Science.gov

Sample records for active robotic training

  1. [The robotic surgeon training].

    PubMed

    Crestani, Alessandro; Rossanese, Marta; Abbinante, Maria; Calandriello, Mattia; Kungulli, Afrovita; Giannarini, Gianluca; Ficarra, Vincenzo

    2015-10-01

    The widespread robotic surgery in the world highlighted the relevance of the training programs for young urologists and residents. In the last years, urologic societies and some independent robotic surgeons strongly worked to standardize some general and specific training modules. Theoretical and practical sections of robotic training programs have been recently specified. The role of simulators, dry and wet laboratories, bedside assistance, and modular (step-by-step) training at console represent the most relevant elements of robotic surgeon training. Ideally, these didactic tools should be available in modern training centers. The development of structured robotic training programs should be considered as one of the priorities that the urologic community must take into account in the near future.

  2. Competencies Identification for Robotics Training.

    ERIC Educational Resources Information Center

    Tang, Le D.

    A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…

  3. Robot assisted treadmill training: mechanisms and training strategies.

    PubMed

    Hussain, Shahid; Xie, Sheng Quan; Liu, Guangyu

    2011-06-01

    The rehabilitation engineering community is working towards the development of robotic devices that can assist during gait training of patients suffering from neurologic injuries such as stroke and spinal cord injuries (SCI). The field of robot assisted treadmill training has rapidly evolved during the last decade. The robotic devices can provide repetitive, systematic and prolonged gait training sessions. This paper presents a review of the treadmill based robotic gait training devices. An overview of design configurations and actuation methods used for these devices is provided. Training strategies designed to actively involve the patient in robot assisted treadmill training are studied. These training strategies assist the patient according to the level of disability and type of neurologic injury. Although the efficacy of these training strategies is not clinically proven, adaptive strategies may result in substantial improvements. We end our review with a discussion covering major advancements made at device design and training strategies level and potential challenges to the field.

  4. A robotic system to train activities of daily living in a virtual environment.

    PubMed

    Guidali, Marco; Duschau-Wicke, Alexander; Broggi, Simon; Klamroth-Marganska, Verena; Nef, Tobias; Riener, Robert

    2011-10-01

    In the past decade, several arm rehabilitation robots have been developed to assist neurological patients during therapy. Early devices were limited in their number of degrees of freedom and range of motion, whereas newer robots such as the ARMin robot can support the entire arm. Often, these devices are combined with virtual environments to integrate motivating game-like scenarios. Several studies have shown a positive effect of game-playing on therapy outcome by increasing motivation. In addition, we assume that practicing highly functional movements can further enhance therapy outcome by facilitating the transfer of motor abilities acquired in therapy to daily life. Therefore, we present a rehabilitation system that enables the training of activities of daily living (ADL) with the support of an assistive robot. Important ADL tasks have been identified and implemented in a virtual environment. A patient-cooperative control strategy with adaptable freedom in timing and space was developed to assist the patient during the task. The technical feasibility and usability of the system was evaluated with seven healthy subjects and three chronic stroke patients.

  5. A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation.

    PubMed

    Krishnan, Chandramouli; Ranganathan, Rajiv; Dhaher, Yasin Y; Rymer, William Z

    2013-01-01

    Robot-aided gait therapy offers a promising approach towards improving gait function in individuals with neurological disorders such as stroke or spinal cord injury. However, incorporation of appropriate control strategies is essential for actively engaging the patient in the therapeutic process. Although several control algorithms (such as assist-as-needed and error augmentation) have been proposed to improve active patient participation, we hypothesize that the therapeutic benefits of these control algorithms can be greatly enhanced if combined with a motor learning task to facilitate neural reorganization and motor recovery. Here, we describe an active robotic training approach (patient-cooperative robotic gait training combined with a motor learning task) using the Lokomat and pilot-tested whether this approach can enhance active patient participation during training. Six neurologically intact adults and three chronic stroke survivors participated in this pilot feasibility study. Participants walked in a Lokomat while simultaneously performing a foot target-tracking task that necessitated greater hip and knee flexion during the swing phase of the gait. We computed the changes in tracking error as a measure of motor performance and changes in muscle activation as a measure of active subject participation. Repeated practice of the motor-learning task resulted in significant reductions in target-tracking error in all subjects. Muscle activation was also significantly higher during active robotic training compared to simply walking in the robot. The data from stroke participants also showed a trend similar to neurologically intact participants. These findings provide a proof-of-concept demonstration that combining robotic gait training with a motor learning task enhances active participation.

  6. A Pilot Study on the Feasibility of Robot-Aided Leg Motor Training to Facilitate Active Participation

    PubMed Central

    Krishnan, Chandramouli; Ranganathan, Rajiv; Dhaher, Yasin Y.; Rymer, William Z.

    2013-01-01

    Robot-aided gait therapy offers a promising approach towards improving gait function in individuals with neurological disorders such as stroke or spinal cord injury. However, incorporation of appropriate control strategies is essential for actively engaging the patient in the therapeutic process. Although several control algorithms (such as assist-as-needed and error augmentation) have been proposed to improve active patient participation, we hypothesize that the therapeutic benefits of these control algorithms can be greatly enhanced if combined with a motor learning task to facilitate neural reorganization and motor recovery. Here, we describe an active robotic training approach (patient-cooperative robotic gait training combined with a motor learning task) using the Lokomat and pilot-tested whether this approach can enhance active patient participation during training. Six neurologically intact adults and three chronic stroke survivors participated in this pilot feasibility study. Participants walked in a Lokomat while simultaneously performing a foot target-tracking task that necessitated greater hip and knee flexion during the swing phase of the gait. We computed the changes in tracking error as a measure of motor performance and changes in muscle activation as a measure of active subject participation. Repeated practice of the motor-learning task resulted in significant reductions in target-tracking error in all subjects. Muscle activation was also significantly higher during active robotic training compared to simply walking in the robot. The data from stroke participants also showed a trend similar to neurologically intact participants. These findings provide a proof-of-concept demonstration that combining robotic gait training with a motor learning task enhances active participation. PMID:24146986

  7. A Sit-to-Stand Training Robot and Its Performance Evaluation: Dynamic Analysis in Lower Limb Rehabilitation Activities

    NASA Astrophysics Data System (ADS)

    Cao, Enguo; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko

    In many countries in which the phenomenon of population aging is being experienced, motor function recovery activities have aroused much interest. In this paper, a sit-to-stand rehabilitation robot utilizing a double-rope system was developed, and the performance of the robot was evaluated by analyzing the dynamic parameters of human lower limbs. For the robot control program, an impedance control method with a training game was developed to increase the effectiveness and frequency of rehabilitation activities, and a calculation method was developed for evaluating the joint moments of hip, knee, and ankle. Test experiments were designed, and four subjects were requested to stand up from a chair with assistance from the rehabilitation robot. In the experiments, body segment rotational angles, trunk movement trajectories, rope tensile forces, ground reaction forces (GRF) and centers of pressure (COP) were measured by sensors, and the moments of ankle, knee and hip joint were real-time calculated using the sensor-measured data. The experiment results showed that the sit-to-stand rehabilitation robot with impedance control method could maintain the comfortable training postures of users, decrease the moments of limb joints, and enhance training effectiveness. Furthermore, the game control method could encourage collaboration between the brain and limbs, and allow for an increase in the frequency and intensity of rehabilitation activities.

  8. [Robot-aided training in rehabilitation].

    PubMed

    Hachisuka, Kenji

    2010-02-01

    Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.

  9. Robotics Technician Training at Macomb Community College.

    ERIC Educational Resources Information Center

    Lynch, Edward J.

    Approved in 1979, the robotics technician training program at Macomb County Community College (MCC) in Warren (Michigan) provides students with training in hydraulics and electronics as well as with hands-on training in the area of robotics. Furthermore, the program faculty includes individuals with work experience in electronics, fluid power, and…

  10. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI.

  11. Development of Activity-Related Muscle Fatigue during Robot-Mediated Upper Limb Rehabilitation Training in Persons with Multiple Sclerosis: A Pilot Trial.

    PubMed

    Octavia, Johanna Renny; Feys, Peter; Coninx, Karin

    2015-01-01

    Robot-assisted rehabilitation facilitates high-intensity training of the impaired upper limb in neurological rehabilitation. It has been clinically observed that persons with Multiple Sclerosis (MS) have difficulties in sustaining the training intensity during a session due to the development of activity-related muscle fatigue. An experimental observational pilot study was conducted to examine whether or not the muscle fatigue develops in MS patients during one session of robot-assisted training within a virtual learning environment. Six MS patients with upper limb impairment (motricity index ranging from 50 to 91/100) and six healthy persons completed five training bouts of three minutes each performing lifting tasks, while EMG signals of anterior deltoid and lower trapezius muscles were measured and their subjective perceptions on muscle fatigue were registered. Decreased performance and higher subjective fatigue perception were present in the MS group. Increased mean EMG amplitudes and subjective perception levels on muscle fatigue were observed in both groups. Muscle fatigue development during 15' training has been demonstrated in the arm of MS patients, which influences the sustainability of training intensity in MS patients. To optimize the training performance, adaptivity based on the detection of MS patient's muscle fatigue could be provided by means of training program adjustment.

  12. Effects of 4-Week Intensive Active-Resistive Training with an EMG-Based Exoskeleton Robot on Muscle Strength in Older People: A Pilot Study.

    PubMed

    Son, Jongsang; Ryu, Jeseong; Ahn, Soonjae; Kim, Eun Joo; Lee, Jung Ah; Kim, Youngho

    2016-01-01

    This study aims to investigate the idea that an active-resistive training with an EMG-based exoskeleton robot could be beneficial to muscle strength and antagonist muscle cocontraction control after 4-week intensive elbow flexion/extension training. Three older people over 65 years participated the training for an hour per session and completed total 20 sessions during four weeks. Outcome measures were chosen as the maximum joint torque and cocontraction ratio between the biceps/triceps brachii muscles at pre-/post-training. The Wilcoxon signed-ranks test was performed to evaluate paired difference for the outcome measures. As a result, there was no significant difference in the maximum flexion or extension torque at pre- and post-training. However, the cocontraction ratio of the triceps brachii muscle as the antagonist was significantly decreased by 9.8% after the 4-week intensive training. The active-resistive training with the exoskeleton robot in the older people yielded a promising result, showing significant changes in the antagonist muscle cocontraction.

  13. From training to robot behavior: towards custom scenarios for robotics in training programs for ASD.

    PubMed

    Gillesen, J C C; Barakova, E I; Huskens, B E B M; Feijs, L M G

    2011-01-01

    Successful results have been booked with using robotics in therapy interventions for autism spectrum disorders (ASD). However, to make the best use of robots, the behavior of the robot needs to be tailored to the learning objectives and personal characteristics of each unique individual with ASD. Currently training practices include adaptation of the training programs to the condition of each individual client, based on the particular learning goals or the mood of the client. To include robots in such training will imply that the trainers are enabled to control a robot through an intuitive interface. For this purpose we use a visual programming environment called TiViPE as an interface between robot and trainer, where scenarios for specific learning objectives can easily be put together as if they were graphical LEGO-like building blocks. This programming platform is linked to the NAO robot from Aldebaran Robotics. A process flow for converting trainers' scenarios was developed to make sure the gist of the original scenarios was kept intact. We give an example of how a scenario is processed, and implemented into the clinical setting, and how detailed parts of a scenario can be developed.

  14. Training industrial robots with gesture recognition techniques

    NASA Astrophysics Data System (ADS)

    Piane, Jennifer; Raicu, Daniela; Furst, Jacob

    2013-01-01

    In this paper we propose to use gesture recognition approaches to track a human hand in 3D space and, without the use of special clothing or markers, be able to accurately generate code for training an industrial robot to perform the same motion. The proposed hand tracking component includes three methods: a color-thresholding model, naïve Bayes analysis and Support Vector Machine (SVM) to detect the human hand. Next, it performs stereo matching on the region where the hand was detected to find relative 3D coordinates. The list of coordinates returned is expectedly noisy due to the way the human hand can alter its apparent shape while moving, the inconsistencies in human motion and detection failures in the cluttered environment. Therefore, the system analyzes the list of coordinates to determine a path for the robot to move, by smoothing the data to reduce noise and looking for significant points used to determine the path the robot will ultimately take. The proposed system was applied to pairs of videos recording the motion of a human hand in a „real‟ environment to move the end-affector of a SCARA robot along the same path as the hand of the person in the video. The correctness of the robot motion was determined by observers indicating that motion of the robot appeared to match the motion of the video.

  15. Canadian space robotic activities

    NASA Astrophysics Data System (ADS)

    Sallaberger, Christian; Space Plan Task Force, Canadian Space Agency

    The Canadian Space Agency has chosen space robotics as one of its key niche areas, and is currently preparing to deliver the first flight elements for the main robotic system of the international space station. The Mobile Servicing System (MSS) is the Canadian contribution to the international space station. It consists of three main elements. The Space Station Remote Manipulator System (SSRMS) is a 7-metre, 7-dof, robotic arm. The Special Purpose Dextrous Manipulator (SPDM), a smaller 2-metre, 7-dof, robotic arm can be used independently, or attached to the end of the SSRMS. The Mobile Base System (MBS) will be used as a support platform and will also provide power and data links for both the SSRMS and the SPDM. A Space Vision System (SVS) has been tested on Shuttle flights, and is being further developed to enhance the autonomous capabilities of the MSS. The CSA also has a Strategic Technologies in Automation and Robotics Program which is developing new technologies to fulfill future robotic space mission needs. This program is currently developing in industry technological capabilities in the areas of automation of operations, autonomous robotics, vision systems, trajectory planning and object avoidance, tactile and proximity sensors, and ground control of space robots. Within the CSA, a robotic testbed and several research programs are also advancing technologies such as haptic devices, control via head-mounted displays, predictive and preview displays, and the dynamic characterization of robotic arms. Canada is also now developing its next Long Term Space Plan. In this context, a planetary exploration program is being considered, which would utilize Canadian space robotic technologies in this new arena.

  16. Survey of robotic surgery training in obstetrics and gynecology residency.

    PubMed

    Gobern, Joseph M; Novak, Christopher M; Lockrow, Ernest G

    2011-01-01

    To examine the status of resident training in robotic surgery in obstetrics and gynecology programs in the United States, an online survey was emailed to residency program directors of 247 accredited programs identified through the Accreditation Council for Graduate Medical Education website. Eighty-three of 247 program directors responded, representing a 34% response rate. Robotic surgical systems for gynecologic procedures were used at 65 (78%) institutions. Robotic surgery training was part of residency curriculum at 48 (58%) residency programs. Half of respondents were undecided on training effectiveness. Most program directors believed the role of robotic surgery would increase and play a more integral role in gynecologic surgery. Robotic surgery was widely reported in residency training hospitals with limited availability of effective resident training. Robotic surgery training in obstetrics and gynecology residency needs further assessment and may benefit from a structured curriculum.

  17. Tools for understanding and optimizing robotic gait training.

    PubMed

    Reinkensmeyer, David J; Aoyagi, Daisuke; Emken, Jeremy L; Galvez, Jose A; Ichinose, Wade; Kerdanyan, Grigor; Maneekobkunwong, Somboom; Minakata, Koyiro; Nessler, Jeff A; Weber, Roger; Roy, Roland R; de Leon, Ray; Bobrow, James E; Harkema, Susan J; Edgerton, V Reggie

    2006-01-01

    This article reviews several tools we have developed to improve the understanding of locomotor training following spinal cord injury (SCI), with a view toward implementing locomotor training with robotic devices. We have developed (1) a small-scale robotic device that allows testing of locomotor training techniques in rodent models, (2) an instrumentation system that measures the forces and motions used by experienced human therapists as they manually assist leg movement during locomotor training, (3) a powerful, lightweight leg robot that allows investigation of motor adaptation during stepping in response to force-field perturbations, and (4) computational models for locomotor training. Results from the initial use of these tools suggest that an optimal gait-training robot will minimize disruptive sensory input, facilitate appropriate sensory input and gait mechanics, and intelligently grade and time its assistance. Currently, we are developing a pneumatic robot designed to meet these specifications as it assists leg and pelvic motion of people with SCI.

  18. Robot safety training at Lawrence Livermore National Laboratory

    SciTech Connect

    McMahon, T.T.; Sievers, R.H.

    1992-10-01

    The Lawrence Livermore National Laboratory (LLNL) is developing applications of commercially available and advanced robotics. These involve multiple installations of test and demonstration robots and extensive concurrent research and development projects. LLNL robotic applications use many researchers and technicians requiring access to the equipment on tight schedules, using sophisticated support and auxiliary equipment, with concurrent programming and hardware installation and modification. The early recognition of the special safety problems inherent with the equipment and development operations mandated a strict compliance with the best available safety guidance. This has resulted in safety input in the system design, equipment layout, means of safeguarding, and safety training as described in the current and proposed American National Standard for Industrial Robots and Robot Systems-Safety Requirements. LLNL has implemented a model robot safety training program that is required for all employees that interact with the fixed robotic systems. The LLNL experience and performance has led to the Laboratory being made responsible for preparation of the industrial robots safety chapter for the Department of Energy Technical Safety Reference Manual. This paper describes the robotic installations, the safety training courses, lessons learned from the training, and recommendations for future robot safety training.

  19. Design and Development Issues for Educational Robotics Training Camps

    ERIC Educational Resources Information Center

    Ucgul, Memet; Cagiltay, Kursat

    2014-01-01

    The aim of this study is to explore critical design issues for educational robotics training camps and to describe how these factors should be implemented in the development of such camps. For this purpose, two robotics training camps were organized for elementary school students. The first camp had 30 children attendees, and the second had 22. As…

  20. 2012 Robotics Activities at JPL

    NASA Technical Reports Server (NTRS)

    Volpe, Richard

    2012-01-01

    The Robotics Section of the Jet Propulsion Laboratory (JPL), California Institute of Technology, is engaged in a full spectrum of flight project and research activities. This paper will provide an overview of these efforts, and discuss the recent accomplishments and future directions of them. Specific activities will be high- lighted based on their level of accomplishment, impact on the community, maturity, or novelty. Robotics activities on flight projects are a significant subset of the full effort for these large missions. Complementing flight activities is a diverse set of research efforts for NASA and other U.S. Government agencies. Future directions will be motivated by NASA and other sponsor objectives, as well as success experienced in these current endeavours.

  1. An intrinsically compliant robotic orthosis for treadmill training.

    PubMed

    Hussain, Shahid; Xie, Sheng Quan; Jamwal, Prashant K; Parsons, John

    2012-12-01

    A new intrinsically compliant robotic orthosis powered by pneumatic muscle actuators (PMA) was developed for treadmill training of neurologically impaired subjects. The robotic orthosis has hip and knee sagittal plane rotations actuated by antagonistic configuration of PMA. The orthosis has passive mechanisms to allow vertical and lateral translations of the trunk and a passive hip abduction/adduction joint. A foot lifter having a passive spring mechanism was used to ensure sufficient foot clearance during swing phase. A trajectory tracking controller was implemented to evaluate the performance of the robotic orthosis on a healthy subject. The results show that the robotic orthosis is able to perform the treadmill training task by providing sufficient torques to achieve physiological gait patterns and a realistic stepping experience. The orthosis is a new addition to the rapidly advancing field of robotic orthoses for treadmill training.

  2. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.

    PubMed

    Ho, N S K; Tong, K Y; Hu, X L; Fung, K L; Wei, X J; Rong, W; Susanto, E A

    2011-01-01

    An exoskeleton hand robotic training device is specially designed for persons after stroke to provide training on their impaired hand by using an exoskeleton robotic hand which is actively driven by their own muscle signals. It detects the stroke person's intention using his/her surface electromyography (EMG) signals from the hemiplegic side and assists in hand opening or hand closing functional tasks. The robotic system is made up of an embedded controller and a robotic hand module which can be adjusted to fit for different finger length. Eight chronic stroke subjects had been recruited to evaluate the effects of this device. The preliminary results showed significant improvement in hand functions (ARAT) and upper limb functions (FMA) after 20 sessions of robot-assisted hand functions task training. With the use of this light and portable robotic device, stroke patients can now practice more easily for the opening and closing of their hands at their own will, and handle functional daily living tasks at ease. A video is included together with this paper to give a demonstration of the hand robotic system on chronic stroke subjects and it will be presented in the conference.

  3. Training strategies for a lower limb rehabilitation robot based on impedance control.

    PubMed

    Hu, Jin; Hou, Zengguang; Zhang, Feng; Chen, Yixiong; Li, Pengfeng

    2012-01-01

    This paper proposes three training strategies based on impedance control, including passive training, damping-active training and spring-active training, for a 3-DOF lower limb rehabilitation robot designed for patients with paraplegia or hemiplegia. Controllers with similar structure are developed for these training strategies, consisting of dual closed loops, the outer impedance control loop and the inner position/velocity control loop, known as position-based impedance control method. Simulation results verify that position-based impedance control approach is feasible to accomplish the training strategies.

  4. Arm-eye coordination test to objectively quantify motor performance and muscles activation in persons after stroke undergoing robot-aided rehabilitation training: a pilot study.

    PubMed

    Song, Rong; Tong, Kai-Yu; Hu, Xiaoling; Li, Le; Sun, Rui

    2013-09-01

    This study designed an arm-eye coordination test to investigate the effectiveness of the robot-aided rehabilitation for persons after stroke. Six chronic poststroke subjects were recruited to attend a 20-session robot-aided rehabilitation training of elbow joint. Before and after the training program, subjects were asked to perform voluntary movements of elbow flection and extension by following sinusoidal trajectories at different velocities with visual feedback on their joint positions. The elbow angle and the electromyographic signal of biceps and triceps as well as clinical scores were evaluated together with the parameters. Performance was objectively quantified by root mean square error (RMSE), root mean square jerk (RMSJ), range of motion (ROM), and co-contraction index (CI). After 20 sessions, RMSE and ROM improved significantly in both the affected and the unaffected side based on two-way ANOVA (P < 0.05). There was significant lower RMSJ in the affected side at higher velocities (P < 0.05). There was significant negative correlation between average RMSE with different tracking velocities and Fugl-Meyer shoulder-elbow score (P < 0.05). There was also significant negative correlation between average RMSE and average ROM (P < 0.05), and moderate nonsignificant negative correlation with RMSJ, and CI. The characterization of velocity-dependent deficiencies, monitoring of training-induced improvement, and the correlation between quantitative parameters and clinical scales could enable the exploration of effects of different types of treatment and design progress-based training method to accelerate the processes of recovery.

  5. Rapid plasticity of motor corticospinal system with robotic reach training.

    PubMed

    Kantak, S S; Jones-Lush, L M; Narayanan, P; Judkins, T N; Wittenberg, G F

    2013-09-05

    Goal-directed reaching is important for the activities of daily living. Populations of neurons in the primary motor cortex that project to spinal motor circuits are known to represent the kinematics of reaching movements. We investigated whether repetitive practice of goal-directed reaching movements induces use-dependent plasticity of those kinematic characteristics, in a manner similar to finger movements, as had been shown previously. Transcranial magnetic stimulation (TMS) was used to evoke upper extremity movements while the forearm was resting in a robotic cradle. Plasticity was measured by the change in kinematics of these evoked movements following goal-directed reaching practice. Baseline direction of TMS-evoked arm movements was determined for each subject. Subjects then practiced three blocks of 160 goal-directed reaching movements in a direction opposite to the baseline direction (14 cm reach 180° from baseline direction) against a 75-Nm spring field. Changes in TMS-evoked whole arm movements were assessed after each practice block and after 5 min following the end of practice. Direction and the position of the point of peak velocity of TMS-evoked movements were significantly altered following training and at a 5-min interval following training, while amplitude did not show significant changes. This was accompanied by changes in the motor-evoked potentials (MEPs) of the shoulder and elbow agonist muscles that partly explained the change in direction, mainly by increase in agonist MEP, without significant changes in antagonists. These findings demonstrate that the arm representation accessible by motor cortical stimulation under goes rapid plasticity induced by goal-directed robotic reach training in healthy subjects.

  6. Automation, robotics, and inflight training for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1986-01-01

    The automation, robotics, and inflight training requirements of manned Mars missions will be supported by similar capabilities developed for the space station program. Evolutionary space station onboard training facilities will allow the crewmembers to minimize the amount of training received on the ground by providing extensive onboard access to system and experiment malfunction procedures, maintenance procedures, repair procedures, and associated video sequences. Considerable on-the-job training will also be conducted for space station management, mobile remote manipulator operations, proximity operations with the Orbital Maneuvering Vehicle (and later the Orbit Transfer Vehicle), and telerobotics and mobile robots. A similar approach could be used for manned Mars mission training with significant additions such as high fidelity image generation and simulation systems such as holographic projection systems for Mars landing, ascent, and rendezvous training. In addition, a substantial increase in the use of automation and robotics for hazardous and tedious tasks would be expected for Mars mission. Mobile robots may be used to assist in the assembly, test and checkout of the Mars spacecraft, in the handling of nuclear components and hazardous chemical propellent transfer operations, in major spacecraft repair tasks which might be needed (repair of a micrometeroid penetration, for example), in the construction of a Mars base, and for routine maintenance of the base when unmanned.

  7. Towards more effective robotic gait training for stroke rehabilitation: a review

    PubMed Central

    2012-01-01

    Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated. PMID:22953989

  8. Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke.

    PubMed

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-01-01

    An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training on muscular coordination was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5 times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Improvements were found in the muscle co-ordination between the antagonist muscle pair (flexor digitorum and extensor digitorum) as measured by muscle co-contractions in EMG signals; and also in the reduction of excessive muscle activities in the biceps brachii. Reduced spasticity in the fingers was also observed as measured by the Modified Ashworth Score.

  9. An interactive Virtual Reality simulation system for robot control and operator training

    SciTech Connect

    Miner, N.E.; Stansfield, S.A.

    1993-11-01

    Robotic systems are often very complex and difficult to operate, especially as multiple robots are integrated to accomplish difficult tasks. In addition, training the operators of these complex robotic systems is time-consuming and costly. In this paper, a virtual reality based robotic control system is presented. The virtual reality system provides a means by which operators can operate, and be trained to operate, complex robotic systems in an intuitive, cost-effective way. Operator interaction with the robotic system is at a high, task-oriented, level. Continuous state monitoring prevents illegal robot actions and provides interactive feedback to the operator and real-time training for novice users.

  10. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  11. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    PubMed Central

    2012-01-01

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of

  12. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke.

    PubMed

    Frisoli, Antonio; Procopio, Caterina; Chisari, Carmelo; Creatini, Ilaria; Bonfiglio, Luca; Bergamasco, Massimo; Rossi, Bruno; Carboncini, Maria Chiara

    2012-06-09

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients' group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0-66 points), Modified Ashworth scale (MA, 0-60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of elbow

  13. The immediate intervention effects of robotic training in patients after anterior cruciate ligament reconstruction

    PubMed Central

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Ye, Miao

    2016-01-01

    [Purpose] The purpose of this study was to examine the immediate effects of robot-assisted therapy on functional activity level after anterior cruciate ligament reconstruction. [Subjects and Methods] Participants included 10 patients (8 males and 2 females) following anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy and treadmill exercise on different days. The Timed Up-and-Go test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and maximal extensor strength of isokinetic movement of the knee joint were evaluated in both groups before and after the experiment. [Results] The results for the Timed Up-and-Go Test and the 10-Meter Walk Test improved in the robot-assisted rehabilitation group. Surface electromyography of the vastus medialis muscle showed significant increases in maximum and average discharge after the intervention. [Conclusion] The results suggest that walking ability and muscle strength can be improved by robotic training. PMID:27512258

  14. Development and feasibility study of a sensory-enhanced robot-aided motor training in stroke rehabilitation.

    PubMed

    Liu, W; Mukherjee, M; Tsaur, Y; Kim, S H; Liu, H; Natarajan, P; Agah, A

    2009-01-01

    Functional impairment of the upper limb is a major challenge faced by many stroke survivors. The present study aimed at developing a novel sensory-enhanced robot-aided motor training program and testing its feasibility in stroke rehabilitation. A specially designed robot handle was developed as an attachment to the Inmotion2 robotic system. This handle provided sensory stimulation through pins connected to small servo motors inside the handle. Vibration of the pins was activated during motor training once pressure on the handle reached a certain threshold indicating an active motion of the study subject. Nine chronic stroke survivors were randomly assigned to either a sensory-enhanced robot-aided motor training group (SERMT) or robot-aided motor training only group (RMT). All participants underwent a 6-week motor training program, performing target reaching movements with the specialized handle with or without vibration stimulation during training. Motor Status (MS) scores were measured for functional outcome prior to and after training. The results showed significant improvement in the total MS scores after training in both experimental groups. However, MS sub-scores for the shoulder/elbow and the wrist/hand increased significantly only in the SERMT group (p<0.05). Future studies are required to confirm these preliminary findings.

  15. Design of rehabilitation robot hand for fingers CPM training

    NASA Astrophysics Data System (ADS)

    Zhou, Hongfu; Chan, T. W.; Tong, K. Y.; Kwong, K. K.; Yao, Xifan

    2008-10-01

    This paper presents a low-cost prototype for rehabilitation robot aide patient do hands CPM (continuous passive motion) training. The design of the prototype is based on the principle of Rutgers Master II glove, but it is better in performance for more improvement made. In the design, it uses linear motors to replace pneumatic actuators to make the product more portable and mobile. It increases finger training range to 180 degree for the full range training of hand finger holding and extension. Also the prototype can not only be wearing on palm and fore arm do training for face to face with finger move together, but also be put in the opposite hand glove wear direction for hand rehabilitation training. During the research, Solidworks is used as the tool for mechanical design and movement simulation. It proved through experiment that the prototype made in the research is appropriate for hand do CPM training.

  16. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: focus on dependent ambulators.

    PubMed

    Cho, Duk Youn; Park, Si-Woon; Lee, Min Jin; Park, Dae Sung; Kim, Eun Joo

    2015-10-01

    [Purpose] The purpose of this study was to confirm the effect of robot-assisted gait training on the balance and gait ability of stroke patients who were dependent ambulators. [Subjects and Methods] Twenty stroke patients participated in this study. The participants were allocated to either group 1, which received robot-assisted gait training for 4 weeks followed by conventional physical therapy for 4 weeks, or group 2, which received the same treatments in the reverse order. Robot-assisted gait training was conducted for 30 min, 3 times a week for 4 weeks. The Berg Balance Scale, Modified Functional Reach Test, Functional Ambulation Category, Modified Ashworth Scale, Fugl-Meyer Assessment, Motricity Index, and Modified Barthel Index were assessed before and after treatment. To confirm the characteristics of patients who showed a significant increase in Berg Balance Scale after robot-assisted gait training as compared with physical therapy, subgroup analysis was conducted. [Results] Only lateral reaching and the Functional Ambulation Category were significantly increased following robot-assisted gait training. Subscale analyses identified 3 patient subgroups that responded well to robot-assisted gait training: a subgroup with hemiplegia, a subgroup in which the guidance force needed to be decreased to needed to be decreased to ≤45%, and a subgroup in which weight bearing was decreased to ≤21%. [Conclusion] The present study showed that robot-assisted gait training is not only effective in improving balance and gait performance but also improves trunk balance and motor skills required by high-severity stroke patients to perform activities daily living. Moreover, subscale analyses identified subgroups that responded well to robot-assisted gait training.

  17. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: focus on dependent ambulators

    PubMed Central

    Cho, Duk Youn; Park, Si-Woon; Lee, Min Jin; Park, Dae Sung; Kim, Eun Joo

    2015-01-01

    [Purpose] The purpose of this study was to confirm the effect of robot-assisted gait training on the balance and gait ability of stroke patients who were dependent ambulators. [Subjects and Methods] Twenty stroke patients participated in this study. The participants were allocated to either group 1, which received robot-assisted gait training for 4 weeks followed by conventional physical therapy for 4 weeks, or group 2, which received the same treatments in the reverse order. Robot-assisted gait training was conducted for 30 min, 3 times a week for 4 weeks. The Berg Balance Scale, Modified Functional Reach Test, Functional Ambulation Category, Modified Ashworth Scale, Fugl-Meyer Assessment, Motricity Index, and Modified Barthel Index were assessed before and after treatment. To confirm the characteristics of patients who showed a significant increase in Berg Balance Scale after robot-assisted gait training as compared with physical therapy, subgroup analysis was conducted. [Results] Only lateral reaching and the Functional Ambulation Category were significantly increased following robot-assisted gait training. Subscale analyses identified 3 patient subgroups that responded well to robot-assisted gait training: a subgroup with hemiplegia, a subgroup in which the guidance force needed to be decreased to needed to be decreased to ≤45%, and a subgroup in which weight bearing was decreased to ≤21%. [Conclusion] The present study showed that robot-assisted gait training is not only effective in improving balance and gait performance but also improves trunk balance and motor skills required by high-severity stroke patients to perform activities daily living. Moreover, subscale analyses identified subgroups that responded well to robot-assisted gait training. PMID:26644642

  18. Robotics

    SciTech Connect

    Scheide, A.W.

    1983-11-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS.

  19. Robot Guided 'Pen Skill' Training in Children with Motor Difficulties.

    PubMed

    Shire, Katy A; Hill, Liam J B; Snapp-Childs, Winona; Bingham, Geoffrey P; Kountouriotis, Georgios K; Barber, Sally; Mon-Williams, Mark

    2016-01-01

    Motor deficits are linked to a range of negative physical, social and academic consequences. Haptic robotic interventions, based on the principles of sensorimotor learning, have been shown previously to help children with motor problems learn new movements. We therefore examined whether the training benefits of a robotic system would generalise to a standardised test of 'pen-skills', assessed using objective kinematic measures [via the Clinical Kinematic Assessment Tool, CKAT]. A counterbalanced, cross-over design was used in a group of 51 children (37 male, aged 5-11 years) with manual control difficulties. Improved performance on a novel task using the robotic device could be attributed to the intervention but there was no evidence of generalisation to any of the CKAT tasks. The robotic system appears to have the potential to support motor learning, with the technology affording numerous advantages. However, the training regime may need to target particular manual skills (e.g. letter formation) in order to obtain clinically significant improvements in specific skills such as handwriting.

  20. Locomotion training of legged robots using hybrid machine learning techniques

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  1. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.

    PubMed

    Colombo, Roberto; Sterpi, Irma; Mazzone, Alessandra; Delconte, Carmen; Pisano, Fabrizio

    2012-05-01

    In robot-assisted neurorehabilitation, matching the task difficulty level to the patient's needs and abilities, both initially and as the relearning process progresses, can enhance the effectiveness of training and improve patients' motivation and outcome. This study presents a Progressive Task Regulation algorithm implemented in a robot for upper limb rehabilitation. It evaluates the patient's performance during training through the computation of robot-measured parameters, and automatically changes the features of the reaching movements, adapting the difficulty level of the motor task to the patient's abilities. In particular, it can select different types of assistance (time-triggered, activity-triggered, and negative assistance) and implement varied therapy practice to promote generalization processes. The algorithm was tuned by assessing the performance data obtained in 22 chronic stroke patients who underwent robotic rehabilitation, in which the difficulty level of the task was manually adjusted by the therapist. Thus, we could verify the patient's recovery strategies and implement task transition rules to match both the patient's and therapist's behavior. In addition, the algorithm was tested in a sample of five chronic stroke patients. The findings show good agreement with the therapist decisions so indicating that it could be useful for the implementation of training protocols allowing individualized and gradual treatment of upper limb disabilities in patients after stroke. The application of this algorithm during robot-assisted therapy should allow an easier management of the different motor tasks administered during training, thereby facilitating the therapist's activity in the treatment of different pathologic conditions of the neuromuscular system.

  2. Advanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient

    PubMed Central

    Lu, Zhiyuan; Tong, Kai-yu; Shin, Henry; Li, Sheng; Zhou, Ping

    2017-01-01

    A hand exoskeleton driven by myoelectric pattern recognition was designed for stroke rehabilitation. It detects and recognizes the user’s motion intent based on electromyography (EMG) signals, and then helps the user to accomplish hand motions in real time. The hand exoskeleton can perform six kinds of motions, including the whole hand closing/opening, tripod pinch/opening, and the “gun” sign/opening. A 52-year-old woman, 8 months after stroke, made 20× 2-h visits over 10 weeks to participate in robot-assisted hand training. Though she was unable to move her fingers on her right hand before the training, EMG activities could be detected on her right forearm. In each visit, she took 4× 10-min robot-assisted training sessions, in which she repeated the aforementioned six motion patterns assisted by our intent-driven hand exoskeleton. After the training, her grip force increased from 1.5 to 2.7 kg, her pinch force increased from 1.5 to 2.5 kg, her score of Box and Block test increased from 3 to 7, her score of Fugl–Meyer (Part C) increased from 0 to 7, and her hand function increased from Stage 1 to Stage 2 in Chedoke–McMaster assessment. The results demonstrate the feasibility of robot-assisted training driven by myoelectric pattern recognition after stroke. PMID:28373860

  3. Sports Training Support Method by Self-Coaching with Humanoid Robot

    NASA Astrophysics Data System (ADS)

    Toyama, S.; Ikeda, F.; Yasaka, T.

    2016-09-01

    This paper proposes a new training support method called self-coaching with humanoid robots. In the proposed method, two small size inexpensive humanoid robots are used because of their availability. One robot called target robot reproduces motion of a target player and another robot called reference robot reproduces motion of an expert player. The target player can recognize a target technique from the reference robot and his/her inadequate skill from the target robot. Modifying the motion of the target robot as self-coaching, the target player could get advanced cognition. Some experimental results show some possibility as the new training method and some issues of the self-coaching interface program as a future work.

  4. Research activities on robotics at the Electrotechnical Laboratory

    NASA Astrophysics Data System (ADS)

    Kakikura, M.

    Various robotics research activities carried out at the Electrotechnical Laboratory in Japan are discussed. The history of robotics research, which has been going on since the late 1960s as a part of artificial-intelligence research is described. Consideration is given to the full-scale robot system called ETL-ROBOT Mk. 1, to the carpenter robot, to the intelligent locomotive-handling robot, to the flexible finger, and to the hand-eye robot. The present aspect of the research in relation to past results is examined and includes the development of new robot systems such as a vision system based on a three-dimensional model, an interactive modeling system, a direct-drive manipulator, a robot vision language, and a language-aided robotic teleoperation system. Research themes planned for the near future include manipulation techniques, sensor techniques, autonomous robot control techniques, advanced teleoperation techniques, and system totalizing techniques.

  5. Survey of minimally invasive general surgery fellows training in robotic surgery.

    PubMed

    Shaligram, Abhijit; Meyer, Avishai; Simorov, Anton; Pallati, Pradeep; Oleynikov, Dmitry

    2013-06-01

    Minimally invasive surgery fellowships offer experience in robotic surgery, the nature of which is poorly defined. The objective of this survey was to determine the current status and opportunities for robotic surgery training available to fellows training in the United States and Canada. Sixty-five minimally invasive surgery fellows, attending a fundamentals of fellowship conference, were asked to complete a questionnaire regarding their demographics and experiences with robotic surgery and training. Fifty-one of the surveyed fellows completed the questionnaire (83 % response). Seventy-two percent of respondents had staff surgeons trained in performing robotic procedures, with 55 % of respondents having general surgery procedures performed robotically at their institution. Just over half (53 %) had access to a simulation facility for robotic training. Thirty-three percent offered mechanisms for certification and 11 % offered fellowships in robotic surgery. One-third of the minimally invasive surgery fellows felt they had been trained in robotic surgery and would consider making it part of their practice after fellowship. However, most (80 %) had no plans to pursue robotic surgery fellowships. Although a large group (63 %) felt optimistic about the future of robotic surgery, most respondents (72.5 %) felt their current experience with robotic surgery training was poor or below average. There is wide variation in exposure to and training in robotic surgery in minimally invasive surgery fellowship programs in the United States and Canada. Although a third of trainees felt adequately trained for performing robotic procedures, most fellows felt that their current experience with training was not adequate.

  6. Robotic surgery training: construct validity of Global Evaluative Assessment of Robotic Skills (GEARS).

    PubMed

    Sánchez, Renata; Rodríguez, Omaira; Rosciano, José; Vegas, Liumariel; Bond, Verónica; Rojas, Aram; Sanchez-Ismayel, Alexis

    2016-09-01

    The objective of this study is to determine the ability of the GEARS scale (Global Evaluative Assessment of Robotic Skills) to differentiate individuals with different levels of experience in robotic surgery, as a fundamental validation. This is a cross-sectional study that included three groups of individuals with different levels of experience in robotic surgery (expert, intermediate, novice) their performance were assessed by GEARS applied by two reviewers. The difference between groups was determined by Mann-Whitney test and the consistency between the reviewers was studied by Kendall W coefficient. The agreement between the reviewers of the scale GEARS was 0.96. The score was 29.8 ± 0.4 to experts, 24 ± 2.8 to intermediates and 16 ± 3 to novices, with a statistically significant difference between all of them (p < 0.05). All parameters from the scale allow discriminating between different levels of experience, with exception of the depth perception item. We conclude that the scale GEARS was able to differentiate between individuals with different levels of experience in robotic surgery and, therefore, is a validated and useful tool to evaluate surgeons in training.

  7. Unsupervised Trajectory Segmentation for Surgical Gesture Recognition in Robotic Training.

    PubMed

    Despinoy, Fabien; Bouget, David; Forestier, Germain; Penet, Cedric; Zemiti, Nabil; Poignet, Philippe; Jannin, Pierre

    2016-06-01

    Dexterity and procedural knowledge are two critical skills that surgeons need to master to perform accurate and safe surgical interventions. However, current training systems do not allow us to provide an in-depth analysis of surgical gestures to precisely assess these skills. Our objective is to develop a method for the automatic and quantitative assessment of surgical gestures. To reach this goal, we propose a new unsupervised algorithm that can automatically segment kinematic data from robotic training sessions. Without relying on any prior information or model, this algorithm detects critical points in the kinematic data that define relevant spatio-temporal segments. Based on the association of these segments, we obtain an accurate recognition of the gestures involved in the surgical training task. We, then, perform an advanced analysis and assess our algorithm using datasets recorded during real expert training sessions. After comparing our approach with the manual annotations of the surgical gestures, we observe 97.4% accuracy for the learning purpose and an average matching score of 81.9% for the fully automated gesture recognition process. Our results show that trainees workflow can be followed and surgical gestures may be automatically evaluated according to an expert database. This approach tends toward improving training efficiency by minimizing the learning curve.

  8. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.

    PubMed

    Li, Lifang; Ding, Li; Chen, Na; Mao, Yurong; Huang, Dongfeng; Li, Le

    2015-01-01

    Wearable robotic devices provide safe and intensive rehabilitation, enabling repeated motions for motor function recovery in stroke patients. The aim of this small case series was to demonstrate the training effects of a three-week robotic leg orthosis, and to investigate possible mechanisms of the sensory-motor alterations and improvements by using gait analysis and EMG. Three survivors of chronic strokes participated in robot-assisted gait therapy for three weeks. EMG signals from the rectus femoris (RF), tibialis anterior (TA), biceps femoris (BF), and medial gastrocnemius (MG), as well as kinetics and kinematics data of the lower limb, were recorded before and after the training. The normalized root mean squared (RMS) values of the muscles, the joint moments, joint angles, and the results of two clinical scales (Berg Balance scale, BBS, and the lower extremity subscale of Fugl-Meyer assessment, LE-FMA) were used for analysis. All participants experienced improved balance and functional performances and increased BBS and LE-FMA scores. The EMG results showed there was an increase of the normalized RMS values of the MG and BF on the affected side. Additionally, EMG activities of the agonist and antagonist pair (i.e. RF and BF) appeared to return to similar levels after training. The peak moment of hip flexor, knee extensor, and plantar flexor, which all contributed to push-off power, were found to have increased after training. In summary, the three-week training period using the wearable RLO improved the three participants' gait performance by regaining push-off power and improved muscle activation and walking speed.

  9. Training in robotics: The learning curve and contemporary concepts in training

    PubMed Central

    Bach, Christian; Miernik, Arkadiusz; Schönthaler, Martin

    2013-01-01

    Objective To define the learning curve of robot-assisted laparoscopic surgery for prostatectomy (RALP) and upper tract procedures, and show the differences between the classical approach to training and the new concept of parallel learning. Methods This mini-review is based on the results of a Medline search using the keywords ‘da Vinci’, ‘robot-assisted laparoscopic surgery’, ‘training’, ‘teaching’ and ‘learning curve’. Results For RALP and robot-assisted upper tract surgery, a learning curve of 8–150 procedures is quoted, with most articles proposing that 30–40 cases are needed to carry out the procedure safely. There is no consensus about which endpoints should be measured. In the traditional proctored training model, the surgeon learns the procedure linearly, following the sequential order of the surgical steps. A more recent approach is to specify the relative difficulty of each step and to train the surgeon simultaneously in several steps of equal difficulty. The entire procedure is only performed after all the steps are mastered in a timely manner. Recently, a ‘warm-up’ before robotic surgery has been shown to be beneficial for successful surgery in the operating room. Conclusion There is no clear definition of the duration of the effective learning curve for RALP and robotic upper tract surgery. The concept of stepwise, parallel learning has the potential to accelerate the learning process and to make sure that initial cases are not too long. It can also be assumed that a preoperative ‘warm up’ could help significantly to improve the progress of the trainee. PMID:26019925

  10. A Behavior-Based Approach for Educational Robotics Activities

    ERIC Educational Resources Information Center

    De Cristoforis, P.; Pedre, S.; Nitsche, M.; Fischer, T.; Pessacg, F.; Di Pietro, C.

    2013-01-01

    Educational robotics proposes the use of robots as a teaching resource that enables inexperienced students to approach topics in fields unrelated to robotics. In recent years, these activities have grown substantially in elementary and secondary school classrooms and also in outreach experiences to interest students in science, technology,…

  11. Active MRI tracking for robotic assisted FUS

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Huang, Zhihong; Melzer, Andreas

    2017-03-01

    MR guided FUS is a noninvasive method producing thermal necrosis at the position of tumors with high accuracy and temperature control. Because the typical size of the ultrasound focus is smaller than the area of interested treatment tissues, focus repositioning become necessary to achieve multiple sonications to cover the whole targeted area. Using MR compatible mechanical actuators could help the ultrasound beam to reach a wider treatment range than using electrical beam steering technique and more flexibility in position the transducer. An active MR tracking technique was combined into the MRgFUS system to help locating the position of the mechanical actuator and the FUS transducer. For this study, a precise agar reference model was designed and fabricated to test the performance of the active tracking technique when it was used on the MR-compatible robotics InnoMotion™ (IBSMM, Engineering spol. s r.o. / Ltd, Czech Republic). The precision, tracking range and positioning speed of the combined robotic FUS system were evaluated in this study. Compared to the existing MR guided HIFU systems, the combined robotic system with active tracking techniques provides a potential that allows the FUS treatment to operate in a larger spatial range and with a faster speed, which is one of the main challenges for organ motion tracking.

  12. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review.

    PubMed

    Basteris, Angelo; Nijenhuis, Sharon M; Stienen, Arno H A; Buurke, Jaap H; Prange, Gerdienke B; Amirabdollahian, Farshid

    2014-07-10

    Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial.Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits.

  13. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review

    PubMed Central

    2014-01-01

    Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial. Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits. PMID:25012864

  14. Embedded Augmented Reality Training System for Dynamic Human-Robot Cooperation

    DTIC Science & Technology

    2009-10-01

    Kagami, S., Kanade, T.: Overlay what Humanoid Robot Perceives and Thinks to the Real-world by Mixed Reality System. In: ISMAR 2007: 6th IEEE and ACM...RTO-MP-HFM-169 6 - 1 Embedded Augmented Reality Training System for Dynamic Human- Robot Cooperation Jan A. Neuhoefer (Scientist) Bernhard...effectiveness and flexibility is still essential in many scenarios. Implementing the idea of mutual completion, direct human- robot cooperation appears suitable

  15. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.

    PubMed

    Madoński, R; Kordasz, M; Sauer, P

    2014-07-01

    The paper presents an application of a special case of an Active Disturbance Rejection Controller (ADRC) in governing a proper realization of basic limb rehabilitation trainings. The experimental study is performed on a model of a flexible joint manipulator, whose behavior resembles a real robotic rehabilitation device. The multidimensional character of the considered assisting mechanism makes it a nontrivial modeling and control problem. However, by the use of the ADRC approach, the modeling uncertainty in the plant is partially decoupled from the system, which increases the robustness of the whole control framework against both internal and external disturbances.

  16. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton.

    PubMed

    Frisoli, Antonio; Sotgiu, Edoardo; Procopio, Caterina; Bergamasco, Massimo; Rossi, Bruno; Chisari, Carmelo

    2011-01-01

    The distinguishing features of active exoskeletons are the capability of guiding arm movement at the level of the full kinematic chain of the human arm, and training full 3D spatial movements. We have specifically developed a PD sliding mode control for upper limb rehabilitation with gain scheduling for providing "assistance as needed", according to the force capability of the patient, and an automatic measurement of the impaired arm joint torques, to evaluate the hypertonia associated to the movement during the execution of the training exercise. Two different training tasks in Virtual Reality were devised, that make use of the above control, and allow to make a performance based evaluation of patient's motor status. The PERCRO L-Exos (Light-Exoskeleton) was used to evaluate the proposed algorithms and training exercises in two clinical case studies of patients with chronic stroke, that performed 6 weeks of robotic assisted training. Clinical evaluation (Fugl-Meyer Scale, Modified Ashworth Scale, Bimanual Activity Test) was conducted before and after treatment and compared to the scores and the quantitative indices, such as task time, position/joint error and resistance torques, associated to the training exercises.

  17. Troubleshooting of an Electromechanical System (Westinghouse PLC Controlling a Pneumatic Robot). High-Technology Training Module.

