Science.gov

Sample records for active ringing suppression

  1. RF probe recovery time reduction with a novel active ringing suppression circuit

    PubMed Central

    Peshkovsky, A.S.; Forguez, J.; Cerioni, L.; Pusiol, D.J.

    2005-01-01

    A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9. PMID:16111906

  2. RF probe recovery time reduction with a novel active ringing suppression circuit.

    PubMed

    Peshkovsky, A S; Forguez, J; Cerioni, L; Pusiol, D J

    2005-11-01

    A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9.

  3. Discrete Element Model for Suppression of Coffee-Ring Effect

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan

    2017-02-01

    When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.

  4. Discrete Element Model for Suppression of Coffee-Ring Effect

    PubMed Central

    Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan

    2017-01-01

    When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future. PMID:28216639

  5. Reverse wave suppression in unstable ring resonator

    NASA Astrophysics Data System (ADS)

    Mirels, H.; Chodzko, R. A.; Bernard, J. M.; Giedt, R. R.; Coffer, J. G.

    1984-12-01

    Criteria for effective reverse-wave suppression (RWS) in CW and pulsed unstable ring lasers with inhomogeneously broadened media are determined theoretically, and the performance of a CW HF linear ring resonator (Chodzko et al., 1976) and of two configurations of a pulsed CO2 annular beam-rotation/internal-axicon (BRIA) resonator (Bullock et al., 1979) without and with an RWS mirror is evaluated experimentally. In the CW laser, the average forward-wave (FW) and RW power values are shown to be 61 and 39 W without RWS and 110 and 2.7 W with RWS, corresponding to a FW/RW power ratio of 41; in the pulsed BRIA lasers, power ratios of about 20 are achieved, but the RWS effectiveness is found to be highly sensitive to RWS-mirror and cavity misalignment. Graphs, drawings, tables, and photographs of typical waveforms are included.

  6. Serum Calcium-decreasing Factor, Caldecrin, Inhibits Receptor Activator of NF-κB Ligand (RANKL)-mediated Ca2+ Signaling and Actin Ring Formation in Mature Osteoclasts via Suppression of Src Signaling Pathway*

    PubMed Central

    Tomomura, Mineko; Hasegawa, Hiroya; Suda, Naoto; Sakagami, Hiroshi; Tomomura, Akito

    2012-01-01

    Osteoclasts are essential for bone dynamics and calcium homeostasis. Recently, we reported that serum calcium-decreasing factor, caldecrin, which is a secretory-type serine protease isolated from the pancreas, inhibits osteoclast differentiation by suppression of NFATc1 activity regardless of its own protease activity (Hasegawa, H., Kido, S., Tomomura, M., Fujimoto, K., Ohi, M., Kiyomura, M., Kanegae, H., Inaba, A., Sakagami, H., and Tomomura, A. (2010) Serum calcium-decreasing factor, caldecrin, inhibits osteoclast differentiation by suppression of NFATc1 activity. J. Biol. Chem. 285, 25448–25457). Here, we investigated the effects of caldecrin on the function of mature osteoclasts by treatment with receptor activator of NF-κB ligand (RANKL). Caldecrin inhibited the RANKL-stimulated bone resorptive activity of mature osteoclasts. Furthermore, caldecrin inhibited RANKL-mediated sealing actin ring formation, which is associated with RANKL-evoked Ca2+ entry through transient receptor potential vanilloid channel 4. The inhibitors of phospholipase Cγ, Syk, and c-Src suppressed RANKL-evoked Ca2+ entry and actin ring formation of mature osteoclasts. Interestingly, caldecrin significantly inhibited RANKL-stimulated phosphorylation of c-Src, Syk, phospholipase Cγ1 and Cγ2, SLP-76, and Pyk2 but not that of ERK, JNK, or Akt. Caldecrin inhibited RANKL-stimulated c-Src kinase activity and c-Src·Syk association. These results suggest that caldecrin inhibits RANKL-stimulated calcium signaling activation and cytoskeletal organization by suppression of the c-Src·Syk pathway, which may in turn reduce the bone resorptive activity of mature osteoclasts. Thus, caldecrin is capable of acting as a negative regulator of osteoclastogenesis and osteoclast function of bone resorption. PMID:22461633

  7. Biological suppression of potato ring rot by fluorescent pseudomonads.

    PubMed

    de la Cruz, A R; Poplawsky, A R; Wiese, M V

    1992-06-01

    Three strains of fluorescent pseudomonads (IS-1, IS-2, and IS-3) isolated from potato underground stems with roots showed in vitro antibiosis against 30 strains of the ring rot bacterium Clavibacter michiganensis subsp. sepedonicus. On the basis of morphological and biochemical tests and fatty acid analysis, IS-1 and IS-2 were identified as Pseudomonas aureofaciens and IS-3 was identified as P. fluorescens biovar III. IS-1 was the most inhibitory to C. michiganensis subsp. sepedonicus strains in vitro, followed by IS-3 and IS-2. Suppression of ring rot by these antagonists was demonstrated in greenhouse trials with stem-cultured potato (cv. Russet Burbank) seedlings. Although each antagonist significantly reduced C. michiganensis subsp. sepedonicus populations, only IS-1 reduced infection by C. michiganensis subsp. sepedonicus. In a second experiment, treatment with IS-1 (10(9) CFU/ml) significantly reduced ring rot infection by 23.4 to 26.7% after 5 to 8 weeks. The average C. michiganensis subsp. sepedonicus population was also significantly reduced by 50 to 52%. Application of different combinations of antagonist strains was not more effective than single-strain treatment.

  8. Adaptive center determination for effective suppression of ring artifacts in tomography images

    SciTech Connect

    Jha, D. Sørensen, H. O. Dobberschütz, S.; Stipp, S. L. S.; Feidenhans'l, R.

    2014-10-06

    Ring artifacts on tomogram slices hinder image interpretation. They are caused by minor variation in the response from individual elements in a two dimensional (2D) X-ray detector. Polar space decreases the suppression complexity by transforming the rings on the tomogram slice to linear stripes. However, it requires that the center of rings lie at the origin of polar transformation. If this is not the case, all methods employing polar space become ineffective. We developed a method based on Gaussian localization of the ring center in Hough parameter space to assign the origin for the polar transformation. Thus, obtained linear stripes can be effectively suppressed by already existing methods. This effectively suppresses ring artifacts in the data from a variety of experimental setups, sample types and also handles tomograms that are previously cropped. This approach functions automatically, avoids the need for assumptions and preserves fine details, all critical for synchrotron based nanometer resolution tomography.

  9. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis.

    PubMed

    Li, Yueh-Feng; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-06-25

    A ring-shaped stain is frequently left on a substrate by a drying drop containing colloids as a result of contact line pinning and outward flow. In this work, however, different patterns are observed for drying drops containing small solutes or polymers on various hydrophilic substrates. Depending on the surface activity of solutes and the contact angle hysteresis (CAH) of substrates, the pattern of the evaporation stain varies, including a concentrated stain, a ringlike deposit, and a combined structure. For small surface-inactive solutes, the concentrated stain is formed on substrates with weak CAH, for example, copper sulfate solution on silica glass. On the contrary, a ringlike deposit is developed on substrates with strong CAH, for example, a copper sulfate solution on graphite. For surface-active solutes, however, the wetting property can be significantly altered and the ringlike stain is always visible, for example, Brij-35 solution on polycarbonate. For a mixture of surface-active and surface-inactive solutes, a combined pattern of a ringlike and concentrated stain can appear. For various polymer solutions on polycarbonate, similar results are observed. Concentrated stains are formed for weak CAH such as sodium polysulfonate, and ring-shaped patterns are developed for strong CAH such as poly(vinyl pyrrolidone). The stain pattern is actually determined by the competition between the time scales associated with contact line retreat and solute precipitation. The suppression of the coffee-ring effect can thus be acquired by the control of CAH.

  10. Suppression of decoherence in a graphene monolayer ring

    SciTech Connect

    Smirnov, D. Rode, J. C.; Haug, R. J.

    2014-08-25

    The influence of high magnetic fields on coherent transport is investigated. A monolayer graphene quantum ring is fabricated and the Aharonov-Bohm effect is observed. For increased magnitude of the magnetic field, higher harmonics appear. This phenomenon is attributed to an increase of the phase coherence length due to reduction of spin flip scattering.

  11. Harmonics suppression in electromagnets with application to the ALS storage ring corrector magnet design

    SciTech Connect

    Schlueter, R.D.

    1991-01-28

    This memo presents an analytical development for prediction of skew harmonics in a iron core C-magnet to due arbitrarily positioned electromagnet coils. A structured approach is presented for the suppression of an arbitrary number of harmonic components to arbitrarily low values. Application of the analytical harmonic strength calculations coupled to the structured harmonic suppression approach is presented in the context of the design of the ALS storage ring corrector magnets.

  12. Flattening a puckered cyclohexasilane ring by suppression of the pseudo-Jahn-Teller effect

    NASA Astrophysics Data System (ADS)

    Pokhodnya, Konstantin; Olson, Christopher; Dai, Xuliang; Schulz, Douglas L.; Boudjouk, Philip; Sergeeva, Alina P.; Boldyrev, Alexander I.

    2011-01-01

    We report the experimental and theoretical characterization of neutral Si6X12 (X = Cl, Br) molecules that contain D3d distorted six-member silicon rings due to a pseudo-Jahn-Teller (PJT) effect. Calculations show that filling the intervenient molecular orbitals with electron pairs of adduct suppresses the PJT effect in Si6X12, with the Si6 ring becoming planar (D6h) upon complex formation. The stabilizing role of electrostatic and covalent interactions between positively charged silicon atoms and chlorine atoms of the subject [Si6Cl14]2- dianionic complexes is discussed. The reaction of Si6Cl12 with a Lewis base (e.g., Cl-) to give planar [Si6Cl14]2- dianionic complexes presents an experimental proof that suppression of the PJT effect is an effective strategy in restoring high Si6 ring symmetry. Additionally, the proposed pathway for the PJT suppression has been proved by the synthesis and characterization of novel compounds containing planar Si6 ring, namely, [nBu4N]2[Si6Cl12I2], [nBu4N]2[Si6Br14], and [nBu4N]2[Si6Br12I2]. This work represents the first demonstration that PJT effect suppression is useful in the rational design of materials with novel properties.

  13. An active solid state ring laser gyroscope

    SciTech Connect

    Valle, T.J.

    1992-01-01

    The properties of an active, solid state ring laser gyroscope were investigated. Two laser diode pumped monolithic nonplanar ring oscillators (NPRO), forced to lase in opposite directions, formed the NPRO-Gyro. It was unique in being an active ring laser gyroscope with a homogeneously broadened gain medium. This work examined sources of technical and fundamental noise. Associated calculations accounted for aspects of the NPRO-Gyro performance, suggested design improvements, and outlined limitations. The work brought out the need to stabilize the NPRO environment in order to achieve performance goals. Two Nd:YAG NPROs were mounted within an environment short term stabilized to microdegrees Celsius. The Allan variance of the NPRO-Gyro beat note was 500 Hz for a one second time delay. Unequal treatment of the NPROs appeared as noise on the beat frequency, therefore reducing its rotation sensitivity. The sensitivity to rotation was limited by technical noise sources.

  14. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    DOEpatents

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  15. Measurement of myeloid cell immune suppressive activity.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  16. Active Suppression Of Vibrations On Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    1995-01-01

    Method of active suppression of nonlinear and nonstationary vibrations developed to reduce sonic fatigue and interior noise in high-speed aircraft. Structure of aircraft exhibits periodic, chaotic, and random vibrations when forced by high-intensity sound from jet engines, shock waves, turbulence, and separated flows. Method of suppressing vibrations involves feedback control: Strain gauges or other sensors mounted in paths of propagation of vibrations on structure sense vibrations; outputs of sensors processed into control signal applied to actuator mounted on structure, inducing compensatory forces.

  17. Praziquantel derivatives with antischistosomal activity: aromatic ring modification.

    PubMed

    Wang, Zhi-xia; Chen, Jing-lei; Qiao, Chunhua

    2013-08-01

    A series of aromatic ring-modified praziquantel derivatives were prepared and evaluated against juvenile and adult stage of Schistosoma japonicumin. Several analogs comparable in activity to the drug praziquantel have been identified based on in vitro and in vivo japonuicum schistosomes worm viability assay. Structure and activity relationship of these praziquantel aromatic ring-modified compounds was revealed. Specifically, a compound in which a bromine has been introduced in the aromatic ring of praziquantel demonstrated close antischistosomal activity to praziquantel in vivo.

  18. Active suppression after involuntary capture of attention.

    PubMed

    Sawaki, Risa; Luck, Steven J

    2013-04-01

    After attention has been involuntarily captured by a distractor, how is it reoriented toward a target? One possibility is that attention to the distractor passively fades over time, allowing the target to become attended. Another possibility is that the captured location is actively suppressed so that attention can be directed toward the target location. The present study investigated this issue with event-related potentials (ERPs), focusing on the N2pc component (a neural measure of attentional deployment) and the Pd component (a neural measure of attentional suppression). Observers identified a color-defined target in a search array, which was preceded by a task-irrelevant cue array. When the cue array contained an item that matched the target color, this item captured attention (as measured both behaviorally and with the N2pc component). This capture of attention was followed by active suppression (indexed by the Pd component), and this was then followed by a reorienting of attention toward the target in the search array (indexed by the N2pc component). These findings indicate that the involuntary capture of attention by a distractor is followed by an active suppression process that presumably facilitates the subsequent voluntary orienting of attention to the target.

  19. Noise suppression by an acoustically treated three-ring inlet on a TF-34 engine

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Goldman, R. G.; Heidelberg, L. J.

    1976-01-01

    Acoustic performance tests were conducted with a three-ring inlet noise suppressor designed for a TF-34 engine. For all tests the aft noise sources were highly suppressed. The measured inlet suppression was large, reaching levels greater than 30 db at the peak. Comparisons of the data and the performance predictions were in reasonably good agreement. The frequency of peak attenuation was well predicted; the magnitude and spectral shape were reasonably well predicted. Agreement was best when the distribution of sound energy across the inlet was taken into account in the performance predictions. Tests in which the length of treatment was varied showed an orderly progression of attenuation with length; performance predictions for the different lengths also showed an orderly progression with length. At the highest speed of the engine, multiple pure tones were present throughout the spectrum in the source noise signature. These tones were effectively suppressed by the inlet liner, even at low frequencies, although the liner was designed to work best at the blade-passing frequency.

  20. Active flutter suppression using dipole filters

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.; Waszak, Martin R.

    1992-01-01

    By using traditional control concepts of gain root locus, the active suppression of a flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable mode towards a critical system zero determines the degree to which the flutter mode can be stabilized. For control situations where the critical zero is adversely placed in the complex plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures that the flutter mode is stabilized with acceptable control energy. The control strategy is illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-tunnel model, where minimal control effort solutions are mandated by control rate saturation problems caused by wind-tunnel turbulence.

  1. Suppression of Beam-Ion Instability in Electron Rings with Multi-Bunch Train Beam Fillings

    SciTech Connect

    Wang, L.; Cai, Y.; Raubenheimer, T.O.; Fukuma, H.; /KEK, Tsukuba

    2011-08-18

    The ion-caused beam instability in the future light sources and electron damping rings can be serious due to the high beam current and ultra-small emittance of picometer level. One simple and effective mitigation of the instability is a multi-bunch train beam filling pattern which can significantly reduce the ion density near the beam, and therefore reduce the instability growth rate up to two orders of magnitude. The suppression is more effective for high intensity beams with low emittance. The distribution and the field of trapped ions are benchmarked to validate the model used in the paper. The wake field of ion-cloud and the beam-ion instability is investigated both analytically and numerically. We derived a simple formula for the build-up of ion-cloud and instability growth rate with the multi-bunch-train filling pattern. The ion instabilities in ILC damping ring, SuperKEKB and SPEAR3 are used to compare with our analyses. The analyses in this paper agree well with simulations.

  2. Cassini UVIS Observations Show Active Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L.; Colwell, J. E.; UVIS Team

    2004-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the NASA/ESA Cassini spacecraft. This spectrograph includes channels for extreme UV and far UV spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. We report our initial results from UVIS observations of Saturn's rings. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system Oxygen in the Saturn system dominates the magnetosphere. Observed fluctuations indicate close interactions with plasma sources. Stochastic events in the E ring may be the ultimate source. The spectral signature of water ice is seen on Phoebe and in Saturn's rings. Water ice is mixed non-uniformly with darker constituents. The high structure of the UV ring reflectance argues that collisional transport dominates ballistic transport in darkening the rings. Our preliminary results support the idea that rings are recycled fragments of moons: the current processes are more important than history and initial conditions. The spectra along the UVIS SOI radial scan indicate varying amounts of water ice. In the A ring, the ice fraction increases outward to a maximum at the outer edge. This large-scale variation is consistent with initially pure ice that has suffered meteoritic bombardment over the age of the Solar system (Cuzzi and Estrada 1998). We also see variations over scales of 1000 - 3000 km, which cannot be explained by this mechanism. Ballistic transport of spectrally neutral extrinsic pollutants from meteoroids striking the rings has a typical throw distance of 6000 km (Durisen et al 1989), too long to explain this finer structure. We propose a class of smaller renewal events, in which a small moon residing within the rings is shattered by an external impactor (Colwell and Esposito 1993, Barbara and Esposito 2002, Esposito and Colwell 2003). The

  3. Suppression of Ostwald ripening in active emulsions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  4. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  5. Suppression of Antigen-Specific Lymphocyte Activation in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, David; Pride, Michael W.; Brown, Eric L.; Risin, Diana; Pellis, Neal R.

    1999-01-01

    Various parameters of immune suppression are observed in astronauts during and after spaceflight, and in isolated immune cells in true and simulated microgravity. Specifically, polyclonal activation of T cells is severely suppressed in true and simulated microgravity. These recent findings with various polyclonal activators suggests a suppression of oligoclonal lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction (MLR), as a model for a primary immune response; a tetanus toxoid (TT) response and a B. burgdorferi (Bb) response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  6. Mechanochemical Activation of Small Ring Cyclopolymers

    DTIC Science & Technology

    2014-11-01

    Triangle Park, NC 27709-2211 mechanochemistry, flex activation, star polymers REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10...immolative polymers, a quantitative kinetic analysis of mechanical degradation of star versus linear polymers, and a practical approach for modeling chain...scission in star polymers. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 18 19a. NAME OF

  7. Tree-ring isotope records of tropical cyclone activity.

    PubMed

    Miller, Dana L; Mora, Claudia I; Grissino-Mayer, Henri D; Mock, Cary J; Uhle, Maria E; Sharp, Zachary

    2006-09-26

    The destruction wrought by North Atlantic hurricanes in 2004 and 2005 dramatically emphasizes the need for better understanding of tropical cyclone activity apart from the records provided by meteorological data and historical documentation. We present a 220-year record of oxygen isotope values of alpha-cellulose in longleaf pine tree rings that preserves anomalously low isotope values in the latewood portion of the ring in years corresponding with known 19th and 20th century landfalling/near-coastal tropical storms and hurricanes. Our results suggest the potential for a tree-ring oxygen isotope proxy record of tropical cyclone occurrence extending back many centuries based on remnant pine wood from protected areas in the southeastern U.S.

  8. Non-water-suppressed short-echo-time magnetic resonance spectroscopic imaging using a concentric ring k-space trajectory.

    PubMed

    Emir, Uzay E; Burns, Brian; Chiew, Mark; Jezzard, Peter; Thomas, M Albert

    2017-03-08

    Water-suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non-water-suppressed MRS spectrum is used for artefact correction, reconstruction of phased-array coil data and metabolite quantification. Here, a two-scan metabolite-cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short-echo (TE  = 14 ms), two-dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite-cycling is counterbalanced by a time-efficient concentric ring k-space trajectory. To validate the technique, water-suppressed MRSI acquisitions were also performed for comparison. The proposed non-water-suppressed metabolite-cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high-resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non-water-suppressed and water-suppressed techniques. The achieved spectral quality, signal-to-noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in-plane resolution of 10 × 10 mm(2) in 8 min and with a Cramér-Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non-water-suppressed technique enabled voxel-wise single-scan frequency, phase and eddy current correction. These findings demonstrate that our non-water-suppressed metabolite-cycling MRSI technique can perform robustly on 3 T MRI systems and within a clinically feasible acquisition time.

  9. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  10. Suppression of the coffee-ring effect by shape-dependent capillary interactions.

    PubMed

    Yunker, Peter J; Still, Tim; Lohr, Matthew A; Yodh, A G

    2011-08-17

    When a drop of liquid dries on a solid surface, its suspended particulate matter is deposited in ring-like fashion. This phenomenon, known as the coffee-ring effect, is familiar to anyone who has observed a drop of coffee dry. During the drying process, drop edges become pinned to the substrate, and capillary flow outward from the centre of the drop brings suspended particles to the edge as evaporation proceeds. After evaporation, suspended particles are left highly concentrated along the original drop edge. The coffee-ring effect is manifested in systems with diverse constituents, ranging from large colloids to nanoparticles and individual molecules. In fact--despite the many practical applications for uniform coatings in printing, biology and complex assembly-the ubiquitous nature of the effect has made it difficult to avoid. Here we show experimentally that the shape of the suspended particles is important and can be used to eliminate the coffee-ring effect: ellipsoidal particles are deposited uniformly during evaporation. The anisotropic shape of the particles significantly deforms interfaces, producing strong interparticle capillary interactions. Thus, after the ellipsoids are carried to the air-water interface by the same outward flow that causes the coffee-ring effect for spheres, strong long-ranged interparticle attractions between ellipsoids lead to the formation of loosely packed or arrested structures on the air-water interface. These structures prevent the suspended particles from reaching the drop edge and ensure uniform deposition. Interestingly, under appropriate conditions, suspensions of spheres mixed with a small number of ellipsoids also produce uniform deposition. Thus, particle shape provides a convenient parameter to control the deposition of particles, without modification of particle or solvent chemistry.

  11. Active Suppression Of Vibrations In Stirling-Cycle Coolers

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.

    1995-01-01

    Report presents results of early research directed toward development of active control systems for suppression of vibrations in spacecraft Stirling-cycle cryocoolers. Researchers developed dynamical models of cryocooler compressor.

  12. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  13. Public key suppression and recovery using a PANDA ring resonator for high security communication

    NASA Astrophysics Data System (ADS)

    Juleang, Pakorn; Phongsanam, Prapas; Mitatha, Somsak; Yupapin, Preecha P.

    2011-03-01

    An interesting security technique that uses the dark-bright soliton conversion control within the microring resonator is proposed. The obtained outputs for a dark-bright soliton dynamic state can be controlled and used to form the public key suppression for communication security application. However, a good design should be possible to be fabricated; therefore, by using the parameters based on the practical device parameters, the simulation results obtained have shown that the proposed system can indeed be achieved. The public key suppression and public key recovery can be used in a highly secure communication system and has potential applications in optical cryptography.

  14. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation.

    PubMed

    Taylor, A W; Dixit, S; Yu, J

    2015-01-29

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  15. Suppression of antigen-specific lymphocyte activation in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pride, M. W.; Brown, E. L.; Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  16. Suppression of antigen-specific lymphocyte activation in modeled microgravity.

    PubMed

    Cooper, D; Pride, M W; Brown, E L; Risin, D; Pellis, N R

    2001-02-01

    Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  17. [Suppression of epileptiform activity by micropolarizing brain structures].

    PubMed

    Tsukunov, S G; Gal'dinov, G V

    1980-05-01

    Penicillin administration elicited epileptiform responses whereas micropolarization (MCP) affected the epileptogenic foci in cats with indwelled electrodes and chemotrodes. Three types of experimental epilepsy models were obtained: focal petit mal seizures, adversive, and grand mal seizures. The MCP of amygdala and caudate nucleus completely suppressed all three types of seizures whereas MCP of hippocampus enhanced the pathology. Two mechanisms of seizure suppression seem to exist: the inhibitory and the activating ones.

  18. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  19. Active and passive vibration suppression for space structures

    NASA Technical Reports Server (NTRS)

    Hyland, David C.

    1991-01-01

    The relative benefits of passive and active vibration suppression for large space structures (LSS) are discussed. The intent is to sketch the true ranges of applicability of these approaches using previously published technical results. It was found that the distinction between active and passive vibration suppression approaches is not as sharp as might be thought at first. The relative simplicity, reliability, and cost effectiveness touted for passive measures are vitiated by 'hidden costs' bound up with detailed engineering implementation issues and inherent performance limitations. At the same time, reliability and robustness issues are often cited against active control. It is argued that a continuum of vibration suppression measures offering mutually supporting capabilities is needed. The challenge is to properly orchestrate a spectrum of methods to reap the synergistic benefits of combined advanced materials, passive damping, and active control.

  20. A diode for accelerating hydrogen nuclides with electron conductivity suppressed by an internal ring magnet

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2015-05-01

    We present new experimental data on the acceleration of deuterons in a small-size magnetically insulated diode. Plasma containing deuterons was created at the anode during irradiation of a TiD target by a focused laser beam with a wavelength of 1.06 μm. The accelerating voltage pulse was formed by an Arkadiev-Marx generator. A circular cathode was arranged symmetrically relative to the anode and represented a permanent ring magnet with an inner radius not exceeding 0.02 m and a magnetic induction of up to 0.4 T at the center, which ensured magnetic insulation of the accelerating gap. The experiments showed that the current of accelerated deuterons with energies of up to 300 eV can reach a level of 0.5 kA at pulse durations of ≤0.5 μs.

  1. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances

    PubMed Central

    Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504

  2. Flood Plain Aggradation Rates Based on Tree-Ring Growth-Suppression Dates

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.

    2003-12-01

    When woody riparian plants are partially buried subsequent tree rings of the buried stems resemble those of roots. Annual rings in a buried stem are narrower and have larger vessels then those in unburied sections of the same stem. We have used this phenomenon to date flood plain sediments exposed in trenches, along two ephemeral streams in New Mexico (Rio Puerco and Chaco Wash) where the sediments are predominantly silt and very fine sand and the plants are predominantly tamarisk and willow. Cross dating down the stem allows dating of the first growth-season following burial by thick beds, and constrains the age of all stratigraphic units deposited since germination of the tree. We observed that the anatomical reaction to burial increases with bed thickness and cumulative deposition. Beds that are thicker than 30 cm can be dated to the year of the deposition event. Beds 10 to 30 cm thick can usually be dated to within several years. The period of deposition of multiple very thin beds can be constrained to the decade. Results can be improved by analyzing multiple stems from one tree and multiple trees linked together by the stratigraphy. Along our study streams, sites far from the channel tend to have moderate and relatively steady point-aggradation rates. Levees next to the channel tend to have the thickest deposits per flood and variable long-term rates, which can differ from the whole flood plain aggradation rates by several fold. Cross-sectionally averaged flood plain aggradation has been as large as a meter per decade along our study streams.

  3. Endogenous GABAA receptor activity suppresses glioma growth.

    PubMed

    Blanchart, A; Fernando, R; Häring, M; Assaife-Lopes, N; Romanov, R A; Andäng, M; Harkany, T; Ernfors, P

    2017-02-09

    Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.

  4. Next Generation Active Buffet Suppression System

    NASA Technical Reports Server (NTRS)

    Galea, Stephen C.; Ryall, Thomas G.; Henderson, Douglas A.; Moses, Robert W.; White, Edward V.; Zimcik, David G.

    2003-01-01

    Buffeting is an aeroelastic phenomenon that is common to high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. This paper describes an international collaborative research activity among Australia, Canada and the United States involving the use of active structural control to alleviate the damaging structural response to these loads. The research program is being co-ordinated by the Air Force Research Laboratory (AFRL) and is being conducted under the auspices of The Technical Cooperative Program (TTCP). This truly unique collaborative program has been developed to enable each participating country to contribute resources toward a program that coalesces a broad range of technical knowledge and expertise into a single investigation. This collaborative program is directed toward a full-scale test of an F/A-18 empennage, which is an extension of an earlier initial test. The current program aims at applying advanced directional piezoactuators, the aircraft rudder, switch mode amplifiers and advanced control strategies on a full-scale structure to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration.

  5. Active Suppression Of Vibrations On Elastic Beams

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Fuller, Chris R.; Gibbs, Gary P.

    1993-01-01

    Pairs of colocated piezoelectric transducers, independently controlled by multichannel adaptive controller, employed as actuators and sensors to achieve simultaneous attenuation of both extensional and flexural motion. Single pair used to provide simultaneous control of flexural and extensional waves, or two pairs used to control torsional motion also. Capability due to nature of piezoelectric transducers, when bonded to surfaces of structures and activated by oscillating voltages, generate corresponding oscillating distributions of stresses in structures. Phases and amplitudes of actuator voltages adjusted by controller to impede flow of vibrational energy simultaneously, in waves of various forms, beyond locations of actuators. Concept applies equally to harmonic or random response of structure and to multiple responses of structure to transverse bending, torsion, and compression within structural element. System has potential for many situations in which predominant vibration transmission path through framelike structure.

  6. Modification of flower colour by suppressing β-ring carotene hydroxylase genes in Oncidium.

    PubMed

    Wang, H-M; To, K-Y; Lai, H-M; Jeng, S-T

    2016-03-01

    Oncidium 'Gower Ramsey' (Onc. GR) is a popular cut flower, but its colour is limited to bright yellow. The β-ring carotene hydroxylase (BCH2) gene is involved in carotenoid biogenesis for pigment formation. However, the role of BCH2 in Onc. GR is poorly understood. Here, we investigated the functions of three BCH2 genes, BCH-A2, BCH-B2 and BCH-C2 isolated from Onc. GR, to analyse their roles in flower colour. RT-PCR expression profiling suggested that BCH2 was mainly expressed in flowers. The expression of BCH-B2 remained constant while that of BCH-A2 gradually decreased during flower development. Using Agrobacterium tumefaciens to introduce BCH2 RNA interference (RNAi), we created transgenic Oncidium plants with down-regulated BCH expression. In the transgenic plants, flower colour changed from the bright yellow of the wild type to light and white-yellow. BCH-A2 and BCH-B2 expression levels were significantly reduced in the transgenic flower lips, which make up the major portion of the Oncidium flower. Sectional magnification of the flower lip showed that the amount of pigmentation in the papillate cells of the adaxial epidermis was proportional to the intensity of yellow colouration. HPLC analyses of the carotenoid composition of the transgenic flowers suggested major reductions in neoxanthin and violaxanthin. In conclusion, BCH2 expression regulated the accumulation of yellow pigments in the Oncidium flower, and the down-regulation of BCH-A2 and BCH-B2 changed the flower colour from bright yellow to light and white-yellow.

  7. Sigma Receptors Suppress Multiple Aspects of Microglial Activation

    PubMed Central

    Hall Aaron, A.; Yelenis, Herrera; Ajmo Craig, T.; Javier, Cuevas; Pennypacker Keith, R.

    2009-01-01

    During brain injury, microglia become activated and migrate to areas of degenerating neurons. These microglia release pro-inflammatory cytokines and reactive oxygen species causing additional neuronal death. Microglia express high levels of sigma receptors, however, the function of these receptors in microglia and how they may affect the activation of these cells remain poorly understood. Using primary rat microglial cultures, it was found that sigma receptor activation suppresses the ability of microglia to rearrange their actin cytoskeleton, migrate, and release cytokines in response to the activators adenosine triphosphate (ATP), monocyte chemoattractant protein 1 (MCP-1), and lipopolysaccharide (LPS). Next, the role of sigma receptors in the regulation of calcium signaling during microglial activation was explored. Calcium fluorometry experiments in vitro show that stimulation of sigma receptors suppressed both transient and sustained intracellular calcium elevations associated with the microglial response to these activators. Further experiments showed that sigma receptors suppress microglial activation by interfering with increases in intracellular calcium. In addition, sigma receptor activation also prevented membrane ruffling in a calcium-independent manner, indicating that sigma receptors regulate the function of microglia via multiple mechanisms. PMID:19031439

  8. A fluorometric microarray with ZnO substrate-enhanced fluorescence and suppressed ``coffee-ring'' effects for fluorescence immunoassays

    NASA Astrophysics Data System (ADS)

    Li, Shuying; Dong, Minmin; Li, Rui; Zhang, Liyan; Qiao, Yuchun; Jiang, Yao; Qi, Wei; Wang, Hua

    2015-11-01

    A glass slide was first patterned with hydrophobic hexadecyltrimethoxysilane (HDS) and then microspotted with hydrophilic ZnO nanoparticles in an aminopropyltriethoxysilane (APS) matrix. The resulting HDS-ZnO-APS microarray could present the capability of suppressing the undesirable ``coffee-ring'' effects through its hydrophobic pattern so as to allow the fabrication of ZnO-APS testing microspots with a highly dense and uniform distribution. The lotus-like ``self-cleaning'' function could also be expected to effectively curb the cross contamination of multiple sample droplets. More importantly, the introduction of ZnO nanoparticles could endow the testing microspots with substrate-enhanced fluorescence leading to signal-amplification microarray fluorometry. The practical application of the developed HDS-ZnO-APS microarray was investigated by the sandwiched fluorometric immunoassays of human IgG, showing a linear detection range from 0.010 to 10.0 ng mL-1. Such a throughput-improved fluorometric microarray could be tailored for probing multiple biomarkers in complicated media like serum or blood.A glass slide was first patterned with hydrophobic hexadecyltrimethoxysilane (HDS) and then microspotted with hydrophilic ZnO nanoparticles in an aminopropyltriethoxysilane (APS) matrix. The resulting HDS-ZnO-APS microarray could present the capability of suppressing the undesirable ``coffee-ring'' effects through its hydrophobic pattern so as to allow the fabrication of ZnO-APS testing microspots with a highly dense and uniform distribution. The lotus-like ``self-cleaning'' function could also be expected to effectively curb the cross contamination of multiple sample droplets. More importantly, the introduction of ZnO nanoparticles could endow the testing microspots with substrate-enhanced fluorescence leading to signal-amplification microarray fluorometry. The practical application of the developed HDS-ZnO-APS microarray was investigated by the sandwiched fluorometric

  9. Molecular hydrogen suppresses activated Wnt/β-catenin signaling

    PubMed Central

    Lin, Yingni; Ohkawara, Bisei; Ito, Mikako; Misawa, Nobuaki; Miyamoto, Kentaro; Takegami, Yasuhiko; Masuda, Akio; Toyokuni, Shinya; Ohno, Kinji

    2016-01-01

    Molecular hydrogen (H2) is effective for many diseases. However, molecular bases of H2 have not been fully elucidated. Cumulative evidence indicates that H2 acts as a gaseous signal modulator. We found that H2 suppresses activated Wnt/β-catenin signaling by promoting phosphorylation and degradation οf β-catenin. Either complete inhibition of GSK3 or mutations at CK1- and GSK3-phosphorylation sites of β-catenin abolished the suppressive effect of H2. H2 did not increase GSK3-mediated phosphorylation of glycogen synthase, indicating that H2 has no direct effect on GSK3 itself. Knock-down of adenomatous polyposis coli (APC) or Axin1, which form the β-catenin degradation complex, minimized the suppressive effect of H2 on β-catenin accumulation. Accordingly, the effect of H2 requires CK1/GSK3-phosphorylation sites of β-catenin, as well as the β-catenin degradation complex comprised of CK1, GSK3, APC, and Axin1. We additionally found that H2 reduces the activation of Wnt/β-catenin signaling in human osteoarthritis chondrocytes. Oral intake of H2 water tended to ameliorate cartilage degradation in a surgery-induced rat osteoarthritis model through attenuating β-catenin accumulation. We first demonstrate that H2 suppresses abnormally activated Wnt/β-catenin signaling, which accounts for the protective roles of H2 in a fraction of diseases. PMID:27558955

  10. Potent cough suppression by physiologically active substance in human plasma.

    PubMed

    Akaike, Norio; Ito, Yushi; Ogawa, Sachie K; Maeda, Megumi; Wakita, Masahito; Takahama, Kazuo; Noguchi, Tetsuro; Kamei, Shintaro; Hamamoto, Takayoshi; Umehashi, Misako; Maeda, Hiroaki

    2014-01-01

    Human plasma contains wide variety of bioactive proteins that have proved essential in therapeutic discovery. However many human plasma proteins remain orphans with unknown biological functions. Evidences suggest that some plasma components target the respiratory system. In the present study we adapted heparin affinity chromatography to fractionate human plasma for functional bioassay. Fractions from pooled human plasma yielded particular plasma fractions with strong cough suppressing effects. Purification yielded a fraction that was finally identified as an activated blood coagulation factor fXIa using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF-MS). The fraction almost completely suppressed coughs induced by either chemical or mechanical stimulation applied to larynx or bifurcation of guinea-pig trachea. Cough suppressing effect of the fraction and commercially available fXIa were one million times stronger than codeine and codeine only partially suppressed the mechanically triggered coughing in animal model. Recent reviews highlighted prominent shortcomings of current available antitussives, including narcotic opioids such as codeine and their unpleasant or intolerable side effects. Therefore, safer and more effective cough suppressants would be welcome, and present findings indicate that fXIa in human plasma as a very promising, new therapeutic candidate for effective antitussive action.

  11. Suppression of NF-κB Activation By Gentian Violet Promotes Osteoblastogenesis and Suppresses Osteoclastogenesis

    PubMed Central

    Yamaguchi, M.; Vikulina, T.; Arbiser, J.L.; Weitzmann, M.N.

    2015-01-01

    Skeletal mass is regulated by the coordinated action of bone forming osteoblasts and bone resorbing osteoclasts. Accelerated rates of bone resorption relative to bone formation lead to net bone loss and the development of osteoporosis, a devastating disease that predisposes the skeleton to fractures. Bone fractures are associated with significant morbidity and in the case of hip fractures, high mortality. Gentian violet (GV), a cationic triphenylmethane dye, has long been used as an antifungal and antibacterial agent and is presently under investigation as a potential chemotherapeutic and antiangiogenic agent. However, effects on bone cells have not been previously reported and the mechanisms of action of GV, are poorly understood. In this study we show that GV suppresses receptor activator of NF-κB ligand (RANKL)-induced differentiation of RAW264.7 osteoclast precursors into mature osteoclasts, but paradoxically stimulates the differentiation of MC3T3 cells into mineralizing osteoblasts. These actions stem from the capacity of GV to suppress activation of the nuclear factor kappa B (NF-κB) signal transduction pathway that is required for osteoclastogenesis, but inhibitory to osteoblast differentiation and activity. Our data reveal that GV is an inhibitor of NF-κB activation and may hold promise for modulation of bone turnover to promote a balance between bone formation and bone resorption, favorable to gain of bone mass. PMID:25056540

  12. Occipital TMS has an activity-dependent suppressive effect

    PubMed Central

    Perini, Francesca; Cattaneo, Luigi; Carrasco, Marisa; Schwarzbach, Jens V.

    2012-01-01

    The effects of transcranial magnetic stimulation (TMS) vary depending on the brain state at the stimulation moment. Four mechanisms have been proposed to underlie these effects: (i) virtual lesion–TMS suppresses neural signals; (ii) preferential activation of less active neurons–TMS drives up activity in the stimulated area, but active neurons are saturating, (iii) noise generation–TMS adds random neuronal activity and its effect interacts with stimulus-intensity; (iv) noise generation–TMS adds random neuronal activity and its effect depends on TMS-intensity. Here we explore these hypotheses by investigating the effects of TMS on early visual cortex on the contrast response function while varying adaptation state of the observers. We tested human participants in an orientation discrimination task, in which performance is contingent upon contrast sensitivity. Before each trial, neuronal activation of visual cortex was altered through contrast adaptation to two flickering gratings. In a factorial design, with or without adaptation, a single TMS pulse was delivered simultaneously with targets of varying contrast. Adaptation decreased contrast sensitivity. The effect of TMS on performance was state-dependent: TMS decreased contrast sensitivity in the absence of adaptation but increased it after adaptation. None of the proposed mechanisms can account for the results in their entirety, in particular, for the facilitatory effect at intermediate to high contrasts after adaptation. We propose an alternative hypothesis: TMS effects are activity-dependent, so that TMS suppresses the most active neurons and thereby changes the balance between excitation and inhibition. PMID:22956826

  13. Apigenin blocks IKKα activation and suppresses prostate cancer progression.

    PubMed

    Shukla, Sanjeev; Kanwal, Rajnee; Shankar, Eswar; Datt, Manish; Chance, Mark R; Fu, Pingfu; MacLennan, Gregory T; Gupta, Sanjay

    2015-10-13

    IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.

  14. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1975-01-01

    Application of the aerodynamic energy approach to some problems of flutter suppression and gust alleviation were considered. A simple modification of the control-law is suggested for achieving the required pitch control in the use of a leading edge - trailing edge activated strip. The possible replacement of the leading edge - trailing edge activated strip by a trailing edge - tab strip is also considered as an alternate solution. Parameters affecting the performance of the activated leading edge - trailing edge strip were tested on the Arava STOL Transport and the Westwind Executive Jet Transport and include strip location, control-law gains and a variation in the control-law itself.

  15. Vibrissa motor cortex activity suppresses contralateral whisking behavior.

    PubMed

    Ebbesen, Christian Laut; Doron, Guy; Lenschow, Constanze; Brecht, Michael

    2017-01-01

    Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.

  16. Suppression of spontaneous epileptiform activity with applied currents.

    PubMed

    Nakagawa, M; Durand, D

    1991-12-20

    It has been well established that both applied and endogenous electric fields can modulate neuronal activity in various preparations. In this paper, we present the effects of applied currents on spontaneous epileptiform activity in the CA1 region of the rat hippocampus. A computer-controlled system was designed to detect the spontaneous abnormal activity and then apply current pulses of programmable amplitude with monopolar electrodes in the stratum pyramidale. The epileptiform activity was generated by subperfusion of the neural tissue with an elevated potassium artificial cerebrospinal fluid (CSF) solution. Extracellular recordings showed that the interictal bursts could be fully suppressed in 90% of the slices by subthreshold currents with an average amplitude of 12.5 microA. Intracellular recordings showed that the anodic currents generated hyperpolarization of the somatic membrane thereby suppressing neuronal firing. This inhibitory effect of applied current pulses is important for the understanding of electric field effects on abnormal neuronal activity and could be an effective means of preventing the spread of epileptiform activity.

  17. The Lord of Rings - the mysterious case of the stolen rings: a critical analysis of an informal education activity

    NASA Astrophysics Data System (ADS)

    Sandrelli, S.

    2011-10-01

    the real physical properties of that celestial object. After collecting the ingredients, they must carry them to the "The Red Giant" and indicate their best recipe to Mr Schioppanelli. Depending on the recipe, rings can be too strict or too luminous or too fast rotating and so on. The winning group is the one which prepares the best recipe to cook the rings in the smallest amount of time. After introducing this specific (and mysterious) game, we analyze the advantage-disadvantage ratio of such an activity, which is as funny as dispersive [2]. The key expression of the whole activity is, of course, "informal education". But, as a best practice result, we organize also 1 or 2 very simple laboratories about the solar system before playing the game. One of these, called The Olmicomics, allows the pupils to understand the dimensions of the planets with respect to their distances, providing them the correct introduction to "The Lord of Rings". The pupils are simply requested to pone the planets in a correct scale on a map of the city where they live. Then we coherently calculate together dimension of the Solar System planets and the Sun, according to the scale they chose. The second activity provide the pupils hints about the physical properties of the planets, touching the points a)-d) listed above. We believe this two-faces strategy is a quite effective tool for an education suited to our target group. They really do things, touch things, use their own body as a meter to understand distances and physical properties as the gravitational force. In the meanwhile, they are also asked to think about what they are doing, to make calculation and to build a representation of the Solar System by numbers, turning it into a visual representation only after their calculation. And, finally, to play with all these conceipts.

  18. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, John J.

    1988-01-01

    A method is developed that determines the placement of an active control surface for maximum effectiveness in suppressing flutter. No specific control law is required by this method which is based on the aerodynamic energy concept. It is argued that the spanwise placement of the active controls should coincide with the locations where maximum energy per unit span is fed into the system. The method enables one to determine the distribution, over the different surfaces of the aircraft, of the energy input into the system as a result of the unstable fluttering mode. The method is illustrated using three numerical examples.

  19. Suppressive Activity of Quercetin on Periostin Functions In Vitro.

    PubMed

    Irie, Shinji; Kashiwabara, Misako; Yamada, Asako; Asano, Kazuhito

    2016-01-01

    Periostin, a 90-kDa extracellular matrix protein, has been attracting attention as a novel biomarker of airway inflammatory diseases such as allergic rhinitis (AR) and asthma. Although oral administration of quercetin to patients with AR can favorably modify the clinical condition of this disease, the influence of quercetin on periostin functions is not well understood. The present study was, therefore, undertaken to examine the influence of quercetin on the production of both periostin and periostin-induced eosinophil chemoattractants from human nasal epithelial cells (HNEpC) in vitro. HNEpC were stimulated with 15.0 ng/ml interleukin (IL)-4 in the absence or presence of quercetin for 72 h. Periostin levels in the culture supernatants were measured using enzyme-linked immunosorbent assay (ELISA). Addition of 4.0 μM quercetin into cell cultures suppressed periostin production from HNEpC that was induced by IL-4 stimulation through inhibitation of signal transducer and activator of transcription 6 (STAT6) activation. We then examined whether quercetin could inhibit production of the periostin-induced eosinophil chemoattractants, regulated on activation, normal T-cell expressed and secreted (RANTES) and eotaxin, from HNEpC. HNEpC were stimulated with 2.0 ng/ml periostin in the absence or presence of quercetin for 72 h. RANTES and eotaxin levels in culture supernatants were examined using ELISA. Treatment of HNEpC with quercetin at a concentration of 4.0 μM suppressed the ability of cells to produce RANTES and eotaxin. This suppression was mediated through suppression of activation of the transcription factor nuclear factor-kappa B (NF-κB) p65, as measured using ELISA, and of chemokine mRNA expression, as measured using reverse transcriptase-polymerase chain reaction (RT-PCR). These results strongly suggest that quercetin suppresses the production of both periostin and periostin-induced eosinophil chemoattractants from HNEpC and results in improvement of the

  20. Retinal Pigment Epithelial Cells Suppress Phagolysosome Activation in Macrophages

    PubMed Central

    Wang, Eric; Choe, Yoona; Ng, Tat Fong; Taylor, Andrew W.

    2017-01-01

    Purpose The eye is an immune-privileged microenvironment that has adapted several mechanisms of immune regulation to prevent inflammation. One of these potential mechanisms is retinal pigment epithelial cells (RPE) altering phagocytosis in macrophages. Methods The conditioned media of RPE eyecups from eyes of healthy mice and mice with experimental autoimmune uveitis (EAU) were used to treat primary macrophage phagocytizing pHrodo bacterial bioparticles. In addition, the neuropeptides were depleted from the conditioned media of healthy RPE eyecups and used to treat phagocytizing macrophages. The conditioned media from healthy and EAU RPE eyecups were assayed for IL-6, and IL-6 was added to the healthy conditioned media, and neutralized in the EAU conditioned media. The macrophages were treated with the conditioned media and assayed for fluorescence. The macrophages were imaged, and the fluorescence intensity, relative to active phagolysosomes, was measured. Also, the macrophages were assayed using fluorescent viability dye staining. Results The conditioned media from healthy, but not from EAU RPE eyecups suppressed phagolysosome activation. Depletion of the neuropeptides alpha-melanocyte–stimulating hormone and neuropeptide Y from the healthy RPE eyecup conditioned media resulted in macrophage death. In the EAU RPE eyecup conditioned media was 0.96 ± 0.18 ng/mL of IL-6, and when neutralized the conditioned media suppressed phagolysosome activation. Conclusions The healthy RPE through soluble molecules, including alpha-melanocyte–stimulating hormone and neuropeptide Y, suppresses the activation of the phagolysosome in macrophages. In EAU, the IL-6 produced by the RPE promotes the activation of phagolysosomes in macrophages. These results demonstrate that under healthy conditions, RPE promotes an altered pathway of phagocytized material in macrophages with implications on antigen processing and clearance. PMID:28241314

  1. IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression.

    PubMed

    Liu, Mo; Lee, Dung-Fang; Chen, Chun-Te; Yen, Chia-Jui; Li, Long-Yuan; Lee, Hong-Jen; Chang, Chun-Ju; Chang, Wei-Chao; Hsu, Jung-Mao; Kuo, Hsu-Ping; Xia, Weiya; Wei, Yongkun; Chiu, Pei-Chun; Chou, Chao-Kai; Du, Yi; Dhar, Debanjan; Karin, Michael; Chen, Chung-Hsuan; Hung, Mien-Chie

    2012-01-27

    Proinflammatory cytokine TNFα plays critical roles in promoting malignant cell proliferation, angiogenesis, and tumor metastasis in many cancers. However, the mechanism of TNFα-mediated tumor development remains unclear. Here, we show that IKKα, an important downstream kinase of TNFα, interacts with and phosphorylates FOXA2 at S107/S111, thereby suppressing FOXA2 transactivation activity and leading to decreased NUMB expression, and further activates the downstream NOTCH pathway and promotes cell proliferation and tumorigenesis. Moreover, we found that levels of IKKα, pFOXA2 (S107/111), and activated NOTCH1 were significantly higher in hepatocellular carcinoma tumors than in normal liver tissues and that pFOXA2 (S107/111) expression was positively correlated with IKKα and activated NOTCH1 expression in tumor tissues. Therefore, dysregulation of NUMB-mediated suppression of NOTCH1 by TNFα/IKKα-associated FOXA2 inhibition likely contributes to inflammation-mediated cancer pathogenesis. Here, we report a TNFα/IKKα/FOXA2/NUMB/NOTCH1 pathway that is critical for inflammation-mediated tumorigenesis and may provide a target for clinical intervention in human cancer.

  2. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    PubMed

    Zhang, Juan; Tang, Hongju; Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  3. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity

    SciTech Connect

    Bagby, G.J.; Corll, C.B.; Martinez, R.R.

    1987-07-01

    Hypertriglyceridemia observed in animals after bacterial endotoxin administration and some forms of sepsis can result from increased hepatic triacylglycerol (TG) output or decreased TG clearance by extrahepatic tissues. To differentiate between these two possibilities, TG and free fatty acid (FFA) kinetics were determined in control and endotoxin-injected rats 18 h after treatment. Plasma TG and FFA kinetics were assessed by a constant intravenous infusion with (9,10-/sup 3/H)palmitate-labeled very low-density lipoprotein and (1-/sup 14/C)palmitate bound to albumin, respectively. In addition, lipoprotein lipase (LPL) activity was determined in heart, skeletal muscle, and adipose tissue as well as in postheparin plasma of functionally hepatectomized, adrenalectomized, and gonadectomized rats. Plasma FFA acid concentrations were slightly increased in endotoxin-treated rats but their turnover did not differ from control. Endotoxin-treated rats had a threefold increase in plasma TG concentrations and decreased heart, skeletal muscle, and post-heparin plasma LPL activity. Plasma TG turnover was decreased, indicating that hypertriglyceridemia was not due to an increased TG output by the liver. Instead, the endotoxin-induced increase in plasma TG concentration was consequence of the 80% reduction in TG metabolic clearance rate. Thus, suppression of LPL activity in endotoxic animals impairs TG clearance resulting in hypertriglyceridemia. Furthermore, endotoxin administration reduced the delivery of TG-FFA to extrahepatic tissues because hepatic synthesis and secretion of TG from plasma FFA was decreased and LPL activity was suppressed.

  4. Gentamicin B1 is a minor gentamicin component with major nonsense mutation suppression activity

    PubMed Central

    Baradaran-Heravi, Alireza; Niesser, Jürgen; Balgi, Aruna D.; Choi, Kunho; Zimmerman, Carla; South, Andrew P.; Anderson, Hilary J.; Strynadka, Natalie C.; Bally, Marcel B.; Roberge, Michel

    2017-01-01

    Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders. PMID:28289221

  5. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, J. J.

    1989-01-01

    All flutter suppression systems require sensors to detect the movement of the lifting surface and to activate a control surface according to a synthesized control law. Most of the work performed to date relates to the development of control laws based on predetermined locations of sensors and control surfaces. These locations of sensors and control surfaces are determined either arbitrarily, or by means of a trial and error procedure. The aerodynamic energy concept indicates that the sensors should be located within the activated strip. Furthermore, the best chordwise location of a sensor activating a T.E. control surface is around the 65 percent chord location. The best chordwise location for a sensor activating a L.E. surface is shown to lie upstream of the wing (around 20 percent upstream of the leading edge), or alternatively, two sensors located along the same chord should be used.

  6. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  7. Design, test, and evaluation of three active flutter suppression controllers

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Christhilf, David M.; Waszak, Martin R.; Mukhopadhyay, Vivek; Srinathkumar, S.

    1992-01-01

    Three control law design techniques for flutter suppression are presented. Each technique uses multiple control surfaces and/or sensors. The first method uses traditional tools (such as pole/zero loci and Nyquist diagrams) for producing a controller that has minimal complexity and which is sufficiently robust to handle plant uncertainty. The second procedure uses linear combinations of several accelerometer signals and dynamic compensation to synthesize the model rate of the critical mode for feedback to the distributed control surfaces. The third technique starts with a minimum-energy linear quadratic Gaussian controller, iteratively modifies intensity matrices corresponding to input and output noise, and applies controller order reduction to achieve a low-order, robust controller. The resulting designs were implemented digitally and tested subsonically on the active flexible wing wind-tunnel model in the Langley Transonic Dynamics Tunnel. Only the traditional pole/zero loci design was sufficiently robust to errors in the nominal plant to successfully suppress flutter during the test. The traditional pole/zero loci design provided simultaneous suppression of symmetric and antisymmetric flutter with a 24-percent increase in attainable dynamic pressure. Posttest analyses are shown which illustrate the problems encountered with the other laws.

