptors hyperpolarized SNc DA neurons, as previously described. However, transient stimulation of GABAB receptors by optical uncaging of GABA did not; rather, it reduced the opening of small-conductance, calcium-activated K+ (SK) channels and increased the irregularity of spiking. This modulation was attributable to inhibition of adenylyl cyclase and protein kinase A. Thus, because suppression of SK channel activity increases the probability of burst spiking, transient co-activation of GABAA and GABAB receptors could promote a pause-burst pattern of spiking. PMID:28036359

  12. [Suppression of telomerase activity leukemic cells by mutant forms of Rhodospirillum rubrum L-asparaginase].

    PubMed

    Pokrovskaya, M V; Zhdanov, D D; Eldarov, M A; Aleksandrova, S S; Veselovskiy, A V; Pokrovskiy, V S; Grishin, D V; Gladilina, Ju A; Sokolov, N N

    2017-01-01

    The active and stable mutant forms of short chain cytoplasmic L-asparaginase type I of Rhodospirillum rubrum (RrA): RrA+N17, D60K, F61L, RrA+N17, A64V, E67K, RrA+N17, E149R, V150P, RrAE149R, V150P and RrAE149R, V150P, F151T were obtained by the method of site-directed mutagenesis. It is established that variants RrA-N17, E149R, V150P, F151T and RrАE149R, V150P are capable to reduce an expression hTERT subunit of telomerase and, hence, activity of telomeres in Jurkat cells, but not in cellular lysates. During too time, L-asparaginases of Escherichia coli, Erwinia carotovora and Wolinella succinogenes, mutant forms RrА+N17, D60K, F61L and RrА+N17, A64V, E67K do not suppress of telomerase activity. The assumption of existence in structure RrA of areas (amino acids residues in the position 146-164, 1-17, 60-67) which are responsible for suppression of telomerase activity is made. The received results show that antineoplastic activity of some variants RrA is connected both with reduction of concentration of free L-asparagine, and with expression suppression of hTERT telomerase subunit, that opens new prospects for antineoplastic therapy.

  13. Transition in subicular burst firing neurons from epileptiform activity to suppressed state by feedforward inhibition.

    PubMed

    Sah, Nirnath; Sikdar, Sujit K

    2013-08-01

    The subiculum, a para-hippocampal structure positioned between the cornu ammonis 1 subfield and the entorhinal cortex, has been implicated in temporal lobe epilepsy in human patients and in animal models of epilepsy. The structure is characterized by the presence of a significant population of burst firing neurons that has been shown previously to lead epileptiform activity locally. Phase transitions in epileptiform activity in neurons following a prolonged challenge with an epileptogenic stimulus has been shown in other brain structures, but not in the subiculum. Considering the importance of the subicular burst firing neurons in the propagation of epileptiform activity to the entorhinal cortex, we have explored the phenomenon of phase transitions in the burst firing neurons of the subiculum in an in vitro rat brain slice model of epileptogenesis. Whole-cell patch-clamp and extracellular field recordings revealed a distinct phenomenon in the subiculum wherein an early hyperexcitable state was followed by a late suppressed state upon continuous perfusion with epileptogenic 4-aminopyridine and magnesium-free medium. The suppressed state was characterized by inhibitory post-synaptic potentials in pyramidal excitatory neurons and bursting activity in local fast-spiking interneurons at a frequency of 0.1-0.8 Hz. The inhibitory post-synaptic potentials were mediated by GABAA receptors that coincided with excitatory synaptic inputs to attenuate action potential discharge. These inhibitory post-synaptic potentials ceased following a cut between the cornu ammonis 1 and subiculum. The suppression of epileptiform activity in the subiculum thus represents a homeostatic response towards the induced hyperexcitability. Our results suggest the importance of feedforward inhibition in exerting this homeostatic control.

  14. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    PubMed

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  15. Suppression of Ribosomal Function Triggers Innate Immune Signaling through Activation of the NLRP3 Inflammasome

    PubMed Central

    Magun, Bruce E.

    2012-01-01

    Some inflammatory stimuli trigger activation of the NLRP3 inflammasome by inducing efflux of cellular potassium. Loss of cellular potassium is known to potently suppress protein synthesis, leading us to test whether the inhibition of protein synthesis itself serves as an activating signal for the NLRP3 inflammasome. Murine bone marrow-derived macrophages, either primed by LPS or unprimed, were exposed to a panel of inhibitors of ribosomal function: ricin, cycloheximide, puromycin, pactamycin, and anisomycin. Macrophages were also exposed to nigericin, ATP, monosodium urate (MSU), and poly I:C. Synthesis of pro-IL-ß and release of IL-1ß from cells in response to these agents was detected by immunoblotting and ELISA. Release of intracellular potassium was measured by mass spectrometry. Inhibition of translation by each of the tested translation inhibitors led to processing of IL-1ß, which was released from cells. Processing and release of IL-1ß was reduced or absent from cells deficient in NLRP3, ASC, or caspase-1, demonstrating the role of the NLRP3 inflammasome. Despite the inability of these inhibitors to trigger efflux of intracellular potassium, the addition of high extracellular potassium suppressed activation of the NLRP3 inflammasome. MSU and double-stranded RNA, which are known to activate the NLRP3 inflammasome, also substantially inhibited protein translation, supporting a close association between inhibition of translation and inflammasome activation. These data demonstrate that translational inhibition itself constitutes a heretofore-unrecognized mechanism underlying IL-1ß dependent inflammatory signaling and that other physical, chemical, or pathogen-associated agents that impair translation may lead to IL-1ß-dependent inflammation through activation of the NLRP3 inflammasome. For agents that inhibit translation through decreased cellular potassium, the application of high extracellular potassium restores protein translation and suppresses

  16. Flutter suppression and gust alleviation using active controls - Review of developments and applications based on the aerodynamic energy concept

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    The state of the art of the aerodynamic energy concept, involving the use of active controls for flutter suppression, is reviewed. Applications of the concept include the suppression of external-store flutter of three different configurations of the YF-17 flutter model using a single trailing edge control surface activated by a single fixed-gain control law. Consideration is also given to some initial results concerning the flutter suppression of the 1/20 scale low speed wind-tunnel model of the Boeing 2707-300 supersonic transport using an activated trailing edge control surface.

  17. Antiosteoclastic activity of milk thistle extract after ovariectomy to suppress estrogen deficiency-induced osteoporosis.

    PubMed

    Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Han, Seoung-Jun; Kang, Young-Hee

    2013-01-01

    Bone integrity abnormality and imbalance between bone formation by osteoblasts and bone resorption by osteoclasts are known to result in metabolic bone diseases such as osteoporosis. Silymarin-rich milk thistle extract (MTE) and its component silibinin enhanced alkaline phosphatase activity of osteoblasts but reduced tartrate-resistant acid phosphatase (TRAP) activity of osteoclasts. The osteoprotective effects of MTE were comparable to those of estrogenic isoflavone. Low-dose combination of MTE and isoflavone had a pharmacological synergy that may be useful for osteogenic activity. This study attempted to reveal the suppressive effects of MTE on bone loss. C57BL/6 female mice were ovariectomized (OVX) as a model for postmenopausal osteopenia and orally administered 10 mg/kg MTE or silibinin for 8 weeks. The sham-operated mice served as estrogen controls. The treatment of ovariectomized mice with nontoxic MTE and silibinin improved femoral bone mineral density and serum receptor activator of nuclear factor- κB ligand/osteoprotegerin ratio, an index of osteoclastogenic stimulus. In addition, the administration of MTE or silibinin inhibited femoral bone loss induced by ovariectomy and suppressed femoral TRAP activity and cathepsin K induction responsible for osteoclastogenesis and bone resorption. Collectively, oral dosage of MTE containing silibinin in the preclinical setting is effective in preventing estrogen deficiency-induced bone loss.

  18. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  19. Suppression of serotonin-dependent cerebral activation: a possible mechanism of action of some psychotomimetic drugs.

    PubMed

    Vanderwolf, C H

    1987-06-23

    Rats treated with centrally acting anti-muscarinic (atropinic) drugs display large amplitude irregular slow waves in both the neocortex and hippocampus during behavioral immobility and some stereotyped automatic behaviors (Type 2 behavior). However, rhythmical slow activity (RSA) in the hippocampus and low voltage fast activity (LVFA) in the neocortex occur in close correlation with spontaneous changes in posture, head movement, walking, rearing, swimming or struggling when held (Type 1 behavior). Previous research has indicated that such atropine-resistant RSA and LVFA is dependent on brain serotonin. In the experiments reported here, atropinized rats were given a test drug or a control injection while hippocampal and neocortical activity and behavior were recorded. Several psychotomimetic drugs (phencyclidine; (d,l)-N-allyl-N-normetazocine (SKF-10,047); d,l-cyclazocine; and N-ethyl-1-phenyl-cyclohexylamine) strongly suppressed atropine-resistant RSA and LVFA in doses that were compatible with active behavior. Ketamine had a weak effect but a variety of other drugs were inactive in this test. It is suggested that the psychotomimetic effect of phencyclidine and the psychotomimetic opioids is due, at least in part, to suppression of serotonin-dependent activation of the cerebral cortex.

  20. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells

    PubMed Central

    Villa, Nancy Y.; Wasserfall, Clive H.; Meacham, Amy M.; Wise, Elizabeth; Chan, Winnie; Wingard, John R.; McFadden, Grant

    2015-01-01

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens. PMID:25904246

  1. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells.

    PubMed

    Villa, Nancy Y; Wasserfall, Clive H; Meacham, Amy M; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R

    2015-06-11

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens.

  2. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis.

    PubMed

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W

    2015-12-01

    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA(-) cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA(-) cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA(-) cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis.

  3. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis

    PubMed Central

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W.

    2015-01-01

    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA− cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA− cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA− cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis. PMID:26424797

  4. [Mechanisms of in vivo suppressive effect of togaviridae and bunyaviridae on the activity of effectors of graft vs host reaction].

    PubMed

    Khozinskiĭ, V V; Semenov, B F

    1982-02-01

    Experiments on mice demonstrated the ability of 3 flaviviruses and 1 bunyavirus to suppress the activity of the effectors of the graft-versus-host (GVH) reaction. The conditions of the suppression of the primary immunological recognition were shown to differ in infections caused by different viruses. In experimental flavivirus infections caused by Langat, dengue 2 or yellow fever (strain 17D) viruses T-suppressor cells were activated, and their activity was realized only in respect to syngeneic or semisyngeneic target cells. In mice infected with Tahyna virus (a bunyavirus) no suppressor cells capable of suppressing the activity of the effectors of the GVH reaction were detected. The suppression of this reaction, not linked with the activity of the detected T-suppressor cells, was observed in the Langat virus infection under conditions of bilateral incompatibility when both the donor and the recipient were infected.

  5. Forest response to increasing typhoon activity on the Korean peninsula: evidence from oak tree-rings.

    PubMed

    Altman, Jan; Doležal, Jiří; Cerný, Tomáš; Song, Jong-Suk

    2013-02-01

    The globally observed trend of changing intensity of tropical cyclones over the past few decades emphasizes the need for a better understanding of the effects of such disturbance events in natural and inhabited areas. On the Korean Peninsula, typhoon intensity has increased over the past 100 years as evidenced by instrumental data recorded from 1904 until present. We examined how the increase in three weather characteristics (maximum hourly and daily precipitation, and maximum wind speed) during the typhoon activity affected old-growth oak forests. Quercus mongolica is a dominant species in the Korean mountains and the growth releases from 220 individuals from three sites along a latitudinal gradient (33-38°N) of decreasing typhoon activity were studied. Growth releases indicate tree-stand disturbance and improved light conditions for surviving trees. The trends in release events corresponded to spatiotemporal gradients in maximum wind speed and precipitation. A high positive correlation was found between the maximum values of typhoon characteristics and the proportion of trees showing release. A higher proportion of disturbed trees was found in the middle and southern parts of the Korean peninsula where typhoons are most intense. This shows that the releases are associated with typhoons and also indicates the differential impact of typhoons on the forests. Finally, we present a record of the changing proportion of trees showing release based on tree-rings for the period 1770-1979. The reconstruction revealed no trend during the period 1770-1879, while the rate of forest disturbances increased rapidly from 1880 to 1979. Our results suggest that if typhoon intensity rises, as is projected by some climatic models, the number of forest disturbance events will increase thus altering the disturbance regime and ecosystem processes.

  6. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization.