    ERIC Educational Resources Information Center

    Tucker, James D.

    This training module on the troubleshooting of an electromechanical system, The Westinghouse Programmable Logic Controller (PLC) controlling a pneumatic robot, is used for a troubleshooting unit in an electromechanical systems/robotics and automation systems course. In this unit, students locate and repair a defect in a PLC-operated machine. The…

  18. A computational model of human-robot load sharing during robot-assisted arm movement training after stroke.

    PubMed

    Reinkensmeyer, David J; Wolbrecht, Eric; Bobrow, James

    2007-01-01

    An important goal in robot-assisted movement therapy after neurologic injury is to provide an optimal amount of mechanical assistance to patients as they complete motor tasks. This paper presents a computational model of how humans interact with robotic therapy devices for the task of lifting a load to a desired height. The model predicts that an adaptive robotic therapy device will take over performance of the lifting task if the human motor control system contains a slacking term (i.e. a term that tries to the reduce force output of the arm when error is small) but the robot does not. We present experimental data from people with a chronic stroke as they train with a robotic arm orthosis that confirms this prediction. We also show that incorporating a slacking term into the robot overcomes this problem, increasing load sharing by the patient while still keeping kinematic errors small. These results provide insight into the computational mechanisms of human motor adaptation during rehabilitation therapy, and provide a framework for optimizing robot-assisted therapy.

  19. Functional impacts of exoskeleton-based rehabilitation in chronic stroke: multi-joint versus single-joint robotic training

    PubMed Central

    2013-01-01

    Stroke is a major cause of disability in the world. The activities of upper limb segments are often compromised following a stroke, impairing most daily tasks. Robotic training is now considered amongst the rehabilitation methods applied to promote functional recovery. However, the implementation of robotic devices remains a major challenge for the bioengineering and clinical community. Latest exoskeletons with multiple degrees of freedom (DOF) may become particularly attractive, because of their low apparent inertia, the multiple actuators generating large torques, and the fact that patients can move the arm in the normal wide workspace. A recent study published in JNER by Milot and colleagues underlines that training with a 6-DOF exoskeleton impacts positively on motor function in patients being in stable phase of recovery after a stroke. Also, multi-joint robotic training was not found to be superior to single-joint robotic training. Although it is often considered that rehabilitation should start from simple movements to complex functional movements as the recovery evolves, this study challenges this widespread notion whose scientific basis has remained uncertain. PMID:24354518

  20. Residency training program paradigms for teaching robotic surgical skills to urology residents.

    PubMed

    Grover, Sonal; Tan, Gerald Y; Srivastava, Abhishek; Leung, Robert A; Tewari, Ashutosh K

    2010-03-01

    The advent of laparoscopic and robotic techniques for management of urologic malignancies marked the beginning of an ever-expanding array of minimally invasive options available to cancer patients. With the popularity of these treatment modalities, there is a growing need for trained surgical oncologists who not only have a deep understanding of the disease process and adept surgical skills, but also show technical mastery in operating the equipment used to perform these techniques. Establishing a robotic prostatectomy program is a tremendous undertaking for any institution, as it involves a huge cost, especially in the purchasing and maintenance of the robot. Residency programs often face many challenges when trying to establish a balance between costs associated with robotic surgery and training of the urology residents, while maintaining an acceptable operative time. Herein we describe residency training program paradigms for teaching robotic surgical skills to urology residents. Our proposed paradigm outlines the approach to compensate for the cost involved in robotic training establishment without compromising the quality of education provided. With the potential advantages for both patients and surgeons, we contemplate that robotic-assisted surgery may become an integral component of residency training programs in the future.

  1. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.

    PubMed

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-10-01

    Loss of hand function and finger dexterity are main disabilities in the upper limb after stroke. An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Significant motor improvements were observed in the Fugl-Meyer hand/wrist and shoulder/elbow scores (p<0.05), and also in the Action Research Arm Test and Wolf Motor Function Test (p<0.05). Significant reduction in spasticity of the fingers as was measured by the Modified Ashworth Score (p<0.05). The training improved the muscle co-ordination between the antagonist muscle pair (flexor digitorum (FD) and extensor digitorum (ED)), associated with a significant reduction in the ED EMG level (p<0.05) and a significant decrease of ED and FD co-contraction during the training (p<0.05); the excessive muscle activities in the biceps brachii were also reduced significantly after the training (p<0.05).

  2. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES

    PubMed Central

    2013-01-01

    Background To date, the limited degrees of freedom (DOF) of most robotic training devices hinders them from providing functional training following stroke. We developed a 6-DOF exoskeleton (“BONES”) that allows movement of the upper limb to assist in rehabilitation. The objectives of this pilot study were to evaluate the impact of training with BONES on function of the affected upper limb, and to assess whether multijoint functional robotic training would translate into greater gains in arm function than single joint robotic training also conducted with BONES. Methods Twenty subjects with mild to moderate chronic stroke participated in this crossover study. Each subject experienced multijoint functional training and single joint training three sessions per week, for four weeks, with the order of presentation randomized. The primary outcome measure was the change in Box and Block Test (BBT). The secondary outcome measures were the changes in Fugl-Meyer Arm Motor Scale (FMA), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and quantitative measures of strength and speed of reaching. These measures were assessed at baseline, after each training period, and at a 3-month follow-up evaluation session. Results Training with the robotic exoskeleton resulted in significant improvements in the BBT, FMA, WMFT, MAL, shoulder and elbow strength, and reaching speed (p < 0.05); these improvements were sustained at the 3 month follow-up. When comparing the effect of type of training on the gains obtained, no significant difference was noted between multijoint functional and single joint robotic training programs. However, for the BBT, WMFT and MAL, inequality of carryover effects were noted; subsequent analysis on the change in score between the baseline and first period of training again revealed no difference in the gains obtained between the types of training. Conclusions Training with the 6 DOF arm exoskeleton improved motor function after chronic stroke

  3. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  4. Long-term interventions effects of robotic training on patients after anterior cruciate ligament reconstruction

    PubMed Central

    Hu, Chunying; Huang, Qiuchen; Yu, Lili; Zhou, Yue; Gu, Rui; Ye, Miao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng

    2016-01-01

    [Purpose] The aim of this study was to examine the long-term interventions effects of robot-assisted therapy rehabilitation on functional activity levels after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 8 patients (6 males and 2 females) who received anterior cruciate ligament reconstruction. The subjects participated in robot-assisted therapy lasting for one month. The Timed Up-and-Go test, 10-Meter Walk test, Functional Reach Test, surface electromyography of the vastus lateralis and vastus medialis, and extensor strength of isokinetic movement of the knee joint were evaluated before and after the intervention. [Results] The average value of the of vastus medialis EMG, Functional Reach Test, and the maximum and average extensor strength of the knee joint isokinetic movement increased significantly, and the time of the 10-Meter Walk test decreased significantly. [Conclusion] These results suggest that walking ability and muscle strength can be improved by robotic walking training as a long-term intervention. PMID:27630396

  5. Mobile Robotics Activities in DOE Laboratories

    SciTech Connect

    Ron Lujan; Jerry Harbour; John T. Feddema; Sharon Bailey; Jacob Barhen; David Reister

    2005-03-01

    This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV’s) as well as Unmanned Air Vehicles (UAV’s). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion and advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV’s and UAV’s. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.

  6. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.

    PubMed

    Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio

    2012-05-01

    In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.

  7. Robot-Assisted Task-Specific Training in Cerebral Palsy

    ERIC Educational Resources Information Center

    Krebs, Hermano I.; Ladenheim, Barbara; Hippolyte, Christopher; Monterroso, Linda; Mast, Joelle

    2009-01-01

    Our goal was to examine the feasibility of applying therapeutic robotics to children and adults with severe to moderate impairment due to cerebral palsy (CP). Pilot results demonstrated significant gains for both groups. These results suggest that robot-mediated therapy may be an effective tool to ameliorate the debilitating effects of CP and…

  8. Implementing a robotics curriculum at an academic general surgery training program: our initial experience.

    PubMed

    Winder, Joshua S; Juza, Ryan M; Sasaki, Jennifer; Rogers, Ann M; Pauli, Eric M; Haluck, Randy S; Estes, Stephanie J; Lyn-Sue, Jerome R

    2016-09-01

    The robotic surgical platform is being utilized by a growing number of hospitals across the country, including academic medical centers. Training programs are tasked with teaching their residents how to utilize this technology. To this end, we have developed and implemented a robotic surgical curriculum, and share our initial experience here. Our curriculum was implemented for all General Surgical residents for the academic year 2014-2015. The curriculum consisted of online training, readings, bedside training, console simulation, participating in ten cases as bedside first assistant, and operating at the console. 20 surgical residents were included. Residents were provided the curriculum and notified the department upon completion. Bedside assistance and operative console training were completed in the operating room through a mix of biliary, foregut, and colorectal cases. During the fiscal years of 2014 and 2015, there were 164 and 263 robot-assisted surgeries performed within the General Surgery Department, respectively. All 20 residents completed the online and bedside instruction portions of the curriculum. Of the 20 residents trained, 13/20 (65 %) sat at the Surgeon console during at least one case. Utilizing this curriculum, we have trained and incorporated residents into robot-assisted cases in an efficient manner. A successful curriculum must be based on didactic learning, reading, bedside training, simulation, and training in the operating room. Each program must examine their caseload and resident class to ensure proper exposure to this platform.

  9. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  10. Robotics at Savannah River site: activity report

    SciTech Connect

    Byrd, J.S.

    1984-09-01

    The objectives of the Robotics Technology Group at the Savannah River Laboratory are to employ modern industrial robots and to develop unique automation and robotic systems to enhance process operations at the Savannah River site (SRP and SRL). The incentives are to improve safety, reduce personnel radiation exposure, improve product quality and productivity, and to reduce operating costs. During the past year robotic systems have been installed to fill chemical dilution vials in a SRP laboratory at 772-F and remove radioactive waste materials in the SRL Californium Production Facility at 773-A. A robotic system to lubricate an extrusion press has been developed and demonstrated in the SRL robotics laboratory and is scheduled for installation at the 321-M fuel fabrication area. A mobile robot was employed by SRP for a radiation monitoring task at a waste tank top in H-Area. Several other robots are installed in the SRL robotics laboratories and application development programs are underway. The status of these applications is presented in this report.

  11. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.

    PubMed

    Pan, Lizheng; Song, Aiguo; Duan, Suolin; Xu, Baoguo

    2015-01-01

    Robot-assisted rehabilitation has been developed and proved effective for motion function recovery. Humanization is one of the crucial issues in the designing of robot-based rehabilitation system. However, most of the previous investigations focus on the simplex position control when comes to the control system design of robot-assisted passive training, and pay little attention to the dynamic adjustment according to the patient's performances. This paper presents a novel method to design the passive training system using a developed assessing-and-regulating section to online assess the subject's performances. The motion regulating mechanism is designed to dynamically adjust the training range and motion speed according to the actual performances, which is helpful to improve the humanization of the rehabilitation training. Moreover, position-based impedance control is adopted to achieve compliant trajectory tracking movement. Experimental results demonstrate that the proposed method presents good performances not only in motion control but also in humanization.

  12. Training a Network of Electronic Neurons for Control of a Mobile Robot

    NASA Astrophysics Data System (ADS)

    Vromen, T. G. M.; Steur, E.; Nijmeijer, H.

    An adaptive training procedure is developed for a network of electronic neurons, which controls a mobile robot driving around in an unknown environment while avoiding obstacles. The neuronal network controls the angular velocity of the wheels of the robot based on the sensor readings. The nodes in the neuronal network controller are clusters of neurons rather than single neurons. The adaptive training procedure ensures that the input-output behavior of the clusters is identical, even though the constituting neurons are nonidentical and have, in isolation, nonidentical responses to the same input. In particular, we let the neurons interact via a diffusive coupling, and the proposed training procedure modifies the diffusion interaction weights such that the neurons behave synchronously with a predefined response. The working principle of the training procedure is experimentally validated and results of an experiment with a mobile robot that is completely autonomously driving in an unknown environment with obstacles are presented.

  13. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial.

    PubMed

    Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Villafañe, Jorge H; Negrini, Stefano

    2016-03-01

    Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (<6 months after stroke) receiving a conventional treatment according to the Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment.

  14. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial

    PubMed Central

    Taveggia, Giovanni; Borboni, Alberto; Mulé, Chiara; Negrini, Stefano

    2016-01-01

    Robot gait training has the potential to increase the effectiveness of walking therapy. Clinical outcomes after robotic training are often not superior to conventional therapy. We evaluated the effectiveness of a robot training compared with a usual gait training physiotherapy during a standardized rehabilitation protocol in inpatient participants with poststroke hemiparesis. This was a randomized double-blind clinical trial in a postacute physical and rehabilitation medicine hospital. Twenty-eight patients, 39.3% women (72±6 years), with hemiparesis (<6 months after stroke) receiving a conventional treatment according to the Bobath approach were assigned randomly to an experimental or a control intervention of robot gait training to improve walking (five sessions a week for 5 weeks). Outcome measures included the 6-min walk test, the 10 m walk test, Functional Independence Measure, SF-36 physical functioning and the Tinetti scale. Outcomes were collected at baseline, immediately following the intervention period and 3 months following the end of the intervention. The experimental group showed a significant increase in functional independence and gait speed (10 m walk test) at the end of the treatment and follow-up, higher than the minimal detectable change. The control group showed a significant increase in the gait endurance (6-min walk test) at the follow-up, higher than the minimal detectable change. Both treatments were effective in the improvement of gait performances, although the statistical analysis of functional independence showed a significant improvement in the experimental group, indicating possible advantages during generic activities of daily living compared with overground treatment. PMID:26512928

  15. Cortical activation during robotic therapy for a severely affected arm in a chronic stroke patient: a case report.

    PubMed

    Saeki, Satoru; Matsushima, Yasuyuki; Hachisuka, Kenji

    2008-06-01

    The use of robotic-aided therapy in a patient with residual damage from a previous stroke was an attempt to improve function in a moderate to severe hemiparetic arm. Cortical activities associated with motor recovery are not well documented and require investigation. A chronic stroke patient with a severely affected arm underwent a robotic-training program for 12 weeks. The robotic-aided therapy improved motor control and spasticity in the proximal upper-limb. An increased oxygenated hemoglobin level was observed at the motor-related area in the affected hemisphere. A 12-week robotic-aided training program used in a chronic stroke patient demonstrated elements of motor recovery, and was also associated with direct activation of the affected hemisphere.

  16. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study

    PubMed Central

    2014-01-01

    Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. Methods A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Results Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Conclusion Robotic gait training

  17. Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki

    2005-12-01

    In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.

  18. [Training in tele-surgery and robotic surgery: six years experience].

    PubMed

    Rodríguez, Evelio; Wiley Nifong, L; Chitwood, W Randolph

    2007-05-01

    Over the last 20 years there has been a move in all surgical specialties towards less invasive surgical procedures. The most recent step is robotic surgery or better described as surgical telemanipulation technology which has slowly been adapted worldwide for many reasons including: cost, learning curve, available technology, and applicability to the different surgical specialties. Nonetheless, its use continues to grow in all surgical fields. Our center has been a pioneer in the use and training of robotic surgical techniques. In this manuscript, we describe the organization and experience of our training program.

  19. 20 CFR 632.78 - Training activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EMPLOYMENT AND TRAINING PROGRAMS Program Design and Management § 632.78 Training activities. Native American... following: (a) Classroom training. This program activity is any training of the type normally conducted in... classroom training, employment and training services, or supportive services, costs for which the...

  20. Review of control strategies for robotic movement training after neurologic injury

    PubMed Central

    Marchal-Crespo, Laura; Reinkensmeyer, David J

    2009-01-01

    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies. PMID:19531254

  1. Private Training Providers: Their Characteristics and Training Activities. Support Document

    ERIC Educational Resources Information Center

    Harris, Roger; Simons, Michele; McCarthy, Carmel

    2006-01-01

    This document was produced by the authors based on their research for the report, "Private Training Providers: Their Characteristics and Training Activities," [ED495181] and is an added resource for further information. That study examined the nature of the training activity of private registered training organisations (RTOs) offered to…

  2. A mobile robot therapist for under-supervised training with robot/computer assisted motivating systems.

    PubMed

    Shakya, Yuniya; Johnson, Michelle J

    2008-01-01

    Robot assisted therapy is a new and promising area in stroke rehabilitation and has shown to be effective in reducing motor impairment, but is a costly solution for home rehabilitation. High medical costs could be reduced if we could improve rehabilitation exercise in unsupervised environments such as the home. Hence, there is an augmented need for a cost effective rehabilitation system that can be used outside the clinic. This paper presents the design concept for an autonomous robotic assistant that is low-cost and effective in engaging the users while assisting them with therapy in any under-supervised area. We investigated how the robot assistant can support TheraDrive, our low-cost therapy system. We present the design methods and a case study demonstrating the arm and video collection system.

  3. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.

    PubMed

    Kadivar, Z; Sullivan, J L; Eng, D P; Pehlivan, A U; O'Malley, M K; Yozbatiran, N; Francisco, G E

    2011-01-01

    Regaining upper extremity function is the primary concern of persons with tetraplegia caused by spinal cord injury (SCI). Robotic rehabilitation has been inadequately tested and underutilized in rehabilitation of the upper extremity in the SCI population. Given the acceptance of robotic training in stroke rehabilitation and SCI gait training, coupled with recent evidence that the spinal cord, like the brain, demonstrates plasticity that can be catalyzed by repetitive movement training such as that available with robotic devices, it is probable that robotic upper-extremity training of persons with SCI could be clinically beneficial. The primary goal of this pilot study was to test the feasibility of using a novel robotic device for the upper extremity (RiceWrist) and to evaluate robotic rehabilitation using the RiceWrist in a tetraplegic person with incomplete SCI. A 24-year-old male with incomplete SCI participated in 10 sessions of robot-assisted therapy involving intensive upper limb training. The subject successfully completed all training sessions and showed improvements in movement smoothness, as well as in the hand function. Results from this study provide valuable information for further developments of robotic devices for upper limb rehabilitation in persons with SCI.

  4. Active objects programming for military autonomous mobile robots software prototyping

    NASA Astrophysics Data System (ADS)

    Cozien, Roger F.

    2001-09-01

    While designing mobile robots, we do think that the prototyping phase is really critical. Good and clever choices have to be made. Indeed, we may not easily upgrade such robots, and most of all, when the robot is on its own, any change in both the software and the physical body is going to be very difficult, if not impossible. Thus, a great effort has to be made when prototyping the robot. Furthermore, I think that the kind of programming is very important. If your programming model is not expressive enough, you may experience a great deal of difficulties to add all the features you want, in order to give your robot reactiveness and decision making autonomy. Moreover, designing, and prototyping the on-board software of a reactive robot brings other difficulties. A reactive robot does not include any matter of rapidity. A reactive system is a system able to respond to a huge pannel of situations of which it does not have the schedule. In other words, for instance, the robot does not know when a particular situation may occur, and overall, what it would be doing at this time, and what would be its internal state. This kind of robot must be able to take a decision and to act even if they do not have all the contextual information. To do so, we use a computer language named oRis featuring object and active object oriented programming, but also parallel and dynamic code, (the code can be changed during its own execution). This last point has been made possible because oRis is fully interpreted. However oRis may call fully compiled code, but also Prolog and Java code. An oRis program may be distributed on several computers using TCP/IP network connections. The main issue in this paper is to show how active objet oriented programming, as a modern extension of object oriented programming, may help us in designing autonomous mobile robots. Based on a fully parallel software programming, an active object code allows us to give many features to a robot, and to easily solve

  5. Active object programming for military autonomous mobile robot software prototyping

    NASA Astrophysics Data System (ADS)

    Cozien, Roger F.

    2001-10-01

    While designing mobile robots, we do think that the prototyping phase is really critical. Good and clever choices have to be made. Indeed, we may not easily upgrade such robots, and most of all, when the robot is on its own, any change in both the software and the physical body is going to be very difficult, if not impossible. Thus, a great effort has to be made when prototyping the robot. Furthermore, I think that the kind of programming is very important. If your programming model is not expressive enough, you may experience a great deal of difficulties to add all the features you want, in order to give your robot reactiveness and decision making autonomy. Moreover, designing, and prototyping the on-board software of a reactive robot brings other difficulties. A reactive robot does not include any matter of rapidity. A reactive system is a system able to respond to a huge panel of situations of which it does not have the schedule. In other words, for instance, the robot does not know when a particular situation may occur, and overall, what it would be doing at this time, and what would be its internal state. This kind of robot must be able to take a decision and to act even if they do not have all the contextual information. To do so, we use a computer language named oRis featuring object and active object oriented programming, but also parallel and dynamic code, (the code can be changed during its own execution). This last point has been made possible because oRis is fully interpreted. However oRis may call fully compiled code, but also Prolog and Java code. An oRis program may be distributed on several computers using TCP/IP network connections. The main issue in this paper is to show how active objet oriented programming, as a modern extension of object oriented programming, may help us in designing autonomous mobile robots. Based on a fully parallel software programming, an active object code allows us to give many features to a robot, and to easily solve

  6. Learning to See: Research in Training a Robot Vision System

    DTIC Science & Technology

    2008-12-01

    on barren extraterrestrial terrain conditions, with the complexities of vegetation, man-made structures, and water. Earlier work by Karlsen and...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...in trafficability. For inherently unpredictable segments it did not. An important part of a practical robot intelligence system is the ability to

  7. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    PubMed

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  8. Pre-Apprenticeship Training Activity

    ERIC Educational Resources Information Center

    Foley, Paul; Blomberg, Davinia

    2011-01-01

    Pre-apprenticeships are becoming an increasingly important component of the Australian vocational education and training (VET) system. The purpose of this report is to investigate the level of pre-apprenticeship activity occurring in Australia and to examine the characteristics of pre-apprenticeship courses and the students undertaking those…

  9. The reliability of evaluation of hip muscle strength in rehabilitation robot walking training.

    PubMed

    Huang, Qiuchen; Zhou, Yue; Yu, Lili; Gu, Rui; Cui, Yao; Hu, Chunying

    2015-10-01

    [Purpose] The primary purpose of this study was to evaluate the intraclass correlation coefficient in obtaining the torque of the hip muscle strength during a robot-assisted rehabilitation treatment. [Subjects] Twenty-four patients (15 males, 9 females) with spinal cord injury participated in the study. [Methods] The subjects were asked to walk during robot-assisted rehabilitation, and the torque of the muscle strength which was measured at hip joint flexion angles of -15, -10, -5, 0, 5, 10, 15, 20, 25, and 30 degrees. [Results] The intraclass correlation coefficient of the torque of the hip muscle strength measured by the rehabilitation training robot was excellent. [Conclusion] Our results show that measurement of torque can be used as an objective assessment of treatment with RAT.

  10. The reliability of evaluation of hip muscle strength in rehabilitation robot walking training

    PubMed Central

    Huang, Qiuchen; Zhou, Yue; Yu, Lili; Gu, Rui; Cui, Yao; Hu, Chunying

    2015-01-01

    [Purpose] The primary purpose of this study was to evaluate the intraclass correlation coefficient in obtaining the torque of the hip muscle strength during a robot-assisted rehabilitation treatment. [Subjects] Twenty-four patients (15 males, 9 females) with spinal cord injury participated in the study. [Methods] The subjects were asked to walk during robot-assisted rehabilitation, and the torque of the muscle strength which was measured at hip joint flexion angles of −15, −10, −5, 0, 5, 10, 15, 20, 25, and 30 degrees. [Results] The intraclass correlation coefficient of the torque of the hip muscle strength measured by the rehabilitation training robot was excellent. [Conclusion] Our results show that measurement of torque can be used as an objective assessment of treatment with RAT. PMID:26644646

  11. Modeling and Implementation of Solder-activated Joints for Single Actuator, Centimeter-Scale Robotic Mechanisms

    DTIC Science & Technology

    2010-06-01

    mechanisms may be built and actuated to perform a multiplicity of tasks using PCM-activated joints. The robot was developed under the Chemical Robots DARPA ...components. 4.1.1 Chemical Robots Program The Chemical Robots (ChemBots) program is funded by the DARPA Defense Sciences Office. The goal of the program...perform tasks in these hostile and hard to reach spaces safely, covertly, and efficiently [26]. To develop this new class of robots, DARPA asked for

  12. Self-organization via active exploration in robotic applications

    NASA Technical Reports Server (NTRS)

    Ogmen, H.; Prakash, R. V.

    1992-01-01

    We describe a neural network based robotic system. Unlike traditional robotic systems, our approach focussed on non-stationary problems. We indicate that self-organization capability is necessary for any system to operate successfully in a non-stationary environment. We suggest that self-organization should be based on an active exploration process. We investigated neural architectures having novelty sensitivity, selective attention, reinforcement learning, habit formation, flexible criteria categorization properties and analyzed the resulting behavior (consisting of an intelligent initiation of exploration) by computer simulations. While various computer vision researchers acknowledged recently the importance of active processes (Swain and Stricker, 1991), the proposed approaches within the new framework still suffer from a lack of self-organization (Aloimonos and Bandyopadhyay, 1987; Bajcsy, 1988). A self-organizing, neural network based robot (MAVIN) has been recently proposed (Baloch and Waxman, 1991). This robot has the capability of position, size rotation invariant pattern categorization, recognition and pavlovian conditioning. Our robot does not have initially invariant processing properties. The reason for this is the emphasis we put on active exploration. We maintain the point of view that such invariant properties emerge from an internalization of exploratory sensory-motor activity. Rather than coding the equilibria of such mental capabilities, we are seeking to capture its dynamics to understand on the one hand how the emergence of such invariances is possible and on the other hand the dynamics that lead to these invariances. The second point is crucial for an adaptive robot to acquire new invariances in non-stationary environments, as demonstrated by the inverting glass experiments of Helmholtz. We will introduce Pavlovian conditioning circuits in our future work for the precise objective of achieving the generation, coordination, and internalization

  13. Effort, performance, and motivation: insights from robot-assisted training of human golf putting and rat grip strength.

    PubMed

    Duarte, Jaime E; Gebrekristos, Berkenesh; Perez, Sergi; Rowe, Justin B; Sharp, Kelli; Reinkensmeyer, David J

    2013-06-01

    Robotic devices can modulate success rates and required effort levels during motor training, but it is unclear how this affects performance gains and motivation. Here we present results from training unimpaired humans in a virtual golf-putting task, and training spinal cord injured (SCI) rats in a grip strength task using robotically modulated success rates and effort levels. Robotic assistance in golf practice increased trainees feelings of competence, and, paradoxically, increased their sense effort, even though it had mixed effects on learning. Reducing effort during a grip strength training task led rats with SCI to practice the task more frequently. However, the more frequent practice of these rats did not cause them to exceed the strength gains achieved by rats that exercised less often at higher required effort levels. These results show that increasing success and decreasing effort with robots increases motivation, but has mixed effects on performance gains.

  14. Mechanisms of motor recovery in chronic and subacute stroke patients following a robot-aided training.

    PubMed

    Mazzoleni, S; Puzzolante, L; Zollo, L; Dario, P; Posteraro, F

    2014-01-01

    The aim of this article is to propose a methodology for analyzing different recovery mechanisms in subacute and chronic patients through evaluation of biomechanical parameters. Twenty-five post-stroke subjects, eight subacute and seventeen chronic, participated in the study. A 2-DoF robotic system was used for upper limb training. Two clinical scales were used for assessment. Forces and velocities at the robot's end-effector during the execution of upper limb planar reaching movements were measured. Clinical outcome measures show a significant decrease in motor impairment after the treatment both in chronic and subacute patients (MSS-SE, p<0.001; FM, p<0.05). Movement velocity increases after the robot-aided treatment in both groups. Mean values of forces exerted by subacute patients are lower than those observed in chronic patients, both at the beginning and at the end of robotic treatment, as in the latter the pathological pattern is already structured. Our results demonstrate that the monitoring of the forces exerted on the end-effector during robot-aided treatment can identify the specific motor recovery mechanisms at different stages. If the pathological pattern is not yet structured, rehabilitative interventions should be addressed toward the use of motor re-learning procedures; on the other hand, if the force analysis shows a strong pathological pattern, mechanisms of compensation should be encouraged.

  15. Impact of fellowship training on robotic-assisted laparoscopic partial nephrectomy: benchmarking perioperative safety and outcomes.

    PubMed

    Taylor, Abby S; Lee, Bruce; Rawal, Bhupendra; Thiel, David D

    2015-06-01

    To provide perioperative benchmark data for surgeons entering practice from formal robotic training and performing robotic-assisted laparoscopic partial nephrectomy (RAPN). Perioperative outcomes of the first 100 RAPN from a surgeon entering into practice directly from robotic fellowship training were analyzed. Postoperative complications were categorized by Clavien-Dindo grade. Surgical "trifecta scores" and Margin, Ischemia, and Complication (MIC) scoring were utilized to assess surgical outcomes. Statistical analyses were performed using SAS (version 9.2; SAS Institute, Inc., Cary, North Carolina). Median age of the cohort was 63 years (22-81 years), and 34 (34.3%) patients were over age 65. Forty-one (41.4%) patients had a BMI > 30. Thirteen (13.1%) had RENAL 10-12 tumors, 22 of which (22.2%) were >4 cm in size. Median warm ischemia time was 17 min, and 13 patients had resection without warm ischemia. Five patients were converted to open partial nephrectomy, and 1 patient was converted to laparoscopic nephrectomy. Twenty-one patients (21.2%) experienced a complication, 6 of whom had a major (Clavien grade 3 or higher) complication with one grade 5 complication. Operating room time decreased with experience, but surgical complications and hospital stay did not change with experience. MIC score of renal cell carcinoma (RCC) patients was 74.7%, while the surgical trifecta was reached in 71.3 % of RCC patients. Surgeons may enter practice directly from formal robotic training and perform RAPN with perioperative outcomes, surgical complications, surgical trifecta scores, and MIC scoring in line with those the most experienced robotic partial nephrectomists.

  16. Robotics

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of research being done into the use of robotic devices in space by MSFC is discussed. The video includes footage and explanations of robots being used to blast layers of thermal coating from the Space Shuttle's external tanks, the Shuttle's Remote Manipulator Arm, and animations of an Orbiting Maneuvering Vehicle to retrieve and repair satellites.

  17. Robot Guided ‘Pen Skill’ Training in Children with Motor Difficulties

    PubMed Central

    Kountouriotis, Georgios K.; Barber, Sally

    2016-01-01

    Motor deficits are linked to a range of negative physical, social and academic consequences. Haptic robotic interventions, based on the principles of sensorimotor learning, have been shown previously to help children with motor problems learn new movements. We therefore examined whether the training benefits of a robotic system would generalise to a standardised test of ‘pen-skills’, assessed using objective kinematic measures [via the Clinical Kinematic Assessment Tool, CKAT]. A counterbalanced, cross-over design was used in a group of 51 children (37 male, aged 5–11 years) with manual control difficulties. Improved performance on a novel task using the robotic device could be attributed to the intervention but there was no evidence of generalisation to any of the CKAT tasks. The robotic system appears to have the potential to support motor learning, with the technology affording numerous advantages. However, the training regime may need to target particular manual skills (e.g. letter formation) in order to obtain clinically significant improvements in specific skills such as handwriting. PMID:26967993

  18. Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations.

    PubMed

    Turner, Duncan L; Ramos-Murguialday, Ander; Birbaumer, Niels; Hoffmann, Ulrich; Luft, Andreas

    2013-11-13

    The recovery of functional movements following injury to the central nervous system (CNS) is multifaceted and is accompanied by processes occurring in the injured and non-injured hemispheres of the brain or above/below a spinal cord lesion. The changes in the CNS are the consequence of functional and structural processes collectively termed neuroplasticity and these may occur spontaneously and/or be induced by movement practice. The neurophysiological mechanisms underlying such brain plasticity may take different forms in different types of injury, for example stroke vs. spinal cord injury (SCI). Recovery of movement can be enhanced by intensive, repetitive, variable, and rewarding motor practice. To this end, robots that enable or facilitate repetitive movements have been developed to assist recovery and rehabilitation. Here, we suggest that some elements of robot-mediated training such as assistance and perturbation may have the potential to enhance neuroplasticity. Together the elemental components for developing integrated robot-mediated training protocols may form part of a neurorehabilitation framework alongside those methods already employed by therapists. Robots could thus open up a wider choice of options for delivering movement rehabilitation grounded on the principles underpinning neuroplasticity in the human CNS.

  19. Corticospinal excitability as a predictor of functional gains at the affected upper limb following robotic training in chronic stroke survivors

    PubMed Central

    Milot, Marie-Hélène; Spencer, Steven J.; Chan, Vicky; Allington, James P.; Klein, Julius; Chou, Cathy; Pearson-Fuhrhop, Kristin; Bobrow, James E.; Reinkensmeyer, David J.; Cramer, Steven C.

    2014-01-01

    Background Robotic training can help improve function of a paretic limb following a stroke, but individuals respond differently to the training. A predictor of functional gains might improve the ability to select those individuals more likely to benefit from robot based therapy. Studies evaluating predictors of functional improvement after a robotic training are scarce. One study has found that white matter tract integrity predicts functional gains following a robotic training of the hand and wrist. Objective Determine the predictive ability of behavioral and brain measures to improve selection of individuals for robotic training. Methods Twenty subjects with chronic stroke participated in an 8-week course of robotic exoskeletal training for the arm. Before training, a clinical evaluation, fMRI, diffusion tensor imaging, and transcranial magnetic stimulation (TMS) were each measured as predictors. Final functional gain was defined as change in the Box and Block Test (BBT). Measures significant in bivariate analysis were fed into a multivariate linear regression model. Results Training was associated with an average gain of 6±5 blocks on the BBT (p<0.0001). Bivariate analysis revealed that lower baseline motor evoked potential (MEP) amplitude on TMS, and lower laterality M1 index on fMRI each significantly correlated with greater BBT change. In the multivariate linear regression analysis, baseline MEP magnitude was the only measure that remained significant. Conclusion Subjects with lower baseline MEP magnitude benefited the most from robotic training of the affected arm. These subjects might have reserve remaining for the training to boost corticospinal excitability, translating into functional gains. PMID:24642382

  20. Development and training of a learning expert system in an autonomous mobile robot via simulation

    SciTech Connect

    Spelt, P.F.; Lyness, E.; DeSaussure, G. . Center for Engineering Systems Advanced Research)

    1989-11-01

    The Center for Engineering Systems Advanced Research (CESAR) conducts basic research in the area of intelligent machines. Recently at CESAR a learning expert system was created to operate on board an autonomous robot working at a process control panel. The authors discuss two-computer simulation system used to create, evaluate and train this learning system. The simulation system has a graphics display of the current status of the process being simulated, and the same program which does the simulating also drives the actual control panel. Simulation results were validated on the actual robot. The speed and safety values of using a computerized simulator to train a learning computer, and future uses of the simulation system, are discussed.

  1. Complexity analysis of EMG signals for patients after stroke during robot-aided rehabilitation training using fuzzy approximate entropy.

    PubMed

    Sun, Rui; Song, Rong; Tong, Kai-yu

    2014-09-01

    The paper presents a novel viewpoint to monitor the motor function improvement during a robot-aided rehabilitation training. Eight chronic poststroke subjects were recruited to attend the 20-session training, and in each session, subjects were asked to perform voluntary movements of elbow flexion and extension together with the robotic system. The robotic system was continuously controlled by the electromyographic (EMG) signal from the affected triceps. Fuzzy approximate entropy (fApEn) was applied to investigate the complexity of the EMG segment, and maximum voluntary contraction (MVC) during elbow flexion and extension was applied to reflect force generating capacity of the affected muscles. The results showed that the group mean fApEn of EMG signals from triceps and biceps increased significantly after the robot-aided rehabilitation training . There was also significant increase in maximum voluntary flexion and extension torques after the robot-aided rehabilitation training . There was significant correlation between fApEn of agonist and MVC , which implied that the increase of motorneuron number is one of factors that may explain the increase in muscle strength. These findings based on fApEn of the EMG signals expand the existing interpretation of training-induced function improvement in patients after stroke, and help us to understand the neurological change induced by the robot-aided rehabilitation training.

  2. Design of active orthoses for a robotic gait rehabilitation system

    NASA Astrophysics Data System (ADS)

    Villa-Parra, A. C.; Broche, L.; Delisle-Rodríguez, D.; Sagaró, R.; Bastos, T.; Frizera-Neto, A.

    2015-09-01

    An active orthosis (AO) is a robotic device that assists both human gait and rehabilitation therapy. This work proposes portable AOs, one for the knee joint and another for the ankle joint. Both AOs will be used to complete a robotic system that improves gait rehabilitation. The requirements for actuator selection, the biomechanical considerations during the AO design, the finite element method, and a control approach based on electroencephalographic and surface electromyographic signals are reviewed. This work contributes to the design of AOs for users with foot drop and knee flexion impairment. However, the potential of the proposed AOs to be part of a robotic gait rehabilitation system that improves the quality of life of stroke survivors requires further investigation.

  3. Robotics-Centered Outreach Activities: An Integrated Approach

    ERIC Educational Resources Information Center

    Ruiz-del-Solar, Javier

    2010-01-01

    Nowadays, universities are making extensive efforts to attract prospective students to the fields of electrical, electronic, and computer engineering. Thus, outreach is becoming increasingly important, and activities with schoolchildren are being extensively carried out as part of this effort. In this context, robotics is a very attractive and…

  4. Robotics in otolaryngology and head and neck surgery: Recommendations for training and credentialing

    PubMed Central

    Gross, Neil D.; Holsinger, F. Christopher; Magnuson, J. Scott; Duvvuri, Umamaheswar; Genden, Eric M.; Ghanem, Tamer AH.; Yaremchuk, Kathleen L.; Goldenberg, David; Miller, Matthew C.; Moore, Eric J.; Morris, Luc GT.; Netterville, James; Weinstein, Gregory S.; Richmon, Jeremy

    2016-01-01

    Training and credentialing for robotic surgery in otolaryngology - head and neck surgery is currently not standardized, but rather relies heavily on industry guidance. This manuscript represents a comprehensive review of this increasingly important topic and outlines clear recommendations to better standardize the practice. The recommendations provided can be used as a reference by individuals and institutions alike, and are expected to evolve over time. PMID:26950771

  5. A reinforcement learning trained fuzzy neural network controller for maintaining wireless communication connections in multi-robot systems

    NASA Astrophysics Data System (ADS)

    Zhong, Xu; Zhou, Yu

    2014-05-01

    This paper presents a decentralized multi-robot motion control strategy to facilitate a multi-robot system, comprised of collaborative mobile robots coordinated through wireless communications, to form and maintain desired wireless communication coverage in a realistic environment with unstable wireless signaling condition. A fuzzy neural network controller is proposed for each robot to maintain the wireless link quality with its neighbors. The controller is trained through reinforcement learning to establish the relationship between the wireless link quality and robot motion decision, via consecutive interactions between the controller and environment. The tuned fuzzy neural network controller is applied to a multi-robot deployment process to form and maintain desired wireless communication coverage. The effectiveness of the proposed control scheme is verified through simulations under different wireless signal propagation conditions.

  6. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    PubMed

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p training may accelerate motor learning for restoring mobility.

  7. Education and training in pediatric robotic surgery: lessons learned from an inaugural multinational workshop.

    PubMed

    Cundy, Thomas P; Mayer, Erik K; Camps, Juan I; Olsen, Lars H; Pelizzo, Gloria; Yang, Guang-Zhong; Darzi, Ara; Najmaldin, Azad S

    2015-03-01

    The introduction of robotic surgery into clinical practice brings new and specific needs for education and training. Application to the pediatric setting comes with unique considerations, warranting dedicated training resources that are accessible. A pediatric robotic surgery workshop was convened to address initial education and training requirements. The event was designed to offer an exposure rich environment for delegates to familiarize and learn basic principles in a maximally efficient manner. Pre- and post-workshop survey responses were evaluated to reflect on the quality of the educational experience and scope for improvement. Feasibility and sustainability of such events was further evaluated by reviewing various challenges encountered. A total of 29 surgeons participated in the workshop, with 7 countries represented. The majority of delegates (94 %) indicated they were "very satisfied" with the overall program. Delegates almost unanimously expressed preference and satisfaction for hands-on content. Qualitative feedback favored a stepwise and modular workshop structure, transitioning from didactic teaching to progressively more advanced training. At the basic and intermediate level, this style of event is able to satisfy initial training and educational needs. Feasibility and sustainability of such events is highly dependent on infrastructure resources that have numerous barriers to accessibility.

  8. Training toddlers seated on mobile robots to drive indoors amidst obstacles.

    PubMed

    Chen, Xi; Ragonesi, Christina; Galloway, James C; Agrawal, Sunil K

    2011-06-01

    Mobility is a causal factor in development. Children with mobility impairments may rely upon power mobility for independence and thus require advanced driving skills to function independently. Our previous studies show that while infants can learn to drive directly to a goal using conventional joysticks in several months of training, they are unable in this timeframe to acquire the advanced skill to avoid obstacles while driving. Without adequate driving training, children are unable to explore the environment safely, the consequences of which may in turn increase their risk for developmental delay. The goal of this research therefore is to train children seated on mobile robots to purposefully and safely drive indoors. In this paper, we present results where ten typically-developing toddlers are trained to drive a robot within an obstacle course. We also report a case study with a toddler with spina-bifida who cannot independently walk. Using algorithms based on artificial potential fields to avoid obstacles, we create force field on the joystick that trains the children to navigate while avoiding obstacles. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. Our results suggest that the use of a force-feedback joystick may yield faster learning than the use of a conventional joystick.

  9. A Preliminary Study Exploring the Use of Fictional Narrative in Robotics Activities

    ERIC Educational Resources Information Center

    Williams, Douglas; Ma, Yuxin; Prejean, Louise

    2010-01-01

    Educational robotics activities are gaining in popularity. Though some research data suggest that educational robotics can be an effective approach in teaching mathematics, science, and engineering, research is needed to generate the best practices and strategies for designing these learning environments. Existing robotics activities typically do…

  10. A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training

    NASA Astrophysics Data System (ADS)

    Chen, Weihai; Cui, Xiang; Zhang, Jianbin; Wang, Jianhua

    2015-06-01

    Rehabilitation technologies have great potentials in assisted motion training for stroke patients. Considering that wrist motion plays an important role in arm dexterous manipulation of activities of daily living, this paper focuses on developing a cable-driven wrist robotic rehabilitator (CDWRR) for motion training or assistance to subjects with motor disabilities. The CDWRR utilizes the wrist skeletal joints and arm segments as the supporting structure and takes advantage of cable-driven parallel design to build the system, which brings the properties of flexibility, low-cost, and low-weight. The controller of the CDWRR is designed typically based on a virtual torque-field, which is to plan "assist-as-needed" torques for the spherical motion of wrist responding to the orientation deviation in wrist motion training. The torque-field controller can be customized to different levels of rehabilitation training requirements by tuning the field parameters. Additionally, a rapidly convergent parameter self-identification algorithm is developed to obtain the uncertain parameters automatically for the floating wearable structure of the CDWRR. Finally, experiments on a healthy subject are carried out to demonstrate the performance of the controller and the feasibility of the CDWRR on wrist motion training or assistance.

  11. Robot-Assisted Training of the Kinesthetic Sense: Enhancing Proprioception after Stroke

    PubMed Central

    De Santis, Dalia; Zenzeri, Jacopo; Casadio, Maura; Masia, Lorenzo; Riva, Assunta; Morasso, Pietro; Squeri, Valentina

    2015-01-01

    Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration, and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved seven chronic hemiparetic subjects over 3 weeks. The protocol included evaluation sessions that consisted of a psychometric estimate of the subject’s kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their improvement in time

  12. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.

    PubMed

    De Santis, Dalia; Zenzeri, Jacopo; Casadio, Maura; Masia, Lorenzo; Riva, Assunta; Morasso, Pietro; Squeri, Valentina

    2014-01-01

    Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration, and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved seven chronic hemiparetic subjects over 3 weeks. The protocol included evaluation sessions that consisted of a psychometric estimate of the subject's kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their improvement in time.

  13. Modulation of ankle EMG in spinally contused rats through application of neuromuscular electrical stimulation timed to robotic treadmill training.

    PubMed

    Askari, Sina; Kamgar, Parisa; Chao, TeKang; Diaz, Eric; de Leon, Ray D; Won, Deborah S

    2012-01-01

    While neuromuscular electrical stimulation (NMES) has enabled patients of neuromotor dysfunction to effectively regain some functions, analysis of neuromuscular changes underlying these functional improvements is lacking. We have developed an NMES system for a rodent model of SCI with the long term goal of creating a therapy which restores control over stepping back to the spinal circuitry. NMES was applied to the tibialis anterior (TA) and timed to the afferent feedback generated during robotic treadmill training (RTT). The effect of NMES+RTT on modifications in EMG was compared with that of RTT alone. A longitudinal study with a crossover design was conducted in which group 1 (n=7) received 2 weeks of RTT only followed by 2 weeks of NMES+RTT; group 2 (n=7) received 2 weeks of NMES+RTT followed by RTT only. On average, both types of training helped to modulate TA EMG activity over a gait cycle, resulting in EMG profiles across steps with peaks occurring just before or at the beginning of the swing phase, when ankle flexion is most needed. However, NMES+RTT resulted in concentration of EMG activation during the initial swing phase more than RTT only. In conjunction with these improvements in EMG activation presented here, a more complete analyses comparing changes after NMES+RTT vs. RTT is expected to further support the notion that NMES timed appropriately to hindlimb stepping could help to reinforce the motor learning that is induced by afferent activity generated by treadmill training.

  14. Design and evaluation of a trilateral shared-control architecture for teleoperated training robots.

    PubMed

    Shamaei, Kamran; Kim, Lawrence H; Okamura, Allison M

    2015-08-01

    Multilateral teleoperated robots can be used to train humans to perform complex tasks that require collaborative interaction and expert supervision, such as laparoscopic surgical procedures. In this paper, we explain the design and performance evaluation of a shared-control architecture that can be used in trilateral teleoperated training robots. The architecture includes dominance and observation factors inspired by the determinants of motor learning in humans, including observational practice, focus of attention, feedback and augmented feedback, and self-controlled practice. Toward the validation of such an architecture, we (1) verify the stability of a trilateral system by applying Llewellyn's criterion on a two-port equivalent architecture, and (2) demonstrate that system transparency remains generally invariant across relevant observation factors and movement frequencies. In a preliminary experimental study, a dyad of two human users (one novice, one expert) collaborated on the control of a robot to follow a trajectory. The experiment showed that the framework can be used to modulate the efforts of the users and adjust the source and level of haptic feedback to the novice user.

  15. Assessment of Robotic Patient Simulators for Training in Manual Physical Therapy Examination Techniques

    PubMed Central

    Ishikawa, Shun; Okamoto, Shogo; Isogai, Kaoru; Akiyama, Yasuhiro; Yanagihara, Naomi; Yamada, Yoji

    2015-01-01

    Robots that simulate patients suffering from joint resistance caused by biomechanical and neural impairments are used to aid the training of physical therapists in manual examination techniques. However, there are few methods for assessing such robots. This article proposes two types of assessment measures based on typical judgments of clinicians. One of the measures involves the evaluation of how well the simulator presents different severities of a specified disease. Experienced clinicians were requested to rate the simulated symptoms in terms of severity, and the consistency of their ratings was used as a performance measure. The other measure involves the evaluation of how well the simulator presents different types of symptoms. In this case, the clinicians were requested to classify the simulated resistances in terms of symptom type, and the average ratios of their answers were used as performance measures. For both types of assessment measures, a higher index implied higher agreement among the experienced clinicians that subjectively assessed the symptoms based on typical symptom features. We applied these two assessment methods to a patient knee robot and achieved positive appraisals. The assessment measures have potential for use in comparing several patient simulators for training physical therapists, rather than as absolute indices for developing a standard. PMID:25923719

  16. Active inference and robot control: a case study.

    PubMed

    Pio-Lopez, Léo; Nizard, Ange; Friston, Karl; Pezzulo, Giovanni

    2016-09-01

    Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours.

  17. Active inference and robot control: a case study

    PubMed Central

    Nizard, Ange; Friston, Karl; Pezzulo, Giovanni

    2016-01-01

    Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours. PMID:27683002

  18. Thermal tracking in mobile robots for leak inspection activities.

    PubMed

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  19. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    PubMed Central

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-01-01

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system. PMID:24113684

  20. An intelligent control framework for robot-aided resistance training using hybrid system modeling and impedance estimation.

    PubMed

    Xu, Guozheng; Guo, Xiaobo; Zhai, Yan; Li, Huijun

    2015-08-01

    This study presents a novel therapy control method for robot-assisted resistance training using the hybrid system modeling technology and the estimated patient's bio-impedance changes. A new intelligent control framework based on hybrid system theory is developed, to automatically generate the desired resistive force and to make accommodating emergency behavior, when monitoring the changes of the impaired limb's muscle strength or the unpredictable safety-related occurrences during the execution of the training task. The impaired limb's muscle strength progress is online evaluated using its bio-damping and bio-stiffness estimation results. The proposed method is verified with a custom constructed therapeutic robot system featuring a Barrett WAM™ compliant manipulator. A typical inpatient stroke subject was recruited and enrolled in a ten-week resistance training program. Preliminary results show that the proposed therapeutic strategy can enhance the impaired limb's muscle strength and has practicability for robot-aided rehabilitation training.