  8. SCAR arrow-wing active flutter suppression system

    NASA Technical Reports Server (NTRS)

    Gordon, C. K.; Visor, O. E.

    1977-01-01

    The potential performance and direct operating cost benefits of an active flutter suppression system (FSS) for the NASA arrow-wing supersonic cruise configuration were determined. A FSS designed to increase the flutter speed of the baseline airplane 20 percent. A comparison was made of the performance and direct operating cost between the FSS equipped aircraft and a previously defined configuration with structural modifications to provide the same flutter speed. Control system synthesis and evaluation indicated that a FSS could provide the increase in flutter speed without degrading airplane reliability, safety, handling qualities, or ride quality, and without increasing repeated loads or hydraulic and electrical power capacity requirements.

  9. Comparative study between two different active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1978-01-01

    An activated leading-edge (LE)-tailing-edge (TE) control system is applied to a drone aircraft with the objective of enabling the drone to fly subsonically at dynamic pressures which are 44% above the open-loop flutter dynamic pressure. The control synthesis approach is based on the aerodynamic energy concept and it incorporates recent developments in this area. A comparison is made between the performance of the activated LE-TE control system and the performance of a TE control system, analyzed in a previous work. The results obtained indicate that although all the control systems achieve the flutter suppression objectives, the TE control system appears to be somewhat superior to the LE-TE control system, in this specific application. This superiority is manifested through reduced values of control surface activity over a wide range of flight conditions.

  10. [Suppression of cycling activity in sheep using parenteral progestagen treatment].

    PubMed

    Janett, F; Camponovo, L; Lanker, U; Hässig, M; Thun, R

    2004-03-01

    The objective of this study was to evaluate the effect of two synthetic progestagen preparations Chlormadinone acetate (CAP, Chronosyn, Veterinaria AG Zürich) and Medroxyprogesterone acetate (MPA, Nadigest, G Streuli & Co. Uznach) on cycling activity and fertility in sheep. A flock of 28 non pregnant white alpine sheep was randomly divided into three groups, A (n = 10), B (n = 9) and C (n = 9). During a period of 4 weeks the cycling activity was confirmed by blood progesterone analysis. Thereafter, the animals of group A were treated with 50 mg CAP, those of group B with 140 mg MPA and those of group C with physiological saline solution. All injections were given intramuscularly. Suppression of endogenous progesterone secretion lasted from 28 to 49 days (mean = 39 days) in group A and from 42 to 70 days (mean = 50 days) in group B. The synchronization effect of both preparations was unsatisfactory as the occurrence of first estrus was distributed over a period of 3 weeks in group A and 4 weeks in group B. These findings could also be confirmed by the lambing period which lasted 52 days in group A and 36 days in group B. Control animals lambed within 9 days due to the synchronizing effect of the ram. The first fertile estrus was observed 36 days (group A) and 45 days (group B) after the treatment. In group A all 10 animals and in groups B and C 8 of 9 ewes each became pregnant. Parenteral progestagen application with CAP and MPA is a simple, safe and reversible method of estrus suppression in the sheep. The minimal suppressive duration of 4 (CAP) and 5 weeks (MPA) is not sufficient when a period of 3 months (alpine pasture period) is desired.

  11. Ferroptosis as a p53-mediated activity during tumour suppression.

    PubMed

    Jiang, Le; Kon, Ning; Li, Tongyuan; Wang, Shang-Jui; Su, Tao; Hibshoosh, Hanina; Baer, Richard; Gu, Wei

    2015-04-02

    Although p53-mediated cell-cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non-apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p53(3KR), an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)-induced stress. Analysis of mutant mice shows that these non-canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS-induced ferroptosis and abrogates p53(3KR)-mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.

  12. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  13. Active flutter suppression using optical output feedback digital controllers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.

  14. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1974-01-01

    The effects of active controls on the suppression of flutter and gust alleviation of two different types of subsonic aircraft (the Arava, twin turboprop STOL transport, and the Westwind twin-jet business transport) are investigated. The active controls are introduced in pairs which include, in any chosen wing strip, a leading-edge (LE) control and a trailing-edge (TE) control. Each control surface is allowed to be driven by a combined linear-rotational sensor system, located on the activated strip. The control law, which translates the sensor signals into control surface rotations, is based on the concept of aerodynamic energy. The results indicate the extreme effectiveness of the active systems in controlling flutter. A single system spanning 10% of the wing semispan made the Arava flutter-free, and a similar active system, for the Westwind aircraft, yielded a reduction of 75% in the maximum bending moment of the wing and a reduction of 90% in the acceleration of the cg of the aircraft. Results for simultaneous activation of several LE - TE systems are presented. Further work needed to bring the investigation to completion is also discussed.

  15. NLRC4 suppresses melanoma tumor progression independently of inflammasome activation

    PubMed Central

    Janowski, Ann M.; Colegio, Oscar R.; Hornick, Emma E.; McNiff, Jennifer M.; Martin, Matthew D.; Badovinac, Vladimir P.; Norian, Lyse A.; Zhang, Weizhou; Cassel, Suzanne L.

    2016-01-01

    Members of the NLR family can assemble inflammasome complexes with the adaptor protein ASC and caspase-1 that result in the activation of caspase-1 and the release of IL-1β and IL-18. Although the NLRC4 inflammasome is known to have a protective role in tumorigenesis, there is an increased appreciation for the inflammasome-independent actions of NLRC4. Here, we utilized a syngeneic subcutaneous murine model of B16F10 melanoma to explore the role of NLRC4 in tumor suppression. We found that NLRC4-deficient mice exhibited enhanced tumor growth that was independent of the inflammasome components ASC and caspase-1. Nlrc4 expression was critical for cytokine and chemokine production in tumor-associated macrophages and was necessary for the generation of protective IFN-γ–producing CD4+ and CD8+ T cells. Tumor progression was diminished when WT or caspase-1–deficient, but not NLRC4-deficient, macrophages were coinjected with B16F10 tumor cells in NLRC4-deficient mice. Finally, examination of human primary melanomas revealed the extensive presence of NLRC4+ tumor-associated macrophages. In contrast, there was a paucity of NLRC4+ tumor-associated macrophages observed in human metastatic melanoma, supporting the concept that NLRC4 expression controls tumor growth. These results reveal a critical role for NLRC4 in suppressing tumor growth in an inflammasome-independent manner. PMID:27617861

  16. Adenine suppresses IgE-mediated mast cell activation.

    PubMed

    Silwal, Prashanta; Shin, Keuna; Choi, Seulgi; Kang, Seong Wook; Park, Jin Bong; Lee, Hyang-Joo; Koo, Suk-Jin; Chung, Kun-Hoe; Namgung, Uk; Lim, Kyu; Heo, Jun-Young; Park, Jong Il; Park, Seung-Kiel

    2015-06-01

    Nucleobase adenine is produced by dividing human lymphoblasts mainly from polyamine synthesis and inhibits immunological functions of lymphocytes. We investigated the anti-allergic effect of adenine on IgE-mediated mast cell activation in vitro and passive cutaneous anaphylaxis (PCA) in mice. Intraperitoneal injection of adenine to IgE-sensitized mice attenuated IgE-mediated PCA reaction in a dose dependent manner, resulting in a median effective concentration of 4.21 mg/kg. In mast cell cultures, only adenine among cytosine, adenine, adenosine, ADP and ATP dose-dependently suppressed FcɛRI (a high affinity receptor for IgE)-mediated degranulation with a median inhibitory concentration of 1.6mM. It also blocked the production of LTB4, an inflammatory lipid mediator, and inflammatory cytokines TNF-α and IL-4. In addition, adenine blocked thapsigargin-induced degranulation which is FcɛRI-independent but shares FcɛRI-dependent signaling events. Adenine inhibited the phosphorylation of signaling molecules important to FcɛRI-mediated allergic reactions such as Syk, PLCγ2, Gab2, Akt, and mitogen activated protein kinases ERK and JNK. From this result, we report for the first time that adenine inhibits PCA in mice and allergic reaction by inhibiting FcɛRI-mediated signaling events in mast cells. Therefore, adenine may be useful for the treatment of mast cell-mediated allergic diseases. Also, the upregulation of adenine production may provide another mechanism for suppressing mast cell activity especially at inflammatory sites.

  17. Suppression of Nonlinear Interactions in Resonant Macroscopic Quantum Devices: The Example of the Solid-State Ring Laser Gyroscope

    SciTech Connect

    Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Gutty, Francois; Bouyer, Philippe

    2008-05-09

    We report fine-tuning of nonlinear interactions in a solid-state ring laser gyroscope by vibrating the gain medium along the cavity axis. We demonstrate both experimentally and theoretically that nonlinear interactions vanish for some values of the vibration parameters, leading to quasi-ideal rotation sensing. We eventually point out that our conclusions can be mapped onto other subfields of physics such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned by using Feshbach resonance.

  18. Optimized geometric configuration of active ring laser gyroscopes

    NASA Astrophysics Data System (ADS)

    Gormley, John; Salloum, Tony

    2016-05-01

    We present a thorough derivation of the Sagnac effect for a ring laser gyroscope of any arbitrary polygonal configuration. We determine optimized alternative geometric configurations for the mirrors. The simulations incur the implementation of a lasing medium with the standard square system, triangular, pentagonal, and oblongated square configuration (diamond). Simulations of possible new geometric configurations are considered, as well as the possibility of adjusting the concavity of the mirrors.

  19. "Ring-fencing" BRCA1 tumor suppressor activity.

    PubMed

    Patel, Ketan J; Crossan, Gerry P; Hodskinson, Michael R G

    2011-12-13

    BRCA1 is a crucial human breast and ovarian cancer tumor suppressor gene. The article by Drost et al. in this issue of Cancer Cell together with a recent paper in Science now provide a clearer picture of how this large and complex protein suppresses tumorigenesis.

  20. Synthesis, insecticidal activity, and structure-activity relationship (SAR) of anthranilic diamides analogs containing oxadiazole rings.

    PubMed

    Li, Yuhao; Zhu, Hongjun; Chen, Kai; Liu, Rui; Khallaf, Abdalla; Zhang, Xiangning; Ni, Jueping

    2013-06-28

    A series of anthranilic diamides analogs (3–11, 16–24) containing 1,2,4- or 1,3,4-oxadiazole rings were synthesized and characterized by (1)H NMR, MS and elemental analyses. The structure of 3-bromo-N-(2-(3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl)-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (18, CCDC-) was determined by X-ray diffraction crystallography. The insecticidal activities against Plutella xylostella and Spodoptera exigua were evaluated. The results showed that most of title compounds displayed good larvicidal activities against P. xylostella, especially compound 3-bromo-N-(4-chloro-2-methyl-6-(5-(methylthio)-1,3,4-oxadiazol-2-yl)phenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide (6), which displayed 71.43% activity against P. xylostella at 0.4 μg mL(-1) and 33.33% against S. exigua at 1 μg mL(-1). The structure-activity relationship showed that compounds decorated with a 1,3,4-oxadiazole were more potent than compounds decorated with a 1,2,4-oxadiazole, and different substituents attached to the oxadiazole ring also affected the insecticidal activity. This work provides some hints for further structure modification and the enhancement of insecticidal activity.

  1. Immune-suppressive activity of punicalagin via inhibition of NFAT activation

    SciTech Connect

    Lee, Sang-Ik; Kim, Byoung-Soo; Kim, Kyoung-Shin; Lee, Samkeun; Shin, Kwang-Soo; Lim, Jong-Soon

    2008-07-11

    Since T cell activation is central to the development of autoimmune diseases, we screened a natural product library comprising 1400 samples of medicinal herbal extracts, to identify compounds that suppress T cell activity. Punicalagin (PCG) isolated from the fruit of Punica granatum was identified as a potent immune suppressant, based on its inhibitory action on the activation of the nuclear factor of activated T cells (NFAT). PCG downregulated the mRNA and soluble protein expression of interleukin-2 from anti-CD3/anti-CD28-stimulated murine splenic CD4+ T cells and suppressed mixed leukocytes reaction (MLR) without exhibiting cytotoxicity to the cells. In vivo, the PCG treatment inhibited phorbol 12-myristate 13-acetate (PMA)-induced chronic ear edema in mice and decreased CD3+ T cell infiltration of the inflamed tissue. These results suggest that PCG could be a potential candidate for the therapeutics of various immune pathologies.

  2. C23 promotes tumorigenesis via suppressing p53 activity

    PubMed Central

    Wang, Juan; Hu, Guilin; Fang, Xing; Hu, Yamin; Tao, Tingting; Wei, Xin; Tang, Haitao; Huang, Baojun; Hu, Wanglai

    2016-01-01

    C23 is an abundant and multi-functional protein, which plays an important role in various biological processes, including ribosome biogenesis and maturation, cell cycle checkpoints and transcriptional regulation [1, 2]. However, the role of C23 in controlling tumorigenesis has not been well defined. Here we report that C23 is highly expressed in cancer cells and the elevated expression of C23 facilitates cancer cell proliferation in vitro and tumor xenograft growth in vivo. Notably, C23 binds to p53 through its GAR domain and suppresses the transcriptional activity of p53 under DNA damage and hypoxia. Moreover, the GAR domain is critical for C23-mediated tumor cell proliferation both in vitro and in vivo. Our findings reveal a novel role of C23 in tumorigenesis and suggest that C23 may represent a potential therapeutic target for treating malignancy. PMID:27506938

  3. Paeonol Suppresses Neuroinflammatory Responses in LPS-Activated Microglia Cells.

    PubMed

    He, Li Xia; Tong, Xiaoyun; Zeng, Jing; Tu, Yuanqing; Wu, Saicun; Li, Manping; Deng, Huaming; Zhu, Miaomiao; Li, Xiucun; Nie, Hong; Yang, Li; Huang, Feng

    2016-12-01

    In this work, we assessed the anti-inflammatory effects of paeonol (PAE) in LPS-activated N9 microglia cells, as well as its underlying molecular mechanisms. PAE had no adverse effect on the viability of murine microglia N9 cell line within a broad range (0.12∼75 μM). When N9 cell line was activated by LPS, PAE (0.6, 3, 15 μM) significantly suppressed the release of proinflammatory products, such as nitric oxide (NO), interleukin-1β (IL-1β), and prostaglandin E2 (PGE2), demonstrated by the ELISA assay. Moreover, the levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were significantly reduced in PAE-treated N9 microglia cells. We also examined some proteins involved in immune signaling pathways and found that PAE treatment significantly decreased the expression of TLR4, MyD88, IRAK4, TNFR-associated factor 6 (TRAF6), p-IkB-α, and NF-kB p65, as well as the mitogen-activated protein kinase (MAPK) pathway molecules p-P38, p-JNK, and p-ERK, indicating that PAE might act on these signaling pathways to inhibit inflammatory responses. Overall, we found that PAE had anti-inflammatory effect on LPS-activated N9 microglia cells, possibly via inhibiting the TLR4 signaling pathway, and it could be a potential drug therapy for inflammation-associated neurodegenerative diseases.

  4. Hybrid Active/Passive Jet Engine Noise Suppression System

    NASA Technical Reports Server (NTRS)

    Parente, C. A.; Arcas, N.; Walker, B. E.; Hersh, A. S.; Rice, E. J.

    1999-01-01

    A novel adaptive segmented liner concept has been developed that employs active control elements to modify the in-duct sound field to enhance the tone-suppressing performance of passive liner elements. This could potentially allow engine designs that inherently produce more tone noise but less broadband noise, or could allow passive liner designs to more optimally address high frequency broadband noise. A proof-of-concept validation program was undertaken, consisting of the development of an adaptive segmented liner that would maximize attenuation of two radial modes in a circular or annular duct. The liner consisted of a leading active segment with dual annuli of axially spaced active Helmholtz resonators, followed by an optimized passive liner and then an array of sensing microphones. Three successively complex versions of the adaptive liner were constructed and their performances tested relative to the performance of optimized uniform passive and segmented passive liners. The salient results of the tests were: The adaptive segmented liner performed well in a high flow speed model fan inlet environment, was successfully scaled to a high sound frequency and successfully attenuated three radial modes using sensor and active resonator arrays that were designed for a two mode, lower frequency environment.

  5. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses.

  6. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling.

    PubMed

    Kang, J M; Park, S; Kim, S J; Hong, H Y; Jeong, J; Kim, H-S; Kim, S-J

    2012-12-13

    Casitas B-lineage lymphoma (CBL) protein family functions as multifunctional adaptor proteins and E3 ubiquitin ligases that are implicated as regulators of signaling in various cell types. Recent discovery revealed mutations of proto-oncogenic CBL in the linker region and RING finger domain in human acute myeloid neoplasm, and these transforming mutations induced carcinogenesis. However, the adaptor function of CBL mediated signaling pathway during tumorigenesis has not been well characterized. Here, we show that CBL is highly expressed in breast cancer cells and significantly inhibits transforming growth factor-β (TGF-β) tumor suppressive activity. Knockdown of CBL expression resulted in the increased expression of TGF-β target genes, PAI-I and CDK inhibitors such as p15(INK4b) and p21(Cip1). Furthermore, we demonstrate that CBL is frequently overexpressed in human breast cancer tissues, and the loss of CBL decreases the tumorigenic activity of breast cancer cells in vivo. CBL directly binds to Smad3 through its proline-rich motif, thereby preventing Smad3 from interacting with Smad4 and blocking nuclear translocation of Smad3. CBL-b, one of CBL protein family, also interacted with Smad3 and knockdown of both CBL and CBL-b further enhanced TGF-β transcriptional activity. Our findings provide evidence for a previously undescribed mechanism by which oncogenic CBL can block TGF-β tumor suppressor activity.

  7. Thermally activated phase slips from metastable states in mesoscopic superconducting rings

    NASA Astrophysics Data System (ADS)

    Petkovic, Ivana; Lollo, Anthony; Harris, Jack

    In equilibrium, a flux-biased superconducting ring at low temperature can occupy any of several metastable states. The particular state that the ring occupies depends on the history of the applied flux, as different states are separated from each other by flux-dependent energy barriers. There is a critical value of the applied flux at which a given barrier goes to zero, the state becomes unstable, and the system transition into another state. In recent experiments performed on arrays of rings we showed that this transition occurs close to the critical flux predicted by Ginzburg-Landau theory. Here, we will describe experiments in which we have extended these measurements to an individual ring in order to study the thermal activation of the ring over a barrier that has been tuned close to zero. We measure the statistics of transitions as function of temperature and ramp rate.

  8. Efficacy of Combined Contraceptive Vaginal Ring Versus Oral Contraceptive Pills in Achieving Hypothalamic-Pituitary-Ovarian Axis Suppression in Egg Donor In Vitro Fertilization Cycles

    PubMed Central

    Thomas, Robin Lynn; Halvorson, Lisa Marie; Carr, Bruce Richard; Doody, Kathleen Marie; Doody, Kevin John

    2013-01-01

    Background Our study compares the efficacy of the combined contraceptive vaginal ring to oral contraceptive pills (OCPs) for hypothalamic-pituitary-ovarian (HPO) axis suppression in egg donor in vitro fertilization (IVF) cycles. Methods Our retrospective cohort study includes patients from the Center for Assisted Reproduction (CARE) in Bedford, Texas undergoing IVF cycles as egg donors from January 2003 through December 2009. Twenty-five and thirty-nine women were treated with OCPs and the combined contraceptive vaginal ring, respectively. Statistical analyses were performed using the SigmaStat Software package (Systat, Chicago, IL). Data were analyzed by t or Mann-whitney test and Chi-square of Fisher exact test. Statistical significance was set at p<0.05. Results Prior to gonadotropin initiation, endometrial thickness and serum estradiol were 5.6±2.6 mm and 33.6±19.9 pg/ml in the OCP group and 6.0±2.4 mm and 36.6±24.3 pg/ml in the combined contraceptive vaginal ring group, respectively (p=0.49 and p=0.33). Average serum FSH and LH were 1.7±1.9 and 1.7±2.5 mIU/ml in the OCP group and 1.7±1.6 and 1.2±1.4 mIU/ml in the combined contraceptive vaginal ring group, respectively (p=0.45 and p=0.95). No significant differences were found for gonadotropin requirement, peak estradiol, maximal endometrial thickness, number of oocytes retrieved, number of normally fertilized embryos, number of cryopreserved embryos, or live birth rates. Conclusion The combined contraceptive vaginal ring is effective for HPO axis suppression in egg donor IVF cycles and associated with cycle characteristics similar to those observed with OCP treatment. The combined contraceptive vaginal ring may provide an important advantage over OCPs due to improved patient compliance. PMID:24551576

  9. Active vibration control of a ring-stiffened cylindrical shell in contact with unbounded external fluid and subjected to harmonic disturbance by piezoelectric sensor and actuator

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Yang, Dong-Ho

    2013-09-01

    This paper is concerned with the suppression of vibrations and radiated sound of a ring-stiffened circular cylindrical shell in contact with unbounded external fluid by means of piezoelectric sensors and actuators. The dynamic model of a circular cylindrical shell based on the Sanders shell theory was considered together with a ring stiffener model. The mass and stiffness matrices for a ring stiffener were newly derived in this study and added to the mass and stiffness matrices of the cylindrical shell, respectively. The fluid-added mass matrix, which was derived by using the baffled shell theory, was also added to the mass matrix. Finally, the equations representing the piezoelectric sensor measurement and piezoelectric actuation complete the theoretical model for the addressed problem. The natural vibration characteristics of the ring-stiffened cylindrical shell both in air and in water were investigated both theoretically and experimentally. The theoretical predictions were in good agreement with the experimental results. An active vibration controller which can cope with a harmonic disturbance was designed by considering the modified higher harmonic control, which is, in fact, a band rejection filter. An active vibration control experiment on the submerged cylindrical shell was carried out in a water tank and the digital control system was used. The experimental results showed that both vibrations and radiation sound of the submerged cylindrical shell were suppressed by a pair of piezoelectric sensor and actuator.

  10. Monetary reward suppresses anterior insula activity during social pain

    PubMed Central

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François

    2015-01-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. PMID:25964499

  11. Caerulomycin A Suppresses Immunity by Inhibiting T Cell Activity

    PubMed Central

    Chauhan, Arun; Khatri, Neeraj; Vohra, Rakesh M.; Jolly, Ravinder S.; Agrewala, Javed N.

    2014-01-01

    Background Caerulomycin A (CaeA) is a known antifungal and antibiotic agent. Further, CaeA is reported to induce the expansion of regulatory T cell and prolongs the survival of skin allografts in mouse model of transplantation. In the current study, CaeA was purified and characterized from a novel species of actinomycetes, Actinoalloteichus spitiensis. The CaeA was identified for its novel immunosuppressive property by inhibiting in vitro and in vivo function of T cells. Methods Isolation, purification and characterization of CaeA were performed using High Performance Flash Chromatography (HPFC), NMR and mass spectrometry techniques. In vitro and in vivo T cell studies were conducted in mice using flowcytometry, ELISA and thymidine-[methyl-3H] incorporation. Results CaeA significantly suppressed T cell activation and IFN-γ secretion. Further, it inhibited the T cells function at G1 phase of cell cycle. No apoptosis was noticed by CaeA at a concentration responsible for inducing T cell retardation. Furthermore, the change in the function of B cells but not macrophages was observed. The CaeA as well exhibited substantial inhibitory activity in vivo. Conclusion This study describes for the first time novel in vitro and in vivo immunosuppressive function of CaeA on T cells and B cells. CaeA has enough potential to act as a future immunosuppressive drug. PMID:25286329

  12. Investigation of frequency response of microwave active ring resonator based on ferrite film

    NASA Astrophysics Data System (ADS)

    Martynov, M. I.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2016-11-01

    The complex transmission coefficient of active ring resonators based on ferrite-film delay lines was investigated both theoretically and experimentally. Influence of the parameters of the delay line on the transmission coefficients was investigated. It was shown that the resonant frequencies of the ring depend on the ferrite film thickness and the distance between spin-wave antennae. These dependences give possibility to control the shape of the transmission coefficient that in combination with magnetic tuning provide flexibility for microwave applications.

  13. Cytokine treatment of macrophage suppression of T cell activation.

    PubMed

    Silberman, Daniel; Bucknum, Amanda; Kozlowski, Megan; Matlack, Robin; Riggs, James

    2010-01-01

    High Mphi:T cell ratios suppress the immune response to the retroviral superantigen Mls by IFNgamma-triggered production of the arg- and trp-consuming enzymes iNOS and IDO. Attempts to reverse suppression by treatment with pro-inflammatory cytokines revealed that IL-6 improved the T cell response to Mls and the pro-hematopoietic cyokines IL-3 and GM-CSF increased suppression. GM-CSF treatment increased Mphi expression of CD80, a ligand for the immune suppressive B7H1 and CTLA-4 receptors. These results illustrate potential strategies for reversing the suppression of cell-mediated immunity characteristic of the high Mphi:T cell ratios found in many tumors.

  14. The Suppression of Star Formation by Powerful Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    2012-01-01

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight corre1ation between the mass of the black hole and the mas. of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming ga1axies are usually dust-obscured and are brightest at infrared and submillimeter wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(exp 44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expe11ing the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  15. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation.

  16. The suppression of star formation by powerful active galactic nuclei.

    PubMed

    Page, M J; Symeonidis, M; Vieira, J D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dunlop, J S; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Sánchez Portal, M; Schulz, B; Scott, D; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Viero, M; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2012-05-09

    The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.

  17. Record of the Solar Activity and of Other Geophysical Phenomenons in Tree Ring

    NASA Astrophysics Data System (ADS)

    Rigozo, Nivaor Rodolfo

    1999-01-01

    Tree ring studies are usually used to determine or verify climatic factors which prevail in a given place or region and may cause tree ring width variations. Few studies are dedicated to the geophysical phenomena which may underlie these tree ring width variations. In order to look for periodicities which may be associated to the solar activity and/or to other geophysical phenomena which may influence tree ring growth, a new interactive image analysis method to measure tree ring width was developed and is presented here. This method makes use of a computer and a high resolution flatbed scanner; a program was also developed in Interactive Data Language (IDL 5.0) to study ring digitized images and transform them into time series. The main advantage of this method is the tree ring image interactive analysis without needing complex and high cost instrumentation. Thirty-nine samples were collected: 12 from Concordia - S. C., 9 from Canela - R. S., 14 from Sao Francisco de Paula - R. S., one from Nova Petropolis - R. S., 2 from Sao Martinho da Serra - R. S. e one from Chile. Fit functions are applied to ring width time series to obtain the best long time range trend (growth rate of every tree) curves and are eliminated through a standardization process that gives the tree ring index time series from which is performed spectral analysis by maximum entropy method and iterative regression. The results obtained show periodicities close to 11 yr, 22 yr Hale solar cycles and 5.5 yr for all sampling locations 52 yr and Gleissberg cycles for Concordia - S. C. and Chile samples. El Nino events were also observed with periods around 4 e 7 yr.

  18. Fused-Ring Oxazolopyrrolopyridopyrimidine Systems with Gram-Negative Activity

    PubMed Central

    Chen, Yiyuan; Moloney, Jonathan G.; Christensen, Kirsten E.; Moloney, Mark G.

    2017-01-01

    Fused polyheterocyclic derivatives are available by annulation of a tetramate scaffold, and been shown to have antibacterial activity against a Gram-negative, but not a Gram-positive, bacterial strain. While the activity is not potent, these systems are structurally novel showing, in particular, a high level of polarity, and offer potential for the optimization of antibacterial activity. PMID:28098784

  19. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway.

    PubMed

    Lv, Xiaowen; Qiu, Min; Chen, Deyan; Zheng, Nan; Jin, Yu; Wu, Zhiwei

    2014-09-01

    Enterovirus 71 (EV71) is a member of genus Enterovirus in Picornaviridae family, which is one of the major causative agents for hand, foot and mouth disease (HFMD), and sometimes associated with severe central nervous system diseases in children. Currently there are no effective therapeutic medicines or vaccines for the disease. In this report, we found that apigenin and luteolin, two flavones that differ only in the number of hydroxyl groups could inhibit EV71-mediated cytopathogenic effect (CPE) and EV71 replication with low cytotoxicity. Both molecules also showed inhibitory effect on the viral polyprotein expression. They prevented EV71-induced cell apoptosis, intracellular reactive oxygen species (ROS) generation and cytokines up-regulation. Time-of-drug addition study demonstrated that apigenin and luteolin acted after viral entry. We examined the effect of apigenin and luteolin on 2A(pro) and 3C(pro) activity, two viral proteases responsible for viral polyprotein processing, and found that they showed less inhibitory activity on 2A(pro) or 3C(pro). Further studies demonstrated that apigenin, but not luteolin could interfere with viral IRES activity. Also, apigenin inhibited EV71-induced c-Jun N-terminal kinase (JNK) activation which is critical for viral replication, in contrast to luteolin that did not. This study demonstrated that apigenin may inhibit EV71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. It also provided evidence that one hydroxyl group difference in the B ring between apigenin and luteolin resulted in the distinct antiviral mechanisms. This study will provide the basis for better drug development and further identification of potential drug targets.

  20. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity

    PubMed Central

    Zhang, Xu; Zhou, Youyou; Luo, Zhongling; Zeng, Weiqi; Su, Juan; Peng, Cong; Chen, Xiang

    2016-01-01

    TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma. PMID:27791197

  1. Modeling Extraction of VLF Energy from Localized Ion Ring Beams for Space Based Active Experiments

    NASA Astrophysics Data System (ADS)

    Scales, Wayne; Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid; Mithaiwala, Manish

    2012-07-01

    Waves in the VLF range are of considerable interest in the magnetosphere since they are responsible for transporting energy and momentum and therefore impacting space weather. Ion ring beams can efficiently generate waves in the VLF frequency range between the electron and ion gyro-frequency (Mithaiwala et al., 2010). Generation of VLF waves by infinite extent ion ring beams have been extensively treated for a broad range of space plasma applications. However, ion ring distributions created by chemical release experiments in the ionosphere (Koons and Pongratz, 1981) and those that occur naturally during storms/substorms or solar-wind comet interactions are localized over a spatial extent. This presentation will consider a new computational model for the nonlinear evolution of VLF waves generated by a spatially localized ion ring beam. The model, though quite general, will have application to generation of VLF waves in the radiation belts by localized creation of an ion ring beam. The model includes the convective loss of energy through phenomenological electron-ion collisions, which models nonlinear scattering of electrostatic lower hybrid waves into large group velocity electromagnetic whistler/magnetosonic waves (Ganguli et al., 2010). Therefore the model, though electrostatic, includes critical electromagnetic effects in a computationally efficient fashion. An emphasis is placed on the determining the efficiency of extraction of VLF energy from the ion ring beam due to the spatial localization of the ion ring beam. It is shown that due to the convection of the VLF waves out of the source region, the efficiency of wave energy extraction is greatly enhanced. This is accompanied by a reduction in background and ion ring beam heating. The results will be used to highlight the importance of non-linear scattering to future active experiments in space. Mithaiwala et al. Phys. Plasma, doi.org/10.1063/1.3372842, 2010 Koons and Pongratz, JGR, 1981. Ganguli et al., Phys

  2. Structure-activity relationship studies of 1,7-diheteroarylhepta-1,4,6-trien-3-ones with two different terminal rings in prostate epithelial cell models.

    PubMed

    Wang, Rubing; Zhang, Xiaojie; Chen, Chengsheng; Chen, Guanglin; Sarabia, Cristian; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2017-03-29

    To systematically investigate the structure-activity relationships of 1,7-diheteroarylhepta-1,4,6-trien-3-ones in three human prostate cancer cell models and one human prostate non-neoplastic epithelial cell model, thirty five 1,7-diarylhepta-1,4,6-trien-3-ones with different terminal heteroaromatic rings have been designed for evaluation of their anti-proliferative potency in vitro. These target compounds have been successfully synthesized through two sequential Horner-Wadsworth-Emmons reactions starting from the appropriate aldehydes and tetraethyl (2-oxopropane-1,3-diyl)bis(phosphonate). Their anti-proliferative potency against PC-3, DU-145 and LNCaP human prostate cancer cell lines can be significantly enhanced by the manipulation of the terminal heteroaromatic rings, further demonstrating the utility of 1,7-diarylhepta-1,4,6-trien-3-one as a potential scaffold for the development of anti-prostate cancer agents. The optimal analog 40 is 82-, 67-, and 39-fold more potent than curcumin toward the three prostate cancer cell lines, respectively. The experimental data also reveal that the trienones with two different terminal aromatic rings possess greater potency toward three prostate cancer cell lines, but also have greater capability of suppressing the proliferation of PWR-1E benign human prostate epithelial cells, as compared to the corresponding counterparts with two identical terminal rings and curcumin. The terminal aromatic rings also affect the cell apoptosis perturbation.

  3. Molecular modeling, synthesis, and activity studies of novel biaryl and fused-ring BACE1 inhibitors.

    PubMed

    Chirapu, Srinivas Reddy; Pachaiyappan, Boobalan; Nural, Hikmet F; Cheng, Xin; Yuan, Hongbin; Lankin, David C; Abdul-Hay, Samer O; Thatcher, Gregory R J; Shen, Yong; Kozikowski, Alan P; Petukhov, Pavel A

    2009-01-01

    A series of transition state analogues of beta-secretases 1 and 2 (BACE1, 2) inhibitors containing fused-ring or biaryl moieties were designed computationally to probe the S2 pocket, synthesized, and tested for BACE1 and BACE2 inhibitory activity. It has been shown that unlike the biaryl analogs, the fused-ring moiety is successfully accommodated in the BACE1 binding site resulting in the ligands with excellent inhibitory activity. Ligand 5b reduced 65% of Abeta40 production in N2a cells stably transfected with Swedish human APP.

  4. Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting.

    PubMed

    Serences, John T; Yantis, Steven; Culberson, Andrew; Awh, Edward

    2004-12-01

    The deployment of spatial attention induces retinotopically specific increases in neural activity that occur even before a target stimulus is presented. Although this preparatory activity is thought to prime the attended regions, thereby improving perception and recognition, it is not yet clear whether this activity is a manifestation of signal enhancement at the attended locations or suppression of interference from distracting stimuli (or both). We investigated the functional role of these preparatory shifts by isolating a distractor suppression component of selection. Behavioral data have shown that manipulating the probability that visual distractors will appear modulates distractor suppression without concurrent changes in signal enhancement. In 2 experiments, functional magnetic resonance imaging revealed increased cue-evoked activity in retinotopically specific regions of visual cortex when increased distractor suppression was elicited by a high probability of distractors. This finding directly links cue-evoked preparatory activity in visual cortex with a distractor suppression component of visual selective attention.

  5. Chains, Rings, and Dendrites of Active Colloidal Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Granick, Steve

    2015-03-01

    In order to better understand active polymeric matter, colloidal polymers are imaged, in situ in real time, obtaining not only temporal and spatial information about each ``monomer'' in these living polymers but also about the time-dependent and orientation-dependent correlations between them. Our reversible colloidal polymer system is assembled from self-propelled monomeric Janus particles with dynamic ``plug and play'' self-assembly and programmed direction-specific interactions between the particles. Enabling this, AC voltage induces dipoles on the monomeric Janus particles that link them into chains while also generating active phoretic motility. Unique features of this system relative to conventional Brownian polymers are emphasized.

  6. Cell Phone Ring Suppression and HUD Caller ID: Effectiveness in Reducing Momentary Driver Distraction under Varying Workload Levels

    NASA Astrophysics Data System (ADS)

    Nowakowski, C.; Friedman, D.; Green, P.

    2001-10-01

    The purpose of the current experiment is to provide a preliminary driving simulator assessment of several hands-free design solutions with regard to the task of answering the phone while driving. Specifically, the following questions were examined: (1) Does the location of a caller ID display and the phone buttons (two HUD (Head Up Display) locations vs. phone cradle) affect either the time to answer the phone or driving performance; (2) Does the presence or absence of a ring affect either the time to answer the phone or driving performance; (3) Does increased driving workload (visual demand) affect either the time to answer the phone or driving performance; (4) What were the initial driver reactions to a HUD-based call timer.

  7. Why the White Bear is Still There: Electrophysiological Evidence for Ironic Semantic Activation during Thought Suppression

    PubMed Central

    Giuliano, Ryan J.; Wicha, Nicole Y. Y.

    2010-01-01

    Much research has focused on the paradoxical effects of thought suppression, leading to the viewpoint that increases in unwanted thoughts are due to an ironic monitoring process which increases the activation of the very thoughts one is trying to rid from consciousness. However, it remains unclear from behavioral findings whether suppressed thoughts become more accessible during the act of suppression. In the current study, event-related potentials were recorded while participants suppressed or expressed thoughts of a focus word during a simple lexical decision task. Modulations in the N400 component reported here demonstrate the paradoxical effects occurring at the semantic level during suppression, as well as some evidence for the rebound effect after suppression periods. Interestingly, semantic activation was greater for focus words during suppression than expression, despite differences in the N1 window suggesting that expression elicited greater perceptual processing than suppression. Results provide electrophysiological evidence for the Ironic Process model and support recent claims of asymmetric network activation during thought suppression. PMID:20044982

  8. Development and Flight Test of an Active Flutter Suppression System for the F-4F with Stores. Part I. Design of the Active Flutter Suppression System.

    DTIC Science & Technology

    1982-09-01

    extensive research programs accompanied by wind tunnel tests in the field of active flutter and elastic mode suppression. In 1975, MBB conducted a successful...Pro- gram," Paper presented at the 51th SMP of AGARD, Athens 13-18 April 1980. 6. 0. Sensburg, J. Becker, H. Honlinger, "Active Control of Flutter and

  9. Mechanisms underlying the active self-assembly of microtubule rings and spools

    DOE PAGES

    VanDelinder, Virginia; Brener, Stephanie; Bachand, George D.

    2016-02-04

    Here, active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly.more » Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.« less

  10. Mechanisms underlying the active self-assembly of microtubule rings and spools

    SciTech Connect

    VanDelinder, Virginia; Brener, Stephanie; Bachand, George D.

    2016-02-04

    Here, active self-assembly offers a powerful route for the creation of dynamic multiscale structures that are presently inaccessible with standard microfabrication techniques. One such system uses the translation of microtubule filaments by surface-tethered kinesin to actively assemble nanocomposites with bundle, ring, and spool morphologies. Attempts to observe mechanisms involved in this active assembly system have been hampered by experimental difficulties with performing observation during buffer exchange and photodamage from fluorescent excitation. In the present work, we used a custom microfluidic device to remove these limitations and directly study ring/spool formation, including the earliest events (nucleation) that drive subsequent nanocomposite assembly. Three distinct formation events were observed: pinning, collisions, and induced curvature. Of these three, collisions accounted for the majority of event leading to ring/spool formation, while the rate of pinning was shown to be dependent on the amount of photodamage in the system. We further showed that formation mechanism directly affects the diameter and rotation direction of the resultant rings and spools. Overall, the fundamental understanding described in this work provides a foundation by which the properties of motor-driven, actively assembled nanocomposites may be tailored toward specific applications.

  11. Structure-activity relationships among the kanamycin aminoglycosides: role of ring I hydroxyl and amino groups.

    PubMed

    Salian, Sumantha; Matt, Tanja; Akbergenov, Rashid; Harish, Shinde; Meyer, Martin; Duscha, Stefan; Shcherbakov, Dmitri; Bernet, Bruno B; Vasella, Andrea; Westhof, Eric; Böttger, Erik C

    2012-12-01

    The kanamycins form an important subgroup of the 4,6-disubstituted 2-deoxystreptamine aminoglycoside antibiotics, comprising kanamycin A, kanamycin B, tobramycin, and dibekacin. These compounds interfere with protein synthesis by targeting the ribosomal decoding A site, and they differ in the numbers and locations of amino and hydroxy groups of the glucopyranosyl moiety (ring I). We synthesized kanamycin analogues characterized by subtle variations of the 2' and 6' substituents of ring I. The functional activities of the kanamycins and the synthesized analogues were investigated (i) in cell-free translation assays on wild-type and mutant bacterial ribosomes to study drug-target interaction, (ii) in MIC assays to assess antibacterial activity, and (iii) in rabbit reticulocyte translation assays to determine activity on eukaryotic ribosomes. Position 2' forms an intramolecular H bond with O5 of ring II, helping the relative orientations of the two rings with respect to each other. This bond becomes critical for drug activity when a 6'-OH substituent is present.

  12. Report on a Cooperative Programme on Active Flutter Suppression,

    DTIC Science & Technology

    1980-08-01

    assistance to member nations for the purpose of increasing their scientific and technical potential ; - Recommending effective ways for the member nations to ...experience gained in the above-mentioned wind tunnel tests pointed the way to further improve- ments that could be made in the flutter suppression system...console at Northrop’s Hawthorne facility prior to test entry. The wind tunnel tests were performed in September-October 1979 at the NASA Langley Center

  13. Wavelength-tunable actively mode-locked erbium-doped fiber ring laser using a distributed feedback semiconductor laser as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-07-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a distributed feedback semiconductor laser as an intensity mode locker and a tunable optical filter. Very stable optical pulse trains at gigabit repetition rates were generated using harmonica mode locking. The supermode noise was suppressed to 60 dB below the signal level and the root-mean-square timing jitter (0.45 kHz-1 MHz) was found to be about 1% of the pulse duration. A continuous wavelength tuning range of 1.8 nm was achieved by changing the semiconductor laser temperature from 11.4 to 30 °C.

  14. Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator.

    PubMed

    Cuadrado-Laborde, C; Bello-Jiménez, M; Díez, A; Cruz, J L; Andrés, M V

    2014-01-01

    We demonstrate low-frequency active mode locking of an erbium-doped all-fiber ring laser. As the mode locker, we used a new in-fiber bandpass acousto-optic modulator showing 74% modulation depth, 3.7 dB power insertion losses, 4.5 nm of optical bandwidth, and 20 dB of nonresonant light suppression. The laser generates 330 ps mode-locked pulses over a 10 ns pedestal, at a 1.538 MHz frequency, with 130 mW of pump power.

  15. Design and experimental validation of a flutter suppression controller for the active flexible wing

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1992-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and extensive simulation based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite modeling errors in predicted flutter dynamic pressure and flutter frequency. The flutter suppression controller was also successfully operated in combination with another controller to perform flutter suppression during rapid rolling maneuvers.

  16. Flutter suppression for the Active Flexible Wing - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Srinathkumar, S.

    1992-01-01

    The synthesis and experimental validation of a control law for an active flutter suppression system for the Active Flexible Wing wind-tunnel model is presented. The design was accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach relied on a fundamental understanding of the flutter mechanism to formulate understanding of the flutter mechanism to formulate a simple control law structure. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in the design model. The flutter suppression controller was also successfully operated in combination with a rolling maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  17. Helicopter air resonance modeling and suppression using active control

    NASA Technical Reports Server (NTRS)

    Takahashi, M. D.; Friedmann, P. P.

    1991-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. Using this mathematical model, a nominal configuration is selected with an air resonance instability throughout most of its flight envelope. A multivariable compensator is then designed using two swashplate inputs and a single-body roll rate measurement. The controller design is based on the linear quadratic Gaussian technique and the loop transfer recovery method. The controller is shown to suppress the air resonance instability throughout a wide range of helicopter loading conditions and forward flight speeds.

  18. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells.

    PubMed

    Parker, Katherine H; Sinha, Pratima; Horn, Lucas A; Clements, Virginia K; Yang, Huan; Li, Jianhua; Tracey, Kevin J; Ostrand-Rosenberg, Suzanne

    2014-10-15

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSCs may define an element of the pathogenic inflammatory processes that drives immune escape. The secreted alarmin HMGB1 is a proinflammatory partner, inducer, and chaperone for many proinflammatory molecules that MDSCs develop. Therefore, in this study, we examined HMGB1 as a potential regulator of MDSCs. In murine tumor systems, HMGB1 was ubiquitous in the tumor microenvironment, activating the NF-κB signal transduction pathway in MDSCs and regulating their quantity and quality. We found that HMGB1 promotes the development of MDSCs from bone marrow progenitor cells, contributing to their ability to suppress antigen-driven activation of CD4(+) and CD8(+) T cells. Furthermore, HMGB1 increased MDSC-mediated production of IL-10, enhanced crosstalk between MDSCs and macrophages, and facilitated the ability of MDSCs to downregulate expression of the T-cell homing receptor L-selectin. Overall, our results revealed a pivotal role for HMGB1 in the development and cancerous contributions of MDSCs.

  19. Neuroligin-1 Knockdown Suppresses Seizure Activity by Regulating Neuronal Hyperexcitability.

    PubMed

    Fang, Min; Wei, Jin-Lai; Tang, Bo; Liu, Jing; Chen, Ling; Tang, Zhao-Hua; Luo, Jing; Chen, Guo-Jun; Wang, Xue-Feng

    2016-01-01

    Abnormally synchronized synaptic transmission in the brain leads to epilepsy. Neuroligin-1 (NL1) is a synaptic cell adhesion molecule localized at excitatory synapses. NL1 modulates synaptic transmission and determines the properties of neuronal networks in the mammalian central nervous system. We showed that the expression of NL1 and its binding partner neurexin-1β was increased in temporal lobe epileptic foci in patients and lithium-pilocarpine-treated epileptic rats. We investigated electrophysiological and behavioral changes in epileptic rats after lentivirally mediated NL1 knockdown in the hippocampus to determine whether NL1 suppression prevented seizures and, if so, to explore the probable underlying mechanisms. Our behavioral studies revealed that NL1 knockdown in epileptic rats reduced seizure severity and increased seizure latency. Whole-cell patch-clamp recordings of CA1 pyramidal neurons in hippocampal slices from NL1 knockdown epileptic rats revealed a decrease in spontaneous action potential frequency and a decrease in miniature excitatory postsynaptic current (mEPSC) frequency but not amplitude. The amplitude of N-methyl-D-aspartate receptor (NMDAR)-dependent EPSCs was also selectively decreased. Notably, NL1 knockdown reduced total NMDAR1 expression and the surface/total ratio in the hippocampus of epileptic rats. Taken together, these data indicate that NL1 knockdown in epileptic rats may reduce the frequency and severity of seizures and suppress neuronal hyperexcitability via changes in postsynaptic NMDARs.

  20. Semisynthesis and insecticidal activity of some fraxinellone derivatives modified in the B ring.

    PubMed

    Guo, Yong; Qu, Huan; Zhi, Xiaoyan; Yu, Xiang; Yang, Chun; Xu, Hui

    2013-12-11

    A series of novel fraxinellone derivatives modified at the C-1 or C-8 position in the B ring were prepared as insecticidal agents against the pre-third-instar larvae of oriental armyworm, Mythimna separata Walker at 1 mg/mL. Five key steric configurations of compounds 2, 3, and 8f,g,j were further determined by single-crystal X-ray diffraction. It was found that the kinds and the amount of the reduction products of fraxinellone were related to the molar ratio between the reduction agent Red-Al and the substrate fraxinellone. Among all of the derivatives, compounds 2 and 8i,j,o displayed more promising insecticidal activity than their precursors fraxinellone and toosendanin. The preliminary structure-activity relationships revealed that the lactone (B-ring) of fraxinellone contributed to the observed insecticidal activity; the double bond at the C-2 position of fraxinellone was not necessary for the insecticidal activity; conversion of the oxygen atom of carbonyl group on the lactone of fraxinellone to a sulfur one does not improve the insecticidal activity; introduction of electron-withdrawing groups on the phenyl ring of 8f, to the benzoyloxy series, could result in more potent compounds.

  1. Influence of ring size on the cognition-enhancing activity of DM235 and MN19, two potent nootropic drugs.

    PubMed

    Guandalini, L; Martini, E; Di Cesare Mannelli, L; Dei, S; Manetti, D; Scapecchi, S; Teodori, E; Ghelardini, C; Romanelli, M N

    2012-03-01

    A series of analogs of DM235 and MN19, characterized by rings with different size, have been prepared and evaluated for their nootropic activity in the mouse passive-avoidance test. It was found that the optimal ring size for the analogs of DM235, showing endocyclic both amidic groups, is 6 or 7 atoms. For the compounds structurally related to MN19, carrying an exocyclic amide group, the piperidine ring is the moiety which gives the most interesting compounds.

  2. Active Flutter Suppression Using Cooperative, High Frequency, Dynamic-Resonant Aero-Effectors

    DTIC Science & Technology

    2006-12-13

    Final 06/15/03-09/14/06 4. TITLE AND SUBTITLE Sa . CONTRACT NUMBER Active Flutter Suppression Using Cooperative, High Frequency, Dynamic Resonant Aero...maneuvering performance. Conventional active vibration control and flutter suppression systems are servo -hydraulic. Conventional servo -hydraulic...technology is burdened by a set of undesirable characteristics that effectively restrict their use to large aircraft. The servo -hydraulic based systems have

  3. Suppression of Active-Region CME Production by the Presence of Other Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, David; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor

    2009-01-01

    From the SOHO mission s data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region s total magnetic flux), and (2) a gauge of the active region s free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region s expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region s flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

  4. Idelalisib and caffeine reduce suppression of T cell responses mediated by activated chronic lymphocytic leukemia cells

    PubMed Central

    Hock, Barry D.; MacPherson, Sean A.; McKenzie, Judith L.

    2017-01-01

    Chronic lymphocytic leukemia (CLL) is associated with T cell dysfunction. Activated CLL cells are found within the lymphoid tumor micro-environment and overcoming immuno-suppression induced by these cells may improve anti-CLL immune responses. However, the mechanisms by which activated CLL cells inhibit T cell responses, and reagents targeting such mechanisms have not been identified. Here we demonstrate that the ability of in vitro activated CLL cells to suppress T cell proliferation is not reversed by the presence of ecto-nuclease inhibitors or blockade of IL-10, PD-1 and CTLA-4 pathways. Caffeine is both an adenosine receptor antagonist and a phosphatidylinositol-3-kinase, p110δ (PI3Kδ) inhibitor and, at physiologically relevant levels, significantly reversed suppression. Significant reversal of suppression was also observed with the PI3Kδ specific inhibitor Idelalisib but not with adenosine receptor specific antagonists. Furthermore, addition of caffeine or Idelalisib to activated CLL cells significantly inhibited phosphorylation of AKT, a downstream kinase of PI3K, but did not affect CLL viability. These results suggest that caffeine, in common with Idelalisib, reduces the immuno-suppressive activity of activated CLL cells by inhibiting PI3Kδ. These findings raise the possibility that these compounds may provide a useful therapeutic adjunct by reducing immuno-suppression within the tumor micro-environment of CLL. PMID:28257435

  5. Active suppression of an 'apparent shock induced instability'

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Tiffany, Sherwood H.; Bardusch, Richard E.

    1987-01-01

    A control law was designed, using constrained optimization techniques, to suppress an apparent shock induced instability of a sweptback, aeroelastic wing with supercritical airfoil sections. The controller design was based on an approximate linear plant representation obtained using forced response data from a previous entry in the Langley Transonic Dynamics tunnel. During a second tunnel entry, it was found that there was not an instability in the uncontrolled case but there was a region of very low damping (high dynamic response) near a Mach number of 0.92. Controller performance was obtained during the test in near real-time and revealed that the controller attenuated the open-loop response and provided a small but significant amount of damping over a Mach number range from M = 0.70 to M = 0.92.

  6. Oscillation regimes of a solid-state ring laser with active beat-note stabilization: From a chaotic device to a ring-laser gyroscope

    SciTech Connect

    Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Lariontsev, Evguenii

    2007-08-15

    We report an experimental and theoretical study of a rotating diode-pumped Nd-YAG ring laser with active beat-note stabilization. Our experimental setup is described in the usual Maxwell-Bloch formalism. We analytically derive a stability condition and some frequency response characteristics for the solid-state ring-laser gyroscope, illustrating the important role of mode coupling effects on the dynamics of such a device. Experimental data are presented and compared with the theory on the basis of realistic laser parameters, showing very good agreement. Our results illustrate the duality between the very rich nonlinear dynamics of the diode-pumped solid-state ring laser (including chaotic behavior) and the possibility to obtain a very stable beat note, resulting in a potentially new kind of rotation sensor.

  7. Rotation sensing with Er3+-doped active ring resonator slow light structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqin

    2016-10-01

    An optical gyroscope, which is constituted by Er3+-doped active ring resonator (EDARR) slow light structure, is presented for the first time. The principle of improving the sensitivity of the detection of angular velocity is analysed in detail. The expression of the rotation phase difference of EDARR between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in the cavity is far greater than the input light power. We designed an experimental scheme of Er3+-doped active ring resonator slow light system. Two additional bias phases ϕb = ±π/2 were introduced in the optical path, by recording the light intensity difference ? and I0 at the resonant frequency ?, the input angular velocity can be obtained. The slow light structure based on EDARR can enhance the sensitivity of the detection of the angular velocity by three orders of magnitude.

  8. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    NASA Astrophysics Data System (ADS)

    Grishin, S. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2014-02-01

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.

  9. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    SciTech Connect

    Grishin, S. V. Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2014-02-07

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.