    PubMed

    Youn, Hyung S; Lee, Jun K; Choi, Yong J; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H; Lee, Joo Y

    2008-01-15

    Toll-like receptors (TLRs) play a critical role in induction of innate immune and inflammatory responses by recognizing invading pathogens or non-microbial endogenous molecules. TLRs have two major downstream signaling pathways, MyD88- and TRIF-dependent pathways leading to the activation of NFkappaB and IRF3 and the expression of inflammatory mediators. Deregulation of TLR activation is known to be closely linked to the increased risk of many chronic diseases. Cinnamaldehyde (3-phenyl-2-propenal) has been reported to inhibit NFkappaB activation induced by pro-inflammatory stimuli and to exert anti-inflammatory and anti-bacterial effects. However, the underlying mechanism has not been clearly identified. Our results showed that cinnamaldehyde suppressed the activation of NFkappaB and IRF3 induced by LPS, a TLR4 agonist, leading to the decreased expression of target genes such as COX-2 and IFNbeta in macrophages (RAW264.7). Cinnamaldehyde did not inhibit the activation of NFkappaB or IRF3 induced by MyD88-dependent (MyD88, IKKbeta) or TRIF-dependent (TRIF, TBK1) downstream signaling components. However, oligomerization of TLR4 induced by LPS was suppressed by cinnamaldehyde resulting in the downregulation of NFkappaB activation. Further, cinnamaldehyde inhibited ligand-independent NFkappaB activation induced by constitutively active TLR4 or wild-type TLR4. Our results demonstrated that the molecular target of cinnamaldehyde in TLR4 signaling is oligomerization process of receptor, but not downstream signaling molecules suggesting a novel mechanism for anti-inflammatory activity of cinnamaldehyde.

  7. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway.

    PubMed

    Lee, Dae Hyung; Lim, In-Hye; Sung, Eon-Gi; Kim, Joo-Young; Song, In-Hwan; Park, Yoon Ki; Lee, Tae-Jin

    2013-08-01

    Withaferin A (Wit A), a steroidal lactone isolated from Withania somnifera, exhibits anti-inflammatory, immuno-modulatory and anti-angiogenic properties and antitumor activities. In the present study, we investigated the effects of Wit A on protease-mediated invasiveness of the human metastatic cancer cell lines Caski and SK-Hep1. We found that treatment with Wit A resulted in marked inhibition of the TGF‑β‑induced increase in expression and activity of matrix metalloproteinase (MMP)‑9 in Caski cell line. These effects of Wit A were dose-dependent and showed a correlation with suppression of MMP‑9 mRNA expression levels. Treatment with Wit A resulted in an ~1.6-fold induction of MMP-9 promoter activity, which was also suppressed by treatment with Wit A in Caski cells. We found that treatment with Wit A resulted in inhibition of TGF‑β‑induced phosphorylation of Akt, which was involved in the downregulation of expression of MMP-9 at the protein level. Introduction with constitutively active (CA)‑Akt resulted in a partial increase in the secretion of TGF-β-induced MMP-9 blocked by treatment with Wit A in Caski cells. According to these results, Wit A may inhibit the invasive and migratory abilities of Caski cells through a reduction in MMP-9 expression through suppression of the pAkt signaling pathway. These findings indicate that use of Wit A may be an effective strategy for control of metastasis and invasiveness of tumors.

  8. Silver(I)-catalyzed dual activation of propargylic alcohol and aziridine/azetidine: triggering ring-opening and endo-selective ring-closing in a cascade.

    PubMed

    Bera, Milan; Roy, Sujit

    2009-11-20

    [Ag(COD)(2)]PF(6) catalyzes the reaction between propargyl alcohols and N-tosylaziridines/azetidines leading to a diverse range of N,O-heterocycles, namely, oxazines, oxazepines, and oxazocines via ring-opening and ring-closing in a cascade.

  9. Quinine suppresses extracellular potassium transients and ictal epileptiform activity without decreasing neuronal excitability in vitro.

    PubMed

    Bikson, M; Id Bihi, R; Vreugdenhil, M; Köhling, R; Fox, J E; Jefferys, J G R

    2002-01-01

    The effect of quinine on pyramidal cell intrinsic properties, extracellular potassium transients, and epileptiform activity was studied in vitro using the rat hippocampal slice preparation. Quinine enhanced excitatory post-synaptic potentials and decreased fast- and slow-inhibitory post-synaptic potentials. Quinine reduced the peak potassium rise following tetanic stimulation but did not affect the potassium clearance rate. Epileptiform activity induced by either low-Ca(2+) or high-K(+) artificial cerebrospinal fluid (ACSF) was suppressed by quinine. The frequency of spontaneous inter-ictal bursting induced by picrotoxin, high-K(+), or 4-aminopyridine was significantly increased. In normal ACSF, quinine did not affect CA1 pyramidal cell resting membrane potential, input resistance, threshold for action potentials triggered by intracellular or extracellular stimulation, or the orthodromic and antidromic evoked population spike amplitude. The main effects of quinine on intrinsic cell properties were to increase action potential duration and to reduce firing frequency during sustained membrane depolarizations, but not at normal resting membrane potentials. This attenuation was enhanced at increasingly depolarized membrane potentials. These results suggest that quinine suppresses extracellular potassium transients and ictal activity and modulates inter-ictal activity by limiting the firing rate of cells in a voltage-dependent manner. Because quinine does not affect 'normal' neuronal function, it may merit consideration as an anticonvulsant.

  10. Nobiletin suppresses MMP-9 expression through modulation of p38 MAPK activity in human dermal fibrobalsts.

    PubMed

    Kim, Jin-Ju; Korm, Sovannarith; Kim, Won-Seok; Kim, Ok-Seon; Lee, Ji-Seon; Min, Hyung-Geun; Chin, Young-Won; Cha, Hyuk-Jin

    2014-01-01

    We aimed to identify a novel flavonoid from the in-house natural products to suppress matrix metalloproteases (MMPs), which is responsible for degradation of collagen and other extracellular matrix proteins. Total eight natural products were screened for identification of a novel MMP-9 suppressor using MMP-9 reporter system, where the prompt initial screening with multiple samples is readily examined. Among the extracts used in the present study, one extract (Citrus unshiu) was found active in this assay system. Furthermore, three representative flavonoids in this active extract of Citrus unshiu peel were tested in MMP-9 reporter system. Nobiletin (NB) of the tested flavonoids suppressed MMP-9 expression without cytotoxicity, which was validated by both real-time polymerase chain reaction (PCR) and zymography analyses. Sustained p38 mitogen activated protein kinase (MAPK) activity, closely associated with induction of MMP-9 under stress condition, was markedly reduced by NB treatment, which implies that modulation of p38MAPK by nobiletin is responsible for reduction of MMP9 expression. Hence, nobiletin, identified from MMP-9 reporter system based screening, may be further applied for the purpose of delaying collagen degradation in skin fibroblasts.

  11. Mitochondria play an important role in the cell proliferation suppressing activity of berberine

    PubMed Central

    Yan, Xiao-Jin; Yu, Xuan; Wang, Xin-Pei; Jiang, Jing-Fei; Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Xing, Dong-Ming

    2017-01-01

    After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism. PMID:28181523

  12. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.

    PubMed

    Cicchini, Michelle; Chakrabarti, Rumela; Kongara, Sameera; Price, Sandy; Nahar, Ritu; Lozy, Fred; Zhong, Hua; Vazquez, Alexei; Kang, Yibin; Karantza, Vassiliki

    2014-01-01

    Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation. Our studies demonstrate that Becn1 heterozygosity, which results in immature mammary epithelial cell expansion and aberrant TNFRSF11A/TNR11/RANK (tumor necrosis factor receptor superfamily, member 11a, NFKB activator) signaling, promotes mammary tumorigenesis in multiparous FVB/N mice and in cooperation with the progenitor cell-transforming WNT1 oncogene. Similar to our Becn1(+/-);MMTV-Wnt1 mouse model, low BECN1 expression and an activated WNT pathway gene signature correlate with the triple-negative subtype, TNFRSF11A axis activation and poor prognosis in human breast cancers. Our results suggest that BECN1 may have nonautophagy-related roles in mammary development, provide insight in the seemingly paradoxical roles of BECN1 in tumorigenesis, and constitute the basis for further studies on the pathophysiology and treatment of clinically aggressive triple negative breast cancers (TNBCs).

  13. Quercetin suppresses intracellular ROS formation, MMP activation, and cell motility in human fibrosarcoma cells.

    PubMed

    Lee, Dong Eun; Chung, Min-Yu; Lim, Tae Gyu; Huh, Won Bum; Lee, Hyong Joo; Lee, Ki Won

    2013-09-01

    Cell metastasis is a major cause of death from cancer and can arise from excessive levels of oxidative stress. The objective of this study was to investigate whether the natural flavonoid quercetin can inhibit matrix metalloproteinase (MMP)-2 and -9 activities through the attenuation of reactive oxygen species (ROS) formation, an event expected to lead to the inhibition of cell motility. To induce sustained ROS formation, cells were treated with phenazine methosulfate (PMS; 1 μM). Noncytotoxic concentrations of quercetin inhibited PMS-induced increases in cell motility in HT1080 human fibrosarcoma (HT1080) cells. While nearly 100% of cells were observed to migrate after 24 h of PMS treatment, quercetin significantly (P < 0.01) suppressed this effect. We also found that quercetin, up to 10 μg/mL, attenuated PMS-induced MMP-2 activation. We then investigated whether the decreased levels of MMP-2 activation could be attributable to lower levels of ROS formation by quercetin. We found that quercetin treatments significantly attenuated PMS-induced ROS formation (P < 0.01) and resulted in decreased cell motility associated with a reduction in MMP-2 and -9 activitiy in HT1080 cells, even in the absence of PMS treatment. Collectively, these results suggest that quercetin inhibits cell motility via the inhibition of MMP activation in HT1080 cells in the presence and absence of PMS. This is likely to be a result of the suppression of intracellular ROS formation by quercetin. © 2013 Institute of Food Technologists®

  14. Renal cell carcinoma–derived gangliosides suppress nuclear factor-κB activation in T cells

    PubMed Central

    Uzzo, Robert G.; Rayman, Patricia; Kolenko, Vladimir; Clark, Peter E.; Cathcart, Martha K.; Bloom, Tracy; Novick, Andrew C.; Bukowski, Ronald M.; Hamilton, Thomas; Finke, James H.

    1999-01-01

    Activation of the transcription factor nuclear factor-κB (NFκB) is impaired in T cells from patients with renal cell carcinomas (RCCs). In circulating T cells from a subset of patients with RCCs, the suppression of NFκB binding activity is downstream from the stimulus-induced degradation of the cytoplasmic factor IκBα. Tumor-derived soluble products from cultured RCC explants inhibit NFκB activity in T cells from healthy volunteers, despite a normal level of stimulus-induced IκBα degradation in these cells. The inhibitory agent has several features characteristic of a ganglioside, including sensitivity to neuraminidase but not protease treatment; hydrophobicity; and molecular weight less than 3 kDa. Indeed, we detected gangliosides in supernatants from RCC explants and not from adjacent normal kidney tissue. Gangliosides prepared from RCC supernatants, as well as the purified bovine gangliosides Gm1 and Gd1a, suppressed NFκB binding activity in T cells and reduced expression of the cytokines IL-2 and IFN-γ. Taken together, our findings suggest that tumor-derived gangliosides may blunt antitumor immune responses in patients with RCCs. PMID:10491412

  15. Active coping with stress suppresses glucose metabolism in the rat hypothalamus.

    PubMed

    Ono, Yumie; Lin, Hsiao-Chun; Tzen, Kai-Yuan; Chen, Hui-Hsing; Yang, Pai-Feng; Lai, Wen-Sung; Chen, Jyh-Horng; Onozuka, Minoru; Yen, Chen-Tung

    2012-03-01

    We used 18F-fluorodeoxyglucose small-animal positron-emission tomography to determine whether different styles of coping with stress are associated with different patterns of neuronal activity in the hypothalamus. Adult rats were subjected to immobilization (IMO)-stress or to a non-immobilized condition for 30 min, in random order on separate days, each of which was followed by brain-scanning. Some rats in the immobilized condition were allowed to actively cope with the stress by chewing a wooden stick during IMO, while the other immobilized rats were given nothing to chew on. Voxel-based statistical analysis of the brain imaging data shows that chewing counteracted the stress-induced increased glucose uptake in the hypothalamus to the level of the non-immobilized condition. Region-of-interest analysis of the glucose uptake values further showed that chewing significantly suppressed stress-induced increased glucose uptake in the paraventricular hypothalamic nucleus and the anterior hypothalamic area but not in the lateral hypothalamus. Together with the finding that the mean plasma corticosterone concentration at the termination of the IMO was also significantly suppressed when rats had an opportunity to chew a wooden stick, our results showed that active coping by chewing inhibited the activation of the hypothalamic-pituitary-adrenal axis to reduce the endocrine stress response.