  1. A Combined Robotic and Cognitive Training for Locomotor Rehabilitation: Evidences of Cerebral Functional Reorganization in Two Chronic Traumatic Brain Injured Patients

    PubMed Central

    Sacco, Katiuscia; Cauda, Franco; D’Agata, Federico; Duca, Sergio; Zettin, Marina; Virgilio, Roberta; Nascimbeni, Alberto; Belforte, Guido; Eula, Gabriella; Gastaldi, Laura; Appendino, Silvia; Geminiani, Giuliano

    2011-01-01

    It has been demonstrated that automated locomotor training can improve walking capabilities in spinal cord-injured subjects but its effectiveness on brain damaged patients has not been well established. A possible explanation of the discordant results on the efficacy of robotic training in patients with cerebral lesions could be that these patients, besides stimulation of physiological motor patterns through passive leg movements, also need to train the cognitive aspects of motor control. Indeed, another way to stimulate cerebral motor areas in paretic patients is to use the cognitive function of motor imagery. A promising possibility is thus to combine sensorimotor training with the use of motor imagery. The aim of this paper is to assess changes in brain activations after a combined sensorimotor and cognitive training for gait rehabilitation. The protocol consisted of the integrated use of a robotic gait orthosis prototype with locomotor imagery tasks. Assessment was conducted on two patients with chronic traumatic brain injury and major gait impairments, using functional magnetic resonance imaging. Physiatric functional scales were used to assess clinical outcomes. Results showed greater activation post-training in the sensorimotor and supplementary motor cortices, as well as enhanced functional connectivity within the motor network. Improvements in balance and, to a lesser extent, in gait outcomes were also found. PMID:22275890

  2. Should Body Weight–Supported Treadmill Training and Robotic-Assistive Steppers for Locomotor Training Trot Back to the Starting Gate?

    PubMed Central

    Dobkin, Bruce H.; Duncan, Pamela W.

    2014-01-01

    Body weight–supported treadmill training (BWSTT) and robotic-assisted step training (RAST) have not, so far, led to better outcomes than a comparable dose of progressive over-ground training (OGT) for disabled persons with stroke, spinal cord injury, multiple sclerosis, Parkinson’s disease, or cerebral palsy. The conceptual bases for these promising rehabilitation interventions had once seemed quite plausible, but the results of well-designed, randomized clinical trials have been disappointing. The authors reassess the underpinning concepts for BWSTT and RAST, which were derived from mammalian studies of treadmill-induced hind-limb stepping associated with central pattern generation after low thoracic spinal cord transection, as well as human studies of the triple crown icons of task-oriented locomotor training, massed practice, and activity-induced neuroplasticity. The authors retrospectively consider where theory and practice may have fallen short in the pilot studies that aimed to produce thoroughbred interventions. Based on these shortcomings, the authors move forward with recommendations for the future development of workhorse interventions for walking. In the absence of evidence for physical therapists to employ these strategies, however, BWSTT and RAST should not be provided routinely to disabled, vulnerable persons in place of OGT outside of a scientifically conducted efficacy trial. PMID:22412172

  3. Dynamic active constraints for hyper-redundant flexible robots.

    PubMed

    Kwok, Ka-Wai; Mylonas, George P; Sun, Loi Wah; Lerotic, Mirna; Clark, James; Athanasiou, Thanos; Darzi, Ara; Yang, Guang-Zhong

    2009-01-01

    In robot-assisted procedures, the surgeon's ability can be enhanced by navigation guidance through the use of virtual fixtures or active constraints. This paper presents a real-time modeling scheme for dynamic active constraints with fast and simple mesh adaptation under cardiac deformation and changes in anatomic structure. A smooth tubular pathway is constructed which provides assistance for a flexible hyper-redundant robot to circumnavigate the heart with the aim of undertaking bilateral pulmonary vein isolation as part of a modified maze procedure for the treatment of debilitating arrhythmia and atrial fibrillation. In contrast to existing approaches, the method incorporates detailed geometrical constraints with explicit manipulation margins of the forbidden region for an entire articulated surgical instrument, rather than just the end-effector itself. Detailed experimental validation is conducted to demonstrate the speed and accuracy of the instrument navigation with and without the use of the proposed dynamic constraints.

  4. Embodied Computation: An Active-Learning Approach to Mobile Robotics Education

    ERIC Educational Resources Information Center

    Riek, L. D.

    2013-01-01

    This paper describes a newly designed upper-level undergraduate and graduate course, Autonomous Mobile Robots. The course employs active, cooperative, problem-based learning and is grounded in the fundamental computational problems in mobile robotics defined by Dudek and Jenkin. Students receive a broad survey of robotics through lectures, weekly…

  5. [Rehabilitation and nursing-care robots].

    PubMed

    Hachisuka, Kenji

    2016-04-01

    In the extremely aged society, rehabilitation staff will be required to provide ample rehabilitation training for more stroke patients and more aged people with disabilities despite limitations in human resources. A nursing-care robot is one potential solution from the standpoint of rehabilitation. The nursing-care robot is defined as a robot which assists aged people and persons with disabilities in daily life and social life activities. The nursing-care robot consists of an independent support robot, caregiver support robot, and life support robot. Although many nursing-care robots have been developed, the most appropriate robot must be selected according to its features and the needs of patients and caregivers in the field of nursing-care.

  6. Training Toddlers Seated on Mobile Robots to Steer Using Force-Feedback Joystick.

    PubMed

    Agrawal, S K; Xi Chen; Ragonesi, C; Galloway, J C

    2012-01-01

    The broader goal of our research is to train infants with special needs to safely and purposefully drive a mobile robot to explore the environment. The hypothesis is that these impaired infants will benefit from mobility in their early years and attain childhood milestones, similar to their healthy peers. In this paper, we present an algorithm and training method using a force-feedback joystick with an "assist-as-needed" paradigm for driving training. In this "assist-as-needed" approach, if the child steers the joystick outside a force tunnel centered on the desired direction, the driver experiences a bias force on the hand. We show results with a group study on typically developing toddlers that such a haptic guidance algorithm is superior to training with a conventional joystick. We also provide a case study on two special needs children, under three years old, who learn to make sharp turns during driving, when trained over a five-day period with the force-feedback joystick using the algorithm.

  7. Effects of robot training on bowel function in patients with spinal cord injury

    PubMed Central

    Huang, Qiuchen; Yu, Lili; Gu, Rui; Zhou, Yue; Hu, Chunying

    2015-01-01

    [Purpose] The purpose of this study was to compare the effects of body weight-supported treadmill training (BWSTT) and robot-assisted rehabilitation (RAT) on bowel function in patients with spinal cord injury with respect to defecation time and defecation drug dose (enema). [Subjects] Twenty-four patients with spinal cord injury participated in the study. All subjects had an incomplete injury ranging from level T8 to L2. [Methods] The subjects were randomly divided into BWSTT and RAT groups. Walking training was provided to both groups for 20 minutes, four times a week, for one month. The defecation time and enema dose were measured before and after the experiment. [Results] The RAT group showed significant shortening of defecation time and decrease of enema dose. [Conclusion] The results demonstrated that significantly better improvement in bowel function can be achieved with RAT. PMID:26157223

  8. A pilot study of post-total knee replacement gait rehabilitation using lower limbs robot-assisted training system.

    PubMed

    Li, Jianhua; Wu, Tao; Xu, Zhisheng; Gu, Xudong

    2014-02-01

    The aim of this study was to explore the application value of the lower limbs robot-assisted training system for post-total knee replacement (TKR) gait rehabilitation. A total of 60 patients with osteoarthritis of the knee were equally randomized into the traditional and robot-assisted rehabilitation training groups within 1 week after TKR. All patients received 2-week training. Scores of hospital for special surgery (HSS), knee kinesthesia grades, knee proprioception grades, functional ambulation (FAC) scores, Berg balance scores, 10-m sitting-standing time, and 6-min walking distances were compared between the groups. The HSS score, Berg score, 10-m sitting-standing time, and 6-min walking distance of the robot-assisted training group were significantly higher than the control group (P < 0.05). Its knee kinesthesia grade, knee proprioception grade, and FAC score were better than the control group but not significantly (P > 0.05). Lower limbs robot-assisted rehabilitation training improves post-TKR patients' knee proprioception and stability more effectively compared with the traditional method. It improves patients' gait and symptoms, increases their walking speed, and prolongs their walking distances, which benefit their return to family and society.

  9. Self-adaptive robot training of stroke survivors for continuous tracking movements

    PubMed Central

    2010-01-01

    Background Although robot therapy is progressively becoming an accepted method of treatment for stroke survivors, few studies have investigated how to adapt the robot/subject interaction forces in an automatic way. The paper is a feasibility study of a novel self-adaptive robot controller to be applied with continuous tracking movements. Methods The haptic robot Braccio di Ferro is used, in relation with a tracking task. The proposed control architecture is based on three main modules: 1) a force field generator that combines a non linear attractive field and a viscous field; 2) a performance evaluation module; 3) an adaptive controller. The first module operates in a continuous time fashion; the other two modules operate in an intermittent way and are triggered at the end of the current block of trials. The controller progressively decreases the gain of the force field, within a session, but operates in a non monotonic way between sessions: it remembers the minimum gain achieved in a session and propagates it to the next one, which starts with a block whose gain is greater than the previous one. The initial assistance gains are chosen according to a minimal assistance strategy. The scheme can also be applied with closed eyes in order to enhance the role of proprioception in learning and control. Results The preliminary results with a small group of patients (10 chronic hemiplegic subjects) show that the scheme is robust and promotes a statistically significant improvement in performance indicators as well as a recalibration of the visual and proprioceptive channels. The results confirm that the minimally assistive, self-adaptive strategy is well tolerated by severely impaired subjects and is beneficial also for less severe patients. Conclusions The experiments provide detailed information about the stability and robustness of the adaptive controller of robot assistance that could be quite relevant for the design of future large scale controlled clinical trials

  10. Development of an Upper Limb Motorized Assistive-Rehabilitative Robot

    NASA Astrophysics Data System (ADS)

    Amiri, Masoud; Casolo, Federico

    While the number of people requiring help for the activities of daily living are increasing, several studies have been shown the effectiveness of robot training for upper limb functionality recovery. The robotic system described in this paper is an active end-effector based robot which can be used for assisting and rehabilitating of human upper limb. The robot is able to take into account desire of the patient for the support that patient needs to complete the task.

  11. Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound.

    PubMed

    Ren, Hongliang; Dupont, Pierre E

    2012-01-01

    Three dimensional ultrasound is a promising imaging modality for minimally invasive robotic surgery. As the robots are typically metallic, they interact strongly with the sound waves in ways that are not modeled by the ultrasound system's signal processing algorithms. Consequently, they produce substantial imaging artifacts that can make image guidance difficult, even for experienced surgeons. This paper introduces a new approach for detecting curved continuum robots in 3D ultrasound images. The proposed approach combines geodesic active contours with a speed function that is based on enhancing the "tubularity" of the continuum robot. In particular, it takes advantage of the known robot diameter along its length. It also takes advantage of the fact that the robot surface facing the ultrasound probe provides the most accurate image. This method, termed Tubular Enhanced Geodesic Active Contours (TEGAC), is demonstrated through ex vivo intracardiac experiments to offer superior performance compared to conventional active contours.

  12. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance

    PubMed Central

    Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen

    2016-01-01

    This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for

  13. Robotics in medicine

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. N.; Syryamkin, V. I.

    2015-11-01

    Modern technologies play a very important role in our lives. It is hard to imagine how people can get along without personal computers, and companies - without powerful computer centers. Nowadays, many devices make modern medicine more effective. Medicine is developing constantly, so introduction of robots in this sector is a very promising activity. Advances in technology have influenced medicine greatly. Robotic surgery is now actively developing worldwide. Scientists have been carrying out research and practical attempts to create robotic surgeons for more than 20 years, since the mid-80s of the last century. Robotic assistants play an important role in modern medicine. This industry is new enough and is at the early stage of development; despite this, some developments already have worldwide application; they function successfully and bring invaluable help to employees of medical institutions. Today, doctors can perform operations that seemed impossible a few years ago. Such progress in medicine is due to many factors. First, modern operating rooms are equipped with up-to-date equipment, allowing doctors to make operations more accurately and with less risk to the patient. Second, technology has enabled to improve the quality of doctors' training. Various types of robots exist now: assistants, military robots, space, household and medical, of course. Further, we should make a detailed analysis of existing types of robots and their application. The purpose of the article is to illustrate the most popular types of robots used in medicine.

  14. 20 CFR 632.78 - Training activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... EMPLOYMENT AND TRAINING PROGRAMS Program Design and Management § 632.78 Training activities. Native American grantees shall design and operate programs funded under the Act which support growth and development as... an institutional setting, including vocational education, and designed to provide individuals...

  15. Effect of Robotic-Assisted Gait Training in Patients With Incomplete Spinal Cord Injury

    PubMed Central

    Shin, Ji Cheol; Kim, Ji Yong; Park, Han Kyul

    2014-01-01

    Objective To determine the effect of robotic-assisted gait training (RAGT) compared to conventional overground training. Methods Sixty patients with motor incomplete spinal cord injury (SCI) were included in a prospective, randomized clinical trial by comparing RAGT to conventional overground training. The RAGT group received RAGT three sessions per week at duration of 40 minutes with regular physiotherapy in 4 weeks. The conventional group underwent regular physiotherapy twice a day, 5 times a week. Main outcomes were lower extremity motor score of American Spinal Injury Association impairment scale (LEMS), ambulatory motor index (AMI), Spinal Cord Independence Measure III mobility section (SCIM3-M), and walking index for spinal cord injury version II (WISCI-II) scale. Results At the end of rehabilitation, both groups showed significant improvement in LEMS, AMI, SCIM3-M, and WISCI-II. Based on WISCI-II, statistically significant improvement was observed in the RAGT group. For the remaining variables, no difference was found. Conclusion RAGT combined with conventional physiotherapy could yield more improvement in ambulatory function than conventional therapy alone. RAGT should be considered as one additional tool to provide neuromuscular reeducation in patient with incomplete SCI. PMID:25566469

  16. Implicit Active Constraints for Robot-Assisted Arthroscopy

    PubMed Central

    Lopez, Edoardo; Kwok, Ka-Wai; Payne, Christopher J.; Giataganas, Petros; Yang, Guang-Zhong

    2014-01-01

    This paper presents an Implicit Active Constraints control framework for robot-assisted minimally invasive surgery. It extends on current frameworks by prescribing the external constraints implicitly from the operator motion, forgoing the need for pre-operative imaging; the constraints are defined in situ so as to avoid the use of invasive fiducial markers. A hands-on cooperatively-controlled robotic platform, comprising of a surgical instrument and a compliant manipulator, has been designed for an arthroscopic procedure. The surgical platform is capable of constraining the pose of the instrument so as to ensure it passes through the incision point and does not cause trauma to the surrounding tissue. A flexible arthroscopic instrument is designed and its use is investigated to enlarge reachable and dexterous workspace, increasing the accessibility to the target anatomy. The behaviour of the flexible instrument is analysed. A detailed performance analysis is conducted on a group of subjects for validating the control framework, simulating a minimally invasive arthroscopic procedure. Results demonstrate a statistically significant enhancement in the control ergonomics as well as the accuracy and safety of the procedure. PMID:24748994

  17. Views of physiatrists and physical therapists on the use of gait-training robots for stroke patients

    PubMed Central

    Kang, Chang Gu; Chun, Min Ho; Chang, Min Cheol; Kim, Won; Hee Do, Kyung

    2016-01-01

    [Purpose] Gait-training robots have been developed for stroke patients with gait disturbance. It is important to survey the views of physiatrists and physical therapists on the characteristics of these devices during their development. [Subjects and Methods] A total of 100 physiatrists and 100 physical therapists from 38 hospitals participated in our questionnaire survey. [Results] The most common answers about the merits of gait-training robots concern improving the treatment effects (28.5%), followed by standardizing treatment (19%), motivating patients about treatment (17%), and improving patients’ self-esteem (14%). The subacute period (1–3 months post-stroke onset) was most often chosen as the ideal period (47.3%) for the use of these devices, and a functional ambulation classification of 0–2 was the most selected response for the optimal patient status (27%). The preferred model was the treadmill type (47.5%) over the overground walking type (40%). The most favored commercial price was $50,000–$100,000 (38.3%). The most selected optimal duration for robot-assisted gait therapy was 30–45 min (47%), followed by 15–30 min (29%), 45–60 min (18%), ≥ 60 min (5%), and < 15 min (1%). [Conclusion] Our study findings could guide the future designs of more effective gait-training robots for stroke patients. PMID:26957758

  18. Views of physiatrists and physical therapists on the use of gait-training robots for stroke patients.

    PubMed

    Kang, Chang Gu; Chun, Min Ho; Jang, Min Cheol; Kim, Won; Do, Kyung Hee

    2016-01-01

    [Purpose] Gait-training robots have been developed for stroke patients with gait disturbance. It is important to survey the views of physiatrists and physical therapists on the characteristics of these devices during their development. [Subjects and Methods] A total of 100 physiatrists and 100 physical therapists from 38 hospitals participated in our questionnaire survey. [Results] The most common answers about the merits of gait-training robots concern improving the treatment effects (28.5%), followed by standardizing treatment (19%), motivating patients about treatment (17%), and improving patients' self-esteem (14%). The subacute period (1-3 months post-stroke onset) was most often chosen as the ideal period (47.3%) for the use of these devices, and a functional ambulation classification of 0-2 was the most selected response for the optimal patient status (27%). The preferred model was the treadmill type (47.5%) over the overground walking type (40%). The most favored commercial price was $50,000-$100,000 (38.3%). The most selected optimal duration for robot-assisted gait therapy was 30-45 min (47%), followed by 15-30 min (29%), 45-60 min (18%), ≥ 60 min (5%), and < 15 min (1%). [Conclusion] Our study findings could guide the future designs of more effective gait-training robots for stroke patients.

  19. Robotics

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  20. User-centric design of a personal assistance robot (FRASIER) for active aging.

    PubMed

    Padir, Taşkin; Skorinko, Jeanine; Dimitrov, Velin

    2015-01-01

    We present our preliminary results from the design process for developing the Worcester Polytechnic Institute's personal assistance robot, FRASIER, as an intelligent service robot for enabling active aging. The robot capabilities include vision-based object detection, tracking the user and help with carrying heavy items such as grocery bags or cafeteria trays. This work-in-progress report outlines our motivation and approach to developing the next generation of service robots for the elderly. Our main contribution in this paper is the development of a set of specifications based on the adopted user-centered design process, and realization of the prototype system designed to meet these specifications.

  1. Facilitating robot-assisted training in MS patients with arm paresis: a procedure to individually determine gravity compensation.

    PubMed

    Bastiaens, H; Alders, G; Feys, P; Notelaers, S; Coninx, K; Kerkhofs, L; Truyens, V; Geers, R; Goedhart, A

    2011-01-01

    Gravity compensation (GC) of the arm is used to facilitate arm movements in conventional therapy as well as in robot-assisted rehabilitation of neurologically impaired persons. Positive effects of GC on Range of Motion (ROM) have been demonstrated in stroke. In Multiple Sclerosis (MS), research regarding this topic is lacking. Since an active participation of the patient is required for effective training, full support of the arm might not be advisable. The present study reports on the development of a procedure to measure actively the individual need for GC and to estimate the influence of GC on ROM during reaching, lifting and transporting in severely affected Persons with MS (PwMS). Ten PwMS were tested with the procedure for determination of GC. Maximal reaching movements were performed in a 3D space in three conditions: No support (NS), with GC by the HapticMaster (GC-HM) and with GC by the HapticMaster combined with a sling suspension system (GC-HMS). For the total sample, significant correlations were found between the amount of GC and clinical tests for upper limb function. In four subjects with severe arm dysfunction it was found that mean ROM is larger in the GC-HMS condition compared to the GC-HM condition, and in the GC-HM condition compared to the NS condition, suggesting positive effects of GC on active ROM in PwMS. Therefore, GC could have a positive effect on arm rehabilitation by enabling the PwMS to actively reach a larger ROM during training.

  2. Using Haptic and Auditory Interaction Tools to Engage Students with Visual Impairments in Robot Programming Activities

    ERIC Educational Resources Information Center

    Howard, A. M.; Park, Chung Hyuk; Remy, S.

    2012-01-01

    The robotics field represents the integration of multiple facets of computer science and engineering. Robotics-based activities have been shown to encourage K-12 students to consider careers in computing and have even been adopted as part of core computer-science curriculum at a number of universities. Unfortunately, for students with visual…

  3. A Robotic System for Actively Stiffening Flexible Manipulators.

    PubMed

    Loschak, Paul M; Burke, Stephen F; Zumbro, Emiko; Forelli, Alexandra R; Howe, Robert D

    2015-01-01

    A system for actively changing the stiffness of a long, thin, flexible robotic manipulator has been designed for cardiologists to use in a range of diagnosis and treatment procedures. Low-stiffness manipulators, such as catheters, are ideal for steering through vasculature with low risk of tissue injury. However, such instruments are not well-suited for applying force to tissue. The proposed system solves this problem by using a series of bead-shaped vertebrae containing pull wires to actively change the stiffness of the catheter, similar to gooseneck surgical retractors. Individual wires steer the catheter to a desired location. All wires are then tensioned to create friction between each vertebra and prevent sliding, therefore resisting motion. While this design concept has been implemented manually in various settings for decades, fine robotic control of the friction and stiffness of the system relies on a thorough understanding of the friction properties between vertebral segments. We have developed an analytical model to understand the interactions between vertebrae and determine the relationships between system parameters and the overall stiffness of the catheter. Experiments validated the calculations from the model and the functionality of the system by applying known loads to the tip of the catheter and measuring the catheter displacement. The catheter stiffness was measured to range from 100 N/m to 800 N/m, which is sufficient for performing many surgical tasks on tissue. This system can be useful in minimally invasive procedures involving direct instrument contact with tissue by improving accuracy, safety, and work flow.

  4. A Robotic System for Actively Stiffening Flexible Manipulators

    PubMed Central

    Loschak, Paul M.; Burke, Stephen F.; Zumbro, Emiko; Forelli, Alexandra R.; Howe, Robert D.

    2015-01-01

    A system for actively changing the stiffness of a long, thin, flexible robotic manipulator has been designed for cardiologists to use in a range of diagnosis and treatment procedures. Low-stiffness manipulators, such as catheters, are ideal for steering through vasculature with low risk of tissue injury. However, such instruments are not well-suited for applying force to tissue. The proposed system solves this problem by using a series of bead-shaped vertebrae containing pull wires to actively change the stiffness of the catheter, similar to gooseneck surgical retractors. Individual wires steer the catheter to a desired location. All wires are then tensioned to create friction between each vertebra and prevent sliding, therefore resisting motion. While this design concept has been implemented manually in various settings for decades, fine robotic control of the friction and stiffness of the system relies on a thorough understanding of the friction properties between vertebral segments. We have developed an analytical model to understand the interactions between vertebrae and determine the relationships between system parameters and the overall stiffness of the catheter. Experiments validated the calculations from the model and the functionality of the system by applying known loads to the tip of the catheter and measuring the catheter displacement. The catheter stiffness was measured to range from 100 N/m to 800 N/m, which is sufficient for performing many surgical tasks on tissue. This system can be useful in minimally invasive procedures involving direct instrument contact with tissue by improving accuracy, safety, and work flow. PMID:26709364

  5. Real and virtual robot head for active vision research

    NASA Astrophysics Data System (ADS)

    Marapane, Suresh B.; Lassiter, Nils T.; Trivedi, Mohan M.

    1992-11-01

    In the emerging paradigm of animate vision, the visual processes are not thought of as being independent of cognitive or motor processing, but as an integrated system within the context of visual behavior. Intimate coupling of sensory and motor systems have found to improve significantly the performance of behavior based vision systems. In order to conduct research in animate vision one requires an active image acquisition platform. This platform should possess the capability to change vision geometrical and optical parameters of the sensors under the control of a computer. This has led to the development of several robotic sensory-motor systems with multiple degrees of freedoms (DOF). In this paper we describe the status of on going work in developing a sensory-motor robotic system, R2H, with ten degrees of freedoms (DOF) for research in active vision. A Graphical Simulation and Animation (GSA) environment is also presented. The objective of building the GSA system is to create an environment to aid the researchers in developing high performance and reliable software and hardware in a most effective manner. The GSA includes a complete kinematic simulation of the R2H system, it''s sensors and it''s workspace. GSA environment is not meant to be a substitute for performing real experiments but is to complement it. Thus, the GSA environment will be an integral part of the total research effort. With the aid of the GSA environment a Depth from Defocus (DFD), Depth from Vergence, and Depth from Stereo modules have been implemented and tested. The power and usefulness of the GSA system as a research tool is demonstrated by acquiring and analyzing stereo images in the virtual world.

  6. Learning, Not Adaptation, Characterizes Stroke Motor Recovery: Evidence From Kinematic Changes Induced by Robot-Assisted Therapy in Trained and Untrained Task in the Same Workspace

    PubMed Central

    Dipietro, L.; Krebs, H. I.; Volpe, B. T.; Stein, J.; Bever, C.; Mernoff, S. T.; Fasoli, S. E.; Hogan, N.

    2015-01-01

    Both the American Heart Association and the VA/DoD endorse upper-extremity robot-mediated rehabilitation therapy for stroke care. However, we do not know yet how to optimize therapy for a particular patient’s needs. Here, we explore whether we must train patients for each functional task that they must perform during their activities of daily living or alternatively capacitate patients to perform a class of tasks and have therapists assist them later in translating the observed gains into activities of daily living. The former implies that motor adaptation is a better model for motor recovery. The latter implies that motor learning (which allows for generalization) is a better model for motor recovery. We quantified trained and untrained movements performed by 158 recovering stroke patients via 13 metrics, including movement smoothness and submovements. Improvements were observed both in trained and untrained movements suggesting that generalization occurred. Our findings suggest that, as motor recovery progresses, an internal representation of the task is rebuilt by the brain in a process that better resembles motor learning than motor adaptation. Our findings highlight possible improvements for therapeutic algorithms design, suggesting sparse-activity-set training should suffice over exhaustive sets of task specific training. PMID:22186963

  7. Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment.

    PubMed

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-12-15

    In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments.

  8. Active training paradigm for motor imagery BCI.

    PubMed

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  9. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: A randomized controlled trial

    PubMed Central

    Scott, William; York, Henry; Theyagaraj, Melita; Price-Miller, Naomi; McQuaid, Jean; Eyvazzadeh, Megan; Ivey, Frederick M.; Macko, Richard F.

    2016-01-01

    Objective To assess the effectiveness of robotically assisted body weight supported treadmill training (RABWSTT) for improving cardiovascular fitness in chronic motor incomplete spinal cord injury (CMISCI). Design Pilot prospective randomized, controlled clinical trial. Setting Outpatient rehabilitation specialty hospital. Participants Eighteen individuals with CMISCI with American Spinal Injury Association (ASIA) level between C4 and L2 and at least one-year post injury. Interventions CMISCI participants were randomized to RABWSTT or a home stretching program (HSP) three times per week for three months. Those in the home stretching group were crossed over to three months of RABWSTT following completion of the initial three month phase. Outcome measures Peak oxygen consumption (peak VO2) was measured during both robotic treadmill walking and arm cycle ergometry: twice at baseline, once at six weeks (mid-training) and twice at three months (post-training). Peak VO2 values were normalized for body mass. Results The RABWSTT group improved peak VO2 by 12.3% during robotic treadmill walking (20.2 ± 7.4 to 22.7 ± 7.5 ml/kg/min, P = 0.018), compared to a non-significant 3.9% within group change observed in HSP controls (P = 0.37). Neither group displayed a significant change in peak VO2 during arm cycle ergometry (RABWSTT, 8.5% (P = 0.25); HSP, 1.76% (P = 0.72)). A repeated measures analysis showed statistically significant differences between treatments for peak VO2 during both robotic treadmill walking (P = 0.002) and arm cycle ergometry (P = 0.001). Conclusion RABWSTT is an effective intervention model for improving peak fitness levels assessed during robotic treadmill walking in persons with CMISCI. PMID:25520035

  10. Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: a kinematic evaluation with gait profile score

    PubMed Central

    Galli, Manuela; Cimolin, Veronica; De Pandis, Maria Francesca; Le Pera, Domenica; Sova, Ivan; Albertini, Giorgio; Stocchi, Fabrizio; Franceschini, Marco

    2016-01-01

    Summary The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson’s disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD. PMID:27678210

  11. A new active visual system for humanoid robots.

    PubMed

    Xu, De; Li, You Fu; Tan, Min; Shen, Yang

    2008-04-01

    In this paper, a new active visual system is developed, which is based on bionic vision and is insensitive to the property of the cameras. The system consists of a mechanical platform and two cameras. The mechanical platform has two degrees of freedom of motion in pitch and yaw, which is equivalent to the neck of a humanoid robot. The cameras are mounted on the platform. The directions of the optical axes of the two cameras can be simultaneously adjusted in opposite directions. With these motions, the object's images can be located at the centers of the image planes of the two cameras. The object's position is determined with the geometry information of the visual system. A more general model for active visual positioning using two cameras without a neck is also investigated. The position of an object can be computed via the active motions. The presented model is less sensitive to the intrinsic parameters of cameras, which promises more flexibility in many applications such as visual tracking with changeable focusing. Experimental results verify the effectiveness of the proposed methods.

  12. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist.

    PubMed

    Byl, Nancy N; Abrams, Gary M; Pitsch, Erica; Fedulow, Irina; Kim, Hyunchul; Simkins, Matt; Nagarajan, Srikantan; Rosen, Jacob

    2013-01-01

    Survivors post stroke commonly have upper limb impairments. Patients can drive neural reorganization, brain recovery and return of function with task specific repetitive training (TSRT). Fifteen community independent stroke survivors (25-75 years, >6 months post stroke, Upper Limb Fugl Meyer [ULFM] scores 16-39) participated in this randomized feasibility study to compare outcomes of upper limb TSRT guided by a robotic orthosis (bilateral or unilateral) or a physical therapist. After 6 weeks of training (18 h), across all subjects, there were significant improvements in depression, flexibility, strength, tone, pain and voluntary movement (ULFM) (p < 0.05; effect sizes 0.49-3.53). Each training group significantly improved ULFM scores and range of motion without significant group differences. Virtual or actual TSRT performed with a robotic orthosis or a physical therapist significantly reduced arm impairments around the shoulder and elbow without significant gains in fine motor hand control, activities of daily living or independence.

  13. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules.

    PubMed

    Mouraviev, Vladimir; Klein, Martina; Schommer, Eric; Thiel, David D; Samavedi, Srinivas; Kumar, Anup; Leveillee, Raymond J; Thomas, Raju; Pow-Sang, Julio M; Su, Li-Ming; Mui, Engy; Smith, Roger; Patel, Vipul

    2016-03-01

    In pursuit of improving the quality of residents' education, the Southeastern Section of the American Urological Association (SES AUA) hosts an annual robotic training course for its residents. The workshop involves performing a robotic live porcine nephrectomy as well as virtual reality robotic training modules. The aim of this study was to evaluate workload levels of urology residents when performing a live porcine nephrectomy and the virtual reality robotic surgery training modules employed during this workshop. Twenty-one residents from 14 SES AUA programs participated in 2015. On the first-day residents were taught with didactic lectures by faculty. On the second day, trainees were divided into two groups. Half were asked to perform training modules of the Mimic da Vinci-Trainer (MdVT, Mimic Technologies, Inc., Seattle, WA, USA) for 4 h, while the other half performed nephrectomy procedures on a live porcine model using the da Vinci Si robot (Intuitive Surgical Inc., Sunnyvale, CA, USA). After the first 4 h the groups changed places for another 4-h session. All trainees were asked to complete the NASA-TLX 1-page questionnaire following both the MdVT simulation and live animal model sessions. A significant interface and TLX interaction was observed. The interface by TLX interaction was further analyzed to determine whether the scores of each of the six TLX scales varied across the two interfaces. The means of the TLX scores observed at the two interfaces were similar. The only significant difference was observed for frustration, which was significantly higher at the simulation than the animal model, t (20) = 4.12, p = 0.001. This could be due to trainees' familiarity with live anatomical structures over skill set simulations which remain a real challenge to novice surgeons. Another reason might be that the simulator provides performance metrics for specific performance traits as well as composite scores for entire exercises. Novice trainees experienced

  14. The effect of timing electrical stimulation to robotic-assisted stepping on neuromuscular activity and associated kinematics.

    PubMed

    Askari, Sina; Chao, TeKang; de Leon, Ray D; Won, Deborah S

    2013-01-01

    Results of previous studies raise the question of how timing neuromuscular functional electrical stimulation (FES) to limb movements during stepping might alter neuromuscular control differently than patterned stimulation alone. We have developed a prototype FES system for a rodent model of spinal cord injury (SCI) that times FES to robotic treadmill training (RTT). In this study, one group of rats (n = 6) was trained with our FES+RTT system and received stimulation of the ankle flexor (tibialis anterior [TA]) muscle timed according to robot-controlled hind-limb position (FES+RTT group); a second group (n = 5) received a similarly patterned stimulation, randomly timed with respect to the rats' hind-limb movements, while they were in their cages (randomly timed stimulation [RS] group). After 4 wk of training, we tested treadmill stepping ability and compared kinematic measures of hind-limb movement and electromyography (EMG) activity in the TA. The FES+RTT group stepped faster and exhibited TA EMG profiles that better matched the applied stimulation profile during training than the RS group. The shape of the EMG profile was assessed by "gamma," a measure that quantified the concentration of EMG activity during the early swing phase of the gait cycle. This gamma measure was 112% higher for the FES+RTT group than for the RS group. The FES+RTT group exhibited burst-to-step latencies that were 41% shorter and correspondingly exhibited a greater tendency to perform ankle flexion movements during stepping than the RS group, as measured by the percentage of time the hind limb was either dragging or in withdrawal. The results from this study support the hypothesis that locomotor training consisting of FES timed to hind-limb movement improves the activation of hind-limb muscle more so than RS alone. Our rodent FES+RTT system can serve as a tool to help further develop this combined therapy to target appropriate neurophysiological changes for locomotor control.

  15. When Should We Use Care Robots? The Nature-of-Activities Approach.

    PubMed

    Santoni de Sio, Filippo; van Wynsberghe, Aimee

    2016-12-01

    When should we use care robots? In this paper we endorse the shift from a simple normative approach to care robots ethics to a complex one: we think that one main task of a care robot ethics is that of analysing the different ways in which different care robots may affect the different values at stake in different care practices. We start filling a gap in the literature by showing how the philosophical analysis of the nature of healthcare activities can contribute to (care) robot ethics. We rely on the nature-of-activities approach recently proposed in the debate on human enhancement, and we apply it to the ethics of care robots. The nature-of-activities approach will help us to understand why certain practice-oriented activities in healthcare should arguably be left to humans, but certain (predominantly) goal-directed activities in healthcare can be fulfilled (sometimes even more ethically) with the assistance of a robot. In relation to the latter, we aim to show that even though all healthcare activities can be considered as practice-oriented, when we understand the activity in terms of different legitimate 'fine-grained' descriptions, the same activities or at least certain components of them can be seen as clearly goal-directed. Insofar as it allows us to ethically assess specific functionalities of specific robots to be deployed in well-defined circumstances, we hold the nature-of-activities approach to be particularly helpful also from a design perspective, i.e. to realize the Value Sensitive Design approach.

  16. Visual perception and grasping for the extravehicular activity robot

    NASA Technical Reports Server (NTRS)

    Starks, Scott A.

    1989-01-01

    The development of an approach to the visual perception of object surface information using laser range data in support of robotic grasping is discussed. This is a very important problem area in that a robot such as the EVAR must be able to formulate a grasping strategy on the basis of its knowledge of the surface structure of the object. A description of the problem domain is given as well as a formulation of an algorithm which derives an object surface description adequate to support robotic grasping. The algorithm is based upon concepts of differential geometry namely, Gaussian and mean curvature.

  17. NOAA Climate Users Engagement Using Training Activities

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Verdin, J. P.; Jones, J.; Pulwarty, R. S.

    2009-12-01

    climate-sensitive decisions. Course evaluation survey collected 20 responses and indicated a high level of satisfaction. Valuable written comments offered an input for further improvement of the training services. The course offers a prototype for the conduct of training activities developed in partnership with climate information providers and the intended user group(s), in this case the California DWR.

  18. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors

    PubMed Central

    Bouchard, Amy E.; Corriveau, Hélène; Milot, Marie-Hélène

    2015-01-01

    With age, a decline in the temporal aspect of movement is observed such as a longer movement execution time and a decreased timing accuracy. Robotic training can represent an interesting approach to help improve movement timing among the elderly. Two types of robotic training—haptic guidance (HG; demonstrating the correct movement for a better movement planning and improved execution of movement) and error amplification (EA; exaggerating movement errors to have a more rapid and complete learning) have been positively used in young healthy subjects to boost timing accuracy. For healthy seniors, only HG training has been used so far where significant and positive timing gains have been obtained. The goal of the study was to evaluate and compare the impact of both HG and EA robotic trainings on the improvement of seniors’ movement timing. Thirty-two healthy seniors (mean age 68 ± 4 years) learned to play a pinball-like game by triggering a one-degree-of-freedom hand robot at the proper time to make a flipper move and direct a falling ball toward a randomly positioned target. During HG and EA robotic trainings, the subjects’ timing errors were decreased and increased, respectively, based on the subjects’ timing errors in initiating a movement. Results showed that only HG training benefited learning, but the improvement did not generalize to untrained targets. Also, age had no influence on the efficacy of HG robotic training, meaning that the oldest subjects did not benefit more from HG training than the younger senior subjects. Using HG to teach the correct timing of movement seems to be a good strategy to improve motor learning for the elderly as for younger people. However, more studies are needed to assess the long-term impact of HG robotic training on improvement in movement timing. PMID:25873868

  19. United States Army Training and Doctrine Command (TRADOC) - artificial intelligence and robotics symposium

    SciTech Connect

    Not Available

    1985-01-01

    Various papers on artificial intelligence and robotics and their applications for the US Army are presented. Topics include US Army robotics development directions; mobile robots for surveillance, reconnaissance, and manipulative missions in hazardous environments; technology development in intelligent machine systems; control of a multi-robot process line using AI; land vehicles; remote control weapons platforms; expert systems for logistic analysis. Also addressed are software architecture for real-time, embedded expert systems; knowledge integrity maintenance; embedding AI systems into command and control; a natural language understanding system for maneuver control; and a design of a generic intelligent trainer.

  20. Guide to good practices for line and training manager activities

    SciTech Connect

    1998-06-01

    The purpose of this guide is to provide direction for line and training managers in carrying out their responsibilities for training and qualifying personnel and to verify that existing training activities are effective.

  1. Dimensionality Reduction in Controlling Articulated Snake Robot for Endoscopy Under Dynamic Active Constraints

    PubMed Central

    Kwok, Ka-Wai; Tsoi, Kuen Hung; Vitiello, Valentina; Clark, James; Chow, Gary C. T.; Luk, Wayne; Yang, Guang-Zhong

    2014-01-01

    This paper presents a real-time control framework for a snake robot with hyper-kinematic redundancy under dynamic active constraints for minimally invasive surgery. A proximity query (PQ) formulation is proposed to compute the deviation of the robot motion from predefined anatomical constraints. The proposed method is generic and can be applied to any snake robot represented as a set of control vertices. The proposed PQ formulation is implemented on a graphic processing unit, allowing for fast updates over 1 kHz. We also demonstrate that the robot joint space can be characterized into lower dimensional space for smooth articulation. A novel motion parameterization scheme in polar coordinates is proposed to describe the transition of motion, thus allowing for direct manual control of the robot using standard interface devices with limited degrees of freedom. Under the proposed framework, the correct alignment between the visual and motor axes is ensured, and haptic guidance is provided to prevent excessive force applied to the tissue by the robot body. A resistance force is further incorporated to enhance smooth pursuit movement matched to the dynamic response and actuation limit of the robot. To demonstrate the practical value of the proposed platform with enhanced ergonomic control, detailed quantitative performance evaluation was conducted on a group of subjects performing simulated intraluminal and intracavity endoscopic tasks. PMID:24741371

  2. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy.

    PubMed

    Wallard, L; Dietrich, G; Kerlirzin, Y; Bredin, J

    2017-02-02

    The robotic-assisted gait training therapy (RAGT), based on intensity and repetition of movement, presents beneficial effects on recovery and improvement of postural and locomotor functions of the patient. This study sought to highlight the effect of this RAGT on the dynamic equilibrium control during walking in children with Cerebral Palsy (CP) by analyzing the different postural strategies of the fullbody (upper/lower body) before and after this RAGT in order to generate forward motion while maintaining balance. Data were collected by a motion analysis system (Vicon(®) - Oxford Metrics). Thirty children with bilateral spastic CP were evaluated using a full-body marker set which allows assessing both the lower and upper limb kinematics. The children were divided into two groups in such a way as to obtain a randomized controlled population: i) a group of fourteen children (Treated Group) underwent 20 sessions of RAGT using the driven gait orthosis Lokomat(®)Pediatric (Hocoma) compared to ii) a group of sixteen children without sessions of Lokomat(®)Pediatric (Control Group) receiving only daily physiotherapy. Significant improvements are observed between the TG pre- and post-test values of i) the kinematic data of the full-body in the sagittal and frontal planes and ii) the Gross Motor Function Measure test (D and E). This study shows the usefulness of this RAGT mainly in the balance control in gait. Indeed, the Treated Group use new dynamic strategies of gait that are especially characterized by a more appropriate control of the upper body associated with an improvement of the lower limbs kinematics.

  3. 20 CFR 632.78 - Training activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... remedial education, GED, training in the primary language of persons with limited English-speaking proficiency, or English-as-a-second-language training. (b) On-the-job training. (1) On-the-job training...

  4. [The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders].

    PubMed

    Schwartz, Isabella; Meiner, Zeev

    2013-03-01

    Regaining one's ability to walk is of great importance for neurological patients and is a major goal of all rehabilitation programs. Treating neurological patients in the acute phase after the event is technically difficult because of their motor weakness and balance disturbances. Based on studies in spinalized animals, a novel locomotor training that incorporates high repetitions of task-oriented practice by the use of body weight-supported treadmill training (BWSTT) was developed to overcome these obstacles. The use of BWSTT enables early initiation of gait training, integration of weightbearing activities, stepping and balance by the use of a task-specific approach, and a symmetrical gait pattern. However, despite the theoretical potential of BWSTT to become an invaluable therapeutic tool, its effect on walking outcomes was disappointing when compared with conventional training of the same duration. To facilitate the deLivery of BWSTT, a motorized robotic driven gait orthosis (RBWSTT) was recently developed. It has many advantages over the conventional method, including less effort for the physiotherapists, longer session duration, more physiological and reproducible gait patterns, and the possibility of measuring a patient's performances. Several studies have been conducted using RBWSTT in patients after stroke, spinal cord injury, multiple sclerosis and other neurological diseases. Although some of the results were encouraging, there is still uncertainty regarding proper patient selection, timing and protocol for RBWTT treatment following neurological diseases. More large randomized controlled studies are needed in order to answer these questions.

  5. A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis.

    PubMed

    Fazekas, Gabor; Horvath, Monika; Toth, Andras

    2006-09-01

    Spasticity is velocity and acceleration dependent, and it is therefore important to execute physiotherapeutic exercises at a relatively low and constant velocity. This can be more accurately managed by a robot than by a person when such exercises are administered continuously for more than 15-20 min. The purpose of this project was to construct a robot-mediated system that could support upper limb physiotherapy of patients with spastic hemiparesis. The system, unlike any known robotic therapeutic system, uses unmodified industrial robots to carry out passive physiotherapy on the upper limb (including the movements of the shoulder and the elbow). An initial trial was executed in order to assess its safety and to gain experience of the robot-mediated therapy. Four healthy subjects and eight patients with spastic hemiparesis were included. Each subject received 30-min-long robotic physiotherapy sessions over 20 consecutive workdays. The 12 participants received, in total, 240 robot-mediated physiotherapeutic sessions. No dangerous situation or considerable technical problem occurred; the robots executed the therapy programme as intended. Investigation of the effectiveness of this kind of therapy was not an aim of this initial trial; however, the patients' clinical status was followed and some favourable changes were found regarding the spasticity of elbow flexors and shoulder abductors. According to the experiences of the first clinical investigation, the programming interface and the mechanical interface device between the patient and the robots had been improved. A controlled clinical study is under way to assess the effectiveness of the REHAROB movement therapy.

  6. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial

    PubMed Central

    Gandolfi, Marialuisa; Geroin, Christian; Picelli, Alessandro; Munari, Daniele; Waldner, Andreas; Tamburin, Stefano; Marchioretto, Fabio; Smania, Nicola

    2014-01-01

    Background: Extensive research on both healthy subjects and patients with central nervous damage has elucidated a crucial role of postural adjustment reactions and central sensory integration processes in generating and “shaping” locomotor function, respectively. Whether robotic-assisted gait devices might improve these functions in Multiple sclerosis (MS) patients is not fully investigated in literature. Purpose: The aim of this study was to compare the effectiveness of end-effector robot-assisted gait training (RAGT) and sensory integration balance training (SIBT) in improving walking and balance performance in patients with MS. Methods: Twenty-two patients with MS (EDSS: 1.5–6.5) were randomly assigned to two groups. The RAGT group (n = 12) underwent end-effector system training. The SIBT group (n = 10) underwent specific balance exercises. Each patient received twelve 50-min treatment sessions (2 days/week). A blinded rater evaluated patients before and after treatment as well as 1 month post treatment. Primary outcomes were walking speed and Berg Balance Scale. Secondary outcomes were the Activities-specific Balance Confidence Scale, Sensory Organization Balance Test, Stabilometric Assessment, Fatigue Severity Scale, cadence, step length, single and double support time, Multiple Sclerosis Quality of Life-54. Results: Between groups comparisons showed no significant differences on primary and secondary outcome measures over time. Within group comparisons showed significant improvements in both groups on the Berg Balance Scale (P = 0.001). Changes approaching significance were found on gait speed (P = 0.07) only in the RAGT group. Significant changes in balance task-related domains during standing and walking conditions were found in the SIBT group. Conclusion: Balance disorders in patients with MS may be ameliorated by RAGT and by SIBT. PMID:24904361

  7. Visual sensor fusion for active security in robotic industrial environments

    NASA Astrophysics Data System (ADS)

    Robla, Sandra; Llata, Jose R.; Torre-Ferrero, Carlos; Sarabia, Esther G.; Becerra, Victor; Perez-Oria, Juan

    2014-12-01

    This work presents a method of information fusion involving data captured by both a standard charge-coupled device (CCD) camera and a time-of-flight (ToF) camera to be used in the detection of the proximity between a manipulator robot and a human. Both cameras are assumed to be located above the work area of an industrial robot. The fusion of colour images and time-of-flight information makes it possible to know the 3D localization of objects with respect to a world coordinate system. At the same time, this allows to know their colour information. Considering that ToF information given by the range camera contains innacuracies including distance error, border error, and pixel saturation, some corrections over the ToF information are proposed and developed to improve the results. The proposed fusion method uses the calibration parameters of both cameras to reproject 3D ToF points, expressed in a common coordinate system for both cameras and a robot arm, in 2D colour images. In addition to this, using the 3D information, the motion detection in a robot industrial environment is achieved, and the fusion of information is applied to the foreground objects previously detected. This combination of information results in a matrix that links colour and 3D information, giving the possibility of characterising the object by its colour in addition to its 3D localisation. Further development of these methods will make it possible to identify objects and their position in the real world and to use this information to prevent possible collisions between the robot and such objects.

  8. Biofeedback for robotic gait rehabilitation

    PubMed Central

    Lünenburger, Lars; Colombo, Gery; Riener, Robert

    2007-01-01

    Background Development and increasing acceptance of rehabilitation robots as well as advances in technology allow new forms of therapy for patients with neurological disorders. Robot-assisted gait therapy can increase the training duration and the intensity for the patients while reducing the physical strain for the therapist. Optimal training effects during gait therapy generally depend on appropriate feedback about performance. Compared to manual treadmill therapy, there is a loss of physical interaction between therapist and patient with robotic gait retraining. Thus, it is difficult for the therapist to assess the necessary feedback and instructions. The aim of this study was to define a biofeedback system for a gait training robot and test its usability in subjects without neurological disorders. Methods To provide an overview of biofeedback and motivation methods applied in gait rehabilitation, previous publications and results from our own research are reviewed. A biofeedback method is presented showing how a rehabilitation robot can assess the patients' performance and deliver augmented feedback. For validation, three subjects without neurological disorders walked in a rehabilitation robot for treadmill training. Several training parameters, such as body weight support and treadmill speed, were varied to assess the robustness of the biofeedback calculation to confounding factors. Results The biofeedback values correlated well with the different activity levels of the subjects. Changes in body weight support and treadmill velocity had a minor effect on the biofeedback values. The synchronization of the robot and the treadmill affected the biofeedback values describing the stance phase. Conclusion Robot-aided assessment and feedback can extend and improve robot-aided training devices. The presented method estimates the patients' gait performance with the use of the robot's existing sensors, and displays the resulting biofeedback values to the patients and

  9. Robotics in reproductive surgery: strengths and limitations.

    PubMed

    Catenacci, M; Flyckt, R L; Falcone, T

    2011-09-01

    Minimally invasive surgical techniques are becoming increasingly common in gynecologic surgery. However, traditional laparoscopy can be challenging. A robotic surgical system gives several advantages over traditional laparoscopy and has been incorporated into reproductive gynecological surgeries. The objective of this article is to review recent publications on robotically-assisted laparoscopy for reproductive surgery. Recent clinical research supports robotic surgery as resulting in less post-operative pain, shorter hospital stays, faster return to normal activities, and decreased blood loss. Reproductive outcomes appear similar to alternative approaches. Drawbacks of robotic surgery include longer operating room times, the need for specialized training, and increased cost. Larger prospective studies comparing robotic approaches with laparoscopy and conventional open surgery have been initiated and information regarding long-term outcomes after robotic surgery will be important in determining the ultimate utility of these procedures.