  10. Feasibility of an electrodermal activity ring prototype as a research tool.

    PubMed

    Torniainen, Jari; Cowley, Benjamin; Henelius, Andreas; Lukander, Kristian; Pakarinen, Satu

    2015-01-01

    Electrodermal activity is an indicator of sympathetic activation and a useful tool for investigating psychological and physiological arousal. Novel wearable skin conductivity sensors offer portable low-cost solutions for long-term monitoring. In this article we compare the similarity of signals between a prototype of the wearable Moodmetric EDA Ring and a laboratory-grade skin conductance sensor in a psychophysiological experiment. The similarity of the signals was estimated by calculating the cosine distance between phasic features extracted from decomposed signals. The similarity was on average 83.3% ± 16.4%. The compound error of the decomposition process was also investigated and no systematic bias was observed towards either device. We conclude that the prototype ring is a promising device for ecologically valid field studies.

  11. D-ring modified novel isosteviol derivatives: design, synthesis and cytotoxic activity evaluation.

    PubMed

    Zhang, Tao; Lu, Li-Hui; Liu, Hao; Wang, Jun-Wei; Wang, Rui-Xue; Zhang, Yun-Xiao; Tao, Jing-Chao

    2012-09-15

    A series of polyhydric, amino alcohol and tricyclic derivatives were facilely synthesized by D-ring modification of isosteviol. These compounds were screened for their cytotoxic activities against four human tumor cell lines in vitro. Among them, the 15-α-aminomethyl-16-β-hydroxyl isosteviol 23 exhibits significant cytotoxicity superior to the positive control (cisplatin) against EC9706, PC-3 and HCT-116 cell lines.

  12. Dissipative soliton generation in an active ring resonator based on magnonic quasicrystal with Fibonacci type structure

    NASA Astrophysics Data System (ADS)

    Grishin, S. V.; Beginin, E. N.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2013-07-01

    This study reports on the experimental investigations of a magnetostatic surface wave (MSSW) propagation in a magnonic quasicrystal (MQC) with Fibonacci type structure. It is shown that such structure has a greater number of band gaps and narrower pass bands located between them than a periodic structure. These features of the MQC and three-wave decay of the MSSW are used in a MQC active ring resonator for the eigenmode selection and dissipative soliton self-generation.

  13. A 4500 year Southern Hemisphere record of ENSO activity from kauri tree rings

    NASA Astrophysics Data System (ADS)

    Fowler, Anthony; Boswijk, Gretel; Lorrey, Andrew

    2013-04-01

    Kauri (Agathis australis (D. Don) Lindl.) is a long-lived closed-canopy emergent conifer endemic to northern New Zealand. Its clear annual rings carry a regional-scale climate signal which is amplified by pooling data across the modern growth range. Annual rings are predominantly laid down in September through December, coincident with El Niño and La Niña events peaking and with the strongest El Niño - Southern Oscillation (ENSO) teleconnection to New Zealand. Statistical analyses indicate that ENSO was the dominant 20th century driver of inter-annual variability of kauri growth with El Niño and La Niña events usually associated with wide and narrow tree rings respectively. A consequence is that the waxing and waning of ENSO activity through time is registered in kauri master tree-ring chronologies as evolving time series variance (variance increases during ENSO active periods). A multi-millennial master kauri tree-ring chronology has been built from samples extracted from living trees, historic building timbers, logging relics, and wood preserved in swamps. Recent work has extended the chronology to 2489 BCE and has increased sample depth to a minimum of nine trees from 1589 BCE (to 2002 CE). We describe this chronology and critically evaluate the utility of its running variance as a proxy for ENSO activity and/or regional teleconnection changes. Issues related to signal contamination, associated with complex evolving sample mix and depth, are highlighted. Inferred changes in past ENSO activity and/or teleconnections are related to plausible climate drivers (solar activity, volcanism, and global warming). In line with multi-proxy ENSO studies, our results indicate increasing ENSO activity as the world has warmed over the last 500 years or so, with superimposed quasi-periodic multi-decadal oscillations. We also find evidence of decadal-scale spectral features emerging at times of high chronology variance, consistent with the results of wavelet analysis of 20th

  14. Suppression of newborn natural killer cell activity by prostaglandin E2

    SciTech Connect

    Milch, P.O.; Salvatore, W.; Luft, B.; Baker, D.A.

    1988-10-01

    The effect of prostaglandin E2 on natural killer cell activity of cord blood was examined. Natural killer cell activity, determined by chromium 51 release, was significantly reduced after prostaglandin E2 (1 microgram/ml) treatment. Prostaglandin E2 has been found to enhance the cellular spread of herpesvirus. Thus prostaglandins may enhance viral infections indirectly by suppressing natural killer cell activity.

  15. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins.

    PubMed

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D; Yan, Chunhong

    2014-03-28

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer.

  16. Active vertical tail buffeting suppression based on macro fiber composites

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  17. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  18. A role for chloride in the suppressive effect of acetylcholine on afferent vestibular activity.

    PubMed

    Pantoja, A M; Holt, J C; Guth, P S

    1997-10-01

    Afferents of the frog semicircular canal (SCC) respond to acetylcholine (ACh) application (0.3-1.0 mM) with a facilitation of their activity while frog saccular afferents respond with suppression (Guth et al., 1994). All recordings are of resting (i.e., non-stimulated) multiunit activity as previously reported (Guth et al., 1994). Substitution of 80% of external chloride (Cl-) by large, poorly permeant anions of different structures (isethionate, methanesulfonate, methylsulfate, and gluconate) reduced the suppressive effect of ACh in the frog saccular afferents. This substitution did not affect the facilitatory response of SCC afferents to ACh. Chloride channel blockers were also used to test further whether Cl- is involved in the ACh suppressive effect. These included: niflumic and flufenamic acids, picrotoxin, 5-nitro-2-(-3-phenylpropylamino)benzoic acid (NPPB), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). As with the Cl- substitutions, all of these agents reduced the suppressive response to ACh in the saccule, but not the facilitatory response seen in the SCC. The suppressive effect of ACh on saccular afferents is considered to be due to activation of a nicotinic-like receptor (Guth et al., 1994; Guth and Norris, 1996). Taking into account the effects of both Cl- substitutions and Cl- channel blockers, we conclude that changes in Cl- availability influence the suppressive effect of ACh and that therefore Cl- may be involved in this effect.

  19. Estimate of Dose and Residual Activity in the SNS Ring Collimation Straight

    NASA Astrophysics Data System (ADS)

    Ludewig, H.; Simos, N.; Davino, D.; Cousineau, S.; Catalan-Lasheras, N.; Brodowski, J.; Tuozzolo, J.; Longo, C.; Mullany, B.; Raparia, D.

    2003-12-01

    The collimation system in the SNS ring includes a two-stage collimator consisting of a halo scraper and an appropriate fixed aperture collimator. This unit is placed between the first quadru-pole and the first doublet in the collimation straight section of the ring. The entire structure is surrounded by an outer shield structure. The downstream dose to the doublet and the attached corrector magnet will be estimated for normal operating conditions. In addition, the activities of cooling water, tunnel air, and dose to cables will be estimated. The dose at the flange locations will be estimated following machine shutdown. Finally, the implied dose to surroundings during the removal of an exposed collimator will be made.

  20. Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation

    PubMed Central

    Kubota, Shunsuke; Kurihara, Toshihide; Ebinuma, Mari; Kubota, Miyuki; Yuki, Kenya; Sasaki, Mariko; Noda, Kousuke; Ozawa, Yoko; Oike, Yuichi; Ishida, Susumu; Tsubota, Kazuo

    2010-01-01

    Light damage to the retina accelerates retinal degeneration in human diseases and rodent models. Recently, the polyphenolic phytoalexin resveratrol has been shown to exert various bioactivities in addition to its classical antioxidant property. In the present study, we investigated the effect of resveratrol on light-induced retinal degeneration together with its underlying molecular mechanisms. BALB/c mice with light exposure (5000-lux white light for 3 hours) were orally pretreated with resveratrol at a dose of 50 mg/kg for 5 days. Retinal damage was evaluated by TdT-mediated dUTP nick-end labeling, outer nuclear layer morphometry, and electroretinography. Administration of resveratrol to mice with light exposure led to a significant suppression of light-induced pathological parameters, including TdT-mediated dUTP nick-end labeling-positive retinal cells, outer nuclear layer thinning, and electroretinography changes. To clarify the underlying molecular mechanisms, the nuclear translocation of activator protein−1 subunit c-fos was evaluated by enzyme-linked immunosorbent assay, and the retinal activity of sirtuin 1 was measured by deacetylase fluorometric assay. Retinal activator protein-1 activation, up-regulated following light exposure, was significantly reduced by application of resveratrol. In parallel, retinal sirtuin 1 activity, reduced in animals with light damage, was significantly augmented by resveratrol treatment. Our data suggest the potential use of resveratrol as a therapeutic agent to prevent retinal degeneration related to light damage. PMID:20709795

  1. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity.

    PubMed

    Midorikawa, Ryosuke; Takei, Yosuke; Hirokawa, Nobutaka

    2006-04-21

    In brain development, apoptosis is a physiological process that controls the final numbers of neurons. Here, we report that the activity-dependent prevention of apoptosis in juvenile neurons is regulated by kinesin superfamily protein 4 (KIF4), a microtubule-based molecular motor. The C-terminal domain of KIF4 is a module that suppresses the activity of poly (ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme known to maintain cell homeostasis by repairing DNA and serving as a transcriptional regulator. When neurons are stimulated by membrane depolarization, calcium signaling mediated by CaMKII induces dissociation of KIF4 from PARP-1, resulting in upregulation of PARP-1 activity, which supports neuron survival. After dissociation from PARP-1, KIF4 enters into the cytoplasm from the nucleus and moves to the distal part of neurites in a microtubule-dependent manner. We suggested that KIF4 controls the activity-dependent survival of postmitotic neurons by regulating PARP-1 activity in brain development.

  2. Tree-ring Oxygen Isotope Records of Climate Modes Influencing North Atlantic Tropical Cyclone Activity

    NASA Astrophysics Data System (ADS)

    Mora, C. I.; Miller, D. L.; Grissino-Mayer, H. D.; Kocis, W. N.; Lewis, D. B.

    2006-12-01

    The relatively short instrumental record hinders our ability to discern the linkages between low frequency modes of climate variability and tropical cyclone activity and to differentiate natural versus anthropogenic components of these trends. The development of biological proxies for tropical cyclone activity and climate provides a basis for evaluation of these linkages over much longer time frames. The oxygen isotope composition of tree-ring cellulose, sampled at high resolution (seasonal or better), provides a new proxy for tropical cyclone activity that preserves a concurrent isotope time series reflecting the influence of climate variability. This proxy archive potentially extends many centuries beyond the instrumental and historical (documentary) record of climate and tropical cyclone activity. Isotope time series for longleaf pines (Pinus palustris Mill.) in southern Georgia and South Carolina preserve distinct tropical cyclone histories, yet similar, long term trends in cellulose δ 18O compositions. The isotope time series correlate to various climate modes proposed to impact hurricane formation and frequency. Tree-ring cellulose δ 18O values at the Georgia study site show a significant negative correlation with AMO indices from 1875 to about 1950, and a weaker, positive correlation from about 1965 to 1990. The "crossover" parallels a change in the predominant ontogeny of North Atlantic tropical cyclones from tropical-only to baroclinically-enhanced hurricanes. The intervening 1950s is marked by greater correspondence to ENSO indices. Reduced seasonality in the isotope record (i.e., the difference between earlywood and latewood δ 18O values) corresponds to warm phases of the PDO. An isotope series for 1580 to 1650 suggests little tropical cyclone activity coinciding with a period (1560-1625) of severe drought in the African Sahel. Although preliminary, these results suggest that tree-ring oxygen isotope compositions are sensitive to changes in climate

  3. Suppression of Helicobacter pylori urease activity by sucralfate and sulglycotide.

    PubMed

    Slomiany, B L; Piotrowski, J; Slomiany, A

    1997-06-01

    The effect of gastroprotective agents, sucralfate and sulglycotide, on the in vitro activity of H. pylori urease was investigated. The bacterium was subjected to sonication, centrifuged, and the supernatant used as an enzyme source. The assays revealed that the rate of urea degradation was proportional to enzyme protein up to 100 micrograms and remained constant with time for 10 min. Introduction of sucralfate or sulglycotide to the assay system led to the reduction in the rate of ammonia production. With both drugs the optimal inhibition was attained at 10 micrograms/ml, at which dose a 63.1% decrease in urease activity occurred with sucralfate and a 70.2% inhibition was obtained with sulglycotide. The findings demonstrate that the inhibitory action of sucralfate and sulglycotide on H. pylori urease activity may be of value in the treatment of gastric disease associated with H. pylori infection.

  4. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  5. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  6. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    PubMed

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression.

  7. Small Molecules that Suppress IGF-Activated Prostate Cancers

    DTIC Science & Technology

    2006-04-01

    leptin that stimulates appetite (32). Neuropeptide Y inhibitors are expected to treat feeding disor- ders and heart diseases (33). Adipogenesis profiling...regulatory element binding protein (SREBP), a transcription factor that activates specific genes involved in cholesterol synthesis, endocytosis of low...density lipoproteins, and the synthesis of both saturated and unsaturated fatty acids. Our results suggest a novel crosstalk between fat/ cholesterol

  8. Physical association with WWOX suppresses c-Jun transcriptional activity.

    PubMed

    Gaudio, Eugenio; Palamarchuk, Alexey; Palumbo, Tiziana; Trapasso, Francesco; Pekarsky, Yuri; Croce, Carlo M; Aqeilan, Rami I

    2006-12-15

    WWOX is a tumor suppressor that functions as a modular protein partner of transcription factors. WWOX contains two WW domains that mediate protein-protein interactions. In this report, we show that WWOX, via its first WW domain, specifically associates with the proline-rich motif of c-Jun proto-oncogene. Our data show that phosphorylation of c-Jun caused by overexpression of mitogen-activated protein kinase kinase kinase 1 (Mekk1), an upstream activator of c-Jun, enhances the interaction of c-Jun with WWOX. Furthermore, exposure of HaCaT keratinocytes to UVC radiation resulted in the association of endogenous WWOX and c-Jun. The WWOX-c-Jun complexes mainly occur in the cytoplasm. Expression of WWOX attenuates the ability of MEKK1 to increase the activity of a c-Jun-driven activating protein-1 (AP-1)-luciferase reporter plasmid. In contrast, a point mutation in the first WW domain of WWOX has no effect on transactivation of AP-1 when coexpressed with c-Jun protein. Our findings reveal a novel functional cross-talk between c-Jun transcription factor and WWOX tumor suppressor protein.

  9. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  10. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway

    PubMed Central

    Zhu, Yaqin; Tong, Xing; Li, Kexue; Bai, Hui; Li, Xiaoyu; Ben, Jingjing; Zhang, Hanwen; Yang, Qing; Chen, Qi

    2016-01-01

    Background and Purpose It has been accepted that AMPK (Adenosine monophosphate–activated protein kinase) activation exhibits many beneficial effects on glucolipid metabolism. Lysophosphatidylcholine (LPC) is an important lysophospholipid which can improve blood glucose levels in diabetic mice and attenuate inflammation by activating AMPK signal pathway in macrophages. Synthetic alkylphospholipids (ALPs), such as miltefosine, is used as an alternate of LPC for the clinical application. Here, we investigated whether miltefosine could have an impact on hepatic steatosis and related metabolic disorders. Experimental Approach Mice were fed with high fat diet (HFD) for 16 weeks to generate an obese model. Next, the obese mice were randomly divided into three groups: saline-treated and miltefosine-treated (2.5 or 5 mg/kg/d) groups. Miltefosine was intraperitoneally administrated into mice for additional 4 weeks plus HFD treatment. Key Results It was shown that miltefosine treatment could substantially improve glucose metabolism, prevented hepatic lipid accumulation, and inhibited liver inflammation in HFD-fed mice by activating AMPK signal pathway. In vitro, miltefosine stimulated AMPKα phosphorylation both in time and dose dependent manner and decreased lipid accumulation in liver cells. When a specific AMPK inhibitor compound C was used to treat mice, the antagonistic effects of miltefosine on HFD-induced mouse hyperlipidaemia and liver steatosis were abolished. Treatment with miltefosine also dramatically inhibited the HFD-induced liver inflammation in mice. Conclusions and Implications Here we demonstrated that miltefosine might be a new activator of AMPK signal pathway in vivo and in vitro and be useful for treatment of hepatic steatosis and related metabolic disorders. PMID:27681040

  11. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future

    PubMed Central

    2017-01-01

    Mu suppression studies have been widely used to infer the activity of the human mirror neuron system (MNS) in a number of processes, ranging from action understanding, language, empathy and the development of autism spectrum disorders (ASDs). Although mu suppression is enjoying a resurgence of interest, it has a long history. This review aimed to revisit mu's past, and examine its recent use to investigate MNS involvement in language, social processes and ASDs. Mu suppression studies have largely failed to produce robust evidence for the role of the MNS in these domains. Several key potential shortcomings with the use and interpretation of mu suppression, documented in the older literature and highlighted by more recent reports, are explored here.

  12. Ring closure activates yeast γTuRC for species-specific microtubule nucleation

    PubMed Central

    Kollman, Justin M.; Greenberg, Charles H.; Li, Sam; Moritz, Michelle; Zelter, Alex; Fong, Kimberly K.; Fernandez, Jose-Jesus; Sali, Andrej; Kilmartin, John; Davis, Trisha N.; Agard, David A.

    2014-01-01

    The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in cells. γTuRC is assembled from repeating γ-tubulin small complex (γTuSC) subunits and is thought to function as a template by presenting a γ-tubulin ring that mimics microtubule geometry. However, a previous yeast γTuRC structure showed γTuSC in an open conformation that prevents matching to microtubule symmetry. By contrast, we show here that γ-tubulin complexes are in a closed conformation when attached to microtubules. To confirm its functional importance we trapped the closed state and determined its structure, showing that the γ-tubulin ring precisely matches microtubule symmetry and providing detailed insight into γTuRC architecture. Importantly, the closed state is a stronger nucleator, suggesting this conformational switch may allosterically control γTuRC activity. Finally, we demonstrate that γTuRCs have a profound preference for tubulin from the same species. PMID:25599398

  13. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells.

    PubMed

    Liu, Lucy; Gaboriaud, Nicolas; Vougogianopoulou, Konstantina; Tian, Yan; Wu, Jun; Wen, Wei; Skaltsounis, Leandros; Jove, Richard

    2014-02-01

    Janus kinase (JAK) and Src kinase are the two major tyrosine kinase families upstream of signal transducer and activator of transcription (STAT). Among the seven STAT family proteins, STAT3 is constitutively activated in many diverse cancers. Upon activation, JAK and Src kinases phosphorylate STAT3, and thereby promote cell growth and survival. MLS-2384 is a novel 6-bromoindirubin derivative with a bromo-group at the 6-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. In this study, we investigated the kinase inhibitory activity and anticancer activity of MLS-2384. Our data from in vitro kinase assays, cell viability analyses, western blotting analyses, and animal model studies, demonstrate that MLS-2384 is a dual JAK/Src kinase inhibitor, and suppresses growth of various human cancer cells, such as prostate, breast, skin, ovarian, lung, and liver. Consistent with the inactivation of JAK and Src kinases, phosphorylation of STAT3 was inhibited in a dose-dependent manner in the cancer cells treated with MLS-2384. STAT3 downstream proteins involved in cell proliferation and survival, such as c-Myc and Mcl-1, are downregulated by MLS-2384 in prostate cancer cells, whereas survivin is downregulated in A2058 cells. In these two cancer cell lines, PARP is cleaved, indicating that MLS-2384 induces apoptosis in human melanoma and prostate cancer cells. Importantly, MLS-2384 suppresses tumor growth with low toxicity in a mouse xenograft model of human melanoma. Taken together, MLS-2384 demonstrates dual JAK/Src inhibitory activity and suppresses tumor cell growth both in vitro and in vivo. Our findings support further development of MLS-2384 as a potential small-molecule therapeutic agent that targets JAK, Src, and STAT3 signaling in multiple human cancer cells.

  14. Emergence of spatially heterogeneous burst suppression in a neural field model of electrocortical activity

    PubMed Central

    Bojak, Ingo; Stoyanov, Zhivko V.; Liley, David T. J.

    2015-01-01

    Burst suppression in the electroencephalogram (EEG) is a well-described phenomenon that occurs during deep anesthesia, as well as in a variety of congenital and acquired brain insults. Classically it is thought of as spatially synchronous, quasi-periodic bursts of high amplitude EEG separated by low amplitude activity. However, its characterization as a “global brain state” has been challenged by recent results obtained with intracranial electrocortigraphy. Not only does it appear that burst suppression activity is highly asynchronous across cortex, but also that it may occur in isolated regions of circumscribed spatial extent. Here we outline a realistic neural field model for burst suppression by adding a slow process of synaptic resource depletion and recovery, which is able to reproduce qualitatively the empirically observed features during general anesthesia at the whole cortex level. Simulations reveal heterogeneous bursting over the model cortex and complex spatiotemporal dynamics during simulated anesthetic action, and provide forward predictions of neuroimaging signals for subsequent empirical comparisons and more detailed characterization. Because burst suppression corresponds to a dynamical end-point of brain activity, theoretically accounting for its spatiotemporal emergence will vitally contribute to efforts aimed at clarifying whether a common physiological trajectory is induced by the actions of general anesthetic agents. We have taken a first step in this direction by showing that a neural field model can qualitatively match recent experimental data that indicate spatial differentiation of burst suppression activity across cortex. PMID:25767438

  15. Active Vibration Suppression R and D for the NLC

    SciTech Connect

    Frisch, Josef C

    2001-12-17

    The nanometer scale beam sizes at the interaction point in linear colliders limit the allowable motion of the final focus magnets. We have constructed a prototype system to investigate the use of active vibration damping to control magnet motion. Inertial sensors are used to measure the position of a test mass, and a DSP based system provides feedback using electrostatic pushers. Simulation and experimental results for the control of a mechanically simple system are presented.

  16. ACTIVE VIBRATION SUPPRESSION R+D FOR THE NEXT LINEARCOLLIDER

    SciTech Connect

    Eriksson, Leif S.

    2002-08-20

    The nanometer scale beam sizes at the interaction point in linear colliders limit the allowable motion of the final focus magnets. We have constructed a prototype system to investigate the use of active vibration damping to control magnet motion. Inertial sensors are used to measure the position of a test mass, and a DSP based system provides feedback using electrostatic pushers. Simulation and experimental results for the control of a mechanically simple system are presented.

  17. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks

    PubMed Central

    Soper, Colin; Wicker, Evan; Kulick, Catherine V.; N’Gouemo, Prosper; Forcelli, Patrick A.

    2016-01-01

    Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy. PMID:26721319

  18. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings.

    PubMed

    Steinhilber, Friedhelm; Abreu, Jose A; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W; Mann, Mathias; McCracken, Ken G; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans; Wilhelms, Frank

    2012-04-17

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as (10)Be and (14)C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different (10)Be ice core records from Greenland and Antarctica with the global (14)C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution (10)Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.

  19. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings

    PubMed Central

    Steinhilber, Friedhelm; Beer, Jürg; Brunner, Irene; Christl, Marcus; Fischer, Hubertus; Heikkilä, Ulla; Kubik, Peter W.; Mann, Mathias; McCracken, Ken G.; Miller, Heinrich; Miyahara, Hiroko; Oerter, Hans

    2012-01-01

    Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate. PMID:22474348

  20. Active suppression of a leaf meristem orchestrates determinate leaf growth

    PubMed Central

    Alvarez, John Paul; Furumizu, Chihiro; Efroni, Idan; Eshed, Yuval; Bowman, John L

    2016-01-01

    Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved. DOI: http://dx.doi.org/10.7554/eLife.15023.001 PMID:27710768

  1. Active-Site Structure of the Thermophilic Foc-Subunit Ring in Membranes Elucidated by Solid-State NMR

    PubMed Central

    Kang, Su-Jin; Todokoro, Yasuto; Yumen, Ikuko; Shen, Bo; Iwasaki, Iku; Suzuki, Toshiharu; Miyagi, Atsushi; Yoshida, Masasuke; Fujiwara, Toshimichi; Akutsu, Hideo

    2014-01-01

    FoF1-ATP synthase uses the electrochemical potential across membranes or ATP hydrolysis to rotate the Foc-subunit ring. To elucidate the underlying mechanism, we carried out a structural analysis focused on the active site of the thermophilic c-subunit (TFoc) ring in membranes with a solid-state NMR method developed for this purpose. We used stereo-array isotope labeling (SAIL) with a cell-free system to highlight the target. TFoc oligomers were purified using a virtual ring His tag. The membrane-reconstituted TFoc oligomer was confirmed to be a ring indistinguishable from that expressed in E. coli on the basis of the H+-translocation activity and high-speed atomic force microscopic images. For the analysis of the active site, 2D 13C-13C correlation spectra of TFoc rings labeled with SAIL-Glu and -Asn were recorded. Complete signal assignment could be performed with the aid of the Cαi+1-Cαi correlation spectrum of specifically 13C,15N-labeled TFoc rings. The Cδ chemical shift of Glu-56, which is essential for H+ translocation, and related crosspeaks revealed that its carboxyl group is protonated in the membrane, forming the H+-locked conformation with Asn-23. The chemical shift of Asp-61 Cγ of the E. coli c ring indicated an involvement of a water molecule in the H+ locking, in contrast to the involvement of Asn-23 in the TFoc ring, suggesting two different means of proton storage in the c rings. PMID:24461014

  2. Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production.

    PubMed

    He, Ling; Chang, Evan; Peng, Jinghua; An, Hongying; McMillin, Sara M; Radovick, Sally; Stratakis, Constantine A; Wondisford, Fredric E

    2016-05-13

    Metformin is the most commonly prescribed oral anti-diabetic agent worldwide. Surprisingly, about 35% of diabetic patients either lack or have a delayed response to metformin treatment, and many patients become less responsive to metformin over time. It remains unknown how metformin resistance or insensitivity occurs. Recently, we found that therapeutic metformin concentrations suppressed glucose production in primary hepatocytes through AMPK; activation of the cAMP-PKA pathway negatively regulates AMPK activity by phosphorylating AMPKα subunit at Ser-485, which in turn reduces AMPK activity. In this study, we find that metformin failed to suppress glucose production in primary hepatocytes with constitutively activated PKA and did not improve hyperglycemia in mice with hyperglucagonemia. Expression of the AMPKα1(S485A) mutant, which is unable to be phosphorylated by PKA, increased both AMPKα activation and the suppression of glucose production in primary hepatocytes treated with metformin. Intriguingly, salicylate/aspirin prevents the phosphorylation of AMPKα at Ser-485, blocks cAMP-PKA negative regulation of AMPK, and improves metformin resistance. We propose that aspirin/salicylate may augment metformin's hepatic action to suppress glucose production.

  3. Saturn's Spectacular Ring System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  4. Suppressive effects of 3-methylcholanthrene on the in vitro antitumor activity of naturally cytotoxic cells

    SciTech Connect

    Lill, P.H.; Gangemi, D.

    1986-01-01

    Transient suppression of splenic natural killer (NK), natural cytotoxic (NC) and peritoneal macrophage cytotoxicity was observed following a single injection of 3-methylcholanthrene (3-MC) into C3H/HeN mice. Natural killer cell activity was depressed by 30-60% 4-6 d after injection of 1.0 mg 3-MC. Levels of NK reactivity returned to normal 8 d post 3-MC injection, and no suppression of natural killing was seen when tested 6 wk after 3-MC treatment. 3-MC did not affect propionibacterium acnes augmentation of NK cell activity when tested both 6 d and 6 wk after carcinogen injection. The results indicate that the observed suppression of naturally cytotoxic cells may not be important in allowing 3-MC-induced tumors to grow, since suppression is not long-lasting. Therefore, any effect on tumor growth mediated by a suppression of naturally cytotoxic cells would have to be exerted at the earliest stages of tumor development.

  5. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  6. Development and demonstration of a flutter-suppression system using active controls. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Abel, I.; Gray, D. L.

    1975-01-01

    The application of active control technology to suppress flutter was demonstrated successfully in the transonic dynamics tunnel with a delta-wing model. The model was a simplified version of a proposed supersonic transport wing design. An active flutter suppression method based on an aerodynamic energy criterion was verified by using three different control laws. The first two control laws utilized both leading-edge and trailing-edge active control surfaces, whereas the third control law required only a single trailing-edge active control surface. At a Mach number of 0.9 the experimental results demonstrated increases in the flutter dynamic pressure from 12.5 percent to 30 percent with active controls. Analytical methods were developed to predict both open-loop and closed-loop stability, and the results agreed reasonably well with the experimental results.

  7. An Active Isodicentric X Chromosome in a Case of Refractory Anaemia with Ring Sideroblasts Associated with Marked Thrombocytosis

    PubMed Central

    Morales Camacho, Rosario M.; Sanchez, Javier; Marcos Luque, Irene; Bernal, Ricardo; Falantes, Jose F; Pérez-Simón, Jose A

    2014-01-01

    Refractory anaemia with ring sideroblasts and marked thrombocytosis (RARS-T) is a provisional entity in the World Health Organization (WHO) classification. It displays features characteristic of both myelodysplastic syndrome and myeloproliferative neoplasia plus ring sideroblasts ≥15% and marked thrombocytosis. Most patients with RARS-T show a normal karyotype. We report a 76-year-old woman diagnosed with RARS-T (76% of ring sideroblasts) with JAK2 (V617F) mutation and a load of 30–40%. Classical and molecular cytogenetic (FISH) studies of a bone marrow sample revealed the presence of isodicentric X chromosome [(idic(X)(q13)]. Moreover, HUMARA assay showed the idic(X)(q13) as the active X chromosome. This finding was correlated with the cytochemical finding of ring sideroblasts. To our knowledge, this is the first reported case of an active isodicentric X in a woman with RARS-T. PMID:24592338

  8. Suppression of Dendritic Cell Activation by Diabetes Autoantigens Linked to the Cholera Toxin B Subunit

    PubMed Central

    Odumosu, Oludare; Payne, Kimberly; Baez, Mavely; Jutzy, Jessica; Wall, Nathan; Langridge, William

    2010-01-01

    Antigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response. In this study, Incubation of human umbilical cord blood monocyte-derived immature DCs with CTB-INS autoantigen fusion protein increased the surface membrane expression of DC toll-like receptor (TLR-2) while no significant upregulation in TLR-4 expression was detected. Inoculation of iDCs with CTB stimulated the biosynthesis of both CD86 and CD83 co-stimulatory factors demonstrating an immunostimulatory role for CTB in both DC activation and maturation. In contrast, incubation of iDCs with proinsulin partially suppressed CD86 co-stimulatory factor mediated DC activation, while incubation of iDCs with CTB-INS fusion protein completely suppressed iDC biosynthesis of both CD86 and CD83 costimulatory factors. The incubation of iDCs with increasing amounts of insulin did not increase the level of immune suppression but rather activated DC maturation by stimulating increased biosynthesis of both CD86 and CD83 costimulatory factors. Inoculation of iDCs with CTB-INS fusion protein dramatically increased secretion of the immunosuppressive cytokine IL-10 and suppressed synthesis of the pro-inflammatory cytokine IL12/23 p40 subunit protein suggesting that linkage of CTB to insulin (INS) may play an important role in mediating DC guidance of cognate naïve Th0 cell development into immunosuppressive T

  9. The protein tyrosine phosphatase SHP-1 modulates the suppressive activity of regulatory T cells

    PubMed Central

    Iype, Tessy; Sankarshanan, Mohan; Mauldin, Ileana S.; Mullins, David W.; Lorenz, Ulrike

    2010-01-01

    The importance of regulatory T cells (Treg) for immune tolerance is well recognized, yet the signaling molecules influencing their suppressive activity are relatively poorly understood. Here, through in vivo studies and complementary ex vivo studies, we make several important observations. First, we identify the cytoplasmic tyrosine phosphatase SHP-1 as a novel ‘endogenous brake’ and modifier of the suppressive ability of Treg cells; consistent with this notion, loss of SHP-1 expression strongly augments the ability of Treg cells to suppress inflammation in a mouse model. Second, specific pharmacological inhibition of SHP-1 enzymatic activity via the cancer drug sodium stibogluconate (SSG) potently augmented Treg cell suppressor activity both in vivo and ex vivo. Finally, through a quantitative imaging approach, we directly demonstrate that Treg cells prevent the activation of conventional T cells, and that SHP-1-deficient Treg cells are more efficient suppressors. Collectively, our data reveal SHP-1 as a critical modifier of Treg cell function, and a potential therapeutic target for augmenting Treg cell-mediated suppression in certain disease states. PMID:20952680

  10. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    PubMed

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  11. The oncoprotein gankyrin interacts with RelA and suppresses NF-{kappa}B activity

    SciTech Connect

    Higashitsuji, Hiroaki Higashitsuji, Hisako; Liu, Yu; Masuda, Tomoko; Fujita, Takanori; Abdel-Aziz, H. Ismail; Kongkham, Supranee; Dawson, Simon; John Mayer, R.; Itoh, Yoshito; Sakurai, Toshiharu; Itoh, Katsuhiko; Fujita, Jun

    2007-11-23

    Gankyrin is an oncoprotein commonly overexpressed in hepatocellular carcinomas. It interacts with multiple proteins and accelerates degradation of tumor suppressors Rb and p53. Since gankyrin consists of 7 ankyrin repeats and is structurally similar to I{kappa}Bs, we investigated its interaction with NF-{kappa}B. We found that gankyrin directly binds to RelA. In HeLa and 293 cells, overexpression of gankyrin suppressed the basal as well as TNF{alpha}-induced transcriptional activity of NF-{kappa}B, whereas down-regulation of gankyrin increased it. Gankyrin did not affect the NF-{kappa}B DNA-binding activity or nuclear translocation of RelA induced by TNF{alpha} in these cells. Leptomycin B that inhibits nuclear export of RelA suppressed the NF-{kappa}B activity, which was further suppressed by gankyrin. The inhibitory effect of gankyrin was abrogated by nicotinamide as well as down-regulation of SIRT1, a class III histone deacetylase. Thus, gankyrin binds to NF-{kappa}B and suppresses its activity at the transcription level by modulating acetylation via SIRT1.

  12. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production.

    PubMed

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L; Nadel, Jay A; Koff, Jonathan L

    2014-07-15

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.

  13. EGFR activation suppresses respiratory virus-induced IRF1-dependent CXCL10 production

    PubMed Central

    Kalinowski, April; Ueki, Iris; Min-Oo, Gundula; Ballon-Landa, Eric; Knoff, David; Galen, Benjamin; Lanier, Lewis L.; Nadel, Jay A.

    2014-01-01

    Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies. PMID:24838750

  14. Ringed-seal monitoring: Relationships of distribution and abundance to habitat attributes and industrial activities. Final report

    SciTech Connect

    Frost, K.J.; Lowry, L.F.; Gilbert, J.R.; Burns, J.J.

    1988-09-01

    The 3-year study intended to develop a program for monitoring the abundance of ringed seals in Alaska through aerial surveys. The report presents the results of aerial surveys of ringed seals on the shorefast ice of the eastern Chukchi Sea and Beaufort Sea in May-June 1987 and compares them with the results of similar surveys conducted in 1985 and 1986. Ringed seals (Phoca hispida) are a major ecological component of the arctic and subarctic marine fauna. In recognition of the ecological importance of ringed seals and the possibility that they may be impacted by human activites, the Outer Continental Shelf Environmental Assessment Program sponsored studies of the biology and ecology of ringed seals in Alaska. Ringed-seal aerial surveys based upon the 1985 research protocol were flown during May and June of 1985, 1986, and 1987. The surveys were satisfactorily completed and the data was analyzed to determine: factors affecting survey counts; regional and temporal trends in ringed-seal abundance; habitat factors affecting distribution and abundance; and the effects of industrial activities on seal density.

  15. Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity.

    PubMed

    Bello, Nicholas T; Yeh, Chung-Yang; Verpeut, Jessica L; Walters, Amy L

    2014-01-01

    Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable

  16. Synthesis and insecticidal activity of new deoxypodophyllotoxin derivatives modified in the D-ring.

    PubMed

    Wang, Juanjuan; Yu, Xiang; Zhi, Xiaoyan; Xu, Hui

    2014-09-15

    In continuation of our program aimed at the discovery of new natural-product-based insecticidal agents, twenty-six deoxypodophyllotoxin derivatives modified in the D-ring were synthesized and evaluated as insecticidal agents against the pre-third-instar larvae of oriental armyworm, Mythimna separata (Walker) in vivo at 1 mg/mL. The configuration of three compounds 3, 4, and IIIi was unambiguously determined by single-crystal X-ray diffraction. It demonstrated that aminolysis of deoxypodophyllotoxin in the presence of pyrrolidine and piperidine could result in complete inversion of the configuration of the carbonyl group at its C-2 position. Five compounds IIa, IIi-k, and IIIh showed the equal or higher insecticidal activity than toosendanin. Especially IIj displayed the most potent insecticidal activity with the final mortality rate of 65.5%.

  17. Actively mode-locked fiber ring laser by intermodal acousto-optic modulation.

    PubMed

    Bello-Jiménez, M; Cuadrado-Laborde, C; Sáez-Rodríguez, D; Diez, A; Cruz, J L; Andrés, M V

    2010-11-15

    We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power.

  18. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Irfan; Wagg, David; Sims, Neil D.

    2016-08-01

    This paper presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active and semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device.

  19. Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation

    SciTech Connect

    Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi

    2012-11-06

    Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

  20. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.

  1. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  2. ESCRT-0 is not required for ectopic Notch activation and tumor suppression in Drosophila.

    PubMed

    Tognon, Emiliana; Wollscheid, Nadine; Cortese, Katia; Tacchetti, Carlo; Vaccari, Thomas

    2014-01-01

    Multivesicular endosome (MVE) sorting depends on proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) family. These are organized in four complexes (ESCRT-0, -I, -II, -III) that act in a sequential fashion to deliver ubiquitylated cargoes into the internal luminal vesicles (ILVs) of the MVE. Drosophila genes encoding ESCRT-I, -II, -III components function in sorting signaling receptors, including Notch and the JAK/STAT signaling receptor Domeless. Loss of ESCRT-I, -II, -III in Drosophila epithelia causes altered signaling and cell polarity, suggesting that ESCRTs genes are tumor suppressors. However, the nature of the tumor suppressive function of ESCRTs, and whether tumor suppression is linked to receptor sorting is unclear. Unexpectedly, a null mutant in Hrs, encoding one of the components of the ESCRT-0 complex, which acts upstream of ESCRT-I, -II, -III in MVE sorting is dispensable for tumor suppression. Here, we report that two Drosophila epithelia lacking activity of Stam, the other known components of the ESCRT-0 complex, or of both Hrs and Stam, accumulate the signaling receptors Notch and Dome in endosomes. However, mutant tissue surprisingly maintains normal apico-basal polarity and proliferation control and does not display ectopic Notch signaling activation, unlike cells that lack ESCRT-I, -II, -III activity. Overall, our in vivo data confirm previous evidence indicating that the ESCRT-0 complex plays no crucial role in regulation of tumor suppression, and suggest re-evaluation of the relationship of signaling modulation in endosomes and tumorigenesis.

  3. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer.

    PubMed

    Sutendra, G; Dromparis, P; Kinnaird, A; Stenson, T H; Haromy, A; Parker, J M R; McMurtry, M S; Michelakis, E D

    2013-03-28

    Most solid tumors are characterized by a metabolic shift from glucose oxidation to glycolysis, in part due to actively suppressed mitochondrial function, a state that favors resistance to apoptosis. Suppressed mitochondrial function may also contribute to the activation of hypoxia-inducible factor 1α (HIF1α) and angiogenesis. We have previously shown that the inhibitor of pyruvate dehydrogenase kinase (PDK) dichloroacetate (DCA) activates glucose oxidation and induces apoptosis in cancer cells in vitro and in vivo. We hypothesized that DCA will also reverse the 'pseudohypoxic' mitochondrial signals that lead to HIF1α activation in cancer, even in the absence of hypoxia and inhibit cancer angiogenesis. We show that inhibition of PDKII inhibits HIF1α in cancer cells using several techniques, including HIF1α luciferase reporter assays. Using pharmacologic and molecular approaches that suppress the prolyl-hydroxylase (PHD)-mediated inhibition of HIF1α, we show that DCA inhibits HIF1α by both a PHD-dependent mechanism (that involves a DCA-induced increase in the production of mitochondria-derived α-ketoglutarate) and a PHD-independent mechanism, involving activation of p53 via mitochondrial-derived H(2)O(2), as well as activation of GSK3β. Effective inhibition of HIF1α is shown by a decrease in the expression of several HIF1α regulated gene products as well as inhibition of angiogenesis in vitro in matrigel assays. More importantly, in rat xenotransplant models of non-small cell lung cancer and breast cancer, we show effective inhibition of angiogenesis and tumor perfusion in vivo, assessed by contrast-enhanced ultrasonography, nuclear imaging techniques and histology. This work suggests that mitochondria-targeting metabolic modulators that increase pyruvate dehydrogenase activity, in addition to the recently described pro-apoptotic and anti-proliferative effects, suppress angiogenesis as well, normalizing the pseudo-hypoxic signals that lead to normoxic HIF1

  4. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

    PubMed

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-03-27

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis.

  5. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    PubMed Central

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  6. Maturational Patterns of Iodothyronine Phenolic and Tyrosyl Ring Deiodinase Activities in Rat Cerebrum, Cerebellum, and Hypothalamus

    PubMed Central

    Kaplan, Michael M.; Yaskoski, Kimberlee A.

    1981-01-01

    To explore the control of thyroid hormone metabolism in brain during maturation, we have measured iodothyronine deiodination in homogenates of rat cerebrum, cerebellum, and hypothalamus from 1 d postnatally through adulthood. Homogenates were incubated with 125I-l-thyroxine (T4) + [131I]3,5,3′-l-triiodothyronine (T3) + 100 mM dithiothreitol. Nonradioactive T4, T3, and 3,3′,5′-triiodothyronine (rT3) were included, as appropriate. The net production rate of [125I]T3 from T4 in 1-d cerebral homogenates was similar to the rate in adult cerebral homogenates (9.9±2.5[SEM]% vs. 8.9±1.2% T4 to T3 conversion in 2 h). Production of T3 was not detectable in 1-d cerebellar and hypothalamic homogenates. The net T3 production rate in adult cerebellar homogenates was twice as great as, and that in adult hypothalamic homogenates similar to, the rate in cerebral homogenates. Tyrosyl ring deiodination rates of T4 and T3 were more than three times as great in cerebral homogenates from 1-d-old rats as in adult cerebral homogenates. In cerebellar homogenates from 1-d-old rats, tyrosyl ring deiodination rates were much greater than the rates in adult cerebellar homogenates, but less than those in 1-d cerebral homogenates. In 1-d hypothalamic homogenates, tyrosyl ring deiodination rates were the highest of all the tissues tested, whereas rates in adult hypothalamic homogenates were similar to those in adult cerebral homogenates. During maturation, T4 5′-deiodination rates increased after 7 d and exceeded adult rates between 14 and 35 d in cerebral and cerebellar homogenates, and at 28 and 35 d in hypothalamic homogenates. In cerebral homogenates, the peak in reaction rate at 28 d reflected an increase in the maximum enzyme activity (Vmax) of the reaction. T4 and T3 tyrosyl ring deiodination rates decreased progressively with age down to adult rates, which were attained at 14 d for cerebrum and cerebellum and at 28 d for hypothalamus. These studies demonstrate quantitative

  7. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway.

    PubMed

    Chen, Jiun-Han; Hsiao, George; Lee, An-Rong; Wu, Chin-Chen; Yen, Mao-Hsiung

    2004-04-01

    Andrographolide (Andro), an active component isolated from the Chinese official herbal Andrographis paniculata, which has been reported to prevent oxygen radical production and thus prevent inflammatory diseases. In this study, we investigated the molecular mechanisms and signaling pathways by which Andro protects human umbilical vein endothelial cells (HUVECs) from growth factor (GF) deprivation-induced apoptosis. Results demonstrated that HUVECs undergo apoptosis after 18 hr of GF deprivation but that this cell death was suppressed by the addition of Andro in a concentration-dependent manner (1-100 microM). Andro suppresses the mitochondrial pathway of apoptosis by inhibiting release of cytochrome c into the cytoplasm and dissipation of mitochondrial potential (Deltapsi(m)), as a consequence, prevented caspase-3 and -9 activation. Treatment of endothelial cells with Andro-induced activation of the protein kinase Akt, an anti-apoptotic signal, and phosphorylation of BAD, a down-stream target of Akt. Suppression of Akt activity by wortmannin, by LY-294002 and by using a dominant negative Akt mutant abolished the anti-apoptotic effect of Andro. In contrast, the ERK1/2 activities were not affected by Andro. The ERK1/2 inhibitor, PD98059 failed to antagonize the protective effect of Andro. In conclusion, Andro exerts its anti-apoptotic potential via activation of the Akt-BAD pathway in HUVECs and thus may represent a candidate of therapeutic agent for atherosclerosis.

  8. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    SciTech Connect

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-12-15

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.

  9. FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors.

    PubMed

    Kino, Tomoshige; Ichijo, Takamasa; Chrousos, George P

    2004-12-01

    We previously reported that tumor necrosis factor alpha receptor- and Fas-associated FLASH interacts with one of the p160 nuclear receptor coactivators, glucocorticoid receptor-interacting protein (GRIP) 1, at its nuclear receptor-binding (NRB) domain, and that inhibits the transcriptional activity of the glucocorticoid receptor (GR) by interfering with association of GR and GRIP1. Here, we further examined the specificity of FLASH suppressive effect and the physical/functional interactions between this protein and two other p160 family subtypes. The suppressive effect of FLASH on GR transactivation was observed in several cell lines and on the chromatin-integrated mouse mammary tumor virus (MMTV) promoter. FLASH strongly interacted with the NRB domain of the thyroid hormone receptor activator molecule (TRAM) 1, a member of the steroid hormone receptor coactivator (SRC) 3/nuclear receptor coactivator (N-CoA) 3 subtypes, as well as with SRC2/N-CoA2 p160 coactivator GRIP1, while its interaction with SRC1a, one of the SRC1/N-CoA1 proteins, was faint in yeast two-hybrid assays. Accordingly, FLASH strongly suppressed TRAM1- and GRIP1-induced enhancement of GR-stimulated transactivation of the MMTV promoter in HCT116 cells, while it did not affect SRC1a-induced potentiation of transcription. Furthermore, FLASH suppressed androgen- and progesterone receptor-induced transcriptional activity, but did not influence estrogen receptor-induced transactivation, possibly due to their preferential use of p160 coactivators in HCT116 and HeLa cells. Thus, FLASH differentially suppresses steroid hormone receptor-induced transcriptional activity by interfering with their association with SRC2/N-CoA2 and SRC3/N-CoA3 but not with SRC1/N-CoA1.

  10. RING finger ubiquitin-protein isopeptide ligase Nrdp1/FLRF regulates parkin stability and activity.

    PubMed

    Zhong, Ling; Tan, Ying; Zhou, An; Yu, Qingming; Zhou, Jianhua

    2005-03-11

    Parkin is a ubiquitin-protein isopeptide ligase. It has been suggested that loss of function in parkin causes accumulation and aggregation of its substrates, leading to death of dopaminergic neurons in Parkinson disease. Using the yeast two-hybrid screen, we isolated a RING finger protein that interacted with the N terminus of parkin in a Drosophila cDNA library. Interaction between human parkin and the mammalian RING finger protein homologue Nrdp1/FLRF, a ubiquitin-protein isopeptide ligase that ubiquitinates ErbB3 and ErbB4, was validated by in vitro binding assay, co-immunoprecipitation, and immunofluorescence co-localization. Significantly, pulse-chase experiments showed that cotransfection of Nrdp1 and parkin reduced the half-life of parkin from 5 to 2.5 h. Consistent with these findings, we further observed that degradation of CDCrel-1, a parkin substrate, was facilitated by overexpression of parkin protein. However, co-transfection of Nrdp1 with parkin reversed the effects of parkin on CDCrel-1 degradation. We conclude that Nrdp1 is a parkin modifier that accelerates degradation of parkin, resulting in a reduction of parkin activity.

  11. Activity-Dependent Synaptic Competition in Vitro: Heterosynaptic Suppression of Developing Synapses

    NASA Astrophysics Data System (ADS)

    Lo, Yi-Jiuan; Poo, Mu-Ming

    1991-11-01

    The development and stability of synaptic connections in the nervous system are influenced by the pattern of electrical activity and the competitive interaction between the adjacent nerve terminals. To investigate this influence, a culture system of nerve and muscle cells has been developed in which a single embryonic muscle cell is coinnervated by two spinal neurons. The effect of electrical activity on the synaptic efficacy was examined after repetitive electrical stimulation was applied to one or both neurons. Brief tetanic stimulation of one neuron resulted in immediate functional suppression of the synapse made by the unstimulated neuron innervating the same muscle cell. This heterosynaptic suppression was largely absent when the tetanic stimulation was applied concurrently to both neurons. This result demonstrates that activity-dependent synaptic competition can be studied in vitro at a cellular level.

  12. Design for active and passive flutter suppression and gust alleviation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1981-01-01

    Analytical design techniques for active and passive control of aeroelastic systems are based on a rational approximation of the unsteady aerodynamic loads in the entire Laplace domain, which yields matrix equations of motion with constant coefficients. Some existing schemes are reviewed, the matrix Pade approximant is modified, and a technique which yields a minimal number of augmented states for a desired accuracy is presented. The state-space aeroelastic model is used to design an active control system for simultaneous flutter suppression and gust alleviation. The design target is for a continuous controller which transfers some measurements taken on the vehicle to a control command applied to a control surface. Structural modifications are formulated in a way which enables the treatment of passive flutter suppression system with the same procedures by which active control systems are designed.

  13. Trunk postures and upper-body muscle activations during physically demanding wildfire suppression tasks.

    PubMed

    Neesham-Smith, Daniel; Aisbett, Brad; Netto, Kevin

    2014-01-01

    This study examined the trunk postures and upper-body muscle activations during four physically demanding wildfire suppression tasks. Bilateral, wireless surface electromyography was recorded from the trapezius and erector spinae muscles of nine experienced, wildfire fighters. Synchronised video captured two retroreflective markers to allow for quantification of two-dimensional sagittal trunk flexion. In all tasks, significantly longer time was spent in the mild and severe trunk flexion (p ≤ 0.002) compared to the time spent in a neutral posture. Mean and peak muscle activation in all tasks exceeded previously established safe limits. These activation levels also significantly increased through the performance of each task (p < 0.001). The results suggest that the wildfire suppression tasks analysed impose significant musculoskeletal demand on firefighters. Fire agencies should consider developing interventions to reduce the exposure of their personnel to these potentially injurious musculoskeletal demands.

  14. Triterpenoid Saponin W3 from Anemone flaccida Suppresses Osteoclast Differentiation through Inhibiting Activation of MAPKs and NF-κB Pathways

    PubMed Central

    Kong, Xiangying; Yang, Yue; Wu, Wenbin; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Su, Xiaohui; Jia, Shiwei; Lin, Na

    2015-01-01

    Excessive bone resorption by osteoclasts within inflamed joints is the most specific hallmark of rheumatoid arthritis. A. flaccida has long been used for the treatment of arthritis in folk medicine of China; however, the active ingredients responsible for the anti-arthritis effects of A. flaccida are still elusive. In this study, W3, a saponin isolated from the extract of A. flaccida was identified as the major active ingredient by using an osteoclast formation model induced by receptor activator of nuclear factor kappa-B ligand (RANKL). W3 dose-dependently suppressed the actin ring formation and lacunar resorption. Mechanistic investigation revealed that W3 inhibited the RANKL-induced TRAF6 expression, decreased phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and suppressed NF-κB p65 DNA binding activity. Furthermore, W3 almost abrogated the expression of c-Fos and nuclear factor of activated T cells (NFATc1). Therefore, our results suggest that W3 is a potential agent for treating lytic bone diseases although further evaluation in vivo and in clinical trials is needed. PMID:26327814

  15. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  16. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    NASA Astrophysics Data System (ADS)

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-04-01

    Objective. The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach. We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results. All eight stimulated AC subregions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance. We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders.

  17. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    PubMed Central

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-01-01

    Objective The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results All eight stimulated AC regions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders. PMID:25686163

  18. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming.

    PubMed

    Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M

    2016-02-01

    Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming.

  19. A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus

    PubMed Central

    Scott, L. L.; Brecht, E. J.; Philpo, A.; Iyer, S.; Wu, N. S.; Mihic, S. J.; Aldrich, R. W.; Pierce, J.; Walton, J. P.

    2017-01-01

    Large conductance calcium-activated (BK) channels are broadly expressed in neurons and muscle where they modulate cellular activity. Decades of research support an interest in pharmaceutical applications for modulating BK channel function. Here we report a novel BK channel-targeted peptide with functional activity in vitro and in vivo. This 9-amino acid peptide, LS3, has a unique action, suppressing channel gating rather than blocking the pore of heterologously expressed human BK channels. With an IC50 in the high picomolar range, the apparent affinity is higher than known high affinity BK channel toxins. LS3 suppresses locomotor activity via a BK channel-specific mechanism in wild-type or BK channel-humanized Caenorhabditis elegans. Topical application on the dural surface of the auditory midbrain in mouse suppresses sound evoked neural activity, similar to a well-characterized pore blocker of the BK channel. Moreover, this novel ion channel-targeted peptide rapidly crosses the BBB after systemic delivery to modulate auditory processing. Thus, a potent BK channel peptide modulator is open to neurological applications, such as preventing audiogenic seizures that originate in the auditory midbrain. PMID:28195225

  20. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo.