  16. Pro-inflammatory Macrophages suppress PPARγ activity in Adipocytes via S-nitrosylation.

    PubMed

    Yin, Ruiying; Fang, Li; Li, Yingjia; Xue, Peng; Li, Yazi; Guan, Youfei; Chang, Yongsheng; Chen, Chang; Wang, Nanping

    2015-12-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor and plays an essential role in insulin signaling. Macrophage infiltration into adipose tissue is a character of metabolic inflammation and closely related to insulin resistance in type 2 diabetes. The mechanism by which pro-inflammatory macrophages cause insulin resistance remains to be elucidated. Here we showed that co-culture with macrophages significantly suppressed the transcriptional activity of PPARγ on its target genes in 3T3-L1 preadipocytes and diabetic primary adipocytes, depending on inducible nitric oxide synthase (iNOS). We further showed that PPARγ underwent S-nitrosylation in response to nitrosative stress. Mass-spectrometry and site-directed mutagenesis revealed that S-nitrosylation at cysteine 168 was responsible for the impairment of PPARγ function. Extended exposure to NO instigated the proteasome-dependent degradation of PPARγ. Consistently, in vivo evidence revealed an association of the decreased PPARγ protein level with increased macrophage infiltration in visceral adipose tissue (VAT) of obese diabetic db/db mice. Together, our results demonstrated that pro-inflammatory macrophages suppressed PPARγ activity in adipocytes via S-nitrosylation, suggesting a novel mechanism linking metabolic inflammation with insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes

    PubMed Central

    Kelsall, Ian R; Duda, David M; Olszewski, Jennifer L; Hofmann, Kay; Knebel, Axel; Langevin, Frédéric; Wood, Nicola; Wightman, Melanie; Schulman, Brenda A; Alpi, Arno F

    2013-01-01

    RING (Really Interesting New Gene)-in-between-RING (RBR) enzymes are a distinct class of E3 ubiquitin ligases possessing a cluster of three zinc-binding domains that cooperate to catalyse ubiquitin transfer. The regulation and biological function for most members of the RBR ligases is not known, and all RBR E3s characterized to date are auto-inhibited for in vitro ubiquitylation. Here, we show that TRIAD1 and HHARI, two members of the Ariadne subfamily ligases, associate with distinct neddylated Cullin-RING ligase (CRL) complexes. In comparison to the modest E3 ligase activity displayed by isolated TRIAD1 or HHARI, binding of the cognate neddylated CRL to TRIAD1 or HHARI greatly stimulates RBR ligase activity in vitro, as determined by auto-ubiquitylation, their ability to stimulate dissociation of a thioester-linked UBCH7∼ubiquitin intermediate, and reactivity with ubiquitin-vinyl methyl ester. Moreover, genetic evidence shows that RBR ligase activity impacts both the levels and activities of neddylated CRLs in vivo. Cumulatively, our work proposes a conserved mechanism of CRL-induced Ariadne RBR ligase activation and further suggests a reciprocal role of this special class of RBRs as regulators of distinct CRLs. PMID:24076655

  18. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes.

    PubMed

    Kelsall, Ian R; Duda, David M; Olszewski, Jennifer L; Hofmann, Kay; Knebel, Axel; Langevin, Frédéric; Wood, Nicola; Wightman, Melanie; Schulman, Brenda A; Alpi, Arno F

    2013-10-30

    RING (Really Interesting New Gene)-in-between-RING (RBR) enzymes are a distinct class of E3 ubiquitin ligases possessing a cluster of three zinc-binding domains that cooperate to catalyse ubiquitin transfer. The regulation and biological function for most members of the RBR ligases is not known, and all RBR E3s characterized to date are auto-inhibited for in vitro ubiquitylation. Here, we show that TRIAD1 and HHARI, two members of the Ariadne subfamily ligases, associate with distinct neddylated Cullin-RING ligase (CRL) complexes. In comparison to the modest E3 ligase activity displayed by isolated TRIAD1 or HHARI, binding of the cognate neddylated CRL to TRIAD1 or HHARI greatly stimulates RBR ligase activity in vitro, as determined by auto-ubiquitylation, their ability to stimulate dissociation of a thioester-linked UBCH7∼ubiquitin intermediate, and reactivity with ubiquitin-vinyl methyl ester. Moreover, genetic evidence shows that RBR ligase activity impacts both the levels and activities of neddylated CRLs in vivo. Cumulatively, our work proposes a conserved mechanism of CRL-induced Ariadne RBR ligase activation and further suggests a reciprocal role of this special class of RBRs as regulators of distinct CRLs.

  19. Enhanced Electroluminescence from a Thermally Activated Delayed-Fluorescence Emitter by Suppressing Nonradiative Decay

    NASA Astrophysics Data System (ADS)

    Shizu, Katsuyuki; Uejima, Motoyuki; Nomura, Hiroko; Sato, Tohru; Tanaka, Kazuyoshi; Kaji, Hironori; Adachi, Chihaya

    2015-01-01

    Thermally activated delayed-fluorescence (TADF) is a promising approach for realizing highly efficient organic light-emitting diodes (OLEDs). By controlling the spatial overlap between the frontier orbitals to suppress nonradiative decay, we develop a highly efficient TADF emitter, N1 -[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-N1 -[4-(diphenylamino)-phenyl]-N4 , N4 -diphenylbenzene-1,4-diamine (DPA-TRZ). DPA-TRZ exhibits a photoluminescence quantum efficiency of 100% when doped into a host material, suggesting that nonradiative decay from its excited states is completely suppressed. Transient photoluminescence measurements confirm that DPA-TRZ emits TADF in a doped film. An OLED containing DPA-TRZ as a green emitter shows a maximum external quantum efficiency of 13.8%, which exceeds the theoretical limit for conventional fluorescent OLEDs. This high efficiency results from the effective generation of TADF and suppressed nonradiative decay in DPA-TRZ. Our molecular design strategy based on quantum chemistry provides a rational approach to control radiative and nonradiative decays for optimizing TADF materials.

  20. Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons.

    PubMed

    Sun, P; Zhang, Q; Zhang, Y; Wang, F; Wang, L; Yamamoto, R; Sugai, T; Kato, N

    2015-01-01

    It was previously shown that depression-like behavior is accompanied with suppression of the large-conductance calcium activated potassium (BK) channel in cingulate cortex pyramidal cells. To test whether BK channels are also involved in fear conditioning, we studied neuronal properties of amygdala principal cells in fear conditioned mice. After behavior, we made brain slices containing the amygdala, the structure critically relevant to fear memory. The resting membrane potential in lateral amygdala (LA) neurons obtained from fear conditioned mice (FC group) was more depolarized than in neurons from naïve controls. The frequencies of spikes evoked by current injections were higher in neurons from FC mice, demonstrating that excitability of LA neurons was elevated by fear conditioning. The depolarization in neurons from FC mice was shown to depend on BK channels by using the BK channel blocker charybdotoxin. Suppression of BK channels in LA neurons from the FC group was further confirmed on the basis of the spike width, since BK channels affect the descending phase of spikes. Spikes were broader in the FC group than those in the naïve control in a manner dependent on BK channels. Consistently, quantitative real-time PCR revealed a decreased expression of BK channel mRNA. The present findings suggest that emotional disorder manifested in the forms of fear conditioning is accompanied with BK channel suppression in the amygdala, the brain structure critical to this emotional disorder.

  1. Direct Evidence for Active Suppression of Salient-but-Irrelevant Sensory Inputs.

    PubMed

    Gaspelin, Nicholas; Leonard, Carly J; Luck, Steven J

    2015-11-01

    Researchers have long debated whether attentional capture is purely stimulus driven or purely goal driven. In the current study, we tested a hybrid account, called the signal-suppression hypothesis, which posits that stimuli automatically produce a bottom-up salience signal, but that this signal can be suppressed via top-down control processes. To test this account, we used a new capture-probe paradigm in which participants searched for a target shape while ignoring an irrelevant color singleton. On occasional probe trials, letters were briefly presented inside the search shapes, and participants attempted to report these letters. Under conditions that promoted capture by the irrelevant singleton, accuracy was greater for the letter inside the singleton distractor than for letters inside nonsingleton distractors. However, when the conditions were changed to avoid capture by the singleton, accuracy for the letter inside the irrelevant singleton was reduced below the level observed for letters inside nonsingleton distractors, an indication of active suppression of processing at the singleton location.

  2. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis

    PubMed Central

    Zhao, Yuechao; Gong, Ping; Chen, Yiru; Nwachukwu, Jerome C.; Srinivasan, Sathish; Ko, CheMyong; Bagchi, Milan K.; Taylor, Robert N.; Korach, Kenneth S.; Nettles, Kendall W.; Katzenellenbogen, John A.; Katzenellenbogen, Benita S.

    2016-01-01

    Estrogenic and inflammatory components play key roles in a broad range of diseases including endometriosis, a common estrogen-dependent gynecological disorder in which endometrial tissue creates inflammatory lesions at extrauterine sites, causing pelvic pain and reduced fertility. Current medical therapies focus primarily on reducing systemic levels of estrogens, but these are of limited effectiveness and have considerable side effects. We developed estrogen receptor (ER) ligands, chloroindazole (CLI) and oxabicycloheptene sulfonate (OBHS), which showed strong ER-dependent anti-inflammatory activity in a preclinical model of endometriosis that recapitulates the estrogen dependence and inflammatory responses of the disease in immunocompetent mice and in primary human endometriotic stromal cells in culture. Estrogen-dependent phenomena, including cell proliferation, cyst formation, vascularization, and lesion growth, were all arrested by CLI or OBHS, which prevented lesion expansion and also elicited regression of established lesions, suppressed inflammation, angiogenesis, and neurogenesis in the lesions, and interrupted crosstalk between lesion cells and infiltrating macrophages. Studies in ERα or ERβ knockout mice indicated that ERα is the major mediator of OBHS effectiveness and ERβ is dominant in CLI actions, implying involvement of both ERs in endometriosis. Neither ligand altered estrous cycling or fertility at doses that were effective for suppression of endometriosis. Hence, CLI and OBHS are able to restrain endometriosis by dual suppression of the estrogen-inflammatory axis. Our findings suggest that these compounds have the desired characteristics of preventive and therapeutic agents for clinical endometriosis and possibly other estrogen-driven and inflammation-promoted disorders. PMID:25609169

  3. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells.

    PubMed

    Lee, Sunyi; Jeong, Ae Lee; Park, Jeong Su; Han, Sora; Jang, Chang-Young; Kim, Keun Il; Kim, Yonghwan; Park, Jong Hoon; Lim, Jong-Seok; Lee, Myung Sok; Yang, Young

    2016-09-01

    Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry.

  4. Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels

    PubMed Central

    Nagatomo, Katsuhiro; Kubo, Yoshihiro

    2008-01-01

    Caffeine has various well-characterized pharmacological effects, but in mammals there are no known plasma membrane receptors or ion channels activated by caffeine. We observed that caffeine activates mouse transient receptor potential A1 (TRPA1) in heterologous expression systems by Cai2+ imaging and electrophysiological analyses. These responses to caffeine were confirmed in acutely dissociated dorsal root ganglion sensory neurons from WT mice, which are known to express TRPA1, but were not seen in neurons from TRPA1 KO mice. Expression of TRPA1 was detected immunohistochemically in nerve fibers and bundles in the mouse tongue. Moreover, WT mice, but not KO mice, showed a remarkable aversion to caffeine-containing water. These results demonstrate that mouse TRPA1 channels expressed in sensory neurons cause an aversion to drinking caffeine-containing water, suggesting they mediate the perception of caffeine. Finally, we observed that caffeine does not activate human TRPA1; instead, it suppresses its activity. PMID:18988737

  5. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    PubMed

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  6. Contributions of the D-Ring to the Activity of Etoposide Against Human Topoisomerase IIα: Potential Interactions with DNA in the Ternary Enzyme-Drug-DNA Complex†

    PubMed Central

    Pitts, Steven L.; Jablonksy, Michael J.; Duca, Maria; Dauzonne, Daniel; Monneret, Claude; Arimondo, Paola B.; Anklin, Clemens; Graves, David E.; Osheroff, Neil

