Science.gov

Sample records for active seismic area

  1. Seismic activity of Tokyo area and Philippine Sea plate under Japanese Islands

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Nakagawa, S.; Nanjo, K.; Kasahara, K.; Panayotopoulos, Y.; Tsuruoka, H.; Kurashimo, E.; Obara, K.; Hirata, N.; Kimura, H.; Honda, R.

    2012-12-01

    The Japanese government has estimated the probability of earthquake occurrence with magnitude 7-class during the next 30 years as 70 %. This estimation is based on five earthquakes that occurred in this area in the late 120 years. However, it has been revealed that this region is lying on more complicated tectonic condition due to the two subducted plates and the various types of earthquakes which have been caused by. Therefore, it is necessary to classify these earthquakes into inter-plate earthquakes and intra-plate ones. Then, we have been constructing a seismic observation network since 5 years ago. Tokyo Metropolitan area is a densely populated region of about 40 million people. It is the center of Japan both in politics and in economy. So that human activities have been conducting quite busily, this region is unsuitable for seismic observation. Then, we have decided to make an ultra high dense seismic observation network. We named it the Metropolitan Seismometer Observation Network; MeSO-net. MeSO-net consists of 296 seismic stations. Minimum interval is about 2km and average interval is about 5km.We picked the P- and S-wave arrival times manually. We applied double-difference tomography method to the dataset and estimated the velocity structure. We depicted the plate boundaries from the newly developed velocity model. And, we referred to the locations of the repeating earthquakes, the distributions of normal hypocenters and the focal mechanisms. Our plate model became relatively flat and a little shallower than previous one.Seismicity of Metropolitan area after the M9 event was compared to the one before M9 event. The seismic activity is about 4 times as high as before the M9 event occurred. We examined spatial distribution of the activated seismicity with respect to the newly developed plate configuration. The activated events are located on upper boundaries and they have almost thrust type mechanisms. Recently, a slow slip event has occurred on October in

  2. Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network

  3. The analysis of interseismic GPS observation and its implication to seismic activity in Taiwan area

    NASA Astrophysics Data System (ADS)

    Tsai, M. C.; Yu, S. B.; Shin, T. C.

    2015-12-01

    Taiwan is an active tectonic area with about 80 mm/yr plate convergence rate. To understand the crustal deformation and seismic potential in Taiwan area. We derived 2009-2014 interseismic GPS velocity field and strain rate, implicate to seismic activity of 2005-2014. Data collected by 281 sites of Taiwan Continuous GPS (cGPS) Array and processed with GAMIT/GLOBK software. Stacking of power spectral densities from cGPS data in Taiwan, we found the errors type can be described as a combination of white noise and flicker noise. The common errors are removed by stacking 50 cGPS sites with data period larger than 5 years. By removing the common errors, the precision of GPS data has been further improved to 2.3 mm, 1.9 mm, and 6.9 mm in the E, N, U components, respectively. After strictly data quality control, time series analysis and noise analysis, we derive an interseismic ITRF2008 velocity field from 2009 to 2014 in the Taiwan area. The general pattern is quite similar with previous studies, but the station density is much larger and spatial coverage better. Based on this interseismic velocity field, we estimate the crustal strain rate in Taiwan area. Approximately half of plate convergence strain rate is accommodated on the fold and thrust belt of western Taiwan and another half is taken up in the Longitudinal Valley and the Coastal Range in eastern Taiwan. The maximum dilatation rates is about -0.75~-0.9 μstrain/yr in WNW-ESE direction. The velocities in western Taiwan generally show a fan-shaped pattern, consistent with the direction of maximum compression tectonic stress. Extension in the E-W direction is observed at the Central Range area, the focal mechanism results also indicate the earthquake type here most are normal faults. In northern Taiwan, the velocity vectors reveal clockwise rotation, indicating the on-going extensional deformation related to the back-arc extension of the Okinawa Trough. In southern Taiwan, the horizontal velocity increases from

  4. Geology of the area of induced seismic activity at Monticello Reservoir, South Carolina

    SciTech Connect

    Secor, D.T. Jr.; Smith, W.A.; Snoke, A.W.; Peck, L.S.; Pitcher, D.M.; Prowell, D.C.; Simpson, D.H.

    1982-08-10

    This study provides geological background information necessary for an evaluation of the earthquake hazard in an area of induced seismic activity at Monticello Reservoir, South Carolina. This region contains a thick stratified sequence of Proterozoic Z and Cambrian metasedimentary and metavolcanic rocks. In the early to middle Paleozoic, this sequence was recrystallized and deformed under metamorphic conditions that ranged from greenschist to amphibolite facies and experienced at least two episodes of folding. The region has been intruded by late kinematic to postkinematic granitoid plutons of Silurian and Carboniferous ages and by numerous northwest trending diabase diks of Late Traissic and Early Jurassic age. The region south of Monticello Reservoir in the Carolina slate belt experienced two episodes of faulting in the late Paleozoic and/or early to middle Mesozoic. The older group of faults trends approximately east, has only small displacements, and is characterized by extensive silicifiction of the fault zones. The younger group of faults trends approximately north has experienced dip slip displacements up to 1700 m and is characterized by carbonate mineralization in the fault zones. Both sets of faults are cut by an undeformed diabase dike of Late Triassic or Early Jurassic age. The induced seismic activity around Monticello Reservoir is occurring in a heterogeneous quartz monzonite pluton of Carboniferous age. The pluton contains large enclaves of country rock and is cut by numerous, diversely oriented small faults and joint. These local inhomogeneities in the pluton together with an irregular stress field are interpreted to control the diffuse seismic activity around the reservoir. In view of the apparent absence of lengthy faults it is unlikely that a large-magnitude earthquake will occur in response to the stress and pore pressure changes related to the impoundment of Monticello Reservoir.

  5. Ionospheric plasma deterioration in the area of enhanced seismic activity as compared to antipodal sites far from seismicity

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Arikan, Feza; Poustovalova, Ljubov; Stanislawska, Iwona

    2016-07-01

    The early magnetogram records from two nearly antipodal sites at Greenwich and Melbourne corresponding to the activity level at the invariant magnetic latitude of 50 deg give a long series of geomagnetic aa indices since 1868. The aa index derived from magnetic perturbation values at only two observatories (as distinct from the planetary ap index) experiences larger extreme values if either input site is well situated to the overhead ionospheric and/or field aligned current systems producing the magnetic storm effects. Analysis of the earthquakes catalogues since 1914 has shown the area of the peak global earthquake occurrence in the Pacific Ocean southwards from the magnetic equator, and, in particular, at Australia. In the present study the ionospheric critical frequency, foF2, is analyzed from the ionosonde measurements at the nearby observatories, Canberra and Slough (Chilton), and Moscow (control site) since 1944 to 2015. The daily-hourly-annual percentage occurrence of positive ionospheric W index (pW+) and negative index (pW-) is determined. It is found that the ionospheric plasma depletion pW- of the instant foF2 as compared to the monthly median is well correlated to the aa index at all three sites but the positive storm signatures show drastic difference at Canberra (no correlation of pW+ with aa index) as compared to two other sites where the high correlation is found of the ionospheric plasma density enhancement with the geomagnetic activity. A possible suppression of the enhanced ionospheric variability over the region of intense seismicity is discussed in the paper. This study is supported by TUBITAK EEEAG 115E915.

  6. High-resolution seismic structure analysis of an active submarine mud volcano area off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Shan; Hsu, Shu-Kun; Tsai, Wan-Lin; Tsai, Ching-Hui; Lin, Shin-Yi; Chen, Song-Chuen

    2015-04-01

    In order to better understand the subsurface structure related to an active mud volcano MV1 and to understand their relationship with gas hydrate/cold seep formation, we conducted deep-towed side-scan sonar (SSS), sub-bottom profiler (SBP), multibeam echo sounding (MBES), and multi-channel reflection seismic (MCS) surveys off SW Taiwan from 2009 to 2011. As shown in the high-resolution sub-bottom profiler and EK500 sonar data, the detailed structures reveal more gas seeps and gas flares in the study area. In addition, the survey profiles show several submarine landslides occurred near the thrust faults. Based on the MCS results, we can find that the MV1 is located on top of a mud diapiric structure. It indicates that the MV1 has the same source as the associated mud diapir. The blanking of the seismic signal may indicate the conduit for the upward migration of the gas (methane or CO2). Therefore, we suggest that the submarine mud volcano could be due to a deep source of mud compressed by the tectonic convergence. Fluids and argillaceous materials have thus migrated upward along structural faults and reach the seafloor. The gas-charged sediments or gas seeps in sediments thus make the seafloor instable and may trigger submarine landslides.

  7. A robust satellite technique for monitoring seismically active areas: The case of Bhuj Gujarat earthquake

    NASA Astrophysics Data System (ADS)

    Genzano, N.; Aliano, C.; Filizzola, C.; Pergola, N.; Tramutoli, V.

    2007-02-01

    A robust satellite data analysis technique (RAT) has been recently proposed as a suitable tool for satellite TIR surveys in seismically active regions and already successfully tested in different cases of earthquakes (both high and medium-low magnitudes). In this paper, the efficiency and the potentialities of the RAT technique have been tested even when it is applied to a wide area with extremely variable topography, land coverage and climatic characteristics (the whole Indian subcontinent). Bhuj-Gujarat's earthquake (occurred on 26th January 2001, MS ˜ 7.9) has been considered as a test case in the validation phase, while a relatively unperturbed period (no earthquakes with MS ≥ 5, in the same region and in the same period) has been analyzed for confutation purposes. To this aim, 6 years of Meteosat-5 TIR observations have been processed for the characterization of the TIR signal behaviour at each specific observation time and location. The anomalous TIR values, detected by RAT, have been evaluated in terms of time-space persistence in order to establish the existence of actually significant anomalous transients. The results indicate that the studied area was affected by significant positive thermal anomalies which were identified, at different intensity levels, not far from the Gujarat coast (since 15th January, but with a clearer evidence on 22nd January) and near the epicentral area (mainly on 21st January). On 25th January (1 day before Gujarat's earthquake) significant TIR anomalies appear on the Northern Indian subcontinent, showing a remarkable coincidence with the principal tectonic lineaments of the region (thrust Himalayan boundary). On the other hand, the results of the confutation analysis indicate that no meaningful TIR anomalies appear in the absence of seismic events with MS ≥ 5.

  8. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  9. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5

  10. Seismically active area monitoring by robust TIR satellite techniques: a sensitivity analysis on low magnitude earthquakes in Greece and Turkey

    NASA Astrophysics Data System (ADS)

    Corrado, R.; Caputo, R.; Filizzola, C.; Pergola, N.; Pietrapertosa, C.; Tramutoli, V.

    2005-01-01

    Space-time TIR anomalies, observed from months to weeks before earthquake occurrence, have been suggested by several authors as pre-seismic signals. Up to now, such a claimed connection of TIR emission with seismic activity has been considered with some caution by scientific community mainly for the insufficiency of the validation data-sets and the scarce importance attached by those authors to other causes (e.g. meteorological) that, rather than seismic activity, could be responsible for the observed TIR signal fluctuations. A robust satellite data analysis technique (RAT) has been recently proposed which, thanks to a well-founded definition of TIR anomaly, seems to be able to identify anomalous space-time TIR signal transients even in very variable observational (satellite view angle, land topography and coverage, etc.) and natural (e.g. meteorological) conditions. Its possible application to satellite TIR surveys in seismically active regions has been already tested in the case of several earthquakes (Irpinia: 23 November 1980, Athens: 7 September 1999, Izmit: 17 August 1999) of magnitude higher than 5.5 by using a validation/confutation approach, devoted to verify the presence/absence of anomalous space-time TIR transients in the presence/absence of seismic activity. In these cases, a magnitude threshold (generally M<5) was arbitrarily chosen in order to identify seismically unperturbed periods for confutation purposes. In this work, 9 medium-low magnitude (4

  11. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  12. Study on Seismic Zoning of Sino-Mongolia Arc Areas

    NASA Astrophysics Data System (ADS)

    Xu, G.

    2015-12-01

    According to the agreement of Cooperation on seismic zoning between Institute of Geophysics, China Earthquake Administration and Research Center of Astronomy and Geophysics, Mongolian Academy of Science, the data of geotectonics, active faults, seismicity and geophysical field were collected and analyzed, then field investigation proceeded for Bolnay Faults, Ar Hutul Faults and Gobi Altay Faults, and a uniform earthquake catalogue of Mongolia and North China were established for the seismic hazard study in Sino-Mongolia arc areas. Furthermore the active faults and epicenters were mapped and 2 seismic belts and their 54 potential seismic sources are determined. Based on the data and results above mentioned the seismicity parameters for the two seismic belts and their potential sources were studied. Finally, the seismic zoning with different probability in Sino-Mongolia arc areas was carried out using China probabilistic hazard analysis method. By analyzing the data and results, we draw the following main conclusions. Firstly, the origin of tectonic stress field in the study areas is the collision and pressure of the India Plate to Eurasian Plate, passing from the Qinghai-Tibet Plateau. This is the reason why the seismicity is higher in the west than in the east, and all of earthquakes with magnitude 8 or greater occurred in the west. Secondly, the determination of the 2 arc seismic belts, Altay seismic belt and Bolnay-Baikal seismic belt, are reasonable in terms of their geotectonic location, geodynamic origin and seismicity characteristics. Finally, there are some differences between our results and the Mongolia Intensity Zoning map published in 1985 in terms of shape of seismic zoning map, especially in the areas near Ulaanbaatar. We argue that our relsults are reasonable if we take into account the data use of recent study of active faults and their parameters, so it can be used as a reference for seismic design.

  13. Analysis of four Brazilian seismic areas using a nonextensive approach

    NASA Astrophysics Data System (ADS)

    Scherrer, T. M.; França, G. S.; Silva, R.; de Freitas, D. B.; Vilar, C. S.

    2015-02-01

    We analyse four seismic areas in Brazil using a nonextensive model and the data from the Brazilian Seismic Bulletin between 1720 and 2013. Two of those regions are contrasting zones, while the other two are dominated by seismic active faults. We notice that intraplate seismic zones present q-values similar to others fault zones, but the adjustment in contrast areas results in higher values for this parameter. The results reveal the nonextensive approach adjusts robustly also in case of intraplate earthquakes, showing that the Tsallis formalism is unquestionably a powerful tool to the analysis of this phenomenon.

  14. Patterns of seismic activity preceding large earthquakes

    NASA Technical Reports Server (NTRS)

    Shaw, Bruce E.; Carlson, J. M.; Langer, J. S.

    1992-01-01

    A mechanical model of seismic faults is employed to investigate the seismic activities that occur prior to major events. The block-and-spring model dynamically generates a statistical distribution of smaller slipping events that precede large events, and the results satisfy the Gutenberg-Richter law. The scaling behavior during a loading cycle suggests small but systematic variations in space and time with maximum activity acceleration near the future epicenter. Activity patterns inferred from data on seismicity in California demonstrate a regional aspect; increased activity in certain areas are found to precede major earthquake events. One example is given regarding the Loma Prieta earthquake of 1989 which is located near a fault section associated with increased activity levels.

  15. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    PubMed

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-01-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries. PMID:27479914

  16. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    PubMed

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  17. Seismic Holography of Solar Activity

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  18. Active Experiments on Artificial Air Ionization to Check the Physical Mechanism of Air Electrification by Radon in Seismically Active Area

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Pokhmelnykh, L. A.; Domingues, M.; Bisiacchi, G.

    2005-05-01

    The air ionization in troposphere leads to formation of the large charged clusters of the aerosol size due to water molecules attachment to the new formed ions. This process have several consequences leading to the changes of the air conductivity, formation of large scale space charges and large scale electric field, changes of the air temperature and relative humidity. All these effects were observed experimentally within the interval of two weeks before the strong earthquakes such as Colima earthquake in Mexico (M7.8) on 22 of January 2003 or Parkfield earthquake in USA (M6) on 28 of September 2004. In the case of earthquakes the atmosphere electricity modification is ascribed to the radon ionization and the effects are calculated within the frame of the seismo-ionosphere coupling model. But there are very few systematic sources of the radon monitoring, so the real check of the model is better possible within the frame of the controlled active experiment. Such experiments of the artificial ionization were conducted in Mexico using the large wire antennas producing the air ionization by applying the large electric potential (~ 40 kV) to the elevated circular thin wire of ~ 100 m diameter. It was demonstrated that such impact on the atmosphere can create the effects of the meteorological scale producing the artificial clouds (and rains), and even modify the large scale atmospheric formations as typhoons. Results of the theoretical estimations and active experiments will be demonstrated.

  19. Waveform through the subducted plate under the Tokyo region in Japan observed by a ultra-dense seismic network (MeSO-net) and seismic activity around mega-thrust earthquakes area

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Kasahara, K.; Nanjo, K.; Nakagawa, S.; Tsuruoka, H.; Morita, Y.; Kato, A.; Iidaka, T.; Hirata, N.; Tanada, T.; Obara, K.; Sekine, S.; Kurashimo, E.

    2009-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates the next great earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. We had started the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan area (2007-2012). Under this project, the construction of the Metropolitan Seismic Observation network (MeSO-net) that consists of about 400 observation sites was started [Kasahara et al., 2008; Nakagawa et al., 2008]. Now, we had 178 observation sites. The correlation of the wave is high because the observation point is deployed at about 2 km intervals, and the identification of the later phase is recognized easily thought artificial noise is very large. We also discuss the relation between a deformation of PSP and intra-plate M7+ earthquakes: the PSP is subducting beneath the Honshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We are going to present a high resolution tomographic image to show low velocity zone which suggests a possible internal failure of the plate; a source region of the M7+ intra-plate earthquake. Our study will contribute a new assessment of the seismic hazard at the Metropolitan area in Japan. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  20. Observations of seismic activity in Southern Lebanon

    NASA Astrophysics Data System (ADS)

    Meirova, T.; Hofstetter, R.

    2013-04-01

    Recent seismic activity in southern Lebanon is of particular interest since the tectonic framework of this region is poorly understood. In addition, seismicity in this region is very infrequent compared with the Roum fault to the east, which is seismically active. Between early 2008 and the end of 2010, intense seismic activity occurred in the area. This was manifested by several swarm-like sequences and continuous trickling seismicity over many days, amounting in total to more than 900 earthquakes in the magnitude range of 0.5 ≤ M d ≤ 5.2. The region of activity extended in a 40-km long zone mainly in a N-S direction and was located about 10 km west of the Roum fault. The largest earthquake, with a duration magnitude of M d = 5.2, occurred on February 15, 2008, and was located at 33.327° N, 35.406° E at a depth of 3 km. The mean-horizontal peak ground acceleration observed at two nearby accelerometers exceeded 0.05 g, where the strongest peak horizontal acceleration was 55 cm/s2 at about 20 km SE of the epicenter. Application of the HypoDD algorithm yielded a pronounced N-S zone, parallel to the Roum fault, which was not known to be seismically active. Focal mechanism, based on full waveform inversion and the directivity effect of the strongest earthquake, suggests left-lateral strike-slip NNW-SSE faulting that crosses the NE-SW traverse faults in southern Lebanon.

  1. Integrated multi-parameters Probabilistic Seismic Landslide Hazard Analysis (PSLHA): an innovative approach in the active volcano-tectonic area of Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Caccavale, M.; Matano, F.; Sacchi, M.; Somma, R.; Troise, C.; De Natale, G.

    2013-12-01

    The western coastal sector of Campania region (southern Italy) is characterised by the presence of the active volcano-tectonic area of Campi Flegrei. This area represents a very particular and interesting case-study for a probabilistic seismic hazard analysis (PSHA). The principal seismic source, related with the caldera, is not clearly constrained in the on-shore and off-shore areas. The well-known and monitored phenomenon of bradyseism affecting a large portion of case-study area is not modelled in the standard PSHA approach. From the environmental point of view the presence of very high exposed values in terms of population, buildings, infrastructures and palaces of high archaeological, natural and artistic value, makes this area a strategic natural laboratory to develop new methodologies. Moreover the geomorphological and geo-volcanological features lead to a heterogeneous coastline, made up by both beach and tuff cliffs, rapidly evolving for erosion and landslide (i.e. mainly rock fall and rock slide) phenomena that represent an additional hazard aspect. In the Campi Flegrei the possible occurrence of a moderate/large seismic event represents a serious threat for the inhabitants, for the infrastructures as well as for the environment. In the framework of Italian MON.I.C.A project (sinfrastructural coastlines monitoring) an innovative and dedicated probabilistic methodology has been applied to identify the areas with higher tendency of landslide occurrence due to the seismic effect. Resident population reported the occurrence of some small rock falls along tuff quarry slopes during the main shocks of the 1982-84 bradyseismic events. The PSHA methodology, introduced by Cornell (1968), combines the contributions to the hazard from all potential sources of earthquakes and the average activity rates associated to each seismogenic zone considered. The result of the PSHA is represented by the spatial distribution of a ground-motion (GM) parameter A, such as Peak

  2. Volcano Observations Using an Unmanned Autonomous Helicopter : seismic and GPS observations near the active summit area of Sakurajima and Kirishima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.; Honda, Y.

    2012-04-01

    Observations in the vicinity of summit area of active volcanoes are very important from various viewpoints such as understanding physical processes in the volcanic conduit. It is, however, highly difficult to install observation sensors near active vents because of the risk of sudden eruptions. We have been developing a safe volcano observation system based on an unmanned aerial vehicle (UAV). As an UAV, we adopted an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. We have also developed earthquake observation modules and GPS receiver modules that are exclusively designed for UAV installation at summit areas of active volcanoes. These modules are light weight, compact size, and solar powered. For data transmission, a commercial cellular-phone network is used. Our first application of the sensor installation by the UAV is Sakurajima, one of the most active volcanos in Japan. In November 2009, 2010, and 2011, we installed up to four seismic sensors within 2km from the active summit crater. In the 2010 and 2011 operations, we succeeded in pulling up and collecting the sensor modules by using the UAV. In the 2011 experiment, we installed two GPS receivers near the summit area of Sakurajima volcano. We also applied the UAV installation to another active volcano, Shinmoedake in Kirishima volcano group. Since the sub-plinian eruption in February 2011, entering the area 3km from the summit of Shinmoe-dake has been prohibited. In May and November 2011, we installed seismic sensors and GPS receivers in the off-limit zone. Although the ground coupling of the seismic modules is not perfect due to the way they are installed, the signal-to-noise ratio of the seismic signals recorded by these modules is fairly good. Despite the low antenna height of 50 cm from the ground surface, the location errors in horizontal and vertical GPS components are 1cm and 3cm, respectively. For seismic signals associated with eruptions at Sakurajima from November 2010 to

  3. Preceding seismic activity and slow slip events in the source area of the 2011 Mw 9.0 Tohoku-Oki earthquake: a review

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Yoshida, Keisuke

    2015-12-01

    The 2011 Tohoku-Oki earthquake ruptured a large area of the megathrust east of NE Japan. The earthquake's magnitude was 9.0, substantially larger than predicted. It is important to know what occurred in the source area prior to this great megathrust earthquake to improve understanding of the nucleation processes of large earthquakes and risk assessments in subduction zones. Seafloor observation data revealed the existence of two extremely large slip patches: one just updip of the mainshock hypocenter and the other 80-100 km to the north near the trench axis. For 70-90 years before 2003, M > 6 events and slips of M > c. 7 events on the megathrust occurred in the areas surrounding these two large slip patches. Seismic activity had increased since at least 2003 in the downdip portion of the source area of the Tohoku-Oki earthquake. In addition, long-term accelerated slow slip occurred in this downdip portion of the source area in the decades before the Tohoku-Oki earthquake. About 1 month before the earthquake, a slow slip event (SSE) took place at relatively shallow depths between the two large slip patches, accompanied by foreshock activity. Both the slow slip and foreshocks propagated from north to south toward the southern large slip patch. Two days before the earthquake, an M 7.3 foreshock and an associated postseismic slip began at relatively deep depths in the megathrust between the two large slip patches. In addition, a slow slip type event seems to have occurred approximately half a day after the M 7.3 foreshock near the mainshock hypocenter. This slow slip event and the foreshock activity again propagated from north to south toward the mainshock hypocenter. These long- and short-term preceding seismic and aseismic slip gradually reduced the interplate coupling, increased shear stresses at the two large slip patches (i.e., two strong asperity patches), and finally led to the rupture of the great Tohoku-Oki earthquake.

  4. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  5. The Pollino Seismic Sequence: Activated Graben Structures in a Seismic Gap

    NASA Astrophysics Data System (ADS)

    Rößler, Dirk; Passarelli, Luigi; Govoni, Aladino; Bindi, Dino; Cesca, Simone; Hainzl, Sebatian; Maccaferri, Francesco; Rivalta, Eleonora; Woith, Heiko; Dahm, Torsten

    2015-04-01

    The Mercure Basin (MB) and the Castrovillari Fault (CF) in the Pollino range (Southern Apennines, Italy) represent one of the most prominent seismic gaps in the Italian seismic catalogue, with no M>5.5 earthquakes during the last centuries. In historical times several swarm-like seismic sequences occurred in the area including two intense swarms within the past two decades. The most energetic one started in 2010 and has been still active in 2014. The seismicity culminated in autumn 2012 with a M=5 event on 25 October. The range hosts a number of opposing normal faults forming a graben-like structure. Their rheology and their interactions are unclear. Current debates include the potential of the MB and the CF to host large earthquakes and the style of deformation. Understanding the seismicity and the behaviour of the faults is necessary to assess the tectonics and the seismic hazard. The GFZ German Research Centre for Geosciences and INGV, Italy, have jointly monitored the ongoing seismicity using a small-aperture seismic array, integrated in a temporary seismic network. Based on this installation, we located more than 16,000 local earthquakes that occurred between November 2012 and September 2014. Here we investigate quantitatively all the phases of the seismic sequence starting from January 2010. Event locations along with moment tensor inversion constrain spatially the structures activated by the swarm and the migration pattern of the seismicity. The seismicity forms clusters concentrated within the southern part of the MB and along the Pollino Fault linking MB and CF. Most earthquakes are confined to the upper 10 km of the crust in an area of ~15x15 km2. However, sparse seismicity at depths between 15 and 20 km and moderate seismicity further north with deepening hypocenters also exist. In contrast, the CF appears aseismic; only the northern part has experienced micro-seismicity. The spatial distribution is however more complex than the major tectonic structures

  6. Detailed seismicity analysis of the southern Dead Sea area

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Asch, Guenter; Hofstetter, Rami; Haberland, Christian; Jaser, Darwish; El-Kelani, Radwan; Weber, Michael

    2013-04-01

    While the Dead Sea basin has been studied for a long time, the available knowledge about the micro-seismicity, its distribution and characteristics is limited. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the micro-seismicity in relation to the velocity models from the tomography are analyzed. The determined b-value of 0.7 indicates a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity suggests an asymmetric basin with a vertical strike slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area North and South of the Boqeq fault were observed. South of the Boqeq fault the western boundary is inactive while the entire seismicity occurs at the eastern boundary and below the basin-fill sediments. The largest events occurred here, their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Boqeq fault. North of the Boqeq fault similar seismic activity occurs at both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Boqeq fault forms the border between the "single" transform fault and the pull-apart basin with two active border faults.

  7. Seismic signature of crustal magma and fluid from deep seismic sounding data across Tengchong volcanic area

    NASA Astrophysics Data System (ADS)

    Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.

    2012-04-01

    The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian

  8. Making Waves: Seismic Waves Activities and Demonstrations

    NASA Astrophysics Data System (ADS)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  9. A Seismic Structure Study in the Kaoping Area, Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. P.; Wang, C. Y.; Tsai, Y. B.; Chang, W. Y.

    2014-12-01

    The difference between S wave and S-to-P wave conversion (Sp phase) arrival times is enhanced with Rectilinear Motion Detector filtering to describe alluvial-sediment thickness in the Kaohsiung-Pingtung (Kaoping) plains area. A more complete understanding of the underground structures of the Kaoping area is provided and explains why the surrounding regions in Taiwan experience more earthquakes. Data are based on seismic activity recorded by PANDA for the period 1995 to 1997. The difference between S wave and Sp phase arrival times show that the sedimentary layer is thicker along the west and southwest coast. P wave travel time residuals, high frequency attenuation parameters kappa, and quality factor QP, QSand coda waves confirm this result. We also determined the orientation of the Chaochou fault using the first motion of P-waves arrivals. To the east of the Chaochou fault, stress trends southeast-northwest, while to the west, it trends northeast-southwest. The change of stress trends East and West of Chaochou fault suggest the presence of a highly fluid accretionary wedge in the Kaoping area. The Chaochou fault forms a seismically active tectonic boundary with uplift of the hanging wall leading to westward tilting of the basement of the Kaoping plains. We demonstrate these features are why there are relatively few earthquakes in the Kaoping area. The presence of a highly fluid accretionary wedge is indicated by a thick alluvial layer in the west and southwest Kaoping coast; the Peikung High acts as the indenter that may allow seismic energy to escape and reduce the number of earthquakes in the region.

  10. Seismic hazard assessment of Syria using seismicity, DEM, slope, active tectonic and GIS

    NASA Astrophysics Data System (ADS)

    Ahmad, Raed; Adris, Ahmad; Singh, Ramesh

    2016-07-01

    In the present work, we discuss the use of an integrated remote sensing and Geographical Information System (GIS) techniques for evaluation of seismic hazard areas in Syria. The present study is the first time effort to create seismic hazard map with the help of GIS. In the proposed approach, we have used Aster satellite data, digital elevation data (30 m resolution), earthquake data, and active tectonic maps. Many important factors for evaluation of seismic hazard were identified and corresponding thematic data layers (past earthquake epicenters, active faults, digital elevation model, and slope) were generated. A numerical rating scheme has been developed for spatial data analysis using GIS to identify ranking of parameters to be included in the evaluation of seismic hazard. The resulting earthquake potential map delineates the area into different relative susceptibility classes: high, moderate, low and very low. The potential earthquake map was validated by correlating the obtained different classes with the local probability that produced using conventional analysis of observed earthquakes. Using earthquake data of Syria and the peak ground acceleration (PGA) data is introduced to the model to develop final seismic hazard map based on Gutenberg-Richter (a and b values) parameters and using the concepts of local probability and recurrence time. The application of the proposed technique in Syrian region indicates that this method provides good estimate of seismic hazard map compared to those developed from traditional techniques (Deterministic (DSHA) and probabilistic seismic hazard (PSHA). For the first time we have used numerous parameters using remote sensing and GIS in preparation of seismic hazard map which is found to be very realistic.

  11. Coal Mining Induced Seismicity in the Ruhr Area, Germany

    NASA Astrophysics Data System (ADS)

    Bischoff, Monika; Cete, Alpan; Fritschen, Ralf; Meier, Thomas

    2010-02-01

    Over the last 25 years mining-induced seismicity in the Ruhr area has continuously been monitored by the Ruhr-University Bochum. About 1,000 seismic events with local magnitudes between 0.7 ≤ M L ≤ 3.3 are located every year. For example, 1,336 events were located in 2006. General characteristics of induced seismicity in the entire Ruhr area are spatial and temporal correlation with mining activity and a nearly constant energy release per unit time. This suggests that induced stresses are released rapidly by many small events. The magnitude-frequency distribution follows a Gutenberg-Richter relation which is a result from combining distributions of single longwalls that themselves show large variability. A high b-value of about 2 was found indicating a lack of large magnitude events. Local analyses of single longwalls indicate that various factors such as local geology and mine layout lead to significant differences in seismicity. Stress redistribution acts very locally since differences on a small scale of some hundreds of meters are observed. A regional relation between seismic moment M 0 and local magnitude M L was derived. The magnitude-frequency distribution of a single longwall in Hamm was studied in detail and shows a maximum at M L = 1.4 corresponding to an estimated characteristic source area of about 2,200 m2. Sandstone layers in the hanging or foot wall of the active longwall might fail in these characteristic events. Source mechanisms can mostly be explained by shear failure of two different types above and below the longwall. Fault plane solutions of typical events are consistent with steeply dipping fracture planes parallel to the longwall face and nearly vertical dislocation in direction towards the goaf. We also derive an empirical relation for the decay of ground velocity with epicenter distance and compare maximum observed ground velocity to local magnitude. This is of considerable public interest because about 30 events larger than M L ≥ 1

  12. Seismicity and Faulting in an Urbanized area: Flagstaff, Arizona

    NASA Astrophysics Data System (ADS)

    Brumbaugh, D. S.