  10. Adaptive impedance control of a robotic orthosis for gait rehabilitation.

    PubMed

    Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K

    2013-06-01

    Intervention of robotic devices in the field of physical gait therapy can help in providing repetitive, systematic, and economically viable training sessions. Interactive or assist-as-needed (AAN) gait training encourages patient voluntary participation in the robotic gait training process which may aid in rapid motor function recovery. In this paper, a lightweight robotic gait training orthosis with two actuated and four passive degrees of freedom (DOFs) is proposed. The actuated DOFs were powered by pneumatic muscle actuators. An AAN gait training paradigm based on adaptive impedance control was developed to provide interactive robotic gait training. The proposed adaptive impedance control scheme adapts the robotic assistance according to the disability level and voluntary participation of human subjects. The robotic orthosis was operated in two gait training modes, namely, inactive mode and active mode, to evaluate the performance of the proposed control scheme. The adaptive impedance control scheme was evaluated on ten neurologically intact subjects. The experimental results demonstrate that an increase in voluntary participation of human subjects resulted in a decrease of the robotic assistance and vice versa. Further clinical evaluations with neurologically impaired subjects are required to establish the therapeutic efficacy of the adaptive-impedance-control-based AAN gait training strategy.

  11. Investigation of Fatigability during Repetitive Robot-Mediated Arm Training in People with Multiple Sclerosis

    PubMed Central

    Severijns, Deborah; Octavia, Johanna Renny; Kerkhofs, Lore; Coninx, Karin; Lamers, Ilse; Feys, Peter

    2015-01-01

    Background People with multiple sclerosis (MS) are encouraged to engage in exercise programs but an increased experience of fatigue may impede sustained participation in training sessions. A high number of movements is, however, needed for obtaining optimal improvements after rehabilitation. Methods This cross-sectional study investigated whether people with MS show abnormal fatigability during a robot-mediated upper limb movement trial. Sixteen people with MS and sixteen healthy controls performed five times three minutes of repetitive shoulder anteflexion movements. Movement performance, maximal strength, subjective upper limb fatigue and surface electromyography (median frequency and root mean square of the amplitude of the electromyography (EMG) signal of the anterior deltoid) were recorded during or in-between these exercises. After fifteen minutes of rest, one extra movement bout was performed to investigate how rest influences performance. Results A fifteen minutes upper limb movement protocol increased the perceived upper limb fatigue and induced muscle fatigue, given a decline in maximal anteflexion strength and changes of both the amplitude and the median frequency of EMG the anterior deltoid. In contrast, performance during the 3 minutes of anteflexion movements did not decline. There was no relation between changes in subjective fatigue and the changes in the amplitude and the median frequency of the anterior deltoid muscle, however, there was a correlation between the changes in subjective fatigue and changes in strength in people with MS. People with MS with upper limb weakness report more fatigue due to the repetitive movements, than people with MS with normal upper limb strength, who are comparable to healthy controls. The weak group could, however, keep up performance during the 15 minutes of repetitive movements. Discussion and Conclusion Albeit a protocol of repetitive shoulder anteflexion movements did not elicit a performance decline, fatigue

  12. Combined robotic-aided gait training and 3D gait analysis provide objective treatment and assessment of gait in children and adolescents with Acquired Hemiplegia.

    PubMed

    Molteni, Erika; Beretta, Elena; Altomonte, Daniele; Formica, Francesca; Strazzer, Sandra

    2015-08-01

    To evaluate the feasibility of a fully objective rehabilitative and assessment process of the gait abilities in children suffering from Acquired Hemiplegia (AH), we studied the combined employment of robotic-aided gait training (RAGT) and 3D-Gait Analysis (GA). A group of 12 patients with AH underwent 20 sessions of RAGT in addition to traditional manual physical therapy (PT). All the patients were evaluated before and after the training by using the Gross Motor Function Measures (GMFM), the Functional Assessment Questionnaire (FAQ), and the 6 Minutes Walk Test. They also received GA before and after RAGT+PT. Finally, results were compared with those obtained from a control group of 3 AH children who underwent PT only. After the training, the GMFM and FAQ showed significant improvement in patients receiving RAGT+PT. GA highlighted significant improvement in stance symmetry and step length of the affected limb. Moreover, pelvic tilt increased, and hip kinematics on the sagittal plane revealed statistically significant increase in the range of motion during the hip flex-extension. Our data suggest that the combined program RAGT+PT induces improvements in functional activities and gait pattern in children with AH, and it demonstrates that the combined employment of RAGT and 3D-GA ensures a fully objective rehabilitative program.

  13. Periodic activations of behaviours and emotional adaptation in behaviour-based robotics

    NASA Astrophysics Data System (ADS)

    Burattini, Ernesto; Rossi, Silvia

    2010-09-01

    The possible modulatory influence of motivations and emotions is of great interest in designing robotic adaptive systems. In this paper, an attempt is made to connect the concept of periodic behaviour activations to emotional modulation, in order to link the variability of behaviours to the circumstances in which they are activated. The impact of emotion is studied, described as timed controlled structures, on simple but conflicting reactive behaviours. Through this approach it is shown that the introduction of such asynchronies in the robot control system may lead to an adaptation in the emergent behaviour without having an explicit action selection mechanism. The emergent behaviours of a simple robot designed with both a parallel and a hierarchical architecture are evaluated and compared.

  14. Human-like Compliance for Dexterous Robot Hands

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    1995-01-01

    This paper describes the Active Electromechanical Compliance (AEC) system that was developed for the Jau-JPL anthropomorphic robot. The AEC system imitates the functionality of the human muscle's secondary function, which is to control the joint's stiffness: AEC is implemented through servo controlling the joint drive train's stiffness. The control strategy, controlling compliant joints in teleoperation, is described. It enables automatic hybrid position and force control through utilizing sensory feedback from joint and compliance sensors. This compliant control strategy is adaptable for autonomous robot control as well. Active compliance enables dual arm manipulations, human-like soft grasping by the robot hand, and opens the way to many new robotics applications.

  15. MUSCLE ACTIVATION PATTERNS DURING SUSPENSION TRAINING EXERCISES

    PubMed Central

    Harris, Sean; Ruffin, Elise; Brewer, Wayne

    2017-01-01

    Background Suspension training (ST) has been utilized over exercises performed on a stable surface to train multiple muscle groups simultaneously to increase muscle activation and joint stability. Hypothesis/Purpose The purpose of this study was to determine whether ST augments muscle activation compared to similar exercises performed on a stable surface. Study Design Cross-sectional study Methods Twenty-five healthy adults (male: 16; women: 9; BMI: 23.50 ± 2.48 kg/m2) had 16 pre-amplified wireless surface EMG electrodes placed bilaterally on: the pectoralis major (PM), middle deltoid (MD), serratus anterior (SA), obliques (OB), rectus abdominis (RA), gluteus maximus (GM), erector spinae (ES), and middle trapezius/rhomboids (MT). Each participant performed reference isometric exercises (Sorensen test, push-up, sit-up, and inverted row) to establish a baseline muscle contraction. Muscle activation was assessed during the following exercises: ST bridge, ST push-up, ST inverted row, ST plank, floor bridge, floor push-up, floor row, and floor plank. The root mean square (RMS) of each side for every muscle was averaged for data analysis. Multivariate analyses of variance (MANOVA) for each exercise with post-hoc comparisons were performed to compare muscle activation between each ST exercise and its stable surface counterpart. Results MANOVAs for all exercise comparisons showed statistically significant greater muscle activation in at least one muscle group during the ST condition. Post-hoc analyses revealed a statistically significant increase in muscle activation for the following muscles during the plank: OB (p = 0.021); Push-up: PM (p = 0.002), RA (p<0.0001), OB (p = 0.019), MT (p<0.0001), and ES (p = 0.006); Row: MD (p = 0.016), RA (p = 0.059), and OB (p = 0.027); and Bridge: RA (p = 0.013) and ES (p<0.0001). Conclusions Performing ST exercises increases muscle activation of selected muscles when compared to exercises performed on a stable surface. Level of

  16. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    NASA Astrophysics Data System (ADS)

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  17. Program Activity/Training Plans. STIP II (Skill Training Improvement Programs Round II).

    ERIC Educational Resources Information Center

    Los Angeles Community Coll. District, CA.

    Detailed operational guidelines, training objectives, and learning activities are provided for the Los Angeles Community College District's Skill Training Improvement Programs (STIP II), which are designed to train students for immediate employment. The first of four reports covers Los Angeles Southwest College's computer programming trainee…

  18. Improved Gait Speed After Robot-Assisted Gait Training in Patients With Motor Incomplete Spinal Cord Injury: A Preliminary Study

    PubMed Central

    2017-01-01

    Objective To evaluate the clinical features that could serve as predictive factors for improvement in gait speed after robotic treatment. Methods A total of 29 patients with motor incomplete spinal cord injury received 4-week robot-assisted gait training (RAGT) on the Lokomat (Hocoma AG, Volketswil, Switzerland) for 30 minutes, once a day, 5 times a week, for a total of 20 sessions. All subjects were evaluated for general characteristics, the 10-Meter Walk Test (10MWT), the Lower Extremity Motor Score (LEMS), the Functional Ambulatory Category (FAC), the Walking Index for Spinal Cord Injury version II (WISCI-II), the Berg Balance Scale (BBS), and the Spinal Cord Independence Measure version III (SCIM-III) every 0, and 4 weeks. After all the interventions, subjects were stratified using the 10MWT score at 4 weeks into improved group and non-improved group for statistical analysis. Results The improved group had younger age and shorter disease duration than the non-improved group. All subjects with the American Spinal Injury Association Impairment Scale level C (AIS-C) tetraplegia belonged to the non-improved group, while most subjects with AIS-C paraplegia, AIS-D tetraplegia, and AIS-D paraplegia belonged to the improved group. The improved group showed greater baseline lower extremity strength, balance, and daily living function than the non-improved group. Conclusion Assessment of SCIM-III, BBS, and trunk control, in addition to LEMS, have potential for predicting the effects of robotic treatment in patients with motor incomplete spinal cord injury. PMID:28289633

  19. Center of Cardiac Surgery Robotic Computerized Telemanipulation as Part of a Comprehensive Approach to Advanced Heart Care

    DTIC Science & Technology

    2011-10-01

    Robotic OR Appendix E: Comparison Chart of daVinci Simulator Skill Sets and Training Exercise Activities 1 INTRODUCTION Robotic surgery recently...techniques in endoscopic cardiac bypass surgery is important not only for surgeons and surgical teams just beginning to perform robotic surgery , but also...Director, Robotic Surgery Scott Keith, PhD Faculty, Division of Biostatistics Rebecca O’Shea, MBA Senior Vice President for Clinical

  20. The Resonating Arm Exerciser: design and pilot testing of a mechanically passive rehabilitation device that mimics robotic active assistance

    PubMed Central

    2013-01-01

    Background Robotic arm therapy devices that incorporate actuated assistance can enhance arm recovery, motivate patients to practice, and allow therapists to deliver semi-autonomous training. However, because such devices are often complex and actively apply forces, they have not achieved widespread use in rehabilitation clinics or at home. This paper describes the design and pilot testing of a simple, mechanically passive device that provides robot-like assistance for active arm training using the principle of mechanical resonance. Methods The Resonating Arm Exerciser (RAE) consists of a lever that attaches to the push rim of a wheelchair, a forearm support, and an elastic band that stores energy. Patients push and pull on the lever to roll the wheelchair back and forth by about 20 cm around a neutral position. We performed two separate pilot studies of the device. In the first, we tested whether the predicted resonant properties of RAE amplified a user’s arm mobility by comparing his or her active range of motion (AROM) in the device achieved during a single, sustained push and pull to the AROM achieved during rocking. In a second pilot study designed to test the therapeutic potential of the device, eight participants with chronic stroke (35 ± 24 months since injury) and a mean, stable, initial upper extremity Fugl-Meyer (FM) score of 17 ± 8 / 66 exercised with RAE for eight 45 minute sessions over three weeks. The primary outcome measure was the average AROM measured with a tilt sensor during a one minute test, and the secondary outcome measures were the FM score and the visual analog scale for arm pain. Results In the first pilot study, we found people with a severe motor impairment after stroke intuitively found the resonant frequency of the chair, and the mechanical resonance of RAE amplified their arm AROM by a factor of about 2. In the second pilot study, AROM increased by 66% ± 20% (p = 0.003). The mean FM score increase was 8.5 ± 4 pts (p = 0

  1. Structural and functional improvements due to robot-assisted gait training in the stroke-injured brain.

    PubMed

    Yang, Hea Eun; Kyeong, Sunghyon; Lee, Seung Hwa; Lee, Won-Jae; Ha, Sang Won; Kim, Seung Min; Kang, Hyunkoo; Lee, Won Min; Kang, Chang Soon; Kim, Dae Hyun

    2017-01-10

    Robot-assisted gait training (RAGT) can improve walking ability after stroke. Because the underlying mechanisms are still unknown, we analyzed changes in post-stroke injured brains after RAGT. Ten non-ambulatory patients receiving inpatient rehabilitation were examined within 3 months of stroke onset. RAGT consisted of 45min of training, 3days per week. We acquired diffusion tensor imaging (DTI) data before and after 20 sessions of RAGT. Fractional anisotropy (FA) maps were then used to determine neural changes after RAGT. Fugl-Meyer motor assessment of the lower extremity, motricity index of the lower extremity, functional ambulation category, and trunk control tests were also conducted before training, after 10 and 20 RAGT sessions, and at the 1-month follow-up. After RAGT, the supplementary motor area of the unaffected hemisphere showed increased FA, but the internal capsule, substantia nigra, and pedunculopontine nucleus of the affected hemisphere showed decreased FA. All clinical outcome measures improved after 20 sessions of RAGT. Our findings indicate that RAGT can facilitate plasticity in the intact supplementary motor area, but not the injured motor-related areas, in the affected hemisphere.

  2. Basic Operational Robotics Instructional System

    NASA Technical Reports Server (NTRS)

    Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John

    2013-01-01

    The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.

  3. Lower-Limb Rehabilitation Robot Design

    NASA Astrophysics Data System (ADS)

    Bouhabba, E. M.; Shafie, A. A.; Khan, M. R.; Ariffin, K.

    2013-12-01

    It is a general assumption that robotics will play an important role in therapy activities within rehabilitation treatment. In the last decade, the interest in the field has grown exponentially mainly due to the initial success of the early systems and the growing demand caused by increasing numbers of stroke patients and their associate rehabilitation costs. As a result, robot therapy systems have been developed worldwide for training of both the upper and lower extremities. This paper investigates and proposes a lower-limb rehabilitation robot that is used to help patients with lower-limb paralysis to improve and resume physical functions. The proposed rehabilitation robot features three rotary joints forced by electric motors providing linear motions. The paper covers mechanism design and optimization, kinematics analysis, trajectory planning, wearable sensors, and the control system design. The design and control system demonstrate that the proposed rehabilitation robot is safe and reliable with the effective design and better kinematic performance.

  4. Bioinspired active whisker sensor for robotic vibrissal tactile sensing

    NASA Astrophysics Data System (ADS)

    Ju, Feng; Ling, Shih-Fu

    2014-12-01

    A whisker transducer (WT) inspired by rat’s vibrissal tactile perception is proposed based on a transduction matrix model characterizing the electro-mechanical transduction process in both forward and backward directions. It is capable of acting as an actuator to sweep the whisker and simultaneously as a sensor to sense the force, motion, and mechanical impedance at whisker tip. Its validity is confirmed by numerical simulation using a finite element model. A prototype is then fabricated and its transduction matrix is determined by parameter identification. The calibrated WT can accurately sense mechanical impedance which is directly related to stiffness, mass and damping. Subsequent vibrissal tactile sensing of sandpaper texture reveals that the real part of mechanical impedance sensed by WT is correlated with sandpaper roughness. Texture discrimination is successfully achieved by inputting the real part to a k-means clustering algorithm. The mechanical impedance sensing ability as well as other features of the WT such as simultaneous-actuation-and-sensing makes it a good solution to robotic tactile sensing.

  5. Development and Test of Robotically Assisted Extravehicular Activity Gloves

    NASA Technical Reports Server (NTRS)

    Rogers, Jonathan M.; Peters, Benjamin J.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    Over the past two years, the High Performance EVA Glove (HPEG) project under NASA's Space Technology Mission Directorate (STMD) funded an effort to develop an electromechanically-assisted space suit glove. The project was a collaboration between the Johnson Space Center's Software, Robotics, and Simulation Division and the Crew and Thermal Systems division. The project sought to combine finger actuator technology developed for Robonaut 2 with the softgoods from the ILC Phase VI EVA glove. The Space Suit RoboGlove (SSRG) uses a system of three linear actuators to pull synthetic tendons attached to the glove's fingers to augment flexion of the user's fingers. To detect the user's inputs, the system utilizes a combination of string potentiometers along the back of the fingers and force sensitive resistors integrated into the fingertips of the glove cover layer. This paper discusses the development process from initial concepts through two major phases of prototypes, and the results of initial human testing. Initial work on the project focused on creating a functioning proof of concept, designing the softgoods integration, and demonstrating augmented grip strength with the actuators. The second year of the project focused on upgrading the actuators, sensors, and software with the overall goal of creating a system that moves with the user's fingers in order to reduce fatigue associated with the operation of a pressurized glove system. This paper also discusses considerations for a flight system based on this prototype development and address where further work is required to mature the technology.

  6. Video-based convolutional neural networks for activity recognition from robot-centric videos

    NASA Astrophysics Data System (ADS)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  7. Australian Small Business Participation in Training Activities

    ERIC Educational Resources Information Center

    Webster, Beverley; Walker, Elizabeth; Brown, Alan

    2005-01-01

    Purpose: This purpose of this paper is to investigate the use of on-line training by small businesses in Australia. It explores the relationship between the owners acceptance and use of the Internet, and their current participation in training opportunities. Design/Methodology/Approach: A sample of small businesses which had participated in an…

  8. An active damping control of robot manipulators with oscillatory bases by singular perturbation approach

    NASA Astrophysics Data System (ADS)

    Lin, J.; Huang, Z. Z.; Huang, P. H.

    2007-07-01

    This paper deals with active damping control problems of robot manipulators with oscillatory bases. A first investigation of two-time scale fuzzy logic controller with vibration stabilizer for such structures has been proposed, where the dynamics of a robotic system is strongly affected by disturbances due to the base oscillation. Under the assumption of two-time scale, its stability and design procedures are presented for a multiple link manipulator with multiple dimension oscillation. The fast-subsystem controller will damp out the vibration of the oscillatory bases using a PD control method. Hence, the slow-subsystem fuzzy logic controller dominates the trajectory tracking. It can be guaranteed the stability of the internal dynamics by adding a boundary-layer correction based on singular perturbations approach. Experimental results have shown that the proposed control model offers several implementation advantages such as reduced effect of overshoot and chattering, smaller steady state error, and a fast convergent rate. The results of this study can be feasible to various mechanical systems, such as mobile robot, gantry cranes, underwater robot, and other dynamic systems mounted on oscillatory bases.

  9. STS-109 Crew Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-109 (Commander Scott Altman, Pilot Duane Carey, Payload Commander John Grunsfeld, and Mission Specialists Nancy Currie, James Newman, Richard Linnehan, and Michael Massimino) during various parts of their training. Scenes show the crew's photo session, Post Landing Egress practice, training in Dome Simulator, Extravehicular Activity Training in the Neutral Buoyancy Laboratory (NBL), and using the Virtual Reality Laboratory Robotic Arm. The crew is also seen tasting food as they choose their menus for on-orbit meals.

  10. Planning and Development of Lab Training Activities for Powerline Communications

    ERIC Educational Resources Information Center

    Drosopoulos, A.; Hatziprokopiou, M.

    2010-01-01

    This paper discusses the planning and development of student training and activities for the Powerline Communications Laboratory at the Technical Education Institute (TEI), Patras, Greece. Powerline communications is currently an active area of research and development that combines three separate specializations from the standard training of…

  11. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.

    PubMed

    Sans-Muntadas, Albert; Duarte, Jaime E; Reinkensmeyer, David J

    2014-01-01

    Reinforcement learning (RL) is a form of motor learning that robotic therapy devices could potentially manipulate to promote neurorehabilitation. We developed a system that requires trainees to use RL to learn a predefined target movement. The system provides higher rewards for movements that are more similar to the target movement. We also developed a novel algorithm that rewards trainees of different abilities with comparable reward sizes. This algorithm measures a trainee's performance relative to their best performance, rather than relative to an absolute target performance, to determine reward. We hypothesized this algorithm would permit subjects who cannot normally achieve high reward levels to do so while still learning. In an experiment with 21 unimpaired human subjects, we found that all subjects quickly learned to make a first target movement with and without the reward equalization. However, artificially increasing reward decreased the subjects' tendency to engage in exploration and therefore slowed learning, particularly when we changed the target movement. An anti-slacking watchdog algorithm further slowed learning. These results suggest that robotic algorithms that assist trainees in achieving rewards or in preventing slacking might, over time, discourage the exploration needed for reinforcement learning.

  12. Robotic surgical simulation.

    PubMed

    Liss, Michael A; McDougall, Elspeth M

    2013-01-01

    Robotic surgery has undergone exponential growth and has ever developing utilization. The explosion of new technologies and regulation have led to challenges in training surgeons who desire this skill set. We review the current state of robotic simulation and incorporation of simulation into surgical training curricula. In addition to the literature review, results of a questionnaire survey study of 21 expert and novice surgeons attending a Urologic Robotic Oncology conference using 3 different robotic skill simulation devices are discussed. An increasing number of robotic surgery simulators have had some degree of validation study of their use in surgical education curricula and proficiency testing. Although simulators are advantageous, confirmation of construct and predictive validity of robotic simulators and their reliability as a training tool will be necessary before they are integrated into the surgical credentialing process.

  13. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  14. Selecting services for a service robot: evaluating the problematic activities threatening the independence of elderly persons.

    PubMed

    Bedaf, Sandra; Gelderblom, Gert Jan; de Witte, Luc; Syrdal, Dag; Lehmann, Hagen; Amirabdollahian, Farshid; Dautenhahn, Kerstin; Hewson, David

    2013-06-01

    Sustaining independent living for the elderly is desirable both for the individual as well as for societies as a whole. Substantial care interventions are provided to citizens supporting their independent living. Currently, such interventions are primarily based on human care provision, but due to demographic changes the demand for such support is continuously increasing. Assistive Robotics has the potential to answer this growing demand. The notions research towards service robots that support the independence of elderly people has been given increased attention. The challenge is to develop robots that are able to adequately support with those activities that pose the greatest problems for elderly people seeking to remain independent. In order to develop the capabilities of the Care-O-bot 3 in the ACCOMPANY project, problematic activities that may threaten continued independent living of elderly people were studied. Focus groups were conducted in the Netherlands, UK, and France and included three separate user groups: (1) elderly (N=41), (2) formal caregivers (N=40), and (3) informal caregivers (N=32). This resulted in a top 3 of problematic activity domains that received the highest priority: (1) Mobility, (2) Self-care, and (3) Social isolation. The findings inform the further development of the Care-O-bot. In the ACCOMPANY project the Care-O-bot 3 will be developed further to enable it to support independently living older persons in one of these domains.

  15. Experiments in advanced control concepts for space robotics - An overview of the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.

    1987-01-01

    The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.

  16. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed Central

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning. PMID:26485148

  17. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    PubMed

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  18. Can robot-assisted movement training (Lokomat) improve functional recovery and psychological well-being in chronic stroke? Promising findings from a case study

    PubMed Central

    Calabrò, Rocco Salvatore; Reitano, Simone; Leo, Antonino; De Luca, Rosaria; Melegari, Corrado; Bramanti, Placido

    2014-01-01

    Summary The Lokomat is a robotic device that has been widely used for gait rehabilitation in several neurological disorders, with a positive effect also in the chronic phase. We describe the case of a 54-year-old female with post-stroke moderate-to-severe chronic hemiplegia, whose force, gait and balance significantly improved after intensive training with Lokomat Pro. We also noted a positive impact of Lokomat on mood and coping styles. This may be partly related to the task-oriented exercises with computerized visual feedback, which in turn can be considered an important tool for increasing patients’ motor output, involvement and motivation during gait training. Augmented feedback during robot-assisted gait appears to be a promising way of facilitating gait and physical function, but also of improving psychological and cognitive status. PMID:25306125

  19. Brain computer interface for operating a robot

    NASA Astrophysics Data System (ADS)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  20. Autogenic training alters cerebral activation patterns in fMRI.

    PubMed

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.

  1. [Robotic surgery].

    PubMed

    Sándor, József; Haidegger, Tamás; Kormos, Katalin; Ferencz, Andrea; Csukás, Domokos; Bráth, Endre; Szabó, Györgyi; Wéber, György

    2013-10-01

    Due to the fast spread of laparoscopic cholecystectomy, surgical procedures have been changed essentially. The new techniques applied for both abdominal and thoracic procedures provided the possibility for minimally invasive access with all its advantages. Robots - originally developed for industrial applications - were retrofitted for laparoscopic procedures. The currently prevailing robot-assisted surgery is ergonomically more advantageous for the surgeon, as well as for the patient through the more precise preparative activity thanks to the regained 3D vision. The gradual decrease of costs of robotic surgical systems and development of new generations of minimally invasive devices may lead to substantial changes in routine surgical procedures.

  2. Hessian-regularized co-training for social activity recognition.

    PubMed

    Liu, Weifeng; Li, Yang; Lin, Xu; Tao, Dacheng; Wang, Yanjiang

    2014-01-01

    Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms.

  3. Hessian-Regularized Co-Training for Social Activity Recognition

    PubMed Central

    Liu, Weifeng; Li, Yang; Lin, Xu; Tao, Dacheng; Wang, Yanjiang

    2014-01-01

    Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner on each view separately and then force the learners to be consistent across views. Although many co-trainings have been developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization is then integrated into the learner training process of each view by penalizing the regression function along the potential manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms. PMID:25259945

  4. Robotics for welding research

    SciTech Connect

    Braun, G.; Jones, J.

    1984-09-01

    The welding metallurgy research and education program at Colorado School of Mines (CSM) is helping industries make the transition toward automation by training students in robotics. Industry's interest is primarily in pick and place operations, although robotics can increase efficiency in areas other than production. Training students to develop fully automated robotic welding systems will usher in new curriculum requirements in the area of computers and microprocessors. The Puma 560 robot is CSM's newest acquisition for welding research 5 references, 2 figures, 1 table.

  5. The responsiveness and correlation between Fugl-Meyer Assessment, Motor Status Scale, and the Action Research Arm Test in chronic stroke with upper-extremity rehabilitation robotic training.

    PubMed

    Wei, Xi-Jun; Tong, Kai-Yu; Hu, Xiao-Ling

    2011-12-01

    Responsiveness of clinical assessments is an important element in the report of clinical effectiveness after rehabilitation. The correlation could reflect the validity of assessments as an indication of clinical performance before and after interventions. This study investigated the correlation and responsiveness of Fugl-Meyer Assessment (FMA), Motor Status Scale (MSS), Action Research Arm Test (ARAT) and the Modified Ashworth Scale (MAS), which are used frequently in effectiveness studies of robotic upper-extremity training in stroke rehabilitation. Twenty-seven chronic stroke patients were recruited for a 20-session upper-extremity rehabilitation robotic training program. This was a rater-blinded randomized controlled trial. All participants were evaluated with FMA, MSS, ARAT, MAS, and Functional Independent Measure before and after robotic training. Spearman's rank correlation coefficient was applied for the analysis of correlation. The standardized response mean (SRM) and Guyatt's responsiveness index (GRI) were used to analyze responsiveness. Spearman's correlation coefficient showed a significantly high correlation (ρ=0.91-0.96) among FMA, MSS, and ARAT and a fair-to-moderate correlation (ρ=0.40-0.62) between MAS and the other assessments. FMA, MSS, and MAS on the wrist showed higher responsiveness (SRM=0.85-0.98, GRI=1.59-3.62), whereas ARAT showed relatively less responsiveness (SRM=0.22, GRI=0.81). The results showed that FMA or MSS would be the best choice for evaluating the functional improvement in stroke studies on robotic upper-extremity training with high responsiveness and good correlation with ARAT. MAS could be used separately to evaluate the spasticity changes after intervention in terms of high responsiveness.

  6. Extravehicular Activity training and hardware design considerations

    NASA Technical Reports Server (NTRS)

    Thuot, Pierre J.; Harbaugh, Gregory J.

    1993-01-01

    Designing hardware that can be successfully operated by EVA astronauts for EVA tasks required to assemble and maintain Space Station Freedom requires a thorough understanding of human factors and of the capabilities and limitations of the space-suited astronaut, as well as of the effect of microgravity environment on the crew member's capabilities and on the overhead associated with EVA. This paper describes various training methods and facilities that are being designed for training EVA astronauts for Space Station assembly and maintenance, taking into account the above discussed factors. Particular attention is given to the user-friendly hardware design for EVA and to recent EVA flight experience.

  7. Active Ageing in a Greying Society: Training for All Ages

    ERIC Educational Resources Information Center

    Hessel, Roger

    2008-01-01

    With the ageing of society, policy-makers are aware of the need to retain older workers in employment. Across Europe, lifelong learning is increasingly important. Adults who remain active longer need (re-)training to maintain their productivity. However, vocational training tends to decline with age. The article analyses European employment policy…

  8. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…

  9. Communication and knowledge sharing in human-robot interaction and learning from demonstration.

    PubMed

    Koenig, Nathan; Takayama, Leila; Matarić, Maja

    2010-01-01

    Inexpensive personal robots will soon become available to a large portion of the population. Currently, most consumer robots are relatively simple single-purpose machines or toys. In order to be cost effective and thus widely accepted, robots will need to be able to accomplish a wide range of tasks in diverse conditions. Learning these tasks from demonstrations offers a convenient mechanism to customize and train a robot by transferring task related knowledge from a user to a robot. This avoids the time-consuming and complex process of manual programming. The way in which the user interacts with a robot during a demonstration plays a vital role in terms of how effectively and accurately the user is able to provide a demonstration. Teaching through demonstrations is a social activity, one that requires bidirectional communication between a teacher and a student. The work described in this paper studies how the user's visual observation of the robot and the robot's auditory cues affect the user's ability to teach the robot in a social setting. Results show that auditory cues provide important knowledge about the robot's internal state, while visual observation of a robot can hinder an instructor due to incorrect mental models of the robot and distractions from the robot's movements.

  10. Microscopic Analysis of Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the use of a compound microscope to analyze microscope communities, present in wastewater treatment processes, for operational control. Course topics include: sampling techniques, sample handling, laboratory analysis, identification of organisms, data interpretation, and use of the compound microscope.…

  11. Robotic and user interface solutions for hazardous and remote applications

    SciTech Connect

    Schempf, H.

    1997-12-01

    Carnegie Mellon University (CMU) is developing novel robotic and user interface systems to assist in the cleanup activities undertaken by the U.S. Department of Energy (DOE). Under DOE`s EM-50 funding and administered by the Federal Energy Technology Center (FETC), CMU has developed a novel asbestos pipe-insulation abatement robot system, called BOA, and a novel generic user interface control and training console, dubbed RoboCon. The use of BOA will allow the speedier abatement of the vast DOE piping networks clad with hazardous and contaminated asbestos insulation by which overall job costs can be reduced by as much as 50%. RoboCon will allow the DOE to evaluate different remote and robotic system technologies from the overall man-machine performance standpoint, as well as provide a standardized training platform for training site operators in the operation of remote and robotic equipment.

  12. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.

    PubMed

    Nathan, Dominic E; Johnson, Michelle J; McGuire, John R

    2009-01-01

    Hand and arm impairment is common after stroke. Robotic stroke therapy will be more effective if hand and upper-arm training is integrated to help users practice reaching and grasping tasks. This article presents the design, development, and validation of a low-cost, functional electrical stimulation grasp-assistive glove for use with task-oriented robotic stroke therapy. Our glove measures grasp aperture while a user completes simple-to-complex real-life activities, and when combined with an integrated functional electrical stimulator, it assists in hand opening and closing. A key function is a new grasp-aperture prediction model, which uses the position of the end-effectors of two planar robots to define the distance between the thumb and index finger. We validated the accuracy and repeatability of the glove and its capability to assist in grasping. Results from five nondisabled subjects indicated that the glove is accurate and repeatable for both static hand-open and -closed tasks when compared with goniometric measures and for dynamic reach-to-grasp tasks when compared with motion analysis measures. Results from five subjects with stroke showed that with the glove, they could open their hands but without it could not. We present a glove that is a low-cost solution for in vivo grasp measurement and assistance.

  13. Effect of memory impairment on training outcomes in ACTIVE

    PubMed Central

    UNVERZAGT, FREDERICK W.; KASTEN, LINDA; JOHNSON, KATHY E.; REBOK, GEORGE W.; MARSISKE, MICHAEL; KOEPKE, KATHY MANN; ELIAS, JEFFREY W.; MORRIS, JOHN N.; WILLIS, SHERRY L.; BALL, KARLENE; REXROTH, DANIEL F.; SMITH, DAVID M.; WOLINSKY, FREDRIC D.; TENNSTEDT, SHARON L.

    2009-01-01

    Cognitive training improves mental abilities in older adults, but the trainability of persons with memory impairment is unclear. We conducted a subgroup analysis of subjects in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) trial to examine this issue. ACTIVE enrolled 2802 non-demented, community-dwelling adults aged 65 years and older and randomly assigned them to one of four groups: Memory training, reasoning training, speed-of-processing training, or no-contact control. For this study, participants were defined as memory-impaired if baseline Rey Auditory Verbal Learning Test (AVLT) sum recall score was 1.5 SD or more below predicted AVLT sum recall score from a regression-derived formula using age, education, ethnicity, and vocabulary from all subjects at baseline. Assessments were taken at baseline (BL), post-test, first annual (A1), and second annual (A2) follow-up. One hundred and ninety-three subjects were defined as memory-impaired and 2580 were memory-normal. Training gain as a function memory status (impaired vs. normal) was compared in a mixed effects model. Results indicated that memory-impaired participants failed to benefit from Memory training but did show normal training gains after reasoning and speed training. Memory function appears to mediate response to structured cognitive interventions in older adults. PMID:17942013

  14. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  15. Enabling Novel Minimally-Actuated Robotic Capabilities Through Active Fluids

    DTIC Science & Technology

    2013-07-25

    journals : 1. Ahmed Helal. Society of Rheology Meeting, Feb 2013, "Design of Integrated ER valves" 2. Boston Dynamics Active Fluids Program: IEEE RAS...adhesive climbers. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge ARO support...from the start of the project to the date of this printing. List the papers, including journal references, in the following categories: Received

  16. On the role of auditory feedback in robot-assisted movement training after stroke: review of the literature.

    PubMed

    Rosati, Giulio; Rodà, Antonio; Avanzini, Federico; Masiero, Stefano

    2013-01-01

    The goal of this paper is to address a topic that is rarely investigated in the literature of technology-assisted motor rehabilitation, that is, the integration of auditory feedback in the rehabilitation device. After a brief introduction on rehabilitation robotics, the main concepts of auditory feedback are presented, together with relevant approaches, techniques, and technologies available in this domain. Current uses of auditory feedback in the context of technology-assisted rehabilitation are then reviewed. In particular, a comparative quantitative analysis over a large corpus of the recent literature suggests that the potential of auditory feedback in rehabilitation systems is currently and largely underexploited. Finally, several scenarios are proposed in which the use of auditory feedback may contribute to overcome some of the main limitations of current rehabilitation systems, in terms of user engagement, development of acute-phase and home rehabilitation devices, learning of more complex motor tasks, and improving activities of daily living.

  17. On the Role of Auditory Feedback in Robot-Assisted Movement Training after Stroke: Review of the Literature

    PubMed Central

    Rodà, Antonio; Avanzini, Federico; Masiero, Stefano

    2013-01-01

    The goal of this paper is to address a topic that is rarely investigated in the literature of technology-assisted motor rehabilitation, that is, the integration of auditory feedback in the rehabilitation device. After a brief introduction on rehabilitation robotics, the main concepts of auditory feedback are presented, together with relevant approaches, techniques, and technologies available in this domain. Current uses of auditory feedback in the context of technology-assisted rehabilitation are then reviewed. In particular, a comparative quantitative analysis over a large corpus of the recent literature suggests that the potential of auditory feedback in rehabilitation systems is currently and largely underexploited. Finally, several scenarios are proposed in which the use of auditory feedback may contribute to overcome some of the main limitations of current rehabilitation systems, in terms of user engagement, development of acute-phase and home rehabilitation devices, learning of more complex motor tasks, and improving activities of daily living. PMID:24382952

  18. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...

  19. Medical robotics.

    PubMed

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management.

  20. Instructional games and activities for criticality safety training

    SciTech Connect

    Bullard, B.; McBride, J. )

    1993-01-01

    During the past several years, the Training and Management Systems Division (TMSD) staff of Oak Ridge Institute for Science and Education (ORISE) has designed and developed nuclear criticality safety (NCS) training programs that focus on high trainee involvement through the use of instructional games and activities. This paper discusses the instructional game, initial considerations for developing games, advantages and limitations of games, and how games may be used in developing and implementing NCS training. It also provides examples of the various instructional games and activities used in separate courses designed for Martin Marietta Energy Systems (MMES's) supervisors and U.S. Nuclear Regulatory Commission (NRC) fuel facility inspectors.

  1. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  2. Overview and Categorization of Robots Supporting Independent Living of Elderly People: What Activities Do They Support and How Far Have They Developed.

    PubMed

    Bedaf, Sandra; Gelderblom, Gert Jan; De Witte, Luc

    2015-01-01

    Over the past decades, many robots for the elderly have been developed, supporting different activities of elderly people. A systematic review in four scientific literature databases and a search in article references and European projects was performed in order to create an overview of robots supporting independent living of elderly people. The robots found were categorized based on their development stage, the activity domains they claim to support, and the type of support provided (i.e., physical, non-physical, and/or non-specified). In total, 107 robots for the elderly were identified. Six robots were still in a concept phase, 95 in a development phase, and six of these robots were commercially available. These robots claimed to provide support related to four activity domains: mobility, self-care, interpersonal interaction & relationships, and other activities. Of the many robots developed, only a small percentage is commercially available. Technical ambitions seem to be guiding robot development. To prolong independent living, the step towards physical support is inevitable and needs to be taken. However, it will be a long time before a robot will be capable of supporting multiple activities in a physical manner in the home of an elderly person in order to enhance their independent living.

  3. Robotics Strategy White Paper

    DTIC Science & Technology

    2009-03-19

    VIRGINIA 23651-1087 REPlY TO A1Tl!NTlON OF ATFC-DS 19 MEMORANDUM FOR SEE DISTRIBUTION SUBJECT: Robotics Strategy White Paper 1. The enclosed... Robotics Strategy White Paper is the result of a collaborative effort between the U.S. Anny Training and Doctrine Command (TRADOC) and the Tank-Automotive...Research, Development and Engineering Center (TARDEC). This paper builds on a confederated Anny robotics "strategy" that is described by senior leader

  4. 78 FR 67222 - Proposed Information Collection Activity; Comment Request: Other On-the-Job Training and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... AFFAIRS Proposed Information Collection Activity; Comment Request: Other On-the-Job Training and Apprenticeship Training Agreement and Standards and Employer's Application To Provide Job Training AGENCY... information needed to meet statutory requirements for job training program. DATES: Written comments...

  5. Robot Assisted Stapedotomy ex vivo with an Active Handheld Instrument*

    PubMed Central

    Vendrametto, Tobia; McAfee, Jacob S.; Hirsch, Barry E.; Riviere, Cameron N.; Ferrigno, Giancarlo; De Momi, Elena

    2015-01-01

    Micron is a fully handheld active micromanipulator that helps to improve position accuracy and precision in microsurgery by cancelling hand tremor. This work describes adaptation, tuning, and testing of the Micron system for stapedotomy, a microsurgical procedure performed in the middle ear to restore hearing that requires accurate manipulation in narrow spaces. Two end-effectors, a handle, and a brace (or rest) were designed and prototyped. The control system was adapted for the new hardware. The system was tested ex vivo in stapedotomy procedure comparing manually-performed and Micron-assisted surgical tasks. Tremor amplitude was found to be reduced significantly. Further testing is needed in order to obtain statistically significant results regarding other parameters dealing with regularity of the fenestra shape. PMID:26737386

  6. Flywheel resistance training calls for greater eccentric muscle activation than weight training.

    PubMed

    Norrbrand, Lena; Pozzo, Marco; Tesch, Per A

    2010-11-01

    Changes in muscle activation and performance were studied in healthy men in response to 5 weeks of resistance training with or without "eccentric overload". Subjects, assigned to either weight stack (grp WS; n = 8) or iso-inertial "eccentric overload" flywheel (grp FW; n = 9) knee extensor resistance training, completed 12 sessions of four sets of seven concentric-eccentric actions. Pre- and post-measurements comprised maximal voluntary contraction (MVC), rate of force development (RFD) and training mode-specific force. Root mean square electromyographic (EMG(RMS)) activity of mm. vastus lateralis and medialis was assessed during MVC and used to normalize EMG(RMS) for training mode-specific concentric (EMG(CON)) and eccentric (EMG(ECC)) actions at 90°, 120° and 150° knee joint angles. Grp FW showed greater (p < 0.05) overall normalized angle-specific EMG(ECC) of vastii muscles compared with grp WS. Grp FW showed near maximal normalized EMG(CON) both pre- and post-training. EMG(CON) for Grp WS was near maximal only post-training. While RFD was unchanged following training (p > 0.05), MVC and training-specific strength increased (p < 0.05) in both groups. We believe the higher EMG(ECC) activity noted with FW exercise compared to standard weight lifting could be attributed to its unique iso-inertial loading features. Hence, the resulting greater mechanical stress may explain the robust muscle hypertrophy reported earlier in response to flywheel resistance training.

  7. APOLLO 10: Training for Lunar Surface Activities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Astronauts train on a mock-up lunar surface, practicing the procedures they will follow on the real thing, and adjusting to the demands of the workload. From the film documentary 'APOLLO 10: 'Green Light for a Lunar Landing''. Part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) APOLLO 10: Manned lunar orbital flight with Thomas P Stafford, John W. Young, and Eugene A. Cernan to test all aspects of an actual manned lunar landing except the landing. Mission Duration 192hrs 3mins 23 sec

  8. Robotic Exploration of Moon and Mars: Thematic Education Approach

    NASA Technical Reports Server (NTRS)

    Allen, J S.; Tobola, K. W.; Lowes, L. L.; Betrue, R.

    2008-01-01

    Safe, sustained, affordable human and robotic exploration of the Moon, Mars, and beyond is a major NASA goal. Robotic exploration of the Moon and Mars will help pave the way for an expanded human presence in our solar system. To help share the robotic exploration role in the Vision for Space Exploration with classrooms, informal education groups, and the public, our team researched and consolidated the thematic story components and associated education activities into a useful education materials set for educators. We developed the set of materials for a workshop combining NASA Science Mission Directorate and Exploration Systems Mission Directorate engineering, science, and technology to train informal educators on education activities that support the robotic exploration themes. A major focus is on the use of robotic spacecraft and instruments to explore and prepare for the human exploration of the Moon and Mars.

  9. Robot-assisted motor activation monitored by time-domain optical brain imaging

    NASA Astrophysics Data System (ADS)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  10. 30 Years of Neurosurgical Robots: Review and Trends for Manipulators and Associated Navigational Systems.

    PubMed

    Smith, James Andrew; Jivraj, Jamil; Wong, Ronnie; Yang, Victor

    2016-04-01

    This review provides an examination of contemporary neurosurgical robots and the developments that led to them. Improvements in localization, microsurgery and minimally invasive surgery have made robotic neurosurgery viable, as seen by the success of platforms such as the CyberKnife and neuromate. Neurosurgical robots can now perform specific surgical tasks such as skull-base drilling and craniotomies, as well as pedicle screw and cochlear electrode insertions. Growth trends in neurosurgical robotics are likely to continue but may be tempered by concerns over recent surgical robot recalls, commercially-driven surgeon training, and studies that show operational costs for surgical robotic procedures are often higher than traditional surgical methods. We point out that addressing performance issues related to navigation-related registration is an active area of research and will aid in improving overall robot neurosurgery performance and associated costs.

  11. Connectivity Changes Underlying Neurofeedback Training of Visual Cortex Activity

    PubMed Central

    Scharnowski, Frank; Rosa, Maria Joao; Golestani, Narly; Hutton, Chloe; Josephs, Oliver

    2014-01-01

    Neurofeedback based on real-time functional magnetic resonance imaging (fMRI) is a new approach that allows training of voluntary control over regionally specific brain activity. However, the neural basis of successful neurofeedback learning remains poorly understood. Here, we assessed changes in effective brain connectivity associated with neurofeedback training of visual cortex activity. Using dynamic causal modeling (DCM), we found that training participants to increase visual cortex activity was associated with increased effective connectivity between the visual cortex and the superior parietal lobe. Specifically, participants who learned to control activity in their visual cortex showed increased top-down control of the superior parietal lobe over the visual cortex, and at the same time reduced bottom-up processing. These results are consistent with efficient employment of top-down visual attention and imagery, which were the cognitive strategies used by participants to increase their visual cortex activity. PMID:24609065

  12. Comparing Adaptive Control of Thought-Rational (ACT-R) Baseline Activation Terms for Implementation in the Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS)

    DTIC Science & Technology

    2014-04-01

    Comparing Adaptive Control of Thought–Rational (ACT-R) Baseline Activation Terms for Implementation in the Symbolic and Subsymbolic Robotic ...Baseline Activation Terms for Implementation in the Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS) Craig T. Lennon...Implementation in the Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  13. Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories

    SciTech Connect

    Bennett, P.C.

    1996-11-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to miniature robotic devices and sensors for remote sensing and micro-surgery. This paper describes six activities in the large and small scale that are underway and either nearing technology transfer stage or seeking industrial partners to continue application development. The topics of the applications include multiple arm coordination for intuitively maneuvering large, ungainly work pieces; simulation, analysis and graphical training capability for CP-5 research reactor dismantlement; miniature robots with volumes of 16 cubic centimeters and less developed for inspection and sensor deployment; and biomedical sensors to enhance automated prosthetic device production and fill laparoscopic surgery information gap.

  14. Towards Pervasive Robotics

    DTIC Science & Technology

    2003-01-01

    Towards Pervasive Robotics Artur M. Arsenio Artificial Intelligence Lab - Massachusetts Institute of Technology 545 Technology Square, Room NE43-936...MA 02139 arsenio@ai.mit.edu Abstract Pervasive robotics will require, in a near future, small, light and cheap robots that exhibit complex behaviors...These demands led to the development of the M2-M4 Macaco project - a robotic active vi- sion head. Macaco is a portable system, capable of emulating

  15. Damping Control of Liquid Container by Swing-type Active Vibration Reducer on Mobile Robot

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Masafumi; Taniguchi, Takao

    This paper proposes a damping control of sloshing in a cylindrical container with a swing-type active vibration reducer on a wheeled mobile robot (WMR). The WMR runs along a straight path on a horizontal plane. The container is mounted on the active vibration reducer. A laser displacement sensor is used to observe the liquid level in the container. The container can be tilted in the running direction by the active vibration reducer. A sloshing model is obtained from a spherical pendulum-type sloshing model, which approximately expresses (1, 1)-mode sloshing. The sloshing model is used to design a damping control system. The control system of the active vibration reducer is designed with an inverse model of sloshing and an optimal regulator with a Kalman filter. The WMR is driven by an acceleration pattern designed with an input shaping method. The usefulness of the proposed method is demonstrated through simulation and experimental results.

  16. Intuitive operability evaluation of surgical robot using brain activity measurement to determine immersive reality.

    PubMed

    Miura, Satoshi; Kobayashi, Yo; Kawamura, Kazuya; Seki, Masatoshi; Nakashima, Yasutaka; Noguchi, Takehiko; Kasuya, Masahiro; Yokoo, Yuki; Fujie, Masakatsu G

    2012-01-01

    Surgical robots have improved considerably in recent years, but intuitive operability, which represents user inter-operability, has not been quantitatively evaluated. Therefore, for design of a robot with intuitive operability, we propose a method to measure brain activity to determine intuitive operability. The objective of this paper is to determine the master configuration against the monitor that allows users to perceive the manipulator as part of their own body. We assume that the master configuration produces an immersive reality experience for the user of putting his own arm into the monitor. In our experiments, as subjects controlled the hand controller to position the tip of the virtual slave manipulator on a target in a surgical simulator, we measured brain activity through brain-imaging devices. We performed our experiments for a variety of master manipulator configurations with the monitor position fixed. For all test subjects, we found that brain activity was stimulated significantly when the master manipulator was located behind the monitor. We conclude that this master configuration produces immersive reality through the body image, which is related to visual and somatic sense feedback.

  17. Robot- and computer-assisted craniotomy (CRANIO): from active systems to synergistic man-machine interaction.

    PubMed

    Cunha-Cruz, V; Follmann, A; Popovic, A; Bast, P; Wu, T; Heger, S; Engelhardt, M; Schmieder, K; Radermacher, K

    2010-01-01

    Computer and robot assistance in craniotomy/craniectomy procedures is intended to increase precision and efficiency of the removal of calvarial tumours, enabling the preoperative design and manufacturing of the corresponding implant. In the framework of the CRANIO project, an active robotic system was developed to automate the milling processes based on a predefined resection planning. This approach allows for a very efficient milling process, but lacks feedback of the intra-operative process to the surgeon. To better integrate the surgeon into the process, a new teleoperated synergistic architecture was designed. This enables the surgeon to realize changes during the procedure and use their human cognitive capabilities. The preoperative planning information is used as guidance for the user interacting with the system through a master-slave architecture. In this article, the CRANIO system is presented together with this new synergistic approach. Experiments have been performed to evaluate the accuracy of the system in active and synergistic modes for the bone milling procedure. The laboratory studies showed the general feasibility of the new concept for the selected medical procedure and determined the accuracy of the system. Although the integration of the surgeon partially reduces the efficiency of the milling process compared with a purely active (automatic) milling, it provides more feedback and flexibility to the user during the intra-operative procedure.