    2011-01-01

    Etoposide is a widely prescribed anticancer drug that stabilizes covalent topoisomerase II-cleaved DNA complexes. The drug contains a polycyclic ring system (rings A–D), a glycosidic moiety at C4, and a pendant ring (E–ring) at C1. Interactions between human topoisomerase IIα and etoposide in the binary enzyme-drug complex appear to be mediated by substituents on the A-, B-, and E-rings of etoposide. These protein-drug contacts in the binary complex have predictive value for the actions of etoposide within the ternary topoisomerase IIα-drug-DNA complex. Although the D-ring of etoposide does not appear to contact topoisomerase IIα in the binary complex, etoposide derivatives with modified D-rings display reduced cytotoxicity against murine leukemia cells [Meresse et al. (2003) Bioorg. Med. Chem. Lett., 13, 4107]. This finding suggests that alterations in the D-ring may affect etoposide activity towards topoisomerase IIα in the ternary enzyme-drug-DNA complex. Therefore, to address the potential contributions of the D-ring to the activity of etoposide, drug derivatives in which the C13 carbonyl was moved to the C11 position (retroetoposide and retroDEPT) or the D-ring was opened (D-ring diol) were characterized. All of the D-ring alterations diminished the ability of etoposide to enhance DNA cleavage mediated by human topoisomerase IIα in vitro and in cultured cells. They also decreased etoposide binding in the ternary enzyme-drug-DNA complex and altered sites of enzyme-mediated DNA cleavage. Based on these findings, we propose that the D-ring of etoposide has important interactions with DNA in the ternary topoisomerase II cleavage complex. PMID:21548574

  7. Activation of the alphavirus spike protein is suppressed by bound E3.

    PubMed

    Sjöberg, Mathilda; Lindqvist, Birgitta; Garoff, Henrik

    2011-06-01

    Alphaviruses are taken up into the endosome of the cell, where acidic conditions activate the spikes for membrane fusion. This involves dissociation of the three E2-E1 heterodimers of the spike and E1 interaction with the target membrane as a homotrimer. The biosynthesis of the heterodimer as a pH-resistant p62-E1 precursor appeared to solve the problem of premature activation in the late and acidic parts of the biosynthetic transport pathway in the cell. However, p62 cleavage into E2 and E3 by furin occurs before the spike has left the acidic compartments, accentuating the problem. In this work, we used a furin-resistant Semliki Forest virus (SFV) mutant, SFV(SQL), to study the role of E3 in spike activation. The cleavage was reconstituted with proteinase K in vitro using free virus or spikes on SFV(SQL)-infected cells. We found that E3 association with the spikes was pH dependent, requiring acidic conditions, and that the bound E3 suppressed spike activation. This was shown in an in vitro spike activation assay monitoring E1 trimer formation with liposomes and a fusion-from-within assay with infected cells. Furthermore, the wild type, SFV(wt), was found to bind significant amounts of E3, especially if produced in dense cultures, which lowered the pH of the culture medium. This E3 also suppressed spike activation. The results suggest that furin-cleaved E3 continues to protect the spike from premature activation in acidic compartments of the cell and that its release in the neutral extracellular space primes the spike for low-pH activation.

  8. Functional connectivity in raphé-pontomedullary circuits supports active suppression of breathing during hypocapnic apnea

    PubMed Central

    Nuding, Sarah C.; Segers, Lauren S.; Iceman, Kimberly E.; O'Connor, Russell; Dean, Jay B.; Bolser, Donald C.; Baekey, David M.; Dick, Thomas E.; Shannon, Roger; Morris, Kendall F.

    2015-01-01

    Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multielectrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04–0.1 Hz) in firing rate were also disrupted during apnea. Four-hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity. PMID:26203111

  9. Functional connectivity in raphé-pontomedullary circuits supports active suppression of breathing during hypocapnic apnea.

    PubMed

    Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly E; O'Connor, Russell; Dean, Jay B; Bolser, Donald C; Baekey, David M; Dick, Thomas E; Shannon, Roger; Morris, Kendall F; Lindsey, Bruce G

    2015-10-01

    Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multielectrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04-0.1 Hz) in firing rate were also disrupted during apnea. Four-hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity.

  10. Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis.

    PubMed

    Gong, Yan; Shao, Zhuo; Fu, Zhongjie; Edin, Matthew L; Sun, Ye; Liegl, Raffael G; Wang, Zhongxiao; Liu, Chi-Hsiu; Burnim, Samuel B; Meng, Steven S; Lih, Fred B; SanGiovanni, John Paul; Zeldin, Darryl C; Hellström, Ann; Smith, Lois E H

    2016-11-01

    Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)α agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP)2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs). While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    SciTech Connect

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  12. Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells.

    PubMed

    Luo, Zhongguang; Pan, Yongfu; Jeong, Lak Shin; Liu, Jie; Jia, Lijun

    2012-11-01

    The multiunit Cullin (CUL)-RING E3 ligase (CRL) controls diverse biological processes by targeting a mass of substrates for ubiquitination and degradation, whereas its dysfunction causes carcinogenesis. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), is required for CRL activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug. By blocking CUL neddylation, MLN4924 inactivates CRL and causes the accumulation of CRL substrates that trigger cell cycle arrest, senescence and/or apoptosis to suppress the growth of cancer cells in vitro and in vivo. Recently, we found that MLN4924 also triggers protective autophagy in response to CRL inactivation. MLN4924-induced autophagy is attributed partially to the inhibition of mechanistic target of rapamycin (also known as mammalian target of rapamycin, MTOR) activity by the accumulation of the MTOR inhibitory protein DEPTOR, as well as reactive oxygen species (ROS)-induced stress. Moreover, the blockage of autophagy response enhances apoptosis in MLN4924-treated cells. Together, our findings not only reveal autophagy as a novel cellular response to CRL inactivation by MLN4924, but also provide a piece of proof-of-concept evidence for the combination of MLN4924 with autophagy inhibitors to enhance therapeutic efficacy.

  13. Study of exteroceptive suppression of voluntary muscular activity in healthy volunteers and patients with paroxysmal neuropathic pain.

    PubMed

    Gordeev, S A; Turbina, L G; Shtang, O M

    2014-07-01

    The exteroceptive suppression of voluntary electromyographic activity of the masseter and temporal muscles was studied in healthy volunteers and patients with paroxysmal neuropathic pain (trigeminal neuralgia). The latent period of the exteroceptive suppression was prolonged and the duration of its late fragment was shortened in the patients in comparison with normal subjects. A short exteroceptive suppression period in patients with trigeminal neuralgia reflected deficient activity of inhibitory interneurons of the reflector loop and excessive activity of the antinociceptive system of the brain stem, while prolongation of the latent period reflected prolongation of inhibitory interneurons activation. A direct correlation between the degree of changes in the exteroceptive suppression parameters and pain intensity, evaluated by the patients by the visual analog scale, was detected.

  14. Conical Euler simulation and active suppression of delta wing rocking motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling highly-swept delta wings, undergoing either forced or free-to-roll motions including active roll suppression. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite volume spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free-to-roll case, by including the rigid-body equation of motion for its simultaneous time integration with the governing flow equations. Results are presented for a 75 deg swept sharp leading edge delta wing at a freestream Mach number of 1.2 and at alpha equal to 10 and 30 deg angle of attack. A forced harmonic analysis indicates that the rolling moment coefficient provides: (1) a positive damping at the lower angle of attack equal to 10 deg, which is verified in a free-to-roll calculation; (2) a negative damping at the higher angle of attack equal to 30 deg at the small roll amplitudes. A free-to-roll calculation for the latter case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation. The wing rocking motion may be actively suppressed, however, through the use of a rate-feedback control law and antisymmetrically deflected leading edge flaps. The descriptions of the conical Euler flow solver and the free-to-roll analysis are presented. Results are also presented which give insight into the flow physics associated with unsteady vortical flows about forced and free-to-roll delta wings, including the active roll suppression of this wing-rock phenomenon.

  15. Shigella flexneri suppresses NF-kB activation by inhibiting linear ubiquitin chain ligation

    PubMed Central

    de Jong, Maarten F.; Liu, Zixu; Chen, Didi; Alto, Neal M.

    2016-01-01

    The Linear Ubiquitin chain Assembly Complex (LUBAC) is a multimeric E3 ligase that catalyzes M1- or linear ubiquitination of activated immune receptor signaling complexes (RSCs). While mutations that disrupt linear ubiquitin assembly lead to complex disease pathologies including immunodeficiency and autoinflammation in both humans and mice, microbial toxins that target LUBAC function have not yet been discovered. Here, we report the identification of two homologous Shigella flexneri Type III Secretion System (T3SS) effector E3 ligases IpaH1.4 and IpaH2.5 that directly interact with LUBAC subunit HOIL-1L (RBCK1) and conjugate K48-linked ubiquitin chains to the catalytic RING-between-RING domain of HOIP (RNF31). Proteasomal degradation of HOIP leads to irreversible inactivation of linear ubiquitination and blunting of NF-κB nuclear translocation in response to TNF, IL-1β, and pathogen associated molecular patterns (PAMPs). Loss of function studies in mammalian cells in combination with bacterial genetics explains how Shigella evades a broad spectrum of immune surveillance systems by cooperative inhibition of receptor ubiquitination, and reveals the critical importance of LUBAC in host defense against pathogens. PMID:27572974

  16. Ethanol extract of Lophatheri Herba exhibits anti-cancer activity in human cancer cells by suppression of metastatic and angiogenic potential

    PubMed Central

    Kim, Aeyung; Im, Minju; Gu, Min Jung; Ma, Jin Yeul

    2016-01-01

    Lophatheri Herba (LH), dried leaf of Lophatherum gracile Brongn, has long been used to reduce thirst and treat fever and inflammation in Chinese medicine. Recent studies have shown that LH has anti-viral, anti-bacterial, anti-cancer, anti-oxidant, diuretic, and hyperglycemic properties. However, the effects of an ethanol extract of L. herba (ELH), at non-cytotoxic doses, on the metastatic and angiogenic abilities of malignant tumor cells have not been reported. We found that ELH significantly suppressed p38, JNK, and NF-κB activation and proteolytic activities under phorbol 12-myristate 13-acetate (PMA) stimulation, thus leading to a decrease in metastatic potential, including migration and invasion. In addition, ELH suppressed tumor-induced angiogenesis, including migration and tube formation in human umbilical vein endothelial cells (HUVECs) and microvessel sprouting from aortic rings via decreasing the pro-angiogenic factors in tumors. Interestingly, in ovo xenografts ELH-treated HT1080 cells did not increase in volume and eventually disappeared, owing to a lack of angiogenesis. Daily oral administration of ELH at 50 and 100 mg/kg markedly inhibited metastatic colonization of B16F10 cells in the lungs of C57BL/6J mice and caused no apparent side effects. These data collectively indicate that ELH is safe and may be useful for managing metastasis and growth of malignant cancers. PMID:27808120

  17. Effect of linewidth enhancement factor in actively mode-locked ring laser

    NASA Astrophysics Data System (ADS)

    Takada, Akira; Saika, Makoto; Nagano, Shigenori

    2014-03-01

    Fundamental performance of the swept-source optical coherence tomography (SS-OCT) system is defined by its wavelength-swept laser. Especially narrower instantaneous spectral linewidth of the laser has the advantage in deeprange tomography. We have demonstrated narrow-linewidth actively mode-locked ring lasers (AMLL), employing anomalous dispersion configuration. The linewidth of an AMLL is determined by anomalous dispersion and self-phase modulation (SPM) in the semiconductor optical amplifier (SOA). For such soliton-like phenomenon of AMLLs, numerical calculation predicts that both of large dispersion and small SPM make the linewidth narrower. Since the dispersion restricts wavelength sweeping range of AMLLs, too large dispersion cannot be used. To weaken the SPM effect, low linewidth enhancement factor α of SOA is desirable. Quantum-dot(QD)-based SOA offers low α-factor in comparison with quantum-well SOA (QWSOA). In this study, we employ a QDSOA as a gain medium in an AMLL and also use a QWSOA for comparison. The wavelength band of the QWSOA-AMLL is 1.5 μm and that of QDSOA-AMLL is 1.0 μm. Since we employed the 10 ps/nm of net dispersion in both configurations, the dispersion parameter β2 for the QDSOA-AMLL is approximately half of that for the QWSOA-AMLL. The measured full-width half-maximum (FWHM) linewidths in a static state were 0.08 nm for the QWSOA-AMLL and 0.04nm for the QDSOA-AMLL. In spite of the small β2 the QDSOA-AMLL achieves narrower spectral than the QWSOA-AMLL. We also confirmed that the interference signal was improved by adopting the QDSOA.

  18. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 1; Theory and Design Procedure

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes a project at the University of Washington to design a multirate suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing.

  19. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood T.; Cole, Stanley R.; Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for on-line controller performance evaluation.

  20. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood Tiffany; Cole, Stanley R.; Buttrill, Carey S.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind-tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for online controller performance evaluation.

  1. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 2; Methodology Application Software Toolbox

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes the user's manual and software toolbox developed at the University of Washington to design a multirate flutter suppression control law for the BACT wing.

  2. Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads.