    2013-12-01

    Flagstaff, Arizona is a community of more than 60,000 and lies in an area of active tectonism. Well documented evidence exists of geologically recent volcanism and fault related seismicity. The urban area is located within a volcanic field that is considered active and the area is also the locus of numerous fault systems, some of whose members are considered to be potentially active. This suggestion of active faulting and seismicity for the area is supported by the recent 1993 Mw 5.3 Cataract Creek earthquake. Chief concern for Flagstaff is focused upon the Anderson Mesa fault which has a mapped surface length of 40 kilometers with the north end extending into the city limits of Flagstaff. A worse case scenario for rupture along the entire length of the fault would be the occurrence of an Mw 6.9 earthquake. The slip rate for this fault is low, however it is not well determined due to a lack of Neogene or Quaternary deposits. The historic record of seismicity adjacent to the surface expression of the Anderson Mesa fault includes two well recorded earthquake swarms (1979,2011) as well as other individual events over this time period all of which are of M< 4.0. The epicentral locations of these events are of interest with respect to the fault geometry which shows four prominent segments: North, Central, South, Ashurst. All of the historic events are located within the central segment. This distribution can be compared to evidence available for the orientation of regional stresses. The focal mechanism for the 1993 Mw 5.3 Cataract Creek earthquake shows a northwest striking preferred slip surface with a trend (300) parallel to that of the Central segment of the Anderson Mesa fault (300-305). The other three fault segments of the Anderson Mesa fault have north-south trends. The seismicity of the Central segment of the fault suggests that slip on this segment may occur in the future. Given the length of this segment a MCE event could be as large as Mw 6.3.

  13. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  14. Successes and failures of recording and interpreting seismic data in structurally complex area: seismic case history

    SciTech Connect

    Morse, V.C.; Johnson, J.H.; Crittenden, J.L.; Anderson, T.D.

    1986-05-01

    There are successes and failures in recording and interpreting a single seismic line across the South Owl Creek Mountain fault on the west flank of the Casper arch. Information obtained from this type of work should help explorationists who are exploring structurally complex areas. A depth cross section lacks a subthrust prospect, but is illustrated to show that the South Owl Creek Mountain fault is steeper with less apparent displacement than in areas to the north. This cross section is derived from two-dimensional seismic modeling, using data processing methods specifically for modeling. A flat horizon and balancing technique helps confirm model accuracy. High-quality data were acquired using specifically designed seismic field parameters. The authors concluded that the methodology used is valid, and an interactive modeling program in addition to cross-line control can improve seismic interpretations in structurally complex areas.

  15. Stochastic seismic analysis in the Messina strait area

    SciTech Connect

    Cacciola, P.; Maugeri, N.; Muscolino, G.

    2008-07-08

    After 1908 Messina earthquake significant progresses have been carried out in the field of earthquake engineering. Usually seismic action is represented via the so called elastic response spectrum or alternatively by time histories of ground motion acceleration. Due the random nature of the seismic action, alternative representations assume the seismic action as zero-mean Gaussian process fully defined by the so-called Power Spectral Density function. Aim of this paper is the comparative study of the response of linear behaving structures adopting the above representation of the seismic action using recorded earthquakes in the Messina strait area. In this regard, a handy method for determining the power spectral density function of recorded earthquakes is proposed. Numerical examples conducted on the existing space truss located in Torre Faro (Messina) will show the effectiveness of stochastic approach for coping with the seismic analysis of structures.

  16. Study on Seismicity of Sino-Mongolia Arc Areas

    NASA Astrophysics Data System (ADS)

    Xu, Guangyin; Wang, Suyun

    2016-04-01

    Using the earthquake catalogue from China, Mongolia and the global catalogue, the uniform catalogue of North China, Mongolia and adjacent areas, which is within the region 80-130°E, 40-55°N, has been established by Institute of Geophysics, China Earthquake Administration and Research Center of Astronomy and Geophysics, Mongolian Academy of Science for the seismic hazard analysis and seismic zoning map of Mongolia according to the following principles. 1) Earthquakes, which just exist in one catalogue, need to be verified further. If the earthquakes occurred in the country where the catalog comes from, then they will be adopted. If not, it should be checked with other more data. 2) The events that come from the three data sources have be checked and verified as followings. (1) The parameters of earthquakes that occurred in China will be taken from China catalog. (2)The parameters of earthquakes that occurred in Mongolia will be taken from Mongolia catalog. (3) The parameters of earthquakes that occurred in the adjacent areas will be taken from the global catalog by Song et al. According to the uniform catalogue, the seismicity of the North China, Mongolia and adjacent areas is analyzed, and the conclusions as followings are made. 1) The epicenter map can be roughly divided into two parts, bounded by the longitude line 105°E , in accordance with the "North-South Seismic Belt" of China. The seismicity is in a high level with many strong earthquakes in the west and is in a low level with little strong events in the east. 2) Most earthquakes are shallow-focus events, but there are also several middle or deep-focus events in the study area. 3) Earthquakes with magnitude greater than 5 are basically complete since 1450 A.D., and the seismicity of the study areas is in a high level since 1700 A. 4) Two seismic belts, Altay seismic belt and Bolnay-Baikal seismic belt, are determined according to the epicenters and tectonics. 5) The b-values of magnitude - frequency

  17. Network Optimization for Induced Seismicity Monitoring in Urban Areas

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Husen, S.; Wiemer, S.

    2012-12-01

    With the global challenge to satisfy an increasing demand for energy, geological energy technologies receive growing attention and have been initiated in or close to urban areas in the past several years. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental

  18. Upper plate responses to active spreading ridge/transform subduction: The tectonics, basin evolution, and seismicity of the Taita area, Chile Triple Junction

    SciTech Connect

    Flint, S.; Prior, D. ); Styles, P.; Murdie, R. ); Agar, S.; Turner, P. )

    1993-02-01

    Integrated field geophysical, structural and stratigraphic studies are attempting to elucidate the mechanisms and consequences of the Late Miocene-present day subduction of the Chile Ridge triple junction system. Preliminary data indicate a shallow plane of seismicity at about 15 km to 20 km depth below the Taitao peninsula. The depths correspond to the predicted depth range of subducted upper ocean crust. The calculated Bouguer anomaly map cannot be explained by the upper plate geology, suggesting that gravity is influenced by heterogeneities in the subducting oceanic plate. Seismic data imply that a subducted transform system underlying the inner Taitao Peninsula is still an active structure. A series of Middle-Late Tertiary sedimentary basins lie inboard of the triple junction. Within the Cosmelli basin, abrupt marine to continental facies transitions give clear evidence of base level changes. The amount of basinward shift of facies across sequence boundaries gets progressively greater up stratigraphy, indicating progressively greater base level changes. The lower part of the basin fill is folded and then thrusted eastward as a series of imbricates, while the overlying, greater thickness of fluvial sediments are only gently tilted westwards. We provisionally interpret this geometry to indicate that the early basin fill was deforming due to contractional tectonics while the later basin fill was being deposited. This complex basin history may reflect initiation and development of triple junction subduction.

  19. Apollo 14 active seismic experiment.

    NASA Technical Reports Server (NTRS)

    Watkins, J. S.; Kovach, R. L.

    1972-01-01

    Explosion seismic refraction data indicate that the lunar near-surface rocks at the Apollo 14 site consist of a regolith 8.5 meters thick and characterized by a compressional wave velocity of 104 meters per second. The regolith is underlain by a layer with a compressional wave velocity of 299 meters per second. The thickness of this layer, which we interpret to be the Fra Mauro Formation, is between 16 and 76 meters. The layer immediately beneath this has a velocity greater than 370 meters per second. We found no evidence of permafrost.

  20. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  1. Continued seismic monitoring of the Geysers, California geothermal area

    SciTech Connect

    Ludwin, R.S.; Bufe, C.G.

    1980-01-01

    Probable effects of geothermal development on seismicity at the Geysers are shown by the spatial coherence of decreases in gravity and pressure with maximum geodetic deformation and seismic moment sum along a line through the most developed area of the geothermal field. Increases in the mean number of events per day and in the magnitude of largest annual event correlate with increases in steam production. The two largest earthquakes in the steam field occurred near the two injection wells most distant from production wells, and large events (M/sub c greater than or equal to 2.5) occurred most frequently during months of peak injection. Spatial seismic clusters in proximity to injection wells have occurred soon after injection began. Preliminary data also indicate an increase in seismicity in a previously aseismic area near plant 15 following the beginning of power production at that plant in 1979.

  2. Sur Lago area, Venezuela: Three dimensional integrated seismic interpretation

    SciTech Connect

    Growcott, A.; McIan, A.; Ramirez, R. )

    1993-02-01

    In 1988, 550 square km of 3D seismic data were acquired in the Sur Del Lago area. The aims of the survey were (1) To better define structures already identified from the existing 1 [times] 1 km 2D seismic grid at the level of potential Cretaceous limestone reservoirs and (2) To further study the prospectivity of potential structural and stratigraphic traps within the Tertiary section. Detailed interpretation of the 3D survey using an interactive workstation led to an improved structural definition at the Cogollo limestone level and the identification of fault related inversion lineaments and basement related Cretaceous limestone structures. Based upon the new seismic interpretation a 4 well exploration project was planned. The new program commenced with the drilling of exploration well SLA-7-IX in 1991 which proved commercial amounts of hydrocarbons in the western part of the area. Detailed information collected from the exploration wells includes a comprehensive electric log suite, ditch cuttings and vertical seismic profiles. The information is being used as detailed lithological, stratigraphic and seismic data input for velocity modeling, ray trace modeling, seismic attribute analysis, and reservoir characterization software in order to further understand the structural and stratigraphic potential of the area.

  3. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  4. Quantitative risk analysis of oil storage facilities in seismic areas.

    PubMed

    Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto

    2005-08-31

    Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference. PMID:15908107

  5. Seismic Swarms at Paricutin Volcano Area. Magmatic Intrusion or Tectonic Seismicity?

    NASA Astrophysics Data System (ADS)

    Pinzon, J. I.; Nunez-Cornu, F. J.; Escudero, C. R.; Rowe, C. A.

    2014-12-01

    We relocate a seismic swarm with more than 700 earthquakes that took place between May and June 2006 in the Paricutin volcano area, Mexico inside of the Michoacan monogenetic volcanic field. This seismic swarm was recorded by the project "Mapping the Riviera Subduction Zone" (MARS), a temporary seismic network that was installed in the states of Jalisco, Colima and Michoacán between January 2006 and June 2007. Previously seismic swarms in the area were reported in the years of 1997, 1999 and 2000. For one that took place in the year of 1997 the Servicio Sismologico Nacional deployed a local network in the area, they conclude that the source of the seismicity was tectonic with depths between 18 and 12 km. The episodes of 1999 and 2000 were reported as similar to the 1997 swarm. A previous analysis of the 2006 swarm concludes that the depth of seismicity migrates from 9 to 5 km and was originated by a magmatic intrusion. We did a relocation of this swarm reading all the events and using Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Acelerometric Network; a waveform analysis using cross-correlation method was also carried out. We obtained 15 earthquakes families with a correlation factor equal or greater than 0.79 and composed focal mechanism for each family. These families present a migration in depth beginning at 16 km and ended at 9 km. Our results agrees with a magmatic intrusion, but not so shallow as the previous study of the 2006 swarm.

  6. Seismic monitoring of the Olkaria Geothermal area, Kenya Rift valley

    NASA Astrophysics Data System (ADS)

    Simiyu, Silas M.; Keller, G. Randy

    2000-01-01

    Seismic monitoring of the Olkaria Geothermal area in the southern Rift Valley region of Kenya has been carried out since 1985. The initial purpose of this effort was to determine the background level of seismicity before full exploitation of the geothermal resource was started. This monitoring began with one seismic station. However, since May 1996, a seismic network comprising six stations was operated and focused mainly on the East Production Field. During the 5 months of network recording up to mid-September 1996, more than 460 local events originating within the Olkaria Geothermal area ( Ts- Tp<5 s) were recorded, out of which 123 were well-located. Also, 62 events were recorded at regional distances (5 s< Ts- Tp<40 s), and 44 events at teleseismic distance ( Ts- Tp>40 s). During this period, the local microseismicity was found to be continuous with swarms occurring every 4-5 days. Duration magnitudes based on the coda length did not exceed 3.0. Preliminary spectral analysis shows three kinds of seismic signals, with only the first type displaying well-defined P- and S-phases. The seismicity is mainly concentrated in the central area of the recording network, and the linear alignments in the epicenters are striking. A prominent alignment occurs along the Ololbutot fault zone extending from the northern end of the greater Olkaria volcanic complex to the south near the southern terminus of Hell's gorge. Two other prominent alignments occur along NW-SE trends that coincide with fault zones which have been detected by geological and gravity studies. Consequently, they are interpreted to be associated with fluid movement in the geothermal field. These preliminary results suggest that seismic monitoring will be useful to both monitor the field during production and to help site additional wells.

  7. A seismic survey of the Manson disturbed area

    NASA Technical Reports Server (NTRS)

    Sendlein, L. V. A.; Smith, T. A.

    1971-01-01

    The region in north-central Iowa referred to as the Manson disturbed area was investigated with the seismic refraction method and the bedrock configuration mapped. The area is approximately 30 km in diameter and is not detectable from the surface topography; however, water wells that penetrate the bedrock indicate that the bedrock is composed of disturbed Cretaceous sediments with a central region approximately 6 km in diameter composed of Precambrian crystalline rock. Seismic velocity differences between the overlying glacial till and the Cretaceous sediments were so small that a statistical program was developed to analyze the data. The program developed utilizes existing 2 segment regression analyses and extends the method to fit 3 or more regression lines to seismic data.

  8. Seismic assessment of Technical Area V (TA-V).

    SciTech Connect

    Medrano, Carlos S.

    2014-03-01

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and the evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.

  9. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is

  10. Seismicity patterns in the Himalayan plate boundary and identification of the areas of high seismic potential

    NASA Astrophysics Data System (ADS)

    Khattri, K. M.; Tyagi, A. K.

    1983-07-01

    Space-time distribution of earthquakes along the Himalayan plate boundary has been investigated with a view to discerning fluctuations in seismicity rates associated with great earthquakes, the possibilities of epicentre migration and gaps in seismic activity. Data from 1800 to 1976 were considered. This study shows that all great earthquakes ( M ⩾ 8.0) were preceded by seismically quiescent periods of at least 19 years. Furthermore, earthquake quiescence has also been recognised to follow the great earthquakes. Three possible trends of migration of epicentres of great earthquakes have been recognised: (1) The first trend starts from the 1905 Kangra earthquake, the epicentres of subsequent earthquakes migrating eastwards along the plate boundary. (2) The second trend of migration starts from the great Nepal earthquake of 1833 associated with eastward migration. (3) The third trend commences from the great Assam earthquake of 1897 and shows a westward migration of earthquake epicentres. The middle section of the Himalayan convergent plate boundary (80°E to 90°E), in general, displays a relatively low level of seismicity as compared to the adjacent sections. A remarkable decrease in seismicity following the year 1970 has been observed along a section of the Himalaya which lies to the east of the rupture zone of the great 1905 Kangra earthquake. Since 1970 the seismicity rate has also dropped in the region lying in between the rupture zones of the great Assam earthquakes of 1897 and 1950, as has earlier been reported by Khattri and Wyss (1978). Such decreases in the level of seismicity along active plate boundaries have been demonstrated to be indicative of building up of stresses leading to future great earthquakes (Mogi, 1969; McCann et al., 1979).

  11. Seismic Risk Assessment of Active Faults in Japan in Terms of Population Exposure to Seismic Intensity

    NASA Astrophysics Data System (ADS)

    Nojima, Nobuoto; Fujiwara, Hiroyuki; Morikawa, Nobuyuki; Ishikawa, Yutaka; Okumura, Toshihiko; Miyakoshi, Junichi

    This study evaluates and compares seismic risks associated with inland crustal earthquakes in Japan on the basis of published data available on the Japan Seismic Hazard Information Station (J-SHIS). First, taking account of prediction uncertainty of the attenuation law of seismic intensity, the evaluation method for population exposure (PEX) to seismic intensity is presented. The method is applied to 333 seismic events potentially caused by main active faults (154 cases) and other active faults (179 cases). The relationship between population exposure and the probability of occurrence of seismic events ("P-PEX relation") and the resultant seismic risk curves are obtained. Generalized risk index which incorporates the effects of focusing on urgency (probability) or significance (PEX) is defined, producing various risk rankings of active faults.

  12. SEISMICITY OF THE LASSEN PEAK AREA, CALIFORNIA: 1981-1983.

    USGS Publications Warehouse

    Walter, Stephen R.; Rojas, Vernonica; Kollmann, Auriel

    1984-01-01

    Over 700 earthquakes occurred in the vicinity of Lassen Peak, California, from February 1981 through December 1983. These earthquakes define a broad, northwest-trending seismic zone that extends from the Sierra Nevada through the Lassen Peak area and either terminates or is offset to the northeast about 20 kilometers northwest of Lassen Peak. Approximately 25% of these earthquakes are associated with the geothermal system south of Lassen Peak. Earthquakes in the geothermal area generally occur at depths shallower than 6 kilometers.

  13. Initial Seismic Characterization of a Fault Controlled Hydrothermal Area

    NASA Astrophysics Data System (ADS)

    Bradford, J.; Lyle, M.; Clement, B.; Liberty, L.; Myers, R.; Paul, C.

    2002-12-01

    As part of an interdisciplinary project that aims to study the link between the physical characteristics of hydrothermal systems and the biota that occupy those systems, we have begun a detailed geophysical characterization of the Borax Lake hydrothermal area located near the center of Alvord Valley in the basin and range province of southeast Oregon. Basement rock is comprised of Miocene volcanic deposits overlain by up to 700 m of unconsolidated alluvium. Previous workers, based on gravity data and surface mapping, suggest that the Borax Lake hydrothermal area lies directly over a north/south trending fault. We are conducting seismic investigations on both a basin scale, to place the hydrothermal system in a larger geologic context, and a local high resolution scale for detailed imaging of fault architecture and hydrothermal flow paths. In this initial investigation, our primary objectives are to verify that a fault zone is present beneath the Borax Lake hot springs and to conduct tests to constrain acquisition parameters for detailed 3D seismic investigation. Initial seismic source tests indicate that the area is well suited to high resolution seismic investigation with clear reflections as deep as 300 ms and frequency content up to 500 Hz. Walk-away gathers show that the fluid distribution near the hot springs is complex with sharp gradients in the piezometric surface. To test the fault zone interpretation, and begin to build a large scale image of basin geometry, we acquired a 3.5 km seismic reflection profile perpendicular to the suspected fault zone. The profile consists of 30-fold CMP data acquired using a trailer mounted, 400 lb accelerated weight drop. Reflections are evident to depths of at least 500 m. Additionally, we acquired parallel magnetic profiles to constrain interpretation of the seismic data. Evidence for faulting is clear with the seismic image showing a complex normal fault zone bounded to the west by a structural high. Refraction analysis

  14. Ionospheric Response Due to Seismic Activity

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar

    2016-07-01

    Signatures of the seismic activity in the ionospheric F2 region have been studied by analyzing the measurement of electron and ion temperatures during the occurrence of earthquake. The ionospheric electron and ion temperatures data recorded by the RPA payload aboard the Indian SROSS-C2 satellite during the period from January 1995 to December 2000 were used for the altitude range 430-630 km over Indian region. The normal day's electron and ion temperatures have been compared to the temperatures recorded during the seismic activity. The details of seismic events were obtained from USGS earthquake data information website. It has been found that the average electron temperature is enhanced during the occurrence of earthquakes by 1.2 to 1.5 times and this enhancement was for ion temperature ranging from 1.1to 1.3 times over the normal day's average temperatures. The above careful quantitative analysis of ionospheric electron and ion temperatures data shows the consistent enhancement in the ionospheric electron and ion temperatures. It is expected that the seismogenic vertical electrical field propagates up to the ionospheric heights and induces Joule heating that may cause the enhancement in ionospheric temperatures.

  15. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    SciTech Connect

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-07-08

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.

  16. The study of recent seismicity in the aftershock area of Neftegorsk earthquake using waveform cross correlation

    NASA Astrophysics Data System (ADS)

    Kitov, Ivan; Turuntaev, Sergey; Konovalov, Alexei; Stepnov, Andrey

    2016-04-01

    Unusually long duration of seismic activity (more than 20 years) was observed in the aftershock area of the 1995 Neftegorsk, Sakhalin, Russia catastrophic earthquake (Ms=7.6). To study the phenomena, we have processed seismic data from 130 events occurred within that area as measured between 2006 and 2015. In order to improve the accuracy of relative location and magnitude estimation of these events we have applied new techniques based on waveform cross correlation. We use 7 three-component (3-C) seismic stations which detected most of these events. Three-component waveform templates were prepared for these stations from those events which had signals with SNR>5 at vertical channels. The events with 3 and more templates are used as master-events for waveform cross correlation. Overall, the re-estimated location and magnitudes demonstrate higher precisions and are used for the statistical analysis and numerical modelling of seismo-tectonic regime within the studied zone.

  17. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  18. The seismicity of Ethiopia; active plate tectonics

    USGS Publications Warehouse

    Mohr, P.

    1981-01-01

    Ethiopia, descended from the semimythical Kingdom of Punt, lies at the strategic intersection of Schmidt's jigsaw puzzle where the Red Sea, Gulf of Aden, and the African Rift System meet. Because of geologically recent uplift combined with rapid downcutting erosion by rivers, notably the Blue Nile (Abbay), Ethiopia is the most mountainous country in Africa. It is also the most volcanically active, while its historical seismicity matches that of the midocean ridges. And, in a sense, Ethiopia is host to an evoloving ocean ridge system. 

  19. Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Ben-Zion, Y.; Campillo, M.; Zigone, D.

    2015-08-01

    We observe seasonal seismic wave speed changes (dv/v) in the San Jacinto fault area and investigate several likely source mechanisms. Velocity variations are obtained from analysis of 6 yr data of vertical component seismic noise recorded by 10 surface and six borehole stations. We study the interrelation between dv/v records, frequency-dependent seismic noise properties, and nearby environmental data of wind speed, rain, ground water level, barometric pressure and atmospheric temperature. The results indicate peak-to-peak seasonal velocity variations of ˜0.2 per cent in the 0.5-2 Hz frequency range, likely associated with genuine changes of rock properties rather than changes in the noise field. Phase measurements between dv/v and the various environmental data imply that the dominant source mechanism in the arid study area is thermoelastic strain induced by atmospheric temperature variations. The other considered environmental effects produce secondary variations that are superimposed on the thermal-based changes. More detailed work with longer data on the response of rocks to various known external loadings can help tracking the evolving stress and effective rheology at depth.

  20. Time-dependent seismic tomography of the Coso geothermal area, 1996-2004

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    2005-01-01

    The permanent 18-station network of three-component digital seismometers at the seismically active Coso geothermal area, California, provides high-quality microearthquake (MEQ) data that are well suited to investigating temporal variations in structure related to processes within the geothermal reservoir. A preliminary study [Julian, et al., 2003; Julian, et al., 2004] comparing data from 1996 and 2003 found significant variations in the ratio of the seismic wave-speeds, Vp/Vs, at shallow depths over this time interval. This report describes results of a more detailed study of each year from 1996 through 2004.

  1. A seismic hazard map of India and adjacent areas

    USGS Publications Warehouse

    Khattri, K.N.; Rogers, A.M.; Perkins, D.M.; Algermissen, S.T.

    1984-01-01

    We have produced a probabilistic seismic hazard map showing peak ground accelerations in rock for India and neighboring areas having a 10% probability of being exceeded in 50 years. Seismogenic zones were identified on the basis of historical seismicity, seismotectonics and geology of the region. Procedures for reducing the incompleteness of earthquake catalogs were followed before estimating recurrence parameters. An eastern United States acceleration attenuation relationship was employed after it was found that intensity attenuation for the Indian region and the eastern United States was similar. The largest probabilistic accelerations are obtained in the seismotectonic belts of Kirthar, Hindukush, Himalaya, Arakan-Yoma, and the Shillong massif where values of over 70% g have been calculated. ?? 1984.

  2. Earthquake emergency plans and seismic criteria for their activation

    NASA Astrophysics Data System (ADS)

    Roca, A.; Gasulla, N.; Susagna, T.; Goula, X.; Romeu, N.

    2003-04-01

    The organization of human and material resources to face up to an earthquake crisis is established through emergency plans at different scales (national, regional and local). National plans often establish the criteria for preparing regional and local plans mainly based on intensity of ground shaking. However, in order to decide which counties or municipalities need to prepare a specific emergency plan, vulnerability and risk should be assessed and damage scenarios generated. The emergency plans include various levels of intervention depending of the severity of the event in order to bring out the adequate amount of resources, and can be activated by early warnings based on rapid detection provided by seismic networks. These activation levels should be defined taking into account not only the ground shaking but also many other factors related to the physical, human and societal vulnerability. An approach developed for the area of Catalonia, NE Spain, in which earthquake risk and damage scenarios were estimated and activation levels were defined in function of the focal parameters of the seismic event and the population distribution is presented. An automatic system for implementing these concepts linked to the existing real time VSAT based seismic network of Catalonia is under development.

  3. Present stage of recent crustal movements and seismicity within Greater Cairo area, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Monem S.; Mohamed, Gad-Elkareem A.; Omar, Khaled; Nadia, Abou-Aly

    2014-01-01

    Greater Cairo and the Nile Delta are considered very important, high-density population areas. The subject of the research work is dealing with recent crustal movements and its relation to seismicity and tectonics setting. A Global Positioning System (GPS) network consisting of 11 benchmarks covering Greater Cairo and the southern part of the Nile Delta was established in 1996. Different campaigns surveyed the network. In this study, we used ten measurements collected during the period from 2004 to 2010. The data were processed using Bernese 5.0 software to derive velocity vectors and principal components of crustal strains. The horizontal velocity varies in average between 3 and 6 mm per year across the network. Rate of the accumulated strains in the southern part of Greater Cairo varies from low to moderate. The low strain rates and low level of earthquakes occurrence in the present interval in the Nile Delta area indicated that the rate of the deformation in this area is small. The result from coupling GPS and seismic data indicates that the southern part of the area is seismo-active area when compared with the other parts in the network areas. The paper gives information about the present state of the recent crustal movements within Greater Cairo area to understand the geodynamics of that area. This study is an attempt to build a basis for further development of seismic catastrophic risk management models to reduce a risk of large catastrophic losses within the important area.

  4. Seismic activity in the Transantarctic Mountains recorded by the TAMSEIS seismic array.

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, S.; Stapley, N.; Lawrence, J. F.; Winberry, J. P.; Shore, P. J.; Voigt, D. E.; Wiens, D.; Nyblade, A.

    2004-12-01

    To investigate the links between glaciation and tectonics, we conducted a large-scale seismic deployment in Antarctica that measured local and regional seismicity of both the glaciated terrain of East Antarctica and the non-glaciated Transantarctic Mountains (TAM). The TAM are hypothesized to have formed by rift-flank uplift of the southwestern margin of the West Antarctic Rift System. Active extension of this rift and/or continued uplift of the TAM would likely result in relatively high levels of seismicity along the mountain front. In addition to seismicity from tectonic activity, we suggest that the flow of glaciers, particularly where they accelerate through the TAM, could result in glacier-induced seismicity. We recorded relatively high levels of local seismicity in the TAM. The majority of the seismicity was close to and slightly west of the TAM, beneath the East Antarctic Ice Sheet. We used the double-difference hypocenter location method (Waldhauser and Ellsworth, 2000; Waldhauser 2001) to better image clusters of events. Many of the events are shallow and cluster beneath the David Glacier (which leads to the Drygalski Ice Tongue) and the Darwin Glacier. We suggest that these events are due to fracture at the base of the glaciers, as they steepen towards the coast. We continue to investigate the possibility of surface crevassing and TAM uplift-induced seismicity (along faults which the glaciers have exploited) as the cause of the seismicity.

  5. Structure and seismic activity of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Evain, M.; Galve, A.; Charvis, P.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Thales Scientific Party

    2011-12-01

    Several active and passive seismic experiments conducted in 2007 in the framework of the European program "Thales Was Right" and of the French ANR program "Subsismanti" provided a unique set of geophysical data highlighting the deep structure of the central part of the Lesser Antilles subduction zone, offshore Dominica and Martinique, and its seismic activity during a period of 8 months. The region is characterized by a relatively low rate of seismicity that is often attributed to the slow (2 cm/yr) subduction of the old, 90 My, Atlantic lithosphere beneath the Caribbean Plate. Based on tomographic inversion of wide-angle seismic data, the forearc can clearly be divided into an inner forearc, characterised by a high vertical velocity gradient in the igneous crust, and an outer forearc with lower crustal velocity gradient. The thick, high velocity, inner forearc is possibly the extension at depth of the Mesozoic Caribbean crust outcropping in La Désirade Island. The outer forearc, up to 70 km wide in the northern part of the study area, is getting narrower to the south and disappears offshore Martinique. Based on its seismic velocity structure with velocities higher than 6 km/s the backstop consists, at least partly, of magmatic rocks. The outer forearc is also highly deformed and faulted within the subducting trend of the Tiburon Ridge. With respect to the inner forearc velocity structure the outer forearc basement could either correspond to an accreted oceanic terrane or made of highly fractured rocks. The inner forearc is a dense, poorly deformable crustal block, tilted southward as a whole. It acts as a rigid buttress increasing the strain within both the overriding and subducting plates. This appears clearly in the current local seismicity affecting the subducting and the overriding plates that is located beneath the inner forearc. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. The main seismic activity is

  6. Seismic image of a CO2 reservoir beneath a seismically active volcano

    USGS Publications Warehouse

    Julian, B.R.; Pitt, A.M.; Foulger, G.R.

    1998-01-01

    Mammoth Mountain is a seismically active volcano 200 000 to 50 000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic 'long-period' earthquakes (Pitt and Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day-1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997) which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds Vp/VS was about 9% lower than in the surrounding rocks. Theory (Mavko and Mukerji 1995), experiment (Ito, DeVilbiss and Nur 1979) and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that Vp/VS is sensitive to pore-fluid compressibility, through its effect on Vp. The observed Vp/VS anomaly is probably caused directly by CO2, and seismic Vp/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.

  7. Seismic activity offshore Martinique and Dominica islands (Central Lesser Antilles subduction zone) from temporary onshore and offshore seismic networks

    NASA Astrophysics Data System (ADS)

    Ruiz, M.; Galve, A.; Monfret, T.; Sapin, M.; Charvis, P.; Laigle, M.; Evain, M.; Hirn, A.; Flueh, E.; Gallart, J.; Diaz, J.; Lebrun, J. F.

    2013-09-01

    This work focuses on the analysis of a unique set of seismological data recorded by two temporary networks of seismometers deployed onshore and offshore in the Central Lesser Antilles Island Arc from Martinique to Guadeloupe islands. During the whole recording period, extending from January to the end of August 2007, more than 1300 local seismic events were detected in this area. A subset of 769 earthquakes was located precisely by using HypoEllipse. We also computed focal mechanisms using P-wave polarities of the best azimuthally constrained earthquakes. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. At depth seismicity delineates the Wadati-Benioff Zone down to 170 km depth. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath an inner forearc domain in comparison to an outer forearc domain where little seismicity is observed. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate.