    PubMed

    Akhmetshina, Dinara; Zakharov, Andrei; Vinokurova, Daria; Nasretdinov, Azat; Valeeva, Guzel; Khazipov, Roustem

    2016-06-01

    Inhibition of serotonin uptake, which causes an increase in extracellular serotonin levels, disrupts the development of thalamocortical barrel maps in neonatal rodents. Previous in vitro studies have suggested that the disruptive effect of excessive serotonin on barrel map formation involves a depression at thalamocortical synapses. However, the effects of serotonin uptake inhibitors on the early thalamocortical activity patterns in the developing barrel cortex in vivo remain largely unknown. Here, using extracellular recordings of the local field potentials and multiple unit activity (MUA) we explored the effects of the selective serotonin reuptake inhibitor (SSRI) citalopram (10-20mg/kg, intraperitoneally) on sensory evoked activity in the barrel cortex of neonatal (postnatal days P2-5) rats in vivo. We show that administration of citalopram suppresses the amplitude and prolongs the delay of the sensory evoked potentials, reduces the power and frequency of the early gamma oscillations, and suppresses sensory evoked and spontaneous neuronal firing. In the adolescent P21-29 animals, citalopram affected neither sensory evoked nor spontaneous activity in barrel cortex. We suggest that suppression of the early thalamocortical activity patterns contributes to the disruption of the barrel map development caused by SSRIs and other conditions elevating extracellular serotonin levels.

  1. Dexamethasone rapidly suppresses IL-33-stimulated mast cell function by blocking transcription factor activity.

    PubMed

    Paranjape, Anuya; Chernushevich, Oksana; Qayum, Amina Abdul; Spence, Andrew J; Taruselli, Marcela T; Abebayehu, Daniel; Barnstein, Brian O; McLeod, Jamie Josephine Avila; Baker, Bianca; Bajaj, Gurjas S; Chumanevich, Alena P; Oskeritzian, Carole A; Ryan, John J

    2016-12-01

    Mast cells are critical effectors of allergic disease and can be activated by IL-33, a proinflammatory member of the IL-1 cytokine family. IL-33 worsens the pathology of mast cell-mediated diseases, but therapies to antagonize IL-33 are still forthcoming. Because steroids are the mainstay of allergic disease treatment and are well known to suppress mast cell activation by other stimuli, we examined the effects of the steroid dexamethasone on IL-33-mediated mast cell function. We found that dexamethasone potently and rapidly suppressed cytokine production elicited by IL-33 from murine bone marrow-derived and peritoneal mast cells. IL-33 enhances IgE-mediated mast cell cytokine production, an activity that was also antagonized by dexamethasone. These effects were consistent in human mast cells. We additionally observed that IL-33 augmented migration of IgE-sensitized mast cells toward antigen. This enhancing effect was similarly reversed by dexamethasone. Simultaneous addition of dexamethasone with IL-33 had no effect on the phosphorylation of MAP kinases or NFκB p65 subunit; however, dexamethasone antagonized AP-1- and NFκB-mediated transcriptional activity. Intraperitoneal administration of dexamethasone completely abrogated IL-33-mediated peritoneal neutrophil recruitment and prevented plasma IL-6 elevation. These data demonstrate that steroid therapy may be an effective means of antagonizing the effects of IL-33 on mast cells in vitro and in vivo, acting partly by suppressing IL-33-induced NFκB and AP-1 activity.

  2. Highly sensitive detection of E2 activity in ubiquitination using an artificial RING finger.

    PubMed

    Miyamoto, Kazuhide; Sumida, Miho; Yuasa-Sunagawa, Mayumi; Saito, Kazuki

    2017-03-01

    The ubiquitin-conjugating (E2) enzymes of protein ubiquitination are associated with various diseases such as leukemia, lung cancer, and breast cancer. Rapid and accurate detection of E2 enzymatic activities remains poor. Here, we described the detection of E2 activity on a signal accumulation ISFET biosensor (AMIS sensor) using an artificial RING finger (ARF). The use of ARF enables the simplified detection of E2 activity without a substrate. The high-sensitivity quantitative detection of E2 activities was demonstrated via real-time monitoring over a response range of femtomolar to micromolar concentrations. Furthermore, the monitoring of E2 activities was successfully achieved using human acute promyelocytic leukemia cells following treatment with the anticancer drug bortezomib, which allowed the assessment of the pathological conditions. This strategy is extremely simple and convenient, and the present detection could be widely applied to specific E2s for various types of cancers. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  3. Active Damping of the E-P Instability at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, R.J.; Assadi, S.; Byrd, J.M.; Deibele, C.E.; Henderson, S.D.; Lee, S.Y.; McCrady, R.C.; Pivi, M.F.T.; Plum, M.A.; Walbridge, S.B.; Zaugg, T.J.; /Los Alamos

    2008-03-17

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  4. Active damping of the e-p instability at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, R. J.; Assadi, S.; Byrd, J. M.; Deibele, C. E.; Henderson, S. D.; Lee, S. Y.; McCrady, R. C.; Pivi, M. F. T.; Plum, M. A.; Walbridge, S. B.; Zaugg, T. J.

    2007-12-15

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  5. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    SciTech Connect

    Grishin, S. V. Golova, T. M.; Morozova, M. A.; Romanenko, D. V.; Seleznev, E. P.; Sysoev, I. V.; Sharaevskii, Yu. P.

    2015-10-15

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series.

  6. Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.

    PubMed

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  7. Active matter beyond mean-field: Ring-kinetic theory for self-propelled particles

    NASA Astrophysics Data System (ADS)

    Chou, Yen-Liang; Ihle, Thomas

    2015-02-01

    Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013), 10.1103/PhysRevE.88.052309] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N -particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8 , followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.

  8. Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect.

    PubMed

    Perini, Francesca; Cattaneo, Luigi; Carrasco, Marisa; Schwarzbach, Jens V

    2012-09-05

    The effects of transcranial magnetic stimulation (TMS) vary depending on the brain state at the stimulation moment. Four mechanisms have been proposed to underlie these effects: (1) virtual lesion--TMS suppresses neural signals; (2) preferential activation of less active neurons--TMS drives up activity in the stimulated area, but active neurons are saturating; (3) noise generation--TMS adds random neuronal activity, and its effect interacts with stimulus intensity; and (4) noise generation--TMS adds random neuronal activity, and its effect depends on TMS intensity. Here we explore these hypotheses by investigating the effects of TMS on early visual cortex by assessing the contrast response function while varying the adaptation state of the observers. We tested human participants in an orientation discrimination task, in which performance is contingent upon contrast sensitivity. Before each trial, neuronal activation of visual cortex was altered through contrast adaptation to two flickering gratings. In a factorial design, with or without adaptation, a single TMS pulse was delivered simultaneously with targets of varying contrast. Adaptation decreased contrast sensitivity. The effect of TMS on performance was state dependent: TMS decreased contrast sensitivity in the absence of adaptation but increased it after adaptation. None of the proposed mechanisms can account for the results in their entirety, in particular, for the facilitatory effect at intermediate to high contrasts after adaptation. We propose an alternative hypothesis: TMS effects are activity dependent, so that TMS suppresses the most active neurons and thereby changes the balance between excitation and inhibition.

  9. Active Control of Fan Noise: Feasibility Study. Volume 6; Theoretical Analysis for Coupling of Active Noise Control Actuator Ring Sources to an Annular Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1996-01-01

    The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the

  10. Viral microRNAs Target a Gene Network, Inhibit STAT Activation, and Suppress Interferon Responses

    PubMed Central

    Ramalingam, Dhivya; Ziegelbauer, Joseph M.

    2017-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs during latency that are processed to yield ~25 mature microRNAs (miRNAs). We were interested in identifying cellular networks that were targeted by KSHV-miRNAs and employed network building strategies using validated KSHV miRNA targets. Here, we report the identification of a gene network centering on the transcription factor- signal transducer and activator of transcription 3 (STAT3) that is targeted by KSHV miRNAs. KSHV miRNAs suppressed STAT3 and STAT5 activation and inhibited STAT3-dependent reporter activation upon IL6-treatment. KSHV miRNAs also repressed the induction of antiviral interferon-stimulated genes upon IFNα- treatment. Finally, we observed increased lytic reactivation of KSHV from latently infected cells upon STAT3 repression with siRNAs or a small molecule inhibitor. Our data suggest that treatment of infected cells with a STAT3 inhibitor and a viral replication inhibitor, ganciclovir, represents a possible strategy to eliminate latently infected cells without increasing virion production. Together, we show that KSHV miRNAs suppress a network of targets associated with STAT3, deregulate cytokine-mediated gene activation, suppress an interferon response, and influence the transition into the lytic phase of viral replication. PMID:28102325

  11. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements.

    PubMed

    Barow, Ewgenia; Neumann, Wolf-Julian; Brücke, Christof; Huebl, Julius; Horn, Andreas; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2014-11-01

    Deep brain stimulation of the globus pallidus internus alleviates involuntary movements in patients with dystonia. However, the mechanism is still not entirely understood. One hypothesis is that deep brain stimulation suppresses abnormally enhanced synchronized oscillatory activity within the motor cortico-basal ganglia network. Here, we explore deep brain stimulation-induced modulation of pathological low frequency (4-12 Hz) pallidal activity that has been described in local field potential recordings in patients with dystonia. Therefore, local field potentials were recorded from 16 hemispheres in 12 patients undergoing deep brain stimulation for severe dystonia using a specially designed amplifier allowing simultaneous high frequency stimulation at therapeutic parameter settings and local field potential recordings. For coherence analysis electroencephalographic activity (EEG) over motor areas and electromyographic activity (EMG) from affected neck muscles were recorded before and immediately after cessation of high frequency stimulation. High frequency stimulation led to a significant reduction of mean power in the 4-12 Hz band by 24.8 ± 7.0% in patients with predominantly phasic dystonia. A significant decrease of coherence between cortical EEG and pallidal local field potential activity in the 4-12 Hz range was revealed for the time period of 30 s after switching off high frequency stimulation. Coherence between EMG activity and pallidal activity was mainly found in patients with phasic dystonic movements where it was suppressed after high frequency stimulation. Our findings suggest that high frequency stimulation may suppress pathologically enhanced low frequency activity in patients with phasic dystonia. These dystonic features are the quickest to respond to high frequency stimulation and may thus directly relate to modulation of pathological basal ganglia activity, whereas improvement in tonic features may depend on long-term plastic changes within the

  12. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.

    PubMed

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-04-21

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.

  13. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis

    PubMed Central

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-01-01

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC− defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring. PMID:20300061

  14. Multirate flutter suppression system design for the Benchmark Active Controls Technology Wing

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1994-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing (also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT wing in a wind tunnel. This report describes a project at the University of Washington to design a multirate flutter suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing. The contributions of this project are (1) development of an algorithm for synthesizing robust low order multirate control laws (the algorithm is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple plant perturbations; (2) development of a multirate design methodology, and supporting software, for modeling, analyzing and synthesizing multirate compensators; and (3) design of a multirate flutter suppression system for NASA's BACT wing which satisfies the specified design criteria. This report describes each of these contributions in detail. Section 2.0 discusses our design methodology. Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally, Section 4.0 presents our conclusions and suggestions for future research. The body of the report focuses primarily on the results. The associated theoretical background appears in the three technical papers that are included as Attachments 1-3. Attachment 4 is a user's manual for the software that is key to our design methodology.

  15. Structure-activity relationships for vitamin D3-based aromatic a-ring analogues as hedgehog pathway inhibitors.

    PubMed

    Deberardinis, Albert M; Madden, Daniel J; Banerjee, Upasana; Sail, Vibhavari; Raccuia, Daniel S; De Carlo, Daniel; Lemieux, Steven M; Meares, Adam; Hadden, M Kyle

    2014-05-08

    A structure-activity relationship study for a series of vitamin D3-based (VD3) analogues that incorporate aromatic A-ring mimics with varying functionality has provided key insight into scaffold features that result in potent, selective Hedgehog (Hh) pathway inhibition. Three analogue subclasses containing (1) a single substitution at the ortho or para position of the aromatic A-ring, (2) a heteroaryl or biaryl moiety, or (3) multiple substituents on the aromatic A-ring were prepared and evaluated. Aromatic A-ring mimics incorporating either single or multiple hydrophilic moieties on a six-membered ring inhibited the Hh pathway in both Hh-dependent mouse embryonic fibroblasts and cultured cancer cells (IC50 values 0.74-10 μM). Preliminary studies were conducted to probe the cellular mechanisms through which VD3 and 5, the most active analogue, inhibit Hh signaling. These studies suggested that the anti-Hh activity of VD3 is primarily attributed to the vitamin D receptor, whereas 5 affects Hh inhibition through a separate mechanism.

  16. Design, synthesis and structure-activity relationships studies on the D ring of the natural product triptolide.

    PubMed

    Xu, Hongtao; Tang, Huanyu; Feng, Huijin; Li, Yuanchao

    2014-02-01

    Triptolide is a diterpene triepoxide natural product isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal herb. Triptolide has previously been shown to possess antitumor, anti-inflammatory, immunosuppressive, and antifertility activities. Earlier reports suggested that the five-membered unsaturated lactone ring (D ring) is essential for potent cytotoxicity, however, to the best of our knowledge, systematic structure-activity relationship studies have not yet been reported. Here, four types of D ring-modified triptolide analogues were designed, synthesized and evaluated against human ovarian (SKOV-3) and prostate (PC-3) carcinoma cell lines. The results suggest that the D ring is essential to potency, however it can be modified, for example to C18 hydrogen bond acceptor and/or donor furan ring analogues, without complete loss of cytotoxic activity. Interestingly, evaluation of the key series of C19 analogues showed that this site is exquisitely sensitive to polarity. Together, these results will guide further optimization of this natural product lead compound for the development of potent and potentially clinically useful triptolide analogues.

  17. Synthesis of active controls for flutter suppression on a flight research wing

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Murrow, H. N.

    1977-01-01

    This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.

  18. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    SciTech Connect

    Le Pimpec, F.; Kirby, R.E.; King, F.K.; Pivi, M.; /SLAC

    2006-01-25

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas.

  19. Does adrenergic activity suppress insulin secretion during surgery? A clinical experiment with halothane anesthesia.

    PubMed Central

    Aärimaa, M; Syvälahti, E; Ovaska, J

    1978-01-01

    Peroperative inhibition of insulin release is widely attributed to increased alpha-adrenergic activity. To test this hypothesis serum insulin and glucose concentrations were measured at short intervals in 11 patients who underwent major surgery. Five patients were anesthetized with halothane and six with general anesthesia without halothane. The results were similar in both patient groups; halothane had no effect on insulin. This suggests that suppression of insulin under operations is probably not due to activation of the alpha-adrenergic receptors of the pancreatic beta-cells. The authors propose that suppression of insulin secretion during surgery may be caused by adrenaline, which, in competing for the glucose receptors, insensitizes the pancreatic beta-cells. PMID:202205

  20. Synthesis, insecticidal activity, and QSAR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification.

    PubMed

    Tian, Zhongzhen; Shao, Xusheng; Li, Zhong; Qian, Xuhong; Huang, Qingchun

    2007-03-21

    To keep the nitro group in the cis position, a series of nitromethylene neonicotinoids containing a tetrahydropyridine ring with exo-ring ether modifications were designed and synthesized. All of the compounds were characterized and confirmed by 1H NMR, high-resolution mass spectroscopy, elemental analysis, and IR. The bioassay tests showed that some of them exhibited good insecticidal activities against pea aphids. On the basis of 10 nitromethylene derivatives, the quantitative structure-bioactivity relationship (QSAR) was analyzed and established. The results suggested that AlogP98 and Dipole_Mopac might be the important parameters related with biological activities.

  1. Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference.

    PubMed

    Barras, Caroline; Kerzel, Dirk

    2016-12-01

    In visual search for a shape target, interference from salient-but-irrelevant color singletons can be resisted in feature search mode, but not in singleton detection mode. In singleton detection mode, we observed a contralateral positivity (PD) after 260-340ms, suggesting that the salient distractor was suppressed. Because RTs in singleton detection mode increased when a distractor was present, we conclude that active suppression of distractors takes time. In feature search mode, no increase in RTs and no PD to the distractor was observed, showing that resistance to interference was not accomplished by suppression. Rather, the smaller N2pc to the target in feature search than in singleton detection mode suggests that enhancement of target features avoided interference. Thus, the strong top-down set in feature search mode eliminated the need to suppress the early attend-to-me signal (corresponding to the Ppc, from 160 to 210ms) that was generated by salient stimuli independently of search mode.

  2. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.

  3. Macrophages activated by C-reactive protein through Fc gamma RI transfer suppression of immune thrombocytopenia.

    PubMed

    Marjon, Kristopher D; Marnell, Lorraine L; Mold, Carolyn; Du Clos, Terry W

    2009-02-01

    C-reactive protein (CRP) is an acute-phase protein with therapeutic activity in mouse models of systemic lupus erythematosus and other inflammatory and autoimmune diseases. To determine the mechanism by which CRP suppresses immune complex disease, an adoptive transfer system was developed in a model of immune thrombocytopenic purpura (ITP). Injection of 200 microg of CRP 24 h before induction of ITP markedly decreased thrombocytopenia induced by anti-CD41. CRP-treated splenocytes also provided protection from ITP in adoptive transfer. Splenocytes from C57BL/6 mice were treated with 200 microg/ml CRP for 30 min, washed, and injected into mice 24 h before induction of ITP. Injection of 10(6) CRP-treated splenocytes protected mice from thrombocytopenia, as did i.v. Ig-treated but not BSA-treated splenocytes. The suppressive cell induced by CRP was found to be a macrophage by depletion, enrichment, and the use of purified bone marrow-derived macrophages. The induction of protection by CRP-treated cells was dependent on FcRgamma-chain and Syk activation, indicating an activating effect of CRP on the donor cell. Suppression of ITP by CRP-treated splenocytes required Fc gamma RI on the donor cell and Fc gamma RIIb in the recipient mice. These findings suggest that CRP generates suppressive macrophages through Fc gamma RI, which then act through an Fc gamma RIIb-dependent pathway in the recipient to decrease platelet clearance. These results provide insight into the mechanism of CRP regulatory activity in autoimmunity and suggest a potential new therapeutic approach to ITP.

  4. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans

    PubMed Central

    Tyler, William J.; Boasso, Alyssa M.; Mortimore, Hailey M.; Silva, Rhonda S.; Charlesworth, Jonathan D.; Marlin, Michelle A.; Aebersold, Kirsten; Aven, Linh; Wetmore, Daniel Z.; Pal, Sumon K.

    2015-01-01

    We engineered a transdermal neuromodulation approach that targets peripheral (cranial and spinal) nerves and utilizes their afferent pathways as signaling conduits to influence brain function. We investigated the effects of this transdermal electrical neurosignaling (TEN) method on sympathetic physiology under different experimental conditions. The TEN method involved delivering high-frequency pulsed electrical currents to ophthalmic and maxillary divisions of the right trigeminal nerve and cervical spinal nerve afferents. Under resting conditions, TEN significantly suppressed basal sympathetic tone compared to sham as indicated by functional infrared thermography of facial temperatures. In a different experiment, subjects treated with TEN reported significantly lower levels of tension and anxiety on the Profile of Mood States scale compared to sham. In a third experiment when subjects were experimentally stressed TEN produced a significant suppression of heart rate variability, galvanic skin conductance, and salivary α-amylase levels compared to sham. Collectively these observations demonstrate TEN can dampen basal sympathetic tone and attenuate sympathetic activity in response to acute stress induction. Our physiological and biochemical observations are consistent with the hypothesis that TEN modulates noradrenergic signaling to suppress sympathetic activity. We conclude that dampening sympathetic activity in such a manner represents a promising approach to managing daily stress. PMID:26353920

  5. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury.

    PubMed

    Zhou, Xiaogang; Zhou, Jian; Li, Xilei; Guo, Chang'an; Fang, Taolin; Chen, Zhengrong

    2011-07-29

    Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury.

  6. Protective effect of carnosine after chronic cerebral hypoperfusion possibly through suppressing astrocyte activation

    PubMed Central

    Ma, Jing; Chen, Jihui; Bo, Shuhong; Lu, Xiaotong; Zhang, Jian

    2015-01-01

    Aim: Subcortical ischemic vascular dementia (SIVD) induced by chronic hypoperfusion is a common cause of vascular dementia. The aim of this study was to determine whether the protective effect of carnosine on white matter lesion after chronic cerebral hypoperfusion through suppressing astrocyte activation. Methods: Adult male mice (C57BL/6 strain) were subjected to permanent occlusion of the right unilateral common carotid arteries (rUCCAO) and treated with carnosine or histidine. Open field test, freezing test, Klüver-Barrera staining, immunohistochemical analyses and western blot were performed after rUCCAO. Results: We found that carnosine ameliorated white matter lesion and cognitive impairment after rUCCAO. Carnosine suppressed the activation of astrocyte in both wide type mice and histidine decarboxylase knockout mice. However, administration of histidine did not show the same effect. We found that there were no differences between rUCCAO group and sham group for the expression of glutamate transporter-1 (GLT-1) and glutamate/aspartate transporter (GLAST). Furthermore, carnosine significantly attenuated the increase of inflammatory cytokine interferon gama. Conclusion: These data suggest carnosine induced neuroprotection during SIVD in mice is not dependent on the histaminergic pathway or the regulation of the expression of GLT-1 and GLAST, but may be due to a suppression of astrocyte activation and inflammatory cytokine release. PMID:26885268

  7. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    PubMed

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  8. Interleukin-37 Enhances the Suppressive Activity of Naturally Occurring CD4+CD25+ Regulatory T Cells

    PubMed Central

    Wang, Da-Wei; Dong, Ning; Wu, Yao; Zhu, Xiao-Mei; Wang, Chun-Ting; Yao, Yong-Ming

    2016-01-01

    Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are essential for the suppression of autoimmunity and can control the immune-mediated pathology during the early phase of sepsis. Our previous data showed that silencing interleukin-37 (IL-37) in human CD4+CD25+ Tregs obviously reduced the suppressive activity of CD4+CD25+ Tregs. Here, we found that rhIL-37 stimulation markedly enhanced the suppressive activity of CD4+CD25+ Tregs isolated from naive C57BL/6 J mice in the absence or presence of lipopolysaccharide (LPS). Treatment with rhIL-37 could significantly upregulate the expression of cytotoxic T-lymphocyte-associated antigen (CTLA)-4 and forkhead/winged helix transcription factor p3 (Foxp3) on CD4+CD25+ Tregs. Also, rhIL-37 stimulation promoted the production of transforming growth factor-β1 (TGF-β1) but not IL-10 in the supernatants of cultured CD4+CD25+ Tregs. Pretreated CD4+CD25+ Tregs with rhIL-37 in the presence or absence of LPS were cocultured with CD4+CD25− T cells, ratio of IL-4/interferon-γ in the supernatants obviously increased in IL-37-stimulated groups. In addition, early administration of IL-37 significantly improved the survival rate of septic mice induced by cecal ligation and puncture. Taken together, we concluded that rhIL-37 enhances the suppressive activity of CD4+CD25+ Tregs and might be a potential immunomodulator for the treatment of septic complications. PMID:27941849

  9. GBF-dependent family genes morphologically suppress the partially active Dictyostelium STATa strain.

    PubMed

    Shimada, Nao; Kanno-Tanabe, Naoko; Minemura, Kakeru; Kawata, Takefumi

    2008-02-01

    Transcription factor Dd-STATa, a functional Dictyostelium homologue of metazoan signal transducers and activators of transcription proteins, is necessary for culmination during development. We have isolated more than 18 putative multicopy suppressors of Dd-STATa using genetic screening. One was hssA gene, whose expression is known to be G-box-binding-factor-dependent and which was specific to prestalk A (pstA) cells, where Dd-STATa is activated. Also, hssA mRNA was expressed in pstA cells in the Dd-STATa-null mutant. At least 40 hssA-related genes are present in the genome and constitute a multigene family. The tagged HssA protein was translated; hssA encodes an unusually high-glycine-serine-rich small protein (8.37 kDa), which has strong homology to previously reported cyclic-adenosine-monophosphate-inducible 2C and 7E proteins. Overexpression of hssA mRNA as well as frame-shifted versions of hssA RNA suppressed the phenotype of the partially active Dd-STATa strain, suggesting that translation is not necessary for suppression. Although overexpression of prespore-specific genes among the family did not suppress the parental phenotype, prestalk-specific family members did. Although overexpression of the hssA did not revert the expression of Dd-STATa target genes, and although its suppression mechanism remains unknown, morphological reversion implies functional relationships between Dd-STATa and hssA.

  10. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  11. Eviprostat activates cAMP signaling pathway and suppresses bladder smooth muscle cell proliferation.

    PubMed

    Li, Kai; Yao, Jian; Chi, Yuan; Sawada, Norifumi; Araki, Isao; Kitamura, Masanori; Takeda, Masayuki

    2013-06-06

    Eviprostat is a popular phytotherapeutic agent for the treatment of lower urinary tract symptoms (LUTS). At present, the signaling mechanisms underlying its therapeutic effects are still poorly understood. Given that cAMP has been reported to suppress cell hyperplasia and hypertrophy in various pathological situations, we asked whether the effect of Eviprostat could be ascribed to the activation of the cAMP signaling pathway. In the study, exposure of cAMP response element (CRE)-secreted alkaline phosphatase (SEAP) (CRE-SEAP)-reporter cells to Eviprostat elevated SEAP secretion, which was associated with an increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and cAMP-response element-binding protein (CREB), as well as enhanced expression of CRE-regulated protein connexin43, indicating an activation of the cAMP signaling pathway. Consistent with these observations, Eviprostat-induced expression of Cx43 was abolished in the presence of adenylyl cyclase inhibitor SQ22536 or PKA inhibitor H89, whereas it was mimicked by adenylyl cyclase activator, forskolin. Further analysis demonstrated that Eviprostat significantly potentiated the effect of phosphodiesterase 3 (PDE3) inhibitor, but not that of PDE4 inhibitor, on CRE activation. Moreover, Eviprostat suppressed PDGF-induced activation of ERK and Akt and inhibited cell proliferation and hillock formation in both mesangial cells and bladder smooth muscle cells. Collectively, activation of the cAMP signaling pathway could be an important mechanism by which Eviprostat exerts its therapeutic effects for LUTS.

  12. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    PubMed

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function.

  13. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control.

    PubMed

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K; O'Hanlon, Karen; Quaas, Marianne; Larsen, Brian D; Rolland, Baptiste; Rösner, Heike I; Walter, David; Kousholt, Arne Nedergaard; Menzel, Tobias; Lees, Michael; Johansen, Jens Vilstrup; Rappsilber, Juri; Engeland, Kurt; Sørensen, Claus Storgaard

    2015-01-05

    Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein cyclin F with suppression of the B-Myb/cyclin A pathway to ensure a DNA damage-induced checkpoint response in G2.

  14. Flutter suppression control law synthesis for the Active Flexible Wing model

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Perry, Boyd, III; Noll, Thomas E.

    1989-01-01

    The Active Flexible Wing Project is a collaborative effort between the NASA Langley Research Center and Rockwell International. The objectives are the validation of methodologies associated with mathematical modeling, flutter suppression control law development and digital implementation of the control system for application to flexible aircraft. A flutter suppression control law synthesis for this project is described. The state-space mathematical model used for the synthesis included ten flexible modes, four control surface modes and rational function approximation of the doublet-lattice unsteady aerodynamics. The design steps involved developing the full-order optimal control laws, reducing the order of the control law, and optimizing the reduced-order control law in both the continuous and the discrete domains to minimize stochastic response. System robustness was improved using singular value constraints. An 8th order robust control law was designed to increase the symmetric flutter dynamic pressure by 100 percent. Preliminary results are provided and experiences gained are discussed.

  15. Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity?

    PubMed

    Askenasy, Enosh M; Askenasy, Nadir

    2013-03-01

    Two competing hypotheses are proposed to cause autoimmunity: evasion of a sporadic self-reactive clone from immune surveillance and ineffective suppression of autoreactive clones that arise physiologically. We question the relevance of these hypotheses to the study of type 1 diabetes, where autoreactivity may accompany the cycles of physiological adjustment of β-cell mass to body weight and nutrition. Experimental evidence presents variable and conflicting data concerning the activities of both effector and regulatory T cells, arguing in favor and against: quantitative dominance and deficit, aberrant reactivity and expansion, sensitivity to negative regulation and apoptosis. The presence of autoantibodies in umbilical cord blood of healthy subjects and low incidence of the disease following early induction suggest that suppression of self-reactivity is the major determinant factor.

  16. HORIZONTAL FLOWS IN ACTIVE REGIONS FROM RING-DIAGRAM AND LOCAL CORRELATION TRACKING METHODS

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Komm, R.; Hill, F.; Ravindra, B.

    2016-01-01

    Continuous high-cadence and high spatial resolution Dopplergrams allow us to study subsurface dynamics that may be further extended to explore precursors of visible solar activity on the surface. Since the p-mode power is absorbed in the regions of high magnetic field, the inferences in these regions are often presumed to have large uncertainties. In this paper, using the Dopplergrams from space-borne Helioseismic Magnetic Imager, we compare horizontal flows in a shear layer below the surface and the photospheric layer in and around active regions. The photospheric flows are calculated using the local correlation tracking (LCT) method, while the ring-diagram technique of helioseismology is used to infer flows in the subphotospheric shear layer. We find a strong positive correlation between flows from both methods near the surface. This implies that despite the absorption of acoustic power in the regions of strong magnetic field, the flows inferred from the helioseismology are comparable to those from the surface measurements. However, the magnitudes are significantly different; the flows from the LCT method are smaller by a factor of 2 than the helioseismic measurements. Also, the median difference between the direction of corresponding vectors is 49°.

  17. Determination of ring correction factors for leaded gloves used in grab sampling activities at Hanford tank farms

    SciTech Connect

    RATHBONE, B.A.

    1999-06-24

    This study evaluates the effectiveness of lead lined gloves in reducing extremity dose from two sources specific to tank waste sampling activities: (1) sludge inside glass sample jars and (2) sludge as thin layer contamination on the exterior surface of sample jars. The response of past and present Hanford Extremity Dosimeters (ring) designs under these conditions is also evaluated.

  18. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  19. Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons

    PubMed Central

    Estep, Chad M.; Galtieri, Daniel J.; Zampese, Enrico; Goldberg, Joshua A.; Brichta, Lars; Greengard, Paul; Surmeier, D. James

    2016-01-01

    Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) are richly innervated by GABAergic neurons. The postsynaptic effects of GABA on SNc DA neurons are mediated by a mixture of GABAA and GABAB receptors. Although activation of GABAA receptors inhibits spike generation, the consequences of GABAB receptor activation are less well characterized. To help fill this gap, perforated patch recordings were made from young adult mouse SNc DA neurons. Sustained stimulation of GABAB receptors hyperpolarized SNc DA neurons, as previously described. However, transient stimulation of GABAB receptors by optical uncaging of GABA did not; rather, it reduced the opening of small-conductance, calcium-activated K+ (SK) channels and increased the irregularity of spiking. This modulation was attributable to inhibition of adenylyl cyclase and protein kinase A. Thus, because suppression of SK channel activity increases the probability of burst spiking, transient co-activation of GABAA and GABAB receptors could promote a pause-burst pattern of spiking. PMID:28036359

  20. Active Suppression of Early Immune Response in Tobacco by the Human Pathogen Salmonella Typhimurium

    PubMed Central

    Shirron, Natali; Yaron, Sima

    2011-01-01

    The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants. PMID:21541320

  1. [Suppression of telomerase activity leukemic cells by mutant forms of Rhodospirillum rubrum L-asparaginase].

    PubMed

    Pokrovskaya, M V; Zhdanov, D D; Eldarov, M A; Aleksandrova, S S; Veselovskiy, A V; Pokrovskiy, V S; Grishin, D V; Gladilina, Ju A; Sokolov, N N

    2017-01-01

    The active and stable mutant forms of short chain cytoplasmic L-asparaginase type I of Rhodospirillum rubrum (RrA): RrA+N17, D60K, F61L, RrA+N17, A64V, E67K, RrA+N17, E149R, V150P, RrAE149R, V150P and RrAE149R, V150P, F151T were obtained by the method of site-directed mutagenesis. It is established that variants RrA-N17, E149R, V150P, F151T and RrАE149R, V150P are capable to reduce an expression hTERT subunit of telomerase and, hence, activity of telomeres in Jurkat cells, but not in cellular lysates. During too time, L-asparaginases of Escherichia coli, Erwinia carotovora and Wolinella succinogenes, mutant forms RrА+N17, D60K, F61L and RrА+N17, A64V, E67K do not suppress of telomerase activity. The assumption of existence in structure RrA of areas (amino acids residues in the position 146-164, 1-17, 60-67) which are responsible for suppression of telomerase activity is made. The received results show that antineoplastic activity of some variants RrA is connected both with reduction of concentration of free L-asparagine, and with expression suppression of hTERT telomerase subunit, that opens new prospects for antineoplastic therapy.

  2. Transition in subicular burst firing neurons from epileptiform activity to suppressed state by feedforward inhibition.

    PubMed

    Sah, Nirnath; Sikdar, Sujit K

    2013-08-01

    The subiculum, a para-hippocampal structure positioned between the cornu ammonis 1 subfield and the entorhinal cortex, has been implicated in temporal lobe epilepsy in human patients and in animal models of epilepsy. The structure is characterized by the presence of a significant population of burst firing neurons that has been shown previously to lead epileptiform activity locally. Phase transitions in epileptiform activity in neurons following a prolonged challenge with an epileptogenic stimulus has been shown in other brain structures, but not in the subiculum. Considering the importance of the subicular burst firing neurons in the propagation of epileptiform activity to the entorhinal cortex, we have explored the phenomenon of phase transitions in the burst firing neurons of the subiculum in an in vitro rat brain slice model of epileptogenesis. Whole-cell patch-clamp and extracellular field recordings revealed a distinct phenomenon in the subiculum wherein an early hyperexcitable state was followed by a late suppressed state upon continuous perfusion with epileptogenic 4-aminopyridine and magnesium-free medium. The suppressed state was characterized by inhibitory post-synaptic potentials in pyramidal excitatory neurons and bursting activity in local fast-spiking interneurons at a frequency of 0.1-0.8 Hz. The inhibitory post-synaptic potentials were mediated by GABAA receptors that coincided with excitatory synaptic inputs to attenuate action potential discharge. These inhibitory post-synaptic potentials ceased following a cut between the cornu ammonis 1 and subiculum. The suppression of epileptiform activity in the subiculum thus represents a homeostatic response towards the induced hyperexcitability. Our results suggest the importance of feedforward inhibition in exerting this homeostatic control.

  3. Adenosine monophosphate-activated protein kinase activation and suppression of inflammatory response by cell stretching in rabbit synovial fibroblasts.

    PubMed

    Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2016-12-01

    Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca(2+) influx via a mechanosensitive L-type Ca(2+) channel, which subsequently raises intracellular Ca(2+) and activates AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca(2+)-channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.

  4. The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth.

    PubMed

    Luo, Zhongguang; Yu, Guangyang; Lee, Hyuk Woo; Li, Lihui; Wang, Lingyan; Yang, Dongqin; Pan, Yongfu; Ding, Chan; Qian, Jing; Wu, Lijun; Chu, Yiwei; Yi, Jing; Wang, Xiangdong; Sun, Yi; Jeong, Lak Shin; Liu, Jie; Jia, Lijun

    2012-07-01

    Posttranslational neddylation of cullins in the Cullin-Ring E3 ligase (CRL) complexes is needed for proteolytic degradation of CRL substrates, whose accumulation induces cell-cycle arrest, apoptosis, and senescence. The Nedd8-activating enzyme (NAE) is critical for neddylation of CRL complexes and their growth-promoting function. Recently, the anticancer small molecule MLN4924 currently in phase I trials was determined to be an inhibitor of NAE that blocks cullin neddylation and inactivates CRL, triggering an accumulation of CRL substrates that trigger cell-cycle arrest, apoptosis, and senescence in cancer cells. Here, we report that MLN4924 also triggers autophagy in response to CRL inactivation and that this effect is important for the ability of MLN4924 to suppress the outgrowth of liver cancer cells in vitro and in vivo. MLN4924-induced autophagy was attributed partially to inhibition of mTOR activity, due to accumulation of the mTOR inhibitory protein Deptor, as well as to induction of reactive oxygen species stress. Inhibiting autophagy enhanced MLN4924-induced apoptosis, suggesting that autophagy is a survival signal triggered in response to CRL inactivation. In a xenograft model of human liver cancer, MLN4924 was well-tolerated and displayed a significant antitumor effect characterized by CRL inactivation and induction of autophagy and apoptosis in liver cancer cells. Together, our findings support the clinical investigation of MLN4924 for liver cancer treatment and provide a preclinical proof-of-concept for combination therapy with an autophagy inhibitor to enhance therapeutic efficacy.

  5. Synthesis and antiproliferative activity of the ring system [1,2]oxazolo[4,5-g]indole.

    PubMed

    Barraja, Paola; Caracausi, Libero; Diana, Patrizia; Spanò, Virginia; Montalbano, Alessandra; Carbone, Anna; Parrino, Barbara; Cirrincione, Girolamo

    2012-11-01

    Brand new ring: A series of 27 derivatives of the new ring system [1,2]oxazolo[4,5-g]indole were conveniently prepared and tested at the NCI for antiproliferative studies. Several of them showed good inhibitory activity toward all tested cell lines, reaching GI50 values generally at the micromolar and sub-micromolar levels and in some cases at nanomolar concentrations. The mean GI50 values, calculated on the full panel, were in the range 0.25-7.08 μM.

  6. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis.

    PubMed

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W

    2015-12-01

    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA(-) cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA(-) cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA(-) cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis.

  7. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis

    PubMed Central

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W.

    2015-01-01

    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA− cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA− cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA− cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis. PMID:26424797

  8. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells

    PubMed Central

    Villa, Nancy Y.; Wasserfall, Clive H.; Meacham, Amy M.; Wise, Elizabeth; Chan, Winnie; Wingard, John R.; McFadden, Grant

    2015-01-01

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens. PMID:25904246

  9. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells.

    PubMed

    Villa, Nancy Y; Wasserfall, Clive H; Meacham, Amy M; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R

    2015-06-11

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens.

  10. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  11. [Mechanisms of in vivo suppressive effect of togaviridae and bunyaviridae on the activity of effectors of graft vs host reaction].

    PubMed

    Khozinskiĭ, V V; Semenov, B F

    1982-02-01

    Experiments on mice demonstrated the ability of 3 flaviviruses and 1 bunyavirus to suppress the activity of the effectors of the graft-versus-host (GVH) reaction. The conditions of the suppression of the primary immunological recognition were shown to differ in infections caused by different viruses. In experimental flavivirus infections caused by Langat, dengue 2 or yellow fever (strain 17D) viruses T-suppressor cells were activated, and their activity was realized only in respect to syngeneic or semisyngeneic target cells. In mice infected with Tahyna virus (a bunyavirus) no suppressor cells capable of suppressing the activity of the effectors of the GVH reaction were detected. The suppression of this reaction, not linked with the activity of the detected T-suppressor cells, was observed in the Langat virus infection under conditions of bilateral incompatibility when both the donor and the recipient were infected.

  12. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization.

    PubMed

    Youn, Hyung S; Lee, Jun K; Choi, Yong J; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H; Lee, Joo Y

    2008-01-15

    Toll-like receptors (TLRs) play a critical role in induction of innate immune and inflammatory responses by recognizing invading pathogens or non-microbial endogenous molecules. TLRs have two major downstream signaling pathways, MyD88- and TRIF-dependent pathways leading to the activation of NFkappaB and IRF3 and the expression of inflammatory mediators. Deregulation of TLR activation is known to be closely linked to the increased risk of many chronic diseases. Cinnamaldehyde (3-phenyl-2-propenal) has been reported to inhibit NFkappaB activation induced by pro-inflammatory stimuli and to exert anti-inflammatory and anti-bacterial effects. However, the underlying mechanism has not been clearly identified. Our results showed that cinnamaldehyde suppressed the activation of NFkappaB and IRF3 induced by LPS, a TLR4 agonist, leading to the decreased expression of target genes such as COX-2 and IFNbeta in macrophages (RAW264.7). Cinnamaldehyde did not inhibit the activation of NFkappaB or IRF3 induced by MyD88-dependent (MyD88, IKKbeta) or TRIF-dependent (TRIF, TBK1) downstream signaling components. However, oligomerization of TLR4 induced by LPS was suppressed by cinnamaldehyde resulting in the downregulation of NFkappaB activation. Further, cinnamaldehyde inhibited ligand-independent NFkappaB activation induced by constitutively active TLR4 or wild-type TLR4. Our results demonstrated that the molecular target of cinnamaldehyde in TLR4 signaling is oligomerization process of receptor, but not downstream signaling molecules suggesting a novel mechanism for anti-inflammatory activity of cinnamaldehyde.

  13. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway.

    PubMed

    Lee, Dae Hyung; Lim, In-Hye; Sung, Eon-Gi; Kim, Joo-Young; Song, In-Hwan; Park, Yoon Ki; Lee, Tae-Jin

    2013-08-01

    Withaferin A (Wit A), a steroidal lactone isolated from Withania somnifera, exhibits anti-inflammatory, immuno-modulatory and anti-angiogenic properties and antitumor activities. In the present study, we investigated the effects of Wit A on protease-mediated invasiveness of the human metastatic cancer cell lines Caski and SK-Hep1. We found that treatment with Wit A resulted in marked inhibition of the TGF‑β‑induced increase in expression and activity of matrix metalloproteinase (MMP)‑9 in Caski cell line. These effects of Wit A were dose-dependent and showed a correlation with suppression of MMP‑9 mRNA expression levels. Treatment with Wit A resulted in an ~1.6-fold induction of MMP-9 promoter activity, which was also suppressed by treatment with Wit A in Caski cells. We found that treatment with Wit A resulted in inhibition of TGF‑β‑induced phosphorylation of Akt, which was involved in the downregulation of expression of MMP-9 at the protein level. Introduction with constitutively active (CA)‑Akt resulted in a partial increase in the secretion of TGF-β-induced MMP-9 blocked by treatment with Wit A in Caski cells. According to these results, Wit A may inhibit the invasive and migratory abilities of Caski cells through a reduction in MMP-9 expression through suppression of the pAkt signaling pathway. These findings indicate that use of Wit A may be an effective strategy for control of metastasis and invasiveness of tumors.

  14. Active coping with stress suppresses glucose metabolism in the rat hypothalamus.

    PubMed

    Ono, Yumie; Lin, Hsiao-Chun; Tzen, Kai-Yuan; Chen, Hui-Hsing; Yang, Pai-Feng; Lai, Wen-Sung; Chen, Jyh-Horng; Onozuka, Minoru; Yen, Chen-Tung

    2012-03-01

    We used 18F-fluorodeoxyglucose small-animal positron-emission tomography to determine whether different styles of coping with stress are associated with different patterns of neuronal activity in the hypothalamus. Adult rats were subjected to immobilization (IMO)-stress or to a non-immobilized condition for 30 min, in random order on separate days, each of which was followed by brain-scanning. Some rats in the immobilized condition were allowed to actively cope with the stress by chewing a wooden stick during IMO, while the other immobilized rats were given nothing to chew on. Voxel-based statistical analysis of the brain imaging data shows that chewing counteracted the stress-induced increased glucose uptake in the hypothalamus to the level of the non-immobilized condition. Region-of-interest analysis of the glucose uptake values further showed that chewing significantly suppressed stress-induced increased glucose uptake in the paraventricular hypothalamic nucleus and the anterior hypothalamic area but not in the lateral hypothalamus. Together with the finding that the mean plasma corticosterone concentration at the termination of the IMO was also significantly suppressed when rats had an opportunity to chew a wooden stick, our results showed that active coping by chewing inhibited the activation of the hypothalamic-pituitary-adrenal axis to reduce the endocrine stress response.

  15. Quinine suppresses extracellular potassium transients and ictal epileptiform activity without decreasing neuronal excitability in vitro.

    PubMed

    Bikson, M; Id Bihi, R; Vreugdenhil, M; Köhling, R; Fox, J E; Jefferys, J G R

    2002-01-01

    The effect of quinine on pyramidal cell intrinsic properties, extracellular potassium transients, and epileptiform activity was studied in vitro using the rat hippocampal slice preparation. Quinine enhanced excitatory post-synaptic potentials and decreased fast- and slow-inhibitory post-synaptic potentials. Quinine reduced the peak potassium rise following tetanic stimulation but did not affect the potassium clearance rate. Epileptiform activity induced by either low-Ca(2+) or high-K(+) artificial cerebrospinal fluid (ACSF) was suppressed by quinine. The frequency of spontaneous inter-ictal bursting induced by picrotoxin, high-K(+), or 4-aminopyridine was significantly increased. In normal ACSF, quinine did not affect CA1 pyramidal cell resting membrane potential, input resistance, threshold for action potentials triggered by intracellular or extracellular stimulation, or the orthodromic and antidromic evoked population spike amplitude. The main effects of quinine on intrinsic cell properties were to increase action potential duration and to reduce firing frequency during sustained membrane depolarizations, but not at normal resting membrane potentials. This attenuation was enhanced at increasingly depolarized membrane potentials. These results suggest that quinine suppresses extracellular potassium transients and ictal activity and modulates inter-ictal activity by limiting the firing rate of cells in a voltage-dependent manner. Because quinine does not affect 'normal' neuronal function, it may merit consideration as an anticonvulsant.

  16. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.

    PubMed

    Cicchini, Michelle; Chakrabarti, Rumela; Kongara, Sameera; Price, Sandy; Nahar, Ritu; Lozy, Fred; Zhong, Hua; Vazquez, Alexei; Kang, Yibin; Karantza, Vassiliki

    2014-01-01

    Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation. Our studies demonstrate that Becn1 heterozygosity, which results in immature mammary epithelial cell expansion and aberrant TNFRSF11A/TNR11/RANK (tumor necrosis factor receptor superfamily, member 11a, NFKB activator) signaling, promotes mammary tumorigenesis in multiparous FVB/N mice and in cooperation with the progenitor cell-transforming WNT1 oncogene. Similar to our Becn1(+/-);MMTV-Wnt1 mouse model, low BECN1 expression and an activated WNT pathway gene signature correlate with the triple-negative subtype, TNFRSF11A axis activation and poor prognosis in human breast cancers. Our results suggest that BECN1 may have nonautophagy-related roles in mammary development, provide insight in the seemingly paradoxical roles of BECN1 in tumorigenesis, and constitute the basis for further studies on the pathophysiology and treatment of clinically aggressive triple negative breast cancers (TNBCs).

  17. Mitochondria play an important role in the cell proliferation suppressing activity of berberine

    PubMed Central

    Yan, Xiao-Jin; Yu, Xuan; Wang, Xin-Pei; Jiang, Jing-Fei; Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Xing, Dong-Ming

    2017-01-01

    After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism. PMID:28181523

  18. Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels

    PubMed Central

    Nagatomo, Katsuhiro; Kubo, Yoshihiro

    2008-01-01

    Caffeine has various well-characterized pharmacological effects, but in mammals there are no known plasma membrane receptors or ion channels activated by caffeine. We observed that caffeine activates mouse transient receptor potential A1 (TRPA1) in heterologous expression systems by Cai2+ imaging and electrophysiological analyses. These responses to caffeine were confirmed in acutely dissociated dorsal root ganglion sensory neurons from WT mice, which are known to express TRPA1, but were not seen in neurons from TRPA1 KO mice. Expression of TRPA1 was detected immunohistochemically in nerve fibers and bundles in the mouse tongue. Moreover, WT mice, but not KO mice, showed a remarkable aversion to caffeine-containing water. These results demonstrate that mouse TRPA1 channels expressed in sensory neurons cause an aversion to drinking caffeine-containing water, suggesting they mediate the perception of caffeine. Finally, we observed that caffeine does not activate human TRPA1; instead, it suppresses its activity. PMID:18988737

  19. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells.

    PubMed

    Lee, Sunyi; Jeong, Ae Lee; Park, Jeong Su; Han, Sora; Jang, Chang-Young; Kim, Keun Il; Kim, Yonghwan; Park, Jong Hoon; Lim, Jong-Seok; Lee, Myung Sok; Yang, Young

    2016-09-01

    Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry.

  20. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    PubMed

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  1. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis

    PubMed Central

    Zhao, Yuechao; Gong, Ping; Chen, Yiru; Nwachukwu, Jerome C.; Srinivasan, Sathish; Ko, CheMyong; Bagchi, Milan K.; Taylor, Robert N.; Korach, Kenneth S.; Nettles, Kendall W.; Katzenellenbogen, John A.; Katzenellenbogen, Benita S.

    2016-01-01

    Estrogenic and inflammatory components play key roles in a broad range of diseases including endometriosis, a common estrogen-dependent gynecological disorder in which endometrial tissue creates inflammatory lesions at extrauterine sites, causing pelvic pain and reduced fertility. Current medical therapies focus primarily on reducing systemic levels of estrogens, but these are of limited effectiveness and have considerable side effects. We developed estrogen receptor (ER) ligands, chloroindazole (CLI) and oxabicycloheptene sulfonate (OBHS), which showed strong ER-dependent anti-inflammatory activity in a preclinical model of endometriosis that recapitulates the estrogen dependence and inflammatory responses of the disease in immunocompetent mice and in primary human endometriotic stromal cells in culture. Estrogen-dependent phenomena, including cell proliferation, cyst formation, vascularization, and lesion growth, were all arrested by CLI or OBHS, which prevented lesion expansion and also elicited regression of established lesions, suppressed inflammation, angiogenesis, and neurogenesis in the lesions, and interrupted crosstalk between lesion cells and infiltrating macrophages. Studies in ERα or ERβ knockout mice indicated that ERα is the major mediator of OBHS effectiveness and ERβ is dominant in CLI actions, implying involvement of both ERs in endometriosis. Neither ligand altered estrous cycling or fertility at doses that were effective for suppression of endometriosis. Hence, CLI and OBHS are able to restrain endometriosis by dual suppression of the estrogen-inflammatory axis. Our findings suggest that these compounds have the desired characteristics of preventive and therapeutic agents for clinical endometriosis and possibly other estrogen-driven and inflammation-promoted disorders. PMID:25609169

  2. Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons.

    PubMed

    Sun, P; Zhang, Q; Zhang, Y; Wang, F; Wang, L; Yamamoto, R; Sugai, T; Kato, N

    2015-01-01

    It was previously shown that depression-like behavior is accompanied with suppression of the large-conductance calcium activated potassium (BK) channel in cingulate cortex pyramidal cells. To test whether BK channels are also involved in fear conditioning, we studied neuronal properties of amygdala principal cells in fear conditioned mice. After behavior, we made brain slices containing the amygdala, the structure critically relevant to fear memory. The resting membrane potential in lateral amygdala (LA) neurons obtained from fear conditioned mice (FC group) was more depolarized than in neurons from naïve controls. The frequencies of spikes evoked by current injections were higher in neurons from FC mice, demonstrating that excitability of LA neurons was elevated by fear conditioning. The depolarization in neurons from FC mice was shown to depend on BK channels by using the BK channel blocker charybdotoxin. Suppression of BK channels in LA neurons from the FC group was further confirmed on the basis of the spike width, since BK channels affect the descending phase of spikes. Spikes were broader in the FC group than those in the naïve control in a manner dependent on BK channels. Consistently, quantitative real-time PCR revealed a decreased expression of BK channel mRNA. The present findings suggest that emotional disorder manifested in the forms of fear conditioning is accompanied with BK channel suppression in the amygdala, the brain structure critical to this emotional disorder.

  3. Direct Evidence for Active Suppression of Salient-but-Irrelevant Sensory Inputs.

    PubMed

    Gaspelin, Nicholas; Leonard, Carly J; Luck, Steven J

    2015-11-01

    Researchers have long debated whether attentional capture is purely stimulus driven or purely goal driven. In the current study, we tested a hybrid account, called the signal-suppression hypothesis, which posits that stimuli automatically produce a bottom-up salience signal, but that this signal can be suppressed via top-down control processes. To test this account, we used a new capture-probe paradigm in which participants searched for a target shape while ignoring an irrelevant color singleton. On occasional probe trials, letters were briefly presented inside the search shapes, and participants attempted to report these letters. Under conditions that promoted capture by the irrelevant singleton, accuracy was greater for the letter inside the singleton distractor than for letters inside nonsingleton distractors. However, when the conditions were changed to avoid capture by the singleton, accuracy for the letter inside the irrelevant singleton was reduced below the level observed for letters inside nonsingleton distractors, an indication of active suppression of processing at the singleton location.