    PubMed

    Rando, R F; Ojwang, J; Elbaggari, A; Reyes, G R; Tinder, R; McGrath, M S; Hogan, M E

    1995-01-27

    An oligonucleotide (I100-15) composed of only deoxyguanosine and thymidine was able to inhibit human immunodeficiency virus type-1 (HIV-1) in culture assay systems. I100-15 did not block virus entry into cells but did reduce viral-specific transcripts. As assessed by NMR and polyacrylamide gel methods, I100-15 appears to form a structure in which two stacked guanosine tetrads are connected by three two-base long loops. Structure/activity experiments indicated that formation of intramolecular guanosine tetrads was necessary to achieve maximum antiviral activity. The single deoxyguanosine nucleotide present in each loop was found to be extremely important for the overall antiviral activity. The toxicity of I100-15 was determined to be well above the 50% effective dose (ED50) in culture which yielded a high therapeutic index (> 100). The addition of a cholesterol moiety to the 3' terminus of I100-15 (I100-23) reduced the ED50 value to less than 50 nM (from 0.12 microM for I100-15) and increased the duration of viral suppression to greater than 21 days (versus 7-10 days for I100-15) after removal of the drug from infected cell cultures. The favorable therapeutic index of such molecules coupled with the prolonged suppression of HIV-1, suggest that such compounds further warrant investigation as potential therapeutic agents.

  3. Active vibration suppression in a suspended Fabry-Pérot cavity.

    PubMed

    Canuto, Enrico

    2006-07-01

    This paper is concerned with active vibration suppression in a suspended Fabry-Pérot cavity, employed as the sensor in an innovative thrust-stand, called Nanobalance. The Nanobalance aims to exploit the sensitivity of in-vacuum Fabry-Pérot interferometers to sub-nanometric displacements in order to measure thrust (<1 mN) and noise of space microthrusters with micronewton accuracy. The instrument has been conceived around an in-vacuum optical Fabry-Pérot cavity embraced by two pendulums (the active and the passive) suspended to an athermic spacer. The thruster under test is mounted on the active pendulum and an equal dummy thruster is mounted on the passive one for balancing. The objective of the paper is to suppress the beat motion centered on the mean pendulum natural frequency (10-14 Hz depending on the thruster under test) without affecting the measurement bandwidth (2 Hz) where thrust has to be measured. Beat motion arises because of small pendulum imbalances excited by ground noise. Relevant digital control strategies and experimental results will be presented and discussed.

  4. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.

    PubMed

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.

  5. MHC-derived allopeptide activates TCR-biased CD8+ Tregs and suppresses organ rejection

    PubMed Central

    Picarda, Elodie; Bézie, Séverine; Venturi, Vanessa; Echasserieau, Klara; Mérieau, Emmanuel; Delhumeau, Aurélie; Renaudin, Karine; Brouard, Sophie; Bernardeau, Karine; Anegon, Ignacio; Guillonneau, Carole

    2014-01-01

    In a rat heart allograft model, preventing T cell costimulation with CD40Ig leads to indefinite allograft survival, which is mediated by the induction of CD8+CD45RClo regulatory T cells (CD8+CD40Ig Tregs) interacting with plasmacytoid dendritic cells (pDCs). The role of TCR-MHC-peptide interaction in regulating Treg activity remains a topic of debate. Here, we identified a donor MHC class II–derived peptide (Du51) that is recognized by TCR-biased CD8+CD40Ig Tregs and activating CD8+CD40Ig Tregs in both its phenotype and suppression of antidonor alloreactive T cell responses. We generated a labeled tetramer (MHC-I RT1.Aa/Du51) to localize and quantify Du51-specific T cells within rat cardiac allografts and spleen. RT1.Aa/Du51-specific CD8+CD40Ig Tregs were the most suppressive subset of the total Treg population, were essential for in vivo tolerance induction, and expressed a biased, restricted Vβ11-TCR repertoire in the spleen and the graft. Finally, we demonstrated that treatment of transplant recipients with the Du51 peptide resulted in indefinite prolongation of allograft survival. These results show that CD8+CD40Ig Tregs recognize a dominant donor antigen, resulting in TCR repertoire alterations in the graft and periphery. Furthermore, this allopeptide has strong therapeutic activity and highlights the importance of TCR-peptide-MHC interaction for Treg generation and function. PMID:24789907

  6. Folliculin Contributes to VHL Tumor Suppressing Activity in Renal Cancer through Regulation of Autophagy

    PubMed Central

    Kellner, Emily; Mikhaylova, Olga; Yi, Ying; Sartor, Maureen A.; Medvedovic, Mario; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2013-01-01

    Von Hippel-Lindau tumor suppressor (VHL) is lost in the majority of clear cell renal cell carcinomas (ccRCC). Folliculin (FLCN) is a tumor suppressor whose function is lost in Birt-Hogg-Dubé syndrome (BHD), a disorder characterized by renal cancer of multiple histological types including clear cell carcinoma, cutaneous fibrofolliculoma, and pneumothorax. Here we explored whether there is connection between VHL and FLCN in clear cell renal carcinoma cell lines and tumors. We demonstrate that VHL regulates expression of FLCN at the mRNA and protein levels in RCC cell lines, and that FLCN protein expression is decreased in human ccRCC tumors with VHL loss, as compared with matched normal kidney tissue. Knockdown of FLCN results in increased formation of tumors by RCC cells with wild-type VHL in orthotopic xenografts in nude mice, an indication that FLCN plays a role in the tumor-suppressing activity of VHL. Interestingly, FLCN, similarly to VHL, is necessary for the activity of LC3C-mediated autophagic program that we have previously characterized as contributing to the tumor suppressing activity of VHL. The results show the existence of functional crosstalk between two major tumor suppressors in renal cancer, VHL and FLCN, converging on regulation of autophagy. PMID:23922894

  7. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity.

    PubMed

    Zhang, S; Qi, Q; Chan, C B; Zhou, W; Chen, J; Luo, H R; Appin, C; Brat, D J; Ye, K

    2016-01-01

    The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which are mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.

  8. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    SciTech Connect

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-Kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-08-26

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. This data supports the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.

  9. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    PubMed Central

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-01-01

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism. PMID:22922757

  10. NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma.

    PubMed

    Zhai, Z; Liu, W; Kaur, M; Luo, Y; Domenico, J; Samson, J M; Shellman, Y G; Norris, D A; Dinarello, C A; Spritz, R A; Fujita, M

    2017-03-06

    Inflammasomes are mediators of inflammation, and constitutively activated NLRP3 inflammasomes have been linked to interleukin-1β (IL-1β)-mediated tumorigenesis in human melanoma. Whereas NLRP3 regulation of caspase-1 activation requires the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain)), caspase-1 activation by another danger-signaling sensor NLRP1 does not require ASC because NLRP1 contains a C-terminal CARD domain that facilitates direct caspase-1 activation via CARD-CARD interaction. We hypothesized that NLRP1 has additional biological activities besides IL-1β maturation and investigated its role in melanoma tumorigenesis. NLRP1 expression in melanoma was confirmed by analysis of 216 melanoma tumors and 13 human melanoma cell lines. Unlike monocytic THP-1 cells with prominent nuclear localization of NLRP1, melanoma cells expressed NLRP1 mainly in the cytoplasm. Knocking down NLRP1 revealed a tumor-promoting property of NLRP1 both in vitro and in vivo. Mechanistic studies showed that caspase-1 activity, IL-1β production, IL-1β secretion and nuclear factor-kB activity were reduced by knocking down of NLRP1 in human metastatic melanoma cell lines 1205Lu and HS294T, indicating that NLRP1 inflammasomes are active in metastatic melanoma. However, unlike previous reports showing that NLRP1 enhances pyroptosis in macrophages, NLRP1 in melanoma behaved differently in the context of cell death. Knocking down NLRP1 increased caspase-2, -9 and -3/7 activities and promoted apoptosis in human melanoma cells. Immunoprecipitation revealed interaction of NLRP1 with CARD-containing caspase-2 and -9, whereas NLRP3 lacking a CARD motif did not interact with the caspases. Consistent with these findings, NLRP1 activation but not NLRP3 activation reduced caspase-2, -9 and -3/7 activities and provided protection against apoptosis in human melanoma cells, suggesting a suppressive role of NLRP1 in caspase-3/7 activation

  11. Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression.

    PubMed

    Katsukawa, Michiko; Nakata, Rieko; Koeji, Satomi; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2011-01-01

    We evaluated the effects of rose oil on the peroxisome proliferator-activated receptor (PPAR) and cyclooxygenase-2 (COX-2). Citronellol and geraniol, the major components of rose oil, activated PPARα and γ, and suppressed LPS-induced COX-2 expression in cell culture assays, although the PPARγ-dependent suppression of COX-2 promoter activity was evident only with citronellol, indicating that citronellol and geraniol were the active components of rose oil.

  12. Ring-opening polymerization of ε-caprolactone catalyzed by sulfonic acids: computational evidence for bifunctional activation.

    PubMed

    Susperregui, Nicolas; Delcroix, Damien; Martin-Vaca, Blanca; Bourissou, Didier; Maron, Laurent

    2010-10-01

    The mechanism of ring-opening of ε-caprolactone by methanol catalyzed by trifluoromethane and methane sulfonic acids has been studied computationally at the DFT level of theory. For both elementary steps, the sulfonic acid was predicted to behave as a bifunctional catalyst. The nucleophilic addition proceeds via activation of both the monomer and the alcohol. The ring-opening involves the cleavage of the endo C-O bond of the tetrahedral intermediate with concomitant proton transfer. In both cases, the sulfonic acid acts as a proton shuttle via its acidic hydrogen atom and basic oxygen atoms. The computed activation barriers are consistent with the relatively fast polymerizations observed experimentally at room temperature with both catalysts.

  13. Transgenic songbirds with suppressed or enhanced activity of CREB transcription factor

    PubMed Central

    Abe, Kentaro; Matsui, Sumiko; Watanabe, Dai

    2015-01-01

    Songbirds postnatally develop their skill to utter and to perceive a vocal signal for communication. How genetic and environmental influences act in concert to regulate the development of such skill is not fully understood. Here, we report the phenotype of transgenic songbirds with altered intrinsic activity of cAMP response element-binding protein (CREB) transcription factor. By viral vector-mediated modification of genomic DNA, we established germ line-transmitted lines of zebra finches, which exhibited enhanced or suppressed activity of CREB. Although intrinsically acquired vocalizations or their hearing ability were not affected, the transgenic birds showed reduced vocal learning quality of their own songs and impaired audio-memory formation against conspecific songs. These results thus demonstrate that appropriate activity of CREB is necessary for the postnatal acquisition of learned behavior in songbirds, and the CREB transgenic birds offer a unique opportunity to separately manipulate both genetic and environmental factors that impinge on the postnatal song learning. PMID:26048905

  14. Suppression of hepatic stellate cell activation by microRNA-29b

    SciTech Connect

    Sekiya, Yumiko; Ogawa, Tomohiro; Yoshizato, Katsutoshi; Ikeda, Kazuo; Kawada, Norifumi

    2011-08-19

    Highlights: {yields} Expression of miR-29b was found to be down-regulated during the activation of hepatic stellate cells in primary culture. {yields} Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs. {yields} It blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-b mRNAs essential for stellate cell activation. {yields} miR-29b overexpression led stellate cells to remain in a quiescent state, as evidenced by their star-like morphology. {yields} miR-29b overexpression suppressed the expression of c-fos mRNA. -- Abstract: MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3'UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-{beta}, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.

  15. Active vibration control of ring-stiffened cylindrical shell structure using macro fiber composite actuators.

    PubMed

    Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2014-10-01

    Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results. Ring-stiffened cylindrical shell structure is then manufactured and modal test is conducted to verify modal analysis results. An optimal controller is designed and experimentally realized to the proposed shell structure system. Vibration control performance is experimentally evaluated in time domain and verified by simulated control results.

  16. Analysis of the broadband chaotic spin-wave excitations in an active ring oscillator based on a metalized ferrite film

    NASA Astrophysics Data System (ADS)

    Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.; Demokritov, S. O.

    2016-11-01

    This paper reports the first experimental study of broadband chaotic nonlinear spin- wave excitations which is formed through development of four-wave parametric processes in active ring oscillator based on metallized ferrite film. We find that an increase in the oscillation power leads to Hopf bifurcations sequence. Monochromatic, periodic quasi-periodic and chaotic excitations are observed. Spectra of the chaotic excitations consist of series of chaotic bands separated well in frequency. Parameters of the chaotic attractors are discussed.

  17. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats.

    PubMed

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-12-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation.