  8. Induced seismicity caused by hydraulic fracturing in deep geothermal wells in Germany and adjacent areas

    NASA Astrophysics Data System (ADS)

    Plenefisch, Thomas; Brückner, Lisa; Ceranna, Lars; Gestermann, Nicolai; Houben, Georg; Tischner, Torsten; Wegler, Ulrich; Wellbrink, Matthias; Bönnemann, Christian; Bertram, Andreas; Kirschbaum, Bernd

    2016-04-01

    Recently, the BGR has worked out a study on the potential environmental impact caused by hydraulic fracturing or chemical stimulations in deep geothermal reservoirs in Germany and adjacent areas. The investigations and analyses are based on existing studies and information provided by operators. The two environmental impacts being essentially considered in the report are induced seismicity and possible contamination of the groundwater reservoirs which serve for drinking water supply. Altogether, in this study, information on 30 hydraulic frac operations and 26 chemical stimulations including information from neighboring countries were compiled and analyzed. Out of the hydraulic stimulations two thirds were carried out as waterfracs and one third as fracturing with proppants. Parameters used in the study to characterize the induced seismicity are maximum magnitude, number of seismic events, size of the seismically active volume, and the relation of this volume to fault zones and the cap rock, as well as, finally, the impacts at the Earth's surface. The response of the subsurface to hydraulic fracturing is variable: There are some activities, which cause perceptible seismic events, others, where no perceptible but instrumentally detected events occurred, and moreover activities without even any instrumentally detected events. A classification of seismic hazard with respect to tectonic region, geology, or depth of the layer is still difficult, since the number of hydraulic fracturing measures in deep geothermal wells is small making a statistically sound analysis impossible. However, there are some indications, that hydraulic fracturing in granite in tectonically active regions like the Upper Rhine Graben results in comparatively stronger, perceptible seismicity compared to hydraulic fracturing in the sedimentary rocks of the North German basin. The maximum magnitudes of induced earthquakes caused by hydraulic fracturing of deep geothermal wells in Germany are

  9. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  10. Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifers

    SciTech Connect

    Sminchak, Joel; Gupta, Neeraj; Byrer, Charles; Bergman, Perry

    2001-05-31

    Case studies, theory, regulation, and special considerations regarding the disposal of carbon dioxide (CO2) into deep saline aquifers were investigated to assess the potential for induced seismic activity. Formations capable of accepting large volumes of CO2 make deep well injection of CO2 an attractive option. While seismic implications must be considered for injection facilities, induced seismic activity may be prevented through proper siting, installation, operation, and monitoring. Instances of induced seismic activity have been documented at hazardous waste disposal wells, oil fields, and other sites. Induced seismic activity usually occurs along previously faulted rocks and may be investigated by analyzing the stress conditions at depth. Seismic events are unlikely to occur due to injection in porous rocks unless very high injection pressures cause hydraulic fracturing. Injection wells in the United States are regulated through the Underground Injection Control (UIC) program. UIC guidance requires an injection facility to perform extensive characterization, testing, and monitoring. Special considerations related to the properties of CO2 may have seismic ramifications to a deep well injection facility. Supercritical CO2 liquid is less dense than water and may cause density-driven stress conditions at depth or interact with formation water and rocks, causing a reduction in permeability and pressure buildup leading to seismic activity. Structural compatibility, historical seismic activity, cases of seismic activity triggered by deep well injection, and formation capacity were considered in evaluating the regional seismic suitability in the United States. Regions in the central, midwestern, and southeastern United States appear best suited for deep well injection. In Ohio, substantial deep well injection at a waste disposal facility has not caused seismic events in a seismically active area. Current

  11. Prospectivity of Northern Barinas area through modern seismic data

    SciTech Connect

    Gil, E.; Rotundo, J.; Hernandez, L. )

    1993-02-01

    The area of study is located to north of the Merida arch, in the Barinas-Apure basin. The geologic section comprises early Cretaceous (Albiense) to Quaternary deposits. The Cretaceous sequence lies unconformably over the metamorphic basement; the lower section of Navay Formation, of Cretaceous age, is consider to be the source rock, and it is associated with maximum transgression (91.5 mma). In Barinas, this represent the lateral equivalent of La Luna Formation of the Maracaibo Lake. The Gobernador and Paguey Formations (later middle Eocene), overlie unconformably, the Cretaceous rocks. The lower section of the later formation is associated with maximum transgressive cycles as a result of the collision of the South American and Caribbean plates. Former interpretation of analogic seismic data showed small structures that were less evident towards the deeper part of the basin. Recently, Corpoven acquired 2350 km of excellent digital seismic data with a coverage of 3000%. This has allowed us to subdivide the area in three hydrocarbons prospective zones:(1) Northern Barinas Zone: Characterized by faults and structures very similar to other prospective fields of the area. (2) South Andean Slope: This was affected by the Andean orogenesis. In this zone we find the same sedimentary column, but the structures are bigger than the former producing. (3) Southern Guanate Zone: This zone shows light faulting and abundant acoustic anomalies probably associated to facies changes.

  12. Erosion influences the seismicity of active thrust faults.

    PubMed

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-11-21

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  13. Seismic activity noted at Medicine Lake Highlands

    SciTech Connect

    Blum, D.

    1988-12-01

    The sudden rumble of earthquakes beneath Medicine Lake Highlands this fall gave geologists an early warning that one of Northern California's volcanoes may be stirring back to life. Researchers stressed that an eruption of the volcano is not expected soon. But the flurry of underground shocks in late September, combined with new evidence of a pool of molten rock beneath the big volcano, has led them to monitor Medicine Lake with new wariness. The volcano has been dormant since 1910, when it ejected a brief flurry of ash - worrying no one. A federal team plans to take measurements of Medicine Lake, testing for changes in its shape caused by underground pressures. The work is scheduled for spring because snows have made the volcano inaccessible. But the new seismic network is an effective lookout, sensitive to very small increases in activity.

  14. SANITARY VULNERABILITY OF A TERRITORIAL SYSTEM IN HIGH SEISMIC AREAS

    NASA Astrophysics Data System (ADS)

    Teramo, A.; Termini, D.; de Domenico, D.; Marino, A.; Marullo, A.; Saccà, C.; Teramo, M.

    2009-12-01

    An evaluation procedure of sanitary vulnerability of a territorial system falling within a high seismic risk area, related to casualty treatment capability of hospitals after an earthquake, is proposed. The goal of the study is aimed at highlighting hospital criticalities for the arrangement of a prevention policy on the basis of territorial, demographic and sanitary type specific analyses of a given area. This is the first step of a procedure of territorial context reading within a damage scenario, addressed to a verification of preparedness level of the territorial system to a sanitary emergency referable both to a natural disaster and anthropic one. The results of carried out surveys are shown, at a different scale, on several sample areas of Messina Province (Italy) territory, evaluating the consistency of damage scenario with the number of casualties, medical doctors, available beds for the implementation of a emergency sanitary circuit.

  15. Searching for Seismically Active Faults in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Antunes, V.; Arroucau, P.

    2015-12-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active fault segments in the region. However, due to an apparently diffuse seismicity pattern defining a broad region of distributed deformation west of Gibraltar Strait, the question of the location, dimension and geometry of such structures is still open to debate. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events having occurred from 2007 to 2013, using P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area lying between 8.5˚W and 5˚W in longitude and 36˚ and 37.5˚ in latitude. The most remarkable change in the seismicity pattern after relocation is an apparent concentration of events, in the North of the Gulf of Cadiz, along a low angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. If confirmed, this would be the first structure clearly illuminated by seismicity in a region that has unleashed large magnitude earthquakes. Here, we present results from the joint analysis of focal mechanism solutions and waveform similarity between neighboring events from waveform cross-correlation in order to assess whether those earthquakes occur on the same fault plane.

  16. The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data

    PubMed Central

    Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica

    2012-01-01

    The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side. PMID:23240075

  17. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    SciTech Connect

    Karyono; Mazzini, Adriano; Sugiharto, Anton; Lupi, Matteo; Syafri, Ildrem; Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  18. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    NASA Astrophysics Data System (ADS)

    Karyono, Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Masturyono, Rudiyanto, Ariska; Pranata, Bayu; Muzli, Widodo, Handi Sulistyo; Sudrajat, Ajat; Sugiharto, Anton

    2015-04-01

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green's functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  19. Calcium Stabilized And Geogrid Reinforced Soil Structures In Seismic Areas

    SciTech Connect

    Rimoldi, Pietro; Intra, Edoardo

    2008-07-08

    In many areas of Italy, and particularly in high seismic areas, there is no or very little availability of granular soils: hence embankments and retaining structures are often built using the locally available fine soil. For improving the geotechnical characteristics of such soils and/or for building steep faced structures, there are three possible techniques: calcium stabilization, geogrid reinforcement, and the combination of both ones, that is calcium stabilized and reinforced soil. The present paper aims to evaluate these three techniques in terms of performance, design and construction, by carrying out FEM modeling and stability analyses of the same reference embankments, made up of soil improved with each one of the three techniques, both in static and dynamic conditions. Finally two case histories are illustrated, showing the practical application of the above outlined techniques.

  20. Multi-channel Linear Array Seismic Interferometry: Insights on Passive Seismic Imaging of the Upper 1 km in an Urban Area

    NASA Astrophysics Data System (ADS)

    Pettinger, E. M.; Stephenson, W. J.; Odum, J. K.

    2015-12-01

    High-resolution active-source seismic imaging in heavily urbanized regions is problematic because equipment deployment is often constrained to linear roadways, where access for active seismic sources may be limited and seismic energy from ambient urban noise can overpower active sources. To investigate the application of linear-array seismic interferometry for obtaining subsurface images in the upper 1 km beneath an urban area, we acquired passive seismic data along two roadways that cross a northern segment of the Seattle fault zone, Washington State. Both of the profiles were collocated with previously acquired active-source reflection lines, which we used as control for interpretations. The interferometry profiles were roughly 1 km in length and were acquired using 8-Hz resonant frequency, vertical-component geophones that were deployed at 5 m spacing (nominally 216 sensors). Approximately 24 hours of data were acquired on each profile over four days (because of permitting and security issues, the equipment could not be deployed overnight). The basic processing sequence used to create virtual source gathers (VSG's) included pre-correlation gain correction, resampling, bandpass filtering, correlation by cross coherence, and VSG editing. After editing, around 18% of the individual virtual sources were retained for further analysis. VSG's were then dip filtered prior to stacking to further mitigate coherent noise. Our VSG's resolve 4-30 Hz Rayleigh waves, propagating at 300-600 m/s, and at least one diving P-wave propagating at roughly 1800 m/s. These apparent velocities are similar to those of comparable wave phases observed in the active-source data. Overall, these newly acquired high-resolution seismic imaging data provide insights into seismic velocity of the upper 1 km across the Seattle fault zone.

  1. Geospatial and In-Situ Monitoring Data for Seismic Hazard Assessment in Vrancea Area, Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Seismic hazard for almost half of the Romanian territory is determined by the Vrancea ac-tive seismic region, placed beneath the southern Carpathian Arc in Romania at conjunction of four tectonic blocks, which lie on the edge of the Eurasian plate. Vrancea zone is considered one of the most seismically active area in Europe, being characterized by strong intermediate depth seismicity in a very limited and well defined hypocentral region.Space-time anomalies of Earth's emitted radiation (radon in underground water and soil , thermal infrared in spec-tral range measured from satellite months to weeks before the occurrence of earthquakes etc.), ionospheric and electromagnetic anomalies have been interpreted, by several authors, as pre-seismic signals.Satellite remote sensing provides a systematic, synoptic framework for advancing scientific knowledge of the Earth complex system of geophysical phenomena which often lead to seismic hazards. Space-based geodetic measurements of the solid Earth with the Global Positioning System, combined with ground-based seismological measurements and satellite re-mote sensing information are yielding the principal data for modeling lithospheric processes and for accurately estimating the distribution of potentially damaging strong ground motions which is critical for earthquake engineering applications. Moreover, integrated with interfero-metric synthetic aperture radar, these measurements provide spatially continuous observations of deformation with sub-centimeter accuracy. Seismic and in situ monitoring, geodetic mea-surements, high-resolution digital elevation models (e.g. from InSAR, IKONOS and digital photogrammetry) and imaging spectroscopy (e.g. using ASTER, MODIS and Hyperion) are contributing significantly to seismic hazard risk assessment by revealing new insights in the understanding of the kinematics and dynamics of the complex plate boundary system and long-term deformation in relation with earthquake activity. Several

  2. Seismicity study in Pournari reservoir area (W. Greece) 1981-2010

    NASA Astrophysics Data System (ADS)

    Pavlou, K.; Drakatos, G.; Kouskouna, V.; Makropoulos, K.; Kranis, H.

    2016-04-01

    The spatial-temporal evolution of seismicity is examined, during the initial impoundment of Pournari reservoir located on Arachthos River (Western Greece), as well as for the next 30 years. The results show that, despite the relatively moderate-to-high seismicity from west to east, there is no remarkable earthquake in the vicinity before the first reservoir impoundment. Immediately after the impoundment (January 1981), and during the first 4 months, a considerable number of low-magnitude seismic events were recorded in the broader area of the dam. Moreover, two independent major events occurred on March 10, 1981 ( M L = 5.6) and April 10, 1981 ( M L = 4.7) with focal depths 13 and 10 km, respectively. The detailed analysis of the two corresponding aftershock sequences shows that they present different behaviors (e.g., larger b-value and lower magnitude of the main aftershock) than that of other aftershock sequences in Greece. This seismicity is probably due to triggering, via the water loading mechanism and the undrained response due to a flysch appearance on the reservoir basement. The activation of the thrust fault may be attributed to the bulging of evaporites that characterize the disordered structure of W. Greece, via possible water intake. The detailed processing of the recorded seismicity during the period 1982-2010, in comparison with the variations of Pournari Dam water level, shows an increase of shallow seismicity ( h ≤ 5 km) in the vicinity of the reservoir up to a 10-km distance—in contrast to the initial period, characterized by a number of deeper events due to the background response change from undrained to drained status.

  3. Evidences for higher nocturnal seismic activity at the Mt. Vesuvius

    NASA Astrophysics Data System (ADS)

    Mazzarella, Adriano; Scafetta, Nicola

    2016-07-01

    We analyze hourly seismic data measured at the Osservatorio Vesuviano Ovest (OVO, 1972-2014) and at the Bunker Est (BKE, 1999-2014) stations on the Mt. Vesuvius. The OVO record is complete for seismic events with magnitude M ≥ 1.9. We demonstrate that before 1996 this record presents a daily oscillation that nearly vanishes afterwards. To determine whether a daily oscillation exists in the seismic activity of the Mt. Vesuvius, we use the higher quality BKE record that is complete for seismic events with magnitude M ≥ 0.2. We demonstrate that BKE confirms that the seismic activity at the Mt. Vesuvius is higher during nighttime than during daytime. The amplitude of the daily oscillation is enhanced during summer and damped during winter. We speculate possible links with the cooling/warming diurnal cycle of the volcanic edifice, with external geomagnetic field and with magnetostriction, which stress the rocks. We find that the amplitude of the seismic daily cycle changes in time and has been increasing since 2008. Finally, we propose a seismic activity index to monitor the 24-hour oscillation that could be used to complement other methodologies currently adopted to determine the seismic status of the volcano to prevent the relative hazard.

  4. Study of seismicity around Toba area based on relocation hypocenter result from BMKG catalogue

    SciTech Connect

    Ramdhan, Mohamad; Nugraha, Andri Dian

    2013-09-09

    Toba area has complex tectonic setting attracting many earth scientists to study and understand tectonic and geological process or setting. The area is affected by oblique subduction zone, Renun Sumatran fault sub segment and some volcanoes that are near it. The earthquake catalogue provided by BMKG from April, 2009 to December, 2011 must be relocated firstly to get the precise hypocenter. We used catalogue data of P and S phase or P phase only and double-difference method to relocate the earthquakes. The results show hypocenter position enhancement that can be interpreted tectonically. The earthquakes after relocation relating to the Sumatran fault, subduction zone, volcanoes and seismic activities beneath Toba caldera can be mapped clearly. The relocated hypocenters in this study are very important to provide information for seismic hazard assessment and disaster mitigation study.

  5. Seismic activity monitoring in the Izvorul Muntelui dam region

    NASA Astrophysics Data System (ADS)

    Borleanu, Felix; Otilia Placinta, Anca; Popa, Mihaela; Adelin Moldovan, Iren; Popescu, Emilia

    2016-04-01

    Earthquakes occurrences near the artificial water reservoirs are caused by stress variation due to the weight of water, weakness of fractures or faults and increasing of pore pressure in crustal rocks. In the present study we aim to investigate how Izvorul Muntelui dam, located in the Eastern Carpathians influences local seismicity. For this purpose we selected from the seismic bulletins computed within National Data Center of National Institute for Earth Physics, Romania, crustal events occurred between 984 and 2015 in a range of 0.3 deg around the artificial lake. Subsequently to improve the seismic monitoring of the region we applied a cross-correlation detector on the continuous recordings of Bicaz (BIZ) seismic stations. Besides the tectonic events we detected sources within this region that periodically generate artificial evens. We couldn't emphasize the existence of a direct correlation between the water level variations and natural seismicity of the investigated area.

  6. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building

  7. A strategy to address the task of seismic micro-zoning in landslide-prone areas

    NASA Astrophysics Data System (ADS)

    Vessia, G.; Parise, M.; Tromba, G.

    2013-06-01

    As concerns landslide prevention and mitigation policies at the urban scale, the ability of Geographical Information Systems (GIS) to combine multi-layered information with high precision enables technicians and researchers to devote efforts in managing multiple hazards, such as seismically induced instability in urbanized areas. As a matter of fact, many villages in the Italian Apennines, placed near high-energy seismic sources, are characterized by active sliding that are seasonally remobilized by rainfall. GIS tools can be useful whether accurate Digital Elevation Models (DEM) are available and detailed mechanical and hydraulic characterization of superficial deposits over significant portion of the urban territory is undertaken. Moreover, the classic methods for estimating the seismic-induced permanent displacements within natural slopes are drawn from the generalization of Newmark's method. Such method can be applied to planar sliding mechanism that can be considered still valid wherever shallow landslides are generated by an earthquake. The failure mechanism depends on the mechanical properties of the superficial deposits. In this paper, the town of Castelfranci (Campania, southern Italy) has been studied. This small town, hosting two thousand inhabitants, suffers from the seasonal reactivation of landslides in clayey soil deposits due to rainfall. Furthermore, the site is seismically classified by means of the peak ground acceleration (PGA) equal to 0.246 g with respect to a 475 yr return period. Several studies on the evolution of slopes have been undertaken at Castelfranci and maps have been drawn at the urban scale not taking into any account the seismic hazard. This paper shows possible seismically induced hazard scenarios within the Castelfranci municipal territory aimed at microzonation of level 2, by estimating the slope permanent displacements comparable to those caused by the strongest historical seismic event that hit this area: the 1980 Irpinia

  8. Temporary seismic networks on active volcanoes of Kamchatka (Russia)

    NASA Astrophysics Data System (ADS)

    Jakovlev, Andrey; Koulakov, Ivan; Abkadyrov, Ilyas; Shapiro, Nikolay; Kuznetsov, Pavel; Deev, Evgeny; Gordeev, Evgeny; Chebrov, Viktor

    2016-04-01

    We present details of four field campaigns carried out on different volcanoes of Kamchatka in 2012-2015. Each campaign was performed in three main steps: (i) installation of the temporary network of seismic stations; (ii) autonomous continuous registration of three component seismic signal; (III) taking off the network and downloading the registered data. During the first campaign started in September 2012, 11 temporary stations were installed over the Avacha group of volcanoes located 30 km north to Petropavlovsk-Kamchatsky in addition to the seven permanent stations operated by the Kamchatkan Branch of the Geophysical Survey (KBGS). Unfortunately, with this temporary network we faced with two obstacles. The first problem was the small amount of local earthquakes, which were detected during operation time. The second problem was an unexpected stop of several stations only 40 days after deployment. Nevertheless, after taking off the network in August 2013, the collected data appeared to be suitable for analysis using ambient noise. The second campaign was conducted in period from August 2013 to August 2014. In framework of the campaign, 21 temporary stations were installed over Gorely volcano, located 70 km south to Petropavlovsk-Kamchatsky. Just in time of the network deployment, Gorely Volcano became very seismically active - every day occurred more than 100 events. Therefore, we obtain very good dataset with information about thousands of local events, which could be used for any type of seismological analysis. The third campaign started in August 2014. Within this campaign, we have installed 19 temporary seismic stations over Tolbachik volcano, located on the south side of the Klyuchevskoy volcano group. In the same time on Tolbachik volcano were installed four temporary stations and several permanent stations operated by the KBGS. All stations were taking off in July 2015. As result, we have collected a large dataset, which is now under preliminary analysis

  9. Ground motion prediction for the Vienna Basin area using the ambient seismic field

    NASA Astrophysics Data System (ADS)

    Schippkus, Sven; Zigone, Dimitri; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    The Vienna Basin is one of the most seismically active regions in Austria. Because of the population density and sensitive infrastructure, seismic hazard assessment in this area is of critical importance. An important part of seismic hazard analysis is ground motion prediction, which can in principle be done using either empirical studies to derive ground motion prediction equations (GMPEs) or using a physics-based approach to simulate ground motion by modelling surface wave propagation. Recently a new method has been presented that is based on the emergence of the inter-station Green's function from ambient noise cross-correlations (Denolle et al. 2013), which provides the impulse response of the Earth from a point source at the surface (from the site of one of the two receivers to the other). These impulse responses are dominated by surface waves, which would, in the case of a real earthquake, cause the major damages. The Green's function can in principle be modified to simulate a double couple dislocation at depth, i.e., a virtual earthquake. Using an adapted pre-processing method, the relative amplitudes of the ambient noise records of different inter-station paths are preserved in the correlation functions, and effects like attenuation and amplification of surface waves in sedimentary basins can be studied. This provides more precise information that will help improve seismic hazard evaluations. Here we present a preliminary study of such ground motion prediction for the Vienna Basin using about two dozen broadband stations from available networks in the area, e.g., stations from the University of Vienna (AlpArray) and Vienna Technical University. References Denolle, M. A., E. M. Dunham, G. A. Prieto, and G. C. Beroza (2013), Ground motion prediction of realistic earthquake sources using the ambient seismic field, J. Geophys. Res. Solid Earth, 118, 2102-2118, doi:10.1029/2012JB009603.

  10. Local seismic network for monitoring of a potential nuclear power plant area

    NASA Astrophysics Data System (ADS)

    Tiira, Timo; Uski, Marja; Kortström, Jari; Kaisko, Outi; Korja, Annakaisa

    2016-04-01

    This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ˜ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = -0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ˜ -0.1) within 25 km radius and 5 (ML ≥ ˜-0.1 to ˜0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1-2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1-2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and

  11. Seismic stratigraphy and structure of the area to the southeast of the trobriand platform

    NASA Astrophysics Data System (ADS)

    Francis, G.; Lock, J.; Okuda, Y.

    1987-09-01

    The area to the southeast of the Trobriand Platform contains an easterly continuation of the Oligocene to Quaternary Cape Vogel Basin (CVB). Within this area, three major seismic sequences are recognized: sea bed-A, A B, and B D. The latter sequence occurs within a depocenter with approximately 3,200 m of sediment. The A B and B D sequences were faulted and gently folded in Late Miocene times. To the south and southeast of this depocenter the CVB has been truncated by the Pliocene opening of the Woodlark Basin, an active westward-propagating spreading system.

  12. Non-extensive statistical analysis of seismicity in the area of Javakheti, Georgia

    NASA Astrophysics Data System (ADS)

    Matcharashvili, T.; Chelidze, T.; Javakhishvili, Z.; Jorjiashvili, N.; Fra Paleo, U.

    2011-10-01

    The distribution of earthquake magnitudes in the Javakheti highlands was analyzed using a non-extensive statistical approach. The earthquakes occurring from 1960 to 2008 in this seismically active area of Southern Caucasus were investigated. The seismic catalog was studied using different threshold magnitude values. Analyses of the whole time period of observations as well as of sub-catalogs of consecutive 10-year span time windows were performed. In every case non-extensive parameter q and value a, the physical quantity characterizing energy density, were calculated from the modified frequency-magnitude relationship. According to our analysis the magnitude sequence in the Javakheti area for the whole period of observation is characterized by a non-extensivity parameter q=1.81, in the upper limit of values reported elsewhere. While calculated non-extensivity parameters for consecutive 10-year windows fall within the range 1.6-1.7 reported worldwide. A significant increase of parameter q was identified in those 10-year sub-catalogs that included the strongest earthquakes within the period of observation. We suppose that this increase may be related to a more correlated behavior within the system of 'fault fragments' when a strong earthquake strikes or immediately after; during aftershock activity. Concurrently, smaller values of non-extensivity parameters qi, found during seismically relatively quiet times, could be associated to the decreased correlations within the system during the earthquake generation stage, under an essentially decreased tectonic stress. The behavior of the energy density characteristic a almost mirrors the variation of parameter q: increases for seismically quiet periods in the Javakheti area and decreases in periods when strong earthquakes occur. We suggest that decreases of energy density characteristic a may point to a prevalent contribution of large size fragments to fragment-asperity interaction under the influence of a rapidly released

  13. Late Quaternary faulting and historic seismicity in the western Lake Mead area, Nevada, Arizona and California

    SciTech Connect

    Anderson, L.W.; O'Connel, D.R. )

    1993-04-01

    As part of a regional seismic hazard study for Reclamation dams on the northern lower Colorado River, the age and distribution of known and suspected late Quaternary faults were investigated and historic seismicity was analyzed for the western Lake Mead area. Late Quaternary faults in the area consist of the Mead Slope, Black Hills, Frenchman Mountain, and California Wash faults. Geologic mapping and scarp profiles indicate that of these late Quaternary faults, the Black Hills fault displays evidence for the youngest (probably mid-Holocene) surface faulting. No information about the ages of older events was obtained for any of the faults; however, the ages of the most recent surface-rupturing events for individual faults suggest recurrence intervals of tens of thousands of years for specific faults and regional recurrence rates of several thousand years for M[sub 3] [>=] 6 1/2 events. Since 1936 when Hoover Dam was completed and the initial filling of Lake Mead began, the Boulder Basin area, the largest and deepest part of Lake Mead, has experienced abundant seismic activity that includes some of the largest historic earthquakes in southern Nevada (at least 21 M 4 events and one M 5). Based on earthquake locations from early networks (1937--1950) and those from temporary networks operating in 1975--1976 and 1988, earthquakes are clearly associated with the northeast-striking Mead Slope and Black Hills faults; one of the few associations of seismicity with late Quaternary faults in the Basin and Range. However, earthquakes also appear to be associated with the Fortification fault, a north-striking fault with no evidence of Quaternary surface faulting. Focal mechanisms for some of the 1975--1976 and 1988 events (all events M [<=] 3) suggest active strike-slip/oblique-slip motion on north-striking faults and normal/oblique-slip motion on northeast-striking structures.

  14. The feeder system for the 2014 fissure eruption at Holuhraun, Bárðarbunga volcanic system, Iceland: Geodetic and seismic constraints on subsurface activity in the area north of the Vatnajökull ice cap

    NASA Astrophysics Data System (ADS)

    Dumont, Stéphanie; Parks, Michelle; Sigmundsson, Freysteinn; Hooper, Andy; Hreinsdóttir, Sigrun; Ófeigsson, Benedikt; Spaans, Karsten; Vogfjörd, Kristin; Jónsdóttir, Kristín; Hensch, Martin; Gudmundsson, Gunnar; Rafn Heimisson, Elias; Drouin, Vincent; Árnadóttir, Thóra; Pedersen, Rikke; Rut Hjartardóttir, Ásta; Magnússon, Eyjólfur

    2015-04-01

    An intense earthquake swarm began on 16 August 2014 at Bárðarbunga volcano under the Vatnajökull ice cap in Central Iceland. It marked the beginning of an intrusive activity, with a dyke propagating over 45 km northward. Such major magmatic activity has not been observed for the last three decades in Iceland, since the Krafla rifting episode 1975-1984. The dyke propagation stopped 15 days after the onset of the seismic activity, with the dyke distal end in the Holuhraun plain north of the Vatnajökull ice cap. A small 4 hour eruption marked the beginning of extrusive activity. A new fissure eruption opened up on 31 August at the northern dyke tip, with lava fountaining and feeding extensive lava flows. In January 2014 the surface covered by the lava had exceeded 80 km2, and the eruption activity does not show significant decline. We have carried out interferometric analysis of SAR data (InSAR) since the onset of the unrest. X-band satellite images from COSMO-SkyMed and TerraSAR-X satellites were acquired and analyzed to map ground surface deformation associated with the dyke emplacement. Despite most of the dyke propagation occurring under several hundreds meters of ice, the last 10 km were outside the ice cap, allowing better characterisation of the dyke-induced deformation. Here we focus on the deformation in the Holuhraun plain, in order to better understand the link between the surface deformation detected in the vicinity of the dyke by InSAR as well as GPS measurements, and the eruptive activity. The regular SAR acquisitions made over the Holuhraun area since the beginning of the unrest offer a unique opportunity to better understand the evolution of the intrusion feeding the fissure eruption. For that purpose, we focus on the faults and fissures forming the graben borders on the glacier as well as in the Holuhraun plain, initially mapped using high-resolution radar images, acquired by airborne radar. We extract movement along and perpendicular to these

  15. Seismic activity of the East Sea, Korea offshore earthquake sequence

    NASA Astrophysics Data System (ADS)

    PARK, E.; Park, S.; Hahm, I.; Kim, Y.

    2013-12-01

    Seismicity in Korea is known to be relatively low compared to China and Japan. But it seems to be more active historically, according to historical documents on earthquake. The magnitudes of historical earthquakes were estimated to be about 4 - 6 by previous studies and there were several events with magnitude over 6. Instrumental earthquakes recorded in 1978 - 2012 seem to be smaller than historical earthquakes, according to the Korea Meteorological Administration (KMA) catalog. Their magnitudes are smaller than 4 in general. Although epicenters of instrumental earthquakes seem to be randomly distributed on the entire Korean Peninsula, some earthquakes occur intensively in several specific areas in the East Sea and the eastern region of Jeju Island. The areas having intensive seismic activity in the East Sea are offshore regions of Uljin (Region A), Yeongdeok (Region B), and Ulsan (Region C) from north to south. Eleven earthquakes of ML 2.0 - 3.2 occurred in Region A on April 2006. The epicenters were distributed within a radius of about 0.7 km. And the focal depths were in the range of 1.6 - 13.0 km (Kang and Shin, 2006). Kang and Shin (2006) propose that the sequence is closely related to the marginal geometry of the Ulleung Basin and the regional stress regime. Seven events with ML 2.1 - 3.0 occurred between September 12 and October 17 in 2007, and four events with ML 2.3 - 3.5 did between 07 December 2008 and 13 January 2009 in Region B. The relocations of eleven events greatly improved the epicenter locations that fall within an area with a radius of about 4 km. The relocated depths are in a range of 8 km to 14 km. According to Shin et al. (2012), the distribution of epicenters and fault plane solution of the largest earthquake in the sequences implied that the earthquake sequences are closely related to the Hupo fault at the eastern margin of Hupo basin. The sequences have been considered to have swarm seismicity pattern. In this study, we analyzed the

  16. Microzonation of Seismic Hazards and Estimation of Human Fatality for Scenario Earthquakes in Chianan Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, K. S.; Chiang, C. L.; Ho, T. T.; Tsai, Y. B.

    2015-12-01

    In this study, we assess seismic hazards in the 57 administration districts of Chianan area, Taiwan in the form of ShakeMaps as well as to estimate potential human fatalities from scenario earthquakes on the three Type I active faults in this area. As a result, it is noted that two regions with high MMI intensity greater than IX in the map of maximum ground motion. One is in the Chiayi area around Minsyong, Dalin and Meishan due to presence of the Meishan fault and large site amplification factors which can reach as high as 2.38 and 2.09 for PGA and PGV, respectively, in Minsyong. The other is in the Tainan area around Jiali, Madou, Siaying, Syuejia, Jiangjyun and Yanshuei due to a disastrous earthquake occurred near the border between Jiali and Madou with a magnitude of Mw 6.83 in 1862 and large site amplification factors which can reach as high as 2.89 and 2.97 for PGA and PGV, respectively, in Madou. In addition, the probabilities in 10, 30, and 50-year periods with seismic intensity exceeding MMII VIII in above areas are greater than 45%, 80% and 95%, respectively. Moreover, from the distribution of probabilities, high values of greater than 95% over a 10 year period with seismic intensity corresponding to CWBI V and MMI VI are found in central and northern Chiayi and northern Tainan. At last, from estimation of human fatalities for scenario earthquakes on three active faults in Chianan area, it is noted that the numbers of fatalities increase rapidly for people above age 45. Compared to the 1946 Hsinhua earthquake, the number of fatality estimated from the scenario earthquake on the Hsinhua active fault is significantly high. However, the higher number of fatality in this case is reasonable after considering the probably reasons. Hence, we urge local and the central governments to pay special attention on seismic hazard mitigation in this highly urbanized area with large number of old buildings.

  17. Seismic activity of the San Francisco Bay region

    USGS Publications Warehouse

    Bakun, W.H.

    1999-01-01

    Moment magnitude M with objective confidence-level uncertainties are estimated for felt San Francisco Bay region earthquakes using Bakun and Wentworth's (1997) analysis strategy for seismic intensity observations. The frequency-magnitude distribution is well described for M ???5.5 events since 1850 by a Gutenberg-Richter relation with a b-value of 0.90. The seismic moment rate ??M0/yr since 1836 is 2.68 X 1018 N-m/yr (95% confidence range = 1.29 X 1018 N-m/yr to 4.07 X 1018 N-m/yr); the seismic moment rate since 1850 is nearly the same. ??M0/yr in the 56 years before 1906 is about 10 times that in the 70 years after 1906. In contrast, ??M0/yr since 1977 is about equal that in the 56 years before 1906. 80% (1?? = 14%) of the plate-motion moment accumulation rate is available for release in earthquakes. The historical ??M0/yr and the portion of the plate-motion moment accumulation rate available for release in earthquakes are used in a seismic cycle model to estimate the rate of seismic activity in the twenty-first century. High and low rates of future seismic activity are both permissible given the range of possible seismic-cycle recurrence times T and the uncertainties in the historical ??M0 and in the percentage of plate motion available for release in earthquakes. If the historical seismic moment rate is not greater than the estimated 2.68 X 1018 N-m/yr and the percentage of the plate-motion moment accumulation available for release in earthquakes is not less than the estimated 80%, then for all T, the rate of seismic moment release from now until the next 1906-sized shock will be comparable to the rate from 1836 to 1905 when M 6 1/2 shocks occurred every 15 to 20 years.

  18. Increases in seismicity rate in the Tokyo Metropolitan area after the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Ishibe, T.; Satake, K.; Sakai, S.; Shimazaki, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.