  18. An arm for a leg: Adapting a robotic arm for gait rehabilitation.

    PubMed

    Franchi, Giulia; Viereck, Ulrich; Platt, Robert; Yen, Sheng-Che; Hasson, Christopher J

    2015-01-01

    The purpose of this study was to adapt a multipurpose robotic arm for gait rehabilitation. An advantage of this approach is versatility: a robotic arm can be attached to almost any point on the body to assist with lower- and upper-extremity rehabilitation. This may be more cost-effective than purchasing and training rehabilitation staff to use several specialized rehabilitation robots. Robotic arms also have a more human-like morphology, which may make them less intimidating or alien to patients. In this study a mechanical interface was developed that allows a fast, secure, and safe attachment between a robotic arm and a human limb. The effectiveness of this interface was assessed by having two healthy subjects walk on a treadmill with and without a robotic arm attached to their legs. The robot's ability to follow the subjects' swinging legs was evaluated at slow and fast walking speeds. Two different control schemes were evaluated: one using the standard manufacturer-provided control algorithm, and another using a custom algorithm that actively compensated for robot-human interaction forces. The results showed that both robot control schemes performed well for slow walking. There were negligible differences between subjects' gait kinematics with and without the robot. During fast walking with the robot, similar results were obtained for one subject; however, the second subject demonstrated noticeable gait modifications. Together, these results show the feasibility of adapting a multipurpose robotic arm for gait rehabilitation.

  19. Deploying the ODIS robot in Iraq and Afghanistan

    NASA Astrophysics Data System (ADS)

    Smuda, Bill; Schoenherr, Edward; Andrusz, Henry; Gerhart, Grant

    2005-05-01

    The wars in Iraq and Afghanistan have shown the importance of robotic technology as a force multiplier and a tool for moving soldiers out of harms way. Situations on the ground make soldiers performing checkpoint operations easy targets for snipers and suicide bombers. Robotics technology reduces risk to soldiers and other personnel at checkpoints. Early user involvement in innovative and aggressive development and acquisition strategies are the key to moving robotic and associated technology into the hands of the user. This paper updates activity associated with rapid development of the Omni-Directional Inspection System (ODIS) robot for under vehicle inspection and reports on our field experience with robotics in Iraq and Afghanistan. In February of 2004, two TARDEC Engineers departed for a mission to Iraq and Afghanistan with ten ODIS Robots. Six robots were deployed in the Green Zone in Baghdad. Two Robots were deployed at Kandahar Army Airfield and two were deployed at Bagram Army Airfield in Afghanistan. The TARDEC Engineers who performed this mission trained the soldiers and provided initial on site support. They also trained Exponent employees assigned to the Rapid Equipping Force in ODIS repair. We will discuss our initial deployment, lessons learned and future plans.

  20. Effects of robot-driven gait orthosis treadmill training on the autonomic response in rehabilitation-responsive stroke and cervical spondylotic myelopathy patients.

    PubMed

    Magagnin, Valentina; Bo, Ivano; Turiel, Maurizio; Fornari, Maurizio; Caiani, Enrico G; Porta, Alberto

    2010-06-01

    Body weight supported treadmill training (BWSTT) assisted with a robotic-driven gait orthosis is utilized in rehabilitation of individuals with lost motor skills. A typical rehabilitation session included: sitting, standing, suspension, robotic-assisted walking at 1.5 and 2.5km/h, respectively with 50% body weight support and recovery. While the effects of robotic-assisted BWSTT on motor performances were deeply studied, the influences on the cardiovascular control are still unknown. The aim of the study was to evaluate in stroke (ST) and cervical spondylotic myelopathy (CSM) patients: (1) the autonomic response during a traditional robotic-assisted BWSTT session of motor rehabilitation; (2) the effects of 30 daily sessions of BWSTT on cardiovascular regulation. The autonomic response was assessed through symbolic analysis of short-term heart rate variability in 11 pathologic subjects (5 ST and 6 CSM patients) whose motor skills were improved as a result of the rehabilitation therapy. Results showed variable individual responses to the rehabilitation session in ST patients at the beginning of the therapy. At the end of the rehabilitation process, the responses of ST patients were less variable and more similar to those previously observed in healthy subjects. CSM patients exhibited an exaggerated vagal response to the fastest walking phase during the first rehabilitative session. This abnormal response was limited after the last rehabilitative session. We conclude that robotic-assisted BWSTT is helpful in restoring cardiovascular control in rehabilitation-responsive ST patients and limiting vagal responses in rehabilitation-responsive CSM patients.

  1. Hands-On Surgical Training Workshop: an Active Role-Playing Patient Education for Adolescents.

    PubMed

    Wongkietkachorn, Apinut; Boonyawong, Pangpoom; Rhunsiri, Peera; Tantiphlachiva, Kasaya

    2016-01-20

    Most patient education involves passive learning. To improve patient education regarding surgery, an active learning workshop-based teaching method is proposed. The objective of this study was to assess level of patient surgical knowledge, achievement of workshop learning objectives, patient apprehension about future surgery, and participant workshop satisfaction after completing a surgical training workshop. A four-station workshop (surgical scrub, surgical suture, laparoscopic surgery, and robotic surgery) was developed to teach four important components of the surgical process. Healthy, surgery-naive adolescents were enrolled to attend this 1-h workshop-based training program. Training received by participants was technically and procedurally identical to training received by actual surgeons. Pre- and post-workshop questionnaires were used to assess learning outcomes. There were 1312 participants, with a mean age 15.9 ± 1.1 years and a gender breakdown of 303 males and 1009 females. For surgical knowledge, mean pre-workshop and post-workshop scores were 6.1 ± 1.5 and 7.5 ± 1.5 (out of 10 points), respectively (p < 0.001). Out of 5 possible points, achievement of learning objectives, decreased apprehension about future surgery, and overall workshop satisfaction scores were all higher than 4.5. Active, hands-on patient education is an effective way to improve understanding of surgery-related processes. This teaching method may also decrease apprehension that patients or potential patients harbor regarding a future surgical procedure.

  2. Rehabilitation Associate Training for Employed Staff. Instructional Activities Manual (Supplement).

    ERIC Educational Resources Information Center

    Wisconsin Univ.-Stout, Menomonie. Stout Vocational Rehabilitation Inst.

    This manual provides additional instructional activities for teachers/trainers to use for in-service training of persons who work with mentally retarded, learning disabled, and handicapped clients. The first part of the booklet discusses standard learning activities, such as open discussion, games, modeling, role-playing, and debates. The rest of…

  3. Rehabilitation Associate Training for Employed Staff. Instructional Activities Manual.

    ERIC Educational Resources Information Center

    Wisconsin Univ.-Stout, Menomonie. Stout Vocational Rehabilitation Inst.

    This manual provides instructional activities for teachers/trainers to use for in-service training of persons who work with mentally retarded, learning disabled, and handicapped clients. The first part of the booklet contains standard learning activities, such as open discussion, games, modeling, role-playing, and debates. The rest of the booklet…

  4. Peer Listening in the Middle School: Training Activities for Students.

    ERIC Educational Resources Information Center

    Hazouri, Sandra Peyser; Smith, Miriam Frey

    This workbook presents activities for training middle school student peer listeners. The first of the workbook's 10 chapters contains an introduction to peer listening. Activities include a pretest on a series of true-false statements called the "Peer Listening Inventory," defining the meaning of the words that describe the qualities of a peer…

  5. Monopolar intracochlear pulse trains selectively activate the inferior colliculus.

    PubMed

    Schoenecker, Matthew C; Bonham, Ben H; Stakhovskaya, Olga A; Snyder, Russell L; Leake, Patricia A

    2012-10-01

    Previous cochlear implant studies using isolated electrical stimulus pulses in animal models have reported that intracochlear monopolar stimulus configurations elicit broad extents of neuronal activation within the central auditory system-much broader than the activation patterns produced by bipolar electrode pairs or acoustic tones. However, psychophysical and speech reception studies that use sustained pulse trains do not show clear performance differences for monopolar versus bipolar configurations. To test whether monopolar intracochlear stimulation can produce selective activation of the inferior colliculus, we measured activation widths along the tonotopic axis of the inferior colliculus for acoustic tones and 1,000-pulse/s electrical pulse trains in guinea pigs and cats. Electrical pulse trains were presented using an array of 6-12 stimulating electrodes distributed longitudinally on a space-filling silicone carrier positioned in the scala tympani of the cochlea. We found that for monopolar, bipolar, and acoustic stimuli, activation widths were significantly narrower for sustained responses than for the transient response to the stimulus onset. Furthermore, monopolar and bipolar stimuli elicited similar activation widths when compared at stimulus levels that produced similar peak spike rates. Surprisingly, we found that in guinea pigs, monopolar and bipolar stimuli produced narrower sustained activation than 60 dB sound pressure level acoustic tones when compared at stimulus levels that produced similar peak spike rates. Therefore, we conclude that intracochlear electrical stimulation using monopolar pulse trains can produce activation patterns that are at least as selective as bipolar or acoustic stimulation.

  6. EEG Brain Activity in Dynamic Health Qigong Training: Same Effects for Mental Practice and Physical Training?

    PubMed Central

    Henz, Diana; Schöllhorn, Wolfgang I.

    2017-01-01

    In recent years, there has been significant uptake of meditation and related relaxation techniques, as a means of alleviating stress and fostering an attentive mind. Several electroencephalogram (EEG) studies have reported changes in spectral band frequencies during Qigong meditation indicating a relaxed state. Much less is reported on effects of brain activation patterns induced by Qigong techniques involving bodily movement. In this study, we tested whether (1) physical Qigong training alters EEG theta and alpha activation, and (2) mental practice induces the same effect as a physical Qigong training. Subjects performed the dynamic Health Qigong technique Wu Qin Xi (five animals) physically and by mental practice in a within-subjects design. Experimental conditions were randomized. Two 2-min (eyes-open, eyes-closed) EEG sequences under resting conditions were recorded before and immediately after each 15-min exercise. Analyses of variance were performed for spectral power density data. Increased alpha power was found in posterior regions in mental practice and physical training for eyes-open and eyes-closed conditions. Theta power was increased after mental practice in central areas in eyes-open conditions, decreased in fronto-central areas in eyes-closed conditions. Results suggest that mental, as well as physical Qigong training, increases alpha activity and therefore induces a relaxed state of mind. The observed differences in theta activity indicate different attentional processes in physical and mental Qigong training. No difference in theta activity was obtained in physical and mental Qigong training for eyes-open and eyes-closed resting state. In contrast, mental practice of Qigong entails a high degree of internalized attention that correlates with theta activity, and that is dependent on eyes-open and eyes-closed resting state. PMID:28223957

  7. EEG Brain Activity in Dynamic Health Qigong Training: Same Effects for Mental Practice and Physical Training?

    PubMed

    Henz, Diana; Schöllhorn, Wolfgang I

    2017-01-01

    In recent years, there has been significant uptake of meditation and related relaxation techniques, as a means of alleviating stress and fostering an attentive mind. Several electroencephalogram (EEG) studies have reported changes in spectral band frequencies during Qigong meditation indicating a relaxed state. Much less is reported on effects of brain activation patterns induced by Qigong techniques involving bodily movement. In this study, we tested whether (1) physical Qigong training alters EEG theta and alpha activation, and (2) mental practice induces the same effect as a physical Qigong training. Subjects performed the dynamic Health Qigong technique Wu Qin Xi (five animals) physically and by mental practice in a within-subjects design. Experimental conditions were randomized. Two 2-min (eyes-open, eyes-closed) EEG sequences under resting conditions were recorded before and immediately after each 15-min exercise. Analyses of variance were performed for spectral power density data. Increased alpha power was found in posterior regions in mental practice and physical training for eyes-open and eyes-closed conditions. Theta power was increased after mental practice in central areas in eyes-open conditions, decreased in fronto-central areas in eyes-closed conditions. Results suggest that mental, as well as physical Qigong training, increases alpha activity and therefore induces a relaxed state of mind. The observed differences in theta activity indicate different attentional processes in physical and mental Qigong training. No difference in theta activity was obtained in physical and mental Qigong training for eyes-open and eyes-closed resting state. In contrast, mental practice of Qigong entails a high degree of internalized attention that correlates with theta activity, and that is dependent on eyes-open and eyes-closed resting state.

  8. Preliminary development of the Active Colonoscopy Training Model

    PubMed Central

    Choi, JungHun; Ravindra, Kale; Robert, Randolph; Drozek, David

    2011-01-01

    Formal colonoscopy training requires a significant amount of time and effort. In particular, it requires actual patients for a realistic learning experience. The quality of colonoscopy training varies, and includes didactic courses and procedures proctored by skilled surgeons. A colonoscopy training model is occasionally used as part of the training method, but the effects are minute due to both the simple and tedious training procedures. To enhance the educational effect of the colonoscopy training model, the Active Colonoscopy Training Model (ACTM) has been developed. ACTM is an interactive colonoscopy training device which can create the environment of a real colonoscopy procedure as closely as possible. It comprises a configurable rubber colon, a human torso, sensors, a display, and the control part. The ACTM provides audio and visual interaction to the trainee by monitoring important factors, such as forces caused by the distal tip and the shaft of the colonoscope and the pressure to open up the lumen and the localization of the distal tip. On the computer screen, the trainee can easily monitor the status of the colonoscopy, which includes the localization of the distal tip, maximum forces, pressure inside the colon, and surgery time. The forces between the rubber colon and the constraints inside the ACTM are measured and the real time display shows the results to the trainee. The pressure sensors will check the pressure at different parts of the colon. The real-time localized distal tip gives the colonoscopy trainee easier and more confident operation without introducing an additional device in the colonoscope. With the current need for colonoscopists and physicians, the ACTM can play an essential role resolving the problems of the current colonoscopy training model, and significantly improve the training quality of the colonoscopy. PMID:22915931

  9. Comparison of joint space and end point space robotic training modalities for rehabilitation of interjoint coordination in individuals with moderate to severe impairment from chronic stroke.

    PubMed

    Brokaw, Elizabeth B; Holley, Rahsaan J; Lum, Peter S

    2013-09-01

    We have developed a novel robotic modality called Time Independent Functional Training (TIFT) that provides focused retraining of interjoint coordination after stroke. TIFT was implemented on the ARMin III exoskeleton and provides joint space walls that resist movement patterns that are inconsistent with the targeted interjoint coordination pattern. In a single test session, ten moderate to severely impaired individuals with chronic stroke practiced synchronous shoulder abduction and elbow extension in TIFT and also in a comparison mode commonly used in robotic therapy called end point tunnel training (EPTT). In EPTT, error is limited by forces applied to the hand that are normal to the targeted end point trajectory. The completion percentage of the movements was comparable between modes, but the coordination patterns used by subjects differed between modes. In TIFT, subjects performed the targeted pattern of synchronous shoulder abduction and elbow extension, while in EPTT, movements were completed with compensatory strategies that incorporated the flexor synergy (shoulder abduction with elbow flexion) or the extensor synergy (shoulder adduction with elbow extension). There were immediate effects on free movements, with TIFT resulting in larger improvements in interjoint coordination than EPTT. TIFT's ability to elicit normal coordination patterns merits further investigation into the effects of longer duration training.

  10. Demonstration of a Spoken Dialogue Interface for Planning Activities of a Semi-autonomous Robot

    NASA Technical Reports Server (NTRS)

    Dowding, John; Frank, Jeremy; Hockey, Beth Ann; Jonsson, Ari; Aist, Gregory

    2002-01-01

    Planning and scheduling in the face of uncertainty and change pushes the capabilities of both planning and dialogue technologies by requiring complex negotiation to arrive at a workable plan. Planning for use of semi-autonomous robots involves negotiation among multiple participants with competing scientific and engineering goals to co-construct a complex plan. In NASA applications this plan construction is done under severe time pressure so having a dialogue interface to the plan construction tools can aid rapid completion of the process. But, this will put significant demands on spoken dialogue technology, particularly in the areas of dialogue management and generation. The dialogue interface will need to be able to handle the complex dialogue strategies that occur in negotiation dialogues, including hypotheticals and revisions, and the generation component will require an ability to summarize complex plans. This demonstration will describe a work in progress towards building a spoken dialogue interface to the EUROPA planner for the purposes of planning and scheduling the activities of a semi-autonomous robot. A prototype interface has been built for planning the schedule of the Personal Satellite Assistant (PSA), a mobile robot designed for micro-gravity environments that is intended for use on the Space Shuttle and International Space Station. The spoken dialogue interface gives the user the capability to ask for a description of the plan, ask specific questions about the plan, and update or modify the plan. We anticipate that a spoken dialogue interface to the planner will provide a natural augmentation or alternative to the visualization interface, in situations in which the user needs very targeted information about the plan, in situations where natural language can express complex ideas more concisely than GUI actions, or in situations in which a graphical user interface is not appropriate.

  11. Development of wrist rehabilitation robot and interface system.

    PubMed

    Yamamoto, Ikuo; Matsui, Miki; Inagawa, Naohiro; Hachisuka, Kenji; Wada, Futoshi; Hachisuka, Akiko; Saeki, Satoru

    2015-01-01

    The authors have developed a practical wrist rehabilitation robot for hemiplegic patients. It consists of a mechanical rotation unit, sensor, grip, and computer system. A myoelectric sensor is used to monitor the extensor carpi radialis longus/brevis muscle and flexor carpi radialis muscle activity during training. The training robot can provoke training through myoelectric sensors, a biological signal detector and processor in advance, so that patients can undergo effective training of extention and flexion in an excited condition. In addition, both-wrist system has been developed for mirror effect training, which is the most effective function of the system, so that autonomous training using both wrists is possible. Furthermore, a user-friendly screen interface with easily recognizable touch panels has been developed to give effective training for patients. The developed robot is small size and easy to carry. The developed aspiring interface system is effective to motivate the training of patients. The effectiveness of the robot system has been verified in hospital trails.

  12. Robotics and human factors: current status and future prospects

    SciTech Connect

    Mcilvaine Parsons, H.; Kearsley, G.P.

    1982-10-01

    From the perspective of human factors engineering, the most important question is the division of labor between robots and humans, who participate in robot systems in nine activities: surveillance, intervention, maintenance, backup, input, output, supervision, inspection, and synergy. Additional concerns include hardware and software design of interfaces with operators, procedure development, accident prevention, and training. There have been a few human factors studies but more are needed, drawing in part on research in artificial intelligence, to support robotics for industrial productivity and military requirements. 49 references.

  13. Robotic-locomotor training as a tool to reduce neuromuscular abnormality in spinal cord injury: the application of system identification and advanced longitudinal modeling.

    PubMed

    Mirbagheri, Mehdi M; Kindig, Matthew; Niu, Xun; Varoqui, Deborah; Conaway, Petra

    2013-06-01

    In this study, the effect of the LOKOMAT, a robotic-assisted locomotor training system, on the reduction of neuromuscular abnormalities associated with spasticity was examined, for the first time in the spinal cord injury (SCI) population. Twenty-three individuals with chronic incomplete SCI received 1-hour training sessions in the LOKOMAT three times per week, with up to 45 minutes of training per session; matched control group received no intervention. The neuromuscular properties of the spastic ankle were then evaluated prior to training and after 1, 2, and 4 weeks of training. A parallel-cascade system identification technique was used to determine the reflex and intrinsic stiffness of the ankle joint as a function of ankle position at each time point. The slope of the stiffness vs. joint angle curve, i.e. the modulation of stiffness with joint position, was then calculated and tracked over the four-week period. Growth Mixture Modeling (GMM), an advanced statistical method, was then used to classify subjects into subgroups based on similar trends in recovery pattern of slope over time, and Random Coefficient Regression (RCR) was used to model the recovery patterns within each subgroup. All groups showed significant reductions in both reflex and intrinsic slope over time, but subjects in classes with higher baseline values of the slope showed larger improvements over the four weeks of training. These findings suggest that LOKOMAT training may also be useful for reducing the abnormal modulation of neuromuscular properties that arises as secondary effects after SCI. This can advise clinicians as to which patients can benefit the most from LOKOMAT training prior to beginning the training. Further, this study shows that system identification and GMM/RCR can serve as powerful tools to quantify and track spasticity over time in the SCI population.

  14. Performing mathematics activities with non-standard units of measurement using robots controlled via speech-generating devices: three case studies.

    PubMed

    Adams, Kim D; Cook, Albert M

    2016-03-15

    Purpose To examine how using a Lego robot controlled via a speech-generating device (SGD) can contribute to how students with physical and communication impairments perform hands-on and communicative mathematics measurement activities. This study was a follow-up to a previous study. Method Three students with cerebral palsy used the robot to measure objects using non-standard units, such as straws, and then compared and ordered the objects using the resulting measurement. Their performance was assessed, and the manipulation and communication events were observed. Teachers and education assistants were interviewed regarding robot use. Results Similar benefits to the previous study were found in this study. Gaps in student procedural knowledge were identified such as knowing to place measurement units tip-to-tip, and students' reporting revealed gaps in conceptual understanding. However, performance improved with repeated practice. Stakeholders identified that some robot tasks took too long or were too difficult to perform. Conclusions Having access to both their SGD and a robot gave the students multiple ways to show their understanding of the measurement concepts. Though they could participate actively in the new mathematics activities, robot use is most appropriate in short tasks requiring reasonable operational skill. Implications for Rehabilitation Lego robots controlled via speech-generating devices (SGDs) can help students to engage in the mathematics pedagogy of performing hands-on activities while communicating about concepts. Students can "show what they know" using the Lego robots, and report and reflect on concepts using the SGD. Level 1 and Level 2 mathematics measurement activities have been adapted to be accomplished by the Lego robot. Other activities can likely be accomplished with similar robot adaptations (e.g., gripper, pen). It is not recommended to use the robot to measure items that are long, or perform measurements that require high

  15. Education and training activities on personal dosimetry service in Turkey.

    PubMed

    Tugrul Zeyrek, C; Akbiyik, Hayri

    2013-10-01

    A personal dosimetry service that evaluates the occupational doses for external and internal radiation of the radiation workers is one of the main components of radiation protection programme. The education and training (E&T) activities in this field are basic aspects of the optimisation of all exposures to radiation. The E&T activities in the field of occupational radiation protection at the national and international level are of main interest and implemented by the Ankara Nuclear Research and Training Center. This study describes the Turkish experience in E&T of the staff of dosimetry services, postgraduate students and medical physics experts. In Turkey, the first individual monitoring training course was conducted in 2012. The aim of this study is to provide a structured description of postgraduate courses that are addressed to qualified experts and medical physics experts, and the modules are mainly dedicated to individual monitoring.

  16. New frontiers for psychology and education: robotics.

    PubMed

    Caci, Barbara; D'Amico, Antonella; Cardaci, Maurizio

    2004-06-01

    The paper reviews the first attempts to study the educational and psychological usefulness of robotics: (1) the social and cooperative dimensions involved in the robot-building activities; (2) the reasoning strategies implied in building and programming robots; (3) the influences of robotics on mathematical and scientific achievement; (4) the use of robotics in modification of social skills of autistic children.

  17. Beyond Robotics

    ERIC Educational Resources Information Center

    Tally, Beth; Laverdure, Nate

    2006-01-01

    Chantilly High School Academy Robotics Team Number 612 from Chantilly, Virginia, is an award-winning team of high school students actively involved with FIRST (For Inspiration and Recognition of Science and Technology), a multinational nonprofit organization that inspires students to transform culture--making science, math, engineering and…

  18. 34 CFR 300.119 - Technical assistance and training activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.119... 34 Education 2 2012-07-01 2012-07-01 false Technical assistance and training activities. 300.119 Section 300.119 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  19. 34 CFR 300.119 - Technical assistance and training activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.119... 34 Education 2 2010-07-01 2010-07-01 false Technical assistance and training activities. 300.119 Section 300.119 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  20. 34 CFR 300.119 - Technical assistance and training activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.119... 34 Education 2 2014-07-01 2013-07-01 true Technical assistance and training activities. 300.119 Section 300.119 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  1. 34 CFR 300.119 - Technical assistance and training activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.119... 34 Education 2 2011-07-01 2010-07-01 true Technical assistance and training activities. 300.119 Section 300.119 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  2. 34 CFR 300.119 - Technical assistance and training activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.119... 34 Education 2 2013-07-01 2013-07-01 false Technical assistance and training activities. 300.119 Section 300.119 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  3. An Exploration of Developing Active Exploring and Problem Solving Skill Lego Robot Course by the Application of Anchored Instruction Theory

    ERIC Educational Resources Information Center

    Chen, Chen-Yuan

    2013-01-01

    In recent years, researches had shown that the development of problem solving skill became important for education, and the educational robots are capable for promoting students not only understand the physical and mathematical concepts, but also have active and constructive learning. Meanwhile, the importance of situation in education is rising,…

  4. The Ideal Science Student: Exploring the Relationship of Students' Perceptions to Their Problem Solving Activity in a Robotics Context

    ERIC Educational Resources Information Center

    Sullivan, Florence; Lin, Xiadong

    2012-01-01

    The purpose of this study is to examine the relationship of middle school students' perceptions of the ideal science student to their problem solving activity and conceptual understanding in the applied science area of robotics. Twenty-six 11 and 12 year-olds (22 boys) attending a summer camp for academically advanced students participated in the…

  5. Design and control of active vision based mechanisms for intelligent robots

    NASA Technical Reports Server (NTRS)

    Wu, Liwei; Marefat, Michael M.

    1994-01-01

    In this paper, we propose a design of an active vision system for intelligent robot application purposes. The system has the degrees of freedom of pan, tilt, vergence, camera height adjustment, and baseline adjustment with a hierarchical control system structure. Based on this vision system, we discuss two problems involved in the binocular gaze stabilization process: fixation point selection and vergence disparity extraction. A hierarchical approach to determining point of fixation from potential gaze targets using evaluation function representing human visual behavior to outside stimuli is suggested. We also characterize different visual tasks in two cameras for vergence control purposes, and a phase-based method based on binarized images to extract vergence disparity for vergence control is presented. A control algorithm for vergence control is discussed.

  6. Robotic surgery in Italy national survey (2011).

    PubMed

    Santoro, Eugenio; Pansadoro, Vito

    2013-03-01

    Robotic surgery in Italy has become a clinical reality that is gaining increasing acceptance. As of 2011 after the United States, Italy together with Germany is the country with the largest number of active Robotic centers, 46, and da Vinci Robots installed, with at least 116 operators already trained. The number of interventions performed in Italy in 2011 exceeded 6,000 and in 2010 were 4,784, with prevalence for urology, general surgery and gynecology, however these interventions have also begun to be applied in other fields such as cervicofacial, cardiothoracic and pediatric surgery. In Italy Robotic centers are mostly located in Northern Italy, while in the South there are only a few centers, and four regions are lacking altogether. Of the 46 centers which were started in 1999, the vast majority is still operational and almost half handle over 200 cases a year. The quality of the work is also especially high with large diffusion of radical prostatectomy in urology and liver resection and colic in general surgery. The method is very well accepted among operators, over 80 %, and among patients, over 95 %. From the analysis of world literature and a survey carried out in Italy, Robotic surgery, which at the moment could be better defined as telesurgery, represents a significant advantage for operators and a consistent gain for the patient. However, it still has important limits such as high cost and non-structured training of operators.

  7. Teaching Human Poses Interactively to a Social Robot

    PubMed Central

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.

    2013-01-01

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336

  8. Teaching human poses interactively to a social robot.

    PubMed

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A

    2013-09-17

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.

  9. Pediatric robotic urologic surgery-2014.

    PubMed

    Kearns, James T; Gundeti, Mohan S

    2014-07-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide.

  10. Private Training Providers in Australia: Their Characteristics and Training Activities. A National Vocational Education and Training Research and Evaluation Program Report

    ERIC Educational Resources Information Center

    Harris, Roger; Simons, Michele; McCarthy, Carmel

    2006-01-01

    This study examines the nature of the training activity of private registered training organisations (RTOs) offered to Australian students in 2003, based on data from a national sample of 330 RTOs. The study also provides estimates of the private sector's overall contribution to the total vocational education and training (VET) effort in Australia…

  11. Control system design of a 3-DOF upper limbs rehabilitation robot.

    PubMed

    Denève, Alexandre; Moughamir, Saïd; Afilal, Lissan; Zaytoon, Janan

    2008-02-01

    This paper presents the control system design of a rehabilitation and training robot for the upper limbs. Based on a hierarchical structure, this control system allows the execution of sequence of switching control laws (position, force, impedance and force/impedance) corresponding to the required training configuration. A model-based nonlinear controller is used to impose the desired environment to the patient's arm. The knowledge of robot kinematics and dynamics is thus necessary to ensure haptic transparency and patient safety. The identification process of robot dynamics is emphasised and experimental identification results are given for the designed robot. The paper also presents a particular rehabilitation mode named Active-Assisted. Simulation results of this rehabilitation mode illustrate the potentialities of the overall control scheme, which can also be applied to other rehabilitation robots.

  12. [Robotic surgery in gynecology].

    PubMed

    Csorba, Roland

    2012-06-24

    Minimally invasive surgery has revolutionized gynecological interventions over the past 30 years. The introduction of the da Vinci robotic surgery in 2005 has resulted in large changes in surgical management. The robotic platform allows less experienced laparoscopic surgeons to perform more complex procedures. It can be utilized mainly in general gynecology and reproductive gynecology. The robot is being increasingly used for procedures such as hysterectomy, myomectomy, adnexal surgery, and tubal anastomosis. In urogynecology, the robot is being utilized for sacrocolopexy as well. In the field of gynecologic oncology, the robot is being increasingly used for hysterectomy and lymphadenectomy in oncologic diseases. Despite the rapid and widespread adaption of robotic surgery in gynecology, there are no randomized trials comparing its efficacy and safety to other traditional surgical approaches. This article presents the development, technical aspects and indications of robotic surgery in gynecology, based on the previously published reviews. Robotic surgery can be highly advantageous with the right amount of training, along with appropriate patient selection. Patients will have less blood loss, less post-operative pain, faster recovery, and fewer complications compared to open surgery and laparoscopy. However, until larger randomized control trials are completed which report long-term outcomes, robotic surgery cannot be stated to have priority over other surgical methods.

  13. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  14. Active Component Support to Reserve Component Training, Changes to Training Support XXI

    DTIC Science & Technology

    2007-11-02

    provide support to reserve units in the Pacific Command area of responsibility. Training Support Mobilization Compliance MACA Hybrid Alternative eSB...mobilization, compliance, and Military Assistance to Civil Authorities ( MACA ).”16 The plan establishes and explains the command relationship between the CONUSA...CA TSBn TSB TSD CSS TSBn CONUSA OCAR USARC RPA Execution RSC Integrated Active Reserve l OMA l RPA RPA request MACA XXXX XXXX $ RPA Guidance

  15. A Robotic MCF-7:WS8 Cell Proliferation Assay to Detect Agonist and Antagonist Estrogenic Activity

    PubMed Central

    Casey, Warren

    2014-01-01

    Endocrine-disrupting chemicals with estrogenic activity (EA) or anti-EA (AEA) have been extensively reported to possibly have many adverse health effects. We have developed robotized assays using MCF-7:WS8 cell proliferation (or suppression) to detect EA (or AEA) of 78 test substances supplied by the Interagency Coordinating Committee on the Validation of Alternative Methods and the National Toxicology Program’s Interagency Center for the Evaluation of Alternative Toxicological Methods for validation studies. We also assayed ICI 182,780, a strong estrogen antagonist. Chemicals to be assayed were initially examined for solubility and volatility to determine optimal assay conditions. For both EA and AEA determinations, a Range-Finder assay was conducted to determine the concentration range for testing, followed by a Comprehensive assay. Test substances with potentially positive results from an EA Comprehensive assay were subjected to an EA Confirmation assay that evaluated the ability of ICI 182,780 to reverse chemically induced MCF-7 cell proliferation. The AEA assays examined the ability of chemicals to decrease MCF-7 cell proliferation induced by nonsaturating concentrations of 17β-estradiol (E2), relative to ICI or raloxifene, also a strong estrogen antagonist. To be classified as having AEA, a saturating concentration of E2 had to significantly reverse the decrease in cell proliferation produced by the test substance in nonsaturating E2. We conclude that our robotized MCF-7 EA and AEA assays have accuracy, sensitivity, and specificity values at least equivalent to validated test methods accepted by the U.S. Environmental Protection Agency and the Organisation for Economic Co-operation and Development. PMID:24213142

  16. A robotic MCF-7:WS8 cell proliferation assay to detect agonist and antagonist estrogenic activity.

    PubMed

    Yang, Chun Z; Casey, Warren; Stoner, Matthew A; Kollessery, Gayathri J; Wong, Amy W; Bittner, George D

    2014-02-01

    Endocrine-disrupting chemicals with estrogenic activity (EA) or anti-EA (AEA) have been extensively reported to possibly have many adverse health effects. We have developed robotized assays using MCF-7:WS8 cell proliferation (or suppression) to detect EA (or AEA) of 78 test substances supplied by the Interagency Coordinating Committee on the Validation of Alternative Methods and the National Toxicology Program's Interagency Center for the Evaluation of Alternative Toxicological Methods for validation studies. We also assayed ICI 182,780, a strong estrogen antagonist. Chemicals to be assayed were initially examined for solubility and volatility to determine optimal assay conditions. For both EA and AEA determinations, a Range-Finder assay was conducted to determine the concentration range for testing, followed by a Comprehensive assay. Test substances with potentially positive results from an EA Comprehensive assay were subjected to an EA Confirmation assay that evaluated the ability of ICI 182,780 to reverse chemically induced MCF-7 cell proliferation. The AEA assays examined the ability of chemicals to decrease MCF-7 cell proliferation induced by nonsaturating concentrations of 17β-estradiol (E2), relative to ICI or raloxifene, also a strong estrogen antagonist. To be classified as having AEA, a saturating concentration of E2 had to significantly reverse the decrease in cell proliferation produced by the test substance in nonsaturating E2. We conclude that our robotized MCF-7 EA and AEA assays have accuracy, sensitivity, and specificity values at least equivalent to validated test methods accepted by the U.S. Environmental Protection Agency and the Organisation for Economic Co-operation and Development.

  17. Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators

    NASA Astrophysics Data System (ADS)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2013-08-01

    Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations.

  18. Active audition for humanoid robots that can listen to three simultaneous talkers

    NASA Astrophysics Data System (ADS)

    Okuno, Hiroshi G.; Nakadai, Kazuhiro

    2003-04-01

    The direction-pass filter (DPF) separates sounds originating from a particular direction by using a pair of microphones embedded in each ear of humanoid robot. DPF first extracts harmonic structures from each channel, finds a corresponding pair on right and left channels, and then calculates their interaural phase difference (IPD) and interaural intensity difference (IID). These IPD and IID are matched with reference data obtained by HRTF or by the geometrical relation to determine the sound source direction. The direction obtained by face detection may be used as a candidate for the direction. Finally, all subbands from the direction are collected to synthesize a wave form by inverse FFT. The allowance of collection depends on the direction; narrow (10 deg) at center, while wide (30 deg) at the periphery. This property is called ``auditory fovea'' and is exploited by DPF actively to improve performance of sound source separation. In addition, a humanoid actively turns its head toward the speaker to listen better. Real-time DPF is implemented by distributed processing with five PCs. Preliminary experiments of active audition in speech recognition of three simultaneous utterances of digits in a normal room is also reported. [Work supported by JSPS.

  19. Contextual action recognition and target localization with an active allocation of attention on a humanoid robot.

    PubMed

    Ognibene, Dimitri; Chinellato, Eris; Sarabia, Miguel; Demiris, Yiannis

    2013-09-01

    Exploratory gaze movements are fundamental for gathering the most relevant information regarding the partner during social interactions. Inspired by the cognitive mechanisms underlying human social behaviour, we have designed and implemented a system for a dynamic attention allocation which is able to actively control gaze movements during a visual action recognition task exploiting its own action execution predictions. Our humanoid robot is able, during the observation of a partner's reaching movement, to contextually estimate the goal position of the partner's hand and the location in space of the candidate targets. This is done while actively gazing around the environment, with the purpose of optimizing the gathering of information relevant for the task. Experimental results on a simulated environment show that active gaze control, based on the internal simulation of actions, provides a relevant advantage with respect to other action perception approaches, both in terms of estimation precision and of time required to recognize an action. Moreover, our model reproduces and extends some experimental results on human attention during an action perception.

  20. Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot

    PubMed Central

    Fenrich, Keith K.; May, Zacincte; Torres-Espín, Abel; Forero, Juan; Bennett, David J.; Fouad, Karim

    2016-01-01

    Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. Manually training and testing rats in the SPG task requires extensive time and often yields results with high outcome variability and small therapeutic windows (i.e., the difference between pre- and post-SCI success rates). Recent advances in automated SPG training using automated pellet presentation (APP) systems allow rats to train ad libitum 24 h a day, 7 days a week. APP trained rats have improved success rates, require less researcher time, and have lower outcome variability compared to manually trained rats. However, it is unclear whether APP trained rats can perform the SPG task using the APP system after SCI. Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury. PMID:26611563

  1. Robotics in shoulder rehabilitation

    PubMed Central

    Sicuri, Chiara; Porcellini, Giuseppe; Merolla, Giovanni

    2014-01-01

    Summary In the last few decades, several researches have been conducted in the field of robotic rehabilitation to meet the intensive, repetitive and task-oriented training, with the goal to recover the motor function. Up to now, robotic rehabilitation studies of the upper extremity have generally focused on stroke survivors leaving less explored the field of orthopaedic shoulder rehabilitation. In this review we analyse the present status of robotic technologies, in order to understand which are the current indications and which may be the future perspective for their application in both neurological and orthopaedic shoulder rehabilitation. PMID:25332937

  2. Self-organization via active exploration in robotic applications. Phase 2: Hybrid hardware prototype

    NASA Technical Reports Server (NTRS)

    Oegmen, Haluk

    1993-01-01

    In many environments human-like intelligent behavior is required from robots to assist and/or replace human operators. The purpose of these robots is to reduce human time and effort in various tasks. Thus the robot should be robust and as autonomous as possible in order to eliminate or to keep to a strict minimum its maintenance and external control. Such requirements lead to the following properties: fault tolerance, self organization, and intelligence. A good insight into implementing these properties in a robot can be gained by considering human behavior. In the first phase of this project, a neural network architecture was developed that captures some fundamental aspects of human categorization, habit, novelty, and reinforcement behavior. The model, called FRONTAL, is a 'cognitive unit' regulating the exploratory behavior of the robot. In the second phase of the project, FRONTAL was interfaced with an off-the-shelf robotic arm and a real-time vision system. The components of this robotic system, a review of FRONTAL, and simulation studies are presented in this report.

  3. The Influence of Robotic Assistance on Reducing Neuromuscular Effort and Fatigue during Extravehicular Activity Glove Use

    NASA Technical Reports Server (NTRS)

    Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a

  4. Behavior analysis and training-a methodology for behavior engineering.

    PubMed

    Colombetti, M; Dorigo, M; Borghi, G

    1996-01-01

    We propose Behavior Engineering as a new technological area whose aim is to provide methodologies and tools for developing autonomous robots. Building robots is a very complex engineering enterprise that requires the exact definition and scheduling of the activities which a designer, or a team of designers, should follow. Behavior Engineering is, within the autonomous robotics realm, the equivalent of more established disciplines like Software Engineering and Knowledge Engineering. In this article we first give a detailed presentation of a Behavior Engineering methodology, which we call Behavior Analysis and Training (BAT), where we stress the role of learning and training. Then we illustrate the application of the BAT methodology to three cases involving different robots: two mobile robots and a manipulator. Results show the feasibility of the proposed approach.

  5. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  6. 75 FR 17832 - Proposed Information Collection (Monthly Certification of Flight Training) Activity: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... termination of such training. Payments are base on the number of hours of flight training completed during... AFFAIRS Proposed Information Collection (Monthly Certification of Flight Training) Activity: Comment... flight training is correct. DATES: Written comments and recommendations on the proposed collection...

  7. 78 FR 13158 - Proposed Information Collection (Monthly Certification of Flight Training) Activity: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... termination of such training. Payments are based on the number of hours of flight training completed during... AFFAIRS Proposed Information Collection (Monthly Certification of Flight Training) Activity: Comment... flight training is correct. DATES: Written comments and recommendations on the proposed collection...

  8. Robot Technicians: Is There a Need?

    ERIC Educational Resources Information Center

    Minty, Gordon

    1987-01-01

    The study attempted to determine needs for training robotic technicians in Michigan. The survey had three parts: (1) needed technical specialities, (2) current problems with robot maintenance and repair, and (3) number of robots needed to keep a full-time technician occupied. (CH)

  9. Rapid changes in arousal states of healthy volunteers during robot-assisted gait training: a quantitative time-series electroencephalography study

    PubMed Central

    2014-01-01

    Background Robot-assisted gait training (RAGT) is expected to be an effective rehabilitative intervention for patients with gait disturbances. However, the monotonous gait pattern provided by robotic guidance tends to induce sleepiness, and the resultant decreased arousal during RAGT may negatively affect gait training progress. This study assessed electroencephalography (EEG)-based, objective sleepiness during RAGT and examined whether verbal or nonverbal warning sounds are effective stimuli for counteracting such sleepiness. Methods Twelve healthy men walked on a treadmill for 6 min, while being guided by a Gait-Assistance Robot, under 3 experimental conditions: with sine-wave sound stimulation (SS), verbal sound stimulation (VS), and no sound stimulation (NS). The volunteers were provided with warning sound stimulation at 4 min (ST1), 4 min 20 s (ST2), 4 min 40 s (ST3), and 5 min (ST4) after the start of RAGT. EEGs were recorded at the central (Cz) and occipital (O1 and O2) regions (International 10–20 system) before and during RAGT, and 4-s segments of EEG data were extracted from the filtered data during the 8 experimental periods: middle of the eyes-closed condition; middle of the eyes-open condition; beginning of RAGT; immediately before ST1; immediately after ST1, ST2, ST3, and ST4. According to the method used in the Karolinska drowsiness test, the power densities of the theta, alpha 1, and alpha 2 bands were calculated as indices of objective sleepiness. Results Comparisons of the findings between baseline and before ST showed that the power densities of the alpha 1 and 2 bands tended to increase, whereas the theta power density increased significantly (P < .05). During NS, the power densities remained at a constant high level until after ST4. During SS and VS, the power densities were attenuated immediately to the same degree and maintained at a constant low level until after ST4. Conclusions This study is the first to demonstrate that EEG

  10. An overview of artificial intelligence and robotics. Volume 2: Robotics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    This report provides an overview of the rapidly changing field of robotics. The report incorporates definitions of the various types of robots, a summary of the basic concepts, utilized in each of the many technical areas, review of the state of the art and statistics of robot manufacture and usage. Particular attention is paid to the status of robot development, the organizations involved, their activities, and their funding.

  11. Introducing the potential of antimicrobial materials for human and robotic spaceflight activities

    NASA Astrophysics Data System (ADS)

    Hahn, Claudia; Reitz, Guenther; Moeller, Ralf; Rettberg, Petra; Hans, Michael; Muecklich, Frank

    their relative short reaction time, long efficiency and functionality, broad application to reduce (micro-)biological contamination, high inactivation rates, sustainability, and avoidance of microbial resistance. Methods like contact killing measurement are one of the reliable ways to examine the effect of metal surfaces on the inactivation of microorganisms. We conducted contact killing experiments, in which we exposed human-associated microorganisms like Escherichia coli and Staphylococcus sp. on copper and stainless steel to detect and evaluate the potential incorporation of those materials in future spacecraft components. In contrast to an exposure on stainless steel microorganisms exposed on copper died within a few hours and therefore do not have the ability to proliferate, build protecting biofilms or even survive. The application of different surfaces and antimicrobial substances such as copper and silver, as well as testing other model organisms are still under examination. The results of our experiments are also very promising to other research areas, e.g., clinical application. Here, we would like to present our first data and ideas on the utilization of antimicrobial metal-based surfaces for human and robotic spaceflight activities as a beneficial method to reduce microbial contamination. \\underline{References} Horneck G et al. (2010) Space microbiology. Microbiol. Mol. Biol. Rev. 74:121-156. Vaishampayan P et al. (2013) New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J. 7:312-324. van Houdt R et al. (2012) Microbial contamination monitoring and control during human space missions. Planet. Space Sci. 60:115-120.

  12. An Overview of Propulsion Concept Studies and Risk Reduction Activities for Robotic Lunar Landers

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Story, George; Burnside, Chris; Kudlach, Al

    2010-01-01

    In support of designing robotic lunar lander concepts, the propulsion team at NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL), with participation from industry, conducted a series of trade studies on propulsion concepts with an emphasis on light-weight, advanced technology components. The results suggest a high-pressure propulsion system may offer some benefits in weight savings and system packaging. As part of the propulsion system, a solid rocket motor was selected to provide a large impulse to reduce the spacecraft s velocity prior to the lunar descent. In parallel to this study effort, the team also began technology risk reduction testing on a high thrust-to-weight descent thruster and a high-pressure regulator. A series of hot-fire tests was completed on the descent thruster in vacuum conditions at NASA White Sands Test Facility (WSTF) in New Mexico in 2009. Preparations for a hot-fire test series on the attitude control thruster at WSTF and for pressure regulator testing are now underway. This paper will provide an overview of the concept trade study results along with insight into the risk mitigation activities conducted to date.

  13. Humans and Robots. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses human movement and robotic human movement simulators. The activity for students in grades 5-12 provides a history of robotic movement and includes making an End Effector for the robotic arms used on the Space Shuttle and the International Space Station (ISS). (MVL)

  14. Field Training Activities for Hydrologic Science in West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Agustina, C.; Fajri, P. N.; Fathoni, F.; Gusti, T. P.; Harifa, A. C.; Hendra, Y.; Hertanti, D. R.; Lusiana, N.; Rohmat, F. I.; Agouridis, C.; Fryar, A. E.; Milewski, A.; Pandjaitan, N.; Santoso, R.; Suharyanto, A.

    2013-12-01

    In hydrologic science and engineering, one challenge is establishing a common framework for discussion among workers from different disciplines. As part of the 'Building Opportunity Out of Science and Technology: Helping Hydrologic Outreach (BOOST H2O)' project, which is supported by the U.S. Department of State, nine current or recent graduate students from four Indonesian universities participated in a week of training activities during June 2013. Students had backgrounds in agricultural engineering, civil and environmental engineering, water resources engineering, natural resources management, and soil science. Professors leading the training, which was based at Bogor Agricultural University (IPB) in west Java, included an agricultural engineer, civil engineers, and geologists. Activities in surface-water hydrology included geomorphic assessment of streams (measuring slope, cross-section, and bed-clast size) and gauging stream flow (wading with top-setting rods and a current meter for a large stream, and using a bucket and stopwatch for a small stream). Groundwater-hydrology activities included measuring depth to water in wells, conducting a pumping test with an observation well, and performing vertical electrical soundings to infer hydrostratigraphy. Students also performed relatively simple water-quality measurements (temperature, electrical conductivity, pH, and alkalinity) in streams, wells, and springs. The group analyzed data with commercially-available software such as AQTESOLV for well hydraulics, freeware such as the U.S. Geological Survey alkalinity calculator, and Excel spreadsheets. Results were discussed in the context of landscape position, lithology, and land use.

  15. Firefighter noise exposure during training activities and general equipment use.

    PubMed

    Root, Kyle S; Schwennker, Catherine; Autenrieth, Daniel; Sandfort, Delvin R; Lipsey, Tiffany; Brazile, William J

    2013-01-01

    Multiple noise measurements were taken on 6 types of fire station equipment and 15 types of emergency response vehicle-related equipment used by firefighters during routine and emergency operations at 10 fire stations. Five of the six types of fire station equipment, when measured at a distance of one meter and ear level, emitted noise equal to or greater than 85 dBA, including lawn maintenance equipment, snow blowers, compressors, and emergency alarms. Thirteen of 15 types of equipment located on the fire engines emitted noise levels equal to or greater than 85 dBA, including fans, saws, alarms, and extrication equipment. In addition, noise measurements were taken during fire engine operations, including the idling vehicle, vehicle sirens, and water pumps. Results indicated that idling fire-engine noise levels were below 85 dBA; however, during water pump and siren use, noise levels exceeded 85 dBA, in some instances, at different locations around the trucks where firefighters would be stationed during emergency operations. To determine if the duration and use of fire fighting equipment was sufficient to result in overexposures to noise during routine training activities, 93 firefighter personal noise dosimetry samples were taken during 10 firefighter training activities. Two training activities per sampling day were monitored during each sampling event, for a mean exposure time of 70 min per day. The noise dosimetry samples were grouped based on job description to compare noise exposures between the different categories of job tasks commonly associated with fire fighting. The three job categories were interior, exterior, and engineering. Mean personal dosimetry results indicated that the average noise exposure was 78 dBA during the training activities that lasted 70 min on average. There was no significant difference in noise exposure between each of the three job categories. Although firefighters routinely use equipment and emergency response vehicles that

  16. Post-stroke wrist rehabilitation assisted with an intention-driven functional electrical stimulation (FES)-robot system.

    PubMed

    Hu, X L; Tong, K Y; Li, R; Chen, M; Xue, J J; Ho, S K; Chen, P N

    2011-01-01

    In this work, a novel FES-robot system was developed for wrist rehabilitation training after stroke. The FES-robot system could be continuously controlled by electromyography (EMG) from the residual wrist muscles to facilitate wrist flexion and extension tracking tasks on a horizontal plane by providing assistance from both FES and robot parts. The system performance with five different assistive combinations from the FES and robot parts was evaluated by subjects with chronic stroke (n=5). The results suggested that the assistance from the robot part mainly improved the movement accuracy in the tracking tasks; and the assistance from the FES part mainly suppressed the excessive muscular activities from the elbow joint. The best combination was when the assistances from FES and robot was 1:1, and the results showed better wrist tracking performance with less muscle co-contraction from the elbow joint.