  18. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats

    PubMed Central

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-01-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation. PMID:28119873

  19. Combination of Nexrutine and docetaxel suppresses NFκB-mediated activation of c-FLIP.

    PubMed

    Zhang, Yangang; Li, Li; Wang, Jingyu; Cheng, Wei; Zhang, Jiandong; Li, Xueting; Zhang, Zhenhua; Gong, Jingjing; Ghosh, Rita; Kumar, Addanki P; Xie, Jianping

    2017-10-01

    Lack of effective options following failure to conventional chemotherapeutic agent such as Docetaxel (DX) is a major clinical challenge in the management of prostate cancer. These observations underscore the need for deciphering the underlying mechanism of DX resistance to enable the development of effective therapeutic approaches. We observed up regulation of the anti-apoptotic protein c-FLIP and its up stream regulators including receptor tyrosine kinase RON and transcription factor NFκB (p65) in tumors obtained from metastatic prostate cancer patients. We also observed significant downregulation of these molecules in prostate tumors isolated from patients treated with DX as first line therapy. Further, we identified the over the counter anti-inflammatory agent, Nexrutine (NX) suppresses c-FLIP protein levels, and expression in androgen-independent prostate cancer cells (PC-3). Remarkably, the observed decreased levels of c-FLIP were further reduced in combination with DX. Transient expression assays coupled with electrophoretic mobility shift and DNA affinity protein assay revealed that NX and DX suppresses c-FLIP promoter activity by preventing p65 binding. Notably, NX in combination with DX abolished binding of p65 to the c-FLIP promoter sequence containing NFκB binding sites. Biologically, these alterations resulted in reduced growth of PC-3 cells. Taken together, these observations suggest the utility of RON, p65, and c-FLIP as potential markers to predict response to DX treatment. Furthermore, our results also identified NX as an agent to potentiate the therapeutic response of DX by suppressing activation of c-FLIP and its upstream regulators. © 2017 Wiley Periodicals, Inc.

  20. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer.

    PubMed

    Edgington-Mitchell, Laura E; Rautela, Jai; Duivenvoorden, Hendrika M; Jayatilleke, Krishnath M; van der Linden, Wouter A; Verdoes, Martijn; Bogyo, Matthew; Parker, Belinda S

    2015-09-29

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis.

  1. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    PubMed

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  2. Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades.

    PubMed

    McPeek, Robert M

    2006-11-01

    Saccades in the presence of distractors show significant trajectory curvature. Based on previous work in the superior colliculus (SC), we speculated that curvature arises when a movement is initiated before competition between the target and distractor goals has been fully resolved. To test this hypothesis, we recorded frontal eye field (FEF) activity for curved and straight saccades in search. In contrast to the SC, activity in FEF is normally poorly correlated with saccade dynamics. However, the FEF, like the SC, is involved in target selection. Thus if curvature is caused by incomplete target selection, we expect to see its neural correlates in the FEF. We found that saccades that curve toward a distractor are accompanied by an increase in perisaccadic activity of FEF neurons coding the distractor location, and saccades that curve away are accompanied by a decrease in activity. In contrast, for FEF neurons coding the target location, there is no significant difference in activity between curved and straight saccades. To establish that the distractor-related activity is causally related to saccade curvature, we applied microstimulation to sites in the FEF before saccades to targets presented without distractors. The stimulation was subthreshold for evoking saccades and the temporal structure of the stimulation train resembled the activity recorded for curved saccades. The resulting movements curved toward the location coded by the stimulation site. These results support the idea that saccade curvature results from incomplete suppression of distractor-related activity during target selection.

  3. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.

    PubMed

    Fandiño, Javier S; Muñoz, Pascual

    2013-11-01

    A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

  4. Cooperative activation in ring-opening hydrolysis of epoxides by Co-salen complexes: A first principle study

    NASA Astrophysics Data System (ADS)

    Sun, Keju; Li, Wei-Xue; Feng, Zhaochi; Li, Can

    2009-03-01

    Density functional theory calculations were used to study the cooperative activations of the epoxide ring-opening hydrolysis catalyzed by the Co-salen complexes. We find that the activation energies of the reactions with two Co-salen catalysts are significantly lower than that of single catalyst. The cooperation effect comes not only from the simultaneous activation of both reactants but also from the cooperative charge transfer during the reactions. The transition states analysis indicates that the preferential reaction pathway is a SN 2 reaction, which explains the second order kinetic dependence on the concentration of the catalysts found in the experiments.

  5. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase.

    PubMed

    Yamashita, Yoko; Wang, Liuqing; Wang, Lihua; Tanaka, Yuki; Zhang, Tianshun; Ashida, Hitoshi

    2014-10-01

    It is well known that tea has a variety of beneficial impacts on human health, including anti-obesity effects. It is well documented that green tea and its constituent catechins suppress obesity, but the effects of other types of tea on obesity and the potential mechanisms involved are not yet fully understood. In this study, we investigated the suppression of adiposity by oolong, black and pu-erh tea and characterized the underlying molecular mechanism in vivo. We found that the consumption of oolong, black or pu-erh tea for a period of one week significantly decreased visceral fat without affecting body weight in male ICR mice. On a mechanistic level, the consumption of tea enhanced the phosphorylation of AMP-activated protein kinase (AMPK) in white adipose tissue (WAT). This was accompanied by the induction of WAT protein levels of uncoupling protein 1 and insulin-like growth factor binding protein 1. Our results indicate that oolong, black and pu-erh tea, and in particular, black tea, suppresses adiposity via phosphorylation of the key metabolic regulator AMPK and increases browning of WAT.

  6. Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication

    PubMed Central

    Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong

    2017-01-01

    Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes. PMID:28045080

  7. Increased Intrathecal Immune Activation in Virally Suppressed HIV-1 Infected Patients with Neurocognitive Impairment

    PubMed Central

    Edén, Arvid; Marcotte, Thomas D.; Heaton, Robert K.; Nilsson, Staffan; Zetterberg, Henrik; Fuchs, Dietmar; Franklin, Donald; Price, Richard W.; Grant, Igor; Letendre, Scott L.; Gisslén, Magnus

    2016-01-01

    Objective Although milder forms of HIV-associated neurocognitive disorder (HAND) remain prevalent, a correlation to neuronal injury has not been established in patients on antiretroviral therapy (ART). We examined the relationship between mild HAND and CSF neurofilament light protein (NFL), a biomarker of neuronal injury; and CSF neopterin, a biomarker of CNS immunoactivation, in virally suppressed patients on antiretroviral therapy (ART). Design and Methods We selected 99 subjects on suppressive ART followed longitudinally from the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study. Based on standardized comprehensive neurocognitive performance (NP) testing, subjects were classified as neurocognitively normal (NCN; n = 29) or impaired (NCI; n = 70). The NCI group included subjects with asymptomatic (ANI; n = 37) or mild (MND; n = 33) HAND. CSF biomarkers were analyzed on two occasions. Results Geometric mean CSF neopterin was 25% higher in the NCI group (p = 0.04) and NFL and neopterin were significantly correlated within the NCI group (r = 0.30; p<0.001) but not in the NCN group (r = -0.13; p = 0.3). Additionally, a trend towards higher NFL was seen in the NCI group (p = 0.06). Conclusions Mild HAND was associated with increased intrathecal immune activation, and the correlation between neopterin and NFL found in NCI subjects indicates an association between neurocognitive impairment, CNS inflammation and neuronal damage. Together these findings suggest that NCI despite ART may represent an active pathological process within the CNS that needs further characterization in prospective studies. PMID:27295036

  8. Genetic suppression of transgenic APP rescues Hypersynchronous network activity in a mouse model of Alzeimer's disease.

    PubMed

    Born, Heather A; Kim, Ji-Yoen; Savjani, Ricky R; Das, Pritam; Dabaghian, Yuri A; Guo, Qinxi; Yoo, Jong W; Schuler, Dorothy R; Cirrito, John R; Zheng, Hui; Golde, Todd E; Noebels, Jeffrey L; Jankowsky, Joanna L

    2014-03-12

    Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology.

  9. Fuzzy-Logic Based Vibration Suppression Control Experiments on Active Structures

    NASA Astrophysics Data System (ADS)

    Kwak, M. K.; Sciulli, D.

    1996-03-01

    This paper is concerned with the fuzzy-logic based vibration suppression control of active structures equipped with piezoelectric sensors and actuators. The control methodology is based on the fuzzy logic control of the variable structures system type. The sufficient condition for the closed-loop stability of the decentralized fuzzy control for the system equipped with collocated sensors and actuators is derived from the sufficient condition of the decentralized collocated variable system control. Hence, it is concluded that the fuzzy control is in fact the variation of the variable structure system control in this case. Comparison of the variable structure system to the fuzzy control leads to a new fuzzy rule of the vibration suppression of the active structure equipped with collocated sensors and actuators. It is shown that the fuzzy-logic control can be designed for the collocated system without any knowledge of the system to be controlled. However, this may not be true in the case of multi-input and multi-output non-collocated systems. All the developments are demonstrated by means of a real-time fuzzy control experiment on the cantilever beam with surface-bonded piezoceramic sensors and actuators.

  10. A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia.

    PubMed

    Thorn, Stephanie R; Sekar, Satya M; Lavezzi, Jinny R; O'Meara, Meghan C; Brown, Laura D; Hay, William W; Rozance, Paul J

    2012-10-15

    Reduced maternal glucose supply to the fetus and resulting fetal hypoglycemia and hypoinsulinemia activate fetal glucose production as a means to maintain cellular glucose uptake. However, this early activation of fetal glucose production may be accompanied by hepatic insulin resistance. We tested the capacity of a physiological increase in insulin to suppress fetal hepatic gluconeogenic gene activation following sustained hypoglycemia to determine whether hepatic insulin sensitivity is maintained. Control fetuses (CON), hypoglycemic fetuses induced by maternal insulin infusion for 8 wk (HG), and 8 wk HG fetuses that received an isoglycemic insulin infusion for the final 7 days (HG+INS) were studied. Glucose and insulin concentrations were 60% lower in HG compared with CON fetuses. Insulin was 50% higher in HG+INS compared with CON and four-fold higher compared with HG fetuses. Expression of the hepatic gluconeogenic genes, PCK1, G6PC, FBP1, GLUT2, and PGC1A was increased in the HG and reduced in the HG+INS liver. Expression of the insulin-regulated glycolytic and lipogenic genes, PFKL and FAS, was increased in the HG+INS liver. Total FOXO1 protein expression, a gluconeogenic activator, was 60% higher in the HG liver. Despite low glucose, insulin, and IGF1 concentrations, phosphorylation of AKT and ERK was higher in the HG liver. Thus, a physiological increase in fetal insulin is sufficient for suppression of gluconeogenic genes and activation of glycolytic and lipogenic genes in the HG fetal liver. These results demonstrate that fetuses exposed to sustained hypoglycemia have maintained hepatic insulin action in contrast to fetuses exposed to placental insufficiency.

  11. C6-ceramide nanoliposome suppresses tumor metastasis by eliciting PI3K and PKCζ tumor-suppressive activities and regulating integrin affinity modulation.

    PubMed

    Zhang, Pu; Fu, Changliang; Hu, Yijuan; Dong, Cheng; Song, Yang; Song, Erqun

    2015-03-20

    Nanoliposomal formulation of C6-ceramide, a proapoptotic sphingolipid metabolite, presents an effective way to treat malignant tumor. Here, we provide evidence that acute treatment (30 min) of melanoma and breast cancer cells with nanoliposomal C6-ceramide (NaL-C6) may suppress cell migration without inducing cell death. By employing a novel flow migration assay, we demonstrated that NaL-C6 decreased tumor extravasation under shear conditions. Compared with ghost nanoliposome, NaL-C6 triggered phosphorylation of PI3K and PKCζ and dephosphorylation of PKCα. Concomitantly, activated PKCζ translocated into cell membrane. siRNA knockdown or pharmacological inhibition of PKCζ or PI3K rescued NaL-C6-mediated suppression of tumor migration. By inducing dephosphorylation of paxillin, PKCζ was responsible for NaL-C6-mediated stress fiber depolymerization and focal adhesion disassembly in the metastatic tumor cells. PKCζ and PI3K regulated cell shear-resistant adhesion in a way that required integrin αvβ3 affinity modulation. In conclusion, we identified a novel role of acute nanoliposomal ceramide treatment in reducing integrin affinity and inhibiting melanoma metastasis by conferring PI3K and PKCζ tumor-suppressive activities.

  12. 2-Methoxyestradiol inhibits experimental autoimmune encephalomyelitis through suppression of immune cell activation

    PubMed Central

    Duncan, Gordon S.; Brenner, Dirk; Tusche, Michael W.; Brüstle, Anne; Knobbe, Christiane B.; Elia, Andrew J.; Mock, Thomas; Bray, Mark R.; Krammer, Peter H.; Mak, Tak W.