  4. The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds.

    PubMed

    Hall, Margaret I

    2008-06-01

    Activity pattern, or the time of day when an animal is awake and active, is highly associated with that animal's ecology. There are two principal activity patterns: diurnal, or awake during the day in a photopic, or high light level, environment; and nocturnal, awake at night in scotopic, or low light level, conditions. Nocturnal and diurnal birds exhibit characteristic eye shapes associated with their activity pattern, with nocturnal bird eyes optimized for visual sensitivity with large corneal diameters relative to their eye axial lengths, and diurnal birds optimized for visual acuity, with larger axial lengths of the eye relative to their corneal diameters. The current study had three aims: (1) to quantify the nature of the relationship between the avian eye and its associated bony anatomy, the orbit and the sclerotic ring; (2) to investigate how activity pattern is reflected in that bony anatomy; and (3) to identify how much bony anatomy is required to interpret activity pattern reliably for a bird that does not have the soft tissue available for study, specifically, for a fossil. Knowledge of extinct avian activity patterns would be useful in making palaeoecological interpretations. Here eye, orbit and sclerotic ring morphologies of 140 nocturnal and diurnal bird species are analysed in a phylogenetic context. Although there is a close relationship between the avian eye and orbit, activity pattern can only be reliably interpreted for bony-only specimens, such as a fossil, that include both measurements of the sclerotic ring and orbit depth. Any missing data render the fossil analysis inaccurate, including fossil specimens that are flat and therefore do not have an orbit depth available. For example, activity pattern cannot be determined with confidence for Archaeopteryx lithographica, which has a complete sclerotic ring but no orbit depth measurement. Many of the bird fossils currently available that retain a good sclerotic ring tend to be flat specimens

  5. Functional connectivity in raphé-pontomedullary circuits supports active suppression of breathing during hypocapnic apnea

    PubMed Central

    Nuding, Sarah C.; Segers, Lauren S.; Iceman, Kimberly E.; O'Connor, Russell; Dean, Jay B.; Bolser, Donald C.; Baekey, David M.; Dick, Thomas E.; Shannon, Roger; Morris, Kendall F.

    2015-01-01

    Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multielectrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04–0.1 Hz) in firing rate were also disrupted during apnea. Four-hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity. PMID:26203111

  6. Functional connectivity in raphé-pontomedullary circuits supports active suppression of breathing during hypocapnic apnea.

    PubMed

    Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly E; O'Connor, Russell; Dean, Jay B; Bolser, Donald C; Baekey, David M; Dick, Thomas E; Shannon, Roger; Morris, Kendall F; Lindsey, Bruce G

    2015-10-01

    Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multielectrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04-0.1 Hz) in firing rate were also disrupted during apnea. Four-hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity.

  7. Cytotoxic activity of a synthetic deoxypodophyllotoxin derivative with an opened D-ring.

    PubMed

    Chen, Chuan; Wang, Cui-Cui; Wang, Zhong; Geng, Wen-Yue; Xu, Hui; Song, Xiao-Mei; Luo, Du-Qiang

    2016-05-01

    Podophyllotoxin and its synthetic derivatives are valuable medicinal agents that have antitumor, insecticidal, and antifungal properties. We previously synthesized a deoxypodophyllotoxin derivative with an opened D-ring (DPD) exhibiting potent insecticidal activity. This article was firstly performed to identify the cytotoxicity of DPD toward human cancer cell lines (SGC7901, HeLa, and A549) and normal cell line (HEK293T) using MTT assay. DPD showed potent cytotoxicity against human cancer lines (HeLa and A549) and less cytotoxicity against normal cell lines HEK293T. DPD could also induce the cell cycle arrest at G2/M phase in HeLa cells and significantly increase the phosphorylation (Tyr 15) of CDC2 leading to inactivation of CDC2. The effects of DPD on cellular microtubule networks were detected using immunofluorescence technique in HeLa cells. The immunofluorescence results showed DPD influenced the arrangement and organization of cellular microtubule networks in HeLa cells. Microtubules are long, hollow cylinders made up of polymerized tubulin dimers. Total microtubules were separated after DPD treatment. Western blot results showed that the free polymerized tubulin dimers were obviously increased after DPD treatment. DPD may be a good drug candidate with the therapeutic potential to human cancer by affecting microtubule polymerization.

  8. Pyrrolo[2,3-h]quinolinones: a new ring system with potent photoantiproliferative activity.

    PubMed

    Barraja, Paola; Diana, Patrizia; Montalbano, Alessandra; Dattolo, Gaetano; Cirrincione, Girolamo; Viola, Giampietro; Vedaldi, Daniela; Dall'Acqua, Francesco

    2006-12-15

    A new class of compounds, the pyrrolo[2,3-h]quinolin-2-ones, nitrogen isosters of the angular furocoumarin Angelicin, was synthesized with the aim of obtaining new photochemotherapeutic agents with increased antiproliferative activity and lower undesired toxic effects than the lead compound. Two synthetic pathways were approached to allow the isolation both of the dihydroderivatives 10-17 and of the aromatic ring system 23. Compounds 10-17 showed a remarkable phototoxicity and a great UVA dose dependence reaching IC(50) values at submicromolar level. Intracellular localization of these compounds has been evaluated by means of fluorescence microscopy using tetramethylrhodamine methyl ester and acridine orange, which are specific fluorescent probes for mitochondria and lysosomes, respectively. A weak co-staining was observed with mitochondrial stain, whereas a specific localization in lysosomes was observed. Studies directed to elucidate the mode of action of this series of compounds revealed that they do not intercalate with DNA and do not induce photodamage to the macromolecule. On the contrary, they induce significative photodamage to lipids and proteins.

  9. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor); Renshaw, Anthony A. (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  10. Direct Ring Fission of Salicylate by a Salicylate 1,2-Dioxygenase Activity from Pseudaminobacter salicylatoxidans

    PubMed Central

    Hintner, Jan-Peter; Lechner, Christa; Riegert, Ulrich; Kuhm, Andrea Elisabeth; Storm, Thomas; Reemtsma, Thorsten; Stolz, Andreas

    2001-01-01

    In cell extracts of Pseudaminobacter salicylatoxidans strain BN12, an enzymatic activity was detected which converted salicylate in an oxygen-dependent but NAD(P)H-independent reaction to a product with an absorbance maximum at 283 nm. This metabolite was isolated, purified, and identified by mass spectrometry and 1H and 13C nuclear magnetic resonance spectroscopy as 2-oxohepta-3,5-dienedioic acid. This metabolite could be formed only by direct ring fission of salicylate by a 1,2-dioxygenase reaction. Cell extracts from P. salicylatoxidans also oxidized 5-aminosalicylate, 3-, 4-, and 5-chlorosalicylate, 3-, 4-, and 5-methylsalicylate, 3- and 5-hydroxysalicylate (gentisate), and 1-hydroxy-2-naphthoate. The dioxygenase was purified and shown to consist of four identical subunits with a molecular weight of about 45,000. The purified enzyme showed higher catalytic constants with gentisate or 1-hydroxy-2-naphthoate than with salicylate. It was therefore concluded that P. salicylatoxidans synthesized a gentisate 1,2-dioxygenase with an extraordinary substrate range, which also allowed the oxidation of salicylate. PMID:11698383

  11. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    SciTech Connect

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  12. Study of exteroceptive suppression of voluntary muscular activity in healthy volunteers and patients with paroxysmal neuropathic pain.

    PubMed

    Gordeev, S A; Turbina, L G; Shtang, O M

    2014-07-01

    The exteroceptive suppression of voluntary electromyographic activity of the masseter and temporal muscles was studied in healthy volunteers and patients with paroxysmal neuropathic pain (trigeminal neuralgia). The latent period of the exteroceptive suppression was prolonged and the duration of its late fragment was shortened in the patients in comparison with normal subjects. A short exteroceptive suppression period in patients with trigeminal neuralgia reflected deficient activity of inhibitory interneurons of the reflector loop and excessive activity of the antinociceptive system of the brain stem, while prolongation of the latent period reflected prolongation of inhibitory interneurons activation. A direct correlation between the degree of changes in the exteroceptive suppression parameters and pain intensity, evaluated by the patients by the visual analog scale, was detected.

  13. Conical Euler simulation and active suppression of delta wing rocking motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling highly-swept delta wings, undergoing either forced or free-to-roll motions including active roll suppression. The flow solver of the code involves a multistage Runge-Kutta time-stepping scheme which uses a finite volume spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free-to-roll case, by including the rigid-body equation of motion for its simultaneous time integration with the governing flow equations. Results are presented for a 75 deg swept sharp leading edge delta wing at a freestream Mach number of 1.2 and at alpha equal to 10 and 30 deg angle of attack. A forced harmonic analysis indicates that the rolling moment coefficient provides: (1) a positive damping at the lower angle of attack equal to 10 deg, which is verified in a free-to-roll calculation; (2) a negative damping at the higher angle of attack equal to 30 deg at the small roll amplitudes. A free-to-roll calculation for the latter case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation. The wing rocking motion may be actively suppressed, however, through the use of a rate-feedback control law and antisymmetrically deflected leading edge flaps. The descriptions of the conical Euler flow solver and the free-to-roll analysis are presented. Results are also presented which give insight into the flow physics associated with unsteady vortical flows about forced and free-to-roll delta wings, including the active roll suppression of this wing-rock phenomenon.

  14. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

    PubMed Central

    Mosadeghi, Ruzbeh; Reichermeier, Kurt M; Winkler, Martin; Schreiber, Anne; Reitsma, Justin M; Zhang, Yaru; Stengel, Florian; Cao, Junyue; Kim, Minsoo; Sweredoski, Michael J; Hess, Sonja; Leitner, Alexander; Aebersold, Ruedi; Peter, Matthias; Deshaies, Raymond J; Enchev, Radoslav I

    2016-01-01

    The COP9-Signalosome (CSN) regulates cullin–RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network. DOI: http://dx.doi.org/10.7554/eLife.12102.001 PMID:27031283

  15. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 1; Theory and Design Procedure

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes a project at the University of Washington to design a multirate suppression system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the design of a multirate flutter suppression system for the BACT wing.

  16. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood Tiffany; Cole, Stanley R.; Buttrill, Carey S.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind-tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for online controller performance evaluation.

  17. Digital-flutter-suppression-system investigations for the active flexible wing wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Mukhopadhyay, Vivek; Hoadley, Sherwood T.; Cole, Stanley R.; Buttrill, Carey S.; Houck, Jacob A.

    1990-01-01

    Active flutter suppression control laws were designed, implemented, and tested on an aeroelastically-scaled wind tunnel model in the NASA Langley Transonic Dynamics Tunnel. One of the control laws was successful in stabilizing the model while the dynamic pressure was increased to 24 percent greater than the measured open-loop flutter boundary. Other accomplishments included the design, implementation, and successful operation of a one-of-a-kind digital controller, the design and use of two simulation methods to support the project, and the development and successful use of a methodology for on-line controller performance evaluation.

  18. Multirate Flutter Suppression System Design for the Benchmark Active Controls Technology Wing. Part 2; Methodology Application Software Toolbox

    NASA Technical Reports Server (NTRS)

    Mason, Gregory S.; Berg, Martin C.; Mukhopadhyay, Vivek

    2002-01-01

    To study the effectiveness of various control system design methodologies, the NASA Langley Research Center initiated the Benchmark Active Controls Project. In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing. This report describes the user's manual and software toolbox developed at the University of Washington to design a multirate flutter suppression control law for the BACT wing.

  19. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity.

    PubMed

    Zhang, S; Qi, Q; Chan, C B; Zhou, W; Chen, J; Luo, H R; Appin, C; Brat, D J; Ye, K

    2016-01-01

    The AMP-activated protein kinase, a key regulator of energy homeostasis, has a critical role in metabolic disorders and cancers. AMPK is mainly regulated by cellular AMP and phosphorylation by upstream kinases. Here, we show that PIKE-A binds to AMPK and blocks its tumor suppressive actions, which are mediated by tyrosine kinase Fyn. PIKE-A directly interacts with AMPK catalytic alpha subunit and impairs T172 phosphorylation, leading to repression of its kinase activity on the downstream targets. Mutation of Fyn phosphorylation sites on PIKE-A, depletion of Fyn, or pharmacological inhibition of Fyn blunts the association between PIKE-A and AMPK, resulting in loss of its inhibitory effect on AMPK. Cell proliferation and oncogenic assays demonstrate that PIKE-A antagonizes tumor suppressive actions of AMPK. In human glioblastoma samples, PIKE-A expression inversely correlates with the p-AMPK levels, supporting that PIKE-A negatively regulates AMPK activity in cancers. Thus, our findings provide additional layer of molecular regulation of the AMPK signaling pathway in cancer progression.

  20. Folliculin Contributes to VHL Tumor Suppressing Activity in Renal Cancer through Regulation of Autophagy

    PubMed Central

    Kellner, Emily; Mikhaylova, Olga; Yi, Ying; Sartor, Maureen A.; Medvedovic, Mario; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2013-01-01

    Von Hippel-Lindau tumor suppressor (VHL) is lost in the majority of clear cell renal cell carcinomas (ccRCC). Folliculin (FLCN) is a tumor suppressor whose function is lost in Birt-Hogg-Dubé syndrome (BHD), a disorder characterized by renal cancer of multiple histological types including clear cell carcinoma, cutaneous fibrofolliculoma, and pneumothorax. Here we explored whether there is connection between VHL and FLCN in clear cell renal carcinoma cell lines and tumors. We demonstrate that VHL regulates expression of FLCN at the mRNA and protein levels in RCC cell lines, and that FLCN protein expression is decreased in human ccRCC tumors with VHL loss, as compared with matched normal kidney tissue. Knockdown of FLCN results in increased formation of tumors by RCC cells with wild-type VHL in orthotopic xenografts in nude mice, an indication that FLCN plays a role in the tumor-suppressing activity of VHL. Interestingly, FLCN, similarly to VHL, is necessary for the activity of LC3C-mediated autophagic program that we have previously characterized as contributing to the tumor suppressing activity of VHL. The results show the existence of functional crosstalk between two major tumor suppressors in renal cancer, VHL and FLCN, converging on regulation of autophagy. PMID:23922894

  1. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.

    PubMed

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.

  2. MHC-derived allopeptide activates TCR-biased CD8+ Tregs and suppresses organ rejection

    PubMed Central

    Picarda, Elodie; Bézie, Séverine; Venturi, Vanessa; Echasserieau, Klara; Mérieau, Emmanuel; Delhumeau, Aurélie; Renaudin, Karine; Brouard, Sophie; Bernardeau, Karine; Anegon, Ignacio; Guillonneau, Carole

    2014-01-01

    In a rat heart allograft model, preventing T cell costimulation with CD40Ig leads to indefinite allograft survival, which is mediated by the induction of CD8+CD45RClo regulatory T cells (CD8+CD40Ig Tregs) interacting with plasmacytoid dendritic cells (pDCs). The role of TCR-MHC-peptide interaction in regulating Treg activity remains a topic of debate. Here, we identified a donor MHC class II–derived peptide (Du51) that is recognized by TCR-biased CD8+CD40Ig Tregs and activating CD8+CD40Ig Tregs in both its phenotype and suppression of antidonor alloreactive T cell responses. We generated a labeled tetramer (MHC-I RT1.Aa/Du51) to localize and quantify Du51-specific T cells within rat cardiac allografts and spleen. RT1.Aa/Du51-specific CD8+CD40Ig Tregs were the most suppressive subset of the total Treg population, were essential for in vivo tolerance induction, and expressed a biased, restricted Vβ11-TCR repertoire in the spleen and the graft. Finally, we demonstrated that treatment of transplant recipients with the Du51 peptide resulted in indefinite prolongation of allograft survival. These results show that CD8+CD40Ig Tregs recognize a dominant donor antigen, resulting in TCR repertoire alterations in the graft and periphery. Furthermore, this allopeptide has strong therapeutic activity and highlights the importance of TCR-peptide-MHC interaction for Treg generation and function. PMID:24789907

  3. Citronellol and geraniol, components of rose oil, activate peroxisome proliferator-activated receptor α and γ and suppress cyclooxygenase-2 expression.

    PubMed

    Katsukawa, Michiko; Nakata, Rieko; Koeji, Satomi; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2011-01-01

    We evaluated the effects of rose oil on the peroxisome proliferator-activated receptor (PPAR) and cyclooxygenase-2 (COX-2). Citronellol and geraniol, the major components of rose oil, activated PPARα and γ, and suppressed LPS-induced COX-2 expression in cell culture assays, although the PPARγ-dependent suppression of COX-2 promoter activity was evident only with citronellol, indicating that citronellol and geraniol were the active components of rose oil.

  4. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    SciTech Connect

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-Kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-08-26

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. This data supports the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.

  5. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    PubMed Central

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-01-01

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism. PMID:22922757

  6. Shigella flexneri suppresses NF-kB activation by inhibiting linear ubiquitin chain ligation

    PubMed Central

    de Jong, Maarten F.; Liu, Zixu; Chen, Didi; Alto, Neal M.

    2016-01-01

    The Linear Ubiquitin chain Assembly Complex (LUBAC) is a multimeric E3 ligase that catalyzes M1- or linear ubiquitination of activated immune receptor signaling complexes (RSCs). While mutations that disrupt linear ubiquitin assembly lead to complex disease pathologies including immunodeficiency and autoinflammation in both humans and mice, microbial toxins that target LUBAC function have not yet been discovered. Here, we report the identification of two homologous Shigella flexneri Type III Secretion System (T3SS) effector E3 ligases IpaH1.4 and IpaH2.5 that directly interact with LUBAC subunit HOIL-1L (RBCK1) and conjugate K48-linked ubiquitin chains to the catalytic RING-between-RING domain of HOIP (RNF31). Proteasomal degradation of HOIP leads to irreversible inactivation of linear ubiquitination and blunting of NF-κB nuclear translocation in response to TNF, IL-1β, and pathogen associated molecular patterns (PAMPs). Loss of function studies in mammalian cells in combination with bacterial genetics explains how Shigella evades a broad spectrum of immune surveillance systems by cooperative inhibition of receptor ubiquitination, and reveals the critical importance of LUBAC in host defense against pathogens. PMID:27572974

  7. NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma.

    PubMed

    Zhai, Z; Liu, W; Kaur, M; Luo, Y; Domenico, J; Samson, J M; Shellman, Y G; Norris, D A; Dinarello, C A; Spritz, R A; Fujita, M

    2017-03-06

    Inflammasomes are mediators of inflammation, and constitutively activated NLRP3 inflammasomes have been linked to interleukin-1β (IL-1β)-mediated tumorigenesis in human melanoma. Whereas NLRP3 regulation of caspase-1 activation requires the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain)), caspase-1 activation by another danger-signaling sensor NLRP1 does not require ASC because NLRP1 contains a C-terminal CARD domain that facilitates direct caspase-1 activation via CARD-CARD interaction. We hypothesized that NLRP1 has additional biological activities besides IL-1β maturation and investigated its role in melanoma tumorigenesis. NLRP1 expression in melanoma was confirmed by analysis of 216 melanoma tumors and 13 human melanoma cell lines. Unlike monocytic THP-1 cells with prominent nuclear localization of NLRP1, melanoma cells expressed NLRP1 mainly in the cytoplasm. Knocking down NLRP1 revealed a tumor-promoting property of NLRP1 both in vitro and in vivo. Mechanistic studies showed that caspase-1 activity, IL-1β production, IL-1β secretion and nuclear factor-kB activity were reduced by knocking down of NLRP1 in human metastatic melanoma cell lines 1205Lu and HS294T, indicating that NLRP1 inflammasomes are active in metastatic melanoma. However, unlike previous reports showing that NLRP1 enhances pyroptosis in macrophages, NLRP1 in melanoma behaved differently in the context of cell death. Knocking down NLRP1 increased caspase-2, -9 and -3/7 activities and promoted apoptosis in human melanoma cells. Immunoprecipitation revealed interaction of NLRP1 with CARD-containing caspase-2 and -9, whereas NLRP3 lacking a CARD motif did not interact with the caspases. Consistent with these findings, NLRP1 activation but not NLRP3 activation reduced caspase-2, -9 and -3/7 activities and provided protection against apoptosis in human melanoma cells, suggesting a suppressive role of NLRP1 in caspase-3/7 activation

  8. Forest response to increasing typhoon activity on the Korean peninsula: evidence from oak tree-rings.

    PubMed

    Altman, Jan; Doležal, Jiří; Cerný, Tomáš; Song, Jong-Suk

    2013-02-01

    The globally observed trend of changing intensity of tropical cyclones over the past few decades emphasizes the need for a better understanding of the effects of such disturbance events in natural and inhabited areas. On the Korean Peninsula, typhoon intensity has increased over the past 100 years as evidenced by instrumental data recorded from 1904 until present. We examined how the increase in three weather characteristics (maximum hourly and daily precipitation, and maximum wind speed) during the typhoon activity affected old-growth oak forests. Quercus mongolica is a dominant species in the Korean mountains and the growth releases from 220 individuals from three sites along a latitudinal gradient (33-38°N) of decreasing typhoon activity were studied. Growth releases indicate tree-stand disturbance and improved light conditions for surviving trees. The trends in release events corresponded to spatiotemporal gradients in maximum wind speed and precipitation. A high positive correlation was found between the maximum values of typhoon characteristics and the proportion of trees showing release. A higher proportion of disturbed trees was found in the middle and southern parts of the Korean peninsula where typhoons are most intense. This shows that the releases are associated with typhoons and also indicates the differential impact of typhoons on the forests. Finally, we present a record of the changing proportion of trees showing release based on tree-rings for the period 1770-1979. The reconstruction revealed no trend during the period 1770-1879, while the rate of forest disturbances increased rapidly from 1880 to 1979. Our results suggest that if typhoon intensity rises, as is projected by some climatic models, the number of forest disturbance events will increase thus altering the disturbance regime and ecosystem processes.

  9. Ethanol extract of Lophatheri Herba exhibits anti-cancer activity in human cancer cells by suppression of metastatic and angiogenic potential

    PubMed Central

    Kim, Aeyung; Im, Minju; Gu, Min Jung; Ma, Jin Yeul

    2016-01-01

    Lophatheri Herba (LH), dried leaf of Lophatherum gracile Brongn, has long been used to reduce thirst and treat fever and inflammation in Chinese medicine. Recent studies have shown that LH has anti-viral, anti-bacterial, anti-cancer, anti-oxidant, diuretic, and hyperglycemic properties. However, the effects of an ethanol extract of L. herba (ELH), at non-cytotoxic doses, on the metastatic and angiogenic abilities of malignant tumor cells have not been reported. We found that ELH significantly suppressed p38, JNK, and NF-κB activation and proteolytic activities under phorbol 12-myristate 13-acetate (PMA) stimulation, thus leading to a decrease in metastatic potential, including migration and invasion. In addition, ELH suppressed tumor-induced angiogenesis, including migration and tube formation in human umbilical vein endothelial cells (HUVECs) and microvessel sprouting from aortic rings via decreasing the pro-angiogenic factors in tumors. Interestingly, in ovo xenografts ELH-treated HT1080 cells did not increase in volume and eventually disappeared, owing to a lack of angiogenesis. Daily oral administration of ELH at 50 and 100 mg/kg markedly inhibited metastatic colonization of B16F10 cells in the lungs of C57BL/6J mice and caused no apparent side effects. These data collectively indicate that ELH is safe and may be useful for managing metastasis and growth of malignant cancers. PMID:27808120

  10. Transgenic songbirds with suppressed or enhanced activity of CREB transcription factor

    PubMed Central

    Abe, Kentaro; Matsui, Sumiko; Watanabe, Dai

    2015-01-01

    Songbirds postnatally develop their skill to utter and to perceive a vocal signal for communication. How genetic and environmental influences act in concert to regulate the development of such skill is not fully understood. Here, we report the phenotype of transgenic songbirds with altered intrinsic activity of cAMP response element-binding protein (CREB) transcription factor. By viral vector-mediated modification of genomic DNA, we established germ line-transmitted lines of zebra finches, which exhibited enhanced or suppressed activity of CREB. Although intrinsically acquired vocalizations or their hearing ability were not affected, the transgenic birds showed reduced vocal learning quality of their own songs and impaired audio-memory formation against conspecific songs. These results thus demonstrate that appropriate activity of CREB is necessary for the postnatal acquisition of learned behavior in songbirds, and the CREB transgenic birds offer a unique opportunity to separately manipulate both genetic and environmental factors that impinge on the postnatal song learning. PMID:26048905

  11. Suppression of hepatic stellate cell activation by microRNA-29b

    SciTech Connect

    Sekiya, Yumiko; Ogawa, Tomohiro; Yoshizato, Katsutoshi; Ikeda, Kazuo; Kawada, Norifumi

    2011-08-19

    Highlights: {yields} Expression of miR-29b was found to be down-regulated during the activation of hepatic stellate cells in primary culture. {yields} Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs. {yields} It blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-b mRNAs essential for stellate cell activation. {yields} miR-29b overexpression led stellate cells to remain in a quiescent state, as evidenced by their star-like morphology. {yields} miR-29b overexpression suppressed the expression of c-fos mRNA. -- Abstract: MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3'UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of {alpha}-SMA, DDR2, FN1, ITGB1, and PDGFR-{beta}, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.

  12. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats

    PubMed Central

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-01-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation. PMID:28119873

  13. Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer.

    PubMed

    Edgington-Mitchell, Laura E; Rautela, Jai; Duivenvoorden, Hendrika M; Jayatilleke, Krishnath M; van der Linden, Wouter A; Verdoes, Martijn; Bogyo, Matthew; Parker, Belinda S

    2015-09-29

    Cysteine cathepsin proteases contribute to many normal cellular functions, and their aberrant activity within various cell types can contribute to many diseases, including breast cancer. It is now well accepted that cathepsin proteases have numerous cell-specific functions within the tumor microenvironment that function to promote tumor growth and invasion, such that they may be valid targets for anti-metastatic therapeutic approaches. Using activity-based probes, we have examined the activity and expression of cysteine cathepsins in a mouse model of breast cancer metastasis to bone. In mice bearing highly metastatic tumors, we detected abundant cysteine cathepsin expression and activity in myeloid-derived suppressor cells (MDSCs). These immature immune cells have known metastasis-promoting roles, including immunosuppression and osteoclastogenesis, and we assessed the contribution of cysteine cathepsins to these functions. Blocking cysteine cathepsin activity with multiple small-molecule inhibitors resulted in enhanced differentiation of multinucleated osteoclasts. This highlights a potential role for cysteine cathepsin activity in suppressing the fusion of osteoclast precursor cells. In support of this hypothesis, we found that expression and activity of key cysteine cathepsins were downregulated during MDSC-osteoclast differentiation. Another cysteine protease, legumain, also inhibits osteoclastogenesis, in part through modulation of cathepsin L activity. Together, these data suggest that cysteine protease inhibition is associated with enhanced osteoclastogenesis, a process that has been implicated in bone metastasis.

  14. Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades.

    PubMed

    McPeek, Robert M

    2006-11-01

    Saccades in the presence of distractors show significant trajectory curvature. Based on previous work in the superior colliculus (SC), we speculated that curvature arises when a movement is initiated before competition between the target and distractor goals has been fully resolved. To test this hypothesis, we recorded frontal eye field (FEF) activity for curved and straight saccades in search. In contrast to the SC, activity in FEF is normally poorly correlated with saccade dynamics. However, the FEF, like the SC, is involved in target selection. Thus if curvature is caused by incomplete target selection, we expect to see its neural correlates in the FEF. We found that saccades that curve toward a distractor are accompanied by an increase in perisaccadic activity of FEF neurons coding the distractor location, and saccades that curve away are accompanied by a decrease in activity. In contrast, for FEF neurons coding the target location, there is no significant difference in activity between curved and straight saccades. To establish that the distractor-related activity is causally related to saccade curvature, we applied microstimulation to sites in the FEF before saccades to targets presented without distractors. The stimulation was subthreshold for evoking saccades and the temporal structure of the stimulation train resembled the activity recorded for curved saccades. The resulting movements curved toward the location coded by the stimulation site. These results support the idea that saccade curvature results from incomplete suppression of distractor-related activity during target selection.

  15. Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells.

    PubMed

    Luo, Zhongguang; Pan, Yongfu; Jeong, Lak Shin; Liu, Jie; Jia, Lijun

    2012-11-01

    The multiunit Cullin (CUL)-RING E3 ligase (CRL) controls diverse biological processes by targeting a mass of substrates for ubiquitination and degradation, whereas its dysfunction causes carcinogenesis. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), is required for CRL activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug. By blocking CUL neddylation, MLN4924 inactivates CRL and causes the accumulation of CRL substrates that trigger cell cycle arrest, senescence and/or apoptosis to suppress the growth of cancer cells in vitro and in vivo. Recently, we found that MLN4924 also triggers protective autophagy in response to CRL inactivation. MLN4924-induced autophagy is attributed partially to the inhibition of mechanistic target of rapamycin (also known as mammalian target of rapamycin, MTOR) activity by the accumulation of the MTOR inhibitory protein DEPTOR, as well as reactive oxygen species (ROS)-induced stress. Moreover, the blockage of autophagy response enhances apoptosis in MLN4924-treated cells. Together, our findings not only reveal autophagy as a novel cellular response to CRL inactivation by MLN4924, but also provide a piece of proof-of-concept evidence for the combination of MLN4924 with autophagy inhibitors to enhance therapeutic efficacy.

  16. Silver(I)-catalyzed dual activation of propargylic alcohol and aziridine/azetidine: triggering ring-opening and endo-selective ring-closing in a cascade.

    PubMed

    Bera, Milan; Roy, Sujit

    2009-11-20

    [Ag(COD)(2)]PF(6) catalyzes the reaction between propargyl alcohols and N-tosylaziridines/azetidines leading to a diverse range of N,O-heterocycles, namely, oxazines, oxazepines, and oxazocines via ring-opening and ring-closing in a cascade.

  17. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase.

    PubMed

    Yamashita, Yoko; Wang, Liuqing; Wang, Lihua; Tanaka, Yuki; Zhang, Tianshun; Ashida, Hitoshi

    2014-10-01

    It is well known that tea has a variety of beneficial impacts on human health, including anti-obesity effects. It is well documented that green tea and its constituent catechins suppress obesity, but the effects of other types of tea on obesity and the potential mechanisms involved are not yet fully understood. In this study, we investigated the suppression of adiposity by oolong, black and pu-erh tea and characterized the underlying molecular mechanism in vivo. We found that the consumption of oolong, black or pu-erh tea for a period of one week significantly decreased visceral fat without affecting body weight in male ICR mice. On a mechanistic level, the consumption of tea enhanced the phosphorylation of AMP-activated protein kinase (AMPK) in white adipose tissue (WAT). This was accompanied by the induction of WAT protein levels of uncoupling protein 1 and insulin-like growth factor binding protein 1. Our results indicate that oolong, black and pu-erh tea, and in particular, black tea, suppresses adiposity via phosphorylation of the key metabolic regulator AMPK and increases browning of WAT.

  18. Fuzzy-Logic Based Vibration Suppression Control Experiments on Active Structures

    NASA Astrophysics Data System (ADS)

    Kwak, M. K.; Sciulli, D.

    1996-03-01

    This paper is concerned with the fuzzy-logic based vibration suppression control of active structures equipped with piezoelectric sensors and actuators. The control methodology is based on the fuzzy logic control of the variable structures system type. The sufficient condition for the closed-loop stability of the decentralized fuzzy control for the system equipped with collocated sensors and actuators is derived from the sufficient condition of the decentralized collocated variable system control. Hence, it is concluded that the fuzzy control is in fact the variation of the variable structure system control in this case. Comparison of the variable structure system to the fuzzy control leads to a new fuzzy rule of the vibration suppression of the active structure equipped with collocated sensors and actuators. It is shown that the fuzzy-logic control can be designed for the collocated system without any knowledge of the system to be controlled. However, this may not be true in the case of multi-input and multi-output non-collocated systems. All the developments are demonstrated by means of a real-time fuzzy control experiment on the cantilever beam with surface-bonded piezoceramic sensors and actuators.

  19. Genetic suppression of transgenic APP rescues Hypersynchronous network activity in a mouse model of Alzeimer's disease.

    PubMed

    Born, Heather A; Kim, Ji-Yoen; Savjani, Ricky R; Das, Pritam; Dabaghian, Yuri A; Guo, Qinxi; Yoo, Jong W; Schuler, Dorothy R; Cirrito, John R; Zheng, Hui; Golde, Todd E; Noebels, Jeffrey L; Jankowsky, Joanna L

    2014-03-12

    Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology.

  20. Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication

    PubMed Central

    Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong

    2017-01-01

    Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes. PMID:28045080

  1. A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia.

    PubMed

    Thorn, Stephanie R; Sekar, Satya M; Lavezzi, Jinny R; O'Meara, Meghan C; Brown, Laura D; Hay, William W; Rozance, Paul J

    2012-10-15

    Reduced maternal glucose supply to the fetus and resulting fetal hypoglycemia and hypoinsulinemia activate fetal glucose production as a means to maintain cellular glucose uptake. However, this early activation of fetal glucose production may be accompanied by hepatic insulin resistance. We tested the capacity of a physiological increase in insulin to suppress fetal hepatic gluconeogenic gene activation following sustained hypoglycemia to determine whether hepatic insulin sensitivity is maintained. Control fetuses (CON), hypoglycemic fetuses induced by maternal insulin infusion for 8 wk (HG), and 8 wk HG fetuses that received an isoglycemic insulin infusion for the final 7 days (HG+INS) were studied. Glucose and insulin concentrations were 60% lower in HG compared with CON fetuses. Insulin was 50% higher in HG+INS compared with CON and four-fold higher compared with HG fetuses. Expression of the hepatic gluconeogenic genes, PCK1, G6PC, FBP1, GLUT2, and PGC1A was increased in the HG and reduced in the HG+INS liver. Expression of the insulin-regulated glycolytic and lipogenic genes, PFKL and FAS, was increased in the HG+INS liver. Total FOXO1 protein expression, a gluconeogenic activator, was 60% higher in the HG liver. Despite low glucose, insulin, and IGF1 concentrations, phosphorylation of AKT and ERK was higher in the HG liver. Thus, a physiological increase in fetal insulin is sufficient for suppression of gluconeogenic genes and activation of glycolytic and lipogenic genes in the HG fetal liver. These results demonstrate that fetuses exposed to sustained hypoglycemia have maintained hepatic insulin action in contrast to fetuses exposed to placental insufficiency.

  2. 2-Methoxyestradiol inhibits experimental autoimmune encephalomyelitis through suppression of immune cell activation

    PubMed Central

    Duncan, Gordon S.; Brenner, Dirk; Tusche, Michael W.; Brüstle, Anne; Knobbe, Christiane B.; Elia, Andrew J.; Mock, Thomas; Bray, Mark R.; Krammer, Peter H.; Mak, Tak W.

    2012-01-01

    The endogenous metabolite of estradiol, 2-Methoxyestradiol (2ME2), is an antimitotic and antiangiogenic cancer drug candidate that also exhibits disease-modifying activity in animal models of rheumatoid arthritis (RA). We found that 2ME2 dramatically suppresses development of mouse experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis (MS). 2ME2 inhibits in vitro lymphocyte activation, cytokine production, and proliferation in a dose-dependent fashion. 2ME2 treatment of lymphocytes specifically reduced the nuclear translocation and transcriptional activity of nuclear factor of activated T-cells (NFAT) c1, whereas NF-κB and activator protein 1 (AP-1) activation were not adversely affected. We therefore propose that 2ME2 attenuates EAE through disruption of the NFAT pathway and subsequent lymphocyte activation. By extension, our findings provide a molecular rationale for the use of 2ME2 as a tolerable oral immunomodulatory agent for the treatment of autoimmune disorders such as MS in humans. PMID:23213242

  3. A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity.

    PubMed

    Toyoizumi, Taro; Miyamoto, Hiroyuki; Yazaki-Sugiyama, Yoko; Atapour, Nafiseh; Hensch, Takao K; Miller, Kenneth D

    2013-10-02

    What causes critical periods (CPs) to open? For the best-studied case, ocular dominance plasticity in primary visual cortex in response to monocular deprivation (MD), the maturation of inhibition is necessary and sufficient. How does inhibition open the CP? We present a theory: the transition from pre-CP to CP plasticity arises because inhibition preferentially suppresses responses to spontaneous relative to visually driven input activity, switching learning cues from internal to external sources. This differs from previous proposals in (1) arguing that the CP can open without changes in plasticity mechanisms when activity patterns become more sensitive to sensory experience through circuit development, and (2) explaining not simply a transition from no plasticity to plasticity, but a change in outcome of MD-induced plasticity from pre-CP to CP. More broadly, hierarchical organization of sensory-motor pathways may develop through a cascade of CPs induced as circuit maturation progresses from "lower" to "higher" cortical areas.

  4. Ring-opening polymerization of ε-caprolactone catalyzed by sulfonic acids: computational evidence for bifunctional activation.

    PubMed

    Susperregui, Nicolas; Delcroix, Damien; Martin-Vaca, Blanca; Bourissou, Didier; Maron, Laurent

    2010-10-01

    The mechanism of ring-opening of ε-caprolactone by methanol catalyzed by trifluoromethane and methane sulfonic acids has been studied computationally at the DFT level of theory. For both elementary steps, the sulfonic acid was predicted to behave as a bifunctional catalyst. The nucleophilic addition proceeds via activation of both the monomer and the alcohol. The ring-opening involves the cleavage of the endo C-O bond of the tetrahedral intermediate with concomitant proton transfer. In both cases, the sulfonic acid acts as a proton shuttle via its acidic hydrogen atom and basic oxygen atoms. The computed activation barriers are consistent with the relatively fast polymerizations observed experimentally at room temperature with both catalysts.

  5. Tissue-type plasminogen activator suppresses activated stellate cells through low-density lipoprotein receptor-related protein 1

    PubMed Central

    Kang, Liang-I; Isse, Kumiko; Koral, Kelly; Bowen, William C; Muratoglu, Selen; Strickland, Dudley K; Michalopoulos, George K; Mars, Wendy M

    2015-01-01

    Hepatic stellate cell (HSC) activation and trans-differentiation into myofibroblast (MFB)-like cells is key for fibrogenesis after liver injury and a potential therapeutic target. Recent studies demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1)-dependent signaling by tissue-type plasminogen activator (t-PA) is a pro-fibrotic regulator of the MFB phenotype in kidney. This study investigated whether LRP1 signaling by t-PA is also relevant to HSC activation following injury. Primary and immortalized rat HSCs were treated with t-PA and assayed by western blot, MTT, and TUNEL. In vitro results were then verified using an in vivo, acute carbon tetrachloride (CCl4) injury model that examined the phenotype and recovery kinetics of MFBs from wild-type animals vs mice with a global (t-PA) or HSC-targeted (LRP1) deletion. In vitro, in contrast to kidney MFBs, exogenous, proteolytically inactive t-PA suppressed, rather than induced, activation markers in HSCs following phosphorylation of LRP1. This process was mediated by LRP1 as inhibition of t-PA binding to LRP1 blocked the effects of t-PA. In vivo, following acute injury, phosphorylation of LRP1 on activated HSCs occurred immediately prior to their disappearance. Mice lacking t-PA or LRP1 retained higher densities of activated HSCs for a longer time period compared with control mice after injury cessation. Hence, t-PA, an FDA-approved drug, contributes to the suppression of activated HSCs following injury repair via signaling through LRP1. This renders t-PA a potential target for exploitation in treating patients with fibrosis. PMID:26237273

  6. Serum thymic factor, FTS, attenuates cisplatin nephrotoxicity by suppressing cisplatin-induced ERK activation.

    PubMed

    Kohda, Yuka; Kawai, Yoshiko; Iwamoto, Noriaki; Matsunaga, Yoshiko; Aiga, Hiromi; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to attenuate the bleomycin-induced pulmonary injury and also experimental pancreatitis and diabetes. In the present study, we investigated the effect of FTS on cis-diamminedichloroplatinum II (cisplatin)-induced nephrotoxicity. We have already demonstrated that cephaloridine, a nephrotoxic antibiotic, leads to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney, which probably contributes to cephaloridine-induced renal dysfunction. The aim of this study was to examine the effect of cisplatin on ERK activation in the rat kidney and also the effect of FTS on cisplatin-induced nephrotoxicity in rats. In vitro treatment of LLC-PK1 cells with FTS significantly ameliorated cisplatin-induced cell injury. Treatment of rats with intravenous cisplatin for 3 days markedly induced renal dysfunction and increased platinum contents in the kidney cortex. An increase in pERK was detected in the nuclear fraction prepared from the rat kidney cortex from days 1 to 3 after injection of cisplatin. FTS suppressed cisplatin-induced renal dysfunction and ERK activation in the kidney. FTS did not influence any Pt contents in the kidney after cisplatin administration. FTS has been shown to enhance the in vivo expression of heat shock protein (HSP) 70 in the kidney cortex. The beneficial role of FTS against cisplatin nephrotoxicity may be mediated in part by HSP70, as suggested by its up-regulation in the kidney cortex treated with FTS alone. Our results suggest that FTS participates in protection from cisplatin-induced nephrotoxicity by suppressing ERK activation caused by cisplatin.

  7. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway

    PubMed Central

    Dang, Yalong; Mu, Yalin; Wang, Kun; Xu, Ke; Yang, Jing; Zhu, Yu; Luo, Bin

    2016-01-01

    Objective To investigate the effects of papaverine (PAP) on lipopolysaccharide (LPS)-induced microglial activation and its possible mechanisms. Materials and methods BV2 microglial cells were first pretreated with PAP (0, 0.4, 2, 10, and 50 μg/mL) and then received LPS stimulation. Transcription and production of proinflammatory factors (IL1β, TNFα, iNOS, and COX-2) were used to evaluate microglial activation. The transcriptional changes undergone by M1/M2a/M2b markers were used to evaluate phenotype transformation of BV2 cells. Immunofluorescent staining and Western blot were used to detect the location and expression of P65 and p-IKK in the presence or absence of PAP pretreatment. Results Pretreatment with PAP significantly inhibited the expression of IL1β and TNFα, and suppressed the transcription of M1/M2b markers Il1rn, Socs3, Nos2 and Ptgs2, but upregulated the transcription of M2a markers (Arg1 and Mrc1) in a dose-dependent manner. In addition, PAP pretreatment significantly decreased the expression of p-IKK and inhibited the nuclear translocation of P65 after LPS stimulation. Conclusion PAP not only suppressed the LPS-induced microglial activity by inhibiting transcription/production of proinflammatory factors, but also promoted the transformation of activated BV2 cells from cytotoxic phenotypes (M1/M2b) to a neuroprotective phenotype (M2a). These effects were probably mediated by NF-κB signaling pathway. Thus, it would be a promising candidate for the treatment of neurodegenerative diseases. PMID:27013863

  8. The transcriptional repressor ARR1-SRDX suppresses pleiotropic cytokinin activities in Arabidopsis.

    PubMed

    Heyl, Alexander; Ramireddy, Eswar; Brenner, Wolfram G; Riefler, Michael; Allemeersch, Joke; Schmülling, Thomas

    2008-07-01

    The signal transduction of the phytohormone cytokinin is mediated by a multistep histidine-to-aspartate phosphorelay system. One component of this system are B-type response regulators, transcription factors mediating at least part of the response to cytokinin. In planta functional analysis of this family is hampered by the high level of functional redundancy of its 11 members. We generated a dominant repressor version of the Arabidopsis (Arabidopsis thaliana) response regulator ARR1 (ARR1-SRDX) using chimeric repressor silencing technology in order to study the extent of the contribution of B-type response regulators to cytokinin activities. In a protoplast test system, ARR1-SRDX suppressed ARR6:beta-glucuronidase reporter gene activation by different B-type ARRs. 35S:ARR1-SRDX transgenic Arabidopsis plants showed phenotypic changes reminiscent of plants with a reduced cytokinin status, such as a strongly reduced leaf size, an enhanced root system, and larger seeds. Several bioassays showed that 35S:ARR1-SRDX plants have an increased resistance toward cytokinin. The rapid induction of a large part of the cytokinin response genes was dampened. The transcript levels of more than 500 genes were more than 2.5-fold reduced in 35S:ARR1-SRDX transgenic seedlings, suggesting a broad function of B-type ARRs. Collectively, the suppression of pleiotropic cytokinin activities by a dominant repressor version of a B-type ARR indicates that this protein family is involved in mediating most, if not all, of the cytokinin activities in Arabidopsis. In addition, a role for B-type ARRs in mediating cross talk with other pathways is supported by the resistance of 35S:ARR1-SRDX seeds to phytochrome B-mediated inhibition of germination by far-red light. This study demonstrates the usefulness of chimeric repressor silencing technology to overcome redundancy in transcription factor families for functional studies.

  9. Adiporedoxin suppresses endothelial activation via inhibiting MAPK and NF-κB signaling

    PubMed Central

    He, Hui; Guo, Fang; Li, Yong; Saaoud, Fatma; Kimmis, Brooks D.; Sandhu, Jeena; Fan, Michelle; Maulik, Dev; Lessner, Susan; Papasian, Christopher J.; Fan, Daping; Jiang, Zhisheng; Fu, Mingui

    2016-01-01

    Adiporedoxin (Adrx) is a recently discovered redox regulatory protein that is preferentially expressed in adipose tissue and plays a critical role in the regulation of metabolism via its modulation of adipocyte protein secretion. We here report that Adrx suppresses endothelial cell activation via inhibiting MAPK and NF-kB signaling pathways. Adrx is constitutively expressed in human vascular endothelial cells, and significantly induced by a variety of stimuli such as TNFα, IL-1β, H2O2 and OxLDL. Overexpression of Adrx significantly attenuated TNFα-induced expression of VCAM-1 and ICAM-1, and thus reduced monocyte adherence to human umbilical vein endothelial cells (HUVECs). Conversely, siRNA-mediated knockdown of Adrx increased TNFα-induced expression of adhesion molecules and monocyte adherence to HUVECs. Furthermore, forced expression of Adrx decreased TNFα-induced activation of ERK1/2, JNK, p38 and IKKs in HUVECs. Adrx mutant in the CXXC motif that lost its anti-redox activity is less efficient than the wild-type Adrx, suggesting that Adrx-mediated inhibition of endothelial activation is partially dependent on its antioxidant activity. Finally, Adrx expression was markedly increased in human atheroma compared with normal tissue from the same carotid arteries. These results suggest that Adrx is an endogenous inhibitor of endothelial activation, and might be a therapeutic target for vascular inflammatory diseases. PMID:27941911

  10. Analysis of the broadband chaotic spin-wave excitations in an active ring oscillator based on a metalized ferrite film

    NASA Astrophysics Data System (ADS)

    Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.; Demokritov, S. O.

    2016-11-01

    This paper reports the first experimental study of broadband chaotic nonlinear spin- wave excitations which is formed through development of four-wave parametric processes in active ring oscillator based on metallized ferrite film. We find that an increase in the oscillation power leads to Hopf bifurcations sequence. Monochromatic, periodic quasi-periodic and chaotic excitations are observed. Spectra of the chaotic excitations consist of series of chaotic bands separated well in frequency. Parameters of the chaotic attractors are discussed.

  11. Cooperative activation in ring-opening hydrolysis of epoxides by Co-salen complexes: A first principle study

    NASA Astrophysics Data System (ADS)

    Sun, Keju; Li, Wei-Xue; Feng, Zhaochi; Li, Can

    2009-03-01

    Density functional theory calculations were used to study the cooperative activations of the epoxide ring-opening hydrolysis catalyzed by the Co-salen complexes. We find that the activation energies of the reactions with two Co-salen catalysts are significantly lower than that of single catalyst. The cooperation effect comes not only from the simultaneous activation of both reactants but also from the cooperative charge transfer during the reactions. The transition states analysis indicates that the preferential reaction pathway is a SN 2 reaction, which explains the second order kinetic dependence on the concentration of the catalysts found in the experiments.

  12. H-reflex suppression and autonomic activation during lucid REM sleep: a case study.

    PubMed

    Brylowski, A; Levitan, L; LaBerge, S

    1989-08-01

    A single subject, a proficient lucid dreamer experienced with signaling the onset of lucidity (reflective consciousness of dreaming) by means of voluntary eye movements, spent 4 nonconsecutive nights in the sleep laboratory. The subject reported becoming lucid and signaling in 8 of the 18 rapid-eye movement (REM) periods recorded. Ten lucid dream reports were verified by polygraphic examination of signals, providing a total of 12.5 min of signal-verified lucid REM. H-Reflex amplitude was recorded every 5 s, along with continuous recording of electroencephalogram, electrooculogram, electromyogram, electrocardiogram, finger pulse, and respiration. Significant findings included greater mean H-reflex suppression during lucid REM sleep than during nonlucid REM and correlations of H-reflex suppression with increased eye movement density, heart rate, and respiration rate. These results support previous studies reporting that lucid REM is not, as might be supposed, a state closer to awakening than ordinary, or nonlucid, REM; rather, lucid dreaming occurs during unequivocal REM sleep and is characteristically associated with phasic REM activation.

  13. Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity

    PubMed Central

    Ghosh, Arnab; Dogan, Yildirim; Moroz, Maxim; Holland, Amanda M.; Yim, Nury L.; Rao, Uttam K.; Young, Lauren F.; Tannenbaum, Daniel; Masih, Durva; Velardi, Enrico; Tsai, Jennifer J.; Jenq, Robert R.; Penack, Olaf; Hanash, Alan M.; Smith, Odette M.; Piersanti, Kelly; Lezcano, Cecilia; Murphy, George F.; Liu, Chen; Palomba, M. Lia; Sauer, Martin G.; Sadelain, Michel; Ponomarev, Vladimir; van den Brink, Marcel R.M.

    2013-01-01

    Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro–generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD. PMID:23676461

  14. Glatiramer acetate inhibits degradation of collagen II by suppressing the activity of interferon regulatory factor-1.

    PubMed

    Lu, Huading; Zeng, Chun; Zhao, Huiqing; Lian, Liyi; Dai, Yuhu

    2014-06-06

    Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of osteoarthritis (OA).Interferon regulatory factor 1 (IRF-1) is an important transcriptional factor accounting for inflammation response induced by TNF-α. The physiological function of IRF-1 in OA is still unknown. In this study, we reported that the expression levels of IRF-1 in OA chondrocytes were significantly higher compared to those in normal chondrocytes, which was reversed by treatment with Glatiramer acetate (GA), a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). We also found that GA is able to attenuate the upregulation of IRF-1 induced by TNF-α. Matrix metalloproteinase13 (MMP-13) is one of the downstream target genes of IRF-1, which can induce the degradation of collagen II. Importantly, our results indicated that GA suppressed the expression of MMP-13 as well as the degradation of collagen II. In addition, GA also suppressed TNF-α-induced production of NO and expression of iNOS. Finally, we found that the inhibition of STAT1 activation played a critical role in the inhibitory effects of GA on the induction of IRF-1 and MMP-13. These data suggest that GA might have a potential effect in therapeutic OA.

  15. Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo

    PubMed Central

    Ma, Jessica; Yang, Qin; Berek, Jonathan S.; Hu, Mickey C-T.

    2016-01-01

    Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. Lacking effective therapeutic options hinders treatment of TNBC. Here, we show that bepridil (BPD) and trifluoperazine (TFP), which are FDA-approved drugs for treatment of schizophrenia and angina respectively, inhibit Akt-pS473 phosphorylation and promote FOXO3 nuclear localization and activation in TNBC cells. BPD and TFP inhibit survival and proliferation in TNBC cells and suppress the growth of TNBC tumors, whereas silencing FOXO3 reduces the BPD- and TFP-mediated suppression of survival in TNBC cells. While BPD and TFP decrease the expression of oncogenic c-Myc, KLF5, and dopamine receptor DRD2 in TNBC cells, silencing FOXO3 diminishes BPD- and TFP-mediated repression of the expression of these proteins in TNBC cells. Since c-Myc, KLF5, and DRD2 have been suggested to increase cancer stem cell-like populations in various tumors, reducing these proteins in response to BPD and TFP suggests a novel FOXO3-dependent mechanism underlying BPD- and TFP-induced apoptosis in TNBC cells. PMID:27283899

  16. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Clark, Matthew P; Leaman, Douglas W; Hazelhurst, Lori A; Hwang, Eun S; Quinn, Anthony

    2016-02-01

    Previously we showed that BBR3378, a novel analog of the anticancer drug mitoxantrone, had the ability to ameliorate ascending paralysis in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis, without the drug-induced cardiotoxicity or lymphopenia associated with mitoxantrone therapy. Chemotherapeutic drugs like mitoxantrone, a topoisomerase inhibitor, are thought to provide protection in inflammatory autoimmune diseases like EAE by inducing apoptosis in rapidly proliferating autoreactive lymphocytes. Here, we show that while BR3378 blocked cell division, T cells were still able to respond to antigenic stimulation and upregulate surface molecules indicative of activation. However, in contrast to mitoxantrone, BBR3378 inhibited the production of the proinflammatory cytokine IFN-γ both in recently activated T cell blasts and established Th1 effectors, while sparing the activities of IL-13-producing Th2 cells. IFN-γ is known to be regulated by the transcription factor T-bet. In addition to IFN-γ, in vitro and in vivo exposure to BBR3378 suppressed the expression of other T-bet regulated proteins, including CXCR3 and IL-2Rβ. Microarray analysis revealed BBR3378-induced suppression of additional T-bet regulated genes, suggesting that the drug might disrupt global Th1 programming. Importantly, BBR3378 antagonized ongoing Th1 autoimmune responses in vivo, modulated clinical disease and CNS inflammation in acute and relapsing forms of EAE. Therefore, BBR3378 may be a unique inhibitor of T-bet regulated genes and may have potential as a therapeutic intervention in human autoimmune disease.