  17. Clinical application of a modular ankle robot for stroke rehabilitation

    PubMed Central

    Forrester, Larry W.; Roy, Anindo; Goodman, Ronald N.; Rietschel, Jeremy; Barton, Joseph E.; Krebs, Hermano Igo; Macko, Richard F.

    2015-01-01

    Background Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Objectives Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. Methods An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Results Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Conclusions Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance. PMID:23949045

  18. Sensorimotor experience enhances automatic imitation of robotic action

    PubMed Central

    Press, Clare; Gillmeister, Helge; Heyes, Cecilia

    2007-01-01

    Recent research in cognitive neuroscience has found that observation of human actions activates the ‘mirror system’ and provokes automatic imitation to a greater extent than observation of non-biological movements. The present study investigated whether this human bias depends primarily on phylogenetic or ontogenetic factors by examining the effects of sensorimotor experience on automatic imitation of non-biological robotic, stimuli. Automatic imitation of human and robotic action stimuli was assessed before and after training. During these test sessions, participants were required to execute a pre-specified response (e.g. to open their hand) while observing a human or robotic hand making a compatible (opening) or incompatible (closing) movement. During training, participants executed opening and closing hand actions while observing compatible (group CT) or incompatible movements (group IT) of a robotic hand. Compatible, but not incompatible, training increased automatic imitation of robotic stimuli (speed of responding on compatible trials, compared with incompatible trials) and abolished the human bias observed at pre-test. These findings suggest that the development of the mirror system depends on sensorimotor experience, and that, in our species, it is biased in favour of human action stimuli because these are more abundant than non-biological action stimuli in typical developmental environments. PMID:17698489

  19. Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood

    ERIC Educational Resources Information Center

    Kazakoff, Elizabeth R.; Bers, Marina Umaschi

    2014-01-01

    This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…

  20. Hiding robot inertia using resonance.

    PubMed

    Vallery, Heike; Duschau-Wicke, Alexander; Riener, Robert

    2010-01-01

    To enable compliant training modes with a rehabilitation robot, an important prerequisite is that any undesired human-robot interaction forces caused by robot dynamics must be avoided, either by an appropriate mechanical design or by compensating control strategies. Our recently proposed control scheme of "Generalized Elasticities" employs potential fields to compensate for robot dynamics, including inertia, beyond what can be done using closed-loop force control. In this paper, we give a simple mechanical equivalent using the example of the gait rehabilitation robot Lokomat. The robot consists of an exoskeleton that is attached to a frame around the patient's pelvis. This frame is suspended by a springloaded parallelogram structure. The mechanism allows vertical displacement while providing almost constant robot gravity compensation. However, inertia of the device when the patient's pelvis moves up and down remains a source of large interaction forces, which are reflected in increased ground reaction forces. Here, we investigate an alternative suspension: To hide not only gravity, but also robot inertia during vertical pelvis motion, we suspend the robot frame by a stiff linear spring that allows the robot to oscillate vertically at an eigenfrequency close to the natural gait frequency. This mechanism reduces human-robot interaction forces, which is demonstrated in pilot experimental results.

  1. Robotic Arms. A Contribution to the Curriculum. An Occasional Paper.

    ERIC Educational Resources Information Center

    Arnold, W. F.; Carpenter, C. J.

    This report examines ways of providing technician training in the operating principles of robotic devices. The terms "robotics" and "robotic arms" are first defined. Some background information on the principal features of robotic arms is given, including their geometric arrangement, type of actuator used, control method, and…

  2. Advanced robot locomotion.

    SciTech Connect

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  3. Energy Efficient Legged Robotics at Sandia Labs

    SciTech Connect

    Buerger, Steve

    2014-12-16

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  4. Energy Efficient Legged Robotics at Sandia Labs

    ScienceCinema

    Buerger, Steve

    2016-07-12

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  5. Future of robotic surgery.

    PubMed

    Lendvay, Thomas Sean; Hannaford, Blake; Satava, Richard M

    2013-01-01

    In just over a decade, robotic surgery has penetrated almost every surgical subspecialty and has even replaced some of the most commonly performed open oncologic procedures. The initial reports on patient outcomes yielded mixed results, but as more medical centers develop high-volume robotics programs, outcomes appear comparable if not improved for some applications. There are limitations to the current commercially available system, and new robotic platforms, some designed to compete in the current market and some to address niche surgical considerations, are being developed that will change the robotic landscape in the next decade. Adoption of these new systems will be dependent on overcoming barriers to true telesurgery that range from legal to logistical. As additional surgical disciplines embrace robotics and open surgery continues to be replaced by robotic approaches, it will be imperative that adequate education and training keep pace with technology. Methods to enhance surgical performance in robotics through the use of simulation and telementoring promise to accelerate learning curves and perhaps even improve surgical readiness through brief virtual-reality warm-ups and presurgical rehearsal. All these advances will need to be carefully and rigorously validated through not only patient outcomes, but also cost efficiency.

  6. Toward cognitive robotics

    NASA Astrophysics Data System (ADS)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  7. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.

    PubMed

    Chung, Cheng-Shiu; Wang, Hongwu; Cooper, Rory A

    2013-06-01

    Autonomous functions for wheelchair-mounted robotic manipulators (WMRMs) allow a user to focus more on the outcome from the task - for example, eating or drinking, instead of moving robot joints through user interfaces. In this paper, we introduce a novel personal assistive robotic system based on a position-based visual servoing (PBVS) approach. The system was evaluated with a complete drinking task, which included recognizing the location of the drink, picking up the drink from a start location, conveying the drink to the proximity of the user's mouth without spilling, and placing the drink back on the table. For a drink located in front of the wheelchair, the success rate was nearly 100%. Overall, the total time of completing drinking task is within 40 seconds.

  8. Field studies of safety security rescue technologies through training and response activities

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.; Stover, Sam

    2006-05-01

    This paper describes the field-oriented philosophy of the Institute for Safety Security Rescue Technology (iSSRT) and summarizes the activities and lessons learned during calendar year 2005 of its two centers: the Center for Robot-Assisted Search and Rescue and the NSF Safety Security Rescue industry/university cooperative research center. In 2005, iSSRT participated in four responses (La Conchita, CA, Mudslides, Hurricane Dennis, Hurricane Katrina, Hurricane Wilma) and conducted three field experiments (NJTF-1, Camp Hurricane, Richmond, MO). The lessons learned covered mobility, operator control units, wireless communications, and general reliability. The work has collectively identified six emerging issues for future work. Based on these studies, a 10-hour, 1 continuing education unit credit course on rescue robotics has been created and is available. Rescue robots and sensors are available for loan upon request.

  9. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.

    PubMed

    Krebs, Hermano Igo; Volpe, Bruce T; Williams, Dustin; Celestino, James; Charles, Steven K; Lynch, Daniel; Hogan, Neville

    2007-09-01

    In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments.

  10. Robot-assisted gait training improves brachial–ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation

    PubMed Central

    Han, Eun Young; Im, Sang Hee; Kim, Bo Ryun; Seo, Min Ji; Kim, Myeong Ok

    2016-01-01

    Abstract Objective: Brachial–ankle pulse wave velocity (baPWV) evaluates arterial stiffness and also predicts early outcome in stroke patients. The objectives of this study were to investigate arterial stiffness of subacute nonfunctional ambulatory stroke patients and to compare the effects of robot-assisted gait therapy (RAGT) combined with rehabilitation therapy (RT) on arterial stiffness and functional recovery with those of RT alone. Method: The RAGT group (N = 30) received 30 minutes of robot-assisted gait therapy and 30 minutes of conventional RT, and the control group (N = 26) received 60 minutes of RT, 5 times a week for 4 weeks. baPWV was measured and calculated using an automated device. The patients also performed a symptom-limited graded exercise stress test using a bicycle ergometer, and parameters of cardiopulmonary fitness were recorded. Clinical outcome measures were categorized into 4 categories: activities of daily living, balance, ambulatory function, and paretic leg motor function and were evaluated before and after the 4-week intervention. Results: Both groups exhibited significant functional recovery in all clinical outcome measures after the 4-week intervention. However, peak aerobic capacity, peak heart rate, exercise tolerance test duration, and baPWV improved only in the RAGT group, and the improvements in baPWV and peak aerobic capacity were more noticeable in the RAGT group than in the control group. Conclusion: Robot-assisted gait therapy combined with conventional rehabilitation therapy represents an effective method for reversing arterial stiffness and improving peak aerobic capacity in subacute stroke patients with totally dependent ambulation. However, further large-scale studies with longer term follow-up periods are warranted to measure the effects of RAGT on secondary prevention after stroke. PMID:27741123

  11. Slacking by the human motor system: computational models and implications for robotic orthoses.

    PubMed

    Reinkensmeyer, David J; Akoner, O; Ferris, Daniel P; Gordon, Keith E

    2009-01-01

    Recent experimental evidence suggests that a fundamental property of the human motor system is that it "slacks"; that is, that it continuously attempts to decrease levels of muscle activation when movement error is small during repetitive motions. This paper reviews several computational models of slacking, and discusses implications of slacking for the design of robotic orthoses. For therapeutic applications of robotic orthoses, slacking may reduce human effort during rehabilitation training, with negative consequences for use-dependent motor recovery. For assistive applications of robotic orthoses, slacking may allow the motor system to learn to take advantage of force amplification provided by an orthosis, with positive consequences for human energy efficiency.

  12. Automatic learning by an autonomous mobile robot

    SciTech Connect

    de Saussure, G.; Spelt, P.F.; Killough, S.M.; Pin, F.G.; Weisbin, C.R.

    1989-01-01

    This paper describes recent research in automatic learning by the autonomous mobile robot HERMIES-IIB at the Center for Engineering Systems Advanced Research (CESAR). By acting on the environment and observing the consequences during a set of training examples, the robot learns a sequence of successful manipulations on a simulated control panel. The robot learns to classify panel configurations in order to deal with new configurations that are not part of the original training set. 5 refs., 2 figs.

  13. Concurrent programming and robotics

    SciTech Connect

    Cox, I.J.; Gehani, N.H.

    1989-04-01

    Many current robot systems exhibit a significant degree of concurrency, doing many activities in parallel. Future sensor-based robots are expected to exhibit even more concurrency. Programs to control such robots are characterized by the need to wait for external events and/or handle interrupts, deal with concurrent activities, synchronize actions with external events, and communicate with other robots and processes. In this paper, the authors focus on the advantages of concurrent programming for robotics and suggest that a general-purpose language with the right facilities is a good vehicle for robot programming. In this context they discuss Concurrent C, an upward-compatible extension of the C language that provides high-level concurrent programming facilities. They give an historical perspective of concurrent programming followed by a brief description of Concurrent C and how Concurrent C programs communicate with robots and devices. They show by examples how Concurrent C simplifies writing robot programs. Of specific interest are the process interaction and related interrupt handling facilities.

  14. One Health training and research activities in Western Europe

    PubMed Central

    Sikkema, Reina; Koopmans, Marion

    2016-01-01

    Introduction The increase in emerging human infectious diseases that have a zoonotic origin and the increasing resistance of microorganisms to antimicrobial drugs have shown the need for collaborations between the human, animal and environmental health sectors. The One Health concept increasingly receives recognition from policy makers and researchers all over the world. This overview compiled research and education activities in the area of One Health in Western Europe (Austria, Belgium, France, Germany, Italy, Iceland, Ireland, Liechtenstein, Luxembourg, Monaco, the Netherlands, Portugal, Scandinavia, Spain, Switzerland, and the United Kingdom (UK), with a focus on infectious diseases. It can serve as a starting point for future initiatives and collaborations. Material and methods A literature search for ‘One Health’ was performed using National Center for Biotechnology Information and Google. Moreover, information from global and European policy documents was collected and a questionnaire was designed to gather current One Health research and training activities in Western Europe. Results This overview shows that there is considerable recognition for One Health in Europe, although most educational initiatives are recent. In Europe, the One Health approach is currently mainly advocated in relation to antimicrobial resistance (AMR). Many countries have incorporated the One Health approach in their policy to fight AMR, and funding possibilities for AMR research increased significantly. The number of national and international multidisciplinary research networks in the area of zoonotic diseases and One Health is increasing. Discussion Although One Health has gained recognition in Europe, often a One Health approach to research and education in the area of zoonotic diseases and AMR is not implemented. In many countries, collaboration between sectors is still lacking, and One Health activities are predominantly initiated by the veterinary sector. To facilitate the

  15. Robotic Surgery in Gynecologic Oncology

    PubMed Central

    DeBernardo, Robert; Starks, David; Barker, Nichole; Armstrong, Amy; Kunos, Charles A.

    2011-01-01

    Robotic surgery for the management of gynecologic cancers allows for minimally invasive surgical removal of cancer-bearing organs and tissues using sophisticated surgeon-manipulated, robotic surgical instrumentation. Early on, gynecologic oncologists recognized that minimally invasive surgery was associated with less surgical morbidity and that it shortened postoperative recovery. Now, robotic surgery represents an effective alternative to conventional laparotomy. Since its widespread adoption, minimally invasive surgery has become an option not only for the morbidly obese but for women with gynecologic malignancy where conventional laparotomy has been associated with significant morbidity. As such, this paper considers indications for robotic surgery, reflects on outcomes from initial robotic surgical outcomes data, reviews cost efficacy and implications in surgical training, and discusses new roles for robotic surgery in gynecologic cancer management. PMID:22190946

  16. Group Tasks, Activities, Dynamics, and Interactions in Collaborative Robotics Projects with Elementary and Middle School Children

    ERIC Educational Resources Information Center

    Yuen, Timothy T.; Boecking, Melanie; Stone, Jennifer; Tiger, Erin Price; Gomez, Alvaro; Guillen, Adrienne; Arreguin, Analisa

    2014-01-01

    Robotics provide the opportunity for students to bring their individual interests, perspectives and areas of expertise together in order to work collaboratively on real-world science, technology, engineering and mathematics (STEM) problems. This paper examines the nature of collaboration that manifests in groups of elementary and middle school…

  17. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  18. Self-Administered, Home-Based SMART (Sensorimotor Active Rehabilitation Training) Arm Training: A Single-Case Report.

    PubMed

    Hayward, Kathryn S; Neibling, Bridee A; Barker, Ruth N

    2015-01-01

    This single-case, mixed-method study explored the feasibility of self-administered, home-based SMART (sensorimotor active rehabilitation training) Arm training for a 57-yr-old man with severe upper-limb disability after a right frontoparietal hemorrhagic stroke 9 mo earlier. Over 4 wk of self-administered, home-based SMART Arm training, the participant completed 2,100 repetitions unassisted. His wife provided support for equipment set-up and training progressions. Clinically meaningful improvements in arm impairment (strength), activity (arm and hand tasks), and participation (use of arm in everyday tasks) occurred after training (at 4 wk) and at follow-up (at 16 wk). Areas for refinement of SMART Arm training derived from thematic analysis of the participant's and researchers' journals focused on enabling independence, ensuring home and user friendliness, maintaining the motivation to persevere, progressing toward everyday tasks, and integrating practice into daily routine. These findings suggest that further investigation of self-administered, home-based SMART Arm training is warranted for people with stroke who have severe upper-limb disability.

  19. 77 FR 7242 - Agency Information Collection (Agreement To Train on the Job Disabled Veterans): Activity Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... AFFAIRS Agency Information Collection (Agreement To Train on the Job Disabled Veterans): Activity Under....'' SUPPLEMENTARY INFORMATION: Title: Agreement to Train on the Job Disabled Veterans, VA Form 28- 1904. OMB Control...-1904 is a written agreement between an on the job training (OJT) establishments and VA. The...

  20. 76 FR 73019 - Proposed Information Collection (Agreement To Train on the Job Disabled Veterans) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... AFFAIRS Proposed Information Collection (Agreement To Train on the Job Disabled Veterans) Activity... comments on information needed to assure that on the job training establishments are providing veterans... use of other forms of information technology. Title: Agreement to Train on the Job Disabled...

  1. Employer-Employee Relations. A Guide for Industrial Cooperative Training Programs. Learning Activity Package. LAP 5.

    ERIC Educational Resources Information Center

    Carpenter, Herbert G.; Chernenko, Walter

    This learning activity package, one of six intended for use in Industrial Cooperative Training Programs, is designed to aid students in developing a good employer-employee relationship by gaining the kinds of worker traits sought by employers. (The industrial cooperative training program provides industrial occupational training experience for…

  2. CASSY Robot

    NASA Astrophysics Data System (ADS)

    Pittman, Anna; Wright, Ann; Rice, Aaron; Shyaka, Claude

    2014-03-01

    The CASSY Robot project involved two square robots coded in RobotC. The goal was to code a robot to do a certain set of tasks autonomously. To begin with, our task was to code the robot so that it would roam a certain area, marked off by black tape. When the robot hit the black tape, it knew to back up and turn around. It was able to do this thanks to the light sensor that was attached to the bottom of the robot. Also, whenever the robot hit an obstacle, it knew to stop, back up, and turn around. This was primarily to prevent the robot from hurting itself if it hit an obstacle. This was accomplished by using touch sensors set up as bumpers. Once that was accomplished, we attached sonar sensors and created code so that one robot was able to find and track the other robot in a sort of intruder/police scenario. The overall goal of this project was to code the robot so that we can test it against a robot coded exactly the same, but using Layered Mode Selection Logic. Professor.

  3. Stellar activity cycles from long-term data by robotic telescopes

    NASA Astrophysics Data System (ADS)

    Oláh, K.

    2014-03-01

    All results about stellar activity cycles stem from decades-long systematic observations that were done by small telescopes. Without these equipments we would not know much, if anything, about stellar activity cycles, like those we see and observe easily on the nearest star, the Sun. In the early 80's of the last century systematic photometric monitoring of active stars began with automated photometric telescopes (APTs), some of which continue the observations to date. The Vienna-Potsdam APT now works for about two decades (Strassmeier et al. 1997), similarly to the 4-College Consortium APT (Dukes et al. 1995), while the Catania APT (Rodono et al. 2001) was closed down a few years ago. These small tools with the same setups for decades do not cost much and are relatively cheap to maintain. The longest continuous photometric datasets of a few objects from APTs span now over 30 years, which, together with earlier, manually-obtained data allow to study those activity cycles of stars which are in the order of 10 years or shorter: to be sure in the timescale of a cycle it should be observed repeatedly at least 2-3 times. The spectroscopic automated telescope STELLA (Strassmeier et al. 2004), built in the first decade of this century, measured already a few dozens of radial velocity curves for long-period binary stars and measured their activity levels (Strassmeier et al. 2012); these results can be gathered only by robotic telescopes. Only with STELLA it is possible to study the decades-long behavior of starspots on active giants with long rotational periods via Doppler Imaging. As the databases were growing it became clear that stars, just as the Sun, had multiple cycles. It was also found that stellar cycles showed systematic changes and that the cycle lengths correlated with the rotational periods of the stars. Extensive summaries of stellar activity cycles are found in Baliunas et al. (1995) using the Mt. Wilson Ca-index survey, and Oláh et al. (2009) based on

  4. Motor-response learning at a process control panel by an autonomous robot

    SciTech Connect

    Spelt, P.F.; de Saussure, G.; Lyness, E.; Pin, F.G.; Weisbin, C.R.

    1988-01-01

    The Center for Engineering Systems Advanced Research (CESAR) was founded at Oak Ridge National Laboratory (ORNL) by the Department of Energy's Office of Energy Research/Division of Engineering and Geoscience (DOE-OER/DEG) to conduct basic research in the area of intelligent machines. Therefore, researchers at the CESAR Laboratory are engaged in a variety of research activities in the field of machine learning. In this paper, we describe our approach to a class of machine learning which involves motor response acquisition using feedback from trial-and-error learning. Our formulation is being experimentally validated using an autonomous robot, learning tasks of control panel monitoring and manipulation for effect process control. The CLIPS Expert System and the associated knowledge base used by the robot in the learning process, which reside in a hypercube computer aboard the robot, are described in detail. Benchmark testing of the learning process on a robot/control panel simulation system consisting of two intercommunicating computers is presented, along with results of sample problems used to train and test the expert system. These data illustrate machine learning and the resulting performance improvement in the robot for problems similar to, but not identical with, those on which the robot was trained. Conclusions are drawn concerning the learning problems, and implications for future work on machine learning for autonomous robots are discussed. 16 refs., 4 figs., 1 tab.

  5. Army Robotics

    DTIC Science & Technology

    2009-10-07

    Army Robotics 07 October 2009 Dr. Grant Gerhart, Senior Research Scientist Bernard Theisen, Joint Center for Robotics DISTRIBUTION STATEMENT A... Robots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Grant Gerhart; Bernard Theisen 5d. PROJECT NUMBER 5e. TASK...CBRNE • IED Defeat Systems • Disarm / Disrupt • Reconnaissance • Investigation • Explosive Sniffer • Common Robotic Kit • EOD • Convoy • Log

  6. Space Robotics

    DTIC Science & Technology

    1982-08-01

    ACCESSION NO 3. RECIPIENTS CATALOG NUIA3.R CMU-RI-TR-82-10 I4 1 (. 4. ;,;-LL (and Sublitle) S. TYPE OF REPORT & PERIOD CovEREO SPACE ROBOTICS Interim... Robotics Institute Pittsburgh, PA. 15213 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research -August 1982 Arlington, VA 22217...SXnet.eE . Space Robotics Richard E. Korf Department of Computer Science and The Robotics Institute Carnegie-Mellon University Pittsburgh, Oetusylvania

  7. TARDEC Robotics

    DTIC Science & Technology

    2010-01-12

    unclassified TARDEC Robotics Dr. James L. Overholt Director, Joint Center for Robotics US Army TARDEC Report Documentation Page Form ApprovedOMB No...COVERED - 4. TITLE AND SUBTITLE TARDEC Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) James L. Overholt... Robotics , Network and Control Components with a Focus on Customer Driven Requirements to Provide Full System Solutions to the War Fighter Technology

  8. A Comparison of Robotic, Body Weight Supported Locomotor Training and Aquatic Therapy in Chronic Motor Incomplete Spinal Cord Injury Subjects

    DTIC Science & Technology

    2015-06-01

    foot drag, stumbling, or excessive spasticity). Work rate (speed, BWS, or guidance force) was adjusted every minute during the walking test until... foot orientation. Metabolic: Blood draws for HOMA-IR, glucose, and insulin occurred at initial screening, cross over and completion of this study...experiencing a “burning” sensation in the left foot . This participant reported similar symptoms during the two prior Lokomat training sessions but

  9. Improving Emergency Response and Human-Robotic Performance

    SciTech Connect

    David I. Gertman; David J. Bruemmer; R. Scott Hartley

    2007-08-01

    Preparedness for chemical, biological, and radiological/nuclear incidents at nuclear power plants (NPPs) includes the deployment of well trained emergency response teams. While teams are expected to do well, data from other domains suggests that the timeliness and accuracy associated with incident response can be improved through collaborative human-robotic interaction. Many incident response scenarios call for multiple, complex procedure-based activities performed by personnel wearing cumbersome personal protective equipment (PPE) and operating under high levels of stress and workload. While robotic assistance is postulated to reduce workload and exposure, limitations associated with communications and the robot’s ability to act independently have served to limit reliability and reduce our potential to exploit human –robotic interaction and efficacy of response. Recent work at the Idaho National Laboratory (INL) on expanding robot capability has the potential to improve human-system response during disaster management and recovery. Specifically, increasing the range of higher level robot behaviors such as autonomous navigation and mapping, evolving new abstractions for sensor and control data, and developing metaphors for operator control have the potential to improve state-of-the-art in incident response. This paper discusses these issues and reports on experiments underway intelligence residing on the robot to enhance emergency response.

  10. (Robotic hands)

    SciTech Connect

    Mann, R.C.

    1988-09-23

    The traveler attended the International Workshop on Robot Hands at the Palace Hotel in Dubrovnik, Yugoslavia. The traveler presented a lecture on An integrated sensor system for the ORNL mobile robot.'' The traveler obtained important information on current R D efforts in multi-fingered robot hands and object recognition using touch sensing.

  11. Basic Robotics.

    ERIC Educational Resources Information Center

    Mullen, Frank

    This curriculum outline consists of instructional materials and information concerning resources for use in teaching a course in robotics. Addressed in the individual sections of the outline are the following topics: the nature of an industrial robot; the parts of an industrial robot (the manipulator, the power structure, and the control system);…

  12. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  13. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    SciTech Connect

    Teese, G.D.

    1995-09-28

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers.

  14. Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling

    NASA Astrophysics Data System (ADS)

    Grančič, Peter; Štěpánek, František

    2011-08-01

    The multibody dynamics of a system of chemical swarm robots in a porous environment is investigated. The chemical swarm robots are modeled as Brownian particles capable of delivering an encapsulated chemical payload toward a given target location and releasing it in response to an external stimulus. The presence of chemical signals (chemo-attractant) in the system plays a crucial role in coordinating the collective movement of the particles via chemotaxis. For a number of applications, such as distributed chemical processing and targeted drug delivery, the understanding of factors that govern the collective behavior of the particles, especially their ability to localize a given target, is of immense importance. A hybrid modeling methodology based on the combination of the Brownian dynamics method and diffusion problem coupled through the chemotaxis phenomena is used to analyze the impact of a varying signaling threshold and the strength of chemotaxis on the ability of the chemical robots to fulfill their target localization mission. The results demonstrate that the selected performance criteria (the localization half time and the success rate) can be improved when an appropriate signaling process is chosen. Furthermore, for an optimum target localization strategy, the topological complexity of the porous environment needs to be reflected.

  15. Policy approach to nutrition and physical activity education in health care professional training1234

    PubMed Central

    Loy, Lisel; Zatz, Laura Y

    2014-01-01

    Nutrition and physical activity are key risk factors for a host of today's most prevalent and costly chronic conditions, such as obesity and diabetes; yet, health care providers are not adequately trained to educate patients on the components of a healthy lifestyle. The purpose of this article is to underscore the need for improved nutrition and physical activity training among health care professionals and to explore opportunities for how policy can help support a shift in training. We first identify key barriers to sufficient training in nutrition and physical activity. Then, we provide an overview of how recent changes in the government and institutional policy environment are supporting a shift toward prevention in our health care system and creating an even greater need for improved training of health care professionals in nutrition and physical activity. Last, we outline recommendations for additional policy changes that could drive enhanced training for health care professionals and recommend future directions in research. PMID:24646822

  16. Policy approach to nutrition and physical activity education in health care professional training.

    PubMed

    Levy, Matthew D; Loy, Lisel; Zatz, Laura Y

    2014-05-01

    Nutrition and physical activity are key risk factors for a host of today's most prevalent and costly chronic conditions, such as obesity and diabetes; yet, health care providers are not adequately trained to educate patients on the components of a healthy lifestyle. The purpose of this article is to underscore the need for improved nutrition and physical activity training among health care professionals and to explore opportunities for how policy can help support a shift in training. We first identify key barriers to sufficient training in nutrition and physical activity. Then, we provide an overview of how recent changes in the government and institutional policy environment are supporting a shift toward prevention in our health care system and creating an even greater need for improved training of health care professionals in nutrition and physical activity. Last, we outline recommendations for additional policy changes that could drive enhanced training for health care professionals and recommend future directions in research.

  17. Robotically Assisted Microsurgery: Development of Basic Skills Course

    PubMed Central

    Hendriks, Sarah; Selber, Jesse C; Parekattil, Sijo J

    2013-01-01

    Robotically assisted microsurgery or telemicrosurgery is a new technique using robotic telemanipulators. This allows for the addition of optical magnification (which defines conventional microsurgery) to robotic instrument arms to allow the microsurgeon to perform complex microsurgical procedures. There are several possible applications for this platform in various microsurgical disciplines. Since 2009, basic skills training courses have been organized by the Robotic Assisted Microsurgical and Endoscopic Society. These basic courses are performed on training models in five levels of increasing complexity. This paper reviews the current state of the art in robotically asisted microsurgical training. PMID:23898425

  18. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.

    PubMed

    Hu, X L; Tong, K Y; Li, R; Xue, J J; Ho, S K; Chen, P

    2012-06-01

    An electromyography (EMG)-driven electromechanical robot system integrated with neuromuscular electrical stimulation (NMES) was developed for wrist training after stroke. The performance of the system in assisting wrist flexion/extension tracking was evaluated on five chronic stroke subjects, when the system provided five different schemes with or without NMES and robot assistance. The tracking performances were measured by range of motion (ROM) of the wrist and root mean squared error (RMSE). The performance is better when both NMES and robot assisted in the tracking than those with either NMES or robot only (P<0.05). The muscle co-contractions in the upper limb measured by EMG were reduced when NMES provided assistance (P<0.05). All subjects also attended a 20-session wrist training for evaluating the training effects (3-5 times/week). The results showed improvements on the voluntary motor functions in the hand, wrist and elbow functions after the training, as indicated by the clinical scores of Fugl-Meyer Assessment, Action Research Arm Test, Wolf Motor Function Test; and also showed reduced spasticity in the wrist and the elbow as measured by the Modified Ashworth Score of each subject. After the training, the co-contractions were reduced between the flexor carpi radialis and extensor carpi radialis, and between the biceps brachii and triceps brachii. Assistance from the robot helped improve the movement accuracy; and the NMES helped increase the muscle activation for the wrist joint and suppress the excessive muscular activities from the elbow joint. The NMES-robot assisted wrist training could improve the hand, wrist, and elbow functions.

  19. Teaching Scholarly Activity in Psychiatric Training: Years 6 and 7

    ERIC Educational Resources Information Center

    Zisook, Sidney; Boland, Robert; Cowley, Deborah; Cyr, Rebecca L.; Pato, Michele T.; Thrall, Grace

    2013-01-01

    Objective: To address nationally recognized needs for increased numbers of psychiatric clinician-scholars and physician-scientists, the American Association of Directors of Psychiatric Residency Training (AADPRT) has provided a series of full-day conferences of psychiatry residency training directors designed to increase their competence in…

  20. Collecting "Total" Vocational Education and Training Activity. Position Paper

    ERIC Educational Resources Information Center

    Karmel, Tom

    2011-01-01

    In this position paper, NCVER's Managing Director, Dr Tom Karmel, argues that the submission of vocational education and training student data should be mandated as a condition of registration for all registered training organisations, including private providers. This will ensure a comprehensive data collection that gives a realistic view of…

  1. A Guide for Perceptual-Motor Training Activities.

    ERIC Educational Resources Information Center

    South Euclid - Lyndhurst City Schools, Lyndhurst, OH.

    This document has been prepared as part of a kindergarten perceptual-training program of the South Euclid-Lyndhurst City School District near Cleveland, Ohio. The guide contains information on training and procedures related to perceptual-motor learning. This information is structured primarily into 150 lesson plans, devised as 30-minute sessions…

  2. Relaxation training affects success and activation on a teaching test.

    PubMed

    Helin, P; Hänninen, O

    1987-12-01

    We studied the effects of an audiocassette-relaxation training period (ART) and its timing on success at a teaching test (lecture type), on observed tension and on a number of physiological responses. The electrical activity of the upper trapezius muscle (EMG), heart rate (HR) and blood pressure (BP), of female and male instructor candidates, were examined before, during and after the teaching test as well as during its critique. The relaxation period (18 min) was presented either on the preceding night (ARTnt) or immediately before the teaching test (ARTimm). The influence of personality (types A-B and extrovert-introvert) was also studied. ART improved success at the teaching test in both sexes. In males (but not in females), ARTimm decreased EMG level during the test, but ARTnt increased EMG at the test period as compared to the control group. In females, both ARTnt and ARTimm lowered HR more than in the control group. ARTimm lowered systolic BP in both sexes. Personality types affected the ART responses; ART was more beneficial for type A than B subjects.

  3. Training

    EPA Pesticide Factsheets

    The Drinking Water Academy provides online training and information to ensure that water professionals, public officials, and involved citizens have the knowledge and skills necessary to protect our drinking water supply.

  4. 77 FR 43238 - Takes of Marine Mammals Incidental to Specified Activities; Navy Training Conducted at the Silver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Specified Activities; Navy Training Conducted at the Silver Strand Training Complex, San Diego Bay AGENCY... harassment, incidental to conducting training exercises at the Silver Strand Training Complex (SSTC) in the... taking, by harassment, of marine mammals incidental to conducting training exercises at the Navy's...

  5. Capacity Building as a Tool for Assessing Training and Development Activity: An Indian Case Study

    ERIC Educational Resources Information Center

    Krishnaveni, R.; Sripirabaa, B.

    2008-01-01

    In recognition of its increasing importance, many organizations make periodic assessments of their training and development activity. The objective of the present study was to extend the concept of capacity building to the assessment of training and development activity in an automobile component manufacturing organization, using a developed and…

  6. Classroom Challenge: Designing a Firefighting Robot

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2007-01-01

    Robots provide teachers with opportunities to teach multidimensional thinking and critical thinking skills. In this article, the author presents a classroom activity wherein students are required to design a firefighting robot. This activity aims to demonstrate the complexity and interdisciplinary nature of the robotics technology.

  7. Needs for Robotic Assessments of Nuclear Disasters

    SciTech Connect

    Victor Walker; Derek Wadsworth

    2012-06-01

    Following the nuclear disaster at the Fukushima nuclear reactor plant in Japan, the need for systems which can assist in dynamic high-radiation environments such as nuclear incidents has become more apparent. The INL participated in delivering robotic technologies to Japan and has identified key components which are needed for success and obstacles to their deployment. In addition, we are proposing new work and methods to improve assessments and reactions to such events in the future. Robotics needs in disaster situations include phases such as: Assessment, Remediation, and Recovery Our particular interest is in the initial assessment activities. In assessment we need collection of environmental parameters, determination of conditions, and physical sample collection. Each phase would require key tools and efforts to develop. This includes study of necessary sensors and their deployment methods, the effects of radiation on sensors and deployment, and the development of training and execution systems.

  8. Interactive autonomy and robotic skills

    NASA Technical Reports Server (NTRS)

    Kellner, A.; Maediger, B.

    1994-01-01

    Current concepts of robot-supported operations for space laboratories (payload servicing, inspection, repair, and ORU exchange) are mainly based on the concept of 'interactive autonomy' which implies autonomous behavior of the robot according to predefined timelines, predefined sequences of elementary robot operations and within predefined world models supplying geometrical and other information for parameter instantiation on the one hand, and the ability to override and change the predefined course of activities by human intervention on the other hand. Although in principle a very powerful and useful concept, in practice the confinement of the robot to the abstract world models and predefined activities appears to reduce the robot's stability within real world uncertainties and its applicability to non-predefined parts of the world, calling for frequent corrective interaction by the operator, which in itself may be tedious and time-consuming. Methods are presented to improve this situation by incorporating 'robotic skills' into the concept of interactive autonomy.

  9. Impacts of Health and Safety Education: Comparison of Worker Activities Before and After Training

    PubMed Central

    Becker, Paul; Morawetz, John

    2014-01-01

    Background The International Chemical Workers Union Council (ICWUC) Center for Worker Health and Safety Education in Cincinnati, Ohio, trains workers to protect themselves from hazards due to chemical spills and other chemical exposures. We evaluated whether the ICWUC Hazardous Waste Worker Training Program affects the attitudes and post-training activities, of trained union workers. Methods Detailed survey questionnaires were administered to 55 workers prior to and 14–18 months following training. Surveys queried trainees’ interest and involvement in safety and health, use of information resources, training activities at their worksite, and their attempts and successes at making worksite improvements. Results Post-training, the study population showed an increase in training of other workers, use of resources, attempts at improvements, success rates for those attempting change, and overall success at making improvements. Self-reported interest decreased, and self reported involvement in health and safety did not significantly change. Conclusion The study demonstrates that workers are more willing to attempt to change worksite conditions following training, and that their efficacy at making changes is substantially greater than before they were trained. The study confirms earlier work and strengthens these conclusions by using statistically tested comparisons of impact measures pre- and post-training. PMID:15202126

  10. Low-Cost Educational Robotics Applied to Physics Teaching in Brazil

    ERIC Educational Resources Information Center

    Souza, Marcos A. M.; Duarte, José R. R.

    2015-01-01

    In this paper, we propose some of the strategies and methodologies for teaching high-school physics topics through an educational robotics show. This exhibition was part of a set of actions promoted by a Brazilian government program of incentive for teaching activities, whose primary focus is the training of teachers, the improvement of teaching…

  11. External locus of control contributes to racial disparities in memory and reasoning training gains in ACTIVE

    PubMed Central

    Zahodne, Laura B.; Meyer, Oanh L.; Choi, Eunhee; Thomas, Michael L.; Willis, Sherry L.; Marsiske, Michael; Gross, Alden L.; Rebok, George W.; Parisi, Jeanine M.

    2015-01-01

    Racial disparities in cognitive outcomes may be partly explained by differences in locus of control. African Americans report more external locus of control than non-Hispanic Whites, and external locus of control is associated with poorer health and cognition. The aims of this study were to compare cognitive training gains between African American and non-Hispanic White participants in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study and determine whether racial differences in training gains are mediated by locus of control. The sample comprised 2,062 (26% African American) adults aged 65 and older who participated in memory, reasoning, or speed training. Latent growth curve models evaluated predictors of 10-year cognitive trajectories separately by training group. Multiple group modeling examined associations between training gains and locus of control across racial groups. Compared to non-Hispanic Whites, African Americans evidenced less improvement in memory and reasoning performance after training. These effects were partially mediated by locus of control, controlling for age, sex, education, health, depression, testing site, and initial cognitive ability. African Americans reported more external locus of control, which was associated with smaller training gains. External locus of control also had a stronger negative association with reasoning training gain for African Americans than for Whites. No racial difference in training gain was identified for speed training. Future intervention research with African Americans should test whether explicitly targeting external locus of control leads to greater cognitive improvement following cognitive training. PMID:26237116

  12. External locus of control contributes to racial disparities in memory and reasoning training gains in ACTIVE.

    PubMed

    Zahodne, Laura B; Meyer, Oanh L; Choi, Eunhee; Thomas, Michael L; Willis, Sherry L; Marsiske, Michael; Gross, Alden L; Rebok, George W; Parisi, Jeanine M

    2015-09-01

    Racial disparities in cognitive outcomes may be partly explained by differences in locus of control. African Americans report more external locus of control than non-Hispanic Whites, and external locus of control is associated with poorer health and cognition. The aims of this study were to compare cognitive training gains between African American and non-Hispanic White participants in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study and determine whether racial differences in training gains are mediated by locus of control. The sample comprised 2,062 (26% African American) adults aged 65 and older who participated in memory, reasoning, or speed training. Latent growth curve models evaluated predictors of 10-year cognitive trajectories separately by training group. Multiple group modeling examined associations between training gains and locus of control across racial groups. Compared to non-Hispanic Whites, African Americans evidenced less improvement in memory and reasoning performance after training. These effects were partially mediated by locus of control, controlling for age, sex, education, health, depression, testing site, and initial cognitive ability. African Americans reported more external locus of control, which was associated with smaller training gains. External locus of control also had a stronger negative association with reasoning training gain for African Americans than for Whites. No racial difference in training gain was identified for speed training. Future intervention research with African Americans should test whether explicitly targeting external locus of control leads to greater cognitive improvement following cognitive training.

  13. 20 CFR 633.302 - Training activities and services.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND SEASONAL FARMWORKER PROGRAMS Program Design and Administrative Procedures § 633.302 Training...-the-job, work experience, and tryout employment, in jobs skills for which demand exceeds supply;...

  14. Home-based tele-assisted robotic rehabilitation of joint impairments in children with cerebral palsy.

    PubMed

    Chen, Kai; Ren, Yupeng; Gaebler-Spira, Deborah; Zhang, Li-Qun

    2014-01-01

    A portable rehabilitation robot incorporating intelligent stretching, robot-guided voluntary movement training with motivating games and tele-rehabilitation was developed to provide convenient and cost-effective rehabilitation to children with cerebral palsy (CP) and extend rehabilitation care beyond hospital. Clinicians interact with the patients remotely for periodic evaluations and updated guidance. The tele-assisted stretching and active movement training was done over 6-week 18 sessions on the impaired ankle of 23 children with CP in their home setting. Treatment effectiveness was evaluated using biomechanical measures and clinical outcome measures. After the tele-assisted home robotic rehabilitation intervention, there were significant increases in the ankle passive and active range of motion, muscle strength, a decrease in spasticity, and increases in balance and selective control assessment of lower-extremity.

  15. Robotic control in knee joint replacement surgery.

    PubMed

    Davies, B L; Rodriguez y Baena, F M; Barrett, A R W; Gomes, M P S F; Harris, S J; Jakopec, M; Cobb, J P

    2007-01-01

    A brief history of robotic systems in knee arthroplasty is provided. The place of autonomous robots is then discussed and compared to more recent 'hands-on' robotic systems that can be more cost effective. The case is made for robotic systems to have a clear justification, with improved benefits compared to those from cheaper navigation systems. A number of more recent, smaller, robot systems for knee arthroplasty are also described. A specific example is given of an active constraint medical robot, the ACROBOT system, used in a prospective randomized controlled trial of unicondylar robotic knee arthroplasty in which the robot was compared to conventional surgery. The results of the trial are presented together with a discussion of the need for measures of accuracy to be introduced so that the efficacy of the robotic surgery can be immediately identified, rather than have to wait for a number of years before long-term clinical improvements can be demonstrated.

  16. An Online Change of Activity in Energy Spectrum for Detection on an Early Intervention Robot

    SciTech Connect

    Boudergui, K.; Laine, F.; Montagu, T.; Blanc, P.; Deltour, A.; Mozziconacci, S.

    2015-07-01

    With the growth of industrial risks and the multiplication of CBRNe (Chemical Biological Radiological and explosive) attacks through toxic chemicals, biological or radiological threats, public services and military authorities face with increasingly critical situations, whose management is strongly conditioned by fast and reliable establishment of an informative diagnostic. Right after an attack, the five first minutes are crucial to define the various scenarios and the most dangerous for a human intervention. Therefore the use of robots is considered essential by all stakeholders of security. In this context, the SISPEO project (Systeme d'Intervention Sapeurs Pompiers Robotise) aims to create/build/design a robust response through a robotic platform for early intervention services such as civil and military security in hostile environments. CEA LIST has proposed an adapted solution to detect and characterize nuclear and radiological risks online and in motion, using a miniature embedded CdZnTe (CZT) crystal Gamma-ray spectrometer. This paper presents experimental results for this miniature embedded CZT spectrometer and its associated mathematical method to detect and characterize radiological threats online and in motion. (authors)

  17. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    PubMed

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  18. Neural-Network Control Of Prosthetic And Robotic Hands

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  19. Robots in operating theatres.

    PubMed Central

    Buckingham, R. A.; Buckingham, R. O.

    1995-01-01

    Robots designed for surgery have three main advantages over humans. They have greater three dimensional spatial accuracy, are more reliable, and can achieve much greater precision. Although few surgical robots are yet in clinical trials one or two have advanced to the stage of seeking approval from the UK's Medical Devices Agency and the US Federal Drug Administration. Safety is a key concern. A robotic device can be designed in an intrinsically safe way by restricting its range of movement to an area where it can do no damage. Furthermore, safety can be increased by making it passive, guided at all times by a surgeon. Nevertheless, some of the most promising developments may come from robots that are active (monitored rather than controlled by the surgeon) and not limited to intrinsically safe motion. Images Fig 1 Fig 3 Fig 4 PMID:8520340

  20. Robotic surgery of the liver: Italian experience and review of the literature.

    PubMed

    Reggiani, P; Antonelli, B; Rossi, G

    2013-09-26

    Robotic liver resection is a new promising minimally invasive surgical technique not yet validated by level I evidence. During recent years, the application of the laparoscopic approach to liver resection has grown less than other abdominal specialties due to the intrinsic limitations of laparoscopic instruments. Robotics can overcome these limitations above all for complex operations. A review of the literature on major hepatic surgery was conducted on PubMed using selected keywords. Two hundred and thirty-five patients in 17 series were analysed and outcomes such as operative time, estimated blood loss, length of hospital stay, complications, conversion rate, and costs were described. The most commonly performed procedures were wedge resection and segmentectomy, but the predominance of major hepatectomies performed with robotic surgery is likely due to the superior control achieved by the robotic system. The conversion and complication rates were 4.2% and 13.4%, respectively. Intracavitary fluid collections and bile leaks were the most frequently occurring morbidities. The mean operation time was 285 min. The mean intraoperative blood loss was 50-280 mL. The mean postoperative hospital stay was four to seven days. Overall survival and long-term outcomes were not reported. Robotic liver surgery in Italy has become a clinical reality that is gaining increasing acceptance; a survey was carried out on robotic surgery, which showed that it is perceived as a significant advantage for operators and a consistent gain for the patient. More than 100 robotic hepatic resections have been performed in Italy where important robotic training schools are active. Robotic liver surgery is feasible and safe in trained and experienced hands. Further evaluation is required to assess the improvement in outcomes and long-term oncologic follow-up.

  1. Robotic surgery in gynecology.

    PubMed

    Alkatout, Ibrahim; Mettler, Liselotte; Maass, Nicolai; Ackermann, Johannes

    2016-01-01

    Robotic surgery is the most dynamic development in the sector of minimally invasive operations currently. It should not be viewed as an alternative to laparoscopy, but as the next step in a process of technological evolution. The advancement of robotic surgery, in terms of the introduction of the Da Vinci Xi, permits the variable use of optical devices in all four trocars. Due to the new geometry of the "patient cart," an operation can be performed in all spatial directions without re-docking. Longer instruments and the markedly narrower mechanical elements of the "patient cart" provide greater flexibility as well as access similar to those of traditional laparoscopy. Currently, robotic surgery is used for a variety of indications in the treatment of benign gynecological diseases as well as malignant ones. Interdisciplinary cooperation and cooperation over large geographical distances have been rendered possible by telemedicine, and will ensure comprehensive patient care in the future by highly specialized surgery teams. In addition, the second operation console and the operation simulator constitute a new dimension in advanced surgical training. The disadvantages of robotic surgery remain the high costs of acquisition and maintenance as well as the laborious training of medical personnel before they are confident with using the technology.

  2. Robotic surgery in gynecology

    PubMed Central

    Alkatout, Ibrahim; Mettler, Liselotte; Maass, Nicolai; Ackermann, Johannes

    2016-01-01

    Robotic surgery is the most dynamic development in the sector of minimally invasive operations currently. It should not be viewed as an alternative to laparoscopy, but as the next step in a process of technological evolution. The advancement of robotic surgery, in terms of the introduction of the Da Vinci Xi, permits the variable use of optical devices in all four trocars. Due to the new geometry of the “patient cart,” an operation can be performed in all spatial directions without re-docking. Longer instruments and the markedly narrower mechanical elements of the “patient cart” provide greater flexibility as well as access similar to those of traditional laparoscopy. Currently, robotic surgery is used for a variety of indications in the treatment of benign gynecological diseases as well as malignant ones. Interdisciplinary cooperation and cooperation over large geographical distances have been rendered possible by telemedicine, and will ensure comprehensive patient care in the future by highly specialized surgery teams. In addition, the second operation console and the operation simulator constitute a new dimension in advanced surgical training. The disadvantages of robotic surgery remain the high costs of acquisition and maintenance as well as the laborious training of medical personnel before they are confident with using the technology. PMID:27990092

  3. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications

    PubMed Central

    García-Cossio, Eliana; Severens, Marianne; Nienhuis, Bart; Duysens, Jacques; Desain, Peter

    2015-01-01

    Locomotor malfunction represents a major problem in some neurological disorders like stroke and spinal cord injury. Robot-assisted walking devices have been used during rehabilitation of patients with these ailments for regaining and improving walking ability. Previous studies showed the advantage of brain-computer interface (BCI) based robot-assisted training combined with physical therapy in the rehabilitation of the upper limb after stroke. Therefore, stroke patients with walking disorders might also benefit from using BCI robot-assisted training protocols. In order to develop such BCI, it is necessary to evaluate the feasibility to decode walking intention from cortical patterns during robot-assisted gait training. Spectral patterns in the electroencephalogram (EEG) related to robot-assisted active and passive walking were investigated in 10 healthy volunteers (mean age 32.3±10.8, six female) and in three acute stroke patients (all male, mean age 46.7±16.9, Berg Balance Scale 20±12.8). A logistic regression classifier was used to distinguish walking from baseline in these spectral EEG patterns. Mean classification accuracies of 94.0±5.4% and 93.1±7.9%, respectively, were reached when active and passive walking were compared against baseline. The classification performance between passive and active walking was 83.4±7.4%. A classification accuracy of 89.9±5.7% was achieved in the stroke patients when comparing walking and baseline. Furthermore, in the healthy volunteers modulation of low gamma activity in central midline areas was found to be associated with the gait cycle phases, but not in the stroke patients. Our results demonstrate the feasibility of BCI-based robotic-assisted training devices for gait rehabilitation. PMID:26675472

  4. 2010 FIRST Robotics Bayou Regional Tournament

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Student-built robots maneuver the course during the 2010 Bayou Regional FIRST (For Inspiration and Recognition of Science and Technology) Robotics competition in Westwego on March 5-6. The annual competition drew 36 high school teams from eight states. NASA's John C. Stennis Space Center supports FIRST Robotics by providing financing, mentors and training, as well as competition judges and referees, audiovisual staff and other volunteer personnel.