    2012-01-01

    The endogenous metabolite of estradiol, 2-Methoxyestradiol (2ME2), is an antimitotic and antiangiogenic cancer drug candidate that also exhibits disease-modifying activity in animal models of rheumatoid arthritis (RA). We found that 2ME2 dramatically suppresses development of mouse experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis (MS). 2ME2 inhibits in vitro lymphocyte activation, cytokine production, and proliferation in a dose-dependent fashion. 2ME2 treatment of lymphocytes specifically reduced the nuclear translocation and transcriptional activity of nuclear factor of activated T-cells (NFAT) c1, whereas NF-κB and activator protein 1 (AP-1) activation were not adversely affected. We therefore propose that 2ME2 attenuates EAE through disruption of the NFAT pathway and subsequent lymphocyte activation. By extension, our findings provide a molecular rationale for the use of 2ME2 as a tolerable oral immunomodulatory agent for the treatment of autoimmune disorders such as MS in humans. PMID:23213242

  13. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans.

    PubMed

    Frauscher, Birgit; von Ellenrieder, Nicolás; Dubeau, François; Gotman, Jean

    2016-06-01

    Rapid eye movement (REM) sleep has a suppressing effect on epileptic activity. This effect might be directly related to neuronal desynchronization mediated by cholinergic neurotransmission. We investigated whether interictal epileptiform discharges (IEDs) and high frequency oscillations-a biomarker of the epileptogenic zone-are evenly distributed across phasic and tonic REM sleep. We hypothesized that IEDs are more suppressed during phasic REM sleep because of additional cholinergic drive. Twelve patients underwent polysomnography during long-term combined scalp-intracerebral electroencephalography (EEG) recording. After sleep staging in the scalp EEG, we identified segments of REM sleep with rapid eye movements (phasic REM) and segments of REM sleep without rapid eye movements (tonic REM). In the intracerebral EEG, we computed the power in frequencies <30 Hz and from 30 to 500 Hz, and marked IEDs, ripples (>80 Hz) and fast ripples (>250 Hz). We grouped the intracerebral channels into channels in the seizure-onset zone (SOZ), the exclusively irritative zone (EIZ), and the normal zone (NoZ). Power in frequencies <30 Hz was lower during phasic than tonic REM sleep (p < 0.001), most likely reflecting increased desynchronization. IEDs, ripples and fast ripples, were less frequent during phasic than tonic REM sleep (phasic REM sleep: 39% of spikes, 35% of ripples, 18% of fast ripples, tonic REM sleep: 61% of spikes, 65% of ripples, 82% of fast ripples; p < 0.001). In contrast to ripples in the epileptogenic zone, physiologic ripples were more abundant during phasic REM sleep (phasic REM sleep: 73% in NoZ, 30% in EIZ, 28% in SOZ, tonic REM sleep: 27% in NoZ, 70% in EIZ, 72% in SOZ; p < 0.001). Phasic REM sleep has an enhanced suppressive effect on IEDs, corroborating the role of EEG desynchronization in the suppression of interictal epileptic activity. In contrast, physiologic ripples were increased during phasic REM sleep, possibly reflecting REM-related memory

  14. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats.

    PubMed

    Zhang, Mian; Liu, Can; Hu, Meng-yue; Zhang, Ji; Xu, Ping; Li, Feng; Zhong, Ze-yu; Liu, Li; Liu, Xiao-dong

    2015-04-01

    Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs) and alcohol dehydrogenases (ADHs), further converted to retinoic acid by retinal dehydrogenases (RALDHs). The aim of this study was to investigate whether high-fat diet (HFD) induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging.

    PubMed

    Lyu, Zhixin; Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2016-10-01

    FtsZ is an essential bacterial cytoskeletal protein that assembles into a ring-like structure (Z-ring) at midcell to carry out cytokinesis. In vitro, FtsZ exhibits polymorphism in polymerizing into different forms of filaments based on its GTPase activity, concentration, and buffer condition. In vivo, the Z-ring appeared to be punctate and heterogeneously organized, although continuous, homogenous Z-ring structures have also been observed. Understanding how the Z-ring is organized in vivo is important because it provides a structural basis for the functional role of the Z-ring in cytokinesis. Here, we assess the effects of both GTPase activity and FtsZ concentration on the organization of the Z-ring in vivo using three-dimensional (3D) superresolution microscopy. We found that the Z-ring became more homogenous when assembled in the presence of a GTPase-deficient mutant, and upon overexpression of either wt or mutant FtsZ. These results suggest that the in vivo organization of the Z-ring is largely dependent on the intrinsic polymerization properties of FtsZ, which are significantly influenced by the GTPase activity and concentration of FtsZ. Our work provides a unifying theme to reconcile previous observations of different Z-ring structures, and supports a model in which the wt Z-ring comprises loosely associated, heterogeneously distributed FtsZ clusters. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 725-734, 2016. © 2016 Wiley Periodicals, Inc.

  16. Active external store flutter suppression in the YF-17 flutter model

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Lottati, I.

    1979-01-01

    A single activated trailing-edge (T.E.) control system (spanning 7% of each wing) is applied to the YF-17 flutter model with the object of suppressing the external store flutter of three different store configurations. The control law is derived by the use of the aerodynamic energy concept and its gains are maintained constant for all three configurations. The results obtained show that the activated T.E. control system leads to very significant increases in the flutter dynamic pressures Q(DF) of all three configurations; these increases range between 160-240% increase in Q(DF). These increases in Q(DF) are maintained over a very wide range of flight altitudes and flight velocities.

  17. A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity.

    PubMed

    Toyoizumi, Taro; Miyamoto, Hiroyuki; Yazaki-Sugiyama, Yoko; Atapour, Nafiseh; Hensch, Takao K; Miller, Kenneth D

    2013-10-02

    What causes critical periods (CPs) to open? For the best-studied case, ocular dominance plasticity in primary visual cortex in response to monocular deprivation (MD), the maturation of inhibition is necessary and sufficient. How does inhibition open the CP? We present a theory: the transition from pre-CP to CP plasticity arises because inhibition preferentially suppresses responses to spontaneous relative to visually driven input activity, switching learning cues from internal to external sources. This differs from previous proposals in (1) arguing that the CP can open without changes in plasticity mechanisms when activity patterns become more sensitive to sensory experience through circuit development, and (2) explaining not simply a transition from no plasticity to plasticity, but a change in outcome of MD-induced plasticity from pre-CP to CP. More broadly, hierarchical organization of sensory-motor pathways may develop through a cascade of CPs induced as circuit maturation progresses from "lower" to "higher" cortical areas.

  18. The transcriptional repressor ARR1-SRDX suppresses pleiotropic cytokinin activities in Arabidopsis.

    PubMed

    Heyl, Alexander; Ramireddy, Eswar; Brenner, Wolfram G; Riefler, Michael; Allemeersch, Joke; Schmülling, Thomas

    2008-07-01

    The signal transduction of the phytohormone cytokinin is mediated by a multistep histidine-to-aspartate phosphorelay system. One component of this system are B-type response regulators, transcription factors mediating at least part of the response to cytokinin. In planta functional analysis of this family is hampered by the high level of functional redundancy of its 11 members. We generated a dominant repressor version of the Arabidopsis (Arabidopsis thaliana) response regulator ARR1 (ARR1-SRDX) using chimeric repressor silencing technology in order to study the extent of the contribution of B-type response regulators to cytokinin activities. In a protoplast test system, ARR1-SRDX suppressed ARR6:beta-glucuronidase reporter gene activation by different B-type ARRs. 35S:ARR1-SRDX transgenic Arabidopsis plants showed phenotypic changes reminiscent of plants with a reduced cytokinin status, such as a strongly reduced leaf size, an enhanced root system, and larger seeds. Several bioassays showed that 35S:ARR1-SRDX plants have an increased resistance toward cytokinin. The rapid induction of a large part of the cytokinin response genes was dampened. The transcript levels of more than 500 genes were more than 2.5-fold reduced in 35S:ARR1-SRDX transgenic seedlings, suggesting a broad function of B-type ARRs. Collectively, the suppression of pleiotropic cytokinin activities by a dominant repressor version of a B-type ARR indicates that this protein family is involved in mediating most, if not all, of the cytokinin activities in Arabidopsis. In addition, a role for B-type ARRs in mediating cross talk with other pathways is supported by the resistance of 35S:ARR1-SRDX seeds to phytochrome B-mediated inhibition of germination by far-red light. This study demonstrates the usefulness of chimeric repressor silencing technology to overcome redundancy in transcription factor families for functional studies.

  19. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway

    PubMed Central

    Dang, Yalong; Mu, Yalin; Wang, Kun; Xu, Ke; Yang, Jing; Zhu, Yu; Luo, Bin

    2016-01-01

    Objective To investigate the effects of papaverine (PAP) on lipopolysaccharide (LPS)-induced microglial activation and its possible mechanisms. Materials and methods BV2 microglial cells were first pretreated with PAP (0, 0.4, 2, 10, and 50 μg/mL) and then received LPS stimulation. Transcription and production of proinflammatory factors (IL1β, TNFα, iNOS, and COX-2) were used to evaluate microglial activation. The transcriptional changes undergone by M1/M2a/M2b markers were used to evaluate phenotype transformation of BV2 cells. Immunofluorescent staining and Western blot were used to detect the location and expression of P65 and p-IKK in the presence or absence of PAP pretreatment. Results Pretreatment with PAP significantly inhibited the expression of IL1β and TNFα, and suppressed the transcription of M1/M2b markers Il1rn, Socs3, Nos2 and Ptgs2, but upregulated the transcription of M2a markers (Arg1 and Mrc1) in a dose-dependent manner. In addition, PAP pretreatment significantly decreased the expression of p-IKK and inhibited the nuclear translocation of P65 after LPS stimulation. Conclusion PAP not only suppressed the LPS-induced microglial activity by inhibiting transcription/production of proinflammatory factors, but also promoted the transformation of activated BV2 cells from cytotoxic phenotypes (M1/M2b) to a neuroprotective phenotype (M2a). These effects were probably mediated by NF-κB signaling pathway. Thus, it would be a promising candidate for the treatment of neurodegenerative diseases. PMID:27013863

  20. Serum thymic factor, FTS, attenuates cisplatin nephrotoxicity by suppressing cisplatin-induced ERK activation.

    PubMed

    Kohda, Yuka; Kawai, Yoshiko; Iwamoto, Noriaki; Matsunaga, Yoshiko; Aiga, Hiromi; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to attenuate the bleomycin-induced pulmonary injury and also experimental pancreatitis and diabetes. In the present study, we investigated the effect of FTS on cis-diamminedichloroplatinum II (cisplatin)-induced nephrotoxicity. We have already demonstrated that cephaloridine, a nephrotoxic antibiotic, leads to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney, which probably contributes to cephaloridine-induced renal dysfunction. The aim of this study was to examine the effect of cisplatin on ERK activation in the rat kidney and also the effect of FTS on cisplatin-induced nephrotoxicity in rats. In vitro treatment of LLC-PK1 cells with FTS significantly ameliorated cisplatin-induced cell injury. Treatment of rats with intravenous cisplatin for 3 days markedly induced renal dysfunction and increased platinum contents in the kidney cortex. An increase in pERK was detected in the nuclear fraction prepared from the rat kidney cortex from days 1 to 3 after injection of cisplatin. FTS suppressed cisplatin-induced renal dysfunction and ERK activation in the kidney. FTS did not influence any Pt contents in the kidney after cisplatin administration. FTS has been shown to enhance the in vivo expression of heat shock protein (HSP) 70 in the kidney cortex. The beneficial role of FTS against cisplatin nephrotoxicity may be mediated in part by HSP70, as suggested by its up-regulation in the kidney cortex treated with FTS alone. Our results suggest that FTS participates in protection from cisplatin-induced nephrotoxicity by suppressing ERK activation caused by cisplatin.