  17. Suppression of Na+/K+-ATPase activity during estivation in the land snail Otala lactea.

    PubMed

    Ramnanan, Christopher J; Storey, Kenneth B

    2006-02-01

    Entry into the hypometabolic state of estivation requires a coordinated suppression of the rate of cellular ATP turnover, including both ATP-generating and ATP-consuming reactions. As one of the largest consumers of cellular ATP, the plasma membrane Na+/K+-ATPase is a potentially key target for regulation during estivation. Na+/K+-ATPase was investigated in foot muscle and hepatopancreas of the land snail Otala lactea, comparing active and estivating states. In both tissues enzyme properties changed significantly during estivation: maximal activity was reduced by about one-third, affinity for Mg.ATP was reduced (Km was 40% higher), and activation energy (derived from Arrhenius plots) was increased by approximately 45%. Foot muscle Na+/K+-ATPase from estivated snails also showed an 80% increase in Km Na+ and a 60% increase in Ka Mg2+ as compared with active snails, whereas hepatopancreas Na+/K+-ATPase showed a 70% increase in I50 K+ during estivation. Western blotting with antibodies recognizing the alpha subunit of Na+/K+-ATPase showed no change in the amount of enzyme protein during estivation. Instead, the estivation-responsive change in Na+/K+-ATPase activity was linked to posttranslational modification. In vitro incubations manipulating endogenous kinase and phosphatase activities indicated that Na+/K+-ATPase from estivating snails was a high phosphate, low activity form, whereas dephosphorylation returned the enzyme to a high activity state characteristic of active snails. Treatment with protein kinases A, C or G could all mediate changes in enzyme properties in vitro that mimicked the effect of estivation, whereas treatments with protein phosphatase 1 or 2A had the opposite effect. Reversible phosphorylation control of Na+/K+-ATPase can provide the means of coordinating ATP use by this ion pump with the rates of ATP generation by catabolic pathways in estivating snails.

  18. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    PubMed

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  19. Short-term sertraline treatment suppresses sympathetic nervous system activity in healthy human subjects.

    PubMed

    Shores, M M; Pascualy, M; Lewis, N L; Flatness, D; Veith, R C

    2001-05-01

    Increased sympathetic nervous system (SNS) activity has been associated with stress, major depression, aging, and several medical conditions. This study assessed the effect of the selective serotonin reuptake inhibitor (SSRI), sertraline, on sympathetic nervous system (SNS) activity in healthy subjects. Twelve healthy volunteers participated in a double-blind, placebo-controlled, norepinephrine (NE) kinetic study, in which the effects of sertraline on SNS activity were ascertained by determining NE plasma concentrations and NE plasma appearance rates and clearance rates in sertraline or placebo conditions. Subjects received 50 mg of sertraline or placebo for two days and then one week later underwent the same protocol with the other drug. By single compartmental analysis, plasma NE appearance rates were significantly lower in the sertraline compared to the placebo condition (0.26+/-0.10 vs 0.40+/-0.23 microg/m(2)/min; P=0.04). Our study found that the net effect of short-term SSRI treatment is an apparent suppression of SNS activity as indicated by a decreased plasma NE appearance rate in the sertraline condition. If this preliminary finding can be extended to long-term treatment of patients, this could have significant therapeutic relevance for treating depression in elderly patients or those with cardiac disease, in which elevated SNS activity may exacerbate underlying medical conditions.

  20. Sympathetic‐mediated activation versus suppression of the immune system: consequences for hypertension

    PubMed Central

    Case, Adam J.

    2016-01-01

    Abstract It is generally well‐accepted that the immune system is a significant contributor in the pathogenesis of hypertension. Specifically, activated and pro‐inflammatory T‐lymphocytes located primarily in the vasculature and kidneys appear to have a causal role in exacerbating elevated blood pressure. It has been proposed that increased sympathetic nerve activity and noradrenaline outflow associated with hypertension may be primary contributors to the initial activation of the immune system early in the disease progression. However, it has been repeatedly demonstrated in many different human and experimental diseases that sympathoexcitation is immunosuppressive in nature. Moreover, human hypertensive patients have demonstrated increased susceptibility to secondary immune insults like infections. Thus, it is plausible, and perhaps even likely, that in diseases like hypertension, specific immune cells are activated by increased noradrenaline, while others are in fact suppressed. We propose a model in which this differential regulation is based upon activation status of the immune cell as well as the resident organ. With this, the concept of global immunosuppression is obfuscated as a viable target for hypertension treatment, and we put forth the concept of focused organ‐specific immunotherapy as an alternative option. PMID:26830047

  1. Rifampicin attenuates rotenone-induced inflammation via suppressing NLRP3 inflammasome activation in microglia.

    PubMed

    Liang, Yanran; Jing, Xiuna; Zeng, Zhifen; Bi, Wei; Chen, Ying; Wu, Xia; Yang, Lianhong; Liu, Jun; Xiao, Songhua; Liu, Shuqiong; Lin, Danyu; Tao, Enxiang

    2015-10-05

    A growing body of evidence has supported that environmental factors, such as exposure to heavy metal and pesticides, play an important role in the pathogenesis of Parkinson׳s disease (PD). Rotenone, the active ingredient in various pesticides, has been identified as an inducer of PD. It has been revealed that rotenone induces activation of microglia and generation of pro-inflammatory factors in PD. Our previous studies demonstrated that rifampicin possessed neural protective effect in PD. In this study, we aimed to study the effect of rifampicin on the inflammation induced by rotenone in microglia and the underlying mechanisms. Results demonstrated that rifampicin pretreatment significantly reduced rotenone-induced cytotoxicity and gene expression of IL-1β in BV2 microglia. Moreover, western blot analysis verified that rifampicin pretreatment suppressed NLRP3 inflammasome activation via inhibiting caspase-1 cleavage and protein expression of NLRP3. As it is indicated that reactive oxidative stress (ROS) is one of the activators for NLRP3 inflammasome, we further employed 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining and Rhodamine123 staining to detect intracellular ROS and mitochondrial membrane potential (MMP), respectively. Results confirmed that rifampicin obviously reduced intracellular ROS and reversed loss of MMP in BV2 cells treated by rotenone. Taken together, our data indicate that rifampicin pretreatment inhibits maturation of IL-1β and neuroinflammation induced by rotenone via attenuating NLRP3 inflammasome activation. Rifampicin might emerge as a promising candidate for modulating neuroinflammation in PD.

  2. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    PubMed Central

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  3. Conical Euler analysis and active roll suppression for unsteady vortical flows about rolling delta wings

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    A conical Euler code was developed to study unsteady vortex-dominated flows about rolling, highly swept delta wings undergoing either forced motions or free-to-roll motions that include active roll suppression. The flow solver of the code involves a multistage, Runge-Kutta time-stepping scheme that uses a cell-centered, finite-volume, spatial discretization of the Euler equations on an unstructured grid of triangles. The code allows for the additional analysis of the free to-roll case by simultaneously integrating in time the rigid-body equation of motion with the governing flow equations. Results are presented for a delta wing with a 75 deg swept, sharp leading edge at a free-stream Mach number of 1.2 and at 10 deg, 20 deg, and 30 deg angle of attack alpha. At the lower angles of attack (10 and 20 deg), forced-harmonic analyses indicate that the rolling-moment coefficients provide a positive damping, which is verified by free-to-roll calculations. In contrast, at the higher angle of attack (30 deg), a forced-harmonic analysis indicates that the rolling-moment coefficient provides negative damping at the small roll amplitudes. A free-to-roll calculation for this case produces an initially divergent response, but as the amplitude of motion grows with time, the response transitions to a wing-rock type of limit cycle oscillation, which is characteristic of highly swept delta wings. This limit cycle oscillation may be actively suppressed through the use of a rate-feedback control law and antisymmetrically deflected leading-edge flaps. Descriptions of the conical Euler flow solver and the free-to roll analysis are included in this report. Results are presented that demonstrate how the systematic analysis of the forced response of the delta wing can be used to predict the stable, neutrally stable, and unstable free response of the delta wing. These results also give insight into the flow physics associated with unsteady vortical flows about delta wings undergoing forced

  4. Application of Semi Active Control Techniques to the Damping Suppression Problem of Solar Sail Booms

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Whorton, M. S.

    2007-01-01

    Solar sails provide a propellant free form for space propulsion. These are large flat surfaces that generate thrust when they are impacted by light. When attached to a space vehicle, the thrust generated can propel the space vehicle to great distances at significant speeds. For optimal performance the sail must be kept from excessive vibration. Active control techniques can provide the best performance. However, they require an external power-source that may create significant parasitic mass to the solar sail. However, solar sails require low mass for optimal performance. Secondly, active control techniques typically require a good system model to ensure stability and performance. However, the accuracy of solar sail models validated on earth for a space environment is questionable. An alternative approach is passive vibration techniques. These do not require an external power supply, and do not destabilize the system. A third alternative is referred to as semi-active control. This approach tries to get the best of both active and passive control, while avoiding their pitfalls. In semi-active control, an active control law is designed for the system, and passive control techniques are used to implement it. As a result, no external power supply is needed so the system is not destabilize-able. Though it typically underperforms active control techniques, it has been shown to out-perform passive control approaches and can be unobtrusively installed on a solar sail boom. Motivated by this, the objective of this research is to study the suitability of a Piezoelectric (PZT) patch actuator/sensor based semi-active control system for the vibration suppression problem of solar sail booms. Accordingly, we develop a suitable mathematical and computer model for such studies and demonstrate the capabilities of the proposed approach with computer simulations.

  5. Vitamin K2 suppresses rotenone-induced microglial activation in vitro

    PubMed Central

    Yu, Yan-xia; Li, Yi-pei; Gao, Feng; Hu, Qing-song; Zhang, Yan; Chen, Dong; Wang, Guang-hui

    2016-01-01

    Aim: Increasing evidence has shown that environmental factors such as rotenone and paraquat induce neuroinflammation, which contributes to the pathogenesis of Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying the repression by menaquinone-4 (MK-4), a subtype of vitamin K2, of rotenone-induced microglial activation in vitro. Methods: A microglial cell line (BV2) was exposed to rotenone (1 μmol/L) with or without MK-4 treatment. The levels of TNF-α or IL-1β in 100 μL of cultured media of BV2 cells were measured using ELISA kits. BV2 cells treated with rotenone with or without MK4 were subjected to mitochondrial membrane potential, ROS production, immunofluorescence or immunoblot assays. The neuroblastoma SH-SY5Y cells were treated with conditioned media (CM) of BV2 cells that were exposed to rotenone with or without MK-4 treatment, and the cell viability was assessed using MTT assay. Results: In rotenone-treated BV2 cells, MK-4 (0.5–20 μmol/L) dose-dependently suppressed the upregulation in the expression of iNOS and COX-2 in the cells, as well as the production of TNF-α and IL-1β in the cultured media. MK-4 (5–20 μmol/L) significantly inhibited rotenone-induced nuclear translocation of NF-κB in BV2 cells. MK-4 (5–20 μmol/L) significantly inhibited rotenone-induced p38 activation, ROS production, and caspase-1 activation in BV2 cells. MK-4 (5–20 μmol/L) also restored the mitochondrial membrane potential that had been damaged by rotenone. Exposure to CM from rotenone-treated BV2 cells markedly decreased the viability of SH-SY5Y cells. However, this rotenone-activated microglia-mediated death of SH-SY5Y cells was significantly attenuated when the BV2 cells were co-treated with MK-4 (5–20 μmol/L). Conclusion: Vitamin K2 can directly suppress rotenone-induced activation of microglial BV2 cells in vitro by repressing ROS production and p38 activation. PMID:27498777

  6. Activating the microscale edge effect in a hierarchical surface for frosting suppression and defrosting promotion.

    PubMed

    Chen, Xuemei; Ma, Ruiyuan; Zhou, Hongbo; Zhou, Xiaofeng; Che, Lufeng; Yao, Shuhuai; Wang, Zuankai

    2013-01-01

    Despite extensive progress, current icephobic materials are limited by the breakdown of their icephobicity in the condensation frosting environment. In particular, the frost formation over the entire surface is inevitable as a result of undesired inter-droplet freezing wave propagation initiated by the sample edges. Moreover, the frost formation directly results in an increased frost adhesion, posing severe challenges for the subsequent defrosting process. Here, we report a hierarchical surface which allows for interdroplet freezing wave propagation suppression and efficient frost removal. The enhanced performances are mainly owing to the activation of the microscale edge effect in the hierarchical surface, which increases the energy barrier for ice bridging as well as engendering the liquid lubrication during the defrosting process. We believe the concept of harnessing the surface morphology to achieve superior performances in two opposite phase transition processes might shed new light on the development of novel materials for various applications.

  7. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation

    PubMed Central

    Fielding, Ceri A; Weekes, Michael P; Nobre, Luis V; Ruckova, Eva; Wilkie, Gavin S; Paulo, Joao A; Chang, Chiwen; Suárez, Nicolás M; Davies, James A; Antrobus, Robin; Stanton, Richard J; Aicheler, Rebecca J; Nichols, Hester; Vojtesek, Borek; Trowsdale, John; Davison, Andrew J; Gygi, Steven P

    2017-01-01

    The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation. DOI: http://dx.doi.org/10.7554/eLife.22206.001 PMID:28186488

  8. Suppression of two-dimensional vortex-induced vibration with active velocity feedback controller

    NASA Astrophysics Data System (ADS)

    Ma, B.; Srinil, N.

    2016-09-01

    Vortex-induced vibrations (VIV) establish key design parameters for offshore and subsea structures subject to current flows. Understanding and predicting VIV phenomena have been improved in recent years. Further, there is a need to determine how to effectively and economically mitigate VIV effects. In this study, linear and nonlinear velocity feedback controllers are applied to actively suppress the combined cross-flow and in-line VIV of an elastically-mounted rigid circular cylinder. The strongly coupled fluid-structure interactions are numerically modelled and investigated using a calibrated reduced-order wake oscillator derived from the vortex strength concept. The importance of structural geometrical nonlinearities is studied which highlights the model ability in matching experimental results. The effectiveness of linear vs nonlinear controllers are analysed with regard to the control direction, gain and power. Parametric studies are carried out which allow us to choose the linear vs nonlinear control, depending on the target controlled amplitudes and associated power requirements.

  9. Ultraviolet-A (UVA-1) radiation suppresses immunoglobulin production of activated B lymphocytes in vitro.

    PubMed

    Polderman, M C A; van Kooten, C; Smit, N P M; Kamerling, S W A; Pavel, S

    2006-09-01

    Previous studies have shown that low-dose ultraviolet-A (UVA-1) total body irradiations were capable of improving disease activity in patients with systemic lupus erythematosus (SLE). We hypothesized that UVA-1-induced suppression of immunoglobulin production by activated B cells in the dermal capillaries could be (partly) responsible for this effect. Our experiments with donor skin demonstrated that approximately 40% of UVA-1 could penetrate through the epidermis. Irradiation of peripheral blood mononuclear cells (PBMCs) with 2 J/cm(2) of UVA-1 resulted in 20% cell death. This toxic effect could be prevented totally by preincubation of the cell cultures with catalase. This indicates that the generation of hydrogen peroxide plays a role in UVA-1 cytotoxicity. T cells and B cells appeared to be less susceptible to UVA-1 cytotoxicity than monocytes. With the use of a CD40-CD40L B cell activation method we measured immunoglobulin production after various doses of UVA-1 irradiation (0-2 J/cm(2)). The doses of 2 J/cm(2) caused a significant decrease of IgM, IgG, IgA and IgE production under the conditions of interleukin (IL)-10 or IL-4 (IgE) stimulation. Although UVA-1 can cause apoptosis of B lymphocytes, we show that relatively low doses of UVA-1 radiation also affect the function of these cells. Both effects may be responsible for the observed improvement of disease activity in SLE patients.

  10. Astrocyte activation is suppressed in both normal and injured brain by FGF signaling

    PubMed Central

    Kang, Wenfei; Balordi, Francesca; Su, Nan; Chen, Lin; Fishell, Gordon; Hébert, Jean M.

    2014-01-01

    In the brain, astrocytes are multifunctional cells that react to insults and contain damage. However, excessive or sustained reactive astrocytes can be deleterious to functional recovery or contribute to chronic inflammation and neuronal dysfunction. Therefore, astrocyte activation in response to damage is likely to be tightly regulated. Although factors that activate astrocytes have been identified, whether factors also exist that maintain astrocytes as nonreactive or reestablish their nonreactive state after containing damage remains unclear. By using loss- and gain-of-function genetic approaches, we show that, in the unperturbed adult neocortex, FGF signaling is required in astrocytes to maintain their nonreactive state. Similarly, after injury, FGF signaling delays the response of astrocytes and accelerates their deactivation. In addition, disrupting astrocytic FGF receptors results in reduced scar size without affecting neuronal survival. Overall, this study reveals that the activation of astrocytes in the normal and injured neocortex is not only regulated by proinflammatory factors, but also by factors such as FGFs that suppress activation, providing alternative therapeutic targets. PMID:25002516

  11. Heterogeneity of dynein structure implies coordinated suppression of dynein motor activity in the axoneme.

    PubMed

    Maheshwari, Aditi; Ishikawa, Takashi

    2012-08-01

    Axonemal dyneins provide the driving force for flagellar/ciliary bending. Nucleotide-induced conformational changes of flagellar dynein have been found both in vitro and in situ by electron microscopy, and in situ studies demonstrated the coexistence of at least two conformations in axonemes in the presence of nucleotides (the apo and the nucleotide-bound forms). The distribution of the two forms suggested cooperativity between adjacent dyneins on axonemal microtubule doublets. Although the mechanism of such cooperativity is unknown it might be related to the mechanism of bending. To explore the mechanism by which structural heterogeneity of axonemal dyneins is induced by nucleotides, we used cilia from Tetrahymena thermophila to examine the structure of dyneins in a) the intact axoneme and b) microtubule doublets separated from the axoneme, both with and without additional pure microtubules. We also employed an ATPase assay on these specimens to investigate dynein activity functionally. Dyneins on separated doublets show more activation by nucleotides than those in the intact axoneme, both structurally and in the ATPase assay, and this is especially pronounced when the doublets are coupled with added microtubules, as expected. Paralleling the reduced ATPase activity in the intact axonemes, a lower proportion of these dyneins are in the nucleotide-bound form. This indicates a coordinated suppression of dynein activity in the axoneme, which could be the key for understanding the bending mechanism.

  12. Chicoric acid suppresses BAFF expression in B lymphocytes by inhibiting NF-κB activity.

    PubMed

    Chen, Lingxi; Huang, Gang; Gao, Min; Shen, Xiaodong; Gong, Wei; Xu, Zhizhen; Zeng, Yijun; He, Fengtian

    2017-03-01

    B cell activating factor belonging to the TNF family (BAFF) plays a critical role in the pathogenesis of autoimmune diseases. The inhibition of BAFF expression is an emerging therapeutic approach for these disorders. Chicoric acid (CA), a bioactive phytochemical found in several widely used traditional medicinal plants, has significant anti-inflammatory activity and anti-arthritic effects. However, the role of CA in modulation of BAFF expression remains unknown. In this study, we demonstrated that CA reduced BAFF expression in human B lymphocyte cell lines and decreased the DNA-binding activity of nuclear factor-κB (NF-κB) in the BAFF promoter region. Furthermore, CA inhibited both the nuclear translocation of p65 (the subunit of NF-κB) and the phosphorylation of IκBα (inhibitor of NF-κB). These results suggest that CA suppresses BAFF expression by inhibiting NF-κB activity, and CA may serve as a novel therapeutic agent to down-regulate excessive BAFF expression in autoimmune diseases.

  13. Adduct Formation, B-H Activation and Ring Expansion at Room Temperature from Reactions of HBcat with NHCs.

    PubMed

    Würtemberger-Pietsch, Sabrina; Schneider, Heidi; Marder, Todd B; Radius, Udo

    2016-09-05

    We report the reactions of catecholborane (HBcat; 1) with unsaturated and saturated NHCs as well as CAAC(Me) . Mono-NHC adducts of the type HBcat⋅NHC (NHC=nPr2 Im, iPr2 Im, iPr2 Im(Me) , and Dipp2 Im) were obtained by stoichiometric reactions of HBcat with the unsaturated NHCs. The reaction of CAAC(Me) with HBcat yielded the B-H activated product CAAC(Me) (H)Bcat via insertion of the carbine-carbon atom into the B-H bond. The saturated NHC Dipp2 SIm reacted in a 2:2 ratio yielding an NHC ring-expanded product at room temperature forming a six-membered -B-C=N-C=C-N- ring via C-N bond cleavage and further migration of the hydrides from two HBcat molecules to the former carbene-carbon atom.

  14. Top-down suppression of incompatible motor activations during response selection under conflict.

    PubMed

    Klein, Pierre-Alexandre; Petitjean, Charlotte; Olivier, Etienne; Duque, Julie

    2014-02-01

    Top-down control is critical to select goal-directed actions in changeable environments, particularly when several options compete for selection. This control system is thought to involve a mechanism that suppresses activation of unwanted response representations. We tested this hypothesis, in humans, by measuring motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in a left finger muscle during motor preparation in an adapted Eriksen flanker task. Subjects reported, by a left or right button-press, the orientation of a left- or right-facing central arrow, flanked by two distractor arrows on each side. Central and peripheral arrows either pointed in the same (congruent trial) or in the opposite direction (incongruent trial). Top-down control was manipulated by changing the probability of congruent and incongruent trials in a given block. In the "mostly incongruent" (MI) blocks, 80% of trials were incongruent, producing a context in which subjects strongly anticipated that they would have to face conflict. In the "mostly congruent" (MC) blocks, 80% of trials were congruent and thus subjects barely anticipated conflict in that context. Thus, we assume that top-down control was stronger in the MI than in the MC condition. Accordingly, subjects displayed a lower error rate and shorter reaction times for the incongruent trials in the MI context than for similar trials in the MC context. More interestingly, we found that top-down control specifically reduced activation of the incompatible motor representation during response selection under high conflict. That is, when the central arrow specified a right hand response, left (non-selected) MEPs became smaller in the MI than in the MC condition, but only for incongruent trials, and this measure was positively correlated with performance. In contrast, MEPs elicited in the non-selected hand during congruent trials, or during all trials in which the left hand was selected, tended to increase

  15. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    PubMed

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells.

  16. Structure-activity relationship studies on anti-HCV activity of ring-expanded (‘fat’) nucleobase analogues containing the imidazo[4,5-e][1,3]diazepine-4,8-dione ring system

    PubMed Central

    Zhang, Peng; Zhang, Ning; Korba, Brent E.; Hosmane, Ramachandra S.

    2009-01-01

    In continuation of our structure-activity relationship studies on anti-HCV activity of the title imidazo[4,5-e][1,3]diazepine ring system, we report here the synthesis and effect on biological activity of introducing hydrophobic substituents at the 2-position of the heterocycle. Our results suggest that there is no particular advantage to that end as the observed antiviral activity of the test compounds was lower than the unmodified 2-bromo derivative used for comparison. The activity/toxicity profile of all target compounds, however, was still better than the reference compound ribavirin used in the antiviral assay, but not as good as that of interferon-α, the other reference compound used in the assay. PMID:17300935

  17. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds

    PubMed Central

    Nunes, Túlio M.; Mateus, Sidnei; Favaris, Arodi P.; Amaral, Mônica F. Z. J.; von Zuben, Lucas G.; Clososki, Giuliano C.; Bento, José M. S.; Oldroyd, Benjamin P.; Silva, Ricardo; Zucchi, Ronaldo; Silva, Denise B.; Lopes, Norberto P.

    2014-01-01

    In most species of social insect the queen signals her presence to her workers via pheromones. Worker responses to queen pheromones include retinue formation around the queen, inhibition of queen cell production and suppression of worker ovary activation. Here we show that the queen signal of the Brazilian stingless bee Friesella schrottkyi is a mixture of cuticular hydrocarbons. Stingless bees are therefore similar to ants, wasps and bumble bees, but differ from honey bees in which the queen's signal mostly comprises volatile compounds originating from the mandibular glands. This shows that cuticular hydrocarbons have independently evolved as the queen's signal across multiple taxa, and that the honey bees are exceptional. We also report the distribution of four active queen-signal compounds by Matrix-assisted laser desorption/ionization (MALDI) imaging. The results indicate a relationship between the behavior of workers towards the queen and the likely site of secretion of the queen's pheromones. PMID:25502598

  18. β-Hydroxybutyrate suppresses inflammasome formation by ameliorating endoplasmic reticulum stress via AMPK activation

    PubMed Central

    Park, Min Hi; Lee, Bonggi; Kim, Min Jo; Lee, Eun Kyeong; Chung, Ki Wung; Kim, Seong Min; Im, Dong Soon; Chung, Hae Young

    2016-01-01

    β-Hydroxybutyrate, a ketone body that is used as an energy source in organs such as the brain, muscle, and heart when blood glucose is low, is produced by fatty acid oxidation in the liver under the fasting state. Endoplasmic reticulum (ER) stress is linked with the generation of intracellular reactive oxygen species and the accumulation of misfolded protein in the ER. ER stress is known to induce the NOD-like receptor protein 3 inflammasome, which mediates activation of the proinflammatory cytokine interleukin-1β, whose maturation is caspase-1-dependent. We investigated whether β-hydroxybutyrate modulates ER stress, inflammasome formation, and insulin signaling. Sprague Dawley rats (6 and 24 months of age) that were starved for 3 d and rats treated with β-hydroxybutyrate (200 mg·kg−1·d−1 i.p., for 5 d) were used for in vivo investigations, whereas human hepatoma HepG2 cells were used for in vitro studies. Overexpression of AMPK in cultured cells was performed to elucidate the molecular mechanism. The starvation resulted in increased serum β-hydroxybutyrate levels with decreased ER stress (PERK, IRE1, and ATF6α) and inflammasome (ASC, caspase-1, and NLRP3) formation compared with non-fasted 24-month-old rats. In addition, β-hydroxybutyrate suppressed the increase of ER stress- and inflammasome-related marker proteins. Furthermore, β-hydroxybutyrate treatment increased the expression of manganese superoxide dismutase and catalase via the AMP-activated protein kinase-forkhead box protein O3α transcription factor pathway both in vivo and in vitro. The significance of the current study was the discovery of the potential therapeutic role of β-hydroxybutyrate in suppressing ER-stress-induced inflammasome formation. PMID:27661104

  19. The activation of OR51E1 causes growth suppression of human prostate cancer cells.

    PubMed

    Maßberg, Désirée; Jovancevic, Nikolina; Offermann, Anne; Simon, Annika; Baniahmad, Aria; Perner, Sven; Pungsrinont, Thanakorn; Luko, Katarina; Philippou, Stathis; Ubrig, Burkhard; Heiland, Markus; Weber, Lea; Altmüller, Janine; Becker, Christian; Gisselmann, Günter; Gelis, Lian; Hatt, Hanns

    2016-07-26

    The development of prostate cancer (PCa) is regulated by the androgen-dependent activity of the androgen receptor (AR). Androgen-deprivation therapy (ADT) is therefore the gold standard treatment to suppress malignant progression of PCa. Nevertheless, due to the development of castration resistance, recurrence of disease after initial response to ADT is a major obstacle to successful treatment. As G-protein coupled receptors play a fundamental role in PCa physiology, they might represent promising alternative or combinatorial targets for advanced diseases. Here, we verified gene expression of the olfactory receptors (ORs) OR51E1 [prostate-specific G-protein coupled receptor 2 (PSGR2)] and OR51E2 (PSGR) in human PCa tissue by RNA-Seq analysis and RT-PCR and elucidated the subcellular localization of both receptor proteins in human prostate tissue. The OR51E1 agonist nonanoic acid (NA) leads to the phosphorylation of various protein kinases and growth suppression of the PCa cell line LNCaP. Furthermore, treatment with NA causes reduction of androgen-mediated AR target gene expression. Interestingly, NA induces cellular senescence, which coincides with reduced E2F1 mRNA levels. In contrast, treatment with the structurally related compound 1-nonanol or the OR2AG1 agonist amyl butyrate, neither of which activates OR51E1, did not lead to reduced cell growth or an induction of cellular senescence. However, decanoic acid, another OR51E1 agonist, also induces cellular senescence. Thus, our results suggest the involvement of OR51E1 in growth processes of PCa cells and its impact on AR-mediated signaling. These findings provide novel evidences to support the functional importance of ORs in PCa pathogenesis.

  20. Salvianolic acid B suppresses maturation of human monocyte-derived dendritic cells by activating PPARγ

    PubMed Central

    Sun, Aijun; Liu, Hongying; Wang, Shijun; Shi, Dazhuo; Xu, Lei; Cheng, Yong; Wang, Keqiang; Chen, Keji; Zou, Yunzeng; Ge, Junbo

    2011-01-01

    BACKGROUND AND PURPOSE Salvianolic acid B (Sal B), a water-soluble antioxidant derived from a Chinese medicinal herb, is known to be effective in the prevention of atherosclerosis. Here, we tested the hypothesis that the anti-atherosclerotic effect of Sal B might be mediated by suppressing maturation of human monocyte-derived dendritic cells (h-monDC). EXPERIMENTAL APPROACH h-monDC were derived by incubating purified human monocytes with GM-CSF and IL-4. h-monDC were pre-incubated with or without Sal B and stimulated by oxidized low-density lipoprotein (ox-LDL) in the presence or absence of PPARγ siRNA. Expression of h-monDC membrane molecules (CD40, CD86, CD1a, HLA-DR) were analysed by FACS, cytokines were measured by elisa and the TLR4-associated signalling pathway was determined by Western blotting. KEY RESULTS Ox-LDL promoted h-monDC maturation, stimulated CD40, CD86, CD1a, HLA-DR expression and IL-12, IL-10, TNF-α production; and up-regulated TLR4 signalling. These effects were inhibited by Sal B. Sal B also triggered PPARγ activation and promoted PPARγ nuclear translocation, attenuated ox-LDL-induced up-regulation of TLR4 and myeloid differentiation primary-response protein 88 and inhibited the downstream p38-MAPK signalling cascade. Knocking down PPARγ with the corresponding siRNA blocked these effects of Sal B. CONCLUSIONS AND IMPLICATIONS Our data suggested that Sal B effectively suppressed maturation of h-monDC induced by ox-LDL through PPARγ activation. PMID:21649636

  1. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling.

    PubMed

    Liu, Lucy; Kritsanida, Marina; Magiatis, Prokopios; Gaboriaud, Nicolas; Wang, Yan; Wu, Jun; Buettner, Ralf; Yang, Fan; Nam, Sangkil; Skaltsounis, Leandros; Jove, Richard

    2012-11-01

    STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.

  2. Final design and fabrication of an active control system for flutter suppression on a supercritical aeroelastic research wing

    NASA Technical Reports Server (NTRS)

    Hodges, G. E.; Mcgehee, C. R.

    1981-01-01

    The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage.

  3. Intramolecular C-N bond activation and ring-expansion reactions of N-heterocyclic carbenes.

    PubMed

    Hemberger, Patrick; Bodi, Andras; Berthel, Johannes H J; Radius, Udo

    2015-01-19

    Intramolecular ring-expansion reactions (RER) of the N-heterocyclic carbene 1,3-dimethylimidazolin-2-ylidene were observed upon vacuum ultraviolet (VUV) photoexcitation. Similarly to RERs reported in the solvent phase, for the reaction of NHCs with main-group-element hydrides, hydrogen transfer to the NHC carbon atom is the crucial initial step. In an ionization-mediated protonation, 1,3-dimethylimidazolin-2-ylidene forms an imidazolium ion, which is the rate-limiting step on the pathway to two six-membered ring products, namely, methylpyrimidinium and -pyrazinium ions. To unravel the reaction path, we have used imaging photoelectron photoion coincidence spectroscopy with VUV synchrotron radiation, as well as high-level composite method calculations. Similarities and differences between the mechanism in the gas phase and in the condensed phase are discussed.

  4. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  5. Pioglitazone Suppresses CXCR7 Expression To Inhibit Human Macrophage Chemotaxis through Peroxisome Proliferator-Activated Receptor γ.

    PubMed

    Zhao, Duo; Zhu, Zhicheng; Li, Dan; Xu, Rihao; Wang, Tiance; Liu, Kexiang

    2015-11-17

    Cardiovascular disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Pioglitazone, the widely used thiazolidinedione, is shown to be efficient in the prevention of cardiovascular complications of T2DM. In this study, we report that pioglitazone inhibits CXCR7 expression and thus blocks chemotaxis in differentiated macrophage without perturbing cell viability or macrophage differentiation. In addition, pioglitazone-mediated CXCR7 suppression and chemotaxis inhibition occur via activating peroxisome proliferator-activated receptor γ (PPARγ) but not PPARα in differentiated macrophage. More importantly, pioglitazone therapy-induced PPARγ activation suppresses CXCR7 expression in human carotid atherosclerotic lesions. Collectively, our data demonstrate that pioglitazone suppresses CXCR7 expression to inhibit human macrophage chemotaxis through PPARγ.

  6. MPTP/MPP+ suppresses activation of protein C in Parkinson's disease.

    PubMed

    Chen, Teng; Hou, Ruihua; Li, Chao; Wu, Chengyuan; Xu, Shujun

    2015-01-01

    Endothelial dysfunction and disruption of the blood-brain barrier have been found to be associated with Parkinson's disease (PD). However, the mechanisms underlying these effects have yet to be elucidated. It has also been found that activated protein C (APC) displays neuroprotective properties. Presently, the effects of APC on PD remain unknown. Using a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) neurotoxin rodent model of PD, we found that administration of MPTP can reduce expression of endothelial protein C receptor (EPCR), an N-glycosylated type I membrane protein that has the ability to enhance protein C activation. However, the use of MPTP does not alter levels of thrombomodulin. These findings were verified in an in vitro study showing that 1-methyl-4-phenylpyridinium (MPP+) treatment leads to suppression of EPCR along with reduction of protein C activation in human primary endothelial cells. Importantly, our results display that activation of the transcriptional factor SP1 is involved in the inhibitory effects of MPTP/MPP+ on EPCR expression. We found that using 300 nM of the SP1 inhibitor MIT can abolish the effects of MPP+ on EPCR expression. Consistently, SP1 silencing using small RNA interference was able to prevent the inhibitory effects of MPTP/MPP+ on the reduction of EPCR expression and impairment of protein C activation. Importantly, our results indicate that overexpression of SP1 inhibits EPCR promoter activity. Our study suggests that EPCR-APC may be a potential therapeutic target for endothelial dysfunction in PD.

  7. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi.

    PubMed

    Cajthaml, Tomás; Kresinová, Zdena; Svobodová, Katerina; Möder, Monika

    2009-05-01

    Endocrine-disrupting compounds (EDCs) represent a large group of substances of natural and anthropogenic origin. They are widely distributed in the environment and can pose serious risks to aquatic organisms and to public health. In this study, 4-n-nonylphenol, technical 4-nonylphenol, bisphenol A, 17alpha-ethinylestradiol, and triclosan were biodegraded by eight ligninolytic fungal strains (Irpex lacteus 617/93, Bjerkandera adusta 606/93, Phanerochaete chrysosporium ME 446, Phanerochaete magnoliae CCBAS 134/I, Pleurotus ostreatus 3004 CCBAS 278, Trametes versicolor 167/93, Pycnoporus cinnabarinus CCBAS 595, Dichomitus squalens CCBAS 750). The results show that under the used conditions the fungi were able to degrade the EDCs within 14d of cultivation with exception of B. adusta and P. chrysosporium in the case of triclosane and bisphenol A, respectively. I. lacteus and P. ostreatus were found to be most efficient EDC degraders with their degradation efficiency exceeding 90% or 80%, respectively, in 7d. Both fungi degraded technical 4-nonylphenol, bisphenol-A, and 17alpha-ethinylestradiol below the detection limit within first 3d of cultivation. In general, estrogenic activities assayed with a recombinant yeast test decreased with advanced degradation. However, in case of I. lacteus, P. ostreatus, and P. chrysosporium the yeast assay showed a residual estrogenic activity (28-85% of initial) in 17alpha-ethinylestradiol cultures. Estrogenic activity in B. adusta cultures temporally increased during degradation of technical 4-nonylphenol, suggesting a production of endocrine-active intermediates. Attention was paid also to the effects of EDCs on the ligninolytic enzyme activities of the different fungi strains to evaluate their possible stimulation or suppression of activities during the biodegradation processes.

  8. Synthesis and antifungal activity of C-21 steroids with an aromatic D ring.

    PubMed

    Sonego, Juan M; Cirigliano, Adriana M; Cabrera, Gabriela M; Burton, Gerardo; Veleiro, Adriana S

    2013-07-01

    Six analogues of salpichrolides with a simplified side chain (6-11) were synthesized using a new methodology to obtain steroids with an aromatic D-ring. The key step was the elimination of HBr in a vicinal dibromo D-homosteroid by treatment with 1,4-diazabicyclo[2.2.2]octane (DABCO). All new compounds were completely characterized by 2D NMR techniques and tested on two fungal pathogenic species, Fusarium virguliforme and Fusarium solani.

  9. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    PubMed

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  10. A Drought History Over The Northeastern Qinghai-Tibet Plateau Derived From Tree Rings And Its Relation To Solar Activities

    NASA Astrophysics Data System (ADS)

    Shao, X.; Yin, Z.; Liang, E.; Xu, Y.; Zhu, H.

    2008-12-01

    periods of approximately 200, 7, and 2 years. The variation patterns identified from this drought record are compared with those in other proxy data. We also analyze the relationships between the reconstructed moisture condition of the study region with a number of macroscale forcing mechanisms, such as ENSO, hemispheric temperature variation, extratropical teleconnections , as well as solar activities. This is by far the longest drought history based on ring width data in China.

  11. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    PubMed

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  12. Activation of FXR protects against renal fibrosis via suppressing Smad3 expression

    PubMed Central

    Zhao, Kai; He, Jialin; Zhang, Yan; Xu, Zhizhen; Xiong, Haojun; Gong, Rujun; Li, Song; Chen, Shan; He, Fengtian

    2016-01-01

    Renal fibrosis is the common pathway of most chronic kidney disease progression to end-stage renal failure. The nuclear receptor FXR (farnesoid X receptor), a multiple functional transcription factor, plays an important role in protecting against fibrosis. The TGFβ-Smad signaling has a central role in kidney fibrosis. However, it remains unclear whether FXR plays direct anti-fibrotic effect in renal fibrosis via regulating TGFβ-Smad pathway. In this study, we found that the level of FXR was negatively correlated with that of Smad3 and fibronectin (a marker of fibrosis) in human fibrotic kidneys. Activation of FXR suppressed kidney fibrosis and downregulated Smad3 expression, which was markedly attenuated by FXR antagonist. Moreover, the FXR-mediated repression of fibrosis was significantly alleviated by ectopic expression of Smad3. Luciferase reporter assay revealed that FXR activation inhibited the transcriptional activity of Smad3 gene promoter. The in vivo experiments showed that FXR agonist protected against renal fibrosis and downregulated Smad3 expression in UUO mice. These results suggested that FXR may serve as an important negative regulator for manipulating Smad3 expression, and the FXR/Smad3 pathway may be a novel target for the treatment of renal fibrosis. PMID:27853248

  13. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells

    PubMed Central

    Wong, Tsz Yan; Lin, Shu-mei; Leung, Lai K.

    2015-01-01

    High blood cholesterol has been associated with cardiovascular diseases. The enzyme HMG CoA reductase (HMGCR) is responsible for cholesterol synthesis, and inhibitors of this enzyme (statins) have been used clinically to control blood cholesterol. Sterol regulatory element binding protein (SREBP) -2 is a key transcription factor in cholesterol metabolism, and HMGCR is a target gene of SREBP-2. Attenuating SREBP-2 activity could potentially minimize the expression of HMGCR. Luteolin is a flavone that is commonly detected in plant foods. In the present study, Luteolin suppressed the expression of SREBP-2 at concentrations as low as 1 μM in the hepatic cell lines WRL and HepG2. This flavone also prevented the nuclear translocation of SREBP-2. Post-translational processing of SREBP-2 protein was required for nuclear translocation. Luteolin partially blocked this activation route through increased AMP kinase (AMPK) activation. At the transcriptional level, the mRNA and protein expression of SREBP-2 were reduced through luteolin. A reporter gene assay also verified that the transcription of SREBF2 was weakened in response to this flavone. The reduced expression and protein processing of SREBP-2 resulted in decreased nuclear translocation. Thus, the transcription of HMGCR was also decreased after luteolin treatment. In summary, the results of the present study showed that luteolin modulates HMGCR transcription by decreasing the expression and nuclear translocation of SREBP-2. PMID:26302339

  14. The natural compound nujiangexanthone A suppresses mast cell activation and allergic asthma.

    PubMed

    Lu, Yue; Cai, Shuangfan; Nie, Jia; Li, Yangyang; Shi, Guochao; Hao, Jimin; Fu, Wenwei; Tan, Hongsheng; Chen, Shilin; Li, Bin; Xu, Hongxi

    2016-01-15

    Mast cells play an important role in allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. The genus Garcinia of the family Guttiferae is well known as a prolific source of polycyclic polyprenylated acylphloroglucinols and bioactive prenylated xanthones, which exhibit various biological activities including antibacterial, antifungal, anti-inflammatory, antioxidant, and cytotoxic effects. Nujiangexanthone A (N7) is a novel compound isolated from the leaves of Garcinia nujiangensis. In this paper, we sought to determine the anti-allergic and anti-inflammation activity of N7 in vivo and its mechanism in vitro. We found N7 suppressed IgE/Ag induced mast cell activiation, including degranulation and production of cytokines and eicosanoids, through inhibiting Src kinase activity and Syk dependent pathways. N7 inhibited histamine release, prostaglandin D2 and leukotriene C4 generation in mast cell dependent passive cutaneous anaphylaxis animal model. We also found N7 inhibited the IL-4, IL-5, IL-13 and IgE levels in ovalbumin-induced asthma model. Histological studies demonstrated that N7 substantially inhibited OVA-induced cellular infiltration and increased mucus production in the lung tissue. Our study reveals the anti-allergic function of N7, thereby suggesting the utility of this compound as a possible novel agent for preventing mast cell-related immediate and delayed allergic diseases.

  15. Suppression of FOXM1 Transcriptional Activities via a Single-Stranded DNA Aptamer Generated by SELEX.

    PubMed

    Xiang, Qin; Tan, Guixiang; Jiang, Xia; Wu, Kuangpei; Tan, Weihong; Tan, Yongjun

    2017-03-30

    The transcription factor FOXM1 binds to its consensus sequence at promoters through its DNA binding domain (DBD) and activates proliferation-associated genes. The aberrant overexpression of FOXM1 correlates with tumorigenesis and progression of many cancers. Inhibiting FOXM1 transcriptional activities is proposed as a potential therapeutic strategy for cancer treatment. In this study, we obtained a FOXM1-specific single stranded DNA aptamer (FOXM1 Apt) by SELEX with a recombinant FOXM1 DBD protein as the target of selection. The binding of FOXM1 Apt to FOXM1 proteins were confirmed with electrophoretic mobility shift assays (EMSAs) and fluorescence polarization (FP) assays. Phosphorthioate-modified FOXM1 Apt (M-FOXM1 Apt) bound to FOXM1 as wild type FOXM1 Apt, and co-localized with FOXM1 in nucleus. M-FOXM1-Apt abolished the binding of FOXM1 on its consensus binding sites and suppressed FOXM1 transcriptional activities. Compared with the RNA interference of FOXM1 in cancer cells, M-FOXM1 Apt repressed cell proliferation and the expression of FOXM1 target genes without changing FOXM1 levels. Our results suggest that the obtained FOXM1 Apt could be used as a probe for FOXM1 detection and an inhibitor of FOXM1 transcriptional functions in cancer cells at the same time, providing a potential reagent for cancer diagnosis and treatment in the future.

  16. Suppression of FOXM1 Transcriptional Activities via a Single-Stranded DNA Aptamer Generated by SELEX

    PubMed Central

    Xiang, Qin; Tan, Guixiang; Jiang, Xia; Wu, Kuangpei; Tan, Weihong; Tan, Yongjun

    2017-01-01

    The transcription factor FOXM1 binds to its consensus sequence at promoters through its DNA binding domain (DBD) and activates proliferation-associated genes. The aberrant overexpression of FOXM1 correlates with tumorigenesis and progression of many cancers. Inhibiting FOXM1 transcriptional activities is proposed as a potential therapeutic strategy for cancer treatment. In this study, we obtained a FOXM1-specific single stranded DNA aptamer (FOXM1 Apt) by SELEX with a recombinant FOXM1 DBD protein as the target of selection. The binding of FOXM1 Apt to FOXM1 proteins were confirmed with electrophoretic mobility shift assays (EMSAs) and fluorescence polarization (FP) assays. Phosphorthioate-modified FOXM1 Apt (M-FOXM1 Apt) bound to FOXM1 as wild type FOXM1 Apt, and co-localized with FOXM1 in nucleus. M-FOXM1-Apt abolished the binding of FOXM1 on its consensus binding sites and suppressed FOXM1 transcriptional activities. Compared with the RNA interference of FOXM1 in cancer cells, M-FOXM1 Apt repressed cell proliferation and the expression of FOXM1 target genes without changing FOXM1 levels. Our results suggest that the obtained FOXM1 Apt could be used as a probe for FOXM1 detection and an inhibitor of FOXM1 transcriptional functions in cancer cells at the same time, providing a potential reagent for cancer diagnosis and treatment in the future. PMID:28358012

  17. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation.

    PubMed

    Foronda, Miguel; Morgado-Palacin, Lucia; Gómez-López, Gonzalo; Domínguez, Orlando; Pisano, David G; Blasco, Maria A

    2015-12-01

    Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4 (cKO) mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4 (cKO) mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155.

  18. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    PubMed

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice.

  19. New hybrid active power filter for harmonic current suppression and reactive power compensation

    NASA Astrophysics Data System (ADS)

    Biricik, Samet; Cemal Ozerdem, Ozgur; Redif, Soydan; Sezai Dincer, Mustafa

    2016-08-01

    In the case of undistorted and balanced grid voltages, low ratio shunt active power filters (APFs) can give unity power factors and achieve current harmonic cancellation. However, this is not possible when source voltages are distorted and unbalanced. In this study, the cost-effective hybrid active power filter (HAPF) topology for satisfying the requirements of harmonic current suppression and non-active power compensation for industry is presented. An effective strategy is developed to observe the effect of the placement of power capacitors and LC filters with the shunt APF. A new method for alleviating the negative effects of a nonideal grid voltage is proposed that uses a self-tuning filter algorithm with instantaneous reactive power theory. The real-time control of the studied system was achieved with a field-programmable gate array (FPGA) architecture, which was developed using the OPAL-RT system. The performance result of the proposed HAPF system is tested and presented under nonideal supply voltage conditions.

  20. Pioglitazone, a Peroxisome Proliferator-Activated Receptor γ Agonist, Suppresses Rat Prostate Carcinogenesis

    PubMed Central

    Suzuki, Shugo; Mori, Yukiko; Nagano, Aya; Naiki-Ito, Aya; Kato, Hiroyuki; Nagayasu, Yuko; Kobayashi, Mizuho; Kuno, Toshiya; Takahashi, Satoru

    2016-01-01

    Pioglitazone (PGZ), a peroxisome proliferator-activated receptor γ agonist, which is known as a type 2 diabetes drug, inhibits cell proliferation in various cancer cell lines, including prostate carcinomas. This study focused on the effect of PGZ on prostate carcinogenesis using a transgenic rat for an adenocarcinoma of prostate (TRAP) model. Adenocarcinoma lesions as a percentage of overall lesions in the ventral prostate were significantly reduced by PGZ treatment in a dose-dependent manner. The number of adenocarcinomas per given area in the ventral prostate was also significantly reduced by PGZ treatment. The Ki67 labeling index in the ventral prostate was also significantly reduced by PGZ. Decreased cyclin D1 expression in addition to the inactivation of both p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)κB were detected in PGZ-treated TRAP rat groups. In LNCaP, a human androgen-dependent prostate cancer cell line, PGZ also inhibited cyclin D1 expression and the activation of both p38 MAPK and NFκB. The suppression of cultured cell growth was mainly regulated by the NFκB pathway as detected using specific inhibitors in both LNCaP and PC3, a human androgen-independent prostate cancer cell line. These data suggest that PGZ possesses a chemopreventive potential for prostate cancer. PMID:27973395

  1. Alternative mechanism for coffee-ring deposition based on active role of free surface

    NASA Astrophysics Data System (ADS)

    Jafari Kang, Saeed; Vandadi, Vahid; Felske, James D.; Masoud, Hassan

    2016-12-01

    When a colloidal sessile droplet dries on a substrate, the particles suspended in it usually deposit in a ringlike pattern. This phenomenon is commonly referred to as the "coffee-ring" effect. One paradigm for why this occurs is as a consequence of the solutes being transported towards the pinned contact line by the flow inside the drop, which is induced by surface evaporation. From this perspective, the role of the liquid-gas interface in shaping the deposition pattern is somewhat minimized. Here, we propose an alternative mechanism for the coffee-ring deposition. It is based on the bulk flow within the drop transporting particles to the interface where they are captured by the receding free surface and subsequently transported along the interface until they are deposited near the contact line. That the interface captures the solutes as the evaporation proceeds is supported by a Lagrangian tracing of particles advected by the flow field within the droplet. We model the interfacial adsorption and transport of particles as a one-dimensional advection-generation process in toroidal coordinates and show that the theory reproduces ring-shaped depositions. Using this model, deposition patterns on both hydrophilic and hydrophobic surfaces are examined in which the evaporation is modeled as being either diffusive or uniform over the surface.

  2. Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G

    PubMed Central

    Kakkar, Vaishali; Kuiper, E. F. Elsiena; Pandey, Abhinav; Braakman, Ineke; Kampinga, Harm H.

    2016-01-01

    Parkinson’s disease is one of the most common neurodegenerative disorders and several mutations in different genes have been identified to contribute to the disease. A loss of function parkin RING1 domain mutant (C289G) is associated with autosomal-recessive juvenile-onset Parkinsonism (AR-JP) and displays altered solubility and sequesters into aggregates. Single overexpression of almost each individual member of the Hsp40 (DNAJ) family of chaperones efficiently reduces parkin C289G aggregation and requires interaction with and activity of endogenously expressed Hsp70 s. For DNAJB6 and DNAJB8, potent suppressors of aggregation of polyglutamine proteins for which they rely mainly on an S/T-rich region, it was found that the S/T-rich region was dispensable for suppression of parkin C289G aggregation. Our data implies that different disease-causing proteins pose different challenges to the protein homeostasis system and that DNAJB6 and DNAJB8 are highly versatile members of the DNAJ protein family with multiple partially non-overlapping modes of action with respect to handling disease-causing proteins, making them interesting potential therapeutic targets. PMID:27713507

  3. Suppressive activity of lycoricidinol (narciclasine) against cytotoxicity of neutrophil-derived calprotectin, and its suppressive effect on rat adjuvant arthritis model.

    PubMed

    Mikami, M; Kitahara, M; Kitano, M; Ariki, Y; Mimaki, Y; Sashida, Y; Yamazaki, M; Yui, S

    1999-07-01

    Calprotectin is a calcium- and zinc-binding protein complex that is abundant in cytosol of neutrophils. The concentration of calprotectin in extracellular fluids is greatly increased under various inflammatory conditions in vivo. We recently demonstrated that calprotectin inhibited cell growth and induced apoptosis of various cell types including tumor cells and normal fibroblasts; therefore, extracellular calprotectin might cause tissue destruction in severe inflammatory diseases. We previously found that an alkaloid, lycorine inhibits induction of apoptosis by calprotectin. In this paper, we examined the inhibitory activities of other Amaryllidaceae alkaloids, namely, lycoricidinol, hippeastrine and ungerine against the cytotoxicity of calprotectin. Lycoricidinol (narciclasine) inhibited calprotectin-induced cytotoxicity at more than 10-fold lower concentration (IC50=0.001-0.01 microg/ml) than lycorine, while the effects of the latter two alkaloids were very weak. Therefore, we next checked the prophylactic effect of lycorine and lycoricidinol on the adjuvant arthritis model in rats. Lycoricidinol, but not lycorine, significantly suppressed the degree of swelling of adjuvant-treated as well as untreated feet, suggesting that lycoricidinol might be a candidate as a the drug having marked suppressive activity for inflammation which might be influenced by calprotectin.

  4. MicroRNA-16 suppresses the activation of inflammatory macrophages in atherosclerosis by targeting PDCD4

    PubMed Central

    LIANG, XUE; XU, ZHAO; YUAN, MENG; ZHANG, YUE; ZHAO, BO; WANG, JUNQIAN; ZHANG, AIXUE; LI, GUANGPING

    2016-01-01

    Programmed cell death 4 (PDCD4) is involved in a number of bioprocesses, such as apoptosis and inflammation. However, its regulatory mechanisms in atherosclerosis remain unclear. In this study, we investigated the role and mechanisms of action of PDCD4 in high-fat diet-induced atherosclerosis in mice and in foam cells (characteristic pathological cells in atherosclerotic lesions) derived from ox-LDL-stimulated macrophages. MicroRNA (miR)-16 was predicted to bind PDCD4 by bioinformatics analysis. In the mice with atherosclerosis and in the foam cells, PDCD4 protein expression (but not the mRNA expression) was enhanced, while that of miR-16 was reduced. Transfection with miR-16 mimic decreased the activity of a luciferase reporter containing the 3′ untranslated region (3′UTR) of PDCD4 in the macrophage-derived foam cells. Conversely, treatment with miR-16 inhibitor enhanced the luciferase activity. However, by introducing mutations in the predicted binding site located in the 3′UTR of PDCD4, the miR-16 mimic and inhibitor were unable to alter the level of PDCD4, suggesting that miR-16 is a direct negative regulator of PDCD4 in atherosclerosis. Furthermore, transfection wtih miR-16 mimic and siRNA targeting PDCD4 suppressed the secretion and mRNA expression of pro-inflammatory factors, such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), whereas it enhanced the secretion and mRNA expression of the anti-inflammatory factor, IL-10. Treatment with miR-16 inhibitor exerted the opposite effects. In addition, the phosphorylation of p38 and extracellular signal-regulated kinase (ERK), and nuclear factor-κB (NF-κB) expression were altered by miR-16. In conclusion, our data demonstrate that the targeting of PDCD4 by miR-16 may suppress the activation of inflammatory macrophages though mitogen-activated protein kinase (MAPK) and NF-κB signaling in atherosclerosis; thus, PDCD4 may prove to be a potential therapeutic target in the treatment of

  5. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells

    PubMed Central

    Watt, James; Schlezinger, Jennifer J.