    2013-12-01

    Abrupt increases in seismicity rate have been observed in the Kanto region, where the Tokyo Metropolitan area is located, after the 2011 off the Pacific coast of Tohoku earthquake (M9.0) on March 11, 2011. They are well explained by the static increases in the Coulomb Failure Function (ΔCFF) imparted by the gigantic thrusting while some other possible factors (e.g., dynamic stress changes, excess of fluid dehydration, post-seismic slip) may also contribute the rate changes. Because of various types of earthquakes with different focal mechanisms occur in the Kanto region, the receiver faults for the calculation of ΔCFF were assumed to be two nodal planes of small earthquakes before and after the Tohoku earthquake. The regions where seismicity rate increased after the Tohoku earthquake well correlate with concentration on positive ΔCFF (i.e., southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in the shallow crust of western Kanagawa, eastern Shizuoka, and southeastern Yamanashi including the Izu and Hakone regions). The seismicity rate has increased since March 11, 2011 with respect to the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988), suggesting that the rate increase was due to the stress increase by the Tohoku earthquake. Furthermore, the z-values immediately after the Tohoku earthquake show the minimum values during the recent 10 years, indicating significant increases in seismicity rate. At intermediate depth, abrupt increases in thrust faulting earthquakes are well consistent with the Coulomb stress increase. At shallow depth, the earthquakes with the T-axes of roughly NE-SW were activated probably due to the E-W extension of the overriding continental plate, and this is also well explained by the Coulomb stress increase. However, the activated seismicity in the Izu and Hakone regions rapidly decayed following the Omori-Utsu formula, while the increased rate of seismicity in the southwestern

  19. Seismic activity triggered by water wells in the Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    AssumpçãO, Marcelo; Yamabe, Tereza H.; Barbosa, José Roberto; Hamza, Valiya; Lopes, Afonso E. V.; Balancin, Lucas; Bianchi, Marcelo B.

    2010-07-01

    Triggered seismicity is commonly associated with deep water reservoirs or injection wells where water is injected at high pressure into the reservoir rock. However, earth tremors related solely to the opening of groundwater wells are extremely rare. Here we present a clear case of seismicity induced by pore-pressure changes following the drilling of water wells that exploit a confined aquifer in the intracratonic Paraná Basin of southeastern Brazil. Since 2004, shallow seismic activity, with magnitudes up to 2.9 and intensities V MM, has been observed near deep wells (120-200 m) that were drilled in early 2003 near the town of Bebedouro. The wells were drilled for irrigation purposes, cross a sandstone layer about 60-80 m thick and extract water from a confined aquifer in fractured zones between basalt flow layers. Seismic activity, mainly event swarms, has occurred yearly since 2004, mostly during the rainy season when the wells are not pumped. During the dry season when the wells are pumped almost continuously, the activity is very low. A seismographic network, installed in March 2005, has located more than 2000 microearthquakes. The events are less than 1 km deep (mostly within the 0.5 km thick basalt layer) and cover an area roughly 1.5 km × 5 km across. The seismicity generally starts in a small area and expands to larger distances with an equivalent hydraulic diffusivity ranging from 0.06 to 0.6 m2/s. Geophysical and geothermal logging of several wells in the area showed that water from the shallow sandstone aquifer enters the well at the top and usually forms waterfalls. The waterfalls flow down the sides of the wells and feed the confined, fractured aquifer in the basalt layer at the bottom. Two seismic areas are observed: the main area surrounds several wells that are pumped continuously during the dry season, and a second area near another well (about 10 km from the first area) that is not used for irrigation and not pumped regularly. The main area

  20. Two-dimensional seismic attenuation images of Stromboli Island using active data

    NASA Astrophysics Data System (ADS)

    Prudencio, J.; Del Pezzo, E.; Ibáñez, J. M.; Giampiccolo, E.; Patané, D.

    2015-03-01

    In this work we present intrinsic and scattering seismic attenuation 2-D images of Stromboli Volcano. We used 21,953 waveforms from air gun shots fired by an oceanographic vessel and recorded at 33 inland and 10 ocean bottom seismometer seismic stations. Coda wave envelopes of the filtered seismic traces were fitted to the energy transport equation in the diffusion approximation, obtaining a couple of separate Qi and Qs in six frequency bands. Using numerically estimated sensitivity kernels for coda waves, separate images of each quality factor were produced. Results appear stable and robust. They show that scattering attenuation prevails over intrinsic attenuation. The scattering pattern shows a strong concordance with the tectonic lineaments in the area, while an area of high total attenuation coincides with the zone where most of the volcanic activity occurs. Our results provide evidence that the most important attenuation effects in volcanic areas are associated with the presence of geological heterogeneities.

  1. Evaluating the Relationship Between Seismicity and Subsurface Well Activity in Utah

    NASA Astrophysics Data System (ADS)

    Lajoie, L. J.; Bennett, S. E. K.

    2014-12-01

    Understanding the relationship between seismicity and subsurface well activity is crucial to evaluating the seismic hazard of transient, non-tectonic seismicity. Several studies have demonstrated correlations between increased frequency of earthquake occurrence and the injection/production of fluids (e.g. oil, water) in nearby subsurface wells in intracontinental settings (e.g. Arkansas, Colorado, Ohio, Oklahoma, Texas). Here, we evaluate all earthquake magnitudes for the past 20-30 years across the diverse seismotectonic settings of Utah. We explore earthquakes within 5 km and subsequent to completion dates of oil and gas wells. We compare seismicity rates prior to well establishment with rates after well establishment in an attempt to discriminate between natural and anthropogenic earthquakes in areas of naturally high background seismicity. In a few central Utah locations, we find that the frequency of shallow (0-10 km) earthquakes increased subsequent to completion of gas wells within 5 km, and at depths broadly similar to bottom hole depths. However, these regions typically correspond to mining regions of the Wasatch Plateau, complicating our ability to distinguish between earthquakes related to either well activity or mining. We calculate earthquake density and well density and compare their ratio (earthquakes per area/wells per area) with several published metrics of seismotectonic setting. Areas with a higher earthquake-well ratio are located in relatively high strain regions (determined from GPS) associated with the Intermountain Seismic Belt, but cannot be attributed to any specific Quaternary-active fault. Additionally, higher ratio areas do not appear to coincide with anomalously high heat flow values, where rocks are typically thermally weakened. Incorporation of timing and volume data for well injection/production would allow for more robust temporal statistical analysis and hazard analysis.

  2. An integrated surface and borehole seismic case study: Fort St. John Graben area, Alberta, Canada

    SciTech Connect

    Hinds, R.C. . Dept. of Geology); Kuzmiski, R. ); Anderson, N.L. . Kansas Geological Survey); Richards, B.R. )

    1993-11-01

    The deltaic sandstones of the basal Kiskatinaw Formation (Stoddard Group, upper Mississippian) were preferentially deposited within structural lows in a regime characterized by faulting and structural lows in a regime characterized by faulting and structural subsidence. In the Fort St. John Graben area, northwest Alberta, Canada, these sandstone facies can form reservoirs where they are laterally sealed against the flanks of upthrown fault blocks. Exploration for basal Kiskatinaw reservoirs generally entails the acquisition and interpretation of surface seismic data prior to drilling. These data are used to map the grabens in which these sandstones were deposited, and the horst blocks which act as lateral seals. Subsequent to drilling, vertical seismic profile (VSP) surveys can be run. These data supplement the surface seismic and well log control in that: (1) VSP data can be directly correlated to surface seismic data. As a result, the surface seismic control can be accurately tied to the subsurface geology; (2) multiples, identified on VSP data, can be deconvolved out of the surface seismic data; and (3) the subsurface, in the vicinity of the borehole, is more clearly resolved on the VSP data than on surface seismic control. On the Fort St. John Graben data set incorporated into this paper, faults which are not well resolved on the surface seismic data, are better delineated on VSP data. The interpretative processing of these data illustrate the use of the seismic profiling technique in the search for hydrocarbons in structurally complex areas.

  3. Impacts of shaking Bengkulus seismicity to subsurface Wellbore in the XX area

    NASA Astrophysics Data System (ADS)

    Rusli, Saifatur; Pratama, M. Ardian; Mardiyan, Hilman; Mirza, Finisha, Brian

    2016-05-01

    Bengkulu earthquake was happened on Wednesday, May 5th 2010 at 23:29:03 WIB (UTC-7) with magnitude 6.5 Richter scale. The Epicentrum was very close to Mentawai Fault System located on latitude 4.063°S and longitude 101.085°E with depth subsurface 27 kms. It was occurred the result of the Indian Ocean Plate-Australia's activity with low angled-subducted beneath the island of Sumatra. Shaking Bengkulus seismicity impacted subsurface in the XX Area which situated on South Palembang Sub-Basin part of South Sumatra Basin (SSB) about 200 kms far away from the epicentrum. Due to XX Area has some producing wells so that the seismicity activities as hypothetically impacts to Subsurface Wellbore which has caused some wells casing problems in the same depth. The wells casing problem shown after conducted routine sand bailer by Sand Line Unit, it was a downhole device used to remove debris sands or similar small particles around the fishingnecks of downhole tools or equipment in the wellbore, and then Sand Bailer tools got scratch at one side body. Similarly, Sand Bailer tools couldnt lowered until Total Depth and got samples sands slightly. At the end, it has impacted to well performance to produce oil in the XX Area.

  4. A Study on the Seismic Sequence Time Series for Arasbaran Area (NW Iran) as a Marker of Chaotic Process

    NASA Astrophysics Data System (ADS)

    Fathian Baneh, A.; Sarkhosh, L.

    2013-12-01

    Before August 11th, 2012 Arasbaran twin earthquakes (Mw 6.4 and Mw 6.3), no seismogenic fault has been fully recognized within the meizoseismal area of the events, neither there were obvious evidence on the microseismicity pattern of the region showing potentials of such activities for an earthquake to occur. In the present study, we tried to investigate the seismic activity of the area in a time period between 2006 and 2012 to verify whether symptoms are detectable in the seismicity of the region or not. In this case, we profited from two different approaches: a statistical method (considering which as a linear system) and Chaos theory (considering it as a non-linear system). We analyzed firstly the seismic time series based on magnitude/number of earthquakes versus time, using ARIMA modeling which refutes the linear behavior of the system. Therefore, we discussed the nonlinear behavior of earthquake time series of the study area to simply explain the complexities in the system using chaos theory for a time interval of six years. Moreover, the calculation of Lyapunov exponent was put into practice. Although results derived from ARIMA modeling indicate non-stability of the studied system and reveal the system undergoes a non-periodicity behavior, yet the positive estimated Lyapunov exponent obviously denotes the chaotic dynamics in the system. Such results could be used as a marker for more detailed further surveys of the areas which seem safe in terms of seismic hazard, as Arasbaran area was once deemed.

  5. Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area

    NASA Astrophysics Data System (ADS)

    Braeuer, B.; Asch, G.; Hofstetter, R.; Haberland, Ch.; Jaser, D.; El-Kelani, R.; Weber, M.

    2014-10-01

    Within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. During 18 recording months, 648 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the microseismicity in relation to the velocity models from the tomography are analysed. The determined b value of 0.74 leads to a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity indicates an asymmetric basin with a vertical strike-slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area north and south of the Bokek fault were observed. South of the Bokek fault, the western boundary is inactive while the entire seismicity occurs on the eastern boundary and below the basin-fill sediments. The largest events occurred here, and their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Bokek fault. North of the Bokek fault similar seismic activity occurs on both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Bokek fault forms the border between the single transform fault and the pull-apart basin with two active border faults.

  6. A multi-disciplinary approach for the structural monitoring of Cultural Heritages in a seismic area

    NASA Astrophysics Data System (ADS)

    Fabrizia Buongiorno, Maria; Musacchio, Massimo; Guerra, Ignazio; Porco, Giacinto; Stramondo, Salvatore; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Doumaz, Fawzi; Giovanna Bianchi, Maria; Luzi, Guido; Ilaria Pannaccione Apa, Maria; Montuori, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Gervasi, Anna; Bonali, Elena; Romano, Dolores; Falcone, Sergio; La Piana, Carmelo

    2014-05-01

    , synthetic aperture radar, optical, multispectral and panchromatic measurements), static and dynamic structural health monitoring analysis (e.g. screening tests with georadar, sonic instruments, sclerometers and optic fibers). The final purpose of the proposed approach is the development of an investigation methodology for short- and long-term Cultural Heritages preservation in response to seismic stress, which has specific features of scalability, modularity and exportability for every possible monitoring configuration. Moreover, it allows gathering useful information to furnish guidelines for Institution and local Administration to plan consolidation actions and therefore prevention activity. Some preliminary results will be presented for the test site of Calabria Region, where some architectural heritages have been properly selected as case studies for monitoring purposes. *The present work is supported and funded by Ministero dell'Università, dell'Istruzione e della Ricerca (MIUR) under the research project PON01-02710 "MASSIMO" - "Monitoraggio in Area Sismica di Sistemi Monumentali".

  7. A preliminary census of engineering activities located in Sicily (Southern Italy) which may "potentially" induce seismicity

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Briffa, Emanuela; Cannata, Andrea; Cannavò, Flavio; Gambino, Salvatore; Maiolino, Vincenza; Maugeri, Roberto; Palano, Mimmo; Privitera, Eugenio; Scaltrito, Antonio; Spampinato, Salvatore; Ursino, Andrea; Velardita, Rosanna

    2015-04-01

    The seismic events caused by human engineering activities are commonly termed as "triggered" and "induced". This class of earthquakes, though characterized by low-to-moderate magnitude, have significant social and economical implications since they occur close to the engineering activity responsible for triggering/inducing them and can be felt by the inhabitants living nearby, and may even produce damage. One of the first well-documented examples of induced seismicity was observed in 1932 in Algeria, when a shallow magnitude 3.0 earthquake occurred close to the Oued Fodda Dam. By the continuous global improvement of seismic monitoring networks, numerous other examples of human-induced earthquakes have been identified. Induced earthquakes occur at shallow depths and are related to a number of human activities, such as fluid injection under high pressure (e.g. waste-water disposal in deep wells, hydrofracturing activities in enhanced geothermal systems and oil recovery, shale-gas fracking, natural and CO2 gas storage), hydrocarbon exploitation, groundwater extraction, deep underground mining, large water impoundments and underground nuclear tests. In Italy, induced/triggered seismicity is suspected to have contributed to the disaster of the Vajont dam in 1963. Despite this suspected case and the presence in the Italian territory of a large amount of engineering activities "capable" of inducing seismicity, no extensive researches on this topic have been conducted to date. Hence, in order to improve knowledge and correctly assess the potential hazard at a specific location in the future, here we started a preliminary study on the entire range of engineering activities currently located in Sicily (Southern Italy) which may "potentially" induce seismicity. To this end, we performed: • a preliminary census of all engineering activities located in the study area by collecting all the useful information coming from available on-line catalogues; • a detailed compilation

  8. How Washington got good, thrifty seismic in bad data area

    SciTech Connect

    Jarchow, C.M. ); Catchings, R.D.; Lutter, W.J. )

    1991-06-17

    Countless mature, emerging, and frontier basins remain incompletely tested for hydrocarbons because aspects of their geology make it nearly impossible to acquire clear subsurface seismic images. One need only look as far as the most productive hydrocarbon provinces in the U.S. for examples of this problem. In parts of West Texas, most particularly the Val Verde basin, carbonates severely degrade seismic images. Salt is a well known problem in the Gulf of Mexico. In Nevada, volcanics make sorting out complicated structure a daunting exercise. Permafrost is a persistent headache for explorationists working on the North Slope of Alaska. Although degraded seismic images are commonplace and the lithologies associated with them are numerous, the physical cause of the degradation is roughly the same from basin to basin and lithology to lithology. In nearly all cases, problematic lithologies introduce into a stratigraphic package an abundance of very large seismic velocity contrasts. In volcanic flows, large velocity contrasts are associated with interbeds, brecciation, and vessiculation. In carbonates, karst features play an analogous role. When seismic waves impinge upon these contrasts, multiple generation, mode conversion, and scattering occur, producing high-amplitude reverberations.

  9. "Water bombs" and seismic areas: two sides to the same problem?

    NASA Astrophysics Data System (ADS)

    Straser, Valentino; Casati, Michele; Cataldi, Gabriele

    2016-04-01

    Intensification of catastrophic events over the last few years in Northern Tuscany (Italy), caused by real "water bombs", with the ensuing risk of flooding and an increase in seismicity, may point to a cause-effect relationship between the two phenomena. A relationship between baric variations and seismic activity resulting in earthquakes with a magnitude greater than M3, has already been described by Sytinsky (1997). Studies carried out on atmospheric processes during strong earthquakes have shown that there are also strong perturbations in atmospheric circulation, which manifest as a major restructuring of the pressure fields, as with changes in meteorological parameters. Recent studies by Straser (2015) have emphasized that variations in atmospheric pressure can affect the equilibrium of the rocks in fault zones, above all if part of a distensive tectonic context like the Lunigiana and Garfagnana area, which became an open-air laboratory to carry out this current study. Interaction between tectonic thrusts, the gases emitted in areas under crust stress, the production of ions in the atmosphere, detectable instrumentally and associated with pre-seismic signals have been described by Pulinets, (2007) and Pulinets with Boyarchuk (2004), as has the formation of nano particles and filamentous structures, of varying origin, caused by a combination of meteoric phenomena associated with electrical discharges and airborne ions as highlighted by Courty and Martinez (2015). One element to bear in mind when hypothesizing variations in equilibrium in distensive faults, is water. Indeed, it has been proposed that the quantity of water that reaches the ground during the kinds of strong precipitation analysed in this study might well create pressure variations in close proximity to the faults at the same time as lowering the friction coefficient in tectonically vulnerable areas. In contrast, it has also been suggested that frequent and prolonged seismic activity in the same

  10. The Salton Seismic Imaging Project (SSIP): Active Rift Processes in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Gonzalez-Fernandez, A.; Lazaro-Mancilla, O.

    2011-12-01

    The Salton Seismic Imaging Project (SSIP), funded by NSF and USGS, acquired seismic data in and across the Salton Trough in southern California and northern Mexico in March 2011. The project addresses both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of onshore refraction and low-fold reflection data were acquired in the Coachella, Imperial, and Mexicali Valleys, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. Almost 2800 land seismometers and 50 OBS's were used in almost 5000 deployments at almost 4300 sites, in spacing as dense as 100 m. These instruments received seismic signals from 126 explosive shots up to 1400 kg and over 2300 airgun shots. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. Active rifting of this new crust is manifested by shallow (<10km depth) seismicity in the oblique Brawley Seismic Zone (BSZ), small Salton Buttes volcanoes aligned perpendicular to the transform faults, very high heat flow (~140 mW/m2), and geothermal energy production. This presentation is focused on an onshore-offshore line of densely sampled refraction and low-fold reflection data that crosses the Brawley Seismic Zone and Salton Buttes in the direction of plate motion. At the time of abstract submission, data analysis was very preliminary, consisting of first-arrival tomography of the onshore half of the line for upper crustal seismic velocity. Crystalline basement (>5 km/s), comprised of late-Pliocene to Quaternary sediment metamorphosed by the high heat flow, occurs at ~2 km depth beneath the Salton Buttes and geothermal field and ~4 km

  11. Common features and peculiarities of the seismic activity at Phlegraean Fields, Long Valley, and Vesuvius

    USGS Publications Warehouse

    Marzocchi, W.; Vilardo, G.; Hill, D.P.; Ricciardi, G.P.; Ricco, C.

    2001-01-01

    We analyzed and compared the seismic activity that has occurred in the last two to three decades in three distinct volcanic areas: Phlegraean Fields, Italy; Vesuvius, Italy; and Long Valley, California. Our main goal is to identify and discuss common features and peculiarities in the temporal evolution of earthquake sequences that may reflect similarities and differences in the generating processes between these volcanic systems. In particular, we tried to characterize the time series of the number of events and of the seismic energy release in terms of stochastic, deterministic, and chaotic components. The time sequences from each area consist of thousands of earthquakes that allow a detailed quantitative analysis and comparison. The results obtained showed no evidence for either deterministic or chaotic components in the earthquake sequences in Long Valley caldera, which appears to be dominated by stochastic behavior. In contrast, earthquake sequences at Phlegrean Fields and Mount Vesuvius show a deterministic signal mainly consisting of a 24-hour periodicity. Our analysis suggests that the modulation in seismicity is in some way related to thermal diurnal processes, rather than luni-solar tidal effects. Independently from the process that generates these periodicities on the seismicity., it is suggested that the lack (or presence) of diurnal cycles is seismic swarms of volcanic areas could be closely linked to the presence (or lack) of magma motion.

  12. Seismic Activity offshore Martinique and Dominique islands (Lesser Antilles subduction zone)

    NASA Astrophysics Data System (ADS)

    Ruiz Fernandez, Mario; Galve, Audrey; Monfret, Tony; Charvis, Philippe; Laigle, Mireille; Flueh, Ernst; Gallart, Josep; Hello, Yann

    2010-05-01

    In the framework of the European project Thales was Right, two seismic surveys (Sismantilles II and Obsantilles) were carried out to better constrain the lithospheric structure of the Lesser Antilles subduction zone, its seismic activity and to evaluate the associated seismic hazards. Sismantilles II experiment was conducted in January, 2007 onboard R/V Atalante (IFREMER). A total of 90 OBS belonging to Géoazur, INSU-CNRS and IFM-Geomar were deployed on a regular grid, offshore Antigua, Guadeloupe, Dominique and Martinique islands. During the active part of the survey, more than 2500 km of multichannel seismic profiles were shot along the grid lines. Then the OBS remained on the seafloor continuously recording for the seismic activity for approximately 4 months. On April 2007 Obsantilles experiment, carried out onboard R/V Antea (IRD), was focused on the recovery of those OBS and the redeployment of 28 instruments (Géoazur OBS) off Martinique and Dominica Islands for 4 additional months of continuous recording of the seismicity. This work focuses on the analysis of the seismological data recorded in the southern sector of the study area, offshore Martinique and Dominique. During the two recording periods, extending from January to the end of August 2007, more than 3300 seismic events were detected in this area. Approximately 1100 earthquakes had enough quality to be correctly located. Station corrections, obtained from multichannel seismic profiles, were introduced to each OBS to take in to account the sedimentary cover and better constrain the hypocentral determinations. Results show events located at shallower depths in the northern sector of the array, close to the Tiburon Ridge, where the seismic activity is mainly located between 20 to 40 km depth. In the southern sector, offshore Martinique, hypocenters become deeper, ranging to 60 km depth and dipping to the west. Focal solutions have also been obtained using the P wave polarities of the best azimuthally

  13. Local seismic events in area of Poland based on data from PASSEQ 2006-2008 experiment

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Plesiewicz, Beata; Wiszniowski, Jan; Wilde-Piórko, Monika; Passeq Working Group

    2014-05-01

    PASSEQ 2006-2008 (Passive Seismic Experiment in TESZ; Wilde-Piórko et al, 2008) was the biggest so far passive seismic experiment in the area of Central Europe (Poland, Germany, Czech Republic and Lithuania). 196 seismic stations (including 49 broadband seismometers) worked simultaneously for over two years. During experiment multiple types of data recorders and seismometers were used making analysis more complex and time consuming. Dataset was unified and repaired to start the detection of local seismic events. Two different approaches for detection were applied for stations located in Poland. One used standard STA/LTA triggers (Carl Johnson's STA/LTA algorithm) and grid search to classify and locate events. Result was manually verified. Other approach used Real Time Recurrent Network (RTRN) detection (Wiszniowski et al, 2014). Both methods gave similar results showing four previously unknown seismic events located in area of Gulf Of Gdańsk in southern Baltic Sea. The investigation of local seismicity is a good opportunity for verification of new seismic models of lithosphere in the area. In this paper we discuss both detection methods with their pros and cons (accuracy, efficiency, manual work required, scalability). We also show details of all detected and previously unknown events in discussed area. This work was partially supported by NCN grant UMO-2011/01/B/ST10/06653.

  14. Structure of the Reelfoot-Rough Creek rift system, Fluorspar area fault complex, and Hicks Dome, southern Illinois and western Kentucky; new constraints from regional seismic reflection data

    USGS Publications Warehouse

    Potter, C.J.; Goldhaber, M.B.; Heigold, P.C.; Drahovzal, J.A.

    1995-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Mo. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  15. Seismic microzoning in the metropolitan area of Port - au-Prince - complexity of the subsoil

    NASA Astrophysics Data System (ADS)

    Gilles, R.; Bertil, D.; Belvaux, M.; Roulle, A.; Noury, G.; Prepetit, C.; Jean-Philippe, J.

    2013-12-01

    The magnitude 7.3 earthquake that struck Haiti in January 12, 2010 has caused a lot of damages in surrounding areas epicenter. These damages are due to a lack of knowledge of the Haitian subsoil. To overcome this problem, the LNBTP, the BME and BRGM have agreed to implement a project of seismic microzonation of the metropolitan area of Port-au-Prince which is financed by the Fund for the reconstruction of the country. The seismic microzonation is an important tool for knowledge of seismic risk. It is based on a collection of geological, geotechnical, geophysical and measures and recognition and the campaign of numerous sites. It describes a class of specific soils with associated spectral response. The objective of the microzoning is to identify and map the homogeneous zones of lithology, topography, liquefaction and ground movements. The zoning of lithological sites effect is to identify and map areas with geological and geomechanical consistent and homogeneous seismic response; the objective is to provide, in each area, seismic movements adapted to the ground. This zoning is done in about five steps: 1- Cross-analysis of geological, geotechnical and geophysical information; 2- Such information comprise the existing data collected and the data acquired during the project; 3- Identification of homogeneous areas. 4- Definition of one or more columns of representative soils associated with each zone; 5 - Possible consolidation of area to get the final seismic zoning. 27 zones types were considered for the study of sites effects after the analysis of all geological, geotechnical and geophysical data. For example, for the formation of Delmas, there are 5 areas with soil classes ranging from D to C. Soil columns described in the metropolitan area of Port-au-Prince are processed with the CyberQuake software, which is developed at the BRGM by Modaressi et al. in 1997, to calculate their response to seismic rock solicitation. The seismic motion is determined by 4

  16. Study of Seismic Activity at Ceboruco Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Nunez-Cornu, F. J.; Escudero, C. R.; Rodríguez Ayala, N. A.; Suarez-Plascencia, C.

    2013-12-01

    Many societies and their economies endure the disastrous consequences of destructive volcanic eruptions. The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast, which is a key communication point for coast of Jalisco and Nayarit and the northwest of Mexico. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacitic composition lava flows along the southeast side. Although surface activity has been restricted to fumaroles near the summit, Ceboruco exhibits regular seismic unrest characterized by both low frequency seismic events and volcano-tectonic earthquakes. From March 2003 until July 2008 a three-component short-period seismograph Marslite station with a Lennartz 3D (1Hz) was deployed in the south flank (CEBN) and within 2 km from the summit to monitoring the seismic activity at the volcano. The LF seismicity recorded was classified using waveform characteristics and digital analysis. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, most of the hypocenters are below the volcanic edifice within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the

  17. Standardization of Seismic Microzonification and Probabilistic Seismic Hazard Study Considering Site Effect for Metropolitan Areas in the State of Veracruz

    NASA Astrophysics Data System (ADS)

    Torres Morales, G. F.; Leonardo Suárez, M.; Dávalos Sotelo, R.; Castillo Aguilar, S.; Mora González, I.

    2014-12-01

    Preliminary results obtained from the project "Seismic Hazard in the State of Veracruz and Xalapa Conurbation" and "Microzonation of geological and hydrometeorological hazards for conurbations of Orizaba, Veracruz, and major sites located in the lower sub-basins: The Antigua and Jamapa" are presented. These projects were sponsored respectively by the PROMEP program and the Joint Funds CONACyT-Veracruz state government. The study consists of evaluating the probabilistic seismic hazard considering the site effect (SE) in the urban zones of cities of Xalapa and Orizaba; the site effects in this preliminary stage were incorporated through a standard format proposed in studies of microzonation and application in computer systems, which allows to optimize and condense microzonation studies of a city. This study stems from the need to know the seismic hazard (SH) in the State of Veracruz and its major cities, defining SH as the probabilistic description of exceedance of a given level of ground motion intensity (generally designated by the acceleration soil or maximum ordinate in the response spectrum of pseudo-acceleration, PGA and Sa, respectively) as a result of the action of an earthquake in the area of influence for a specified period of time. The evaluation results are presented through maps of seismic hazard exceedance rate curves and uniform hazard spectra (UHS) for different spectral ordinates and return periods, respectively.

  18. Time-dependent seismic tomography and its application to the Coso geothermal area, 1996-2006

    SciTech Connect

    Julian, B.R.; G.R. Foulger; F. Monastero

    2008-04-01

    Measurements of temporal changes in Earth structure are commonly determined using localearthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and assume that any differences in the structural results arise from real temporal variations. This assumption is dangerous because the results of repeated tomography experiments would differ even if the structure did not change, simply because of variation in the seismic ray distribution caused by the natural variation in earthquake locations. Even if the source locations did not change (if only explosion data were used, for example), derived structures would inevitably differ because of observational errors. A better approach is to invert multiple data sets simultaneously, which makes it possible to determine what changes are truly required by the data. This problem is similar to that of seeking models consistent with initial assumptions, and techniques similar to the “damped least squares” method can solve it. We have developed a computer program, dtomo, that inverts multiple epochs of arrival-time measurements to determine hypocentral parameters and structural changes between epochs. We shall apply this program to data from the seismically active Coso geothermal area, California, in the near future. The permanent network operated there by the US Navy, supplemented by temporary stations, has provided excellent earthquake arrival-time data covering a span of more than a decade. Furthermore, structural change is expected in the area as a result of geothermal exploitation of the resource. We have studied the period 1996 through 2006. Our results to date using the traditional method show, for a 2-km horizontal grid spacing, an irregular strengthening with time of a negative VP/VS anomaly in the upper ~ 2 km of the reservoir. This progressive reduction in VP/VS results predominately from an increase of VS with respect to VP. Such a change is expected to result from

  19. Tracking hydrothermal feature changes in response to seismicity and deformation at Mud Volcano thermal area, Yellowstone

    NASA Astrophysics Data System (ADS)

    Diefenbach, A. K.; Hurwitz, S.; Murphy, F.; Evans, W.

    2013-12-01

    The Mud Volcano thermal area in Yellowstone National Park comprises many hydrothermal features including fumaroles, mudpots, springs, and thermal pools. Observations of hydrothermal changes have been made for decades in the Mud Volcano thermal area, and include reports of significant changes (the appearance of new features, increased water levels in pools, vigor of activity, and tree mortality) following an earthquake swarm in 1978 that took place beneath the area. However, no quantitative method to map and measure surface feature changes through time has been applied. We present an analysis of aerial photographs from 1954 to present to track temporal changes in the boundaries between vegetated and thermally barren areas, as well as location, extent, color, clarity, and runoff patterns of hydrothermal features within the Mud Volcano thermal area. This study attempts to provide a detailed, long-term (>50 year) inventory of hydrothermal features and change detection at Mud Volcano thermal area that can be used to identify changes in hydrothermal activity in response to seismicity, uplift and subsidence episodes of the adjacent Sour Creek resurgent dome, or other potential causes.

  20. The 3D crustal structure of Northeastern Tibetan area from seismic tomography

    NASA Astrophysics Data System (ADS)

    Sun, Anhui

    2015-04-01

    The Northeastern Tibetan region is located in the border area of three sub-plates in China, i.e. the Tibetan plateau, North China block and Xinjiang block. Effected simultaneously by the extrusion driven by the India-Eurasia plat collision and the blockage of the Ordos basin, this area has complex geology, strong tectonics activities and suffered from several large historic earthquakes, such as the Haiyuan earthquake (M8.6) in 1920, the Gulang earthquake (M8.0) in 1927. To enhance our understanding of the crustal structure and the interaction between different tectonic blocks of this region, we conduct a three-dimensional (3D) tomographic study by using the arrival time date recorded by regional seismic network. We used 101101 P and 103313 S wave arrival times from 11650 local earthquakes during 1970 to 2013 recorded by 154 permanent seismic stations of the local Seismic Network, installed over five provinces in China, i.e. Gansu, Ningxia, Qinghai, Shanxi, Neimenggu. We first established a 1D primary crustal model from LITHO1.0, an updated crust and lithospheric model of the Earth by weighted averaging. To better performer ray tracing, our inversion involved three discontinuities (including the Moho) with depth variation over the mantle derived from LITHO1.0. Detailed three-dimensional seismic velocity (Vp and Vs) structures of the crust of the Northeastern Tibetan are determined with a horizontal resolution of about 35 km and a depth resolution of 6-20 km. The Poisson's ratio (σ) structure was also estimated after obtained Vp and Vs structures. We detected low-velocity anomalies in the lower crust and relative high-velocity anomalies in the upper crust beneath the Longmenshan faults zone, which are in good agreement with the results of most previous geophysical studies. Our results revealed clear different velocity variation beneath both sides of different tectonic blocks. In addition, we found the correlation between our tomographic result and previous

  1. Evaluation of feasibility of mapping seismically active faults in Alaska

    NASA Technical Reports Server (NTRS)

    Gedney, L. D.; Vanwormer, J. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The sharp bend in the Alaska Range near 65 deg N, 150 deg W in now thought to enclose a corner of the northwesterly migrating north Pacific lithospheric plate. Subduction of the plate beneath the continent is believed, on the basis of hypocentral distribution, to occur along Cook Inlet and the eastern flanks of the Aleutian and Alaska Ranges as far northward as Mt. McKinley. The nature of tectonic deformation here, particularly in the area of the bend in the Alaska Range, is understandably complex. The Denali fault is thought to be a transform character in the vicinity of Mt. McKinley (i.e., it is thought to be the surface along which the oceanic plate separates from the continental plate). On the ERTS-1 imagery, however, it appears that there are a number of sub-parallel faults which branch off of the Denali fault in a southwesterly direction. Slippage along these would tend to squeeze material around the inside of the band rather than the plate being directly underthrust. All of these sub-parallel faults are seismically active. The right-lateral fault-plane solution obtained for this event is consistent with the concept of slippage around the bend on a set of sub-parallel faults in the manner postulated. The best images to show these features are 1066-20444 and 1266-20572.