  1. Altered visual repetition suppression in Fragile X Syndrome: New evidence from ERPs and oscillatory activity.

    PubMed

    Rigoulot, Simon; Knoth, Inga S; Lafontaine, Marc-Philippe; Vannasing, Phetsamone; Major, Philippe; Jacquemont, Sébastien; Michaud, Jacques L; Jerbi, Karim; Lippé, Sarah

    2017-06-01

    Fragile X Syndrome (FXS) is a neurodevelopmental genetic disorder associated with cognitive and behavioural deficits. In particular, neuronal habituation processes have been shown to be altered in FXS patients. Yet, while such deficits have been primarily explored using auditory stimuli, less is known in the visual modality. Here, we investigated the putative alteration of repetition suppression using faces in FXS patients compared to controls that had the same age distribution. Electroencephalographic (EEG) signals were acquired while participants were presented with 18 different faces, each repeated ten times successively. The repetition suppression effect was probed by comparing the brain responses to the first and second presentation, based on task-evoked event-related potentials (ERP) as well as on task-induced oscillatory activity. We found different patterns of habituation for controls and patients both in ERP and oscillatory power. While the N170 was not affected by face repetition in controls, it was altered in FXS patients. Conversely, while a repetition suppression effect was observed in the theta band (4-8Hz) over frontal and parieto-occipital areas in controls, it was not seen in FXS patients. These results provide the first evidence for diminished ERP and oscillatory habituation effects in response to face repetitions in FXS. These findings extend previous observations of impairments in learning mechanisms and may be linked to deficits in the maturation processes of synapses caused by the mutation. The present study contributes to bridging the gap between animal models of synaptic plasticity dysfunctions and human research in FXS. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Tissue-type plasminogen activator suppresses activated stellate cells through low-density lipoprotein receptor-related protein 1

    PubMed Central

    Kang, Liang-I; Isse, Kumiko; Koral, Kelly; Bowen, William C; Muratoglu, Selen; Strickland, Dudley K; Michalopoulos, George K; Mars, Wendy M

    2015-01-01

    Hepatic stellate cell (HSC) activation and trans-differentiation into myofibroblast (MFB)-like cells is key for fibrogenesis after liver injury and a potential therapeutic target. Recent studies demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1)-dependent signaling by tissue-type plasminogen activator (t-PA) is a pro-fibrotic regulator of the MFB phenotype in kidney. This study investigated whether LRP1 signaling by t-PA is also relevant to HSC activation following injury. Primary and immortalized rat HSCs were treated with t-PA and assayed by western blot, MTT, and TUNEL. In vitro results were then verified using an in vivo, acute carbon tetrachloride (CCl4) injury model that examined the phenotype and recovery kinetics of MFBs from wild-type animals vs mice with a global (t-PA) or HSC-targeted (LRP1) deletion. In vitro, in contrast to kidney MFBs, exogenous, proteolytically inactive t-PA suppressed, rather than induced, activation markers in HSCs following phosphorylation of LRP1. This process was mediated by LRP1 as inhibition of t-PA binding to LRP1 blocked the effects of t-PA. In vivo, following acute injury, phosphorylation of LRP1 on activated HSCs occurred immediately prior to their disappearance. Mice lacking t-PA or LRP1 retained higher densities of activated HSCs for a longer time period compared with control mice after injury cessation. Hence, t-PA, an FDA-approved drug, contributes to the suppression of activated HSCs following injury repair via signaling through LRP1. This renders t-PA a potential target for exploitation in treating patients with fibrosis. PMID:26237273

  3. Tissue-type plasminogen activator suppresses activated stellate cells through low-density lipoprotein receptor-related protein 1.

    PubMed

    Kang, Liang-I; Isse, Kumiko; Koral, Kelly; Bowen, William C; Muratoglu, Selen; Strickland, Dudley K; Michalopoulos, George K; Mars, Wendy M

    2015-10-01

    Hepatic stellate cell (HSC) activation and trans-differentiation into myofibroblast (MFB)-like cells is key for fibrogenesis after liver injury and a potential therapeutic target. Recent studies demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1)-dependent signaling by tissue-type plasminogen activator (t-PA) is a pro-fibrotic regulator of the MFB phenotype in kidney. This study investigated whether LRP1 signaling by t-PA is also relevant to HSC activation following injury. Primary and immortalized rat HSCs were treated with t-PA and assayed by western blot, MTT, and TUNEL. In vitro results were then verified using an in vivo, acute carbon tetrachloride (CCl4) injury model that examined the phenotype and recovery kinetics of MFBs from wild-type animals vs mice with a global (t-PA) or HSC-targeted (LRP1) deletion. In vitro, in contrast to kidney MFBs, exogenous, proteolytically inactive t-PA suppressed, rather than induced, activation markers in HSCs following phosphorylation of LRP1. This process was mediated by LRP1 as inhibition of t-PA binding to LRP1 blocked the effects of t-PA. In vivo, following acute injury, phosphorylation of LRP1 on activated HSCs occurred immediately prior to their disappearance. Mice lacking t-PA or LRP1 retained higher densities of activated HSCs for a longer time period compared with control mice after injury cessation. Hence, t-PA, an FDA-approved drug, contributes to the suppression of activated HSCs following injury repair via signaling through LRP1. This renders t-PA a potential target for exploitation in treating patients with fibrosis.

  4. Oncogenic Ras suppresses Cdk1 in a complex manner during the incubation of activated Xenopus egg extracts

    PubMed Central

    Huang, Tun-Lan; Pian, Jerry P.; Pan, Bin-Tao

    2013-01-01

    The activity of Cdk1 is the driving force for entry into M-phase during the cell cycle. Activation of Cdk1 requires synthesis and accumulation of cyclin B, binding of cyclin B to Cdk1, and removal of the inhibitory tyr-15-Cdk1 phosphorylation. It was previously shown that oncogenic Ras suppresses Cdk1 activation during the incubation of activated Xenopus egg extracts. However, how oncogenic Ras suppresses Cdk1 remained unclear. Using the histone H1 kinase assay to follow Cdk1 activity and Western blot analysis to assess levels of both cyclin B2 and phosphorylated-tyr-15-Cdk1, how oncogenic Ras suppresses Cdk1 is studied. The results indicate that oncogenic Ras suppresses Cdk1 via induction of persistent phosphorylation of tyr-15-Cdk1. Interestingly, the results reveal that, compared with cyclin B2 in control activated egg extracts, which increased, peaked and then declined during the incubation, oncogenic Ras induced continuous accumulation of cyclin B2. The results also indicate that oncogenic Ras induces continuous accumulation of cyclin B2 primarily through stabilization of cyclin B2, which is mediated by constitutive activation of the Raf-Mek-Erk-p90rsk pathway. Taken together, these results indicate that oncogenic Ras suppresses Cdk1 in a complex manner: It induces continuous accumulation of cyclin B2, but also causes persistent inhibitory phosphorylation of tyr-15-Cdk1. PMID:23376039

  5. Adiporedoxin suppresses endothelial activation via inhibiting MAPK and NF-κB signaling

    PubMed Central

    He, Hui; Guo, Fang; Li, Yong; Saaoud, Fatma; Kimmis, Brooks D.; Sandhu, Jeena; Fan, Michelle; Maulik, Dev; Lessner, Susan; Papasian, Christopher J.; Fan, Daping; Jiang, Zhisheng; Fu, Mingui

    2016-01-01

    Adiporedoxin (Adrx) is a recently discovered redox regulatory protein that is preferentially expressed in adipose tissue and plays a critical role in the regulation of metabolism via its modulation of adipocyte protein secretion. We here report that Adrx suppresses endothelial cell activation via inhibiting MAPK and NF-kB signaling pathways. Adrx is constitutively expressed in human vascular endothelial cells, and significantly induced by a variety of stimuli such as TNFα, IL-1β, H2O2 and OxLDL. Overexpression of Adrx significantly attenuated TNFα-induced expression of VCAM-1 and ICAM-1, and thus reduced monocyte adherence to human umbilical vein endothelial cells (HUVECs). Conversely, siRNA-mediated knockdown of Adrx increased TNFα-induced expression of adhesion molecules and monocyte adherence to HUVECs. Furthermore, forced expression of Adrx decreased TNFα-induced activation of ERK1/2, JNK, p38 and IKKs in HUVECs. Adrx mutant in the CXXC motif that lost its anti-redox activity is less efficient than the wild-type Adrx, suggesting that Adrx-mediated inhibition of endothelial activation is partially dependent on its antioxidant activity. Finally, Adrx expression was markedly increased in human atheroma compared with normal tissue from the same carotid arteries. These results suggest that Adrx is an endogenous inhibitor of endothelial activation, and might be a therapeutic target for vascular inflammatory diseases. PMID:27941911

  6. Adduct Formation, B-H Activation and Ring Expansion at Room Temperature from Reactions of HBcat with NHCs.

    PubMed

    Würtemberger-Pietsch, Sabrina; Schneider, Heidi; Marder, Todd B; Radius, Udo

    2016-09-05

    We report the reactions of catecholborane (HBcat; 1) with unsaturated and saturated NHCs as well as CAAC(Me) . Mono-NHC adducts of the type HBcat⋅NHC (NHC=nPr2 Im, iPr2 Im, iPr2 Im(Me) , and Dipp2 Im) were obtained by stoichiometric reactions of HBcat with the unsaturated NHCs. The reaction of CAAC(Me) with HBcat yielded the B-H activated product CAAC(Me) (H)Bcat via insertion of the carbine-carbon atom into the B-H bond. The saturated NHC Dipp2 SIm reacted in a 2:2 ratio yielding an NHC ring-expanded product at room temperature forming a six-membered -B-C=N-C=C-N- ring via C-N bond cleavage and further migration of the hydrides from two HBcat molecules to the former carbene-carbon atom.

  7. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control.

    PubMed

    Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V

    2014-05-19

    We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.

  8. Inhibiting calcineurin activity under physiologic tonicity elevates anabolic but suppresses catabolic chondrocyte markers.

    PubMed

    van der Windt, Anna E; Haak, Esther; Kops, Nicole; Verhaar, Jan A N; Weinans, Harrie; Jahr, Holger

    2012-06-01

    The physiologic interstitial tonicity of healthy articular cartilage (350-480 mOsm) is lowered to 280-350 mOsm in osteoarthritis (OA). This results in loss of tissue prestress, altered compressive behavior, and, thus, inferior tissue properties. This study was undertaken to determine whether physiologic tonicity in combination with the inhibition of calcineurin (Cn) activity by FK-506 has synergistic effects on human articular chondrocytes and explants in vitro. OA chondrocytes and explants and non-OA chondrocytes were cultured in cytokine-free medium of 280 mOsm or 380 mOsm with or without Cn inhibition by FK-506. Chondrogenic, hypertrophic, and catabolic marker expression was evaluated at the messenger RNA (mRNA), protein, and activity levels. Compared to OA chondrocytes cultured at 280 mOsm, those cultured at 380 mOsm had increased expression of mRNA for chondrogenic markers (e.g., ∼13 fold for COL2; P < 0.001), and decreased COL1 expression (∼0.5 fold, P < 0.01). Inhibiting Cn activity under physiologic tonicity further enhanced the expression of anabolic markers at the mRNA level (∼50 fold for COL2; P < 0.001, ∼2 fold for AGC1; P < 0.001, and ∼3.5 fold for SOX9; P < 0.001) and at the protein level (∼6 fold for type II collagen; P < 0.001). Cn inhibition suppressed relevant collagenases as well as hypertropic and mineralization markers at the mRNA and activity levels. Expression of aggrecanase 1 and aggrecanase 2 was not influenced by tonicity or FK-506 alone, but the combination suppressed both, by ∼50% (P < 0.05) and ∼40% (P < 0.001), respectively. Generally, similar anabolic and antihypertrophic effects were observed in ex vivo cartilage explant cultures and non-OA chondrocytes. Our findings indicate that Cn at physiologic tonicity exerts a superior effect compared to physiologic tonicity or FK-506 alone, increasing anabolic markers while suppressing hypertrophic and catabolic markers. Our data may aid in the development of improved cell

  9. Nonstructural protein p39 of feline calicivirus suppresses host innate immune response by preventing IRF-3 activation.

    PubMed

    Yumiketa, Yo; Narita, Takanori; Inoue, Yosuke; Sato, Go; Kamitani, Wataru; Oka, Tomoichiro; Katayama, Kazuhiko; Sakaguchi, Takemasa; Tohya, Yukinobu

    2016-03-15

    Feline calicivirus (FCV) is an important veterinary pathogen that causes acute upper respiratory tract diseases and, occasionally, highly contagious febrile hemorrhagic syndrome in cats. Many viruses have adopted mechanisms for evading IFN-α/β signaling, particularly by directly or indirectly suppressing activation of IRF-3. In this study, we investigated whether nonstructural proteins of FCV possess these mechanisms. When p39, a nonstructural protein of FCV, was transiently expressed in 293T cells, it suppressed IFN-β and ISG15 mRNA production induced by dsRNA. Expression of p39 also suppressed phosphorylation and dimerization of IRF-3 induced by dsRNA. These results suggest that p39 suppresses type 1 IFN production by preventing IRF-3 activation. This may become an important factor in understanding the pathogenesis and virulence of FCV. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  11. Structure-activity relationship studies on anti-HCV activity of ring-expanded (‘fat’) nucleob