  5. TARDEC Robotics

    DTIC Science & Technology

    2011-03-01

    TARDEC Robotics Dr. Greg Hudas Greg.hudas@us.army.mil UNCLASSIFIED: Dist A. Approved for public release Report Documentation Page Form ApprovedOMB...COVERED - 4. TITLE AND SUBTITLE TARDEC Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Greg Hudas...ANSI Std Z39-18 Excellence in Robotics Outreach & University Shaping Requirements Building Modeling & Simulation Component Development International

  6. ROBOT WRITING,

    DTIC Science & Technology

    Technical writers who are hypnotized by the mechanical metaphor inevitably produce robot writing - a separate language, distantly related to the...prose of Darwin, Huxley, Jeans, and Einstein. Where they were clear, fresh, and graceful, the robot writer is hard, dull, and clumsy. Where they were...merely human, the robot writer is infallible, prefabricated, impersonal, and irresponsible. These four characteristics are interlinked. An example of one usually illustrates the other three.

  7. Robot Programming.

    DTIC Science & Technology

    1982-12-01

    8217AD-A127 233 ROBOT PROGRRMMING(U) MASSACHUSETTS INST OFGTECHi/ CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB T LOZANO-PEREZ UNCLASSIFIED DC8 AI-9 N884...CATALOG NUMBER * a ~AIM 698 R a is 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Robot Programming Memorandum 6. PERFORMING ORG. REPORT...34R Distribution is Unlimted .. SUPPLEMENTARY NOTES None 1. KEY WORDS (Continue on r verea aide ii neeaortm and Identify by block number) *Q. Robotics

  8. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carrasco, D. I.

    2000-01-01

    The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training (n = 9), sham training (n = 7), or control (n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 +/- 1 to 62 +/- 1 mmHg) and mean arterial pressure (86 +/- 1 to 82 +/- 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 +/- 3 to 113 +/- 2 mmHg), heart rate (67 +/- 4 to 66 +/- 4 beats/min), and MSNA (14 +/- 2 to 15 +/- 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.

  9. Robotics, motor learning, and neurologic recovery.

    PubMed

    Reinkensmeyer, David J; Emken, Jeremy L; Cramer, Steven C

    2004-01-01

    Robotic devices are helping shed light on human motor control in health and injury. By using robots to apply novel force fields to the arm, investigators are gaining insight into how the nervous system models its external dynamic environment. The nervous system builds internal models gradually by experience and uses them in combination with impedance and feedback control strategies. Internal models are robust to environmental and neural noise, generalized across space, implemented in multiple brain regions, and developed in childhood. Robots are also being used to assist in repetitive movement practice following neurologic injury, providing insight into movement recovery. Robots can haptically assess sensorimotor performance, administer training, quantify amount of training, and improve motor recovery. In addition to providing insight into motor control, robotic paradigms may eventually enhance motor learning and rehabilitation beyond the levels possible with conventional training techniques.

  10. Robotic Arm Manipulator Using Active Control for Sample Acquisition and Transfer, and Passive Mode for Surface Compliance

    NASA Technical Reports Server (NTRS)

    Liu, Jun; Underhill, Michael L.; Trease, Brian P.; Lindemann, Randel A.

    2010-01-01

    A robotic arm that consists of three joints with four degrees of freedom (DOF) has been developed. It can carry an end-effector to acquire and transfer samples by using active control and comply with surface topology in a passive mode during a brief surface contact. The three joints are arranged in such a way that one joint of two DOFs is located at the shoulder, one joint of one DOF is located at the elbow, and one joint of one DOF is located at the wrist. Operationally, three DOFs are moved in the same plane, and the remaining one on the shoulder is moved perpendicular to the other three for better compliance with ground surface and more flexibility of sample handling. Three out of four joints are backdriveable, making the mechanism less complex and more cost effective

  11. Robotics research

    SciTech Connect

    Brady, M.; Paul, R.

    1984-01-01

    Organized around a view of robotics as ''the intelligent connection of perception to action,'' the fifty-three contributions collected in this book present leading current research in one of the fastest moving fields of artificial intelligence. Readings Include: Hand-Eye Coordination in Rope Handling; 3-D Balance Using 2-D algorithms. A Model Driven Visual Inspection Module: Stereo Vision: Complexity and Constraints; Interpretation of Contact Geometers from Force Measurement; The Utah MIT Dextrous Hand: Work in Progress; Hierarchical Nonlinear Control for Robots; VAL-11; A Robot Programming Language and Control System; Technological Barriers in Robotics: A Perspective from Industry.

  12. Hopping robot

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Martinez, Michael A.; Kuehl, Michael A.; Feddema, John T.

    2001-01-01

    The present invention provides a hopping robot that includes a misfire tolerant linear actuator suitable for long trips, low energy steering and control, reliable low energy righting, miniature low energy fuel control. The present invention provides a robot with hopping mobility, capable of traversing obstacles significant in size relative to the robot and capable of operation on unpredictable terrain over long range. The present invention further provides a hopping robot with misfire-tolerant combustion actuation, and with combustion actuation suitable for use in oxygen-poor environments.

  13. Insulin receptor binding and protein kinase activity in muscles of trained rats

    SciTech Connect

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-02-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing approx. 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise ( SVI). Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training.

  14. Effects of resistance training on cardiovascular health in non-obese active adolescents

    PubMed Central

    Yu, Clare Chung-Wah; McManus, Alison Mary; So, Hung-Kwan; Chook, Ping; Au, Chun-Ting; Li, Albert Martin; Kam, Jack Tat-Chi; So, Raymond Chi-Hung; Lam, Christopher Wai-Kei; Chan, Iris Hiu-Shuen; Sung, Rita Yn-Tz

    2016-01-01

    AIM To determine the benefits of a 10-wk resistance training programme on cardiovascular health in non-obese and active adolescents. METHODS This is a pragmatic randomised controlled intervention. The study was carried out in a Hong Kong Government secondary school. Thirty-eight lean and active boys and girls were randomised to either the resistance training group or the control group. Students in the resistance training group received in-school 10-wk supervised resistance training twice per week, with each session lasting 70 min. Main outcome measures taken before and after training included brachial endothelial dependent flow-mediated dilation, body composition, fasting serum lipids, fasting glucose and insulin, high sensitive C-reactive protein, 24-h ambulatory blood pressure and aerobic fitness. RESULTS The only training related change was in endothelial dependent flow-mediated dilation which increased from 8.5% to 9.8%. A main effect of time and an interaction (P < 0.005) indicated that this improvement was a result of the 10-wk resistance training. Main effects for time (P < 0.05) in a number of anthropometric, metabolic and vascular variables were noted; however, there were no significant interactions indicating the change was more likely an outcome of normal growth and development as opposed to a training effect. CONCLUSION Ten weeks of resistance training in school appears to have some vascular benefit in active, lean children PMID:27610345

  15. Virtual robotics laboratory for research

    NASA Astrophysics Data System (ADS)

    McKee, Gerard T.

    1995-09-01

    We report on work currently underway to put a robotics laboratory onto the Internet in support of teaching and research in robotics and artificial intelligence in higher education institutions in the UK. The project is called Netrolab. The robotics laboratory comprises a set of robotics resources including a manipulator, a mobile robot with an on-board monocular active vision head and a set of sonar sensing modules, and a set of laboratory cameras to allow the user to see into the laboratory. The paper will report on key aspect of the project aimed at using multimedia tools and object-oriented techniques to network the robotics resources and to allow them to be configured into complex teaching and experimental modules. The paper will outline both the current developments of Netrolab and provide a perspective on the future development of networked virtual laboratories for research.

  16. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    PubMed

    Yap, Hong Kai; Kamaldin, Nazir; Lim, Jeong Hoon; Nasrallah, Fatima; Goh, James Ch; Yeow, Chen-Hua

    2016-08-25

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  17. Robot Would Reconfigure Modular Equipment

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    1993-01-01

    Special-purpose sets of equipment, packaged in identical modules with identical interconnecting mechanisms, attached to or detached from each other by specially designed robot, according to proposal. Two-arm walking robot connects and disconnects modules, operating either autonomously or under remote supervision. Robot walks along row of connected modules by grasping successive attachment subassemblies in hand-over-hand motion. Intended application for facility or station in outer space; robot reconfiguration scheme makes it unnecessary for astronauts to venture outside spacecraft or space station. Concept proves useful on Earth in assembly, disassembly, or reconfiguration of equipment in such hostile environments as underwater, near active volcanoes, or in industrial process streams.

  18. Plasma lactic dehydrogenase activities in men during bed rest with exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Juhos, L. T.; Young, H. L.

    1985-01-01

    Peak oxygen uptake and the activity of lactic dehydrogenase (LDH-T) and its five isoenzymes were measured by spectrophotometer in seven men before, during, and after bed rest and exercise training. Exercise training consisted of isometric leg exercises of 250 kcal/hr for a period of one hour per day. It is found that LDH-T was reduced by 0.05 percent in all three regimens by day 10 of bed rest, and that the decrease occurred at different rates. The earliest reduction in LDH-T activity in the no-exercise regimen was associated with a decrease in peak oxygen uptake of 12.3 percent. It is concluded that isometric (aerobic) muscular strength training appear to maintain skeletal muscle integrity better during bed rest than isotonic exercise training. Reduced hydrostatic pressure during bed rest, however, ultimately counteracts the effects of both moderate isometric and isotonic exercise training, and may result in decreased LDH-T activity.

  19. Active Component Responsibility in Reserve Component Pre- and Postmobilization Training

    DTIC Science & Technology

    2015-01-01

    properly documented (Weiss, 2008, and Sanzo, 2008). The USAR established three regional training centers (RTCs), at Fort McCoy , Wisconsin; Fort Hunter...2008. Schuette, Rob, “Regional Training Center-North Standing up at McCoy ,” The Real McCoy , March 14, 2008. As of February 27, 2014: http...Transformation,” Carlisle Barracks, Pa.: U.S. Army War College, April 13, 2010. Witscheber, Loni, “Operation Warrior Trainer Offered at Fort McCoy ,” October

  20. Modeling and control of a space robot for active debris removal

    NASA Astrophysics Data System (ADS)

    Dubanchet, Vincent; Saussié, David; Alazard, Daniel; Bérard, Caroline; Peuvédic, Catherine Le

    2015-06-01

    Space access and satellites lifespan are increasingly threatened by the great amount of debris in Low Earth Orbits. Among the many solutions proposed in the literature so far, the emphasis is put here on a robotic arm mounted on a "chaser" satellite to capture massive debris, such as dead satellites or launch vehicle upper stages. The modeling and control of such systems are investigated throughout the paper. Dynamic models rely on an adapted Newton-Euler algorithm, and control algorithms are based on the fixed-structure H_{&infty}; synthesis, recently implemented in an efficient Matlab toolbox. The main goal is to efficiently track a target point on the debris while using PD-like controllers to reduce computational burden. The fixed-structure H_{∞} framework proves to be a suitable tool to design a reduced-order robust controller that catches up with external disturbances and is simultaneously compatible with current space processors capabilities.

  1. Aerobic and resistance training do not influence plasma carnosinase content or activity in type 2 diabetes.

    PubMed

    Stegen, Sanne; Sigal, Ronald J; Kenny, Glen P; Khandwala, Farah; Yard, Benito; De Heer, Emile; Baelde, Hans; Peersman, Wim; Derave, Wim

    2015-10-01

    A particular allele of the carnosinase gene (CNDP1) is associated with reduced plasma carnosinase activity and reduced risk for nephropathy in diabetic patients. On the one hand, animal and human data suggest that hyperglycemia increases plasma carnosinase activity. On the other hand, we recently reported lower carnosinase activity levels in elite athletes involved in high-intensity exercise compared with untrained controls. Therefore, this study investigates whether exercise training and the consequent reduction in hyperglycemia can suppress carnosinase activity and content in adults with type 2 diabetes. Plasma samples were taken from 243 males and females with type 2 diabetes (mean age = 54.3 yr, SD = 7.1) without major microvascular complications before and after a 6-mo exercise training program [4 groups: sedentary control (n = 61), aerobic exercise (n = 59), resistance exercise (n = 63), and combined exercise training (n = 60)]. Plasma carnosinase content and activity, hemoglobin (Hb) A1c, lipid profile, and blood pressure were measured. A 6-mo exercise training intervention, irrespective of training modality, did not decrease plasma carnosinase content or activity in type 2 diabetic patients. Plasma carnosinase content and activity showed a high interindividual but very low intraindividual variability over the 6-mo period. Age and sex, but not Hb A1c, were significantly related to the activity or content of this enzyme. It can be concluded that the beneficial effects of exercise training on the incidence of diabetic complications are probably not related to a lowering effect on plasma carnosinase content or activity.

  2. Changes in Muscle Activation after Reach Training with Gravity Compensation in Chronic Stroke Patients

    ERIC Educational Resources Information Center

    Prange, Gerdienke B.; Krabben, Thijs; Renzenbrink, Gerbert J.; Ijzerman, Maarten J.; Hermens, Hermie J.; Jannink, Michiel J. A.

    2012-01-01

    The objective of this study is to examine the effect of gravity compensation training on reaching and underlying changes in muscle activation. In this clinical trial, eight chronic stroke patients with limited arm function received 18 sessions (30 min) of gravity-compensated reach training (during 6 weeks) in combination with a rehabilitation…

  3. Music Activity Reports by Music Teachers with Varying Training in Orff Schulwerk

    ERIC Educational Resources Information Center

    Sogin, David W.; Wang, Cecilia Chu

    2008-01-01

    The purpose of this study was to examine music activities occurring in the music classroom of teachers who received different levels of training in Orff Schulwerk. The subjects (N = 49) were teachers participating in three training levels at a summer Orff Schulwerk certification program in a university in the USA. Teachers were asked to report the…

  4. 32 CFR Appendix C to Subpart M of... - Authorized Activities for Maneuver Training Area Access

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., blackberries, apples and other vegetation Photography Hiking 2. Yakima Training Center: Military Training (FL... activities Observation of wildlife and vegetation Photography Hiking Camping, per Paragraph 6 3. Camp...-commercial picking of ferns, mushrooms, blackberries, apples and other vegetation Photography Hiking...

  5. A National Study of Training Content and Activities for Faculty Development for Online Teaching

    ERIC Educational Resources Information Center

    Meyer, Katrina A.; Murrell, Vicki S.

    2014-01-01

    This article presents the results of a national study of 39 higher education institutions that collected information about their practices for faculty development for online teaching and particularly the content and training activities used during 2011-2012. This study found that the most frequently offered training content (97% of the…

  6. 76 FR 73020 - Proposed Information Collection (Contract for Training and Employment) Activity: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... written comments on the collection of information through Federal Docket Management System (FDMS) at http... AFFAIRS Proposed Information Collection (Contract for Training and Employment) Activity: Comment Request... comments for information needed to ensure contracts between VA and training facilities/vendors...

  7. Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.; Fong, T. W.; Bualat, M. G.; Lee, S. Y.; Dorsey, J. T.; Doggett, W. R.

    2007-01-01

    Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.

  8. 20 CFR 641.630 - What private sector training activities are allowable under section 502(e)?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What private sector training activities are... activities are allowable under section 502(e)? Allowable activities authorized under section 502(e) include... job development; or (9) Combinations of the above-listed activities. (b) Working with employers...

  9. Rapid Prototyping Platform for Robotics Applications

    ERIC Educational Resources Information Center

    Hwang, Kao-Shing; Hsiao, Wen-Hsu; Shing, Gaung-Ting; Chen, Kim-Joan

    2011-01-01

    For the past several years, a team in the Department of Electrical Engineering (EE), National Chung Cheng University, Taiwan, has been establishing a pedagogical approach to embody embedded systems in the context of robotics. To alleviate the burden on students in the robotics curriculum in their junior and senior years, a training platform on…

  10. Flexible Learning Activities Fostering Autonomy in Teaching Training

    ERIC Educational Resources Information Center

    Kupetz, Rita; Ziegenmeyer, Birgit

    2006-01-01

    The flexible use of digital recordings from EFL classrooms as well as online communication with teaching experts are two promising ways of implementing e-learning in the context of initial teacher training. Our research focuses on how to blend these elements efficiently with the different theoretical and practical content layers of an introductory…

  11. Students Learn Programming Faster through Robotic Simulation

    ERIC Educational Resources Information Center

    Liu, Allison; Newsom, Jeff; Schunn, Chris; Shoop, Robin

    2013-01-01

    Schools everywhere are using robotics education to engage kids in applied science, technology, engineering, and mathematics (STEM) activities, but teaching programming can be challenging due to lack of resources. This article reports on using Robot Virtual Worlds (RVW) and curriculum available on the Internet to teach robot programming. It also…

  12. Effects of training and weight support on muscle activation in Parkinson's disease.

    PubMed

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-12-01

    The aim of this study was to investigate the effect of high-intensity locomotor training on knee extensor and flexor muscle activation and adaptability to increased body-weight (BW) support during walking in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and eight healthy participants were included. The PD patients completed an 8-week training program on a lower-body, positive-pressure treadmill. Knee extensor and flexor muscles activation during steady treadmill walking (3 km/h) were measured before, at the mid-point, and after training. Increasing BW support decreased knee extensor muscle activation (normalization) and increased knee flexor muscle activation (abnormal) in PD patients when compared to healthy participants. Training improved flexor peak muscle activation adaptability to increased (BW) support during walking in PD patients. During walking without BW support shorter knee extensor muscle off-activation time and increased relative peak muscle activation was observed in PD patients and did not improve with 8 weeks of training. In conclusion, patients with PD walked with excessive activation of the knee extensor and flexor muscles when compared to healthy participants. Specialized locomotor training may facilitate adaptive processes related to motor control of walking in PD patients.

  13. Advanced robotics for decontamination and dismantlement

    SciTech Connect

    Hamel, W.R.; Haley, D.C.

    1994-06-01

    The decontamination and dismantlement (D&D) robotics technology application area of the US Department of Energy`s Robotics Technology Development Program is explained and described. D&D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given.

  14. A Biologically-Inspired Autonomous Robot

    DTIC Science & Technology

    1993-12-13

    AD-A273 909 DTIC ELECTE SDEC,2 01993 A PERFORMANCE REPORT A Biologically-Inspired Autonomous Robot Grant N00014-90-J- 1545 Period of Performance: 3...rough estimate of the torque generated by the electrical activation of the muscle dunng the movement. " The previous simulation of the robot has been...reaction forces for the robot that shares features with Full’s force measurements of cockroach walking. "* The 18 motor driver circuits for the robot have

  15. 75 FR 61452 - Notice of Intent To Prepare an Environmental Impact Statement for Military Training Activities at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Activities at the Naval Weapons Systems Training Facility Boardman, OR, and To Announce Public Scoping... activities on and increasing usage of the Naval Weapons Systems Training Facility (NWSTF) Boardman, Oregon... training activities to include force structure changes associated with the introduction of new...

  16. A psychology based approach for longitudinal development in cognitive robotics.

    PubMed

    Law, J; Shaw, P; Earland, K; Sheldon, M; Lee, M

    2014-01-01

    A major challenge in robotics is the ability to learn, from novel experiences, new behavior that is useful for achieving new goals and skills. Autonomous systems must be able to learn solely through the environment, thus ruling out a priori task knowledge, tuning, extensive training, or other forms of pre-programming. Learning must also be cumulative and incremental, as complex skills are built on top of primitive skills. Additionally, it must be driven by intrinsic motivation because formative experience is gained through autonomous activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to these issues through robotic implementations inspired by the learning behavior of human infants. We describe an approach to developmental learning and present results from a demonstration of longitudinal development on an iCub humanoid robot. The results cover the rapid emergence of staged behavior, the role of constraints in development, the effect of bootstrapping between stages, and the use of a schema memory of experiential fragments in learning new skills. The context is a longitudinal experiment in which the robot advanced from uncontrolled motor babbling to skilled hand/eye integrated reaching and basic manipulation of objects. This approach offers promise for further fast and effective sensory-motor learning techniques for robotic learning.

  17. A psychology based approach for longitudinal development in cognitive robotics

    PubMed Central

    Law, J.; Shaw, P.; Earland, K.; Sheldon, M.; Lee, M.

    2014-01-01

    A major challenge in robotics is the ability to learn, from novel experiences, new behavior that is useful for achieving new goals and skills. Autonomous systems must be able to learn solely through the environment, thus ruling out a priori task knowledge, tuning, extensive training, or other forms of pre-programming. Learning must also be cumulative and incremental, as complex skills are built on top of primitive skills. Additionally, it must be driven by intrinsic motivation because formative experience is gained through autonomous activity, even in the absence of extrinsic goals or tasks. This paper presents an approach to these issues through robotic implementations inspired by the learning behavior of human infants. We describe an approach to developmental learning and present results from a demonstration of longitudinal development on an iCub humanoid robot. The results cover the rapid emergence of staged behavior, the role of constraints in development, the effect of bootstrapping between stages, and the use of a schema memory of experiential fragments in learning new skills. The context is a longitudinal experiment in which the robot advanced from uncontrolled motor babbling to skilled hand/eye integrated reaching and basic manipulation of objects. This approach offers promise for further fast and effective sensory-motor learning techniques for robotic learning. PMID:24478693

  18. Effect of motion smoothness on brain activity while observing a dance: An fMRI study using a humanoid robot.

    PubMed

    Miura, Naoki; Sugiura, Motoaki; Takahashi, Makoto; Sassa, Yuko; Miyamoto, Atsushi; Sato, Shigeru; Horie, Kaoru; Nakamura, Katsuki; Kawashima, Ryuta

    2010-01-01

    Motion smoothness is critical in transmitting implicit information of body action, such as aesthetic qualities in dance performances. We expected that the perception of motion smoothness would be characterized by great intersubject variability deriving from differences in personal backgrounds and attitudes toward expressive body actions. We used functional magnetic resonance imaging and a humanoid robot to investigate the effects of the motion smoothness of expressive body actions and the intersubject variability due to personal attitudes on perceptions during dance observation. The effect of motion smoothness was analyzed by both conventional subtraction analysis and functional connectivity analyses that detect cortical networks reflecting intersubject variability. The results showed that the cortical networks of motion- and body-sensitive visual areas showed increases in activity in areas corresponding with motion smoothness, but the intersubject variability of personal attitudes toward art did not influence these active areas. In contrast, activation of cortical networks, including the parieto-frontal network, has large intersubject variability, and this variability is associated with personal attitudes about the consciousness of art. Thus, our results suggest that activity in the cortical network involved in understanding action is influenced by personal attitudes about the consciousness of art during observations of expressive body actions.

  19. Effects of physical activity and training programs on plasma homocysteine levels: a systematic review.

    PubMed

    e Silva, Alexandre de Souza; da Mota, Maria Paula Gonçalves

    2014-08-01

    Homocysteine is an amino acid produced in the liver that, when present in high concentrations, is thought to contribute to plaque formation and, consequently, increased risk of cardiovascular disease. However, daily physical activity and training programs may contribute to controlling atherosclerosis. Given that physical exercise induces changes in protein and amino acid metabolism, it is important to understand whether homocysteine levels are also affected by exercise and to determine possible underlying mechanisms. Moreover, regarding the possible characteristics of different training programs (intensity, duration, repetition, volume), it becomes prudent to determine which types of exercise reduce homocysteine levels. To these ends, a systematic review was conducted to examine the effects of daily physical activity and different training programs on homocysteine levels. EndNote(®) was used to locate articles on the PubMed database from 2002 to 2013 with the keyword combinations "physical activity and homocysteine", "training and homocysteine", and/or "exercise and homocysteine". After 34 studies were identified, correlative and comparative studies of homocysteine levels revealed lower levels in patients engaged in greater quantities of daily physical activity. Regarding the acute effects of exercise, all studies reported increased homocysteine levels. Concerning intervention studies with training programs, aerobic training programs used different methods and analyses that complicate making any conclusion, though resistance training programs induced decreased homocysteine levels. In conclusion, this review suggests that greater daily physical activity is associated with lower homocysteine levels and that exercise programs could positively affect homocysteine control.

  20. Effect of altitude training on serum creatine kinase activity and serum cortisol concentration in triathletes.

    PubMed

    Wilber, R L; Drake, S D; Hesson, J L; Nelson, J A; Kearney, J T; Dallam, G M; Williams, L L

    2000-01-01

    In this investigation we evaluated the effect of a 5-week training program at 1860 m on serum creatine kinase (CK) activity and serum cortisol concentration in national-caliber triathletes for the purpose of monitoring the response to training in a hypobaric hypoxic environment. Subjects included 16 junior-level female (n = 8) and male (n = 8) triathletes who were training for the International Triathlon Union (ITU) World Championships. After an initial acclimatization period, training intensity and/or volume were increased progressively during the 5-week altitude training camp. Resting venous blood samples were drawn at 0700 hours following a 12-h overnight fast and were analyzed for serum CK activity and serum cortisol concentration. Subjects were evaluated before [7-10 days pre-altitude (SL 1)] and after [7-10 days post-altitude (SL 2)] the 5-week training camp at 1860 m. At altitude, subjects were evaluated within 24-36 h after arrival (ALT 1), 7 days after arrival (ALT 2), 18 days after arrival (ALT 3), and 24-36 h prior to leaving the altitude training camp (ALT 4). A repeated-measures analysis of variance was used to evaluate differences over time from SL 1 to SL 2. Compared to SL 1, serum CK activity increased approximately threefold (P < 0.05) within the initial 24-36 h at altitude (ALT 1), and increased by an additional 70% (P < 0.05) after the 1st week of altitude training (ALT 2). Serum CK activity remained significantly elevated over the duration of the experimental period compared to pre-altitude baseline levels. Serum cortisol concentration was increased (P < 0.05) at the end of the 5-week altitude training period (ALT 4) relative to SL 1, ALT 1 and ALT 3. These data suggest that: (1) the initial increase in serum CK activity observed in the first 24-36 h at altitude was due primarily to acute altitude exposure and was independent of increased training intensity and/or training volume, (2) the subsequent increases in serum CK activity observed over

  1. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  2. Robotic neurorehabilitation in patients with chronic stroke: psychological well-being beyond motor improvement.

    PubMed

    Calabrò, Rocco S; De Cola, Maria C; Leo, Antonino; Reitano, Simone; Balletta, Tina; Trombetta, Giovanni; Naro, Antonino; Russo, Margherita; Bertè, Francesco; De Luca, Rosaria; Bramanti, Placido

    2015-09-01

    Although gait abnormality is one of the most disabling events following stroke, cognitive, and psychological impairments can be devastating. The Lokomat is a robotic that has been used widely for gait rehabilitation in several movement disorders, especially in the acute and subacute phases. The aim of this study was to evaluate the effectiveness of gait robotic rehabilitation in patients affected by chronic stroke. Psychological impact was also taken into consideration. Thirty patients (13 women and 17 men) affected by chronic stroke entered the study. All participants underwent neurological examination with respect to ambulation, Ashworth, Functional Independence Measure, and Tinetti scales to assess their physical status, and Hamilton Rating Scale for Depression, Psychological General Well-being Index, and Coping Orientation to Problem Experienced to evaluate the Lokomat-related psychological impact before and after either a conventional treatment or the robotic training. During each rehabilitation period (separated by a no-treatment period), patients underwent a total of 40 1 h training sessions (i.e. five times a week for 8 weeks). After the conventional treatment, the patients did not achieve a significant improvement in the functional status, except balance (P<0.001) and walking ability (P<0.01), as per the Tinetti scale. Indeed, after the robotic rehabilitation, significant improvements were detected in almost all the motor and psychological scales that we investigated, particularly for Psychological General Well-being Index and Coping Orientation to Problem Experienced. Manual and robotic-assisted body weight-supported treadmill training optimizes the sensory inputs relevant to step training, repeated practice, as well as neuroplasticity. Several controlled trials have shown a superior effect of Lokomat treatment in stroke patients' walking ability and velocity in particular. Therefore, our preliminary results proved that active robotic training not only

  3. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  4. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  5. Beware: Recruitment of Muscle Activity by the EEG-Neurofeedback Trainings of High Frequencies.

    PubMed

    Paluch, Katarzyna; Jurewicz, Katarzyna; Rogala, Jacek; Krauz, Rafał; Szczypińska, Marta; Mikicin, Mirosław; Wróbel, Andrzej; Kublik, Ewa

    2017-01-01

    EEG-neurofeedback (NFB) became a very popular method aimed at improving cognitive and behavioral performance. However, the EMG frequency spectrum overlies the higher EEG oscillations and the NFB trainings focusing on these frequencies is hindered by the problem of EMG load in the information fed back to the subjects. In such a complex signal, it is highly probable that the most controllable component will form the basis for operant conditioning. This might cause different effects in the case of various training protocols and therefore needs to be carefully assessed before designing training protocols and algorithms. In the current experiment a group of healthy adults (n = 14) was trained by professional trainers to up-regulate their beta1 (15-22 Hz) band for eight sessions. The control group (n = 18) underwent the same training regime but without rewards for increasing beta. In half of the participants trained to up-regulate beta1 band (n = 7) a systematic increase in tonic EMG activity was identified offline, implying that muscle activity became a foundation for reinforcement in the trainings. The remaining participants did not present any specific increase of the trained beta1 band amplitude. The training was perceived effective by both trainers and the trainees in all groups. These results indicate the necessity of proper control of muscle activity as a requirement for the genuine EEG-NFB training, especially in protocols that do not aim at the participants' relaxation. The specificity of the information fed back to the participants should be of highest interest to all therapists and researchers, as it might irreversibly alter the results of the training.

  6. Beware: Recruitment of Muscle Activity by the EEG-Neurofeedback Trainings of High Frequencies

    PubMed Central

    Paluch, Katarzyna; Jurewicz, Katarzyna; Rogala, Jacek; Krauz, Rafał; Szczypińska, Marta; Mikicin, Mirosław; Wróbel, Andrzej; Kublik, Ewa

    2017-01-01

    EEG-neurofeedback (NFB) became a very popular method aimed at improving cognitive and behavioral performance. However, the EMG frequency spectrum overlies the higher EEG oscillations and the NFB trainings focusing on these frequencies is hindered by the problem of EMG load in the information fed back to the subjects. In such a complex signal, it is highly probable that the most controllable component will form the basis for operant conditioning. This might cause different effects in the case of various training protocols and therefore needs to be carefully assessed before designing training protocols and algorithms. In the current experiment a group of healthy adults (n = 14) was trained by professional trainers to up-regulate their beta1 (15–22 Hz) band for eight sessions. The control group (n = 18) underwent the same training regime but without rewards for increasing beta. In half of the participants trained to up-regulate beta1 band (n = 7) a systematic increase in tonic EMG activity was identified offline, implying that muscle activity became a foundation for reinforcement in the trainings. The remaining participants did not present any specific increase of the trained beta1 band amplitude. The training was perceived effective by both trainers and the trainees in all groups. These results indicate the necessity of proper control of muscle activity as a requirement for the genuine EEG-NFB training, especially in protocols that do not aim at the participants’ relaxation. The specificity of the information fed back to the participants should be of highest interest to all therapists and researchers, as it might irreversibly alter the results of the training. PMID:28373836

  7. 77 FR 58567 - Information Collection Activities: Well Control and Production Safety Training, Submitted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... Bureau of Safety and Environmental Enforcement Information Collection Activities: Well Control and Production Safety Training, Submitted for Office of Management and Budget (OMB) Review; Comment Request... of the paperwork requirements in the regulations under Subpart O, ``Well Control and...

  8. Attitude Changes of Specialist Students of Physical Education towards Physical Activity during Teacher-Training Courses.

    ERIC Educational Resources Information Center

    Barrell, G. V.; Holt, D.

    1982-01-01

    A longitudinal investigation of the attitudes towards physical activity of specialist students of physical education was undertaken during a course of training teachers. Significant changes of attitude with time were noted, particularly in the Vertigo and Ascetic dimensions. (Author)

  9. 78 FR 7049 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Navy Training and Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    .... More advanced, integrated anti-submarine warfare training exercises are conducted in coordinated, at-sea training events involving submarines, ships, and aircraft. This training integrates the full... assess new and emerging technologies. Testing events are often integrated into training activities and...

  10. 78 FR 24161 - Takes of Marine Mammals Incidental to Specified Activities; Navy Training Conducted at the Silver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... Specified Activities; Navy Training Conducted at the Silver Strand Training Complex, San Diego Bay AGENCY...) to take marine mammals, by harassment, incidental to conducting training exercises at the Silver Strand Training Complex (SSTC) in the vicinity of San Diego Bay, California. Pursuant to the...

  11. 77 FR 19231 - Takes of Marine Mammals Incidental to Specified Activities; Navy Training Conducted at the Silver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Specified Activities; Navy Training Conducted at the Silver Strand Training Complex, San Diego Bay AGENCY... Authorization (IHA) to take marine mammals, by harassment, incidental to conducting training exercises at the Silver Strand Training Complex (SSTC) in the vicinity of San Diego Bay, California....

  12. Information Robots and Manipulators.

    ERIC Educational Resources Information Center

    Katys, G. P.; And Others

    In the modern concept a robot is a complex automatic cybernetics system capable of executing various operations in the sphere of human activity and in various respects combining the imitative capacity of the physical and mental activity of man. They are a class of automatic information systems intended for search, collection, processing, and…

  13. Effects of Skilled Training on Sleep Slow Wave Activity and Cortical Gene Expression in the Rat

    PubMed Central

    Hanlon, Erin C.; Faraguna, Ugo; Vyazovskiy, Vladyslav V.; Tononi, Giulio; Cirelli, Chiara

    2009-01-01

    Study Objective: The best characterized marker of sleep homeostasis is the amount of slow wave activity (SWA, 0.5–4 Hz) during NREM sleep. SWA increases as a function of previous waking time and declines during sleep, but the underlying mechanisms remain unclear. We have suggested that SWA homeostasis is linked to synaptic potentiation associated with learning during wakefulness. Indeed, studies in rodents and humans found that SWA increases after manipulations that presumably enhance synaptic strength, but the evidence remains indirect. Here we trained rats in skilled reaching, a task known to elicit long-term potentiation in the trained motor cortex, and immediately after learning measured SWA and cortical protein levels of c-fos and Arc, 2 activity-dependent genes involved in motor learning. Design: Intracortical local field potential recordings and training on reaching task. Setting: Basic sleep research laboratory. Patients or Participants: Long Evans adult male rats. Interventions: N/A Measurements and Results: SWA increased post-training in the trained cortex (the frontal cortex contralateral to the limb used to learn the task), with smaller or no increase in other cortical areas. This increase was reversible within 1 hour, specific to NREM sleep, and positively correlated with changes in performance during the prior training session, suggesting that it reflects plasticity and not just motor activity. Fos and Arc levels were higher in the trained relative to untrained motor cortex immediately after training, but this asymmetry was no longer present after 1 hour of sleep. Conclusion: Learning to reach specifically affects gene expression in the trained motor cortex and, in the same area, increases sleep need as measured by a local change in SWA. Citation: Hanlon EC; Faraguna U; Vyazovskiy VV; Tononi G; Cirelli C. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. SLEEP 2009;32(6):719-729. PMID:19544747

  14. Affective robot for elderly assistance.

    PubMed

    Carelli, Laura; Gaggioli, Andrea; Pioggia, Giovanni; De Rossi, Federico; Riva, Giuseppe

    2009-01-01

    Recently, several robotic solutions for the elderly have been proposed. However, to date, the diffusion of these devices has been limited: available robots are too cumbersome, awkward, and expensive to become widely adopted. Another key issue which reduces the appeal of assistive robots is the lack of socio-emotional interaction: affective interchanges represent key requirements to create sustainable relationships between elderly and robots. In this paper, we propose a new approach to enhance the acceptability of robotic systems, based on the introduction of affective dimensions in human-robot interaction. This strategy is aimed at designing a new generation of relational and cognitive robots fusing information from embodied unobtrusive sensory interfaces. The final objective is to develop embodied interfaces, which are able to learn and adapt their affective responses to the user's behavior. User and robot will engage in natural interactions, involving verbal and non-verbal communication, improving empathic exchange of moods and feelings. Relevant independent living and quality of life related issues will be addressed: on-going monitoring of health parameters, assistance in everyday's activities, social support and cognitive/physical exercises. We expect that the proposed strategy will enhance the user's acceptance and adoption of the assistive robotic system.

  15. Energy Efficient Legged Robotics at Sandia Labs, Part 2

    SciTech Connect

    Buerger, Steve; Mazumdar, Ani; Spencer, Steve

    2015-06-02

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  16. Energy Efficient Legged Robotics at Sandia Labs, Part 2

    ScienceCinema

    Buerger, Steve; Mazumdar, Ani; Spencer, Steve

    2016-07-12

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the second in a series, describes the continued development and integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  17. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults

    PubMed Central

    Shatil, Evelyn

    2013-01-01

    Cognitive training and aerobic training are known to improve cognitive functions. To examine the separate and combined effects of such training on cognitive performance, four groups of healthy older adults embarked on a 4 months cognitive and/or mild aerobic training. A first group [n = 33, mean age = 80 (66–90)] engaged in cognitive training, a second [n = 29, mean age = 81 (65–89)] in mild aerobic training, a third [n = 29, mean age = 79 (70–93)] in the combination of both, and a fourth [n = 31, mean age = 79 (71–92)] control group engaged in book-reading activity. The outcome was a well-validated multi-domain computerized cognitive evaluation for older adults. The results indicate that, when compared to older adults who did not engage in cognitive training (the mild aerobic and control groups) older adults who engaged in cognitive training (separate or combined training groups) showed significant improvement in cognitive performance on Hand-Eye Coordination, Global Visual Memory (GVM; working memory and long-term memory), Speed of Information Processing, Visual Scanning, and Naming. Indeed, individuals who did not engage in cognitive training showed no such improvements. Those results suggest that cognitive training is effective in improving cognitive performance and that it (and not mild aerobic training) is driving the improvement in the combined condition. Results are discussed in terms of the special circumstances of aerobic and cognitive training for older adults who are above 80 years of age. PMID:23531885

  18. Does Lego Training Stimulate Pupils' Ability to Solve Logical Problems?

    ERIC Educational Resources Information Center

    Lindh, Jorgen; Holgersson, Thomas

    2007-01-01

    The purpose of this study is to investigate the effect of a one-year regular robotic toys (lego) training on school pupils' performance. The underlying pedagogical perspective is the "constructionist theory," where the main idea is that knowledge is constructed in the mind of the pupil by active learning. The investigation has been made…

  19. [Walking assist robot and its clinical application].

    PubMed

    Kakou, Hiroaki; Shitama, Hideo; Kimura, Yoshiko; Nakamoto, Yoko; Furuta, Nami; Honda, Kanae; Wada, Futoshi; Hachisuka, Kenji

    2009-06-01

    The walking assist robot was developed to improve gait disturbance in patients with severe disabilities. The robot had a trunk supporter, power generator and operating arms which held patient's lower extremities and simulated walking, a control unit, biofeedback system, and a treadmill. We applied the robot-aided gait training to three patients with severe gait disturbance induced by stroke, axonal Guillan-Barré syndrome or spinal cord injury, and the walking assist robot turned out to be effective in improving the gait disturbance.

  20. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation

    PubMed Central

    Brauchle, Daniel; Vukelić, Mathias; Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the β-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns—but different aptitudes—of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject’s arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants’ efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that

  1. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.

    PubMed

    Brauchle, Daniel; Vukelić, Mathias; Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the β-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns-but different aptitudes-of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject's arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants' efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that warrants

  2. The Effectiveness of Staff Support: Evaluating Active Support Training Using a Conditional Probability Approach.

    ERIC Educational Resources Information Center

    Felce, David; Bowley, Clare; Baxter, Helen; Jones, Edwin; Lowe, Kathy; Emerson, Eric

    2000-01-01

    Active Support, a package of procedures which includes activity planning, support planning, and training on providing effective assistance, was evaluated in five community residences serving 19 adults with severe mental retardation. Findings indicated that the likelihood of a resident engaging in activity significantly increased following staff…

  3. Pedagogical Synergetics as the Activity Approach Basis in Professional and Pedagogical Training at the University

    ERIC Educational Resources Information Center

    Serezhnikova, Raisa Kuzminichna; Fishman, Boris Entilyevich; Abramenko, Natalya Yurevna; Zhoglo, Lyubov Yakovlevna; Fishbein, Miron Honevich

    2015-01-01

    The article considers an idea of activity approach realization in professional training assuming not only change of the contents, forms and methods of students' educational activities, but also not less radical transformation of teacher's activities oriented at the students' development of creative self-realization experience. The authors…

  4. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  5. Impact of Inertial Training on Strength and Power Performance in Young Active Men.

    PubMed

    Naczk, Mariusz; Naczk, Alicja; Brzenczek-Owczarzak, Wioletta; Arlet, Jarosław; Adach, Zdzisław

    2016-08-01

    Naczk, M, Naczk, A, Brzenczek-Owczarzak, W, Arlet, J, and Adach, Z. Impact of inertial training on strength and power performance in young active men. J Strength Cond Res 30(8): 2107-2113, 2016-This study evaluated how 5 weeks of inertial training using 2 different loads influenced strength and power performance. Fifty-eight male physical education students were randomly divided into training and control groups. The 2 training groups (T0 and T10) performed inertial training 3 times per week for 5 weeks using the new Inertial Training and Measurement System (ITMS). Each training session included 3 exercise sets involving the knee extensors muscles. The T0 group used only the mass of the ITMS flywheel (19.4 kg), whereas the T10 group had an additional 10 kg on the flywheel. Before and after training, we evaluated maximum force and power of knee extensors muscles, countermovement jump (CMJ), squat jump (SJ), maximal power output achieved during ergometer test PVT, electromyography of quadriceps, and muscle mass. In T0 and T10, respectively, ITMS training induced significant increases in muscle force (25.2 and 23.3%), muscle power (33.2 and 27%), CMJ (3.8 and 6.7%), SJ (2.2 and 6.1%), PVT (8 and 7.4%), and muscle mass (9.8 and 15%). The changes did not significantly differ between T0 and T10. A 16% significant increase of electromyography amplitude (quadriceps muscle) was noted only in T0. The novel ITMS training method is effective for improving muscular strength and power. Improvements in PVT, CMJ, and SJ indicate that the increased strength and power elicited by ITMS training can translate to improvements in sport performance. The ITMS training can also be useful for building muscle mass.

  6. Predicting Antitumor Activity of Peptides by Consensus of Regression Models Trained on a Small Data Sample

    PubMed Central

    Radman, Andreja; Gredičak, Matija; Kopriva, Ivica; Jerić, Ivanka

    2011-01-01

    Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met) with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel) support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM) regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample. PMID:22272081

  7. Robotic transportation.

    PubMed

    Lob, W S

    1990-09-01

    Mobile robots perform fetch-and-carry tasks autonomously. An intelligent, sensor-equipped mobile robot does not require dedicated pathways or extensive facility modification. In the hospital, mobile robots can be used to carry specimens, pharmaceuticals, meals, etc. between supply centers, patient areas, and laboratories. The HelpMate (Transitions Research Corp.) mobile robot was developed specifically for hospital environments. To reach a desired destination, Help-Mate navigates with an on-board computer that continuously polls a suite of sensors, matches the sensor data against a pre-programmed map of the environment, and issues drive commands and path corrections. A sender operates the robot with a user-friendly menu that prompts for payload insertion and desired destination(s). Upon arrival at its selected destination, the robot prompts the recipient for a security code or physical key and awaits acknowledgement of payload removal. In the future, the integration of HelpMate with robot manipulators, test equipment, and central institutional information systems will open new applications in more localized areas and should help overcome difficulties in filling transport staff positions.

  8. Relationship between education and training activities and tuberculosis case detection in Fiji, 2008-2011.

    PubMed

    Delai, M Y; Gounder, S; Tayler-Smith, K; Van den Bergh, R; Harries, A D

    2012-12-21

    Due to concerns about under-reporting of the tuberculosis (TB) case burden in Fiji, efforts have been put into national training, education and awareness activities in the formal health sector and among village health workers, health volunteers and the community since 2010. There has been an absolute increase in TB registrations, and TB case notification rates during the period of training activities in 2010 (21.3 per 100 000 population) and 2011 (23.6/100 000) were significantly increased compared with TB case notification rates in 2008 (12.4/100 000) and 2009 (14.6/100 000), when no training activities took place (P < 0.01). These findings support the use of ongoing training efforts.

  9. Changes in muscle activation after reach training with gravity compensation in chronic stroke patients.

    PubMed

    Prange, Gerdienke B; Krabben, Thijs; Renzenbrink, Gerbert J; Ijzerman, Maarten J; Hermens, Hermie J; Jannink, Michiel J A

    2012-09-01

    The objective of this study is to examine the effect of gravity compensation training on reaching and underlying changes in muscle activation. In this clinical trial, eight chronic stroke patients with limited arm function received 18 sessions (30 min) of gravity-compensated reach training (during 6 weeks) in combination with a rehabilitation game. Before and after training, unsupported reach (assessing maximal distance, joint angles and muscle activity of eight shoulder and elbow muscles) and the Fugl-Meyer assessment were compared. After training, the maximal reach distance improved significantly by 3.5% of arm length, together with increased elbow extension (+9.2°) and increased elbow extensor activity (+68%). In some patients, a reduced cocontraction of biceps and anterior deltoid was also involved, although this was not significant on group level. Improvements in unsupported reach after gravity compensation training in chronic stroke patients with mild to severe hemiparesis were mainly accompanied by increased activation of prime movers at the elbow, although in some patients, improved selective joint control may also have been involved. Gravity compensation seems to be a suitable way to provide active, task-specific treatment, without the need for high-tech devices. Further research on a larger scale, including control groups and combinations of arm support with functional hand training, is essential to enhance the potential of arm support to complement poststroke arm rehabilitation.

  10. Relative activity of respiratory muscles during prescribed inspiratory muscle training in healthy people.

    PubMed

    Jung, Ju-Hyeon; Kim, Nan-Soo

    2016-03-01

    [Purpose] This study aimed to determine the effects of different intensities of inspiratory muscle training on the relative respiratory muscle activity in healthy adults. [Subjects and Methods] Thirteen healthy male volunteers were instructed to perform inspiratory muscle training (0%, 40%, 60%, and 80% maximal inspiratory pressure) on the basis of their individual intensities. The inspiratory muscle training was performed in random order of intensities. Surface electromyography data were collected from the right-side diaphragm, external intercostal, and sternocleidomastoid, and pulmonary functions (forced expiratory volume in 1 s, forced vital capacity, and their ratio; peak expiratory flow; and maximal inspiratory pressure) were measured. [Results] Comparison of the relative activity of the diaphragm showed significant differences between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. Furthermore, significant differences were found in sternocleidomastoid relative activity between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. [Conclusion] During inspiratory muscle training in the clinic, the patients were assisted (verbally or through feedback) by therapists to avoid overactivation of their accessory muscles (sternocleidomastoid). This study recommends that inspiratory muscle training be performed at an accurate and appropriate intensity through the practice of proper deep breathing.

  11. Relative activity of respiratory muscles during prescribed inspiratory muscle training in healthy people

    PubMed Central

    Jung, Ju-hyeon; Kim, Nan-soo

    2016-01-01

    [Purpose] This study aimed to determine the effects of different intensities of inspiratory muscle training on the relative respiratory muscle activity in healthy adults. [Subjects and Methods] Thirteen healthy male volunteers were instructed to perform inspiratory muscle training (0%, 40%, 60%, and 80% maximal inspiratory pressure) on the basis of their individual intensities. The inspiratory muscle training was performed in random order of intensities. Surface electromyography data were collected from the right-side diaphragm, external intercostal, and sternocleidomastoid, and pulmonary functions (forced expiratory volume in 1 s, forced vital capacity, and their ratio; peak expiratory flow; and maximal inspiratory pressure) were measured. [Results] Comparison of the relative activity of the diaphragm showed significant differences between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. Furthermore, significant differences were found in sternocleidomastoid relative activity between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. [Conclusion] During inspiratory muscle training in the clinic, the patients were assisted (verbally or through feedback) by therapists to avoid overactivation of their accessory muscles (sternocleidomastoid). This study recommends that inspiratory muscle training be performed at an accurate and appropriate intensity through the practice of proper deep breathing. PMID:27134409

  12. Subsumption Robotics

    DTIC Science & Technology

    1998-01-01

    Subsumption Robotics Christopher K. DeBolt Naval EOD Technology Division 2008 Stump Neck Road Indian Head, MD 20640-5070 phone: (301) 744-6850, Ext...eodmgate.navsea.navy.mil; nguyent.eodtc@eodmgate.navsea.navy.mil Helen Greiner and Polly K. Pook I.S. Robotics phone: (617) 629-0055 e-mail: helen@isr.com , pook...408) 656-3462 e-mail: healey@me.nps.navy.mil LONG-TERM GOALS Through the use of subsumption architectures, low cost, simple robots can be developed

  13. The Effect of Active Support Interactive Training on the Daily Lives of Adults with an Intellectual Disability

    ERIC Educational Resources Information Center

    Totsika, Vasiliki; Toogood, Sandy; Hastings, Richard P.; McCarthy, Jonathan

    2010-01-01

    Background: Interactive training (IT) is one of the two staff training components of the active support (AS) model. The present study explores how effective IT is when offered to staff divorced in time from the AS workshops, the other training component. We explored the effects of IT on resident activity engagement, challenging behaviours and…

  14. Interactive Whiteboard Integration in Classrooms: Active Teachers Understanding about Their Training Process

    NASA Astrophysics Data System (ADS)

    Pujol, Meritxell Cortada; Quintana, Maria Graciela Badilla; Romaní, Jordi Riera

    With the incorporation in education of Information and Communication Technologies (ICT), especially the Interactive Whiteboard (IWB), emerges the need for a proper teacher training process due to adequate the integration and the didactic use of this tool in the classroom. This article discusses the teachers' perception on the training process for ICT integration. Its main aim is to contribute to the unification of minimum criteria for effective ICT implementation in any training process for active teachers. This case study begins from the development of a training model called Eduticom which was putted into practice in 4 schools in Catalonia, Spain. Findings indicated different teachers' needs such as an appropriate infrastructure, a proper management and a flexible training model which essentially addresses methodological and didactic aspects of IWB uses in the classroom.