  2. Fault Activity Investigations in the Lower Tagus Valley (Portugal) With Seismic and Geoelectric Methods

    NASA Astrophysics Data System (ADS)

    Carvalho, J. G.; Gonçalves, R.; Torres, L. M.; Cabral, J.; Mendes-Victor, L. A.

    2004-05-01

    The Lower Tagus River Valley is located in Central Portugal, and includes a large portion of the densely populated area of Lisbon. It is sited in the Lower Tagus Cenozoic Basin, a tectonic depression where up to 2,000 m of Cenozoic sediments are preserved, which was developed in the Neogene as a compressive foredeep basin related to tectonic inversion of former Mesozoic extensional structures. It is only a few hundred kilometers distant from the Eurasia-Africa plate boundary, and is characterized by a moderate seismicity presenting a diffuse pattern, with historical earthquakes having caused serious damage, loss of lives and economical problems. It has therefore been the target of several seismic hazard studies in which extensive geological and geophysical research was carried out on several geological structures. This work focuses on the application of seismic and geoelectric methods to investigate an important NW-SE trending normal fault detected on deep oil-industry seismic reflection profiles in the Tagus Cenozoic Basin. In these seismic sections this fault clearly offsets horizons that are ascribed to the Upper Miocene. However, due to the poor near surface resolution of the seismic data and the fact that the fault is hidden under the recent alluvial cover of the Tagus River, it was not clear whether it displaced the upper sediments of Holocene age. In order to constrain the fault geometry and kinematics and to evaluate its recent tectonic activity, a few high-resolution seismic reflection profiles were acquired and refraction interpretation of the reflection data was performed. Some vertical electrical soundings were also carried out. A complex fault system was detected, apparently with normal and reverse faulting. The collected data strongly supports the possibility that one of the detected faults affects the uppermost Neogene sediments and very probably the Holocene alluvial sediments of the Tagus River. The evidence of recent activity on this fault, its

  3. Gravity And Seismic Data Set Constraint On The Crust Structure Of Liyue Block, Northeast Of Nansha Area

    NASA Astrophysics Data System (ADS)

    Sun, Z.

    2011-12-01

    The Liyue Block is composed of two parts: Reed Bank and Liyue Basin. It is separated by Zhongnan Fault in west, Palawan Trough in southeast and fault scarp in the north of Nansha area. We make a systematic investigation on major tectonic and crust structure units in the Liyue Block basing on gravity and seismic data set. Multichannel seismic data can help to know the stratum and fault structure that locating upon the sediment basement. In the Reed Bank composed of reefs, the faults are undeveloped and the stratum is flat. In basin area, the early faults are developed and there two kinds of structures: tilted fault block and low relief anticline. The thickness of the Mesozoic strata in basin area decreases from SW to NE. But the rifting strata increases from SW to NE, which indicates the fault activity strength in the rift period increased from southwest to northeast. We have performed gravity inversion to understand the geometry of the MOHO surface and the crustal thicknesses beneath this area. The region is characterized by large positive Bouguer gravity anomaly (60 to 140 mgal), and the MOHO depth generally varies from 16-27km.We calculate the stretching factor of the research area, which ranging from 1.3 to 2.0, that indicates the local region is lowly stretched. In general, we can distinguish the crustal structures of the study area into the thinned continental crust. Key words: Liyue Block; Mesozoic stratum; Gravity inversion; Seismic profile; Crust structure

  4. Mining-related and tectonic seismicity in the East Mountain area Wasatch Plateau, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Williams, Donna J.; Arabasz, Walter J.

    1989-09-01

    As part of a larger multi-institutional seismic monitoring experiment during June August 1984 in the eastern Wasatch Plateau, Utah, data from a subarray of 20 portable seismographs were used to investigate seismicity in the East Mountain area, an area of active underground coal mining and intense microseismicity. Eight stations of the subarray were concentrated on top of East Mountain, about 600 m above mine level, at an average spacing of 2 to 3 km. The primary objective was the accurate resolution of hypocenters and focal mechanisms for seismic events originating at submine levels. Data from high-resolution seismic reflection profiles and drill-hole sonic logs yielded a detailed velocity model. This model features a strong velocity gradient in the uppermost 1 km, which has a significant effect on takeoff angles for first-arriving P-waves from shallow seismic events. Two hundred epicenters located with a precision of ±500 m cluster within an area about 5 km in diameter and show an evident spatial association with four sites of longwall mining during the study period. A special set of foci rigorously tested for focal-depth reliability indicates submine seismicity predominating within 500 m of mine level and extending at least to 1 km, and perhaps to 2 km, below mine level. Continuous monitoring for a 61-day period (June 15 August 15) bracketed a 16-day mining shutdown (July 7 22) during which significant seismicity, comparable to that observed before the shutdown, was observed. Ten focal mechanisms for seismic events originating at or down to 2 km below mine level nearly all imply reverse faulting, consistent with previous results and the inferred tectonic stress field. Enigmatic events recorded with all dilatational first motions can be fit with double-couple normal-faulting solutions if they in fact occur above mine level, perhaps reflecting overburden subsidence. If these events are constrained to occur at mine level, their first-motion distributions are

  5. Evaluation of Flooding Induced Seismicity from the Mining Area Schlema/Alberoda (Germany)

    NASA Astrophysics Data System (ADS)

    Schütz, Holger; Konietzky, Heinz

    2016-10-01

    A dataset of 1653 seismic events recorded during flooding the mine area Schlema/Alberoda has been analyzed. The magnitude range was between ML = -2.5 and ML = 1.8. The results show a clear relation between triggered seismicity and flooding process. The Gutenberg-Richter law was used to predict a maximum magnitude for this area. Furthermore, seismological source parameters have been calculated. The measured peak ground velocities have been used to determine a prediction law which allows predicting peak ground velocities for hypothetically hypocenters in that area based on assumed source depth and magnitude.

  6. Seismic activity in the Sunnyside mining district, Carbon and Emery Counties, Utah, during 1968

    USGS Publications Warehouse

    Dunrud, C. Richard; Maberry, John O.; Hernandez, Jerome H.

    1970-01-01

    More than 20,000 local earth tremors were recorded by the seismic monitoring network in the Sunnyside mining district during 1968. This is about 40 percent of the number of tremors recorded by the network in 1967. In 1968 a total of 281 tremors were of sufficient magnitude to be located accurately--about 50 percent of the number of tremors in 1967 that were located accurately. As in previous years, nearly all the earth tremors originated near, or within a few thousand feet of, the mine workings. This distribution indicates that mine-induced stress changes caused most of the seismic activity. However, over periods of weeks and months there were significant changes in the distribution of seismic activity caused by tremors that were not directly related to mining but probably were caused by adjustment of natural stresses 6r by a complex combination of both natural and mine-induced stress changes. In 1968 the distribution of tremor hypocenters varied considerably with time, relative to active mining areas and to faults present in the mine workings. During the first 6 months, most tremors originated along or near faults that trend close to or through the active mine workings. However, in the last 6 months, the tremor hypocenters tended to concentrate in the rock mass closer to, or around, the active mining areas. This shift in concentration of seismic activity with time has been noted throughout the district many times since recording began in 1963, and is apparently caused by spontaneous releases of stored strain energy resulting from mine-induced stress changes. These spontaneous releases of strain energy, together with rock creep, apparently are the mechanism of adjustment within the rock mass toward equilibrium conditions, which are continually disrupted by mining. Although potentially hazardous bumps were rare in the Sunnyside mining district during 1968, smaller bumps and rock falls were more common in a given active mining area whenever hypocenters of larger

  7. Explosively activated egress area

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W. (Inventor)

    1983-01-01

    A lightweight, add on structure which employs linear shaped pyrotechnic charges to smoothly cut an airframe along an egress area periphery is provided. It compromises reaction surfaces attached to the exterior surface of the airframe's skin and is designed to restrict the skin deflection. That portion of the airframe within the egress area periphery is jettisoned. Retention surfaces and sealing walls are attached to the interior surface of the airframe's skin and are designed to shield the interior of the aircraft during detonation of the pyrotechnic charges.

  8. Use of geospatial information and in situ monitoring data for seismic hazard assessment in Vrancea area, Romania

    NASA Astrophysics Data System (ADS)

    Zoran, M.; Mateciuc, D.

    2009-04-01

    Remote sensing and geospatial information tools and techniques, including numerical modeling, have advanced considerably in recent years, enabling a greater understanding of the Earth as a complex system of geophysical phenomena. The information derived from such systems and analyses are beginning to make their way into operational use by decision makers through a number of information products and decision-support capabilities that inform community based mitigation, preparedness, and/or relief and recovery activities. Space-based geodetic measurements of the solid Earth with the Global Positioning System in synergy with ground-based seismological measurements, interferometric synthetic aperture radar data, high-resolution digital elevation models as well imaging spectroscopy (e.g. using ASTER, MODIS and Hyperion data) are contributing significantly to seismic hazard risk assessment. Space-time anomalies of Earth's emitted radiation (radon in underground water and soil and surface air , thermal infrared in spectral range measured from satellite months to weeks before the occurrence of earthquakes etc.), ionospheric and electromagnetic anomalies have been interpreted, by several authors, as pre-seismic signals. Mainly due to the subcrustal earthquakes located at the sharp bend of the Southeast Carpathians, Vrancea zone in Romania, placed at conjunction of four tectonic blocks which lie on the edge of the Eurasian plate is considered one of the most seismically active areas in Europe with high potential of seismic hazard. Multispectral and multitemporal satellite images (LANDSAT TM, ETM , ASTER, MODIS) over a period 1988-2008 have been analyzed for recognizing the continuity and regional relationships of active faults as well as for geologic and seismic hazard mapping. GPS measurements can serve as a reference to these results. In spite of providing the best constraints on the rate of strain accumulation on active faults (coseismic, postseismic, and interseismic

  9. Statistical analysis of seismicity rate change in the Tokyo Metropolitan area due to the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Ishibe, T.; Sakai, S.; Shimazaki, K.; Satake, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.

    2012-12-01

    We examined a relationship between the Coulomb Failure Function (ΔCFF) due to the Tohoku earthquake (March 11, 2011; MJMA 9.0) and the seismicity rate change in Tokyo Metropolitan area following March 2011. Because of large variation in focal mechanism in the Kanto region, the receiver faults for the ΔCFF were assumed to be two nodal planes of small (M ≥ 2.0) earthquakes which occurred before and after the Tohoku earthquake. The seismicity rate changes, particularly the rate increase, are well explained by ΔCFF due to the gigantic thrusting, while some other possible factors (e.g., dynamic stress changes, excess of fluid dehydration) may also contribute the rate changes. Among 30,746 previous events provided by the National Research Institute for Earth Science and Disaster Prevention (M ≥ 2.0, July 1979 - July 2003), we used as receiver faults, almost 16,000 events indicate significant increase in ΔCFF, while about 8,000 events show significant decrease. Positive ΔCFF predicts seismicity rate increase in southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in shallow crust of the Izu-Oshima and Hakone regions. In these regions, seismicity rates significantly increased after the Tohoku earthquake. The seismicity has increased since March 2011 with respect to the Epidemic Type of Aftershock Sequence (ETAS) model (Ogata, 1988), indicating that the rate change was due to the stress increase by the Tohoku earthquake. The activated seismicity in the Izu and Hakone regions rapidly decayed following the Omori-Utsu formula, while the increased rate of seismicity in the southwestern Ibaraki and northern Chiba prefectures is still continuing. We also calculated ΔCFF due to the 2011 Tohoku earthquake for the focal mechanism solutions of earthquakes between April 2008 and October 2011 recorded on the Metropolitan Seismic Observation network (MeSO-net). The ΔCFF values for the earthquakes after March 2011 show more

  10. A New Standard Installation Method of the Offline Seismic Observation Station in Heavy Snowfall Area of Tohoku Region

    NASA Astrophysics Data System (ADS)

    Hirahara, S.; Nakayama, T.; Hori, S.; Sato, T.; Chiba, Y.; Okada, T.; Matsuzawa, T.

    2015-12-01

    Soon after the 2011 Tohoku earthquake, seismic activity of Tohoku region, NE Japan is induced in the inland area of Akita prefecture and the border area between Fukushima and Yamagata prefectures. We plan to install a total of 80 offline seismic observation stations in these areas for studying the effect of megathrust earthquake on the activities of inland earthquakes. In our project, maintenance will be held twice-a-year for 4 years from 2015 by using 2.0Hz short-period 3-component seismometer, KVS-300 and ultra-low-power data logger, EDR-X7000 (DC12V 0.08W power supply). We installed seismometer on the rock surface or the slope of the natural ground at the possible sites confirmed with low noise level to obtain distinct seismic waveform data. We report an improvement in installation method of the offline seismic observation station in the heavy snowfall area of Tohoku region based on the retrieved data. In the conventional method, seismometer was installed in the hand-dug hole of a slope in case it is not waterproof. Data logger and battery were installed in the box container on the ground surface, and then, GPS antenna was installed on the pole fixed by stepladder. There are risks of the inclination of seismometer and the damage of equipment in heavy snowfall area. In the new method, seismometer is installed in the robust concrete box on the buried basement consists of precast concrete mass to keep its horizontality. Data logger, battery, and GPS antenna are installed on a high place by using a single pole with anchor bolt and a pole mount cabinet to enhance their safety. As a result, total costs of installation are kept down because most of the equipment is reusable. Furthermore, an environmental burden of waste products is reduced.

  11. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  12. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  13. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    NASA Astrophysics Data System (ADS)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  14. Seismic Activity in the Gulf of Mexico: a Preliminary Analysis

    NASA Astrophysics Data System (ADS)

    Franco, S. I.; Canet, C.; Iglesias, A.; Valdes-Gonzales, C. M.

    2013-05-01

    The southwestern corner of Gulf of Mexico (around the northern Isthmus of Tehuantepec) is exposed to an intense deep (> 100 km) seismic activity caused by the subduction of the Cocos plate. Aside from this, the gulf has been considered as a zone of low or no-seismicity. However, a sparse shallow seismic activity is observed across the Gulf of Mexico; some of these earthquakes have been strongly felt (e.g. 23/05/2007 and 10/09/2006), and the Jaltipan, 1959 earthquake caused fatalities and severe destruction in central and southern Veracruz. In this work we analyze 5 relevant earthquakes that occurred since 2001. At the central Gulf of Mexico focal mechanisms show inverse faults oriented approximately NW-SE with dip near 45 degrees, suggesting a link to sediment loading and/or to salt tectonics. On the other hand, in the southwestern corner of the gulf we analyzed some clear examples of strike-slip faults and activity probably related to the Veracruz Fault. One anomalous earthquake, recorded in 2007 in the western margin of the gulf, shows a strike-slip mechanism indicating a transform regime probably related with the East Mexican Fault. The recent improvement of the Mexican Seismological broadband network have allowed to record small earthquakes distributed in and around the Gulf of Mexico. Although the intermediate and large earthquakes in the region are infrequent, the historic evidence indicates that the magnitudes could reach Mw~6.4. This fact could be taken in consideration to reassess the seismic hazard for oil and industrial infrastructure in the region.

  15. Seismic constraints on Late Mesozoic magmatic plumbing system in the onshore-offshore area of Hong Kong

    NASA Astrophysics Data System (ADS)

    Xia, S.; Qiu, X.; Wan, K.

    2015-12-01

    We used active source wide-angle seismic data to determine a crustal structure beneath the onshore-offshore area of Hong Kong at the southern end of a broad belt dominated by Late Mesozoic intrusive and extrusive rocks in the coastal region of Southeast China. High-resolution tomographic images provide direct seismic evidence for the magmatic plumbing system of Late Mesozoic calderas. A localized high-velocity anomaly is revealed in the lower crust offshore between Hong Kong and Dangan Island, which may reflect basaltic underplating that induced voluminous silicic eruptions and granitoid plutons in the onshore-offshore area of Hong Kong. Tilted high-velocity zones are revealed in the entire crust beneath Dangan Island and the Late Mesozoic calderas of Hong Kong, which may reflect ascending magma chambers. We propose a paleo-Pacific plate subduction model to interpret our tomographic results and the generation of strong granitic magmatism in the Hong Kong area. Combining the tomographic image beneath the Lianhuashan Fault Zone with the distribution of Late Mesozoic calderas, we infer that the Lianhuashan Fault Zone might be the dominant magmatic conduit for mantle-derived magmas ascending to the upper crust. In addition, intersecting faults with different orientations could control the distribution and geometry of the vents, calderas, dykes and plutons and play an important role in forming magma conduits for individual volcanoes. Keywords: Basaltic underplating; Magmatic plumbing; Southeast China; Calderas; Active-source seismic tomography

  16. Study of Seismic Activity Using Geophysical and Radio Physical Equipment for Observation

    NASA Astrophysics Data System (ADS)

    Kvavadze, N.; Tsereteli, N. S.

    2015-12-01

    One of the most dangerous and destructive natural hazards are earthquakes, which is confirmed by recent earthquakes such as Nepal 2015, Japan and Turkey 2011. Because of this, study of seismic activity is important. Studying any process, it is necessary to use different methods of observation, which allows us to increase accuracy of obtained data. Seismic activity is a complex problem and its study needs different types of observation methods. Two main problems of seismic activity study are: reliable instrumental observations and earthquake short-term predictions. In case of seismic risks it is necessary to have reliable accelerometer data. One of the most promising field in earthquake short-term prediction is very low frequency (VLF) electromagnetic wave propagation in ionosphere observation. To study Seismic activity of Caucasus region, was created observation complex using Accelerometer, Velocimeter and VLF electromagnetic waves received from communication stations (located in different area of the world) reflected from low ionosphere. System is created and operates at Tbilisi State University Ionosphere Observatory, near Tbilisi in Tabakhmela 42.41'70 N, 44.80'92 E, Georgia. Data obtained is sent to a local server located at M. Nodia Institute of Geophysics, TSU, for storage and processing. Diagram for complex is presented. Also data analysis methods were created and preliminary processing was done. In this paper we present some of the results: Earthquake data from ionosphere observations as well as local earthquakes recorded with accelerometer and velocimeter. Complex is first in 6 that will be placed around Georgia this year. We plan on widening network every year.

  17. PRESS40: a project for involving students in active seismic risk mitigation

    NASA Astrophysics Data System (ADS)

    Barnaba, Carla; Contessi, Elisa; Rosa Girardi, Maria

    2016-04-01

    To memorialize the anniversary of the 1976 Friuli earthquake, the Istituto Statale di Istruzione Superiore "Magrini Marchetti" in Gemona del Friuli (NE Italy), with the collaboration of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), has promoted the PRESS40 Project (Prevenzione Sismica nella Scuola a 40 anni dal terremoto del Friuli, that in English sounds like "Seismic Prevention at School 40 years later the Friuli earthquake"). The project has developed in the 2015-2016 school year, starting from the 40th anniversary of the Friuli earthquake, and it aims to disseminate historical memory, seismic culture and awareness of seismic safety in the young generations, too often unconscious of past experiences, as recent seismic hazard perception tests have demonstrated. The basic idea of the PRESS40 Project is to involve the students in experimental activities to be active part of the seismic mitigation process. The Project is divided into two main parts, the first one in which students learn-receive knowledge from researchers, and the second one in which they teach-bring knowledge to younger students. In the first part of the project, 75 students of the "Magrini Marchetti" school acquired new geophysical data, covering the 23 municipalities from which they come from. These municipalities represent a wide area affected by the 1976 Friuli earthquake. In each locality a significant site was examined, represented by a school area. At least, 127 measurements of ambient noise have been acquired. Data processing and interpretation of all the results are still going on, under the supervision of OGS researchers.The second part of the project is planned for the early spring, when the students will present the results of geophysical survey to the younger ones of the monitored schools and to the citizens in occasion of events to commemorate the 40th anniversary of the Friuli earthquake.

  18. Paleoseismic targets, seismic hazard, and urban areas in the Central and Eastern United States

    USGS Publications Warehouse

    Wheeler, R.L.

    2008-01-01

    Published geologic information from the central and eastern United States identifies 83 faults, groups of sand blows, named seismic zones, and other geological features as known or suspected products of Quaternary tectonic faulting. About one fifth of the features are known to contain faulted Quaternary materials or seismically induced liquefaction phenomena, but the origin and associated seismic hazard of most of the other features remain uncertain. Most of the features are in or near large urban areas. The largest cluster of features is in the Boston-Washington urban corridor (2005 estimated population: 50 million). The proximity of most features to populous areas identifies paleoseismic targets with potential to impact urban-hazard estimates.

  19. Seismic and Gravity Investigations of the Caja del Rio Geothermal Area, New Mexico

    NASA Astrophysics Data System (ADS)

    Braile, L. W.; Burke, B.; Butler, E.; Harper, C.; Livermore, J.; McGlannan, A.; Wasik, A.; Baldridge, W. S.; Biehler, S.; Ferguson, J. F.; McPhee, D. K.; Snelson, C. M.; Sussman, A. J.

    2012-12-01

    The SAGE (Summer of Applied Geophysical Experience) program collected new seismic and gravity data in 2012 in the Caja del Rio area of northern New Mexico. The area, about 25 km NW of Santa Fe, has been identified as a potential geothermal resources area based on relatively high temperature gradients in drill holes. The SAGE 2012 data collection was part of an integrated geophysical study of the area initiated in 2011. Seismic data consisted of a 6.4 km SE to NW profile (80 three-component stations, 20 m station spacing, using a Vibroseis source - 20 m spacing for reflection VPs; 800 m spacing for refraction VPs) with both refraction and CMP reflection coverage. The surface conditions (dry unconsolidated cover over a thin volcanic layer) increased surface wave energy and limited the signal-to-noise level of the refraction and reflection arrivals. The refraction data were modeled with first arrival travel time methods. The reflection data were processed to produce a CMP stacked record section. Strong, NW-dipping reflectors, interpreted as from the Espinaso formation, are visible at about 1.4 seconds two-way time. One hundred and sixty-four new gravity measurements (detailed data at 500 m spacing along the seismic profile and regional stations) were collected and combined with existing regional data for modeling. Interpretation of the seismic and gravity data was aided by refraction velocities, the existence of a nearby regional seismic reflection profile from industry, and lithologies and well-logs from a deep well. The sedimentary basin interpreted from the seismic and gravity data, along with existing geological and geophysical information, consists of a thick section of Tertiary rift fill (capped by a thin layer of volcanic rocks), over Mesozoic and Paleozoic rocks, with a total basin thickness of about 3 km.

  20. Seismic exploration of Fuji volcano with active sources in 2003

    NASA Astrophysics Data System (ADS)

    Oikawa, J.; Kagiyama, T.; Tanaka, S.; Miyamachi, H.; Tsutsui, T.; Ikeda, Y.; Katayama, H.; Matsuo, N.; Oshima, H.; Nishimura, Y.; Yamamoto, K.; Watanabe, T.; Yamazaki, F.

    2004-12-01

    Fuji volcano (altitude 3,776 m) is the largest basaltic stratovolcano in Japan. In late August and early September 2003, seismic exploration was conducted around Fuji volcano by the detonation of 500 kg charges of dynamite to investigate the seismic structure of that area. Seismographs with an eigenfrequency of 2 Hz were used for observation, positioned along a WSW-ENE line passing through the summit of the mountain. A total of 469 observation points were installed at intervals of 250-500 m. The data were stored in memory on-site using data loggers. The sampling interval was 4 ms. Charges were detonated at 5 points, one at each end of the observation line and 3 along its length. The first arrival times at each observation point for each detonation were recorded as data. The P-wave velocity structure directly below the observation line was determined by forward calculation using the ray tracing method [Zelt and Smith, 1992]. The P-wave velocity structure below the volcano, assuming a layered structure, was found to be as follows. (1) The first layer extends for about 40 km around the summit and to a depth of 1-2 km. The P-wave velocity is 2.5 km/s on the upper surface of the layer and 3.5 km/s on the lower interface. (2) The second layer has P-wave velocities of 4.0 km/s on the top interface and 5.5 km/s at the lower interface. The layer is 25 km thick to the west of the summit and 1-2 km thick to the east, and forms a dome shape with a peak altitude of 2000 m directly below the summit. (3) The third layer is 5-12 km thick and has P-wave velocities of 5.7 km/s at the top interface and 6.5 km/s at the lower interface. This layer reaches shallower levels to the east of the summit, corresponding to the area where the second layer is thinner. Mt. Fuji is located slightly back from where the Philippine Sea Plate subducts below the Eurasian plate in association with collision with the Izu Peninsula. Matsuda (1971) suggested that Mt. Fuji lies on the same uplifted body as

  1. Problems, methods, and results of instrumental seismic risk microzoning of areas of hydrotechnical construction

    SciTech Connect

    Bugaevskii, A. G.; Kukhmazov, S. U.; Savich, A. I.

    2006-01-15

    Problems, methods, and results of instrumental seismic risk microzoning (SRM) of areas of hydrotechnical construction are considered. New approaches are suggested for processing and analyzing the data, which are also applicable for practical SRM of inhabited localities and civil and industrial construction sites.

  2. Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)

    SciTech Connect

    Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.

    2010-09-24

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.

  3. Refining seismic parameters in low seismicity areas by 3D trenching: The Alhama de Murcia fault, SE Iberia

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas K.; Sharp, Warren D.; Medialdea, Alicia; Rhodes, Edward J.

    2016-06-01

    Three-dimensional paleoseismology in strike-slip faults with slip rates less than 1 mm per year involves a great methodological challenge. We adapted 3D trenching to track buried channels offset by the Alhama de Murcia seismogenic left-lateral strike-slip fault (SE Iberia). A fault net slip of 0.9 ± 0.1 mm/yr was determined using statistical analysis of piercing lines for one buried channel, whose age is constrained between 15.2 ± 1.1 ka and 21.9-22.3 cal BP. This value is larger and more accurate than the previously published slip rates for this fault. The minimum number of five paleo-earthquakes identified since the deposition of dated layers suggests a maximum average recurrence interval of approximately 5 ka. The combination of both seismic parameters yields a maximum slip per event between 5.3 and 6.3 m. We show that accurately planned trenching strategies and data processing may be key to obtaining robust paleoseismic parameters in low seismicity areas.

  4. A Large-N Mixed Sensor Active + Passive Seismic Array near Sweetwater, TX

    NASA Astrophysics Data System (ADS)

    Barklage, M.; Hollis, D.; Gridley, J. M.; Woodward, R.; Spriggs, N.

    2014-12-01

    A collaborative high-density seismic survey using broadband and short period seismic sensors was conducted March 7 - April 30, 2014 near Sweetwater, TX. The objective of the survey was to use a combination of controlled source shot slices and passive seismic recordings recorded by multiple types of sensors with different bandwidths and sensitivities to image the subsurface. The broadband component of the survey consisted of 25 continuously recording seismic stations comprised of 20 Trillium Compact Posthole sensors from Nanometrics and 5 Polar Trillium 120PHQs from the IRIS/PASSCAL Instrument Center (PIC). The broadband stations also utilized 25 Centaur digitizers from Nanometrics as well as 25 polar quick deploy enclosures from the PIC. The broadband array was designed to maximize horizontal traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. The short period component of the survey consisted of 2639 receiver locations using Zland nodes from NodalSeismic. The nodes are further divided into 3 sub-arrays: 1) outlier array 2) active source array 3) backbone array. The outlier array consisted of 25 continuously recording nodes distributed around the edge of the survey at a distance of ~5 km from the survey boundary, and provided valuable constraints to passive data analysis techniques at the edge of the survey boundary. The active source patch consisted of densely spaced nodes that were designed to record signals from a Vibroseis source truck for active source reflection processing and imaging. The backbone array consisted of 292 nodes that covered the entirety of the survey area to maximize the value of the passive data analysis. By utilizing continuous recording and smartly designed arrays for measuring local and regional earthquakes we can incorporate velocity information derived from passive data analysis into the active source processing workflow to produce a superior subsurface

  5. Seismicity studies at Moluccas area based on the result of hypocenter relocation using HypoDD

    SciTech Connect

    Utama, Muhammad Reza July; Nugraha, Andri Dian; Puspito, Nanang T.

    2015-04-24

    The precise hypocenter was determined location using double difference method around subduction zone in Moluccas area eastern part of Indonesia. The initial hypocenter location from MCGA data catalogue of 1,945 earthquake events. Basically the principle of double-difference algorithm assumes if the distance between two earthquake hypocenter distribution is very small compared to the distance between the station to the earthquake source, the ray path can be considered close to both earthquakes. The results show the initial earthquakes with a certain depth (fix depth 10 km) relocated and can be interpreted more reliable in term of seismicity and geological setting. The relocation of the intra slab earthquakes beneath Banda Arc are also clearly observed down to depth of about 400 km. The precise relocated hypocenter will give invaluable seismicity information for other seismological and tectonic studies especially for seismic hazard analysis in this region.

  6. Radar imaging of winter seismic survey activity in the National Petroleum Reserve-Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Rykhus, Russ; Lu, Zhiming; Arp, C.D.; Selkowitz, D.J.

    2008-01-01

    During the spring of 2006, Radarsat-1 synthetic aperture radar (SAR) imagery was acquired on a continual basis for the Teshekpuk Lake Special Area (TLSA), in the northeast portion of the National Petroleum Reserve, Alaska (NPR-A) in order to monitor lake ice melting processes. During data processing, it was discovered that the Radarsat-1 imagery detected features associated with winter seismic survey activity. Focused analysis of the image time series revealed various aspects of the exploration process such as the grid profile associated with the seismic line surveys as well as trails and campsites associated with the mobile survey crews. Due to the high temporal resolution of the dataset it was possible to track the progress of activities over a one month period. Spaceborne SAR imagery can provide information on the location of winter seismic activity and could be used as a monitoring tool for land and resource managers as increased petroleum-based activity occurs in the TLSA and NPR-A. ?? 2008 Cambridge University Press.

  7. Seismic Hazard and Risk Assessments for Beijing-Tianjin-Tangshan, China, Area

    USGS Publications Warehouse

    Xie, F.; Wang, Z.; Liu, J.

    2011-01-01

    Seismic hazard and risk in the Beijing-Tianjin-Tangshan, China, area were estimated from 500-year intensity observations. First, we digitized the intensity observations (maps) using ArcGIS with a cell size of 0.1 ?? 0.1??. Second, we performed a statistical analysis on the digitized intensity data, determined an average b value (0.39), and derived the intensity-frequency relationship (hazard curve) for each cell. Finally, based on a Poisson model for earthquake occurrence, we calculated seismic risk in terms of a probability of I ??? 7, 8, or 9 in 50 years. We also calculated the corresponding 10 percent probability of exceedance of these intensities in 50 years. The advantages of assessing seismic hazard and risk from intensity records are that (1) fewer assumptions (i. e., earthquake source and ground motion attenuation) are made, and (2) site-effect is included. Our study shows that the area has high seismic hazard and risk. Our study also suggests that current design peak ground acceleration or intensity for the area may not be adequate. ?? 2010 Birkh??user / Springer Basel AG.

  8. Mapping of active faults based on the analysis of high-resolution seismic reflection profiles in offshore Montenegro

    NASA Astrophysics Data System (ADS)

    Vucic, Ljiljana; Glavatovic, Branislav

    2014-05-01

    High-resolution seismic-reflection data analysis is considered as important tool for mapping of active tectonic faults, since seismic exploration methods on varied scales can image subsurface structures of different depth ranges. Mapping of active faults for the offshore area of Montenegro is performed in Petrel software, using reflection database consist of 2D profiles in length of about 3.500 kilometers and 311 square kilometers of 3D seismics, acquired from 1979 to 2003. Montenegro offshore area is influenced by recent tectonic activity with numerous faults, folded faults and over trusts. Based on reflection profiles analysis, the trust fault system offshore Montenegro is reveled, parallel to the coast and extending up to 15 kilometers from the offshore line. Then, the system of normal top carbonate fault planes is mapped and characterized on the southern Adriatic, with NE trending. The tectonic interpretation of the seismic reflection profiles in Montenegro point toward the existence of principally reverse tectonic forms in the carbonate sediments, covered by young Quaternary sandy sediments of thickness 1-3 kilometers. Also, reflective seismic data indicate the active uplifting of evaporite dome on about 10 kilometers of coastline.