    2015-01-01

    Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of

  6. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    Utilizing clinostatic rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity, we found phytohemagglutinin (PHA) responsiveness to be almost completely diminished. Activation marker expression was significantly reduced in RWV cultures. Furthermore, cytokine secretion profiles suggested that monocytes are not as adversely affected by simulated microgravity as T cells. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness because placing peripheral blood mononuclear cells (PBMC) within small collagen beads did partially restore PHA responsiveness. However, activation of purified T cells with cross-linked CD2/CD28 and CD3/CD28 antibody pairs was completely suppressed in the RWV, suggesting a defect in signal transduction. Activation of purified T cells with PMA and ionomycin was unaffected by RWV culture. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  7. Suppressive activity of macrolide antibiotics on nitric oxide production by lipopolysaccharide stimulation in mice.

    PubMed Central

    Terao, Hajime; Asano, Kazuhito; Kanai, Ken-ichi; Kyo, Yoshiyuki; Watanabe, So; Hisamitsu, Tadashi; Suzaki, Harumi

    2003-01-01

    BACKGROUND: Low-dose and long-term administration of macrolide antibiotics into patients with chronic airway inflammatory diseases could favorably modify their clinical conditions. However, the therapeutic mode of action of macrolides is not well understood. Free oxygen radicals, including nitric oxide (NO), are well recognized as the important final effector molecules in the development and the maintenance of inflammatory diseases. PURPOSE: The influence of macrolide antibiotics on NO generation was examined in vivo. METHODS: Male ICR mice, 5 weeks of age, were orally administered with either roxithromycin, clarithromycin, azithromycin or josamycin once a day for 2-4 weeks. The mice were then injected intraperitoneally with 5.0 mg/kg lipopolysaccharide (LPS) and the plasma NO level was examined 6 h later. RESULTS: Although pre-treatment of mice with macrolide antibiotics for 2 weeks scarcely affected NO generation by LPS injection, the administration of macrolide antibiotics, except for josamycin, for 4 weeks significantly inhibited LPS-induced NO generation. The data in the present study also showed that pre-treatment of mice with macrolide antibiotics for 4 weeks significantly suppresses not only production of pro-inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha, but also inducible nitric oxide synthase mRNA expressions, which are enhanced by LPS injection. CONCLUSION: These results strongly suggest that suppressive activity of macrolide antibiotics on NO generation in response to LPS stimulation in vivo may, in part, account for the clinical efficacy of macrolides on chronic inflammatory diseases. PMID:14514469

  8. Catechins in tea suppress the activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway in rat livers.

    PubMed

    Fukuda, Itsuko; Nishiumi, Shin; Mukai, Rie; Yoshida, Ken-ichi; Ashida, Hitoshi

    2015-05-01

    Polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) develop various adverse effects through activation of an aryl hydrocarbon receptor (AhR). The suppressive effects of brewed green tea and black tea on 3-methylcholanthrene (MC)-induced AhR activation and its downstream events were examined in the liver of rats. Ad-libitum drinking of green tea and black tea suppressed MC-induced AhR activation and elevation of ethoxyresorufin O-deethylase activity in the liver, whereas the teas themselves did not induce them. Tea showed a suppressive fashion on the expression of cytochrome P450 1A1 (CYP1A1). Tea suppressed the AhR activation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) ex vivo. A part of catechins and theaflavins was present in plasma and liver as conjugated and intact forms. The results of this study suggested that active component(s) of tea are incorporated in the liver and suppress the activity of CYP1As through the AhR activation pathway.

  9. A mechanism of action for morphine-induced immunosuppression: corticosterone mediates morphine-induced suppression of natural killer cell activity.

    PubMed

    Freier, D O; Fuchs, B A

    1994-09-01

    Morphine is a drug of abuse with an ability to down-regulate immune responsiveness that could have potentially serious consequences in both heroin addicts and in the clinical environment. The exact mechanism of action by which morphine induces immunosuppression has yet to be clearly determined. A direct mechanism of action is suggested to operate through lymphocyte opiate receptors, but the nature of such receptors is still in question. The alternative, an indirect mechanism of action is proposed to be mediated by two possible pathways, hypothalamic-pituitary-adrenal axis activation with increased production of adrenal corticosteroids, or activation of the sympathetic nervous system and concomitant catecholamine release. Natural killer (NK) cell activity was used to determine potential indirect mechanisms of action for morphine. NK activity in the B6C3F1 mouse was suppressed between 12 and 48 hr after implantation of 75 mg timed-release morphine pellets. Morphine suppressed NK activity in a dose-responsive manner. The opiate antagonists naloxone and naltrexone completely blocked morphine-induced suppression of NK activity, whereas naloxone methiodide, a congener that crosses the blood-brain barrier much more slowly than naloxone, produced very little blockade. Implantation of the 75-mg morphine pellets produced a significant elevation in serum corticosterone levels. In vitro exposure to corticosterone is known to suppress NK activity directly, whereas in vitro morphine was unable to alter directly NK activity. The glucocorticoid receptor antagonist Roussel-Uclaf 38486 blocked morphine-induced suppression of NK activity in a dose-responsive fashion. Naltrexone (10-mg pellet) antagonized the morphine-induced elevation in serum corticosterone.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Organic Amendments to Avocado Crops Induce Suppressiveness and Influence the Composition and Activity of Soil Microbial Communities

    PubMed Central

    Bonilla, Nuria; Vida, Carmen; Martínez-Alonso, Maira; Landa, Blanca B.; Gaju, Nuria; Cazorla, Francisco M.

    2015-01-01

    One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially. PMID:25769825

  11. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  12. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  13. Ergosteroids V: preparation and biological activity of various D-ring derivatives in the 7-oxo-dehydroepiandrosterone series.

    PubMed

    Reich, Ieva L; Reich, Hans J; Kneer, Nancy; Lardy, Henry

    2002-03-01

    Our previous finding that D-ring seco derivatives of dehydroepiandrosterone retained biologic activity (Reich et al., Steroids 1998;63:542-53) motivated us to synthesize and test a number of steroids in which the D-ring is retained but altered in various ways. Several new steroids were synthesized and characterized by (1)H and (13)C NMR spectroscopy. The availability of a number of closely related compounds allowed detailed (13)C chemical shift correlations. Using the induction of two thermogenic enzymes in rats, liver mitochondrial glycerophosphate dehydrogenase (GPDH) and cytosolic malic enzyme, as criteria of biologic activity some 30 compounds were assayed. Hydroxylation of dehydroepiandrosterone (DHEA) at the 16 alpha position was previously shown to diminish activity (Lardy et al., Steroids 1998;63:158-65); the corresponding 7-oxo compound is fully active. Hydroxylation at the 15 beta position of DHEA, 7-oxo-DHEA, or 16 alpha-hydroxy-7-oxo-DHEA greatly diminished the induction of GPDH but induction of malic enzyme was retained. Most 5,15 diene steroids tested had 2 weak, or no, ability to enhance the formation of GPDH but did increase malic enzyme.

  14. Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation

    PubMed Central

    Saegusa, Jun; Hsu, Daniel K.; Liu, Wei; Kuwabara, Ichiro; Kuwabara, Yasuko; Yu, Lan; Liu, Fu-Tong

    2009-01-01

    Keratinocytes undergo apoptosis in a variety of physiological and pathological conditions. Galectin-3 is a member of a family of β-galactoside-binding animal lectins expressed abundantly in keratinocytes and other epithelial cells. Here we have studied the regulatory role of galectin-3 in keratinocyte apoptosis by using cells from gene-targeted galectin-3 null (gal3−/−) mice. We showed that galectin-3 mRNA was transiently upregulated in ultraviolet-B (UVB)-irradiated wild-type keratinocytes. We found that gal3−/− keratinocytes were significantly more sensitive to apoptosis induced by UVB as well as various other stimuli, both in vitro and in vivo, than wild-type cells. Moreover, we demonstrated that increased apoptosis in gal3−/− keratinocytes was attributable to higher extracellular signal-regulated kinase (ERK) activation and lower AKT activation after UVB irradiation. We conclude that endogenous galectin-3 is an anti-apoptotic molecule in keratinocytes functioning by suppressing ERK activation and enhancing AKT activation and may play a role in the development of apoptosis-related skin diseases. PMID:18463681

  15. Omega-3 Polyunsaturated Fatty Acids Attenuate Fibroblast Activation and Kidney Fibrosis Involving MTORC2 Signaling Suppression.

    PubMed

    Zeng, Zhifeng; Yang, Haiyuan; Wang, Ying; Ren, Jiafa; Dai, Yifan; Dai, Chunsun

    2017-04-10

    Epidemiologic studies showed the correlation between the deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the progression of chronic kidney diseases (CKD), however, the role and mechanisms for n-3 PUFAs in protecting against kidney fibrosis remain obscure. In this study, NRK-49F cells, a rat kidney interstitial fibroblast cell line, were stimulated with TGFβ1. A Caenorhabditis elegans fat-1 transgenic mouse model in which n-3 PUFAs are endogenously produced from n-6 PUFAs owing to the expression of n-3 fatty acid desaturase were deployed. Docosahexaenoic acid (DHA), one member of n-3 PUFAs family, could suppress TGFβ1-induced fibroblast activation at a dose and time dependent manner. Additionally, DHA could largely inhibit TGFβ1-stimulated Akt but not S6 or Smad3 phosphorylation at a time dependent manner. To decipher the role for n-3 PUFAs in protecting against kidney fibrosis, fat-1 transgenic mice were operated with unilateral ureter obstruction (UUO). Compared to the wild types, fat-1 transgenics developed much less kidney fibrosis and inflammatory cell accumulation accompanied by less p-Akt (Ser473), p-Akt (Thr308), p-S6 and p-Smad3 in kidney tissues at day 7 after UUO. Thus, n-3 PUFAs can attenuate fibroblast activation and kidney fibrosis, which may be associated with the inhibition of mTORC2 signaling.

  16. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    SciTech Connect

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-02-22

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.

  17. Suppression of Sin3A activity promotes differentiation of pluripotent cells into functional neurons

    PubMed Central

    Halder, Debasish; Lee, Chang-Hee; Hyun, Ji Young; Chang, Gyeong-Eon; Cheong, Eunji; Shin, Injae

    2017-01-01

    Sin3 is a transcriptional corepressor for REST silencing machinery that represses multiple neuronal genes in non-neuronal cells. However, functions of Sin3 (Sin3A and Sin3B) in suppression of neuronal phenotypes are not well characterized. Herein we show that Sin3A knockdown impedes the repressive activity of REST and enhances differentiation of pluripotent P19 cells into electrophysiologically active neurons without inducing astrogenesis. It is also found that silencing Sin3B induces neurogenesis of P19 cells with a lower efficiency than Sin3A knockdown. The results suggest that Sin3A has a more profound effect on REST repressive machinery for silencing neuronal genes in P19 cells than Sin3B. Furthermore, we show that a peptide inhibitor of Sin3A-REST interactions promotes differentiation of P19 cells into functional neurons. Observations made in studies using genetic deletion and a synthetic inhibitor suggests that Sin3A plays an important role in the repression of neuronal genes by the REST regulatory mechanism. PMID:28303954

  18. AP-2{alpha} suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    SciTech Connect

    Mitchell, Darrion L.; DiMario, Joseph X.

    2010-01-15

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2{alpha} is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2{alpha} binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2{alpha}-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2{alpha} interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2{alpha} is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  19. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity

    PubMed Central

    Hagiwara, Keitaro; Kosaka, Nobuyoshi; Yoshioka, Yusuke; Takahashi, Ryou-u; Takeshita, Fumitaka; Ochiya, Takahiro

    2012-01-01

    It is well known that natural products are a rich source of compounds for applications in medicine, pharmacy, and biology. However, the exact molecular mechanisms of natural agents in human health have not been clearly defined. Here, we demonstrate for the first time that the polyphenolic phytoalexin resveratrol promotes expression and activity of Argonaute2 (Ago2), a central RNA interference (RNAi) component, which thereby inhibits breast cancer stem-like cell characteristics by increasing the expression of a number of tumour-suppressive miRNAs, including miR-16, -141, -143, and -200c. Most importantly, resveratrol-induced Ago2 resulted in a long-term gene silencing response. We also found that pterostilbene, which is a natural dimethylated resveratrol analogue, is capable of mediating Ago2-dependent anti-cancer activity in a manner mechanistically similar to that of resveratrol. These findings suggest that the dietary intake of natural products contributes to the prevention and treatment of diseases by regulating the RNAi pathway. PMID:22423322

  20. Dopamine suppresses persistent network activity via D1-like dopamine receptors in rat medial entorhinal cortex

    PubMed Central

    Mayne, Elizabeth W; Craig, Michael T; McBain, Chris J; Paulsen, Ole

    2013-01-01

    Cortical networks display persistent activity in the form of periods of sustained synchronous depolarizations (‘UP states’) punctuated by periods of relative hyperpolarization (‘DOWN states’), which together form the slow oscillation. UP states are known to be synaptically generated and are sustained by a dynamic balance of excitation and inhibition, with fast ionotropic glutamatergic excitatory and GABAergic inhibitory conductances increasing during the UP state. Previously, work from our group demonstrated that slow metabotropic GABA receptors also play an important role in terminating the UP state, but the effects of other neuromodulators on this network phenomenon have received little attention. Given that persistent activity is a neural correlate of working memory and that signalling through dopamine receptors has been shown to be critical for working memory tasks, we examined whether dopaminergic neurotransmission affected the slow oscillation. Here, using an in vitro model of the slow oscillation in rat medial entorhinal cortex, we showed that dopamine strongly and reversibly suppressed cortical UP states. We showed that this effect was mediated through D1-like and not D2-like dopamine receptors, and we found no evidence that tonic dopaminergic transmission affected UP states in our model. PMID:23336973

  1. Alpha-interferon suppresses food intake and neuronal activity of the lateral hypothalamus.

    PubMed

    Reyes-Vázquez, C; Prieto-Gómez, B; Dafny, N

    1994-12-01

    Alpha-interferon (alpha-IFN) treatment in humans induces anorexic effects. However, the mechanisms and sites of action are unknown. Rats implanted with an intracerebroventricular (i.c.v.) cannula for local injection, and semi-microelectrodes in the lateral hypothalamic (LH) area for neuronal recording were used. The animals were kept in metabolic cages, and food and water intake was measured daily at 7:00 and 19:00 hr for 35 days, including: 5 days before the experiment; 10 days during daily alpha-IFN application (either i.p. 1500 I.U./gbw, or i.c.v. 1500 and 150 I.U./animal) and/or a vehicle control group; and 20 days post drug treatment. The unitary activity recording from the LH area was made before (30 min), during (10 min) and after (200 min) the alpha-IFN applications. alpha-IFN elicited a reversible dose-related decrease of both food intake and body weight. This decrease in food intake following alpha-IFN injections was correlated with a depression of LH neuronal electrical activity. Since direct brain application (i.c.v.) and systemic (i.p.) alpha-IFN treatment elicited identical responses, it is possible to assume that alpha-IFN suppresses food intake by a direct action on CNS sites including the LH neurons.

  2. Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A

    PubMed Central

    Nunes Bastos, Ricardo; Gandhi, Sapan R.; Baron, Ryan D.; Gruneberg, Ulrike; Nigg, Erich A.

    2013-01-01

    Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes its interaction with PRC1. In the presence of phosphorylated KIF4A, microtubules grew more slowly and showed long pauses in growth, resulting in the generation of shorter PRC1-stabilized microtubule overlaps in vitro. Cells expressing only mutant forms of KIF4A lacking the Aurora B phosphorylation site overextended the anaphase central spindle, demonstrating that this regulation is crucial for microtubule length control in vivo. Aurora B therefore ensures that suppression of microtubule dynamic instability by KIF4A is restricted to a specific subset of microtubules and thereby contributes to central spindle size control in anaphase. PMID:23940115

  3. Omega-3 Polyunsaturated Fatty Acids Attenuate Fibroblast Activation and Kidney Fibrosis Involving MTORC2 Signaling Suppression

    PubMed Central

    Zeng, Zhifeng; Yang, Haiyuan; Wang, Ying; Ren, Jiafa; Dai, Yifan; Dai, Chunsun

    2017-01-01

    Epidemiologic studies showed the correlation between the deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the progression of chronic kidney diseases (CKD), however, the role and mechanisms for n-3 PUFAs in protecting against kidney fibrosis remain obscure. In this study, NRK-49F cells, a rat kidney interstitial fibroblast cell line, were stimulated with TGFβ1. A Caenorhabditis elegans fat-1 transgenic mouse model in which n-3 PUFAs are endogenously produced from n-6 PUFAs owing to the expression of n-3 fatty acid desaturase were deployed. Docosahexaenoic acid (DHA), one member of n-3 PUFAs family, could suppress TGFβ1-induced fibroblast activation at a dose and time dependent manner. Additionally, DHA could largely inhibit TGFβ1-stimulated Akt but not S6 or Smad3 phosphorylation at a time dependent manner. To decipher the role for n-3 PUFAs in protecting against kidney fibrosis, fat-1 transgenic mice were operated with unilateral ureter obstruction (UUO). Compared to the wild types, fat-1 transgenics developed much less kidney fibrosis and inflammatory cell accumulation accompanied by less p-Akt (Ser473), p-Akt (Thr308), p-S6 and p-Smad3 in kidney tissues at day 7 after UUO. Thus, n-3 PUFAs can attenuate fibroblast activation and kidney fibrosis, which may be associated with the inhibition of mTORC2 signaling. PMID:28393852

  4. Synthesis and antioxidant activities of some new triheterocyclic compounds containing benzimidazole, thiophene, and 1,2,4-triazole rings.

    PubMed

    Menteşe, Emre; Yılmaz, Fatih; Baltaş, Nimet; Bekircan, Olcay; Kahveci, Bahittin

    2015-06-01

    Various triheterocyclic compounds containing benzimidazole, thiophene, and 1,2,4-triazole rings (3-6) were synthesized and screened for their antioxidant activities. The structures of the synthesized compounds (2-6) were judged by (1)H NMR, (13)C NMR, elemental analysis, and LC-MS spectral data. Antioxidant activities of the synthesized compounds (2-6) were determined with CUPric Reducing Antioxidant Capacity (CUPRAC), ABTS (2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)/persulfate, and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays. Most of the compounds showed a significant antioxidant activity and especially, compound 5c showed very good SC50 value for DPPH method and compound 5h exhibited very high scavenging activity to ABTS method.

  5. Inhibitory effect of putranjivain A on allergic inflammation through suppression of mast cell activation

    SciTech Connect

    Kim, Hui-Hun; Park, Seung-Bin; Lee, Soyoung; Kwon, Taeg Kyu; Shin, Tae-Yong; Park, Pil-Hoon; Lee, Seung-Ho; Kim, Sang-Hyun

    2014-02-01

    A great number of people are suffering from allergic inflammatory disease such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Putranjivain A (PJA), member of ellagitannin, is known to possess beneficial effects including anti-cancer and anti-viral activities. The aim of the present study was to elucidate whether PJA modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. The study was performed in anaphylaxis mouse model and cultured mast cells. PJA inhibited the expression of pro-inflammatory cytokines in immunoglobulin E-stimulated mast cells. PJA reduced this expression by inhibiting nuclear factor (NF)-κB and nuclear factor of activated T cell. The oral administration of PJA reduced systemic and cutaneous anaphylaxis, the release of serum histamine, and the expression of the histamine H{sub 1} receptor. In addition, PJA attenuated the activation of mast cells. PJA inhibited the release of histamine from various types of mast cells by the suppression of intracellular calcium. The inhibitory activity of PJA on the allergic reaction was similar to that of disodium cromoglycate, a known anti-allergic drug. These results suggest that PJA can facilitate the prevention or treatment of allergic inflammatory diseases mediated by mast cells. - Highlights: • PJA reduced the degranulation of mast cells. • PJA inhibited the production of inflammatory cytokines. • The effect of PJA on allergic reaction was comparable to the DSCG. • PJA might be a candidate for the treatment of allergic inflammatory diseases.

  6. Coordinative modulation of human zinc transporter 2 gene expression through active and suppressive regulators.

    PubMed

    Lu, Yu-Ju; Liu, Ya-Chuan; Lin, Meng-Chieh; Chen, Yi-Ting; Lin, Lih-Yuan

    2015-04-01

    Zinc transporter 2 (ZnT2) is one of the cellular factors responsible for Zn homeostasis. Upon Zn overload, ZnT2 reduces cellular Zn by transporting it into excretory vesicles. We investigated the molecular mechanism that regulates human ZnT2 (hZnT2) gene expression. Zn induces hZnT2 expression in dose- and time-dependent manners. Overexpression of metal-responsive transcription factor 1 (MTF-1) increases hZnT2 transcription, whereas depletion of MTF-1 reduces hZnT2 expression. There are five putative metal response elements (MREs) within 1kb upstream of the hZnT2 gene. A serial deletion of the hZnT2 promoter region (from 5' to 3') shows that the two MREs proximal to the gene are essential for Zn-induced promoter activity. Further mutation analysis concludes that the penultimate MRE (MREb) supports the metal-induced promoter activity. The hZnT2 promoter has also a zinc finger E-box binding homeobox (ZEB) binding element. Mutation or deletion of this ZEB binding element elevates the basal and Zn-induced hZnT2 promoter activities. Knockdown of ZEB1 mRNA enhances the hZnT2 transcript level in HEK-293 cells. In MCF-7 (ZEB-deficient) cells, expression of ZEB proteins attenuates the Zn-induced hZnT2 expression. However, expressions of MTF-1 target genes such as human ZnT1 and metallothionein IIA were not affected. Our study shows the expression of the hZnT2 gene is coordinately regulated via active and suppressive modulators.

  7. Assessment of in vitro lymphokine activated killer (LAK) cell activity against renal cancer cell lines and its suppression by serum factor using crystal violet assay.

    PubMed

    Kanamaru, H; Yoshida, O

    1989-01-01

    Lymphokine activated killer (LAK) cell activity against renal cancer cell lines was assessed in vitro using a crystal violet assay. A standard 4-h 51chromium release assay and a 48-h crystal violet assay showed that both natural killer-susceptible (NC65) and -resistant (ACHN) renal cancer cell lines were sensitive to LAK cells which had been generated by a 3-day incubation of peripheral blood mononuclear cells (PBMC) with recombinant interleukin 2 (rIL-2). Optimal LAK activity was generated by a 5-day culture of PBMC with 1 U rIL-2/ml. LAK activity was enhanced by the presence of IL-2 in the crystal violet assay system, while it was suppressed by fresh autologous serum. The suppressive effect was found in serum from both normal donors and patients with metastatic renal cell carcinoma, suggesting that non-specific suppressive factor(s) affecting LAK cell activity were present in human sera.

  8. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway.

    PubMed

    Wu, Kai; Yang, Yang; Liu, Donglei; Qi, Yu; Zhang, Chunyang; Zhao, Jia; Zhao, Song

    2016-07-12

    Although substantial studies on peroxisome proliferator-activated receptor g (PPARg) have focused on the mechanisms by which PPARg regulates glucose and lipid metabolism, recent reports have suggested that PPARg shows tumorigenic or antitumorigenic effects. The roles and mechanisms of PPARg activation in esophageal cancer remain unclarified. EC109 and TE10 esophageal cancer cells were treated with 0, 10, 20 and 40 mM of PPARg agonist rosiglitazone (RGZ) for 24, 48, and 72 h, and the cell viability and apoptosis were detected using methyl thiazolyl tetrazolium (MTT) assay and Flow cytometric (FCM) analysis, respectively. Moreover, the effects of inhibition of PPARg by antagonist or specific RNA interference on cell viability, apoptosis, the Toll-like receptor 4 (TLR4) and mitogen-activated protein kinase (MAPK) pathways were evaluated. Additionally, the effect of TLR4 signaling on the MAPK pathway, cell viability and apoptosis was assessed. The results showed that RGZ suppressed proliferation and induced apoptosis of esophageal cancer cells, which could be partly restored by inactivation of PPARg. RGZ suppressed the MAPK and TLR4 pathways, and the inhibitory effect could be counteracted by PPARg antagonist or specific RNA interference. We also suggested that MAPK activation was regulated by the TLR4 pathway and that blocking the TLR4 and MAPK pathways significantly suppressed proliferation and induced apoptosis of esophageal cancer cells. In conclusion, our data suggested that activation of PPARg suppressed proliferation and induced apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway.

  9. Tuning the size of a redox-active tetrathiafulvalene-based self-assembled ring.

    PubMed

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Allain, Magali; Pop, Flavia; Sallé, Marc

    2015-01-01

    The synthesis of a new Pd coordination-driven self-assembled ring M6L3 constructed from a concave tetrapyridyl π-extended tetrathiafulvalene ligand (exTTF) is described. The same ligand is also able to self-assemble in a M4L2 mode as previously described. Herein, we demonstrate that the bulkiness of the ancillary groups in the Pd complex allows for modulating the size and the shape of the resulting discrete self-assembly, which therefore incorporate two (M4L2) or three (M6L3) electroactive exTTF sidewalls.

  10. Tuning the size of a redox-active tetrathiafulvalene-based self-assembled ring

    PubMed Central

    Bivaud, Sébastien; Croué, Vincent; Allain, Magali; Pop, Flavia

    2015-01-01

    Summary The synthesis of a new Pd coordination-driven self-assembled ring M6L3 constructed from a concave tetrapyridyl π-extended tetrathiafulvalene ligand (exTTF) is described. The same ligand is also able to self-assemble in a M4L2 mode as previously described. Herein, we demonstrate that the bulkiness of the ancillary groups in the Pd complex allows for modulating the size and the shape of the resulting discrete self-assembly, which therefore incorporate two (M4L2) or three (M6L3) electroactive exTTF sidewalls. PMID:26124899

  11. Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates.

    PubMed

    Qi, Hui-Xin; Reed, Jamie L; Franca, Joao G; Jain, Neeraj; Kajikawa, Yoshinao; Kaas, Jon H

    2016-04-01

    In somatosensory cortex, tactile stimulation within the neuronal receptive field (RF) typically evokes a transient excitatory response with or without postexcitatory inhibition. Here, we describe neuronal responses in which stimulation on the hand is followed by suppression of the ongoing discharge. With the use of 16-channel microelectrode arrays implanted in the hand representation of primary somatosensory cortex of New World monkeys and prosimian galagos, we recorded neuronal responses from single units and neuron clusters. In 66% of our sample, neuron activity tended to display suppression of firing when regions of skin outside of the excitatory RF were stimulated. In a small proportion of neurons, single-site indentations suppressed firing without initial increases in response to any of the tested sites on the hand. Latencies of suppressive responses to skin indentation (usually 12-34 ms) were similar to excitatory response latencies. The duration of inhibition varied across neurons. Although most observations were from anesthetized animals, we also found similar neuron response properties in one awake galago. Notably, suppression of ongoing neuronal activity did not require conditioning stimuli or multi-site stimulation. The suppressive effects were generally seen following single-site skin indentations outside of the neuron's minimal RF and typically on different digits and palm pads, which have not often been studied in this context. Overall, the characteristics of widespread suppressive or inhibitory response properties with and without initial facilitative or excitatory responses add to the growing evidence that neurons in primary somatosensory cortex provide essential processing for integrating sensory stimulation from across the hand.

  12. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells.

    PubMed

    Chen, H C; Chou, C K; Lee, S D; Wang, J C; Yeh, S F

    1995-05-01

    We have examined the antiviral activity of the crude extract prepared from the root of Saussurea lappa Clarks, a Chinese medicinal herb which is widely used for many illnesses including cancer. Two active components, costunolide and dehydrocostus lactone, were identified which show strong suppressive effect on the expression of the hepatitis B surface antigen (HBsAg) in human hepatoma Hep3B cells, but have little effect on the viability of the cells. Both costunolide and dehydrocostus lactone suppress the HBsAg production by Hep3B cells in a dose-dependent manner with IC50s of 1.0 and 2.0 microM, respectively. Northern blotting analysis shows that the suppression of HBsAg gene expression by both costunolide and dehydrocostus lactone were mainly at the mRNA level. Furthermore, the suppressive effect of costunolide and dehydrocostus lactone on HBsAg and hepatitis B e antigen (HBeAg), a marker for hepatitis B viral genome replication in human liver cells, was also observed in another human hepatoma cell line HepA2 which was derived from HepG2 cells by transfecting a tandemly repeat hepatitis B virus (HBV) DNA. Similarly, the mRNA of HBsAg in HepA2 cells was also suppressed by these two compounds. Our findings suggest that costunolide and dehydrocostus lactone may have potential to develop as specific anti-HBV drugs in the future.

  13. Stress-responsive JNK mitogen-activated protein kinase mediates aspirin-induced suppression of B16 melanoma cellular proliferation

    PubMed Central

    Ordan, Orly; Rotem, Ronit; Jaspers, Ilona; Flescher, Eliezer

    2003-01-01

    Available anticancer drugs do not seem to modify the prognosis of metastatic melanoma. Salicylate and acetyl salicylic acid (aspirin) were found to suppress growth in a number of transformed cells, that is, prostate and colon. Therefore, we studied the direct effects of aspirin on metastatic B16 melanoma cells. Aspirin at a plasma-attainable and nontoxic level suppressed the proliferation of B16 cells. Aspirin induced the activation of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Inhibition of JNK, but not p38, decreased the suppressive effect of aspirin upon the proliferation of B16 cells. The aspirin-induced reduction in B16 proliferation was cumulative over time. Aspirin and the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) induced B16 cell death synergistically. In addition to the murine B16 cell line, the proliferation of SK-28 human melanoma cells was also suppressed by aspirin. In conclusion, aspirin suppresses the proliferation of metastatic B16 cells in a JNK-dependent mechanism. PMID:12684272

  14. ATL9, a RING Zinc Finger Protein with E3 Ubiquitin Ligase Activity Implicated in Chitin- and NADPH Oxidase-Mediated Defense Responses

    PubMed Central

    Berrocal-Lobo, Marta; Stone, Sophia; Yang, Xin; Antico, Jay; Callis, Judy; Ramonell, Katrina M.; Somerville, Shauna

    2010-01-01

    Pathogen associated molecular patterns (PAMPs) are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling pathways. One of these genes is ATL9 ( = ATL2G), which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET), full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst. PMID:21203445

  15. Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens

    PubMed Central

    1987-01-01

    The intracellular events regulating endothelial cell proliferation and organization into formalized capillaries are not known. We report that the protein kinase C activator beta-phorbol 12,13-dibutyrate (PDBu) suppresses bovine capillary endothelial (BCE) cell proliferation (K50 = 6 +/- 4 nM) and DNA synthesis in response to human hepatoma-derived growth factor, an angiogenic endothelial mitogen. In contrast, PDBu has no effect on the proliferation of bovine aortic endothelial cells and is mitogenic for bovine aortic smooth muscle and BALB/c 3T3 cells. Several observations indicate that the inhibition of human hepatoma- derived growth factor-stimulated BCE cell growth by PDBu is mediated through protein kinase C. Different phorbol compounds inhibit BCE cell growth according to their potencies as protein kinase C activators (12- O-tetradecanoylphorbol 13-acetate greater than PDBu much greater than beta-phorbol 12,13-diacetate much much greater than beta-phorbol; alpha- phorbol 12,13-dibutyrate; alpha-phorbol 12,13-didecanoate). PDBu binds to a single class of specific, saturable sites on the BCE cell with an apparent Kd of 8 nM, in agreement with reported affinities of PDBu for protein kinase C in other systems. Specific binding of PDBu to BCE cells is displaced by sn-1,2-dioctanoylglycerol, a protein kinase C activator and an analog of the putative second messenger activating this kinase in vivo. The weak protein kinase C activator, sn-1,2- dibutyrylglycerol, does not affect PDBu binding. A cytosolic extract from BCE cells contains a calcium/phosphatidylserine-dependent protein kinase that is activated by sn-1,2-dioctanoylglycerol and PDBu, but not by beta-phorbol. These findings indicate that protein kinase C activation can cause capillary endothelial cells to become desensitized to angiogenic endothelial mitogens. This intracellular regulatory mechanism might be invoked during certain phases of angiogenesis, for example when proliferating endothelial cells become

  16. Evidence of solar activity and El Niño signals in tree rings of Araucaria araucana and A. angustifolia in South America

    NASA Astrophysics Data System (ADS)

    Perone, A.; Lombardi, F.; Marchetti, M.; Tognetti, R.; Lasserre, B.

    2016-10-01

    Tree rings reveal climatic variations through years, but also the effect of solar activity in influencing the climate on a large scale. In order to investigate the role of solar cycles on climatic variability and to analyse their influences on tree growth, we focused on tree-ring chronologies of Araucaria angustifolia and Araucaria araucana in four study areas: Irati and Curitiba in Brazil, Caviahue in Chile, and Tolhuaca in Argentina. We obtained an average tree-ring chronology of 218, 117, 439, and 849 years for these areas, respectively. Particularly, the older chronologies also included the period of the Maunder and Dalton minima. To identify periodicities and trends observable in tree growth, the time series were analysed using spectral, wavelet and cross-wavelet techniques. Analysis based on the Multitaper method of annual growth rates identified 2 cycles with periodicities of 11 (Schwebe cycle) and 5.5 years (second harmonic of Schwebe cycle). In the Chilean and Argentinian sites, significant agreement between the time series of tree rings and the 11-year solar cycle was found during the periods of maximum solar activity. Results also showed oscillation with periods of 2-7 years, probably induced by local environmental variations, and possibly also related to the El-Niño events. Moreover, the Morlet complex wavelet analysis was applied to study the most relevant variability factors affecting tree-ring time series. Finally, we applied the cross-wavelet spectral analysis to evaluate the time lags between tree-ring and sunspot-number time series, as well as for the interaction between tree rings, the Southern Oscillation Index (SOI) and temperature and precipitation. Trees sampled in Chile and Argentina showed more evident responses of fluctuations in tree-ring time series to the variations of short and long periodicities in comparison with the Brazilian ones. These results provided new evidence on the solar activity-climate pattern-tree ring connections over

  17. Suppression of epileptiform activity by a single short-duration electric field in rat hippocampus in vitro.

    PubMed

    Mikkelsen, Ronni; Andreasen, Mogens; Nedergaard, Steen

    2013-06-01

    The mechanisms behind the therapeutic effects of electrical stimulation of the brain in epilepsy and other disorders are poorly understood. Previous studies in vitro have shown that uniform electric fields can suppress epileptiform activity through a direct polarizing effect on neuronal membranes. Such an effect depends on continuous DC stimulation with unbalanced charge. Here we describe a suppressive effect of a brief (10 ms) DC field on stimulus-evoked epileptiform activity in rat hippocampal brain slices exposed to Cs(+) (3.5 mM). This effect was independent of field polarity, was uncorrelated to changes in synchronized population activity, and persisted during blockade of synaptic transmission with Cd(2+) (500 μM). Antagonists of A(1), P(2X), or P(2Y) receptors were without effect. The suppressive effect depended on the alignment of the external field with the somato-dendritic axis of CA1 pyramidal cells; however, temporal coincidence with the epileptiform activity was not essential, as suppression was detectable for up to 1 s after the field. Pyramidal cells, recorded during epileptiform activity, showed decreased discharge duration and truncation of depolarizing plateau potentials in response to field application. In the absence of hyperactivity, the applied field was followed by slow membrane potential changes, accompanied by decreased input resistance and attenuation of the depolarizing afterpotential following action potentials. These effects recovered over a 1-s period. The study suggests that a brief electric field induces a prolonged suppression of epileptiform activity, which can be related to changes in neuronal membrane properties, including attenuation of signals depending on the persisting Na(+) current.

  18. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand 1-mediated immune suppression.

    PubMed

    Haile, Samuel T; Dalal, Sonia P; Clements, Virginia; Tamada, Koji; Ostrand-Rosenberg, Suzanne

    2013-09-01

    Many tumor cells escape anti-tumor immunity through their expression of programmed death ligand-1 (PDL1 or B7-H1), which interacts with T cell-expressed PD1 and results in T cell apoptosis. We previously reported that transfection of human tumor cells with a membrane-bound form of the human costimulatory molecule CD80 prevented PD1 binding and restored T cell activation. We now report that a membrane-bound form of murine CD80 similarly reduces PDL1-PD1-mediated suppression by mouse tumor cells and that a soluble protein consisting of the extracellular domains of human or mouse CD80 fused to the Fc domain of IgG1 (CD80-Fc) overcomes PDL1-mediated suppression by human and mouse tumor cells, respectively. T cell activation experiments with human and mouse tumor cells indicate that CD80-Fc facilitates T cell activation by binding to PDL1 to inhibit PDL1-PD1 interactions and by costimulating through CD28. CD80-Fc is more effective in preventing PD1-PDL1-mediated suppression and restoring T cell activation compared with treatment with mAb to either PD1 or PDL1. These studies identify CD80-Fc as an alternative and potentially more efficacious therapeutic agent for overcoming PDL1-induced immune suppression and facilitating tumor-specific immunity.

  19. Effects of manganese, calcium, magnesium and zinc on nickel-induced suppression of murine natural killer cell activity

    SciTech Connect

    Smialowicz, R.J.; Rogers, R.R.; Riddle, M.M.; Luebke, R.W.; Fogelson, L.D.; Rowe, D.G.

    1987-01-01

    The effects that divalent metals have on nickel-induced suppression of natural killer (NK) cell activity were studied in mice. Male CBA/J mice were given a single intramuscular injection of the following: nickel chloride, 4.5-36 ..mu..g/g; manganese chloride, 20-80 ..mu..g/g; magnesium acetate, 50-200 ..mu..g/g; zinc acetate, 2-8 ..mu..g/g; or calcium acetate, 12.5-50 ..mu..g/g. Twenty-four hours after metal injection, splenic NK cell activity was assessed using a /sup 51/Cr-release assay. Ni significantly suppressed NK activity, while Mn significantly enhanced NK activity. No alteration in NK activity was observed in mice injected with Mg, Ca, or Zn. The injection of Ni and Mn in combination at a single site resulted in the enhancement of NK activity, although this enhancement was at a level below that observed following the injection of Mn alone. Injection of Mg, Zn, or Ca in combination with Ni did not affect NK activity compared to saline controls. In contrast, the injection of Ni in one thigh followed immediately by Mn, Mg, Ca, or Zn into the other thigh resulted in significant suppression of NK activity for all metals compared with saline controls. An interesting finding was that the injection of Ni followed immediately by Mn into the opposite thigh resulted in even greater reduction in NK activity than Ni alone. Suppression of NK activity by Ni and Mn injected at separate sites was not seen when Mn injection preceded Ni injection by 1 h.

  20. Warm Oxygen Enhancements in the Inner Magnetosphere and Their Relation to Geomagnetic Activity, Plasmasphere, and Ring Current.

    NASA Astrophysics Data System (ADS)

    Jahn, J. M.; Skoug, R. M.; Gkioulidou, M.; Bonnell, J. W.; Larsen, B.; Reeves, G. D.; Spence, H. E.

    2014-12-01

    Ionospheric oxygen plays an important role in the dynamics of Earth's magnetosphere. During geomagnetic storms, oxygen transported into the tail can experience significant energization and become a major contributor to the storm-time ring current. At very low energies, a dense cold oxygen torus straddles the outer plasmasphere, frequently with O+/H+ ratios approaching unity. With the Radiation Belt Storm Probes we now also observe a third oxygen population in this region. In this paper we discuss the nature of "warm" (10's eV to few keV, i.e., between plasmasphere and ring current ion energies) oxygen density enhancements over the course of the Van Allen Probes mission. We find that the composition of this warm thermal plasma is very dynamic throughout the inner magnetosphere. The warm oxygen density is highly responsive to changes in geomagnetic activity, varying by more than two orders of magnitude between quiet times and moderate storms. This variation at times is a greater than the variation of the corresponding proton density. The O+/H+ warm plasma density ration will frequently exceed unity, usually during the recovery phase of storms. The region of enhanced warm oxygen density reaches from the plasmasphere boundary out to at least geosynchronous orbit (the largest L-shells covered by the Van Allen Probes). It can be observed at all local times. Barring other geomagnetic activity, warm oxygen density enhancements disappear typically within 5 days of their first detection, which is consistent with drift times through the inner magnetosphere along open drift paths. We are putting these characteristics in context of the composition, location, and evolution of the plasmasphere and the ring current.

  1. Effects of Hydroxy Groups in the A-Ring on the Anti-proteasome Activity of Flavone.

    PubMed

    Nakamura, Kasumi; Yang, Jia-Hua; Sato, Eiji; Miura, Naoyuki; Wu, Yi-Xin

    2015-01-01

    The ubiquitin-proteasome pathway plays an important role in regulating apoptosis and the cell cycle. Recently, proteasome inhibitors have been shown to have antitumor effects and have been used in anticancer therapy for several cancers such as multiple myeloma. Although some flavones, such as apigenin, chrysin and luteolin, have a specific role in the inhibition of proteasome activity and induced apoptosis in some reports, these findings did not address all flavone types. To further investigate the proteasome-inhibitory mechanism of flavonoids, we examined the inhibitory activity of 5,6,7-trihydroxyflavone, baicalein and 5,6,7,4'-tetrahydroxyflavone, scutellarein on extracted proteasomes from mice and cancer cells. Unlike the other flavones, baicalein and scutellarein did not inhibit proteasome activity or accumulate levels of ubiquitinated proteins. These results indicate that flavones with hydroxy groups at positions 5, 6 and 7 of the A-ring lack the anti-proteasome function.

  2. A family of ring system-based structural fragments for use in structure-activity studies: database mining and recursive partitioning.

    PubMed

    Nilakantan, Ramaswamy; Nunn, David S; Greenblatt, Lynne; Walker, Gary; Haraki, Kevin; Mobilio, Dominick

    2006-01-01

    In earlier work from our laboratory, we have described the use of the ring system and ring scaffold as descriptors. We showed that these descriptors could be used for fast compound clustering, novelty determination, compound acquisition, and combinatorial library design. Here we extend the concept to a whole family of structural descriptors with the ring system as the centerpiece. We show how this simple idea can be used to build powerful search tools for mining chemical databases in useful ways. We have also built recursive partition trees using these fragments as descriptors. We will discuss how these trees can help in analyzing complex structure-activity data.

  3. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP

    PubMed Central

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R.; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  4. Experimental testing of a semi-active control scheme for vibration suppression

    NASA Astrophysics Data System (ADS)

    Taniwangsa, Wendy; Kelly, James M.

    1997-05-01

    An experimental investigation was performed on a semi-active control scheme that uses the rheological properties of electro-rheological fluids (ER-fluids) in squeeze-flow mode to control the dynamic behavior of single-degree-of-freedom (SDOF) systems. The reversible and very rapid changes in the mechanical properties of the fluid under variable voltage are exploited by using a control scheme that automatically turns 'on' and 'off' the electrical field as loads are applied. This control scheme rapidly adapts to any changes in the mechanical properties of the system, reducing the response of the structure for a wide range of excitation frequencies. The ER- fluid used in this study, Zeolite in silicone oil, was subjected to an electrical field range from one to five kV/mm. Tests were carried out for the 'off' system, the 'on' system, and the controlled system, and the experimental and analytical results were compared. The experimental results show that this control scheme is effective for reducing the vibration of the system. Other types of ER-fluid should be tested using this control scheme to investigate the most effective fluid for vibration suppression.

  5. SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro.

    PubMed

    Zhou, Yuanfei; Song, Tongxing; Peng, Jie; Zhou, Zheng; Wei, Hongkui; Zhou, Rui; Jiang, Siwen; Peng, Jian

    2016-11-22

    Sirtuin 1 (SIRT1) regulates adipocyte and osteoblast differentiation. However, the underlying mechanism should be investigated. This study revealed that SIRT1 acts as a crucial repressor of adipogenesis. RNA-interference-mediated SIRT1 knockdown or genetic ablation enhances adipogenic potential, whereas SIRT1 overexpression inhibits adipogenesis in mesenchymal stem cells (MSCs). SIRT1 also deacetylates the histones of sFRP1, sFRP2, and Dact1 promoters; inhibits the mRNA expression of sFRP1, sFRP2, and Dact1; activates Wnt signaling pathways; and suppresses adipogenesis. SIRT1 deacetylates β-catenin to promote its accumulation in the nucleus and thus induces the transcription of genes that block MSC adipogenesis. In mice, the partial absence of SIRT1 promotes the formation of white adipose tissues without affecting the development of the body of mice. Our study described the regulatory role of SIRT1 in Wnt signaling and proposed a regulatory mechanism of adipogenesis.

  6. SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro

    PubMed Central

    Zhou, Yuanfei; Song, Tongxing; Peng, Jie; Zhou, Zheng; Wei, Hongkui; Zhou, Rui; Jiang, Siwen; Peng, Jian

    2016-01-01

    Sirtuin 1 (SIRT1) regulates adipocyte and osteoblast differentiation. However, the underlying mechanism should be investigated. This study revealed that SIRT1 acts as a crucial repressor of adipogenesis. RNA-interference-mediated SIRT1 knockdown or genetic ablation enhances adipogenic potential, whereas SIRT1 overexpression inhibits adipogenesis in mesenchymal stem cells (MSCs). SIRT1 also deacetylates the histones of sFRP1, sFRP2, and Dact1 promoters; inhibits the mRNA expression of sFRP1, sFRP2, and Dact1; activates Wnt signaling pathways; and suppresses adipogenesis. SIRT1 deacetylates β-catenin to promote its accumulation in the nucleus and thus induces the transcription of genes that block MSC adipogenesis. In mice, the partial absence of SIRT1 promotes the formation of white adipose tissues without affecting the development of the body of mice. Our study described the regulatory role of SIRT1 in Wnt signaling and proposed a regulatory mechanism of adipogenesis. PMID:27776347

  7. miR-203 downregulates Yes-1 and suppresses oncogenic activity in human oral cancer cells.

    PubMed

    Lee, Seul-Ah; Kim, Jae-Sung; Park, Sun-Young; Kim, Heung-Joong; Yu, Sun-Kyoung; Kim, Chun Sung; Chun, Hong Sung; Kim, Jeongsun; Park, Jong-Tae; Go, Daesan; Kim, Do Kyung

    2015-10-01

    The purpose of this study was to elucidate the molecular mechanisms of microRNA-203 (miR-203) as a tumor suppressor in KB human oral cancer cells. MicroRNA microarray results showed that the expression of miR-203 was significantly down-regulated in KB cells compared with normal human oral keratinocytes. The viability of KB cells was decreased by miR-203 in the time- and dose-dependent manners. In addition, over-expressed miR-203 not only increased the nuclear condensation but also significantly increased the apoptotic population of KB cells. These results indicated that the over-expression of miR-203 induced apoptosis of KB cells. Furthermore, the target gene array analyses revealed that the expression of Yes-1, a member of the Src family kinases (SFKs), was significantly down-regulated by miR-203 in KB cells. Moreover, both the mRNA and protein levels of Yes-1 were strongly reduced in KB cells transfected with miR-203. Therefore, these results indicated that Yes-1 is predicted to be a potential target gene of miR-203. Through a luciferase activity assay, miR-203 was confirmed to directly targets the Yes-1 3' untranslated region (UTR) to suppress gene expression. Therefore, our findings indicate that miR-203 induces the apoptosis of KB cells by directly targeting Yes-1, suggesting its application in anti-cancer therapeutics.

  8. Macrolide analog F806 suppresses esophageal squamous cell carcinoma (ESCC) by blocking β1 integrin activation.

    PubMed

    Li, Li-Yan; Jiang, Hong; Xie, Yang-Min; Liao, Lian-Di; Cao, Hui-Hui; Xu, Xiu-E; Chen, Bo; Zeng, Fa-Min; Zhang, Ying-Li; Du, Ze-Peng; Chen, Hong; Huang, Wei; Jia, Wei; Zheng, Wei; Xie, Jian-Jun; Li, En-Min; Xu, Li-Yan

    2015-06-30

    The paucity of new drugs for the treatment of esophageal squamous cell carcinoma (ESCC) limits the treatment options. This study characterized the therapeutic efficacy and action mechanism of a novel natural macrolide compound F806 in human ESCC xenograft models and cell lines. F806 inhibited growth of ESCC, most importantly, it displayed fewer undesirable side effects on normal tissues in two human ESCC xenograft models. F806 inhibited proliferation of six ESCC cells lines, with the half maximal inhibitory concentration (IC50) ranging from 9.31 to 16.43 μM. Furthermore, F806 induced apoptosis of ESCC cells, contributing to its growth-inhibitory effect. Also, F806 inhibited cell adhesion resulting in anoikis. Mechanistic studies revealed that F806 inhibited the activation of β1 integrin in part by binding to a novel site Arg610 of β1 integrin, suppressed focal adhesion formation, decreased cell adhesion to extracellular matrix and eventually triggered apoptosis. We concluded that F806 would potentially be a well-tolerated anticancer drug by targeting β1 integrin, resulting in anoikis in ESCC cells.

  9. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP.

    PubMed

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-07-08

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1(-/-) mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1(-/-) mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP.

  10. Plasminogen activator inhibitor (PAI)-1 suppresses inhibition of gastric emptying by cholecystokinin (CCK) in mice.

    PubMed

    Gamble, Joanne; Kenny, Susan; Dockray, Graham J

    2013-08-10

    The intestinal hormone cholecystokinin (CCK) delays gastric emptying and inhibits food intake by actions on vagal afferent neurons. Recent studies suggest plasminogen activator inhibitor (PAI)-1 suppresses the effect of CCK on food intake. In this study we asked whether PAI-1 also modulated CCK effects on gastric emptying. Five minute gastric emptying of liquid test meals was studied in conscious wild type mice (C57BL/6) and in transgenic mice over-expressing PAI-1 in gastric parietal cells (PAI-1H/Kβ mice), or null for PAI-1. The effects of exogenous PAI-1 and CCK8s on gastric emptying were studied after ip administration. Intragastric peptone delayed gastric emptying in C57BL/6 mice by a mechanism sensitive to the CCK-1 receptor antagonist lorglumide. Peptone did not delay gastric emptying in PAI-1-H/Kβ mice. Exogenous CCK delayed gastric emptying of a control test meal in C57BL/6 mice and this was attenuated by administration of PAI-1; exogenous CCK had no effect on emptying in PAI-1-H/Kβ mice. Prior administration of gastrin to increase gastric PAI-1 inhibited CCK-dependent effects on gastric emptying in C57BL/6 mice but not in PAI-1 null mice. Thus, both endogenous and exogenous PAI-1 inhibit the effects of CCK (whether exogenous or endogenous) on gastric emptying. The data are compatible with emerging evidence that gastric PAI-1 modulates vagal effects of CCK.

  11. Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells.

    PubMed

    Nakamuta, Makoto; Higashi, Nobuhiko; Kohjima, Motoyuki; Fukushima, Marie; Ohta, Satoshi; Kotoh, Kazuhiro; Kobayashi, Naoya; Enjoji, Munechika

    2005-10-01

    Catechins such as epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG), and epigallocatechin (EGC) are polyphenol components of green tea. EGCG is the major component and has been reported to possess a wide range of biological properties including anti-fibrogenic activity. In hepatic fibrosis, activated hepatic stellate cells (HSCs) play a central role. In this study, we investigated the effect of catechins, including EGCG, on collagen production and collagenase activity in rat primary HSCs and activated human HSC-derived TWNT-4 cells. EGCG (50 microM) suppressed type I collagen production in rat HSCs more than ECG (50 microM) did; however, EGC (50 microM) did not show suppressive effects. EGCG also inhibited both collagen production and collagenase activity (active matrix metalloproteinase-1 [MMP-1]) in a dose-dependent manner, but did not affect the tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) production in TWNT-4 cells. Real-time PCR unexpectedly revealed that EGCG enhanced the transcription of type I collagen and TIMP-1, but did not affect the transcription of alpha-smooth muscle actin (alpha-SMA), and reduced the transcription MMP-1 in TWNT-4 cells. These findings demonstrated that EGCG inhibited collagen production regardless of enhanced collagen transcription and suppressed collagenase activity, and suggested that EGCG might have therapeutic potential for liver fibrosis.

  12. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells.

    PubMed

    Lovelace, Erica S; Maurice, Nicholas J; Miller, Hannah W; Slichter, Chloe K; Harrington, Robert; Magaret, Amalia; Prlic, Martin; De Rosa, Stephen; Polyak, Stephen J

    2017-01-01

    Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states.

  13. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells

    PubMed Central

    Lovelace, Erica S.; Maurice, Nicholas J.; Miller, Hannah W.; Slichter, Chloe K.; Harrington, Robert; Magaret, Amalia; Prlic, Martin; De Rosa, Stephen; Polyak, Stephen J.

    2017-01-01

    Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states. PMID:28158203

  14. Inhibitory Effect of mTOR Activator MHY1485 on Autophagy: Suppression of Lysosomal Fusion

    PubMed Central

    Choi, Yeon Ja; Park, Yun Jung; Park, Ji Young; Jeong, Hyoung Oh; Kim, Dae Hyun; Ha, Young Mi; Kim, Ji Min; Song, Yu Min; Heo, Hyoung-Sam; Yu, Byung Pal; Chun, Pusoon; Moon, Hyung Ryong; Chung, Hae Young

    2012-01-01

    Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time- dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel inhibitor of autophagy

  15. Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.