  15. The Future Training Room.

    ERIC Educational Resources Information Center

    Barbian, Jeff

    2001-01-01

    Looks at some of the electronic learning technology that has already been developed and will become common for training, including robots, lucid dreaming, tele-immersion, human interface technology, among others. (JOW)

  16. Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task.

    PubMed

    Vartanian, O; Jobidon, M-E; Bouak, F; Nakashima, A; Smith, I; Lam, Q; Cheung, B

    2013-04-16

    Working memory (WM) training has been shown to lead to improvements in WM capacity and fluid intelligence. Given that divergent thinking loads on WM and fluid intelligence, we tested the hypothesis that WM training would improve performance and moderate neural function in the Alternate Uses Task (AUT)-a classic test of divergent thinking. We tested this hypothesis by administering the AUT in the functional magnetic resonance imaging scanner following a short regimen of WM training (experimental condition), or engagement in a choice reaction time task not expected to engage WM (active control condition). Participants in the experimental group exhibited significant improvement in performance in the WM task as a function of training, as well as a significant gain in fluid intelligence. Although the two groups did not differ in their performance on the AUT, activation was significantly lower in the experimental group in ventrolateral prefrontal and dorsolateral prefrontal cortices-two brain regions known to play dissociable and critical roles in divergent thinking. Furthermore, gain in fluid intelligence mediated the effect of training on brain activation in ventrolateral prefrontal cortex. These results indicate that a short regimen of WM training is associated with lower prefrontal activation-a marker of neural efficiency-in divergent thinking.

  17. Weight training, aerobic physical activities, and long-term waist circumference change in men

    PubMed Central

    Mekary, Rania A.; Grøntved, Anders; Despres, Jean-Pierre; De Moura, Leandro Pereira; Asgarzadeh, Morteza; Willett, Walter C.; Rimm, Eric B.; Giovannucci, Edward; Hu, Frank B.

    2014-01-01

    Objective Findings on weight training and waist circumference (WC) change are controversial. This study examined prospectively whether weight training, moderate-to-vigorous aerobic activity (MVAA), and replacement of one activity for another were associated with favorable changes in WC and body weight (BW). Methods Physical activity, WC, and BW were reported in 1996 and 2008 in a cohort of 10,500 healthy U.S. men in the Health Professionals Follow-up Study. We used multiple linear regression models (partition/substitution) to assess these associations. Results After adjusting for potential confounders, we observed a significant inverse dose-response relationship between weight training and WC change (P-trend<0.001). Less age-associated WC increase was seen with a 20 min/day activity increase; this benefit was significantly stronger for weight training (-0.67cm, 95%CI -0.93, -0.41) than for MVAA (-0.33cm, 95%CI -0.40, -0.27), other activities (-0.16cm, 95%CI -0.28, -0.03), or TV watching (0.08cm, 95%CI 0.05, 0.12). Substituting 20 min/day of weight training for any other discretionary activity had the strongest inverse association with WC change. MVAA had the strongest inverse association with BW change (-0.23kg, 95%CI -0.29, -0.17). Conclusions Among various activities, weight training had the strongest association with less WC increase. Studies on frequency /volume of weight training and WC change are warranted. PMID:25530447

  18. Robotic arm

    DOEpatents

    Kwech, Horst

    1989-04-18

    A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.

  19. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  20. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  1. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  2. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  3. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience

    NASA Astrophysics Data System (ADS)

    Rembala, Richard; Ower, Cameron

    2009-10-01

    MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic

  4. Investigating Informatics Activity, Control, and Training Needs in Large, Medium, and Small Health Departments

    PubMed Central

    Arnold, Ryan; Yang, Biru

    2016-01-01

    Introduction: A recent National Association of City & County Health Officials survey shed light on informatics workforce development needs. Local health departments (LHDs) of various jurisdictional sizes and control over informatics may differ on training needs and activity. Understanding the precise nature of this variation will allow stakeholders to appropriately develop workforce development tools to advance the field. Objective: To understand the informatics training needs for LHDs of different jurisdictional sizes. Methods: Survey responses were analyzed by comparing training needs and LHD population size. Results: Larger health departments consistently reported having greater informatics-related capacity and informatics-related training needs. Quantitative data analysis was identified as a primary need for large LHDs. In addition, LHDs that report higher control of informatics/information technology were able to engage in more informatics activities. Conclusion: Smaller LHDs need additional resources to improve informatics-related capacity and engagement with the field. PMID:27684621

  5. Control and Guidance of Low-Cost Robots via Gesture Perception for Monitoring Activities in the Home

    PubMed Central

    Sempere, Angel D.; Serna-Leon, Arturo; Gil, Pablo; Puente, Santiago; Torres, Fernando

    2015-01-01

    This paper describes the development of a low-cost mini-robot that is controlled by visual gestures. The prototype allows a person with disabilities to perform visual inspections indoors and in domestic spaces. Such a device could be used as the operator's eyes obviating the need for him to move about. The robot is equipped with a motorised webcam that is also controlled by visual gestures. This camera is used to monitor tasks in the home using the mini-robot while the operator remains quiet and motionless. The prototype was evaluated through several experiments testing the ability to use the mini-robot’s kinematics and communication systems to make it follow certain paths. The mini-robot can be programmed with specific orders and can be tele-operated by means of 3D hand gestures to enable the operator to perform movements and monitor tasks from a distance. PMID:26690448

  6. Robotic Follow-Up for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Deans, Matthew C.; Adams, Byron; Allan, Mark; Altobelli, Martha; Bouyssounouse, Xavier; Cohen, Tamar; Flueckiger, Lorenzo; Garber, Joshua; Palmer, Elizabeth; Heggy, Essam; Jurgens, Frank; Kennedy, Tim; Kobayashi, Linda; Lee, Pascal; Lee, Susan Y.; Lees, David; Lundy, Mike; Park, Eric; Pedersen, Liam; Smith, Trey; To, Vinh; Utz, Hans; Wheeler, Dawn

    2010-01-01

    We are studying how "robotic follow-up" can improve future planetary exploration. Robotic follow-up, which we define as augmenting human field work with subsequent robot activity, is a field exploration technique designed to increase human productivity and science return. To better understand the benefits, requirements, limitations and risks associated with this technique, we are conducting analog field tests with human and robot teams at the Haughton Crater impact structure on Devon Island, Canada. In this paper, we discuss the motivation for robotic follow-up, describe the scientific context and system design for our work, and present results and lessons learned from field testing.

  7. Handbook of industrial robotics

    SciTech Connect

    Nof, S.Y.

    1985-01-01

    This book presents papers on the application of artificial intelligence to robots used in industrial plants. Topics considered include vision systems, elements of industrial robot software, robot teaching, the off-line programming of robots, a structured programming robot language, task-level manipulator programming, expert systems, and the role of the computer in robot intelligence.

  8. Tutorial on robotics

    SciTech Connect

    Lee, C.S.G.; Gonzalez, R.C.; Fu, K.S.

    1986-01-01

    Basic fundamentals in robotics are presented in this tutorial. Topics covered are as follows: robot arm kinematics; robot arm dynamics; planning or manipulator trajectories; servo control for manipulators; force sensing and control; robot vision systems; robot programming languages; and machine intelligence and robot planning.

  9. Pupils' Cognitive Activity Stimulation by Means of Physical Training

    ERIC Educational Resources Information Center

    Nekhoroshkov, Anatolij V.

    2016-01-01

    The article presents the research results of the physical activity influence on the intellectual performance of high school students. The methods of experiments and standardized observation were used. The efficiency of the cognitive activity was assessed by "Proof test" technique of B. Burdon. Within the experimental class, the program…

  10. Lekoteket: A Program for Training Through Systematic Play Activity.

    ERIC Educational Resources Information Center

    Junker, Karin Stensland

    Described are the purposes and activities of the lekotek, a Swedish private, non-profit agency whose name was coined from two Swedish words meaning playthings and library. The lekotek advises families with mentally retarded or other handicapped children at home as to such play activity and educational stimulation as will further the development of…

  11. Simulation of robot manipulators

    SciTech Connect

    Kress, R.L.; Babcock, S.M.; Bills, K.C.; Kwon, D.S.; Schoenwald, D.A.

    1995-03-01

    This paper describes Oak Ridge National Laboratory`s development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratories` Flexible Beam Testbed which is a one-Degree-Of-Freedom, flexible arm with a hydraulic base actuator. Initial results show good agreement between model and experiment.

  12. Effects of the Alternate Combination of “Error-Enhancing” and “Active Assistive” Robot-Mediated Treatments on Stroke Patients

    PubMed Central

    Cesqui, Benedetta; Monaco, Vito; Aliboni, Sara; Posteraro, Federico; Micera, Silvestro

    2013-01-01

    This paper aimed at investigating the effects of a novel robotic-aided rehabilitation treatment for the recovery of the upper limb related capabilities in chronic post stroke patients. Eighteen post-stroke patients were enrolled in a six-week therapy program and divided into two groups. They were all required to perform horizontal pointing movements both in the presence of a robot-generated divergent force field (DF) that pushed their hands proportional to the trajectory error and perpendicular to the direction of motion, and according to the typical active assistive (AA) approach used in robotic therapy. We used a crossover experimental paradigm where the two groups switched from one therapy treatment to the other. The hypothesis underlying this paper was that the use of the destabilizing scenario forced the patient to keep the end-point position as close as possible to the ideal path, hence requiring a more active control of the arm with respect to the AA approach. Our findings confirmed this hypothesis. In addition, when the DF treatment was provided in the first therapy cycle, patients also showed straighter and smoother paths during the subsequent AA therapy cycle, while this was not true in the opposite case. In conclusion, the results herein reported provide evidence that the use of an unstable DF field can lead to better recovery outcomes, and therefore it potentially more effective than solely active assistance therapy alone. PMID:27170850

  13. Put more 'nano' in robotics

    NASA Astrophysics Data System (ADS)

    Martin, Christian

    2014-08-01

    DNA nanotechnology has proven to be a powerful approach for fabricating active nanostructures with biological functionality. Now, it is time to investigate more solutions from biology to downscale robotics, says Christian Martin.

  14. Preface: Terrestrial Fieldwork to Support in situ Resource Utilization (ISRU) and Robotic Resource Prospecting for Future Activities in Space

    NASA Astrophysics Data System (ADS)

    Sanders, Gerald B.

    2015-05-01

    Finding, extracting, and using resources at the site of robotic and human exploration activities holds the promise of enabling sustainable and affordable exploration of the Moon, Mars, and asteroids, and eventually allow humans to expand their economy and habitation beyond the surface of the Earth. Commonly referred to as in situ Resource Utilization (ISRU), mineral and volatile resources found in space can be converted into oxygen, water, metals, fuels, and manufacturing and construction materials (such as plastics and concrete) for transportation, power, life support, habitation construction, and part/logistics manufacturing applications. For every kilogram of payload landed on the surface of the Moon or Mars, 7.5-11 kg of payload (mostly propellant) needs to be launched into low Earth orbit. Therefore, besides promising long-term self-sufficiency and infrastructure growth, ISRU can provide significant reductions in launch costs and the number of launches required. Key to being able to use space resources is knowing where they are located, how much is there, and how the resources are distributed. While ISRU holds great promise, it has also never been demonstrated in an actual space mission. Therefore, operations and hardware associated with each ISRU prospecting, excavation, transportation, and processing step must be examined, tested, and finally integrated to enable the end goal of using space resources in future human space missions.

  15. Potential role of endurance training in altering renal sympathetic nerve activity in CKD?

    PubMed

    Howden, Erin J; Lawley, Justin S; Esler, Murray; Levine, Benjamin D

    2017-05-01

    Chronic kidney disease (CKD), is characterized by a progressive loss of renal function and increase in cardiovascular risk. In this review paper, we discuss the pathophysiology of increased sympathetic nerve activity in CKD patients and raise the possibility of endurance exercise being an effective countermeasure to address this problem. We specifically focus on the potential role of endurance training in altering renal sympathetic nerve activity as increased renal sympathetic nerve activity negatively impacts kidney function as well indirectly effects multiple other systems and organs. Recent technological advances in device based therapy have highlighted the detrimental effect of elevated renal sympathetic nerve activity in CKD patients, with kidney function and blood pressure being improved post renal artery nerve denervation in selected patients. These developments provide optimism for the development of alternative and/or complementary strategies to lower renal sympathetic nerve activity. However, appropriately designed studies are required to confirm preliminary observations, as the widespread use of the renal denervation approach to lower sympathetic activity presently has limited feasibility. Endurance training may be one alternative strategy to reduce renal sympathetic nerve activity. Here we review the role of endurance training as a potential alternative or adjunctive to current therapy in CKD patients. We also provide recommendations for future research to assist in establishing an evidence base for the use of endurance training to lower renal sympathetic activity in CKD patients.

  16. 34 CFR 350.22 - What activities must a Rehabilitation Research and Training Center conduct?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What activities must a Rehabilitation Research and... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Research and Training Centers Does the Secretary Assist? § 350.22 What activities must a Rehabilitation Research and...

  17. Classroom-Directed Home Training Activities. Preschool Program: A Regional Demonstration Program for Preschool Handicapped Children.

    ERIC Educational Resources Information Center

    Jones, Jacquelyn O.

    One of 10 documents developed for preschool programs for handicapped children, the manual presents classroom directed home training activities. The activities are based on such principles as the effectiveness of home instruction by a parent and the need for a parent to feel responsibility for the child's learning. Intended to provide teachers of…

  18. Do Training Programs Work? An Assessment of Pharmacists Activities in the Field of Chemical Dependency.

    ERIC Educational Resources Information Center

    Brooks, Valerie G.; Brock, Tina Penick; Ahn, Jungeun

    2001-01-01

    Seeks to determine if pharmacists who attended a chemical dependency training program were performing more chemical dependency related activities. Results reveal that participants were more likely to perform the following activities: lecture to community groups about chemical dependency; participate in a pharmacists' recovery program; provide…

  19. Resistance training increases total energy expenditure and free-living physical activity in older adults.

    PubMed

    Hunter, G R; Wetzstein, C J; Fields, D A; Brown, A; Bamman, M M

    2000-09-01

    The purpose of this study was to determine what effects 26 wk of resistance training have on resting energy expenditure (REE), total free-living energy expenditure (TEE), activity-related energy expenditure (AEE), engagement in free-living physical activity as measured by the activity-related time equivalent (ARTE) index, and respiratory exchange ratio (RER) in 61- to 77-yr-old men (n = 8) and women (n = 7). Before and after training, body composition (four-compartment model), strength, REE, TEE (doubly labeled water), AEE (TEE - REE + thermic response to meals), and ARTE (AEE adjusted for energy cost of standard activities) were evaluated. Strength (36%) and fat-free mass (2 kg) significantly increased, but body weight did not change. REE increased 6.8%, whereas resting RER decreased from 0.86 to 0.83. TEE (12%) and ARTE (38%) increased significantly, and AEE (30%) approached significance (P = 0.06). The TEE increase remained significant even after adjustment for the energy expenditure of the resistance training. In response to resistance training, TEE increased and RER decreased. The increase in TEE occurred as a result of increases in both REE and physical activity. These results suggest that resistance training may have value in increasing energy expenditure and lipid oxidation rates in older adults, thereby improving their metabolic profiles.

  20. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.

    PubMed Central

    McKenna, M J; Heigenhauser, G J; McKelvie, R S; Obminski, G; MacDougall, J D; Jones, N L

    1997-01-01

    1. This study investigated the effects of 7 weeks of sprint training on gas exchange across the lungs and active skeletal muscle during and following maximal cycling exercise in eight healthy males. 2. Pulmonary oxygen uptake (VO2) and carbon dioxide output (VCO2) were measured before and after training during incremental exercise (n = 8) and during and in recovery from a maximal 30 s sprint exercise bout by breath-by-breath analysis (n = 6). To determine gas exchange by the exercising leg muscles, brachial arterial and femoral venous blood O2 and CO2 contents and lactate concentration were measured at rest, during the final 10 s of exercise and during 10 min of recovery. 3. Training increased (P < 0.05) the maximal incremental exercise values of ventilation (VE, by 15.7 +/- 7.1%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 15.0 +/- 4.2%). Sprint exercise peak power (3.9 +/- 1.0% increase) and cumulative 30 s work (11.7 +/- 2.8% increase) were increased and fatigue index was reduced (by -9.2 +/- 1.5%) after training (P < 0.05). The highest VE, VCO2 and VO2 values attained during sprint exercise were not significantly changed after training, but a significant (P < 0.05) training effect indicated increased VE (by 19.2 +/- 7.9%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 12.7 +/- 6.5%), primarily reflecting elevated post-exercise values after training. 4. Arterial O2 and CO2 contents were lower after training, by respective mean differences of 3.4 and 21.9 ml l-1 (P < 0.05), whereas the arteriovenous O2 and CO2 content differences and the respiratory exchange ratio across the leg were unchanged by training. 5. Arterial whole blood lactate concentration and the net lactate release by exercising muscle were unchanged by training. 6. The greater peak pulmonary VO2 and VCO2 with sprint exercise, the increased maximal incremental values, unchanged arterial blood lactate concentration and greater sprint performance all point strongly towards enhanced gas exchange across the lungs and in

  1. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.

    PubMed

    McKenna, M J; Heigenhauser, G J; McKelvie, R S; Obminski, G; MacDougall, J D; Jones, N L

    1997-06-15

    1. This study investigated the effects of 7 weeks of sprint training on gas exchange across the lungs and active skeletal muscle during and following maximal cycling exercise in eight healthy males. 2. Pulmonary oxygen uptake (VO2) and carbon dioxide output (VCO2) were measured before and after training during incremental exercise (n = 8) and during and in recovery from a maximal 30 s sprint exercise bout by breath-by-breath analysis (n = 6). To determine gas exchange by the exercising leg muscles, brachial arterial and femoral venous blood O2 and CO2 contents and lactate concentration were measured at rest, during the final 10 s of exercise and during 10 min of recovery. 3. Training increased (P < 0.05) the maximal incremental exercise values of ventilation (VE, by 15.7 +/- 7.1%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 15.0 +/- 4.2%). Sprint exercise peak power (3.9 +/- 1.0% increase) and cumulative 30 s work (11.7 +/- 2.8% increase) were increased and fatigue index was reduced (by -9.2 +/- 1.5%) after training (P < 0.05). The highest VE, VCO2 and VO2 values attained during sprint exercise were not significantly changed after training, but a significant (P < 0.05) training effect indicated increased VE (by 19.2 +/- 7.9%), VCO2 (by 9.3 +/- 2.1%) and VO2 (by 12.7 +/- 6.5%), primarily reflecting elevated post-exercise values after training. 4. Arterial O2 and CO2 contents were lower after training, by respective mean differences of 3.4 and 21.9 ml l-1 (P < 0.05), whereas the arteriovenous O2 and CO2 content differences and the respiratory exchange ratio across the leg were unchanged by training. 5. Arterial whole blood lactate concentration and the net lactate release by exercising muscle were unchanged by training. 6. The greater peak pulmonary VO2 and VCO2 with sprint exercise, the increased maximal incremental values, unchanged arterial blood lactate concentration and greater sprint performance all point strongly towards enhanced gas exchange across the lungs and in

  2. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis

    PubMed Central

    Liu, Dongmei; Sartor, Maureen A.; IglayReger, Heidi B.; Pistilli, Emidio E.; Gutmann, Laurie; Nader, Gustavo A.; Hoffman, Eric P.

    2012-01-01

    The primary aim of this investigation was to evaluate the effect of training on the immune activation in skeletal muscle in response to an acute bout of resistance exercise (RE). Seven young healthy men and women underwent a 12-wk supervised progressive unilateral arm RE training program. One week after the last training session, subjects performed an acute bout of bilateral RE in which the trained and the untrained arm exercised at the same relative intensity. Muscle biopsies were obtained 4 h postexercise from the biceps brachii of both arms and assessed for global transcriptom using Affymetrix U133 plus 2.0 microarrays. Significantly regulated biological processes and gene groups were analyzed using a logistic regression-based method following differential (trained vs. untrained) gene expression testing via an intensity-based Bayesian moderated t-test. The results from the present study suggest that training blunts the transcriptional upregulation of immune activation by minimizing expression of genes involved in monocyte recruitment and enhancing gene expression involved in macrophage anti-inflammatory polarization. Additionally, our data suggest that training blunts the transcriptional upregulation of the stress response and the downregulation of glucose metabolism, mitochondrial structure, and oxidative phosphorylation, and it enhances the transcriptional upregulation of the extracellular matrix and cytoskeleton development and organization and the downregulation of gene transcription and muscle contraction. This study provides novel insight into the molecular processes involved in the adaptive response of skeletal muscle following RE training and the cellular and molecular events implicating the protective role of training on muscle stress and damage inflicted by acute mechanical loading. PMID:22052873

  3. Enhancing Cognitive Abilities with Comprehensive Training: A Large, Online, Randomized, Active-Controlled Trial

    PubMed Central

    Hardy, Joseph L.; Nelson, Rolf A.; Thomason, Moriah E.; Sternberg, Daniel A.; Katovich, Kiefer; Farzin, Faraz; Scanlon, Michael

    2015-01-01

    Background A variety of studies have demonstrated gains in cognitive ability following cognitive training interventions. However, other studies have not shown such gains, and questions remain regarding the efficacy of specific cognitive training interventions. Cognitive training research often involves programs made up of just one or a few exercises, targeting limited and specific cognitive endpoints. In addition, cognitive training studies typically involve small samples that may be insufficient for reliable measurement of change. Other studies have utilized training periods that were too short to generate reliable gains in cognitive performance. Methods The present study evaluated an online cognitive training program comprised of 49 exercises targeting a variety of cognitive capacities. The cognitive training program was compared to an active control condition in which participants completed crossword puzzles. All participants were recruited, trained, and tested online (N = 4,715 fully evaluable participants). Participants in both groups were instructed to complete one approximately 15-minute session at least 5 days per week for 10 weeks. Results Participants randomly assigned to the treatment group improved significantly more on the primary outcome measure, an aggregate measure of neuropsychological performance, than did the active control group (Cohen’s d effect size = 0.255; 95% confidence interval = [0.198, 0.312]). Treatment participants showed greater improvements than controls on speed of processing, short-term memory, working memory, problem solving, and fluid reasoning assessments. Participants in the treatment group also showed greater improvements on self-reported measures of cognitive functioning, particularly on those items related to concentration compared to the control group (Cohen’s d = 0.249; 95% confidence interval = [0.191, 0.306]). Conclusion Taken together, these results indicate that a varied training program composed of a number of

  4. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects

    NASA Technical Reports Server (NTRS)

    Carter, Jason R.; Ray, Chester A.; Downs, Emily M.; Cooke, William H.

    2003-01-01

    The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.

  5. Intelligent control and cooperation for mobile robots

    NASA Astrophysics Data System (ADS)

    Stingu, Petru Emanuel

    The topic discussed in this work addresses the current research being conducted at the Automation & Robotics Research Institute in the areas of UAV quadrotor control and heterogenous multi-vehicle cooperation. Autonomy can be successfully achieved by a robot under the following conditions: the robot has to be able to acquire knowledge about the environment and itself, and it also has to be able to reason under uncertainty. The control system must react quickly to immediate challenges, but also has to slowly adapt and improve based on accumulated knowledge. The major contribution of this work is the transfer of the ADP algorithms from the purely theoretical environment to the complex real-world robotic platforms that work in real-time and in uncontrolled environments. Many solutions are adopted from those present in nature because they have been proven to be close to optimal in very different settings. For the control of a single platform, reinforcement learning algorithms are used to design suboptimal controllers for a class of complex systems that can be conceptually split in local loops with simpler dynamics and relatively weak coupling to the rest of the system. Optimality is enforced by having a global critic but the curse of dimensionality is avoided by using local actors and intelligent pre-processing of the information used for learning the optimal controllers. The system model is used for constructing the structure of the control system, but on top of that the adaptive neural networks that form the actors use the knowledge acquired during normal operation to get closer to optimal control. In real-world experiments, efficient learning is a strong requirement for success. This is accomplished by using an approximation of the system model to focus the learning for equivalent configurations of the state space. Due to the availability of only local data for training, neural networks with local activation functions are implemented. For the control of a formation

  6. Entrainment of chaotic activities in brain and heart during MBSR mindfulness training.

    PubMed

    Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Zhang, Zhiguo; Chang, Chunqi; Hung, Yeung-Sam; Fung, Peter Chin Wan; Sik, Hin Hung

    2016-03-11

    The activities of the brain and the heart are dynamic, chaotic, and possibly intrinsically coordinated. This study aims to investigate the effect of Mindfulness-Based Stress Reduction (MBSR) program on the chaoticity of electronic activities of the brain and the heart, and to explore their potential correlation. Electroencephalogram (EEG) and electrocardiogram (ECG) were recorded at the beginning of an 8-week standard MBSR training course and after the course. EEG spectrum analysis was carried out, wavelet entropies (WE) of EEG (together with reconstructed cortical sources) and heart rate were calculated, and their correlation was investigated. We found enhancement of EEG power of alpha and beta waves and lowering of delta waves power during MBSR training state as compared to normal resting state. Wavelet entropy analysis indicated that MBSR mindfulness meditation could reduce the chaotic activities of both EEG and heart rate as a change of state. However, longitudinal change of trait may need more long-term training. For the first time, our data demonstrated that the chaotic activities of the brain and the heart became more coordinated during MBSR training, suggesting that mindfulness training may increase the entrainment between mind and body. The 3D brain regions involved in the change in mental states were identified.

  7. Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia.

    PubMed

    Subramaniam, Karuna; Luks, Tracy L; Fisher, Melissa; Simpson, Gregory V; Nagarajan, Srikantan; Vinogradov, Sophia

    2012-02-23

    Schizophrenia patients suffer from severe cognitive deficits, such as impaired reality monitoring. Reality monitoring is the ability to distinguish the source of internal experiences from outside reality. During reality monitoring tasks, schizophrenia patients make errors identifying "I made it up" items, and even during accurate performance, they show abnormally low activation of the medial prefrontal cortex (mPFC), a region that supports self-referential cognition. We administered 80 hr of computerized training of cognitive processes to schizophrenia patients and found improvement in reality monitoring that correlated with increased mPFC activity. In contrast, patients in a computer games control condition did not show any behavioral or neural improvements. Notably, recovery in mPFC activity after training was associated with improved social functioning 6 months later. These findings demonstrate that a serious behavioral deficit in schizophrenia, and its underlying neural dysfunction, can be improved by well-designed computerized cognitive training, resulting in better quality of life.

  8. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.

    PubMed

    van Dijk, W; van der Kooij, H; Koopman, B; van Asseldonk, E H F; van der Kooij, H

    2013-06-01

    To promote active participation of neurological patients during robotic gait training, controllers, such as "assist as needed" or "cooperative control", are suggested. Apart from providing support, these controllers also require that the robot should be capable of resembling natural, unsupported, walking. This means that they should have a transparent mode, where the interaction forces between the human and the robot are minimal. Traditional feedback-control algorithms do not exploit the cyclic nature of walking to improve the transparency of the robot. The purpose of this study was to improve the transparent mode of robotic devices, by developing two controllers that use the rhythmic behavior of gait. Both controllers use adaptive frequency oscillators and kernel-based non-linear filters. Kernelbased non-linear filters can be used to estimate signals and their time derivatives, as a function of the gait phase. The first controller learns the motor angle, associated with a certain joint angle pattern, and acts as a feed-forward controller to improve the torque tracking (including the zero-torque mode). The second controller learns the state of the mechanical system and compensates for the dynamical effects (e.g. the acceleration of robot masses). Both controllers have been tested separately and in combination on a small subject population. Using the feedforward controller resulted in an improved torque tracking of at least 52 percent at the hip joint, and 61 percent at the knee joint. When both controllers were active simultaneously, the interaction power between the robot and the human leg was reduced by at least 40 percent at the thigh, and 43 percent at the shank. These results indicate that: if a robotic task is cyclic, the torque tracking and transparency can be improved by exploiting the predictions of adaptive frequency oscillator and kernel-based nonlinear filters.

  9. Robot Docking Based on Omnidirectional Vision and Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Muse, David; Weber, Cornelius; Wermter, Stefan

    We present a system for visual robotic docking using an omnidirectional camera coupled with the actor critic reinforcement learning algorithm. The system enables a PeopleBot robot to locate and approach a table so that it can pick an object from it using the pan-tilt camera mounted on the robot. We use a staged approach to solve this problem as there are distinct sub tasks and different sensors used. Starting with random wandering of the robot until the table is located via a landmark, and then a network trained via reinforcement allows the robot to rum to and approach the table. Once at the table the robot is to pick the object from it. We argue that our approach has a lot of potential allowing the learning of robot control for navigation removing the need for internal maps of the environment. This is achieved by allowing the robot to learn couplings between motor actions and the position of a landmark.

  10. Serendipitous Offline Learning in a Neuromorphic Robot

    PubMed Central

    Stewart, Terrence C.; Kleinhans, Ashley; Mundy, Andrew; Conradt, Jörg

    2016-01-01

    We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviors. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviors. All sensor data is provided via a spike-based silicon retina camera (eDVS), and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker). Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where the robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror) by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behavior. PMID:26913002

  11. Serendipitous Offline Learning in a Neuromorphic Robot.

    PubMed

    Stewart, Terrence C; Kleinhans, Ashley; Mundy, Andrew; Conradt, Jörg

    2016-01-01

    We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviors. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviors. All sensor data is provided via a spike-based silicon retina camera (eDVS), and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker). Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where the robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror) by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behavior.

  12. Effects of military training activities on shrub-steppe raptors in southwestern Idaho, USA

    USGS Publications Warehouse

    Lehman, Robert N.; Steenhof, Karen; Kochert, Michael N.; Carpenter, L.B.

    1999-01-01

    Between 1991 and 1994, we assessed relative abundance, nesting success, and distribution of ferruginous hawks (Buteo regalis), northern harriers (Circus cyaneus), burrowing owls (Athene cunicularia), and short-eared owls (Asio flammeus) inside and outside a military training site in the Snake River Birds of Prey National Conservation Area, southwestern Idaho. The Orchard Training Area is used primarily for armored vehicle training and artillery firing by the Idaho Army National Guard. Relative abundance of nesting pairs inside and outside the training site was not significantly different from 1991 to 1993 but was significantly higher on the training site in 1994 (Pa??a??a??0.03). Nesting success varied among years but was not significantly different inside and outside the training site (Pa??>a??0.26). In 1994, short-eared owl and burrowing owl nests were significantly closer to firing ranges used early in the spring before owls laid eggs than were random points (Pa??activity contributed to some nesting failures from 1992 to 1994, but some pairs nested successfully near military activity.

  13. The effects of inhibitory control training for preschoolers on reasoning ability and neural activity.

    PubMed

    Liu, Qian; Zhu, Xinyi; Ziegler, Albert; Shi, Jiannong

    2015-09-23

    Inhibitory control (including response inhibition and interference control) develops rapidly during the preschool period and is important for early cognitive development. This study aimed to determine the training and transfer effects on response inhibition in young children. Children in the training group (N = 20; 12 boys, mean age 4.87 ± 0.26 years) played "Fruit Ninja" on a tablet computer for 15 min/day, 4 days/week, for 3 weeks. Children in the active control group (N = 20; 10 boys, mean age 4.88 ± 0.20 years) played a coloring game on a tablet computer for 10 min/day, 1-2 days/week, for 3 weeks. Several cognitive tasks (involving inhibitory control, working memory, and fluid intelligence) were used to evaluate the transfer effects, and electroencephalography (EEG) was performed during a go/no-go task. Progress on the trained game was significant, while performance on a reasoning task (Raven's Progressive Matrices) revealed a trend-level improvement from pre- to post-test. EEG indicated that the N2 effect of the go/no-go task was enhanced after training for girls. This study is the first to show that pure response inhibition training can potentially improve reasoning ability. Furthermore, gender differences in the training-induced changes in neural activity were found in preschoolers.

  14. The effects of inhibitory control training for preschoolers on reasoning ability and neural activity

    PubMed Central

    Liu, Qian; Zhu, Xinyi; Ziegler, Albert; Shi, Jiannong

    2015-01-01

    Inhibitory control (including response inhibition and interference control) develops rapidly during the preschool period and is important for early cognitive development. This study aimed to determine the training and transfer effects on response inhibition in young children. Children in the training group (N = 20; 12 boys, mean age 4.87 ± 0.26 years) played “Fruit Ninja” on a tablet computer for 15 min/day, 4 days/week, for 3 weeks. Children in the active control group (N = 20; 10 boys, mean age 4.88 ± 0.20 years) played a coloring game on a tablet computer for 10 min/day, 1–2 days/week, for 3 weeks. Several cognitive tasks (involving inhibitory control, working memory, and fluid intelligence) were used to evaluate the transfer effects, and electroencephalography (EEG) was performed during a go/no-go task. Progress on the trained game was significant, while performance on a reasoning task (Raven’s Progressive Matrices) revealed a trend-level improvement from pre- to post-test. EEG indicated that the N2 effect of the go/no-go task was enhanced after training for girls. This study is the first to show that pure response inhibition training can potentially improve reasoning ability. Furthermore, gender differences in the training-induced changes in neural activity were found in preschoolers. PMID:26395158

  15. Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.

    PubMed

    Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F

    2006-10-01

    The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.

  16. Advanced Activated Sludge. Training Module 2.117.4.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series and considers design and operation…

  17. PERCEPTUAL TRAINING ACTIVITIES HANDBOOK. TEACHERS COLLEGE SERIES IN SPECIAL EDUCATION.

    ERIC Educational Resources Information Center

    VAN WITSEN, BETTY

    THIS PUBLICATION IS FOR TEACHERS AND SUPERVISORS WORKING WITH CHILDREN WHO HAVE LEARNING DISABILITIES, ESPECIALLY THOSE RELATED TO PERCEPTUAL DISTURBANCES. BEHAVIOR WHICH RESULTS FROM A LACK OF MEANINGFUL ORGANIZATION OF PERCEPTION IS DESCRIBED, AND MANAGEMENT TECHNIQUES ARE SUGGESTED. ACTIVITIES ARE PRESENTED UNDER THESE HEADINGS--VISUAL…

  18. Science: Videotapes for Inservice Training for Active Learning. VITAL Series.

    ERIC Educational Resources Information Center

    Kissock, Craig, Ed.

    This handbook, and the VITAL Science Series videotapes, contain 12 lessons that are examples of some of the many ways of organizing elementary school classrooms for science instruction. The videotapes that are available separately demonstrate full class and small group activities, the use of learning centers, cooperative learning, and outdoor…

  19. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  20. Intermediate Activated Sludge. Training Module 2.116.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series and considers aeration devices,…

  1. Basic Activated Sludge. Training Module 2.115.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with operation of activated sludge wastewater treatment plants. Included are objectives, instructor guides, student handouts, and transparency masters. This is the first of a three module series and considers definition of terms, design…

  2. Rehabilitation robotics.

    PubMed

    Krebs, H I; Volpe, B T

    2013-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician's toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual's functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost.

  3. Rehabilitation robotics

    PubMed Central

    KREBS, H.I.; VOLPE, B.T.

    2015-01-01

    This chapter focuses on rehabilitation robotics which can be used to augment the clinician’s toolbox in order to deliver meaningful restorative therapy for an aging population, as well as on advances in orthotics to augment an individual’s functional abilities beyond neurorestoration potential. The interest in rehabilitation robotics and orthotics is increasing steadily with marked growth in the last 10 years. This growth is understandable in view of the increased demand for caregivers and rehabilitation services escalating apace with the graying of the population. We will provide an overview on improving function in people with a weak limb due to a neurological disorder who cannot properly control it to interact with the environment (orthotics); we will then focus on tools to assist the clinician in promoting rehabilitation of an individual so that s/he can interact with the environment unassisted (rehabilitation robotics). We will present a few clinical results occurring immediately poststroke as well as during the chronic phase that demonstrate superior gains for the upper extremity when employing rehabilitation robotics instead of usual care. These include the landmark VA-ROBOTICS multisite, randomized clinical study which demonstrates clinical gains for chronic stroke that go beyond usual care at no additional cost. PMID:23312648

  4. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  5. Muscle triacylglycerol and hormone-sensitive lipase activity in untrained and trained human muscles.

    PubMed

    Helge, Jørn Wulff; Biba, Taus O; Galbo, Henrik; Gaster, Michael; Donsmark, Morten

    2006-07-01

    During exercise, triacylglycerol (TG) is recruited in skeletal muscles. We hypothesized that both muscle hormone-sensitive lipase (HSL) activity and TG recruitment would be higher in trained than in untrained subjects in response to prolonged exercise. Healthy male subjects (26 +/- 1 years, body moss index 23.3 +/- 0.5 kg m(-2)), either untrained (N = 8, VO(2max) 3.8 +/- 0.2 l min(-1)) or trained (N = 8, VO(2max) 5.1 +/- 0.1 l min(-1)), were studied. Before and after 3-h exercise (58 +/- 1% VO(2max)), a biopsy was taken. Muscle citrate synthase (32 +/- 2 vs. 47 +/- 6 mumol g(-1) min(-1) d.w.) and beta-hydroxy-acyl-CoA-dehydrogenase (38 +/- 3 vs. 52 +/- 5 mumol g(-1) min(-1) d.w.) activities were lower in untrained than in trained subjects (p < 0.05). Throughout the exercise, fat oxidation was higher in trained than in untrained subjects (p < 0.05). Muscle HSL activity was similar at rest (0.72 +/- 0.08 and 0.74 +/- 0.03 mU mg(-1) protein) and after exercise (0.71 +/- 0.1 and 0.68 +/- 0.03 mU mg(-1) protein) in untrained and trained subjects. At rest, the chemically determined muscle TG content (37 +/- 8 and 26 +/- 5 mmol g(-1) d.w.) was similar (p > 0.05), and after exercise it was unchanged in untrained and lower (p < 0.05) in trained subjects (41 +/- 9 and 10 +/- 2 mmol g((1) d.w.). Determined histochemically, TG was decreased (p < 0.05) after exercise in type I and II fibres. Depletion of TG was not different between fibre types in untrained, but tended to be higher (p = 0.07) in type I compared with type II fibres in trained muscles. In conclusion, HSL activity is similar in untrained and trained skeletal muscles both before and after prolonged exercise. However, the tendency to higher muscle TG recruitment during exercise in the trained subjects suggests a difference in the regulation of HSL or other lipases during exercise in trained compared with untrained subjects.

  6. [Cardiovascular prevention and regular physical exercise : Activity and training as the true "polypill"].

    PubMed

    Löllgen, H; Bachl, N

    2016-12-01

    Guidelines for cardiovascular prevention need to be regularly revised and updated. With respect to physical activity and exercise, many studies with practical relevance have been published in recent years. They are concerned with the evidence of physical activity for prevention of many diseases and the spectrum of indications for applying physical activity for prevention, therapy and rehabilitation. Training recommendations have been developed for the prevention of various diseases according to the FITT rule, which stands for frequency, intensity, time (of session) and type of sports followed by a progression in the amount of training. Recent publications show that moderate exercise with an increase in regular activity (e.g. 10,000 steps per day) is a sufficient approach for risk reduction in many diseases. An as yet unresolved problem is the best approach for effective motivation for physical exercise. The prescription of exercise is an important approach for improving the motivation for physical activity; however, prescribing exercise needs basic knowledge in sports physiology and proper training recommendations. Furthermore, population-based interventions for physical activity are urgently needed to implement more physical activity in the daily routine. The current ESC guidelines provide a great deal of new information to be implemented in the prevention in primary care; however, with regard to physical activity, more comprehensive biological data of physical activity should be presented in order to improve physician's knowledge, thus enhancing the fight against inactivity and sedentary lifestyles as one of the most significant risk factors.

  7. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  8. The GILDA t-Infrastructure: grid training activities in Africa and future opportunities

    NASA Astrophysics Data System (ADS)

    Ardizzone, V.; Barbera, R.; Ciuffo, L.; Giorgio, E.

    2009-04-01

    Scientists, educators, and students from many parts of the worlds are not able to take advantage of ICT because the digital divide is growing and prevents less developed countries to exploit its benefits. Instead of becoming more empowered and involved in worldwide developments, they are becoming increasingly marginalised as the world of education and science becomes increasingly Internet-dependent. The Grid Infn Laboratory for Dissemination Activities (GILDA) spreads since almost five years the awareness of Grid technology to a large audience, training new communities and fostering new organisations to provide resources. The knowledge dissemination process guided by the training activities is a key factor to ensure that all users can fully understand the characteristics of the Grid services offered by large existing e-Infrastructure. GILDA is becoming a "de facto" standard in training infrastructures (t-Infrastructures) and it is adopted by many grid projects worldwide. In this contribution we will report on the latest status of GILDA services and on the training activities recently carried out in sub-Saharan Africa (Malawi and South Africa). Particular care will be devoted to show how GILDA can be "cloned" to satisfy both education and research demands of African Organisations. The opportunities to benefit from GILDA in the framework of the EPIKH project as well as the plans of the European Commission on grid training and education for the 2010-2011 calls of its 7th Framework Programme will be presented and discussed.

  9. Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.

  10. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  11. Robot Manipulators

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Space Shuttle's Remote Manipulator System (Canadarm) is a 50 foot robot arm used to deploy, retrieve or repair satellites in orbit. Initial spinoff version is designed to remove, inspect and replace large components of Ontario Hydro's CANDU nuclear reactors, which supply 50 percent of Ontario Hydro's total power reduction. CANDU robot is the first of SPAR's Remote Manipulator Systems intended for remote materials handling operations in nuclear servicing, chemical processing, smelting and manufacturing. Inco Limited used remote manipulator for remote control mining equipment to enhance safety and productivity of Inco's hardrock mining operations. System not only improves safety in a hazardous operation that costs more than a score of lives annually, it also increases productivity fourfold. Remote Manipulator System Division is also manufacturing a line of industrial robots and developing additional system for nuclear servicing, mining, defense and space operations.

  12. The effect of exercise and training status on platelet activation: do cocoa polyphenols play a role?

    PubMed

    Singh, I; Quinn, H; Mok, M; Southgate, R J; Turner, A H; Li, D; Sinclair, A J; Hawley, J A

    2006-09-01

    Sedentary and trained men respond differently to the same intensity of exercise, this is probably related to their platelet reactivity and antioxidant capacity. There is growing interest in the utilization of antioxidant-rich plant extracts as dietary food supplements. The aim of this study was to investigate the effect of an acute bout of sub maximal exercise on platelet count and differential response of platelet activation in trained and sedentary subjects and to observe if cocoa polyphenols reverse the effect of exercise on platelet function. The practical significance of this study was that many sedentary people engage in occasional strenuous exercise that may predispose them to risk of heart disease. Fasting blood samples were collected from 16 male subjects, pre and post 1-h cycling exercise at 70% of maximal aerobic power (VO2max) before and after consumption of cocoa or placebo. Agonist stimulated citrated whole blood was utilized for measuring platelet aggregation, adenosine triphosphate (ATP) release and platelet activation. Baseline platelet count (221 +/- 33 x 10(9)/L) and ATP release (1.4 +/- 0.6 nmol) increased significantly (P < 0.05) after exercise in all subjects. Baseline platelet numbers in the trained were higher (P < 0.05) than in the sedentary (235 +/- 37 vs. 208 +/- 34 x 10(9)/L), where as platelet activation in trained was lower (P < 0.05) than sedentary (51 +/- 6 vs. 59 +/- 5%). Seven days of cocoa polyphenol supplementation had little effect on any of the parameters measured. We conclude that trained subjects show decreased activation of stimulated platelets when compared to the sedentary subjects and short-term cocoa polyphenol supplementation did not decrease platelet activity in response to exercise independent of prior training status.

  13. ROBOSIM: An intelligent simulator for robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R.; Cook, George E.; Biegl, Csaba; Springfield, James F.

    1993-01-01

    The purpose of this paper is to present an update of an intelligent robotics simulator package, ROBOSIM, first introduced at Technology 2000 in 1990. ROBOSIM is used for three-dimensional geometrical modeling of robot manipulators and various objects in their workspace, and for the simulation of action sequences performed by the manipulators. Geometric modeling of robot manipulators has an expanding area of interest because it can aid the design and usage of robots in a number of ways, including: design and testing of manipulators, robot action planning, on-line control of robot manipulators, telerobotic user interface, and training and education. NASA developed ROBOSIM between 1985-88 to facilitate the development of robotics, and used the package to develop robotics for welding, coating, and space operations. ROBOSIM has been further developed for academic use by its co-developer Vanderbilt University, and has been in both classroom and laboratory environments for teaching complex robotic concepts. Plans are being formulated to make ROBOSIM available to all U.S. engineering/engineering technology schools (over three hundred total with an estimated 10,000+ users per year).

  14. Brain controlled robots.

    PubMed

    Kawato, Mitsuo

    2008-06-01

    In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey's motor cortex in Miguel Nicolelis's lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the "Computational Brain Project." CB-i's locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey's voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot.

  15. Active training and driving-specific feedback improve older drivers' visual search prior to lane changes

    PubMed Central

    2012-01-01

    Background Driving retraining classes may offer an opportunity to attenuate some effects of aging that may alter driving skills. Unfortunately, there is evidence that classroom programs (driving refresher courses) do not improve the driving performance of older drivers. The aim of the current study was to evaluate if simulator training sessions with video-based feedback can modify visual search behaviors of older drivers while changing lanes in urban driving. Methods In order to evaluate the effectiveness of the video-based feedback training, 10 older drivers who received a driving refresher course and feedback about their driving performance were tested with an on-road standardized evaluation before and after participating to a simulator training program (Feedback group). Their results were compared to a Control group (12 older drivers) who received the same refresher course and in-simulator active practice as the Feedback group without receiving driving-specific feedback. Results After attending the training program, the Control group showed no increase in the frequency of the visual inspection of three regions of interests (rear view and left side mirrors, and blind spot). In contrast, for the Feedback group, combining active training and driving-specific feedbacks increased the frequency of blind spot inspection by 100% (32.3 to 64.9% of verification before changing lanes). Conclusions These results suggest that simulator training combined with driving-specific feedbacks helped older drivers to improve their visual inspection strategies, and that in-simulator training transferred positively to on-road driving. In order to be effective, it is claimed that driving programs should include active practice sessions with driving-specific feedbacks. Simulators offer a unique environment for developing such programs adapted to older drivers' needs. PMID:22385499

  16. 75 FR 5055 - Taking and Importing Marine Mammals; U.S. Navy's Atlantic Fleet Active Sonar Training (AFAST)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    .... Navy's Atlantic Fleet Active Sonar Training (AFAST) AGENCY: National Marine Fisheries Service (NMFS..., testing, and evaluation (RDT&E) activities to be conducted within the Atlantic Fleet Active Sonar Training... side mine hunting sonar in the AFAST Study area, which reduces use from 4474 hours annually to 0....

  17. Mastering Robotic Surgery: Where Does the Learning Curve Lead Us?

    PubMed

    Andolfi, Ciro; Umanskiy, Konstantin

    2017-01-18

    The robotic surgical technology introduced over the last decade and a half has revolutionized many aspects of performing complex procedures. It combines technological and clinical innovations to improve surgical quality and patient outcomes. Yet, to date, there is still a lack of standardization in training and certification of robotic surgeons. The criteria for proficiency and credentialing in robotic surgery vary widely among institutions. The aim of this review is to discuss the key points of training and surgeon assessment in robotic surgery, as well as the challenges that still need to be overcome.

  18. [Development of a semi-autonomous mobile robot for reactor containments]. 1992 annual summary of activity

    SciTech Connect

    Wehe, D.K.

    1993-02-10

    The University of Michigan reports its progress on this project on a bimonthly or quarterly reporting frequency. As a result, the detailed annual summary of activity is derived from the integration of these progress reports. They are attached here to form a permanent record of the University`s contribution to this program.

  19. Training in the fasted state facilitates re-activation of eEF2 activity during recovery from endurance exercise.

    PubMed

    Van Proeyen, K; De Bock, K; Hespel, P

    2011-07-01

    Nutrition is an important co-factor in exercise-induced training adaptations in muscle. We compared the effect of 6 weeks endurance training (3 days/week, 1-2 h at 75% VO(2peak)) in either the fasted state (F; n = 10) or in the high carbohydrate state (CHO, n = 10), on Ca(2+)-dependent intramyocellular signalling in young male volunteers. Subjects in CHO received a carbohydrate-rich breakfast before each training session, as well as ingested carbohydrates during exercise. Before (pretest) and after (posttest) the training period, subjects performed a 2 h constant-load exercise bout (~70% of pretest VO(2peak)) while ingesting carbohydrates (1 g/kg h(-1)). A muscle biopsy was taken from m. vastus lateralis immediately before and after the test, and after 4 h of recovery. Compared with pretest, in the posttest basal eukaryotic elongation factor 2 (eEF2) phosphorylation was elevated in CHO (P < 0.05), but not in F. In the pretest, exercise increased the degree of eEF2 phosphorylation about twofold (P < 0.05), and values returned to baseline within the 4 h recovery period in each group. However, in the posttest dephosphorylation of eEF2 was negated after recovery in CHO, but not in F. Independent of the dietary condition training enhanced the basal phosphorylation status of Phospholamban at Thr(17), 5'-AMP-activated protein kinase α (AMPKα), and Acetyl CoA carboxylase β (ACCβ), and abolished the exercise-induced increase of AMPKα and ACCβ (P < 0.05). In conclusion, training in the fasted state, compared with identical training with ample carbohydrate intake, facilitates post-exercise dephosphorylation of eEF2. This may contribute to rapid re-activation of muscle protein translation following endurance exercise.

  20. Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition

    PubMed Central

    Fong, Simon; Song, Wei; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K. L.

    2017-01-01

    In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called ‘shadow features’ are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research. PMID:28264470