  9. Identification of seismically susceptible areas in western Himalaya using pattern recognition

    NASA Astrophysics Data System (ADS)

    Mridula; Sinvhal, Amita; Wason, Hans Raj

    2016-06-01

    Seismicity in the western Himalayas is highly variable. Several historical and instrumentally recorded devastating earthquakes originated in the western Himalayas which are part of the Alpine-Himalayan belt. Earthquakes cause tremendous loss of life and to the built environment. The amount of loss in terms of life and infrastructure has been rising continuously due to significant increase in population and infrastructure. This study is an attempt to identify seismically susceptible areas in western Himalaya, using pattern recognition technique. An area between latitude 29∘-36∘N and longitude 73∘-80∘E was considered for this study. Pattern recognition starts with identification, selection and extraction of features from seismotectonic data. These features are then subjected to discriminant analysis and the study area was classified into three categories, viz., Area A: most susceptible area, Area B: moderately susceptible area, and Area C: least susceptible area. Results show that almost the entire states of Himachal Pradesh and Uttarakhand and a portion of Jammu & Kashmir are classified as Area A, while most of Jammu & Kashmir is classified as Area B and the Indo-Gangetic plains are classified as Area C.

  10. Active damping performance of the KAGRA seismic attenuation system prototype

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshinori; Sekiguchi, Takanori; Takahashi, Ryutaro; Aso, Yoichi; Barton, Mark; Erasmo Peña Arellano, Fabián; Shoda, Ayaka; Akutsu, Tomotada; Miyakawa, Osamu; Kamiizumi, Masahiro; Ishizaki, Hideharu; Tatsumi, Daisuke; Hirata, Naoatsu; Hayama, Kazuhiro; Okutomi, Koki; Miyamoto, Takahiro; Ishizuka, Hideki; DeSalvo, Riccardo; Flaminio, Raffaele

    2016-05-01

    The Large-scale Cryogenic Gravitational wave Telescope (formerly LCGT now KAGRA) is presently under construction in Japan. This May we assembled a prototype of the seismic attenuation system (SAS) for the beam splitter and the signal recycling mirrors of KAGRA, which we call Type-B SAS, and evaluated its performance at NAOJ (Mitaka, Toyko). We investigated its frequency response, active damping performance, vibration isolation performance and long-term stability both in and out of vacuum. From the frequency response test and the active damping performance test, we confirmed that the SAS worked as we designed and that all mechanical resonances which could disturb lock acquisition and observation are damped within 1 minute, which is required for KAGRA, by the active controls.

  11. Characterization and Relocation of Seismic Clusters in the Area of Bahia de Banderas, Jalisco-Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Rutz Lopez, M.; Nunez-Cornu, F. J.; Carmona, E.

    2004-12-01

    We analysed the seismic activity that took place the year of 2003 in the area of Bahia de Banderas, between the states of Jalisco and Nayarit, registrated with a local network of 7 stations, which belongs to the Civil Defence of Jalisco and the University of Guadalajara. 400 events have been located, in these earthquakes we identified some series of a similar waveforms. For defining this similarity between seismic events and in order to classify them into clusters, we have applied the cross-correlation method of the P and S arrivals. We found a fourth part of epicentres gathered into 15 clusters of 3-25 events. For some clusters we used relocations relative to a master event. Located south of Bahia de Banderas exist clusters aligned along structures trending N-S in the area of Tuito. This trend agrees with the topographic relief of the area. Other clustes can be related with active tectonic structures at north of Cajon de Peñas dam (Tomatlan). Another cluster was identified at the East, Amatlan de Cañas-Ameca area, and one more in the center of the Bahia de Banderas.

  12. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area.

    PubMed

    Geersen, Jacob; Ranero, César R; Barckhausen, Udo; Reichert, Christian

    2015-01-01

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role. PMID:26419949

  13. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area

    PubMed Central

    Geersen, Jacob; Ranero, César R.; Barckhausen, Udo; Reichert, Christian

    2015-01-01

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role. PMID:26419949

  14. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area.

    PubMed

    Geersen, Jacob; Ranero, César R; Barckhausen, Udo; Reichert, Christian

    2015-09-30

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role.

  15. Active-source seismic imaging below Lake Malawi (Nyasa) from the SEGMeNT project

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Scholz, C. A.; Gaherty, J. B.; Accardo, N. J.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Trinhammer, P.; Wood, D. A.; Khalfan, M.; Ebinger, C. J.; Nyblade, A.; Mbogoni, G. J.; Mruma, A. H.; Salima, J.; Ferdinand-Wambura, R.

    2015-12-01

    central basins offset the youngest sediments, indicating that they are active. These include faults in the area of the 2009 Karonga earthquakes.

  16. Microseismicity in the Seoul Metropolitan Area, Korea, and its implications for the seismic hazards

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, W.; Kang, S.; Ryoo, Y.; Kim, M.; Park, Y.; Kyung, J.

    2012-12-01

    On 9 February 2010, a minor earthquake occurred in the northwest of South Korea. The earthquake was widely felt in the Seoul National Capital Area (SNCA). The earthquake attracted much attention from media, politicians, policy makers and the public, who raised concerns about seismic hazards and risks in the Korea Peninsula, in particular, to the SNCA. SNCA includes the Seoul and Incheon metropolitans and most of the Gyeonggi province. It has a population of 24.5 million (as of 2007) and is ranked as the second largest metropolitan area in the world. The SNCA has been the center of the economics, politics, and culture during the past half millennium since the city has been designated as the capital city in 1394. We applied waveform correlation detector to 2007-2010 continuously recorded seismic data to identify repeating earthquakes. We identify 9 micro-earthquakes during 2007-2010 periods which are not reported in the KNSN bulletin because their magnitudes are too small. Estimated magnitudes using amplitude ratios measured at the station SEO indicate the smallest event detected by the waveform cross correlation technique in the study is as low as 0.19. The number of events for our interpretation becomes 11 including two previously reported events and nine newly identified micro-earthquakes. All of them occur in a very small area. While there are historic documents reporting earthquakes in the SNCA, repeating earthquakes or clustered seismicity from the instrumental earthquake record have not reported before. We have determined the focal mechanism solution for the representative events (9 February 2010, ML 3.0) using the first-motion polarities. The preferred focal mechanism solution for the representative event is the WNW-ESE striking fault, which are consistent with the precisely determined earthquake hypocenter distribution. It is also consistent with the results in the previous studies of stress orientation in and around the Korean peninsula. The new list of

  17. Seismic sequence stratigraphy of Tertiary sediments, offshore Sarawak deep-water area

    SciTech Connect

    Mohammad, A.M. )

    1994-07-01

    Tectonic processes and sea level changes are the main key factors that have strongly influenced clastic and carbonate sedimentations in the Sarawak deep-water area. A seismic sequence stratigraphy of Tertiary sediments was conducted in the area with the main objective of developing a workable genetic chronostratigraphic framework that defines the sequence and system tracts boundaries within which depositional systems and lithofacies can be identified, mapped and interpreted. This study has resulted in the identification of eight major depositional sequences that are bounded by regional unconformities and correlative conformities. These sequences can generally be grouped into four megasequences, based on the main tectonic events observed in the area. Three system tracts of a type-1, third-order sequence boundary were recognized in most of the sequences: lowstand, transgressive, and highstand systems tracts. The lowstand system tract includes basin-floor fans, slope fans, and lowstand prograding wedges. Paleoenvironmental distribution maps constructed for each of the sequences using seismic facies analysis and nearby well control suggest that the sequence intervals are predominantly transgressive units that have been intermittently interrupted by regressive pulses brought about by changes in eustatic sea level. The trend of paleocoastline observed during Oligocene to Miocene times changes from northwest-southeast orientation to a position roughly parallel to the present coastline. Seismic facies maps generated from late Oligocene to early Miocene indicate the depositional environment was coastal to coastal plain in the western and the middle part of the study area, becoming more marine toward the east and northeast.

  18. Seismic hazard assessment in the Catania and Siracusa urban areas (Italy) through different approaches

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Lombardo, Giuseppe; Rigano, Rosaria

    2010-05-01

    The seismic hazard assessment (SHA) can be performed using either Deterministic or Probabilistic approaches. In present study a probabilistic analysis was carried out for the Catania and Siracusa towns using two different procedures: the 'site' (Albarello and Mucciarelli, 2002) and the 'seismotectonic' (Cornell 1968; Esteva, 1967) methodologies. The SASHA code (D'Amico and Albarello, 2007) was used to calculate seismic hazard through the 'site' approach, whereas the CRISIS2007 code (Ordaz et al., 2007) was adopted in the Esteva-Cornell procedure. According to current international conventions for PSHA (SSHAC, 1997), a logic tree approach was followed to consider and reduce the epistemic uncertainties, for both seismotectonic and site methods. The code SASHA handles the intensity data taking into account the macroseismic information of past earthquakes. CRISIS2007 code needs, as input elements, a seismic catalogue tested for completeness, a seismogenetic zonation and ground motion predicting equations. Data concerning the characterization of regional seismic sources and ground motion attenuation properties were taken from the literature. Special care was devoted to define source zone models, taking into account the most recent studies on regional seismotectonic features and, in particular, the possibility of considering the Malta escarpment as a potential source. The combined use of the above mentioned approaches allowed us to obtain useful elements to define the site seismic hazard in Catania and Siracusa. The results point out that the choice of the probabilistic model plays a fundamental role. It is indeed observed that when the site intensity data are used, the town of Catania shows hazard values higher than the ones found for Siracusa, for each considered return period. On the contrary, when the Esteva-Cornell method is used, Siracusa urban area shows higher hazard than Catania, for return periods greater than one hundred years. The higher hazard observed

  19. Three-dimensional seismic interpretation: Espoir Field area, offshore Ivory Coast

    SciTech Connect

    Grillot, L.R.; Anderton, P.W.; Haselton, T.M.; Dermargne, J.F.

    1986-05-01

    The Espoir oil field, located approximately 13 km offshore Ivory Coast, was discovered in 1980 by a joint venture comprised of Phillips Petroleum Company, AGIP, SEDCO Energy, and PETROCI. Following the discovery, a three-dimensional seismic survey was recorded by GSI in 1981-1982 to provide detailed seismic coverage of Espoir field and adjacent features. The seismic program consisted of 7700 line-km of data acquired in a single survey area that is located on the edge of the continental shelf and extends into deep water. In comparison with previous two-dimensional seismic surveys, the three-dimensional data provided several improvements in interpretation and mapping including: (1) sharper definition of structural features, (2) reliable correlations of horizons and fault traces between closely spaced tracks, (3) detailed time contour maps from time-slice sections, and (4) improved velocity model for depth conversion. The improved mapping helped us identify additional well locations; the results of these wells compared favorably with the interpretation made prior to drilling.

  20. 3-D Seismic Tomographic Modelling of the North-Western Spitsbergen Area

    NASA Astrophysics Data System (ADS)

    Czuba, W.

    2015-12-01

    Deep seismic sounding measurements were performed in the continent-ocean transition zone of the north-western Svalbard continental margin in 1976 - 1999 in an international co-operation. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and ocean bottom hydrophone systems (OBH). Data from archival and modern seismic profiles were altogether used for 3-D tomographic inversion using JIVE3D software. The modelling area was chosen to be a rectangle of 420 x 330 km (Fig.). The results are similar to the earlier 2-D modelling, supplemented by off-line information from the profiles and the SPITS permanent station, giving a 3-D image of the crustal structure and Moho interface shape. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho discontinuity was found east of the Molloy Deep and in the Knipovich Ridge. The Moho interface deepens to about 30 km beneath the continental crust of Spitsbergen.

  1. Seismic tomography of the area of the 2010 Beni-Ilmane earthquake sequence, north-central Algeria.

    PubMed

    Abacha, Issam; Koulakov, Ivan; Semmane, Fethi; Yelles-Chaouche, Abd Karim

    2014-01-01

    The region of Beni-Ilmane (District of M'sila, north-central Algeria) was the site of an earthquake sequence that started on 14 May 2010. This sequence, which lasted several months, was triggered by conjugate E-W reverse and N-S dextral faulting. To image the crustal structure of these active faults, we used a set of 1406 well located aftershocks events and applied the local tomography software (LOTOS) algorithm, which includes absolute source location, optimization of the initial 1D velocity model, and iterative tomographic inversion for 3D seismic P- and S-wave velocities (and the Vp/Vs ratio), and source parameters. The patterns of P-wave low-velocity anomalies correspond to the alignments of faults determined from geological evidence, and the P-wave high-velocity anomalies may represent rigid blocks of the upper crust that are not deformed by regional stresses. The S-wave low-velocity anomalies coincide with the aftershock area, where relatively high values of Vp/Vs ratio (1.78) are observed compared with values in the surrounding areas (1.62-1.66). These high values may indicate high fluid contents in the aftershock area. These fluids could have been released from deeper levels by fault movements during earthquakes and migrated rapidly upwards. This hypothesis is supported by vertical sections across the study area show that the major Vp/Vs anomalies are located above the seismicity clusters.

  2. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    NASA Astrophysics Data System (ADS)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  3. Assessing low-activity faults for the seismic safety of dams

    SciTech Connect

    Page, W.D.; Savage, W.U.; McLaren, M.K.

    1995-12-31

    Dams have been a familiar construct in the northern Sierra Nevada range in California (north of the San Joaquin River) since the forty-niners and farmers diverted water to their gold mines and farms in the mid 19th century. Today, more than 370 dams dot the region from the Central Valley to the eastern escarpment. Fifty-five more dam streams on the eastern slope. The dams are of all types: 240 earth fill; 56 concrete gravity; 45 rock and earth fills; 35 rock fill; 14 concrete arch; 9 hydraulic fill; and 29 various other types. We use the northern Sierra Nevada to illustrate the assessment of low-activity faults for the seismic safety of dams. The approach, techniques, and methods of evaluation are applicable to other regions characterized by low seismicity and low-activity faults having long recurrence intervals. Even though several moderate earthquakes had shaken the Sierra Nevada since 1849 (for example, the 1875 magnitude 5.8 Honey Lake and the 1909 magnitudes 5 and 5.5 Downieville earthquakes), seismic analyses for dams in the area generally were not performed prior to the middle of this century. Following the 1971 magnitude 6.7 San Fernando earthquake, when the hydraulic-fill Lower Van Norman Dam in southern California narrowly escaped catastrophic failure, the California Division of Safety of Dams and the Federal Energy Regulatory Commission required seismic safety to be addressed with increasing rigor. In 1975, the magnitude 5.7 Oroville earthquake on the Cleveland Hill fault near Oroville Dam in the Sierra Nevada foothills, showed convincingly that earthquakes and surface faulting could occur within the range. Following this event, faults along the ancient Foothills fault system have been extensively investigated at dam sites.

  4. 3D seismic imaging, example of 3D area in the middle of Banat

    NASA Astrophysics Data System (ADS)

    Antic, S.

    2009-04-01

    3D seismic imaging was carried out in the 3D seismic volume situated in the middle of Banat region in Serbia. The 3D area is about 300 km square. The aim of 3D investigation was defining geology structures and techtonics especially in Mesozoik complex. The investigation objects are located in depth from 2000 to 3000 m. There are number of wells in this area but they are not enough deep to help in the interpretation. It was necessary to get better seismic image in deeper area. Acquisition parameters were satisfactory (good quality of input parameters, length of input data was 5 s, fold was up to 4000 %) and preprocessed data was satisfied. GeoDepth is an integrated system for 3D velocity model building and for 3D seismic imaging. Input data for 3D seismic imaging consist of preprocessing data sorted to CMP gathers and RMS stacking velocity functions. Other type of input data are geological information derived from well data, time migrated images and time migrated maps. Workflow for this job was: loading and quality control the input data (CMP gathers and velocity), creating initial RMS Velocity Volume, PSTM, updating the RMS Velocity Volume, PSTM, building the Initial Interval Velocity Model, PSDM, updating the Interval Velocity Model, PSDM. In the first stage the attempt is to derive initial velocity model as simple as possible as.The higher frequency velocity changes are obtained in the updating stage. The next step, after running PSTM, is the time to depth conversion. After the model is built, we generate a 3D interval velocity volume and run 3D pre-stack depth migration. The main method for updating velocities is 3D tomography. The criteria used in velocity model determination are based on the flatness of pre-stack migrated gathers or the quality of the stacked image. The standard processing ended with poststack 3D time migration. Prestack depth migration is one of the powerful tool available to the interpretator to develop an accurate velocity model and get

  5. Effects of fracture contact areas on seismic attenuation due to wave-induced fluid flow

    NASA Astrophysics Data System (ADS)

    Germán Rubino, J.; Müller, Tobias M.; Milani, Marco; Holliger, Klaus

    2014-05-01

    Wave-induced fluid flow (WIFF) between fractures and the embedding matrix is considered to be a predominant seismic attenuation mechanism in fractured rocks. That is, due to the strong compressibility contrast between fractures and embedding matrix, seismic waves induce strong fluid pressure gradients, followed by local fluid flow between such regions, which in turn produces significant energy dissipation. Natural fractures can be conceptualized as two surfaces in partial contact, containing very soft and highly permeable material in the inner region. It is known that the characteristics of the fracture contact areas control the mechanical properties of the rock sample, since as the contact area increases, the fracture becomes stiffer. Correspondingly, the detailed characteristics of the contact area of fractures are expected to play a major role in WIFF-related attenuation. To study this topic, we consider a simple model consisting of a horizontal fracture located at the center of a porous rock sample and represented by a number of rectangular cracks of constant height separated by contact areas. The cracks are modelled as highly compliant, porous, and permeable heterogeneities, which are hydraulically connected to the background material. We include a number of rectangular regions of background material separating the cracks, which represent the presence of contact areas of the fracture. In order to estimate the WIFF effects, we apply numerical oscillatory relaxation tests based on the quasi-static poro-elastic equations. The equivalent undrained, complex plane-wave modulus, which allows to estimate seismic attenuation and velocity dispersion for the vertical direction of propagation, is expressed in terms of the imposed displacement and the resulting average vertical stress at the top boundary. In order to explore the effects of the presence of fracture contact areas on WIFF effects, we perform an exhaustive sensitivity analysis considering different

  6. Variation in harbour porpoise activity in response to seismic survey noise.

    PubMed

    Pirotta, Enrico; Brookes, Kate L; Graham, Isla M; Thompson, Paul M

    2014-05-01

    Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891

  7. Variation in harbour porpoise activity in response to seismic survey noise

    PubMed Central

    Pirotta, Enrico; Brookes, Kate L.; Graham, Isla M.; Thompson, Paul M.

    2014-01-01

    Animals exposed to anthropogenic disturbance make trade-offs between perceived risk and the cost of leaving disturbed areas. Impact assessments tend to focus on overt behavioural responses leading to displacement, but trade-offs may also impact individual energy budgets through reduced foraging performance. Previous studies found no evidence for broad-scale displacement of harbour porpoises exposed to impulse noise from a 10 day two-dimensional seismic survey. Here, we used an array of passive acoustic loggers coupled with calibrated noise measurements to test whether the seismic survey influenced the activity patterns of porpoises remaining in the area. We showed that the probability of recording a buzz declined by 15% in the ensonified area and was positively related to distance from the source vessel. We also estimated received levels at the hydrophones and characterized the noise response curve. Our results demonstrate how environmental impact assessments can be developed to assess more subtle effects of noise disturbance on activity patterns and foraging efficiency. PMID:24850891

  8. Aftershock and induced seismic activity of the 2011 off the Pacific coast of Tohoku Earthquake in the northern part of Tohoku district, NE Japan

    NASA Astrophysics Data System (ADS)

    Kosuga, M.; Watanabe, K.

    2011-12-01

    We investigated the seismic activity around the northern neighbor of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) with special attention to a potential large aftershock in the area. We obtained a combined data set by adding our manually-picked locations to the catalog locations by the Japan Meteorological Agency. The hypocenter distribution delineates active and inactive bands of seismicity. The band of low seismicity corresponds to a zone of a large seismic slip, indicating that aftershocks occurred in peripheral neighbors of the mainshock asperity. The broad band of active seismicity along the coast corresponds to the zone of a large postseismic slip, suggesting the enhancement of the aftershock activity by the slip. Although the northern neighbor of the mainshock fault is a favored region of increased seismicity, as shown from a Coulomb stress calculation, no significant seismic activity is observed within the potential source area except along the Japan Trench and the SW corner. This implies that the zone of interplate moment release by previous large earthquakes and the subsequent slow slip acted as a barrier to the migration of both the mainshock rupture and aftershock activity. However, an aftershock area in the zone may reflect inhomogeneous moment release by past seismic and aseismic sequences. Induced inland seismicity is quite high in the Akita Prefecture on the Japan Sea side apart more than 100 km from the mainshock fault. There are some active clusters including moderate earthquakes with magnitude greater than 5. They are newly formed clusters after the mainshock, while the seismicity of previously active areas decreased significantly. Focal mechanism solutions of earthquakes in the new clusters show the types of strike-slip with consistently NW-SE trending T-axes. The predominant type of focal mechanisms in the Akita area before the mainshock was E-W compressional reverse faulting. Thus the stress field in the area has changed

  9. Seismic acquisition and processing methodologies in overthrust areas: Some examples from Latin America

    SciTech Connect

    Tilander, N.G.; Mitchel, R..

    1996-08-01

    Overthrust areas represent some of the last frontiers in petroleum exploration today. Billion barrel discoveries in the Eastern Cordillera of Colombia and the Monagas fold-thrust belt of Venezuela during the past decade have highlighted the potential rewards for overthrust exploration. However the seismic data recorded in many overthrust areas is disappointingly poor. Challenges such as rough topography, complex subsurface structure, presence of high-velocity rocks at the surface, back-scattered energy and severe migration wavefronting continue to lower data quality and reduce interpretability. Lack of well/velocity control also reduces the reliability of depth estimations and migrated images. Failure to obtain satisfactory pre-drill structural images can easily result in costly wildcat failures. Advances in the methodologies used by Chevron for data acquisition, processing and interpretation have produced significant improvements in seismic data quality in Bolivia, Colombia and Trinidad. In this paper, seismic test results showing various swath geometries will be presented. We will also show recent examples of processing methods which have led to improved structural imaging. Rather than focusing on {open_quotes}black box{close_quotes} methodology, we will emphasize the cumulative effect of step-by-step improvements. Finally, the critical significance and interrelation of velocity measurements, modeling and depth migration will be explored. Pre-drill interpretations must ultimately encompass a variety of model solutions, and error bars should be established which realistically reflect the uncertainties in the data.

  10. Spatio-temporal distribution of seismic moment release near the source area of the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Yi; Wu, Wen-Nan

    2012-12-01

    To understand the generation mechanism of the 2011 Tohoku-Oki earthquake, we analyzed the spatial and temporal distribution of the cumulative seismic moment (Σ M 0) for all earthquakes along the Japan Trench listed in the global centroid moment tensor catalog between January 1976 and November 2011. Three areas with distinct characteristics of Σ M 0 are identified: (1) in the 2011 Tohoku-Oki source area, the Σ M 0 released in the down-dip portion (≥30 km) was greater than that in the up-dip portion (<30 km) before the mainshock; (2) the Σ M 0 of the up-dip portion in the region where slow slip activity prevails is greater than that of the down-dip portion throughout the study period; (3) in the surroundings of the source area, where interplate coupling is relatively low and the largest foreshock occurred, values of Σ M 0 for the down-dip and up-dip portions are both intermediate. Our results show that a megathrust rupture could be generated by large accumulations of strain energy at the subduction interface, resulting from the differential strain energy released in the down-dip and up-dip portions during the interseismic interval. We propose that the variation pattern of Σ M 0 may offer spatial constraints for seismic hazard assessment in the future.

  11. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    NASA Astrophysics Data System (ADS)

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang

    2016-04-01

    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  12. Active Tectonics of off-Hokuriku, Central Japan, by two ships seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Kato, Naoko; Sato, Hiroshi; Ishiyama, Tatsuya; Abe, Susumu; Shiraishi, Kazuya

    2015-04-01

    Along the southern to eastern margin of the Sea of Japan, active faults are densely distributed. These submarine active faults produced tsunami disasters, such as 1983 Nihonkai-chubu earthquake (M7.7) and 1993 Hokkaido Nansei-oki earthquake (M7.8). To estimate tsunami hazards, we performed deep seismic reflection profiling to obtain the information of tsunami source faults, off-Hokuriku area in the central part of Honshu, Japan. The survey is carried out as a part of research project named "the integrated research project on seismic and tsunami hazards around the Sea of Japan" funded by MEXT. To obtain long offset data in busy marine activity area, we used two vessels; a gun-ship with 3020 cu. inch air-gun and a cable-ship with a 2-km-long, streamer cable with 156 channels and 480 cu. inch air-gun. Common-midpoint reflection data were acquired using two ships at 4 km offset. The survey area consists of stretched continental crust associated with rifting and opening of the Sea of Japan in early Miocene and is marked by densely distributed syn-rift normal faults. Fault reactivation of normal faults as reverse faults is common. Two phases of fault reactivation are identified from the seismic sections after termination of opening of the Sea of Japan. One is the late Miocene NS trending shortening deformation. This is produced by NS-trending convergence of the Shikoku basin (15 Ma), which belongs to the Philippine Sea plate (PHS) to SW Japan at Nankai trough (Kimura et al., 2005). After the initiation of the subduction of PHS at Nankai trough, the strong shortening deformation is terminated and the fold-and-thrust belt was unconformably covered by sub-horizontal Pliocene sediments. Some horizons of unconformities represent multiple events of shortening driven from the subduction interface. Some normal faults reactivated as active strike-slip and reverse faults in Quaternary. Well observed example is the 2007 Noto peninsula earthquake (M6.8). The 2007 Noto peninsula

  13. Active faults in the deformation zone off Noto Peninsula, Japan, revealed by high- resolution seismic profiles

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Okamura, Y.; Murakami, F.; Kimura, H.; Ikehara, K.

    2008-12-01

    Recently, a lot of earthquakes occur in Japan. The deformation zone which many faults and folds have concentrated exists on the Japan Sea side of Japan. The 2007 Noto Hanto Earthquake (MJMA 6.9) and 2007 Chuetsu-oki Earthquake (MJMA 6.8) were caused by activity of parts of faults in this deformation zone. The Noto Hanto Earthquake occurred on 25 March, 2007 under the northwestern coast of Noto Peninsula, Ishikawa Prefecture, Japan. This earthquake is located in Quaternary deformation zone that is continued from northern margin of Noto Peninsula to southeast direction (Okamura, 2007a). National Institute of Advanced Industrial Science and Technology (AIST) carried out high-resolution seismic survey using Boomer and 12 channels short streamer cable in the northern part off Noto Peninsula, in order to clarify distribution and activities of active faults in the deformation zone. A twelve channels short streamer cable with 2.5 meter channel spacing developed by AIST and private corporation is designed to get high resolution seismic profiles in shallow sea area. The multi-channel system is possible to equip on a small fishing boat, because the data acquisition system is based on PC and the length of the cable is short and easy to handle. Moreover, because the channel spacing is short, this cable is very effective for a high- resolution seismic profiling survey in the shallow sea, and seismic data obtained by multi-channel cable can be improved by velocity analysis and CDP stack. In the northern part off Noto Peninsula, seismic profiles depicting geologic structure up to 100 meters deep under sea floor were obtained. The most remarkable reflection surface recognized in the seismic profiles is erosion surface at the Last Glacial Maximum (LGM). In the western part, sediments about 30 meters (40 msec) thick cover the erosional surface that is distributed under the shelf shallower than 100m in depth and the sediments thin toward offshore and east. Flexures like deformation in

  14. Preliminary study for active monitoring of the plate boundary using ACROSS: Synthetic and observed seismic records

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Kunitomo, T.; Ikuta, R.; Watanabe, T.; Yamaoka, K.; Fujii, N.; Kumazawa, M.; Nagao, H.; Nakajima, T.; Saiga, A.; Satomura, M.

    2005-12-01

    ACROSS (Accurately-Controlled Routinely-Operated Signal System) has been developed for active monitoring of a dynamic state in the Earth's structure (Kumazawa et al., 2000). Since November 2004, we have conducted an array observation of ACROSS signals in Tokai area, central Japan, to identify any seismic reflection (and hopefully its temporal change) from the lower crust and/or subducting Philippine Sea plate (Kasahara et al., 2004). In this report, we show the recent results and discuss the relevance of several arrivals of wave groups to underground structures using the theoretical travel times and synthetic waveforms. The frequency-modulated ACROSS signals (10-20 Hz) have been continuously transmitted from the sources located in Toki city, central Japan (Kunitomo et al., 2005) and received at 22 temporal seismic stations at the offset distance of 40-75 km from the source. We define the transfer function between a source and a receiver as a nine-element second-order tensor, Hjk, where j and k denote directional components of the observed displacement and the excitation force, and r, t and v represent the radial, transverse and vertical components, respectively. We recognized the significant wave groups within the travel time ranges of 10-18 and of 15-23 seconds at 54-74 km offset distance through stacking the data for about 60 days. Such wave groups also appear on the records of a Hi-net station at 57.4km by stacking for 30 days (Yoshida et al., 2004). A 2-D velocity structure model was made for our observation area using seismic exploration records across the central Japan (Iidaka et al., 2003). We calculated both travel times by ray tracing method (Fujie et al., 2000; Kubota et al., 2005), and synthetic seismograms by FDM simulation (Larsen and Schultz, 1995). Comparing the observed time series of Hrr and Hzr to the theoretical travel times and synthetic seismograms, we noticed that the wave groups observed at 61-73 km are well corresponding to the theoretical

  15. A Multi-Step Assessment Scheme for Seismic Network Site Selection in Densely Populated Areas

    NASA Astrophysics Data System (ADS)

    Plenkers, Katrin; Husen, Stephan; Kraft, Toni

    2015-10-01

    We developed a multi-step assessment scheme for improved site selection during seismic network installation in densely populated areas. Site selection is a complex process where different aspects (seismic background noise, geology, and financing) have to be taken into account. In order to improve this process, we developed a step-wise approach that allows quantifying the quality of a site by using, in addition to expert judgement and test measurements, two weighting functions as well as reference stations. Our approach ensures that the recording quality aimed for is reached and makes different sites quantitatively comparable to each other. Last but not least, it is an easy way to document the decision process, because all relevant parameters are listed, quantified, and weighted.

  16. Seismic Activity: Public Alert and Warning: Legal Implications

    NASA Astrophysics Data System (ADS)

    Zocchetti, D.

    2007-12-01

    As science and technology evolve in ways that increase our ability to inform the public of potentially destructive seismic activity, there are significant legal issues for consideration. Even though countries and even states within the United States have differing legal tenets that could either change or at least re-shape the outcome of specific legal questions that this session will be pondering, there are fundamental legal principals that will permeate. It is often said that the law lags behind society and in particular its technological developments. No doubt in the area of warning the public of impending destructive forces of nature or society, the law will need to do some catching up. The law is probably adequately developed for at least some preliminary discussion of the key issues. No matter the legal scheme, if there is a failure or perceived failure in the system to warn people of a pending emergencies, albeit an earthquake, tsunami, or other predictable event, those who are harmed or believe they are harmed will seek relief under the law. Every day there are situations wherein the failure to warn or to adequately warn is key, such as with faulty or defective consumer products, escaped prisoners, and police high-speed vehicle chases. With alert and warning systems for disaster, however, we have a unique set of facts. Generally, the systems and their failures occur during emergencies or at least during situations under apparently exigent circumstances when the disaster's predictability is widely recognized as less than 100 percent. The law, in particular United States tort law, has been particularly lenient when people and organizations are operating during compressed timeframes and their actions are generally considered necessary to address circumstances relative to public safety. The legal system has been forgiving when the actor that failed or appeared to fail was government. The courts have liberally applied the principal of sovereign immunity to

  17. Apollo 14 and 16 Active Seismic Experiments, and Apollo 17 Lunar Seismic Profiling

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Seismic refraction experiments were conducted on the moon by Apollo astronauts during missions 14, 16, and 17. Seismic velocities of 104, 108, 92, 114 and 100 m/sec were inferred for the lunar regolith at the Apollo 12, 14, 15, 16, and 17 landing sites, respectively. These data indicate that fragmentation and comminution caused by meteoroid impacts has produced a layer of remarkably uniform seismic properties moonwide. Brecciation and high porosity are the probable causes of the very low velocities observed in the lunar regolith. Apollo 17 seismic data revealed that the seismic velocity increases very rapidly with depth to 4.7 km/sec at a depth of 1.4 km. Such a large velocity change is suggestive of compositional and textural changes and is compatible with a model of fractured basaltic flows overlying anorthositic breccias. 'Thermal' moonquakes were also detected at the Apollo 17 site, becoming increasingly frequent after sunrise and reaching a maximum at sunset. The source of these quakes could possibly be landsliding.