    PubMed

    Choi, Yeon Ja; Park, Yun Jung; Park, Ji Young; Jeong, Hyoung Oh; Kim, Dae Hyun; Ha, Young Mi; Kim, Ji Min; Song, Yu Min; Heo, Hyoung-Sam; Yu, Byung Pal; Chun, Pusoon; Moon, Hyung Ryong; Chung, Hae Young

    2012-01-01

    Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time-dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel inhibitor of autophagy

  16. Coriandrum sativum Suppresses Aβ42-Induced ROS Increases, Glial Cell Proliferation, and ERK Activation.

    PubMed

    Liu, Quan Feng; Jeong, Haemin; Lee, Jang Ho; Hong, Yoon Ki; Oh, Youngje; Kim, Young-Mi; Suh, Yoon Seok; Bang, Semin; Yun, Hye Sup; Lee, Kyungho; Cho, Sung Man; Lee, Sung Bae; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2016-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disease, has a complex and widespread pathology that is characterized by the accumulation of amyloid [Formula: see text]-peptide (A[Formula: see text]) in the brain and various cellular abnormalities, including increased oxidative damage, an amplified inflammatory response, and altered mitogen-activated protein kinase signaling. Based on the complex etiology of AD, traditional medicinal plants with multiple effective components are alternative treatments for patients with AD. In the present study, we investigated the neuroprotective effects of an ethanol extract of Coriandrum sativum (C. sativum) leaves on A[Formula: see text] cytotoxicity and examined the molecular mechanisms underlying the beneficial effects. Although recent studies have shown the benefits of the inhalation of C. sativum oil in an animal model of AD, the detailed molecular mechanisms by which C. sativum exerts its neuroprotective effects are unclear. Here, we found that treatment with C. sativum extract increased the survival of both A[Formula: see text]-treated mammalian cells and [Formula: see text]42-expressing flies. Moreover, C. sativum extract intake suppressed [Formula: see text]-induced cell death in the larval imaginal disc and brain without affecting A[Formula: see text]42 expression and accumulation. Interestingly, the increases in reactive oxygen species levels and glial cell number in AD model flies were reduced by C. sativum extract intake. Additionally, C. sativum extract inhibited the epidermal growth factor receptor- and A[Formula: see text]-induced phosphorylation of extracellular signal-regulated kinase (ERK). The constitutively active form of ERK abolished the protective function of C. sativum extract against the [Formula: see text]-induced eye defect phenotype in Drosophila. Taken together, these results suggest that C. sativum leaves have antioxidant, anti-inflammatory, and ERK signaling inhibitory properties that

  17. Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway.

    PubMed

    Sha, Xiaojin; Meng, Shu; Li, Xinyuan; Xi, Hang; Maddaloni, Massimo; Pascual, David W; Shan, Huimin; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-feng

    2015-07-31

    Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases.

  18. Heat transfer model to characterize the focal cooling necessary to suppress spontaneous epileptiform activity (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Guerra, Reynaldo G.; Davalos, Rafael V.; Garcia, Paul A.; Rubinsky, Boris; Berger, Mitchel

    2005-04-01

    Epilepsy is characterized by paroxysmal transient disturbances of the electrical activity of the brain. Symptoms are manifested as impairment of motor, sensory, or psychic function with or without loss of consciousness or convulsive seizures. This paper presents an initial post-operative heat transfer analysis of surgery performed on a 41 year-old man with medically intractable Epilepsy. The surgery involved tumor removal and the resection of adjacent epileptogenic tissue. Electrocorticography was performed before resection. Cold saline was applied to the resulting interictal spike foci resulting in transient, complete cessation of spiking. A transient one dimensional semi-infinite finite element model of the surface of the brain was developed to simulate the surgery. An approximate temperature distribution of the perfused brain was developed by applying the bioheat equation. The model quantifies the surface heat flux reached in achieving seizure cessation to within an order of magnitude. Rat models have previously shown that the brain surface temperature range to rapidly terminate epileptogenic activity is 20-24°C. The developed model predicts that a constant heat flux of approximately -13,000W/m2, applied at the surface of the human brain, would achieve a surface temperature in this range in approximately 3 seconds. A parametric study was subsequently performed to characterize the effects of brain metabolism and brain blood perfusion as a function of the determined heat flux. The results of these findings can be used as a first approximation in defining the specifications of a cooling device to suppress seizures in human models.

  19. Tropical Cyclone Activity and Climate Fluctuations Captured by Oxygen Isotopes in Tree-Ring Cellulose From the Southeastern US

    NASA Astrophysics Data System (ADS)

    Miller, D. L.; Mora, C. I.; Grissino-Mayer, H. D.; Mock, C. J.; Uhle, M. E.

    2003-12-01

    Tropical cyclone activity in the Atlantic Ocean and Gulf of Mexico fluctuates on seasonal to century scales. Large climate oscillations, such as the El Nino Southern Oscillation, Atlantic Multidecadal Oscillation, and the Pacific Decadal Oscillation may affect this tropical cyclone activity. To better discern and understand factors influencing long-term trends in hurricane occurrence, proxies are needed that extend the record beyond historical documents. Tree rings preserve excellent records of climate that can be tracked on an intra-annual scale. Two trees in southern Georgia, slash and longleaf pine, were collected and dated using dendrochronological techniques and a 156- year record (1840-1997) was examined. The tree rings were processed to alpha cellulose, with intra-annual resolution, for examination of oxygen isotopes from both earlywood (EW) and latewood (LW) growing seasons. In the southeastern U.S., temperature variation across the growing season for slash and longleaf pines is modest (27-33° C) and oxygen isotope compositions largely reflect the composition of precipitation. Tropical cyclones produce precipitation that is significantly depleted in 18O compared to average seasonal rainfall and generally occur during the LW growing season. The relatively depleted oxygen isotope ratios are incorporated into LW cellulose and thus the annual ring set is marked by a large difference between EW and LW δ 18O values. For years without a significant event, EW-LW differences are expected to be nominal. The 156-year long tree-ring oxygen isotope record of major hurricane occurrence corresponds well with known tropical cyclone occurrence in the study area. The record also captures evidence of EW drought. The tropical cyclone record appears to be overprinted upon a much larger climate oscillation that is characterized by periods of relative separation (i.e., apart from the larger differences due to hurricanes) vs. coincidence of the EW/LW oxygen isotope compositions

  20. IPA-3 Inhibits the Growth of Liver Cancer Cells By Suppressing PAK1 and NF-κB Activation

    PubMed Central

    Wong, Leo Lap-Yan; Lam, Ian Pak-Yan; Wong, Tracy Yuk-Nar; Lai, Wai-Lung; Liu, Heong-Fai; Yeung, Lam-Lung; Ching, Yick-Pang

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide and is associated with poor prognosis due to the high incidences of metastasis and tumor recurrence. Our previous study showed that overexpression of p21-activated protein kinase 1 (PAK1) is frequently observed in HCC and is associated with a more aggressive tumor behavior, suggesting that PAK1 is a potential therapeutic target in HCC. In the current study, an allosteric small molecule PAK1 inhibitor, IPA-3, was evaluated for the potential in suppressing hepatocarcinogenesis. Consistent with other reports, inhibition of PAK1 activity was observed in several human HCC cell lines treated with various dosages of IPA-3. Using cell proliferation, colony formation and BrdU incorporation assays, we demonstrated that IPA-3 treatment significantly inhibited the growth of HCC cells. The mechanisms through which IPA-3 treatment suppresses HCC cell growth are enhancement of apoptosis and blockage of activation of NF-κB. Furthermore, our data suggested that IPA-3 not only inhibits the HCC cell growth, but also suppresses the metastatic potential of HCC cells. Nude mouse xenograft assay demonstrated that IPA-3 treatment significantly reduced the tumor growth rate and decreased tumor volume, indicating that IPA-3 can suppress the in vivo tumor growth of HCC cells. Taken together, our demonstration of the potential preclinical efficacy of IPA-3 in HCC provides the rationale for cancer therapy. PMID:23894351

  1. Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar

    PubMed Central

    Jaiswal, Amit K.; Elad, Yigal; Paudel, Indira; Graber, Ellen R.; Cytryn, Eddie; Frenkel, Omer

    2017-01-01

    Biochar, in addition to sequestering carbon, ameliorating soil, and improving plant performance, can impact foliar and soilborne plant diseases. Nevertheless, the mechanisms associated with suppression of soilborne diseases and improved plant performances are not well understood. This study is designed to establish the relationships between biochar-induced changes in rhizosphere microbial community structure, taxonomic and functional diversity, and activity with soilborne disease suppression and enhanced plant performance in a comprehensive fashion. Biochar suppressed Fusarium crown and root-rot of tomato and simultaneously improved tomato plant growth and physiological parameters. Furthermore, biochar reduced Fusarium root colonization and survival in soil, and increased the culturable counts of several biocontrol and plant growth promoting microorganisms. Illumina sequencing analyses of 16S rRNA gene revealed substantial differences in rhizosphere bacterial taxonomical composition between biochar-amended and non-amended treatments. Moreover, biochar amendment caused a significant increase in microbial taxonomic and functional diversity, microbial activities and an overall shift in carbon-source utilization. High microbial taxonomic and functional diversity and activity in the rhizosphere has been previously associated with suppression of diseases caused by soilborne pathogens and with plant growth promotion, and may collectively explain the significant reduction of disease and improvement in plant performance observed in the presence of biochar. PMID:28287177

  2. Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar.

    PubMed

    Jaiswal, Amit K; Elad, Yigal; Paudel, Indira; Graber, Ellen R; Cytryn, Eddie; Frenkel, Omer

    2017-03-13

    Biochar, in addition to sequestering carbon, ameliorating soil, and improving plant performance, can impact foliar and soilborne plant diseases. Nevertheless, the mechanisms associated with suppression of soilborne diseases and improved plant performances are not well understood. This study is designed to establish the relationships between biochar-induced changes in rhizosphere microbial community structure, taxonomic and functional diversity, and activity with soilborne disease suppression and enhanced plant performance in a comprehensive fashion. Biochar suppressed Fusarium crown and root-rot of tomato and simultaneously improved tomato plant growth and physiological parameters. Furthermore, biochar reduced Fusarium root colonization and survival in soil, and increased the culturable counts of several biocontrol and plant growth promoting microorganisms. Illumina sequencing analyses of 16S rRNA gene revealed substantial differences in rhizosphere bacterial taxonomical composition between biochar-amended and non-amended treatments. Moreover, biochar amendment caused a significant increase in microbial taxonomic and functional diversity, microbial activities and an overall shift in carbon-source utilization. High microbial taxonomic and functional diversity and activity in the rhizosphere has been previously associated with suppression of diseases caused by soilborne pathogens and with plant growth promotion, and may collectively explain the significant reduction of disease and improvement in plant performance observed in the presence of biochar.

  3. Monocytes stimulated by 110-kDa fibronectin fragments suppress proliferation of anti-CD3-activated T cells.

    PubMed

    Birdsall, Holly H; Porter, Wendy J; Trial, JoAnn; Rossen, Roger D

    2005-09-01

    One hundred ten to 120-kDa fragments of fibronectin (FNf), generated by proteases released in the course of tissue injury and inflammation, stimulate monocytes to produce proinflammatory cytokines, promote mononuclear leukocytes (MNL) transendothelial migration, up-regulate monocyte CD11b and CD86 expression, and induce monocyte-derived dendritic cell differentiation. To investigate whether the proinflammatory consequences of FNf are offset by responses that can suppress proliferation of activated T lymphocytes, we investigated the effect of FNf-treated MNL on autologous T lymphocytes induced to proliferate by substrate-immobilized anti-CD3. FNf-stimulated MNL suppressed anti-CD3-induced T cell proliferation through both contact-dependent and contact-independent mechanisms. Contact-independent suppression was mediated, at least in part, by IL-10 and TGF-beta released by the FNf-stimulated MNL. After 24-48 h exposure to FNf, activated T cells and monocytes formed clusters displaying CD25, CD14, CD3, and CD4 that were not dissociable by chelation of divalent cations. Killing monocytes with l-leucine methyl ester abolished these T cell-monocyte clusters and the ability of the FNf-stimulated MNL to suppress anti-CD3 induced T cell proliferation. Thus, in addition to activating MNL and causing them to migrate to sites of injury, FNf appears to induce suppressor monocytes.

  4. Loss of VHL promotes progerin expression, leading to impaired p14/ARF function and suppression of p53 activity

    PubMed Central

    Jung, Youn-Sang; Lee, Su-Jin; Lee, Sun-Hye; Chung, Ji-Yun; Jung, Youn Jin; Hwang, Sang Hyun; Ha, Nam-Chul; Park, Bum-Joon

    2013-01-01

    Renal cell carcinomas (RCCs) are frequently occurring genitourinary malignancies in the aged population. A morphological characteristic of RCCs is an irregular nuclear shape, which is used to index cancer grades. Other features of RCCs include the genetic inactivation of the von Hippel-Lindau gene, VHL, and p53 genetic-independent inactivation. An aberrant nuclear shape or p53 suppression has not yet been demonstrated. We examined the effect of progerin (an altered splicing product of the LMNA gene linked to Hutchinson Gilford progeria syndrome; HGPS) on the nuclear deformation of RCCs in comparison to that of HGPS cells. In this study, we showed that progerin was suppressed by pVHL and was responsible for nuclear irregularities as well as p53 inactivation. Thus, progerin suppression can ameliorate nuclear abnormalities and reactivate p53 in response to genotoxic addition. Furthermore, we found that progerin was a target of pVHL E3 ligase and suppressed p53 activity by p14/ARF inhibition. Our findings indicate that the elevated expression of progerin in RCCs results from the loss of pVHL and leads to p53 inactivation through p14/ARF suppression. Interestingly, we showed that progerin was expressed in human leukemia and primary cell lines, raising the possibility that the expression of this LMNA variant may be a common event in age-related cancer progression. PMID:24067370

  5. High resolution tree-ring based spatial reconstructions of snow avalanche activity in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.

    2006-01-01

    Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.

  6. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways.

    PubMed

    Inoue, Takayuki; Tanaka, Masashi; Masuda, Shinya; Ohue-Kitano, Ryuji; Yamakage, Hajime; Muranaka, Kazuya; Wada, Hiromichi; Kusakabe, Toru; Shimatsu, Akira; Hasegawa, Koji; Satoh-Asahara, Noriko

    2017-02-22

    Obesity and diabetes are known risk factors for dementia, and it is speculated that chronic neuroinflammation contributes to this increased risk. Microglia are brain-resident immune cells modulating the neuroinflammatory state. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the major ω-3 polyunsaturated fatty acids (PUFAs) of fish oil, exhibit various effects, which include shifting microglia to the anti-inflammatory phenotype. To identify the molecular mechanisms involved, we examined the impact of EPA, DHA, and EPA+DHA on the lipopolysaccharide (LPS)-induced cytokine profiles and the associated signaling pathways in the mouse microglial line MG6. Both EPA and DHA suppressed the production of the pro-inflammatory cytokines TNF-α and IL-6 by LPS-stimulated MG6 cells, and this was also observed in LPS-stimulated BV-2 cells, the other microglial line. Moreover, the EPA+DHA mixture activated SIRT1 signaling by enhancing mRNA level of nicotinamide phosphoribosyltransferase (NAMPT), cellular NAD(+) level, SIRT1 protein deacetylase activity, and SIRT1 mRNA levels in LPS-stimulated MG6. EPA+DHA also inhibited phosphorylation of the stress-associated transcription factor NF-κB subunit p65 at Ser536, which is known to enhance NF-κB nuclear translocation and transcriptional activity, including cytokine gene activation. Further, EPA+DHA increased the LC3-II/LC3-I ratio, an indicator of autophagy. Suppression of TNF-α and IL-6 production, inhibition of p65 phosphorylation, and autophagy induction were abrogated by a SIRT1 inhibitor. On the other hand, NAMPT inhibition reversed TNF-α suppression but not IL-6 suppression. Accordingly, these ω-3 PUFAs may suppress neuroinflammation through SIRT1-mediated inhibition of the microglial NF-κB stress response and ensue pro-inflammatory cytokine release, which is implicated in NAMPT-related and -unrelated pathways.

  7. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  8. Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells

    PubMed Central

    Nonami, Atsushi; Weisberg, Ellen L.; Bonal, Dennis; Kirschmeier, Paul T.; Salgia, Sabrina; Podar, Klaus; Galinsky, Ilene; Chowdary, Tirumala K.; Neuberg, Donna; Tonon, Giovanni; Stone, Richard M.; Asara, John; Griffin, James D.; Sattler, Martin

    2015-01-01

    The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMPK (AMP kinase), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism. PMID:25703587

  9. Trace elements in tree rings: evidence of recent and historical air pollution

    SciTech Connect

    Bates, C.F. III; McLaughlin, S.B.

    1984-05-04

    Annual growth rings from short-leaf pine trees in the Great Smoky Mountains National Park show suppressed growth and increased iron content between 1863 and 1912, a period of smelting activity and large sulfur dioxide releases at Copperhill, Tennessee, 88 kilometers upwind. Similar growth suppression and increases of iron and other metals were found in rings formed in the past 20 to 25 years, a period when regional fossil fuel combustion emissions increased about 200 percent. Metals concentrations in phloem and cambium are high, but whether they exceed toxic thresholds for these tissues is not known.

  10. hnRNP G elicits tumor-suppressive activity in part by upregulating the expression of Txnip

    SciTech Connect

    Shin, Ki-Hyuk Kim, Reuben H.; Kim, Roy H.; Kang, Mo K.; Park, No-Hee

    2008-08-08

    Heterogeneous nuclear ribonuclearproteins (hnRNPs) are nucleic acid-binding proteins and have critical roles in DNA repair, telomere regulation, and transcriptional gene regulation. Previously, we showed that hnRNP G has tumor-suppressive activity in human oral squamous cell carcinoma cells. Therefore, the identification of hnRNP G target genes is important for understanding the function of hnRNP G and its tumor-suppressive activity. In this study, we identify a known tumor suppressor gene, thioredoxin-interacting protein (Txnip) gene as a novel target of hnRNP G. Expression of Txnip is upregulated by wild-type (wt) hnRNP G but not by a suppression-defective mutant hnRNP G (K22R) in human squamous cell carcinoma. Wt hnRNP G binds and transactivates the Txnip promoter in vivo, whereas the K22R mutant does not. Furthermore, overexpression of Txnip alone in cancer cells leads to the inhibition of anchorage-independent growth and in vivo tumorigenicity in immunocompromised mice, suggesting a reversion of the transformation phenotype. These studies indicate that hnRNP G promotes the expression of Txnip and mediates its tumor-suppressive effect.

  11. Cells transformed by murine herpesvirus 68 (MHV-68) release compounds with transforming and transformed phenotype suppressing activity resembling growth factors.

    PubMed

    Šupolíková, M; Staňová, A Vojs; Kúdelová, M; Marák, J; Zelník, V; Golais, F

    2015-12-01

    In this study, we investigated the medium of three cell lines transformed with murine herpesvirus 68 (MHV-68) in vitro and in vivo, 68/HDF, 68/NIH3T3, and S11E, for the presence of compounds resembling growth factors of some herpesviruses which have displayed transforming and transformed phenotype suppressing activity in normal and tumor cells. When any of spent medium was added to cell culture we observed the onset of transformed phenotype in baby hamster kidney cells (BHK-21) cells and transformed phenotype suppressing activity in tumor human epithelial cells (HeLa). In media tested, we have identified the presence of putative growth factor related to MHV-68 (MHGF-68). Its bivalent properties have been blocked entirely by antisera against MHV-68 and two monoclonal antibodies against glycoprotein B (gB) of MHV-68 suggesting viral origin of MHGF-68. The results of initial efforts to separate MHGF-68 on FPLC Sephadex G15 column in the absence of salts revealed the loss of its transforming activity but transformed phenotype suppressing activity retained. On the other hand, the use of methanol-water mobile phase on RP-HPLC C18 column allowed separation of MHGF-68 to two compounds. Both separated fractions, had only the transforming activity to normal cells. Further experiments exploring the nature and the structure of hitherto unknown MHGF-68 are now in the progress to characterize its molecular and biological properties.

  12. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    SciTech Connect

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  13. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    NASA Astrophysics Data System (ADS)

    Bathke, H.; Nikkhoo, M.; Holohan, E. P.; Walter, T. R.

    2015-07-01

    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a 'sliding-trapdoor' ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano's western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that 'sliding-trapdoor' ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  14. Olesoxime suppresses calpain activation and mutant huntingtin fragmentation in the BACHD rat.

    PubMed

    Clemens, Laura E; Weber, Jonasz J; Wlodkowski, Tanja T; Yu-Taeger, Libo; Michaud, Magali; Calaminus, Carsten; Eckert, Schamim H; Gaca, Janett; Weiss, Andreas; Magg, Janine C D; Jansson, Erik K H; Eckert, Gunter P; Pichler, Bernd J; Bordet, Thierry; Pruss, Rebecca M; Riess, Olaf; Nguyen, Huu P

    2015-12-01

    Huntington's disease is a fatal human neurodegenerative disorder caused by a CAG repeat expansion in the HTT gene, which translates into a mutant huntingtin protein. A key event in the molecular pathogenesis of Huntington's disease is the proteolytic cleavage of mutant huntingtin, leading to the accumulation of toxic protein fragments. Mutant huntingtin cleavage has been linked to the overactivation of proteases due to mitochondrial dysfunction and calcium derangements. Here, we investigated the therapeutic potential of olesoxime, a mitochondria-targeting, neuroprotective compound, in the BACHD rat model of Huntington's disease. BACHD rats were treated with olesoxime via the food for 12 months. In vivo analysis covered motor impairments, cognitive deficits, mood disturbances and brain atrophy. Ex vivo analyses addressed olesoxime's effect on mutant huntingtin aggregation and cleavage, as well as brain mitochondria function. Olesoxime improved cognitive and psychiatric phenotypes, and ameliorated cortical thinning in the BACHD rat. The treatment reduced cerebral mutant huntingtin aggregates and nuclear accumulation. Further analysis revealed a cortex-specific overactivation of calpain in untreated BACHD rats. Treated BACHD rats instead showed significantly reduced levels of mutant huntingtin fragments due to the suppression of calpain-mediated cleavage. In addition, olesoxime reduced the amount of mutant huntingtin fragments associated with mitochondria, restored a respiration deficit, and enhanced the expression of fusion and outer-membrane transport proteins. In conclusion, we discovered the calpain proteolytic system, a key player in Huntington's disease and other neurodegenerative disorders, as a target of olesoxime. Our findings suggest that olesoxime exerts its beneficial effects by improving mitochondrial function, which results in reduced calpain activation. The observed alleviation of behavioural and neuropathological phenotypes encourages further

  15. Bacterial Proteasome Activator Bpa (Rv3780) Is a Novel Ring-Shaped Interactor of the Mycobacterial Proteasome

    PubMed Central

    Delley, Cyrille L.; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins. PMID:25469515

  16. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    SciTech Connect

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R. E-mail: dnandi@iiserkol.ac.i E-mail: anthony@maths.dundee.ac.u

    2010-09-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  17. Linker-gating ring complex as passive spring and Ca(2+)-dependent machine for a voltage- and Ca(2+)-activated potassium channel.

    PubMed

    Niu, Xiaowei; Qian, Xiang; Magleby, Karl L

    2004-06-10

    Ion channels are proteins that control the flux of ions across cell membranes by opening and closing (gating) their pores. It has been proposed that channels gated by internal agonists have an intracellular gating ring that extracts free energy from agonist binding to open the gates using linkers that directly connect the gating ring to the gates. Here we find for a voltage- and Ca(2+)-activated K+ (BK) channel that shortening the linkers increases channel activity and lengthening the linkers decreases channel activity, both in the presence and absence of intracellular Ca2+. These observations are consistent with a mechanical model in which the linker-gating ring complex forms a passive spring that applies force to the gates in the absence of Ca2+ to modulate the voltage-dependent gating. Adding Ca2+ then changes the force to further activate the channel. Both the passive and Ca(2+)-induced forces contribute to the gating of the channel.

  18. Gravitational Instability of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Moon, Sanghyuk

    2017-01-01

    Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent field method, we first construct their equilibrium sequences specified by two parameters: alpha corresponding to the thermal energy relative to gravitational potential energy, and R_B measuring the ellipticity or ring thickness. The density distributions in the meridional plane are steeper for smaller alpha, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency Omega and central density rho_c. Rings with smaller are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when Omega exceeds the critical value. The critical angular frequency is found to be almost constant at 0.7(G rho_c)^0.5 for alph > 0.01 and increases rapidly for smaller alpha . We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.

  19. A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis.

    PubMed

    Somers, W Gregory; Saint, Robert

    2003-01-01

    The mechanism that positions the cytokinetic contractile ring is unknown, but derives from the spindle midzone. We show that an interaction between the Rho GTP exchange factor, Pebble, and the Rho family GTPase-activating protein, RacGAP50C, connects the contractile ring to cortical microtubules at the site of furrowing in D. melanogaster cells. Pebble regulates actomyosin organization, while RacGAP50C and its binding partner, the Pavarotti kinesin-like protein, regulate microtubule bundling. All three factors are required for cytokinesis. As furrowing begins, these proteins colocalize to a cortical equatorial ring. We propose that RacGAP50C-Pavarotti complexes travel on cortical microtubules to the cell equator, where they associate with the Pebble RhoGEF to position contractile ring formation and coordinate F-actin and microtubule remodeling during cytokinesis.

  20. Suppression of polymorphonuclear leucocyte chemotaxis by Pseudomonas aeruginosa elastase in vitro: a study of the mechanisms and the correlation with ring abscess in pseudomonal keratitis.

    PubMed Central

    Ijiri, Y.; Matsumoto, K.; Kamata, R.; Nishino, N.; Okamura, R.; Kambara, T.; Yamamoto, T.

    1994-01-01

    Bacteria, or the culture supernatants of an elastase non-producing strain of Pseudomonas aeruginosa, elicited a chemotactic response from polymorphonuclear leucocytes (PMN) in vitro. The chemoattractive capacity was diminished under the presence of Boc-Phe-Leu-Phe-Leu-Phe, a receptor antagonist of N-formyl-Met-Leu-Phe (fMLP) which is a bacterial chemotactic peptide to PMN. This indicated that the chemoattractant derived from Pseudomonas aeruginosa was a fMLP-like molecule(s). In contrast, culture supernatants of an elastase producing strain of Pseudomonas aeruginosa produced negligible chemotactic response from PMN. Indeed, an inhibitory effect of the culture supernatants or of purified Pseudomonas aeruginosa elastase (PAE) on PMN chemotaxis was observed when fMLP was used as a chemoattractant. Another fMLP-induced function of PMN, respiratory burst activation, was also diminished by pretreatment of PMN with PAE. PAE hydrolysed fMLP at the Met-Leu bond and diminished the chemoattractant capacity. In addition, a receptor analysis with fML-3H-P demonstrated a decrease in numbers of fMLP receptors on PMN without changing the dissociation constant values after the treatment of the cells with PAE. In the primary structure of the fMLP receptor previously reported, a preferential amino acid sequence for cleavage by PAE was identified in what was believed to be an extracellular portion of the receptor molecule. These results suggested that PAE could diminish PMN infiltration in response to Pseudomonas aeruginosa in vivo by cleavage of the fMLP-like pseudomonal chemotactic ligand and the receptors on PMN. Images Figure 4 PMID:7734333

  1. In Vitro and in Vivo Structure-Activity Relationships of Novel Androgen Receptor Ligands with Multiple Substituents in the B-Ring

    PubMed Central

    Chen, Jiyun; Hwang, Dong Jin; Chung, Kiwon; Bohl, Casey E.; Fisher, Scott J.; Miller, Duane D.; Dalton, James T.

    2007-01-01

    We recently reported two nonsteroidal androgen receptor (AR) ligands that demonstrate tissue-selective pharmacological activity, identifying these S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide analogs as the first members of a new class of drugs known as selective androgen receptor modulators. The purpose of these studies was to explore additional structure-activity relationships of selective androgen receptor modulators to enhance their AR binding affinity, AR-mediated transcriptional activation, and in vivo pharmacological activity. The AR binding affinity (Ki) of 29 novel synthetic AR ligands was determined by a radioligand competitive binding assay and ranged from 1.0–51 nm. Compounds with electron-withdrawing substituents at the para- and meta-positions of the B-ring demonstrated the highest AR binding affinity. The AR-mediated transcriptional activation was determined using a cotransfection assay in CV-1 cells. Most compounds with two substituents in the B-ring maintained or improved their functional activity in vitro. However, compounds with three halogen substituents exhibited significant regioselectivity. Fifteen compounds were selected to examine their pharmacological activity in castrated rats. In vivo pharmacological activity and selectivity were significantly changed by structural modification in the B-ring. Compounds with halogen groups at the para- and meta-positions of the B-ring displayed the highest pharmacological activity. Incorporating substituents at the ortho-position of the B-ring resulted in poor pharmacological activity. In vitro and in vivo agonist activities were partially correlated. In conclusion, novel selective androgen receptor modulators with improved in vivo pharmacological activity can be designed and synthesized based on the structure-activity relationship identified in these studies. PMID:16166218

  2. Suberoylanilide hydroxamic acid suppresses hepatic stellate cells activation by HMGB1 dependent reduction of NF-κB1

    PubMed Central

    Wang, Wenwen; Yan, Min; Ji, Qiuhong; Lu, Jinbiao; Ji, Yuhua

    2015-01-01

    Hepatic stellate cells (HSCs) activation is essential to the pathogenesis of liver fibrosis. Exploring drugs targeting HSC activation is a promising anti-fibrotic strategy. In the present study, we found suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, prominently suppressed the activation phenotype of a human hepatic stellate cell line—LX2. The production of collagen type I and α-smooth muscle actin (α-SMA) as well as the proliferation and migration of LX2 cells were significantly reduced by SAHA treatment. To determine the molecular mechanisms underlying this suppression, genome wild gene regulation by SAHA was determined by Affymetrix 1.0 human cDNA array. Upon SAHA treatment, the abundance of 331 genes was up-regulated and 173 genes was down-regulated in LX2 cells. Bioinformatic analyses of these altered genes highlighted the high mobility group box 1 (HMGB1) pathway was one of the most relevant pathways that contributed to SAHA induced suppression of HSCs activation. Further studies demonstrated the increased acetylation of intracellular HMGB1 in SAHA treated HSCs, and this increasing is most likely to be responsible for SAHA induced down-regulation of nuclear factor kappa B1 (NF-κB1) and is one of the main underlying mechanisms for the therapeutic effect of SAHA for liver fibrosis. PMID:26557438

  3. Plumbagin Suppresses α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells by Inhibiting Tyrosinase Activity

    PubMed Central

    Oh, Taek-In; Yun, Jeong-Mi; Park, Eun-Ji; Kim, Young-Seon; Lee, Yoon-Mi; Lim, Ji-Hong

    2017-01-01

    Recent studies have shown that plumbagin has anti-inflammatory, anti-allergic, antibacterial, and anti-cancer activities; however, it has not yet been shown whether plumbagin suppresses alpha-melanocyte stimulating hormone (α-MSH)-induced melanin synthesis to prevent hyperpigmentation. In this study, we demonstrated that plumbagin significantly suppresses α-MSH-stimulated melanin synthesis in B16F10 mouse melanoma cells. To understand the inhibitory mechanism of plumbagin on melanin synthesis, we performed cellular or cell-free tyrosinase activity assays and analyzed melanogenesis-related gene expression. We demonstrated that plumbagin directly suppresses tyrosinase activity independent of the transcriptional machinery associated with melanogenesis, which includes micropthalmia-associated transcription factor (MITF), tyrosinase (TYR), and tyrosinase-related protein 1 (TYRP1). We also investigated whether plumbagin was toxic to normal human keratinocytes (HaCaT) and lens epithelial cells (B3) that may be injured by using skin-care cosmetics. Surprisingly, lower plumbagin concentrations (0.5–1 μM) effectively inhibited melanin synthesis and tyrosinase activity but do not cause toxicity in keratinocytes, lens epithelial cells, and B16F10 mouse melanoma cells, suggesting that plumbagin is safe for dermal application. Taken together, these results suggest that the inhibitory effect of plumbagin to pigmentation may make it an acceptable and safe component for use in skin-care cosmetic formulations used for skin whitening. PMID:28165370

  4. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  5. Cooperative activation of cyclobutanones and olefins leads to bridged ring systems by a catalytic [4 + 2] coupling

    NASA Astrophysics Data System (ADS)

    Ko, Haye Min; Dong, Guangbin

    2014-08-01

    Bridged ring systems are widely found in natural products, and successful syntheses of them frequently feature intramolecular Diels-Alder reactions. These reactions are subclassified as either type I or type II depending on how the diene motif is tethered to the rest of the substrate (type I are tethered at the 1-position of the diene and type II at the 2-position). Although the type I reaction has been used with great success, the molecular scaffolds accessible by the type II reactions are limited by the strain inherent in the formation of an sp2 carbon at a bridgehead position. Here, we describe a complementary approach that provides access to these structures through the C-C activation of cyclobutanones and their coupling with olefins. Various alkenes have been coupled with cyclobutanones to provide a range of bridged skeletons. The ketone group of the products serves as a convenient handle for downstream functionalization.

  6. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    PubMed

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration.

  7. Engagement of the Mannose Receptor by Tumoral Mucins Activates an Immune Suppressive Phenotype in Human Tumor-Associated Macrophages

    PubMed Central

    Allavena, P.; Chieppa, M.; Bianchi, G.; Solinas, G.; Fabbri, M.; Laskarin, G.; Mantovani, A.

    2010-01-01

    Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses. Myeloid C-type lectin receptors (CLRs) constitute a large family of transmembrane carbohydrate-binding receptors that recognize pathogens as well as endogenous glycoproteins. Several lines of evidence demonstrate that some CLRs can inhibit the immune response. In this study we investigated TAM-associated molecules potentially involved in their immune suppressive activity. We found that TAMs isolated from human ovarian carcinoma samples predominantly express the CLRs Dectin-1, MDL-1, MGL, DCIR, and most abundantly the Mannose Receptor (MR). Components of carcinomatous ascites and purified tumoral mucins (CA125 and TAG-72) bound the MR and induced its internalization. MR engagement by tumoral mucins and by an agonist anti-MR antibody modulated cytokine production by TAM toward an immune-suppressive profile: increase of IL-10, absence of IL-12, and decrease of the Th1-attracting chemokine CCL3. This study highlights that tumoral mucin-mediated ligation of the MR on infiltrating TAM may contribute to their immune suppressive phenotype. PMID:21331365

  8. Functional Analysis of Plant Defense Suppression and Activation by the Xanthomonas Core Type III Effector XopX.

    PubMed

    Stork, William; Kim, Jung-Gun; Mudgett, Mary Beth

    2015-02-01

    Many phytopathogenic type III secretion effector proteins (T3Es) have been shown to target and suppress plant immune signaling but perturbation of the plant immune system by T3Es can also elicit a plant response. XopX is a "core" Xanthomonas T3E that contributes to growth and symptom development during Xanthomonas euvesicatoria infection of tomato but its functional role is undefined. We tested the effect of XopX on several aspects of plant immune signaling. XopX promoted ethylene production and plant cell death (PCD) during X. euvesicatoria infection of susceptible tomato and in transient expression assays in Nicotiana benthamiana, which is consistent with its requirement for the development of X. euvesicatoria-induced disease symptoms. Additionally, although XopX suppressed flagellin-induced reactive oxygen species, it promoted the accumulation of pattern-triggered immunity (PTI) gene transcripts. Surprisingly, XopX coexpression with other PCD elicitors resulted in delayed PCD, suggesting antagonism between XopX-dependent PCD and other PCD pathways. However, we found no evidence that XopX contributed to the suppression of effector-triggered immunity during X. euvesicatoria-tomato interactions, suggesting that XopX's primary virulence role is to modulate PTI. These results highlight the dual role of a core Xanthomonas T3E in simultaneously suppressing and activating plant defense responses.

  9. Signals of recent snow-avalanche activity in birch tree-rings from Northern Iceland colluvial cones

    NASA Astrophysics Data System (ADS)

    Decaulne, Armelle; Eggertsson, Ólafur; Sæmundsson, Şorsteinn; Páll Jónsson, Helgi

    2010-05-01

    The Fnjóskadalur, Ljósavatnskarð and Dalsmynni valleys, in Northern Iceland, are characterised by an important snow-avalanche activity impacting large colluvial cones. All valleys expose stands of broad-leaved trees, which cover an extensive wooded part along the flanks. The main represented species are Betula pubescens trees and shrubs. The objective of the research is to determine past snow-avalanche activity to improve historical record for the last century by applying dendrochronological and vegetative analysis. Trees and shrubs experience damages resulting from the impact of snow and debris, to which they respond in a variety of ways. The dendrochronological approach compares tree rings growth from a reference area beside the snow-avalanche path with the ones from within the snow-avalanche path. For this purpose, increment cores are taken from the up-down axis of the trunks and analysed on a LINTAB measuring table. The dendromorphological analysis maps changes in trunk posture such as tilted or topped trunks, and the position of wounds on the trunks. The combination of these two approaches provides a temporal catalogue of snow-avalanche events and also determines the directions of main fluxes. Therefore, it helps to locate the lateral dispersion of snow avalanches over the cones through time. The results obtained from comparison between the reference growth curve and the snow-avalanche impacted one show a clear difference between impeded tree-ring growth due to climatic factors and snow-avalanche occurrence. Several snow avalanche events are unravelled on the investigated cones during the last century.

  10. tRNA synthase suppression activates de novo cysteine synthesis to compensate for cystine and glutathione deprivation during ferroptosis.

    PubMed

    Shimada, Kenichi; Stockwell, Brent R

    2016-03-01

    Glutathione is a major endogenous reducing agent in cells, and cysteine is a limiting factor in glutathione synthesis. Cysteine is obtained by uptake or biosynthesis, and mammalian cells often rely on either one or the other pathway. Because of the scarcity of glutathione, blockade of cysteine uptake causes oxidative cell death known as ferroptosis. A new study suggests that tRNA synthetase suppression activates the endogenous biosynthesis of cysteine, compensates such cysteine loss, and thus makes cells resistant to ferroptosis.

  11. High activity of an indium alkoxide complex toward ring opening polymerization of cyclic esters.

    PubMed

    Quan, Stephanie M; Diaconescu, Paula L

    2015-06-14

    An indium complex supported by a ferrocene-derived Schiff base ligand has an unprecedented high activity toward ε-caprolactone, δ-valerolactone, and β-butyrolactone. l-Lactide, d,l-lactide, and trimethylene carbonate polymerizations also showed moderate to high activity.

  12. Cbl-c Ubiquitin Ligase Activity Is Increased via the Interaction of Its RING Finger Domain with a LIM Domain of the Paxillin Homolog, Hic 5

    PubMed Central

    Ryan, Philip E.; Kales, Stephen C.; Yadavalli, Rajgopal; Nau, Marion M.; Zhang, Han; Lipkowitz, Stanley

    2012-01-01

    Cbl proteins (Cbl, Cbl-b and Cbl-c) are ubiquitin ligases that are critical regulators of tyrosine kinase signaling. In this study we identify a new Cbl-c interacting protein, Hydrogen peroxide Induced Construct 5 (Hic-5). The two proteins interact through a novel interaction mediated by the RING finger of Cbl-c and the LIM2 domain of Hic-5. Further, this interaction is mediated and dependent on specific zinc coordinating complexes within the RING finger and LIM domain. Binding of Hic-5 to Cbl-c leads to an increase in the ubiquitin ligase activity of Cbl-c once Cbl-c has been activated by Src phosphorylation or through an activating phosphomimetic mutation. In addition, co-transfection of Hic-5 with Cbl-c leads to an increase in Cbl-c mediated ubiquitination of the EGFR. These data suggest that Hic-5 enhances Cbl-c ubiquitin ligase activity once Cbl-c has been phosphorylated and activated. Interactions between heterologous RING fingers have been shown to activate E3s. This is the first demonstration of enhancement of ubiquitin ligase activity of a RING finger ubiquitin ligase by the direct interaction of a LIM zinc coordinating domain. PMID:23145173

  13. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells

    NASA Astrophysics Data System (ADS)

    Xu, Haifei; Bai, Juan; Meng, Jie; Hao, Wei; Xu, Haiyan; Cao, Ji-Min

    2009-07-01

    The advancement in nanotechnology has produced technological and conceptual breakthroughs but the effects nanomaterials have on organisms at the cellular level are poorly understood. Here we report that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC12) cells. Our results showed that carboxyl-terminated MWCNTs suppress the current densities of Ito, IK and IK1 in a time-dependent and irreversible manner. The suppressions were most distinct 24 h after incubation with MWCNTs. However, MWCNTs did not significantly change the expression levels of reactive oxygen species (ROS) or intracellular free calcium and also did not alter the mitochondrial membrane potential (ΔΨm) in PC12 cells. These results suggest that oxidative stress was not involved in the MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles.

  14. Identification and biological activities of a new antiangiogenic small molecule that suppresses mitochondrial reactive oxygen species

    SciTech Connect

    Kim, Ki Hyun; Park, Ju Yeol; Jung, Hye Jin; Kwon, Ho Jeong

    2011-01-07

    Research highlights: {yields} YCG063 was screened as a new angiogenesis inhibitor which suppresses mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library. {yields} The compound inhibited in vitro and in vivo angiogenesis in a dose-dependent manner. {yields} This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions. -- Abstract: Mitochondrial reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In particular, high levels of mitochondrial ROS in hypoxic cells regulate many angiogenesis-related diseases, including cancer and ischemic disorders. Here we report a new angiogenesis inhibitor, YCG063, which suppressed mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library with an ArrayScan HCS reader. YCG063 suppressed mitochondrial ROS generation under a hypoxic condition in a dose-dependent manner, leading to the inhibition of in vitro angiogenic tube formation and chemoinvasion as well as in vivo angiogenesis of the chorioallantoic membrane (CAM) at non-toxic doses. In addition, YCG063 decreased the expression levels of HIF-1{alpha} and its target gene, VEGF. Collectively, a new antiangiogenic small molecule that suppresses mitochondrial ROS was identified. This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions.

  15. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  16. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells.

    PubMed

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependent manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  17. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller

    PubMed Central

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-01-01

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen’s neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme. PMID:27273563

  18. PIAS4 is an activator of hypoxia signalling via VHL suppression during growth of pancreatic cancer cells

    PubMed Central

    Chien, W; Lee, K L; Ding, L W; Wuensche, P; Kato, H; Doan, N B; Poellinger, L; Said, J W; Koeffler, H P

    2013-01-01

    Background: The PIAS4 protein belongs to the family of protein inhibitors of activated STAT, but has since been implicated in various biological activities including the post-translational modification known as sumoylation. In this study, we explored the roles of PIAS4 in pancreatic tumourigenesis. Methods: The expression levels of PIAS4 in pancreatic cancer cells were examined. Cell proliferation and invasion was studied after overexpression and gene silencing of PIAS4. The effect of PIAS4 on hypoxia signalling was investigated. Results: The protein was overexpressed in pancreatic cancer cells compared with the normal pancreas. Gene silencing by PIAS4 small interfering RNA (siRNA) suppressed pancreatic cancer cell growth and overexpression of PIAS4 induced expression of genes related to cell growth. The overexpression of PIAS4 is essential for the regulation of the hypoxia signalling pathway. PIAS4 interacts with the tumour suppressor von Hippel-Lindau (VHL) and leads to VHL sumoylation, oligomerization, and impaired function. Pancreatic cancer cells (Panc0327, MiaPaCa2) treated with PIAS4 siRNA suppressed expression of the hypoxia-inducible factor hypoxia-inducible factor 1 alpha and its target genes JMJD1A, VEGF, and STAT3. Conclusion: Our study elucidates the role of PIAS4 in the regulation of pancreatic cancer cell growth, where the suppression of its activity represents a novel therapeutic target for pancreatic cancers. PMID:24002598

  19. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller

    NASA Astrophysics Data System (ADS)

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-06-01

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen’s neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme.

  20. Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller.

    PubMed

    Wang, Junsong; Niebur, Ernst; Hu, Jinyu; Li, Xiaoli

    2016-06-07

    Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress high-amplitude epileptic activity. However, there are currently no analytical approaches to determine the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) control is the most extensively used closed-loop control scheme in the field of control engineering because of its simple implementation and perfect performance. In this study, we took Jansen's neural mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic activity. A graphical stability analysis method was employed to determine the stabilizing region of the PI controller in the control parameter space, which provided a theoretical guideline for the choice of the PI control parameters. Furthermore, we established the relationship between the parameters of the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme.

  1. The evolutionarily conserved EBR module of RALT/MIG6 mediates suppression of the EGFR catalytic activity.

    PubMed

    Anastasi, S; Baietti, M F; Frosi, Y; Alemà, S; Segatto, O

    2007-12-13

    Physiological signalling by the epidermal growth factor receptor (EGFR) controls developmental processes and tissue homeostasis, whereas aberrant EGFR activity drives oncogenic cell transformation. Under normal conditions, the EGFR must therefore generate outputs of defined strength and duration. To this aim, cells balance EGFR activity via different modalities of negative signalling. Increasing attention is being drawn on transcriptionally controlled feedback inhibitors of EGFR, namely RALT/MIG6, LRIG1, SOCS4 and SOCS5. Genetic studies in mice have revealed the essential role of Ralt/Mig6 in regulating Egfr-driven skin morphogenesis and tumour formation, yet the mechanisms through which RALT abrogates EGFR activity are still undefined. We report that RALT suppresses EGFR function by inhibiting its catalytic activity. The evolutionarily conserved ErbB-binding region (EBR) is necessary and sufficient to carry out RALT-dependent suppression of EGFR kinase activity in vitro and in intact cells. The mechanism involves binding of the EBR to the 953RYLVIQ958 sequence, which is located in the alphaI helix of the EGFR kinase and has been shown to participate in allosteric control of EGFR catalytic activity. Our results uncover a novel mechanism of temporal regulation of EGFR activity in vertebrate organisms.

  2. The Antimalarial Chloroquine Suppresses LPS-Induced NLRP3 Inflammasome Activation and Confers Protection against Murine Endotoxic Shock

    PubMed Central

    2017-01-01

    Activation of the NLRP3 inflammasome, which catalyzes maturation of proinflammatory cytokines like IL-1β and IL-18, is implicated and essentially involved in many kinds of inflammatory disorders. Chloroquine (CQ) is a traditional antimalarial drug and also possesses an anti-inflammatory property. In this study, we investigated whether CQ suppresses NLRP3 inflammasome activation and thereby confers protection against murine endotoxic shock. CQ attenuated NF-κB and MAPK activation and prohibited expression of IL-1β, IL-18, and Nlrp3 in LPS treated murine bone marrow-derived macrophages (BMDMs), demonstrating its inhibitory effect on the priming signal of NLRP3 activation. Then, CQ was shown to inhibit caspase-1 activation and ASC specks formation in BMDMs, which indicates that CQ also suppresses inflammasome assembly, the second signal for NLRP3 inflammasome activation. In a murine endotoxic shock model, CQ effectively improved survival and markedly reduced IL-1β and IL-18 production in serum, peritoneal fluid, and lung tissues. Moreover, CQ reduced protein levels of NLRP3 and caspases-1 p10 in lung homogenates of mice with endotoxic shock, which may possibly explain its anti-inflammatory activity and life protection efficacy in vivo. Overall, our results demonstrate a new role of CQ that facilitates negative regulation on NLRP3 inflammasome, which thereby confers protection against lethal endotoxic shock. PMID:28321151

  3. Enzymatic activities in limb muscles subjected to external fixation with ring-hybrid frames.

    PubMed

    Reznick, Abraham Z; Coleman, Raymond; Stein, Haim

    2007-04-01

    Enzymatic activities, which originate in the muscle envelope of tibiae with an experimental segmental bone loss, provide additional evidence for the intimate bone-muscle interrelationships in new bone formation.

  4. Δ9-tetrahydrocannabinol suppresses cytotoxic T lymphocyte function independent of CB1 and CB 2, disrupting early activation events.

    PubMed

    Karmaus, Peer W F; Chen, Weimin; Kaplan, Barbara L F; Kaminski, Norbert E

    2012-12-01

    Previously, CD8(+) T cells were found to be a sensitive target for suppression by Δ(9)-tetrahydrocannabinol (Δ(9)-THC) in a murine model of influenza infection. To study the effect of Δ(9)-THC on CD8(+) cytotoxic T lymphocytes (CTL), an allogeneic model of MHC I mismatch was used to elicit CTL. In addition, to determine the requirement for the cannabinoid receptors 1 (CB(1)) and 2 (CB(2)) in Δ(9)-THC-mediated CTL response modulation, mice null for both receptors were used (CB(1) (-/-)CB(2) (-/-)). Δ(9)-THC suppressed CTL function independent of CB(1) and CB(2) as evidenced by reduction of (51)Cr release by CTL generated from CB(1) (-/-)CB(2) (-/-) mice. Furthermore, viability in CD4(+) and CD8(+) cells was reduced in a concentration-dependent manner with Δ(9)-THC, independent of CB(1) and CB(2), but no effect of Δ(9)-THC on proliferation was observed, suggesting that Δ(9)-THC decreases the number of T cells initially activated. Δ(9)-THC increased expression of the activation markers, CD69 in CD8(+) cells and CD25 in CD4(+) cells in a concentration-dependent manner in cells derived from WT and CB(1) (-/-)CB(2) (-/-) mice. Furthermore, Δ(9)-THC synergized with the calcium ionophore, ionomycin, to increase CD69 expression on both CD4(+) and CD8(+) cells. In addition, without stimulation, Δ(9)-THC increased CD69 expression in CD8(+) cells from CB(1) (-/-)CB(2) (-/-) and WT mice. Overall, these results suggest that CB(1) and CB(2) are dispensable for Δ(9)-THC-mediated suppression and that perturbation of Ca(2+) signals during T cell activation plays an important role in the mechanism by which Δ(9)-THC suppresses CTL function.

  5. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase.

    PubMed

    Yoon, Ju-Yeon; Han, Kyoung-Sik; Park, Han-Yong; Choi, Seung-Kook

    2012-06-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in eukaryotes, including higher plants. To counteract this, several plant viruses express silencing suppressors that inhibit RNA silencing in host plants. Here, we show that both 2b protein from peanut stunt virus (PSV) and a hairpin construct (designated hp-RDR6) that silences endogenous RNA-dependent RNA polymerase 6 (RDR6) strongly suppress RNA silencing. The Agrobacterium infiltration system was used to demonstrate that both PSV 2b and hp-RDR6 suppressed local RNA silencing as strongly as helper component (HC-Pro) from potato virus Y (PVY) and P19 from tomato bush stunt virus (TBSV). The 2b protein from PSV eliminated the small-interfering RNAs (siRNAs) associated with RNA silencing and prevented systemic silencing, similar to 2b protein from cucumber mosaic virus (CMV). On the other hand, hp-RDR6 suppressed RNA silencing by inhibiting the generation of secondary siRNAs. The small coat protein (SCP) of squash mosaic virus (SqMV) also displayed weak suppression activity of RNA silencing. Agrobacterium-mediated gene transfer was used to investigate whether viral silencing suppressors or hp-RDR6 enhanced accumulations of green fluorescence protein (GFP) and β-glucuronidase (GUS) as markers of expression in leaf tissues of Nicotina benthamiana. Expression of both GFP and GUS was significantly enhanced in the presence of PSV 2b or CMV 2b, compared to no suppression or the weak SqMV SCP suppressor. Co-expression with hp-RDR6 also significantly increased the expression of GFP and GUS to levels similar to those induced by PVY HC-Pro and TBSV P19.

  6. Suppression of RelA/p65 transactivation activity by a lignoid manassantin isolated from Saururus chinensis.

    PubMed

    Lee, Jeong-Hyung; Hwang, Bang Yeon; Kim, Kyung-Sook; Nam, Jeong Beom; Hong, Young Soo; Lee, Jung Joon

    2003-11-15

    In our search for NF-kappaB inhibitors from natural resources, we have previously identified two structurally related dilignans, manassantin A and B as specific inhibitors of NF-kappaB activation from Saururus chinensis. However, their molecular mechanism of action remains unclear. We here demonstrate that manassantins A and B are potent inhibitors of NF-kappaB activation by the suppression of transciptional activity of RelA/p65 subunit of NF-kappaB. These compounds significantly inhibited the induced expression of NF-kappaB reporter gene by LPS or TNF-alpha in a dose-dependent manner. However, these compounds did not prevent the DNA-binding activity of NF-kappaB assessed by electrophoretic mobility shift assay as well as the induced-degradation of IkappaB-alpha protein by LPS or TNF-alpha. Further analysis revealed that manassantins A and B dose-dependently suppressed not only the induced NF-kappaB activation by overexpression of RelA/p65, but also transactivation activity of RelA/p65. Furthermore, treatment of cells with these compounds prevented the TNF-alpha-induced expression of anti-apoptotic NF-kappaB target genes Bfl-1/A1, a prosurvival Bcl-2 homologue, and resulted in sensitizing HT-1080 cells to TNF-alpha-induced cell death. Similarly, these compounds also suppressed the LPS-induced inducible nitric oxide synthase expression and nitric oxide production. Taken together, manassantins A and B could be valuable candidate for the intervention of NF-kappaB-dependent pathological condition such as i