  18. Spatiotemporal characterization of interswarm period seismicity in the focal area Nový Kostel (West Bohemia/Vogtland) by a short-term microseismic study

    NASA Astrophysics Data System (ADS)

    Häge, Martin; Joswig, Manfred

    2009-11-01

    The West Bohemia/Vogtland region is one of the seismically most interesting areas in Europe because of its swarm-like occurrence of seismicity. The installation of the local West Bohemian seismological network (WEBNET) has made the recording of small magnitude seismicity (detection threshold ML ~ -0.5) possible. We investigated if microseismicity exists below the detection threshold of WEBNET. A microseismic field campaign was carried out in the focal area Nový Kostel. The measurement was performed with three small arrays lasting for 6 d in a seismically quiet, interswarm period. We were able to detect and locate 13 microearthquakes in the magnitude range -1.5 <= ML <= -0.1 and achieved a detection threshold about one magnitude lower than the local network. A relative location suggests that the recorded seismicity is rather related to a specific fault segment than randomly distributed. The determined fault zone is aligned NW-SW and confirms the viability of mapping active faults with short-term measurements. The results demonstrate that a linear extrapolation of the b-value, determined by the network bulletin, down to ML = -0.5 fits well with the amount of our recorded events.

  19. Neotectonic and seismotectonic investigation of seismically active regions in Tunisia: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Bahrouni, N.; Bouaziz, S.; Soumaya, A.; Ben Ayed, N.; Attafi, K.; Houla, Y.; El Ghali, A.; Rebai, N.

    2014-04-01

    Due to its key position within the Africa-Europe convergence zone, Tunisia is marked by thrusting, folding, and faulting and has a major rupture zones associated with active faults. Consequently, most of Tunisian land is seismically active with significant active deformations, showing recent seismic events and their relative surface effects. This paper reports on several aspects of the seismotectonics, historical, and present-day seismicity and places them in the general tectonic and geodynamic framework of Tunisia. Field investigations, based on an integrated multidisciplinary approach, included (1) the identification of active faults, their motion and displacement, geomorphic aspects, and scarps and their relation with the general structural map of Tunisia and (2) an extensive analysis of brittle tectonic deformation affecting Quaternary deposits in several sites throughout Tunisia. The integration of field data within the existing data related to the seismic events that took place during the last decades allowed the establishment of an earthquake distribution map, as well as major seismic zones for better understanding of the seismicity database of Tunisia. To establish microzonation maps in seismic regions such as Gafsa and its surroundings, we have analyzed surface effects and secondary structures associated with active faults and correlated them with deformation rates, reconstructed for significant seismic events. Most faults exhibited typical left-stepping en-echelon with strike-slip component pattern suggesting that Tunisia is presently subjected to NNW-SSE compression. The focal mechanism of most Tunisia earthquakes combined with the existing tectonic and structural information and reconstruction of the Quaternary stress tensor allowed (a) better understanding of seismic zoning, (b) provided better assessment of the seismic hazard, and (c) facilitated the interpretation of the relationship between seismic zones and the geodynamic African-Eurasian plate

  20. Seismically Articulating Kilauea Volcano's Active Conduits, Rift Zones, and Faults through HVO's Second Fifty Years

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Nakata, J.; Klein, F.; Koyanagi, R.; Thelen, W.

    2011-12-01

    While seismic monitoring of active Hawaiian volcanoes began 100 years ago, the build-up of the U. S. Geological Survey's (USGS) Hawaiian Volcano Observatory (HVO) seismographic network to its current configuration began in 1955, when Jerry Eaton established remote stations that telemetered data via landline to recorders at HVO. With network expansion through the 1960's, earthquake location and cataloging capabilities have evolved to afford a computer processed seismic catalog now spanning fifty years. Location accuracy and catalog completeness to smaller magnitudes have increased. Research and insights developed using HVO's seismic record have exploited the ability to seismically monitor volcanic activity at depth, to identify active regions within the volcanoes on the basis of computed hypocentral locations, to infer regions of magma storage by recognizing different families of volcanic earthquakes, and to forecast volcanic activity in both short and longer term from seismicity patterns. HVO's seismicity catalog was central to calculations of probabilistic seismic hazards. The ability to develop and implement additional analytical and interpretive capabilities has kept pace with improvements in both field and laboratory hardware and software. While the basic capabilities continue as part of HVO's core monitoring, additional interpretive capabilities now include adding details of volcanic and earthquake source regions, and viewing seismic data in juxtaposition with other observatory data streams. As HVO looks to its next century of volcano studies, research and development continue to shape the future. Broadband seismic recording at HVO has enabled extensive study by Chouet, Dawson, and co-workers of the relationship of very-long-period seismic sources beneath Kilauea's summit caldera to magma supply and transport. Recent upgrades have improved the ability to use these data in seismic cataloging and research. Data processing upgrades have bolstered the ability to

  1. Impact of the 2001 Tohoku-oki earthquake to Tokyo Metropolitan area observed by the Metropolitan Seismic Observation network (MeSO-net)

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Hayashi, H.; Nakagawa, S.; Sakai, S.; Honda, R.; Kasahara, K.; Obara, K.; Aketagawa, T.; Kimura, H.; Sato, H.; Okaya, D. A.

    2011-12-01

    tomography of P- and S- wave structure, seismic interferometry for shallow structure and using the dense MeSO-net data. We observed the 2011 Tohoku-oki event and its aftershocks including M7.7 event off Ibaraki prefecture, which is the largest aftershock so far. We imaged source radiation energy using the MeSO-net data by the back-projection method (Honda et al., 2011). We found seismic activity in the Kanto region has been activated after the event, suggesting increased seismic hazard in Kanto region even for plate boundary events. We use a new image of PSP and Pacific plate. We evaluate potential zones of the M7+ earthquake on the plate boundary and within the PSP slab which will be used for risk mitigation study by a socio-science group. We will also discuss a future plan to continue our effort in seismic risk mitigation in Tokyo Metropolitan area, stress regime of which is seriously changed by the Tohoku-oki event. This is supported by the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area

  2. Evaluation of feasibility of mapping seismically active faults in Alaska

    NASA Technical Reports Server (NTRS)

    Gedney, L. D. (Principal Investigator); Vanwormer, J. D.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered activity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around Mt. McKinley. One member of the system was the scene of a magnitude 6.5 earthquake in 1968. The potential value of ERTS-1 imagery to land use planning is reflected in the fact that this earthquake occurred within 10 km of the site which was proposed for the Rampart Dam, and the fault on which it occurred passes very near the proposed site for the bridge and oil pipeline crossing of the Yukon River.

  3. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  4. Crustal Thickness Variations Along the Southeastern Caribbean Plate Boundary From Teleseismic and Active Source Seismic Data

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Niu, F.; Baldwin, T. K.; Pavlis, G.; Vernon, F.; Rendón, H.; Zelt, C. A.; Schmitz, M.; Levander, A.

    2006-12-01

    Insight into the topography of the Moho discontinuity beneath Venezuela has been progressively gained since the 1990's through seismic refraction studies carried out in the south and east of the country. More recently, both active and passive, land and marine seismic data were acquired by the U.S. BOLIVAR and Venezuelan GEODINOS projects to understand accretion processes and mechanisms for continental growth. The passive component includes an 18-month deployment of 27 PASSCAL broadband seismographs, a 12-month deployment of 15 OBSIP broadband instruments and an ongoing deployment of 8 Rice broadband seismometers. Additionally, data from the 34 BB stations of the national seismic network of Venezuela and the GSN SDV station, give a seismic dataset from 84 stations covering an area of ~750,000 km2. The active component includes 4 onshore-offshore refraction/wide angle reflection profiles as well as the recording of airgun blasts from offshore seismic lines by BB stations in mainland Venezuela and the Leeward Antilles. This abundance of datasets allows us to estimate Moho depths using different methods such as receiver functions, and forward and inverse modeling of wide-angle datasets, but also poses the challenge of reconciling the different values obtained to achieve robust results. Generally the active source and receiver function estimates are close to one another. We present a composite crustal thickness map showing a highly variable crustal thicknesses ranging from 15 km beneath the Caribbean LIP, to ~55 km beneath eastern Venezuela. Crustal thickness is strongly correlated with geologic terranes, but not always as expected. The thickest crust is found to exist in the east of the country, beneath the sedimentary basins north of the Orinoco River where depth to Moho exceeds 50 km. Crustal thickness beneath most of the Precambrian Guayana Shield is fairly constant at ~38 km . In contrast, we observe relatively thin (~25-30 km) crust in the eastern and western

  5. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous

  6. Seismic Attenuation in the Parkfield area of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Kelly, C. M.; Rietbrock, A.; Faulkner, D. R.

    2010-12-01

    Fault zone structure and rock properties at depth within the Parkfield area of San Andreas Fault are investigated through a seismic attenuation study. Attenuation is sensitive to the degree of fracturing, water saturation and other rock properties. The Parkfield area is of interest as it marks the boundary between the creeping area of the San Andreas Fault and an area which ruptured seismically in 1966 and again in 2004. It is also the area of the SAFOD drilling project. Previous studies of this area have suggested a complex picture of fault strands linking at depth and small bodies of high-velocity material (e.g. Li et al. 1997, Michael & Eberhart-Philips 1991). Various temporary and local seismic networks have been installed in the region and data from the PASO, PASO TRES and HRSN networks are used in this study. PASO data runs from 2001-2002 at sampling rate of 100sps. The PASO TRES data spans the time period 2004-2006 at 200sps. The HRSN network has been running since March 2001 to present with sampling at 250sps. Attenuation parameters (e.g. Q-values) are established using the spectral ratios technique. A window of 1.28 seconds around each event arrival is extracted together with a window of the same length within the noise directly preceding. Instrument corrected frequency spectra from both the event and the noise are smoothed in a logarithmically-scaled smoothing function. Only frequencies with a signal/noise ratio of 3 or above are used. The ratio between frequency spectra from event arrivals and synthetic frequency spectra of known seismic parameters is determined. A gridsearch method is used to fit the event corner frequency, searching within a range of corner frequencies implied from the reported event magnitude and assuming a stress drop of between 0.1 and 10MPa. A Brune source model is assumed (gamma=2, n=1) for the source spectra (Brune 1970). When the correct corner frequency is fitted, there should be a linear relationship between frequency and the

  7. Micro-seismicity of the Whillans Ice Plain stick-slip cycle nucleation areas

    NASA Astrophysics Data System (ADS)

    Barcheck, C. G.; Schwartz, S. Y.; Tulaczyk, S. M.

    2015-12-01

    The Whillans Ice Plain (WIP) is known for its distinctive stick-slip motion, in which steady, slow ice motion (~100m/yr equivalent) is punctuated once or twice daily by sudden slips of ~0.5 m over ~30 minutes (~5,000m/yr equivalent). These stick-slip events nucleate in one of two areas of the Ice Plain depending on Ross Ice Shelf tidal height: the Central Sticky Spot (CSS) or the Grounding Zone Sticky Spot (GZSS) (Pratt et al., 2014). Basal conditions beneath ice streams are in general poorly constrained, and the specific conditions allowing Ice-Plain-wide unstable sliding and stick-slip motion remain poorly understood. We present preliminary results from two small-aperture networks (<1 km station spacing) of borehole and surface short period seismometers installed at each nucleation area to investigate local seismicity and its relationship to the stick-slip cycle. We present new detections and locations of small basal micro-earthquakes at or near the ice/bed interface at both nucleation areas and demonstrate spatial heterogeneity in bed conditions. CSS basal seismicity occurs as hundreds of small amplitude repeating events, rupturing the same or nearly the same patches of the bed beneath the network many times during a stick-slip event, but changing between events. These events suggest that the 10's of km wide CSS is comprised of small stick-slip patches. Micro-seismicity is detected using waveform cross correlation of manually selected template events and located using hypoDD. Time- and space-varying basal seismicity demonstrates that bed conditions vary in space, beneath the network, and in time, between slip events and observation years. The GZSS network records similar basal micro-earthquakes during slip events, though far fewer. Larger events characterized by surface waves are much more common near the GZSS. This seismicity occurs preferentially during low tide, independent of the WIP stick-slip cycle. We use beamforming to show that these events occur

  8. Slope-area and stream length index analysis in the eastern Tennessee seismic zone: evidence for differential uplift?

    NASA Astrophysics Data System (ADS)

    Stearns, C.; Arroucau, P.; Vlahovic, G.

    2013-12-01

    Previous studies have shown that Digital Elevation Model (DEM) analysis could be used to quantify surface deformation in tectonically active regions, including slowly deforming areas such as intraplate continental interiors. Here, we investigate slope/area relationships and determine stream length index (SLI) spatial variations in 287 watersheds located in the Valley and Ridge physiographic province of the southern Appalachians, in a region known as the eastern Tennessee seismic zone (ETSZ). The goal is to identify possible spatial variations in drainage network characteristics that could reveal different deformation rates and styles within the study area. The ETSZ, although seismically active, does not show any evidence of recent surface deformation that could be related to tectonic activity. The earthquakes mostly occur between 5 and 25 km depth and their epicenters form a SSW-NNE trending, 300 km long by 100 km wide, band of diffuse seismicity that aligns along the New York Alabama (NYAL) magnetic lineament, a linear magnetic feature attributed to a fault affecting the Precambrian basement but without signature at the surface. DEMs with a resolution of 30 meters and watershed boundaries of 287 drainage basins were obtained from the United States Geological Survey (USGS) National Elevation Dataset (NED) and National Hydrography Dataset (NHD), respectively. After determining the local slope and drainage area for each 30 m x 30 m cell, reference concavity and steepness index values were calculated for the entire region. Then, the steepness index of each watershed was determined using the obtained reference concavity index. SLI values were also determined along extracted river profiles and average values calculated for each watershed. A good correlation is observed between steepness index and SLI, with low to mid-range values found in the Valley and Ridge province and higher values in two specific areas: at the transition between the Valley and Ridge province and

  9. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - II: Deception Island images

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Ibáñez, Jesús M.; García-Yeguas, Araceli; Del Pezzo, Edoardo; Posadas, Antonio M.

    2013-12-01

    In this work, we present regional maps of the inverse intrinsic quality factor (Qi-1), the inverse scattering quality factor (Qs-1) and total inverse quality factor (Qt-1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create `2-D probabilistic maps' of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈ 950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.

  10. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.

    1997-01-01

    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  11. Seismic Studies

    SciTech Connect

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  12. Overview and early highlights of the TAIGER project marine, active-source seismic program (Invited)

    NASA Astrophysics Data System (ADS)

    McIntosh, K. D.; van Avendonk, H. J.; Liu, C.; Hsu, S.; Lee, C.; Wang, T. K.; Wu, F. T.

    2009-12-01

    The marine active-source portion of the TAIGER (TAIwan GEodynamic Research) project took place during April-July 2009 using the R/V Marcus Langseth with support from a variety of Taiwanese ships used to deploy and recover ocean bottom seismographs (OBSs). Due to Taiwanese shiptime (Langseth) contribution, the active-source program was doubled from our original proposal. Over the course of three, ~month-long cruises, the Langseth produced seismic source points along >13,000 km of track line. This includes > 11,000 km of deep-penetration multichannel seismic reflection data (MCS), shots to ~269 OBS stations (Taiwanese and U.S.), and shots to ~280 temporary land seismic stations across Taiwan. During this comprehensive project the Langseth circled Taiwan and ventured far to the south and east. TAIGER data cover the passive margin SW of Taiwan to provide a “pre-collision” structural configuration of the subducting plate, while TAIGER MCS and OBS data acquired on transects south of Taiwan will provide an idea of the “pre-collision” structural configuration of the Manila trench subduction zone. We will compare these areas to the evolving crustal structure of the Taiwan collision, which will be analyzed with onshore/offshore seismic data recorded during TAIGER legs 1 and 2. These TAIGER crustal transects will elucidate crucial components and stages of the southwestward advancing collision. We were able to process all the MCS data during the acquisition cruises to preliminary stack and FK migration. In much of the area SW of Taiwan we observe deep reflections, likely marking Moho. Surprisingly, even at distances > 250 km south of the shelf edge, apparent basement crustal thickness is frequently 3+ s (two-way travel time) or about 9-11 km. We also obtained exciting results across both the Manila/Luzon and Ryukyu arc-trench systems. These subduction systems are primarily characterized by ample sediment supply and relatively fast convergence leading to young, rapidly

  13. Long Term Seismic Observation in Mariana by OBSs : Activity of Deep Earthquakes

    NASA Astrophysics Data System (ADS)

    Shiobara, H.; Mochizuki, K.; Ohki, S.; Kanazawa, T.; Fukao, Y.; Sugioka, H.; Suyehiro, K.

    2003-12-01

    In order to obtain the deep arc structural image of Mariana, a large-scale seismic observation by using 58 long-term ocean bottom seismometers (LTOBS) has been started since June 2003 for about one year. It is a part of the MARGINS program (US-JAPAN COLLABORATIVE RESEARCH: MULTI-SCALE SEISMIC IMAGING OF THE MARIANA SUBDUCTION FACTORY), and the aim of this observation is the crustal and mantle structure modeling by using passive and active seismic sources. The 50 and 8 LTOBSs are owned by LDEO and ERI, respectively, and they were deployed during the cruise of R/V Kaiyo (Jamstec), KY03-06. Prior to this experiment, we made a pilot long-term seismic array observation in the same area by using 10 LTOBSs, deployed in Oct. 2001 by R/V Yokosuka (Jamstec) and recovered in Feb. 2003 by R/V Kaiyo. This LTOBS has been developed by ERI, which has the PMD sensor (WB2023LP) and a titanium sphere housing (D=50cm) and was already used in several long-term observations (ex. trans-PHS array observation presented at the AGU fall meeting, 2000, S51B-02). Two of 10 LTOBSs could not be recovered due to malfunction of the releasing system, and one recovered had a trouble in the sensor control unit. But, seven others have obtained more than 11 months long data continuously. As passive source studies of these observations use characteristic deep earthquakes in this area, the activity of them will be introduced in this presentation, from the data obtained just above them. At the first step, difference of hypocenters of known events, listed on the PDE catalog, is examined. There are 59 events of epicenters within a circular area centered at 19° N, 145° E with radius of 1000km from the catalog during the observation. P and S arrivals are picked by using the WIN system, and the iasp91 model (only {VP} with {{VP}/{V_S}=1.732}) is used for the hypocenter determination. Station corrections are applied only for the sediment layer, estimated from several arrival time data of P and P-S converted

  14. Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.

    2009-12-01

    We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  15. Mass transport deposits as witness of Holocene seismic activity on the Ligurian margin, Western Mediterranean (ASTARTE project)

    NASA Astrophysics Data System (ADS)

    Samalens, Kevin; Cattaneo, Antonio; Migeon, Sébastien

    2016-04-01

    The Ligurian Margin (Western Mediterranean) is at the transition between the Southern Alpes and the Liguro-Provençal margin and it is one of the most seismic areas of France. Several historic earthquakes have been indexed; the strongest, on February 23rd, 1887, occurred offshore Menton and Imperia and also caused a tsunami wave. Its equivalent magnitude has been estimated between 6 and 6.5. In addition, a moderate recurrent seismicity shakes the margin. The aim of this study is to understand the link between seismic activity and slope destabilization, and to identify the sedimentary deposits resulting from mass transport or turbidity currents. During Malisar (Geoazur laboratory), Prisme 2 and Prisme 3 (Ifremer) cruises, bathymetry, seafloor imagery (SAR), geophysics data (CHIRP SYSIF and high resolution seismics), and sediment cores have been acquired on the continental slope, focussing on canyons and submarine landslides, and in the basin. These data record numerous mass transport deposits (slump, debrites) in the different physiographic areas of the margin. To search for evidences of past Ligurian margin seismicity during the Holocene, we focused on the northeast part of the margin, the Finale area. We identified and sampled acoustically transparent Mass Transport Deposits up to 20-m thick in the bottom of three coaleshing canyons: Noli, Pora and Centa canyons from W to E in the area offshore Finale Ligure. We also recovered an MTD in the collecting deeper canyon system. MTDs in cores appear as sediment with different degrees of deformation (tilted blocks, slump, debrites) and are topped by hemipelagites. The radiocarbon age of the top of MTDs can be considered synchronous and centered around 4900 yr BP. Mass wasting occurring over more than 50 km of the Ligurian margin could indicate that an earthquake stroke the Finale area sector at that time.

  16. Seismic evaluation of the Devonian Ohio Shale in the Big Ugly area, southwestern West Virginia

    SciTech Connect

    Zheng Li; Wilson, T. )

    1991-08-01

    The Devonian Ohio Shale was studied in the Big Ugly area of southwestern West Virginia by reprocessing and interpreting existing seismic and geologic data. These data suggest the presence of detached structures above three decollement zones and cross-strike discontinuities associated with the Alleghanian deformation west of Mann Mountain anticline. A basement growth structure, the Griffithsville basement high, localized detached structures along its southeast flank. High producing trends of gas from the Devonian Ohio Shale occur either near northwest-trending cross-strike structural discontinuities or in the northeast-trending detached structures where fracture density should be increased.

  17. Incipient extension along the active convergent margin of Nubia in Sicily, Italy: Cefalù-Etna seismic zone

    NASA Astrophysics Data System (ADS)

    Billi, Andrea; Presti, Debora; Orecchio, Barbara; Faccenna, Claudio; Neri, Giancarlo

    2010-08-01

    Recent geodetic data are compatible with NNE-SSW tectonic extension at a rate of ˜5 mm/yr in Sicily, southern Italy, within a broader region of net active compression along the Nubian plate margin (northern Africa). The structures that accommodate such extensional regime and its cause are still unknown. From field structural surveys and seismological analyses, the geometry, kinematics, structural architecture, and seismic potential of an extensional seismic zone linking Cefalù and Mount Etna in central eastern Sicily are defined. The zone includes high-angle WNW striking normal and right-lateral strike-slip faults and subordinate north and NNE striking strike-slip faults either right or left lateral. The occurrence of small discontinuous faults and the absence of related depressions and sedimentary basins suggest that the extensional regime is still in an incipient stage. The ongoing seismic activity possibly reactivates preexisting faults. Instrumentally and historically recorded earthquakes are lower than about 6 in magnitude, and destructive events are historically unknown since at least 1300 A.D. This apparent upper bound of earthquake magnitudes is consistent with the maximum magnitude values estimated from the length of the longest mapped faults and sources of seismic swarms, which all together suggest a value between 6 and 6.5 as the maximum expected magnitude that can be proposed at the present stage of investigation for earthquakes in the study area. Lateral extension on preexisting faults and upwelling of melt mantle material beneath Mount Etna are considered viable processes to explain, at least in part, the active extensional tectonics along the Cefalù-Etna seismic zone. Strike-slip seismic faulting beneath Mount Etna may be part of a previously proposed diffuse transfer zone affecting northeastern Sicily and including the Tindari Fault.

  18. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  19. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  20. Chemical and biogeophysical impact of four-dimensional (4D) seismic exploration in sub-Saharan Africa, and restoration of dysfunctionalized mangrove forests in the prospect areas.

    PubMed

    Osuji, Leo C; Ayolagha, G; Obute, G C; Ohabuike, H C

    2007-09-01

    Four-dimensional (4D) seismic exploration, an improved geophysical technique for hydrocarbon-data acquisition, was applied for the first time in the Nembe Creek prospect area of Nigeria. The affected soils were slightly alkaline in situ when wet (pH 7.2), but extremely acidic when dry (pH 3.0). The organic carbon content (4.6-26.8%) and other physicochemical properties of soils and water (N, P, and heavy-metal contents, etc.) were higher than the baseline values obtained in 2001 before seismic profiling. Most values also exceeded the baseline compliance standards of the Department of Petroleum Resources (DPR), the World Health Organization (WHO), and the Federal Environmental Protection Agency (FEPA). Rehabilitation of the affected areas was achieved by stabilizing the mangrove floor by liming and appropriate application of nutrients, followed by replanting the cut seismic lines over a distance of 1,372 km with different mangrove species, including juvenile Rhizophora racemosa, R. mangle, and Avicennia species, which were transferred from nursery points. Quicker post-operational intervention is recommended for future 4D surveys, because the time lag between the end of seismic activity and post-impact investigation is critical in determining the relationship between activity and impact: the longer the intervening period, the more mooted the interaction. PMID:17886833

  1. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area)

    NASA Astrophysics Data System (ADS)

    -Florinela Manea, Elena; Hobiger, Manuel-Thomas; Michel, Clotaire; Fäh, Donat; -Ortanza Cioflan, Carmen

    2016-04-01

    Bucharest is located in the center of the Moesian platform, in a large and deep sedimentary basin (450 km long, 300 km wide and in some places up to 20 km depth). During large earthquakes generated by the Vrancea seismic zone, located approximately 140 km to the North, the ground motion recorded in Bucharest area is characterized by predominant long periods and large amplification. This phenomenon has been explained by the influence of both source mechanism (azimuth and type of incident waves) and mechanical properties of the local structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wave field produced by earthquakes in the area of Bucharest. We want to identify the contribution of different seismic surface waves, such as the ones produced at the edges of the large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves) to the ground motion. The data from a 35 km diameter array (URS experiment) installed by the National Institute for Earth Physics during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones was used. In order to perform the wave field characterization of the URS array, the MUSIQUE technique was used. This technique consists in a combination of the classical MUSIC and the quaternion-MUSIC algorithms and analyzes the three-component signals of all sensors of a seismic array together in order to analyze the Love and Rayleigh wave dispersion curves as well as the Rayleigh wave ellipticity curve. The analysis includes 20 regional earthquakes with Mw >3 and 5 teleseismic events with Mw> 7 that have enough energy at low frequency (0.1 - 1 Hz), i.e. in the resolution range of the array. For all events, the greatest energy is coming from the backazimuth of the source and the wave field is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2D or 3D effects in the

  2. Geoazur's contribution in instrumentation to monitor seismic activity of the Earth

    NASA Astrophysics Data System (ADS)

    Yates, B.; Hello, Y.; Anglade, A.; Desprez, O.; Ogé, A.; Charvis, P.; Deschamps, A.; Galve, A.; Nolet, G.; Sukhovich, A.

    2011-12-01

    Seismic activity in the earth is mainly located near the tectonic plate boundaries, in the deep ocean (expansion centers) or near their margins (subduction zones). Travel times and waveforms of recorded seismograms can be used to reconstruct the three-dimensional wave speed distribution in the earth with seismic tomography or to image specific boundaries in the deep earth. Because of the lack of permanent sea-bottom seismometers these observation are conducted over short period of time using portable ocean bottom seismometers. Geaozur has a long experience and strong skills in designing and deploying Ocean Bottom Seismometers all over the world. We have developed two types of ocean bottom instruments. The "Hippocampe" for long deployment and "Lady bug" for aftershock monitoring or for fast overlaps during wide angle experiments. Early warning systems for tsunamis and earthquakes have been developed in recent years but these need real time data transmission and direct control of the instrument. We have developed a permanent real time Broad Band instrument installed in the Mediterranean Sea and connected to the Antares Neutrinos telescope. This instrument offers all the advantages of a very heavy and costly installation, such as the ability to do real-time seismology on the seafloor. Such real-time seafloor monitoring is especially important for seismic hazard. Major earthquakes cause human and economic losses directly related to the strong motion of the ground or by induced phenomena such as tsunamis and landslides. Fiber optical cables provide a high-capacity lightweight alternative to traditional copper cables. Three-component sensors analyze permanently the noise signal and detect the events to record. Major events can force the network to transmit data with almost zero lag time. The optical link also allows us to retrieve events at a later date. However, OBSs alone can never provide the density and long term, homogeneous data coverage needed for local and global

  3. Seismic microzonation and velocity models of El Ejido area (SE Spain) from the diffuse-field H/V method

    NASA Astrophysics Data System (ADS)

    García-Jerez, Antonio; Seivane, Helena; Navarro, Manuel; Piña-Flores, José; Luzón, Francisco; Vidal, Francisco; Posadas, Antonio M.; Aranda, Carolina

    2016-04-01

    El Ejido town is located in the Campo de Dalías coastal plain (Almería province, SE Spain), emplaced in one of the most seismically active regions of Spain. The municipality has 84000 inhabitants and presented a high growth rate during the last twenty years. The most recent intense seismic activity occurred close to this town was in 1993 and 1994, with events of Mb = 4.9 and Mb = 5.0, respectively. To provide a basis for site-specific hazard analysis, we first carried out a seismic microzonation of this town in terms of predominant periods and geotechnical properties. The predominant periods map was obtained from ambient noise observations on a grid of 250 x 250 m in the main urban area, and sparser measurements on the outskirts. These broad-band records, of about 20 minutes long each, were analyzed by using the horizontal-to-vertical spectral ratio technique (H/V). Dispersion curves obtained from two array measurements of ambient noise and borehole data provided additional geophysical information. All the surveyed points in the town were found to have relatively long predominant periods ranging from 0.8 to 2.3 s and growing towards the SE. Secondary high-frequency (> 2Hz) peaks were found at about the 10% of the points only. On the other hand, Vs30 values of 550 - 650 m/s were estimated from the array records, corresponding to cemented sediments and medium-hard rocks. The local S-wave velocity structure has been inverted from the H/V curves for a subset of the measurement sites. We used an innovative full-wavefield method based on the diffuse-wavefield approximation (Sánchez-Sesma et al., 2011) combined with the simulated annealing algorithm. Shallow seismic velocities and deep boreholes data were used as constraints. The results show that the low-frequency resonances are related with the impedance contrast between several hundred meters of medium-hard sedimentary rocks (marls and calcarenites) with the stiffer basement of the basin, which dips to the SE. These

  4. Structural design of active seismic isolation floor with a charging function

    NASA Astrophysics Data System (ADS)

    Nakakoji, Hayato; Miura, Nanako

    2016-04-01

    This study shows an optimum structure of a seismic isolation floor against horizontal ground motions. Although a seismic isolation floor is effective with vibration reduction, the response of the floor becomes larger when excited by long-period ground motions. It is shown that caster equipment move and suffer damage in a seismic isolation structure by an experiment. Moreover, the permissible displacement of the floor is limited. Therefore, the focus is on an active seismic isolation. About active control, the system cannot operate without power supply. To solve these problems an energy regeneration is considered in our previous study. These studies only analyze simple model and did not choose the suitable structure for active control and energy regeneration. This research propose a new structure which has regenerated energy exceeds the energy required for the active control by numerical simulation.

  5. Shallow seismic structure of the Pen Duick area, Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    de Haas, Henk; van Weering, Tjeerd C. E.; Tokarev, Mikhail; Ivanov, Michael; Gorban, Anna; Mienis, Furu

    2010-05-01

    This paper addresses the relationship between structural features, seabed morphology and carbonate mounds in the Pen Duick and Renard Ridge area of the El Arraiche mud volcano field in the south-eastern Gulf of Cadiz, based on seismic and multibeam echosounder data. In 2006 a grid of 100 high resolution 24-channel seismic lines with a length of about 5 nautical miles and a spacing of about 50 m mainly aligned NE-SW and NW-SE was recorded using an array of three sleeve guns (40, 20 and 10 cu.inch) towed at 37 meters behind the ship. Shooting was done every 5 seconds at a pressure of 100 bars and an average sailing speed of 4.2 knots, thus with an average shot distance of 10.5 metres across the Pen Duick Escarpment and the Lazarillo de Tormes mud volcano. Addditional lines were recorded as cross lines for correlation accross the western cone of the Gemini mud volcano. During a follow-up cruise in October 2006 with RV Pelagia, the multibeam coverage was expanded to include the Gemini and Al Idrissi mud volcanoes and adjacent area. NMO corrections, CDP stacking and swell correction were applied to improve the raw images. Results show that the Pen Duick Escarpment is lined along its upper flank with a string of relatively small and steep mound structures. The majority of mounds concentrate on the top and on the western slope of the Pen Duick Escarpment. A large chain of mounds (about 1.6 km long) is situated to the west of the Pen Duick Escarpment. There are also small isolated groups of mounds located to the east of the Pen Duick Escarpment. These mounds do not show a clear internal structure. The seismic facies within the mounds are chaotic. The mounds at the Pen Duick Escarpment occur locally clustered but mainly as isolated structures They are at maximum about 50 m high, are located in water depths from 500 to 650 m and consist mainly of fine grained (muddy) sediments. Our seismic profiles do not reflect a relationship with the possible presence of gas, gashydrates

  6. Three-dimensional seismic velocity structure of the San Francisco Bay area

    USGS Publications Warehouse

    Hole, J.A.; Brocher, T.M.; Klemperer, S.L.; Parsons, T.; Benz, H.M.; Furlong, K.P.

    2000-01-01

    Seismic travel times from the northern California earthquake catalogue and from the 1991 Bay Area Seismic Imaging Experiment (BASIX) refraction survey were used to obtain a three-dimensional model of the seismic velocity structure of the San Francisco Bay area. Nonlinear tomography was used to simultaneously invert for both velocity and hypocenters. The new hypocenter inversion algorithm uses finite difference travel times and is an extension of an existing velocity tomography algorithm. Numerous inversions were performed with different parameters to test the reliability of the resulting velocity model. Most hypocenters were relocated 12 km under the Sacramento River Delta, 6 km beneath Livermore Valley, 5 km beneath the Santa Clara Valley, and 4 km beneath eastern San Pablo Bay. The Great Valley Sequence east of San Francisco Bay is 4-6 km thick. A relatively high velocity body exists in the upper 10 km beneath the Sonoma volcanic field, but no evidence for a large intrusion or magma chamber exists in the crust under The Geysers or the Clear Lake volcanic center. Lateral velocity contrasts indicate that the major strike-slip faults extend subvertically beneath their surface locations through most of the crust. Strong lateral velocity contrasts of 0.3-0.6 km/s are observed across the San Andreas Fault in the middle crust and across the Hayward, Rogers Creek, Calaveras, and Greenville Faults at shallow depth. Weaker velocity contrasts (0.1-0.3 km/s) exist across the San Andreas, Hayward, and Rogers Creek Faults at all other depths. Low spatial resolution evidence in the lower crust suggests that the top of high-velocity mafic rocks gets deeper from west to east and may be offset under the major faults. The data suggest that the major strike-slip faults extend subvertically through the middle and perhaps the lower crust and juxtapose differing lithology due to accumulated strike-slip motion. The extent and physical properties of the major geologic units as

  7. LAND STREAMER SEISMIC DATA FROM NORTHERN DELAWARE: A VIABLE ALTERNATIVE FOR IMAGING AQUIFERS IN SUBURBAN AREAS

    NASA Astrophysics Data System (ADS)

    Velez, C. C.; McLaughlin, P. P.; McGeary, S. E.; Sargent, S. L.

    2009-12-01

    The Potomac Formation includes the most important confined aquifers in the Coastal Plain of northern Delaware. Development and a growing suburban population are increasing demand for groundwater in the area, making accurate assessment of groundwater water supply increasingly important. Previous studies of subsurface geology indicate that the Potomac Formation is characterized by laterally discontinuous fluvial sand bodies, making it difficult to precisely delineate the distribution and geometry of the aquifer facies based on well correlations alone. A 20-km high-resolution seismic reflection dataset was collected using a land-streamer system in 2008 to constrain subsurface stratigraphy between disparate well locations. The data were collected along roadways in an area of mixed development that includes suburban housing tracts, farmlands, and large industry. A 152-m-deep continuous-cored test hole was drilled in the summer of 2009 adjacent to one of the lines and a full suite of borehole geophysical logs obtained. The land-streamer data are compared to a 3-km dataset collected also in 2008 using conventional methods on farmland in the northern part of the study area. The land streamer system proved to be more effective than conventional seismic reflection methods in this area. Several advantages are evident for the land streamer: 1) overall, the conventional dataset has a higher S/N, 2) on average, collecting data with the land streamer system is four times faster, and 3) the land streamer lines can be longer and therefore more continuous than the conventional lines in a developed area. The land-streamer system has minor disadvantages: traffic control, traffic noise, and in some cases a need for larger crews. Regardless, the land streamer dataset is easier to process, of higher quality, and more cost effective. The final depth images from the land streamer data indicate that the minimum and maximum depths imaged are ~18 m and ~ 268m, with a resolution of ~4 m. This

  8. Depositional history and seismic stratigraphy of Lower Cretaceous rocks in the National Petroleum Reserve in Alaska and adjacent areas

    SciTech Connect

    Molenaar, C.M.

    1989-01-01

    Lower Cretaceous rocks, which are widespread throughout the National Petroleum Reserve in Alaska (NPRA) and adjacent areas north of the Brooks Range, make up the major part of the thick sedimentary fill of the Colville basin. Much seismic and well information obtained since 1974 has aided considerably in understanding these rocks. These data include about 20,000 km of seismic lines, covering much of the NPRA with a grid spacing of 10-20 km, and 28 exploratory wells that bring the total to more than 50 wells in and adjacent to the NPRA. The purpose of this chapter is to interpret the depositional history of Lower Cretaceous rocks in the NPRA and adjacent areas on the basis of the latest seismic and well data and well data and on information from outcrops in the southern part of the Colville basin. The basin geometry and depositional history described in earlier reports are repeated here in the context of the overall Lower Cretaceous depositional history. Well data (including paleontology) and seismic data are used almost exclusively to interpret relations in the northern foothills and coastal plain areas. Surface data and some well data are used in the southern parts of the northern foothills, and surface data are used exclusively to interpret the depositional history in the southern foothills and Brooks Range. The quality of seismic data is fair to good in most of the coastal plain, where the structure is simple. In the northern foothills, tracing seismic reflections is more difficult, especially in the shallower part of the section because of structural complications in the thrust-faulted anticlines. The quality of seismic data across the structurally complex southern foothills area is inadequate to correlate stratigraphic units of the outcrop area of the southern foothills with subsurface units to the north.

  9. Memphis Area Regional Seismic Network. Final report, October 1986--September 1992

    SciTech Connect

    Chiu, J.M.; Johnston, A.C.

    1994-03-01

    The Memphis Area Regional Seismic Network (MARSN) has provided important southern coverage of the New Madrid seismic zone (NMSZ). One of the most important contributions of MARSN is to provide essential data for the successful identification of the Crittenden County fault zone which is located to the east and parallel to the south-west segment of the NMSZ. In addition to felt reports and earthquake locations, MARSN data has also been added into database obtained by the PANDA (Portable Array for Numerical Data Acquisition) experiment for a comprehensive seismological study of the NMSZ. Results from the PANDA experiment combined with regional seismic network data clearly demonstrate that the seismogenic zone in the NMSZ is mainly confined within depths ranging from 3 to 15 km. The SW, NW, and NE segments of the NMSZ are characterized by narrow vertical strike-slip faults. The central NMSZ is, however, very complicated. The northcentral NMSZ is characterized by a well-defined planar feature dipping {approximately} 31{degree} SW which shows dominantly normal faulting. The southcentral NMSZ is characterized by a {approximately} 48{degree} SW dipping fault which shows dominantly reverse faulting. Although the east-west compressional regional stress may play an important role in fault movements in the NMSZ, the complication in focal mechanism along each segment may suggest that other factors including postseismic relaxation by one or more of the 1811--1812 earthquakes, or the interactions between adjacent fault segments, or other tectonic features such as the right-lateral strike-slip Crittenden County Fault can not be overlooked in future tectonic studies of the NMSZ.

  10. Active Source Seismic Experiment Peers Under Soufrière Hills Volcano

    NASA Astrophysics Data System (ADS)

    Voight, Barry; Sparks, R. S. J.; Hammond, J.; Shalev, E.; Malin, P.; Kenedi, C.; Minshull, T. A.; Paulatto, M.; Mattioli, G.; Hidayat, D.; Widiwijayanti, C.

    2010-07-01

    Characterizing internal structures of active volcanoes remains an enigmatic issue in geosciences. Yet studies of such structures can greatly improve hazard assessments, helping scientists to better monitor seismic signatures, geodetic deformation, and gas emissions, data that can be used to improve models and forecasts of future eruptions. Several passive seismic tomography experiments—which use travel times of seismic waves from natural earthquakes to image underground structures—have been conducted at active volcanoes (Hawaii's Kilauea, Washington's Mount St. Helens, Italy's Etna, and Japan's Unzen), but an inhomogeneous distribution of earthquakes compromises resolution. Further, if volcanic earthquakes are dominantly shallow at a given location, passive methods are limited to studying only shallow features. Thus, active source experiments—where seismic waves from the explosion of deliberately set charges are used to image below the surface—hold great potential to illuminate structures not readily seen through passive measures.

  11. Delineation of Active Basement Faults in the Eastern Tennessee and Charlevoix Intraplate Seismic Zones

    NASA Astrophysics Data System (ADS)

    Powell, C. A.; Langston, C. A.; Cooley, M.

    2013-12-01

    Recognition of distinct, seismogenic basement faults within the eastern Tennessee seismic zone (ETSZ) and the Charlevoix seismic zone (CSZ) is now possible using local earthquake tomography and datasets containing a sufficiently large number of earthquakes. Unlike the New Madrid seismic zone where seismicity clearly defines active fault segments, earthquake activity in the ETSZ and CSZ appears diffuse. New arrival time inversions for hypocenter relocations and 3-D velocity variations using datasets in excess of 1000 earthquakes suggest the presence of distinct basement faults in both seismic zones. In the ETSZ, relocated hypocenters align in near-vertical segments trending NE-SW, parallel to the long dimension of the seismic zone. Earthquakes in the most seismogenic portion of the ETSZ delineate another set of near-vertical faults trending roughly E-ESE. These apparent trends and steep dips are compatible with ETSZ focal mechanism solutions. The solutions are remarkably consistent and indicate strike-slip motion along the entire length of the seismic zone. Relocated hypocenter clusters in the CSZ define planes that trend and dip in directions that are compatible with known Iapitan rift faults. Seismicity defining the planes becomes disrupted where the rift faults encounter a major zone of deformation produced by a Devonian meteor impact. We will perform a joint statistical analysis of hypocenter alignments and focal mechanism nodal plane orientations in the ETSZ and the CSZ to determine the spatial orientations of dominant seismogenic basement faults. Quantifying the locations and dimensions of active basement faults will be important for seismic hazard assessment and for models addressing the driving mechanisms for these intraplate zones.

  12. On interrelation between seismic activity and the Earth crust deformations of Vrancea zone

    NASA Astrophysics Data System (ADS)

    Dultsev, A.; Pronyshyn, R.; Siejka, Z.; Serant, O.; Tretyak, K.; Zablotskyj, F.

    2009-04-01

    An investigated territory covers the whole seismically active zone of Vrancea mountains (Romania). It is located between 43° and 47° parallels in latitude and 23° and 29° meridians in longitude. The weekly solutions of coordinates of six permanent stations (BACA, BAIA, BUCU, COST, DEVA, IGEO) allocated on the territories of Romania and Moldova have been used as the initial data for carrying out of the investigations. These initial data were obtained during 2007-2008. The results of determination of the earthquake parameters (coordinates, focal depth, magnitude and energy) have been obtained from a network of seismic stations. An analysis of the temporal earthquake distribution in 2007-2008 showed the alternation of the periods of seismic activity and its absence. The duration of these periods ranges from one to three weeks. The Earth crust deformation parameters between the recurrent periods of seismic activity and its absence have been calculated on basis of weekly solutions for the territory bounded by GPS-permanent stations. The accumulative values of the earthquake energy and magnitude were calculated for the periods of seismic activity. It had been ascertained that the territory of Vrancea zone undergoes the permanent stretching into northeast and southwest directions as well as the compressing into northwest and southeast ones. In fact, the more fast attenuation of the seismic waves occurs in the direction of the contraction axis and the slowest attenuation of ones occurs in the direction of the axis of elongation. The parameters of total amplitude and earthquake energy in the periods of seismic activity have high-degree correlation with difference of the deformations of next periods of seismic activity and its absence. It enables to predict a change of the deformation increment in the zone of earthquake focuses of Vrancea territory by means of the earthquake total force.

  13. Seismic hazard in the Istanbul metropolitan area: A preliminary re-evaluation

    USGS Publications Warehouse

    Kalkan, E.; Gulkan, Polat; Ozturk, N.Y.; Celebi, M.

    2008-01-01

    In 1999, two destructive earthquakes (M7.4 Kocaeli and M7.2 Duzce) occurred in the north west of Turkey and resulted in major stress-drops on the western segment of the North Anatolian Fault system where it continues under the Marmara Sea. These undersea fault segments were recently explored using bathymetric and reflection surveys. These recent findings helped to reshape the seismotectonic environment of the Marmara basin, which is a perplexing tectonic domain. Based on collected new information, seismic hazard of the Marmara region, particularly Istanbul Metropolitan Area and its vicinity, were re-examined using a probabilistic approach. Two seismic source and alternate recurrence models combined with various indigenous and foreign attenuation relationships were adapted within a logic tree formulation to quantify and project the regional exposure on a set of hazard maps. The hazard maps show the peak horizontal ground acceleration and spectral acceleration at 1.0 s. These acceleration levels were computed for 2 and 10 % probabilities of transcendence in 50 years.

  14. Dating previously balanced rocks in seismically active parts of California and Nevada

    USGS Publications Warehouse

    Bell, J.W.; Brune, J.N.; Liu, T.; Zreda, M.; Yount, J.C.

    1998-01-01

    Precariously balanced boulders that could be knocked down by strong earthquake ground motion are found in some seismically active areas of southern California and Nevada. In this study we used two independent surface-exposure dating techniques - rock-varnish microlamination and cosmogenic 36Cl dating methodologies - to estimate minimum- and maximum-limiting ages, respectively, of the precarious boulders and by inference the elapsed time since the sites were shaken down. The results of the exposure dating indicate that all of the precarious rocks are >10.5 ka and that some may be significantly older. At Victorville and Jacumba, California, these results show that the precarious rocks have not been knocked down for at least 10.5 k.y., a conclusion in apparent conflict with some commonly used probabilistic seismic hazard maps. At Yucca Mountain, Nevada, the ages of the precarious rocks are >10.5 to >27.0 ka, providing an independent measure of the minimum time elapsed since faulting occurred on the Solitario Canyon fault.

  15. Wisconsinan-Holocene seismic stratigraphy of the Keathley Canyon Area and vicinity, northwestern Gulf of Mexico

    SciTech Connect

    Lee, Gwang Hoon; Bryant, W.R.; Watkins, J.S. )

    1991-03-01

    The lower continental slope of the northwestern Gulf of Mexico is characterized by a hummocky topography with shallow salt masses interspersed by numerous salt-withdrawal basins containing thick Plio-Pleistocene and older sediments. Analysis of over 7500 km of multichannel seismic reflection data from the Keathley Canyon Area and vicinity defined the Wisconsinan-Holocene sequence and its seismic facies. In interbasinal areas and in the southern part of the study area where salt is shallow, the Wisconsinan-Holocene sequence consists mainly of low-amplitude (LA) facies underlain by strong basal-reflection (SBR) facies. The LA facies occasionally show subtle onlaps against SBR facies and grade upward into a draping pattern. Onlapping LA facies are interpreted to be a lowstand systems tract deposited by widespread low-energy turbidity currents. Draping LA facies at the top may consist of hemipelagic or pelagic sediments. The SBR facies are interpreted to consist of condensed sections formed during sea-level rises and highstands. Within basins, moderate-to-high amplitude-continuous (MHC) and hummocky-to-chaotic (HC) facies occur below LA facies. The MHC facies show a pattern of flat-lying or gently dipping reflections that onlap SBR facies. Onlapping MHC facies often grade upward into a conformable pattern and are obscured by transition into LA facies. The MHC facies are interpreted as alternating coarse- and fine-grained turbidites deposited during sea-level falls and/or lowstands. The HC facies occur commonly associated with MHC facies. The HC facies may represent slope fans formed by mass-transport processes or gravity flows during sea-level falls and/or lowstands.

  16. San Francisco Bay Area Velocity Structure From Controlled-Source Seismic Refraction Imaging

    NASA Astrophysics Data System (ADS)

    Goldman, M. R.; Catchings, R. D.; Steedman, C. E.; Gandhok, G.; Boatwright, J.; Rymer, M. J.

    2004-12-01

    To better understand the velocities and structures of the crust and upper mantle in the San Francisco Bay area, we developed 2-D tomographic velocity models along four seismic refraction profiles acquired along and across the bay area in the early 1990's. The four profiles extended from (1) Hollister to Inverness along the San Francisco and Marin Peninsulas (~200 km long), (2) Hollister to Santa Rosa along the East Bay (~220 km long), (3) the Pacific Ocean to Livermore crossing the bay (~100 km long), and (4) the Pacific Ocean to the western Santa Clara Valley (~25 km long), centered on the epicenter of the1989 M. 6.9 Loma Prieta earthquake. Velocity models were not previously developed for three of the seismic profiles, and the previously developed model for the fourth profile (Catchings and Kohler, 1996) did not include some of the currently available seismic data. The profiles along the bay image structures from the near surface to about 25 km depth, and they show velocity anomalies associated with the major faults (San Andreas, Hayward, Rodgers Creek, Calaveras) and basins along the profile. Velocities range from about 2 km/s in the basins to about 7 km/s at the Moho, which dips southward along both sides of the bay. The cross bay profile shows velocity anomalies associated with six fault zones between the Pacific Ocean and the Livermore Valley and higher upper-crustal velocities (~6.2 km/s) between the San Andreas and Hayward faults than to the southwest (~5 km/s) or northeast (~4 km/s) of those faults. The Loma Prieta profile shows velocities ranging from 2 km/s to 6 km/s in the upper 5 km, with the highest velocities in the epicentral region of the 1989 Loma Prieta earthquake. A pronounced, northeast-dipping, low-velocity zone is located beneath the surface expression of the San Andreas fault zone, but other fault zones along the profile show high-velocity anomalies beneath their surface expressions. Collectively, the velocity images show the complexity of

  17. Sensing network for electromagnetic fields generated by seismic activities

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  18. Martian seismicity

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Grimm, Robert E.

    1991-01-01

    The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.

  19. On dependence of seismic activity on 11 year variations in solar activity and/or cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhantayev, Zhumabek; Khachikyan, Galina; Breusov, Nikolay

    2014-05-01

    It is found in the last decades that seismic activity of the Earth has a tendency to increase with decreasing solar activity (increasing cosmic rays). A good example of this effect may be the growing number of catastrophic earthquakes in the recent rather long solar minimum. Such results support idea on existence a solar-lithosphere relationship which, no doubts, is a part of total pattern of solar-terrestrial relationships. The physical mechanism of solar-terrestrial relationships is not developed yet. It is believed at present that one of the main contenders for such mechanism may be the global electric circuit (GEC) - vertical current loops, piercing and electrodynamically coupling all geospheres. It is also believed, that the upper boundary of the GEC is located at the magnetopause, where magnetic field of the solar wind reconnects with the geomagnetic field, that results in penetrating solar wind energy into the earth's environment. The effectiveness of the GEC operation depends on intensity of cosmic rays (CR), which ionize the air in the middle atmosphere and provide its conductivity. In connection with the foregoing, it can be expected: i) quantitatively, an increasing seismic activity from solar maximum to solar minimum may be in the same range as increasing CR flux; and ii) in those regions of the globe, where the crust is shipped by the magnetic field lines with number L= ~ 2.0, which are populated by anomalous cosmic rays (ACR), the relationship of seismic activity with variations in solar activity will be manifested most clearly, since there is a pronounced dependence of ACR on solar activity variations. Checking an assumption (i) with data of the global seismological catalog of the NEIC, USGS for 1973-2010, it was found that yearly number of earthquake with magnitude M≥4.5 varies into the 11 year solar cycle in a quantitative range of about 7-8% increasing to solar minimum, that qualitatively and quantitatively as well is in agreement with the

  20. Revision of the geological context of the Port-au-Prince metropolitan area, Haiti: implications for slope failures and seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Terrier, M.; Bialkowski, A.; Nachbaur, A.; Prépetit, C.; Joseph, Y. F.

    2014-09-01

    Following the earthquake of 12 January 2010 in the Port-au-Prince area, the Haitian government, in close cooperation with BRGM, the French geological Survey, decided to undertake a seismic microzonation study of the metropolitan area of the capital in order to take more fully into account the seismic risk in the urbanization and planning of the city under reconstruction. As the first step of the microzonation project, a geological study has been carried out. Deposits of Miocene and Pliocene formations in a marine environment have been identified. These deposits are affected by the Enriquillo-Plantain Garden N80° E fault system and N110° E faults. Tectonic observations and morphological analysis indicate Quaternary activity of several faults mapped in the area of Port-au-Prince. These faults have a N110° trend and show a reverse-sinistral strike-slip motion. Moreover, on the basis of these geological results and of new topographical data, a hazard assessment of ground movements has been made. Along with the map of active faults, the hazard map of ground movements is an integral component of the seismic microzonation study.

  1. An developing ICDP drilling project on intraplate seismicity: Drilling Active Faults in Northern Europe (DAFNE)

    NASA Astrophysics Data System (ADS)

    Ask, M. V.; Kukkonen, I. T.; Olesen, O.; Steffen, H.; Schmitt, D.

    2011-12-01

    The combined effects of reduced ice load and glacially affected rock stresses are believed to have generated dramatic postglacial fault (PGF) structures in northern Europe, reflecting a special type of intraplate seismicity. A total of 14 PGFs have been identified up to date, with fault scarps up to 160 km in length and 30 m in height. They are usually SE dipping, SW-NE oriented thrusts that represent reactivated, pre-existing crustal discontinuities. Local and national seismic networks reveal that, at least some of the faults are still very active, with several hundreds of microseismic events each year. It is evident that if they were formed in single events, they would imply massive intraplate earthquakes (up to M 7-8). Hence, PGFs may generate larger intraplate earthquakes than generally assumed. Similar structures in North America have not been reported yet. Currently, an International Continental Drilling Program (ICDP) project on Drilling Active Faults in Northern Europe (DAFNE) is under development. The aim of the project is to investigate tectonic and structural characteristics of PGFs in northern Fennoscandia, including their hydrogeology and associated deep biosphere. The research is anticipated to advance science in neotectonics, hydrogeology and deep biosphere studies, and provide important information for nuclear waste and CO2 disposal, petroleum exploration on the Norwegian continental shelf and studies of mineral resources in PG fault areas. We expect that multidisciplinary research applying shallow and deep drilling of PGFs would provide significant scientific results through generating new data and models, namely: 1. Understanding PGF genesis and controls of their locations; 2. Deep structure and depth extent of PGFs; 3. Textural, mineralogical and physical alteration of rocks in the PGFs; 4. State of stress and estimates of paleostress of PGFs; 5. Hydrogeology, hydrochemistry and hydraulic properties of PGFs; 6. Dating of tectonic reactivation

  2. Evolution of earthquake rupture potential along active faults, inferred from seismicity rates and size distributions

    NASA Astrophysics Data System (ADS)

    Tormann, Thessa; Wiemer, Stefan; Enescu, Bogdan; Woessner, Jochen

    2016-04-01

    One of the major unresolved questions in seismology is the evolution in time and space of the earthquake rupture potential and thus time-dependent hazard along active faults. What happens after a major event: is the potential for further large events reduced as predicted from elastic rebound, or increased as proposed by current-state short-term clustering models? How does the rupture potential distribute in space, i.e. does it reveal imprints of stress transfer? Based on the rich earthquake record from the Pacific Plate along the Japanese coastline we investigate what information on spatial distributions and temporal changes of a normalized rupture potential (NRP) for different magnitudes can be derived from time-varying, local statistical characteristics of well and frequently observed small-to-moderate seismicity. Seismicity records show strong spatio-temporal variability in both activity rates and size distribution. We analyze 18 years of seismicity, including the massive 2011 M9 Tohoku earthquake and its aftermath. We show that the size distribution of earthquakes has significantly changed before (increased fraction of larger magnitudes) and after that mainshock (increased fraction of smaller magnitudes), strongest in areas of highest coseismic slip. Remarkably, a rapid recovery of this effect is observed within only few years. We combine this significant temporal variability in earthquake size distributions with local activity rates and infer the evolution of NRP distributions. We study complex spatial patterns and how they evolve, and more detailed temporal characteristics in a simplified spatial selection, i.e. inside and outside the high slip zone of the M9 earthquake. We resolve an immediate and strong NRP increase for large events prior to the Tohoku event in the subsequent high slip patch and a very rapid decrease inside this high-stress-release area, coupled with a lasting increase of NRP in the immediate surroundings. Even in the center of the Tohoku

  3. Multiple Suppression and Imaging of Marine Seismic Data from The Shallow Water Area in Southern East China Sea Shelf Basin

    NASA Astrophysics Data System (ADS)

    Shi, J.; Luan, X.; Yang, C.

    2015-12-01

    Neither surface-related multiple elimination(SRME) nor predictive de-convolution method is effective to suppress the multiple of marine seismic data from the shallow water area. The former method needs the accurate reflection of seafloor, which is mixed with the direct wave in the near offset range. The other one could probably lose the primary wave when applied to the shallow water seismic data. We introduced the new method: deterministic water-layer de-multiple method (DWD) which is capable for the poor extrapolate result of near-offset traces. Firstly, the data shifts as downward continuation in tau-p domain with a water-layer period and the multiple model will be obtained. Then, the original seismic subtracts adaptively with the multiple model. Finally, we would get the de-multiple data after inverse tau-p transform. Marine seismic real data is from southern part of East China Sea Shelf Basin. This area has become the potential target for marine hydrocarbon exploration, it is located in the junction of the Eurasian plate pacific plate and Indian plate. Because the average water depth is less than 100 meters, seismic data contains abundant of multiple, especially the surface-related multiple. As a result it is difficult to distinguish the strata structure clearly. We used DWD approach to remove the water-layer multiple, cut off the seafloor reflection events and then suppressed the residual surface-related multiple by the traditional SRME. At last , the radon transform was applied to eliminate the multiple with long period . With these steps, we suppressed the multiple of marine seismic data from this area effectively. After multiple is removed , we acquired more accurate velocity to build the velocity model of migration. With the pre-stack migration technique, reflections from each geological period are shown clearly in the seismic section. This work was supported by the National Science Foundation of China(grant no. 41476053).

  4. Active Source Tomography of Stromboli Volcano (Italy): Results From the 2006 Seismic Experiment.

    NASA Astrophysics Data System (ADS)

    Zuccarello, L.; Patanè, D.; Cocina, O.; Castellano, M.; Sgroi, T.; Favali, P.; de Gori, P.

    2008-12-01

    Stromboli island, located in the Southern Tyrrhenian sea, is the emerged part (about 900 m a.s.l.) of a 3km-high strato-volcano. Its persistent Strombolian activity, documented for over 2000 years, is sometimes interrupted by lava effusions or major explosions. Despite the amount of recent published geophysical studies aimed to clarifying eruption dynamics, the spatial extend and geometrical characteristics of the plumbing system remain poorly understood. In fact, the knowledge of the inner structure and the zones of magma storage is limited to the upper few hundreds meters of the volcanic edifice and P- and S-waves velocity models are available only in restricted areas. In order to obtain a more suitable internal structural and velocity models of the volcano, from 25 November to 2 December 2006, a seismic tomography experiment through active seismics using air-gun sources was carried out and the final Vp model is here presented. The data has been inverted for the Vp structure by using the code Simulps13q, considering a 3D grid of nodes spaced 0.5 km down to 2 km depth, beneath the central part of volcano. The results show a relatively high velocity zones located both in the inner part of the volcanic structure, at about 1km b.s.l. and in the last 200-300 m a.s.l. in correspondence with the volcanic conduit. Slower zones were located around the summit craters in agreement with volcanological and petrological informations for the area. The relatively high velocity zones could suggest the presence of intrusive bodies related to the plumbing system.

  5. Quaternary grabens in southernmost Illinois: Deformation near an active intraplate seismic zone

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Follmer, L.R.; Masters, J.M.

    1999-01-01

    Narrow grabens displace Quaternary sediments near the northern edge of the Mississippi Embayment in extreme southern Illinois, east-central United States. Grabens are part of the Fluorspar Area Fault Complex (FAFC), which has been recurrently active throughout Phanerozoic time. The FAFC strikes directly toward the New Madrid Seismic Zone (NMSZ), scene of some of the largest intra-plate earthquakes in history. The NMSZ and FAFC share origin in a failed Cambrian rift (Reelfoot Rift). Every major fault zone of the FAFC in Illinois exhibits Quaternary displacement. The structures appear to be strike-slip pull-apart grabens, but the magnitude and direction of horizontal slip and their relationship to the current stress field are unknown. Upper Tertiary strata are vertically displaced more than 100 m, Illinoian and older Pleistocene strata 10 to 30 m, and Wisconsinan deposits 1 m or less. No Holocene deformation has been observed. Average vertical slip rates are estimated at 0.01 to 0.03 mm/year, and recurrence intervals for earthquakes of magnitude 6 to 7 are on the order of 10,000s of years for any given fault. Previous authors remarked that the small amount of surface deformation in the New Madrid area implies that the NMSZ is a young feature. Our findings show that tectonic activity has shifted around throughout the Quaternary in the central Mississippi Valley. In addition to the NMSZ and southern Illinois, the Wabash Valley (Illinois-Indiana), Benton Hills (Missouri), Crowley's Ridge (Arkansas-Missouri), and possibly other sites have experienced Quaternary tectonism. The NMSZ may be only the latest manifestation of seismicity in an intensely fractured intra-plate region.

  6. Active and long-lived permanent forearc deformation driven by the subduction seismic cycle

    NASA Astrophysics Data System (ADS)

    Aron Melo, Felipe Alejandro

    I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity

  7. Pacific Upper Mantle Seismic Anisotropy from the Active-Source Seismic Component of the NoMelt Experiment

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Lizarralde, D.; Gaherty, J. B.; Collins, J. A.; Hirth, G.; Evans, R. L.

    2014-12-01

    We will present a measurement of azimuthal seismic anisotropy of Pacific-plate upper mantle based on Pn travel times from the active-source seismic component of the NoMelt experiment. The NoMelt experiment was conducted in 2012 on ~70-m.y.-old lithosphere, in the center of the spreading segment between the Clarion and Clipperton fracture zones, with the goal of delineating the detailed seismic and electrical structure of "normal," mature oceanic lithosphere. The seismic component of the experiment consisted of a 600x400 km array of 27 broad-band (BB) ocean bottom seismometers (OBS); 31 short period (SP) OBS, spaced at 20 km, deployed along the long axis of the array (the main transect), oriented along a plate-kinematic flow line; and 3 SP OBS deployed along a line normal to the main transect, at 50 km spacing, extending to 200 km southeast of the center of the main transect. The SP OBS array was deployed to record airgun shots fired by the R/V M.G. Langseth's 36-element array. Airgun shots were fired along the two perpendicular lines and also along a semi-circular arc with a 75-km radius centered at the line intersection at the center of the main transect. Pn (upper mantle refraction) arrivals from shots fired along the semicircle and recorded by OBS within the semicircle's arc span 180 degrees of azimuth and an offset range of ~40-150 km. Preliminary analyses of these Pn arrival travel times indicate an azimuthal dependence of P-wave speeds, which range from ~8.6 km/s to ~7.6 km/s. These preliminary results suggest a pattern of azimuthal wave-speed dependence that requires depth-dependent seismic anisotropy and/or a dipping mantle fabric, with the latter being more likely given the limited range of source/receiver offsets spanned by the Pn arrivals used in this analysis. We will present results that include these observations as well as Pn arrivals from a much more comprehensive set of source/receiver pairs from the NoMelt experiment.

  8. On causes of the low seismic activity in the Earth's polar latitudes

    NASA Astrophysics Data System (ADS)

    Levin, Boris; Sasorova, Elena; Domanski, Andrei

    2016-04-01

    The irregularity of distribution of seismic activity in the world was observed at the beginning of the era of instrumental seismology (B. Gutenberg, C. Richter, K. Kasahara). At the same time, the global nature of the symmetry of this effect has been established only in this millennium, with the participation of authors (Levin B.W., Sasorova E.V., 2010). Analysis of the global earthquake catalogs showed that almost all seismic events over the last century occurred within a limited latitudinal band contained between the 65 N and 65 S. The seismic activity in the polar regions of the planet was manifested very weakly. The reasons for such features were found by following the analysis of the characteristics associated with the theory of the figure of the Earth. In the works of the French mathematician A. Veronne (1912) was the first to introduce the concept of "critical" latitudes (φ1 = ±35°15' 22″) wherein the radius of the ellipsoid of revolution is equal to the radius of the sphere of the same volume. Variation of the radius vector of the ellipsoid at this latitude is equal to zero. There is the boundary between the compressed areas of the polar zones and equatorial region, where the rocks of the Earth are dominated by tensile forces. Analysis of the specific characteristics of the gravity force distribution on the surface of the ellipsoid has shown that there is a distribution of the same character with a singular point at latitude φ2 = ±61° 52' 12″. In case of variations in the angular velocity of the planet's rotation the variation of gravity force at the latitude φ2 is negligible, compared with variations of gravity force on the equator and pole, which exceed the previous value by 3-4 orders. Attempted analysis of the model of the ellipsoid of revolution in the theory of axisymmetric elastic shells has allowed to establish that in the elastic shell of the planet must occur meridional and ring forces. The theory shows that when the flatness (or polar

  9. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    NASA Astrophysics Data System (ADS)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  10. Seismic activity near the Moriyoshi-zan volcano in Akita Prefecture, northeastern Japan: implications for geofluid migration and a midcrustal geofluid reservoir

    NASA Astrophysics Data System (ADS)

    Kosuga, M.

    2014-12-01

    The 2011 off the Pacific coast of Tohoku (Tohoku-oki) earthquake caused increased seismicity in many inland areas in Japan. A triggered seismic cluster north of the Moriyoshi-zan volcano in Akita prefecture, Tohoku District, is of interest in light of the contribution of geofluids to seismic activity. We observed an active seismic cluster characterized by the migration of seismicity and reflected/scattered phases. We relocated hypocenters of the cluster using data from temporal observations and the hypoDD location technique, which significantly increased the hypocentral accuracy. We interpreted a complex spatiotemporal variation of seismicity in the cluster as the migration of pore fluid pressure from multiple pressure sources. The hydraulic diffusivity of the cluster was in the range of 0.01 to 0.7 m2/s and increased with time, implying that the migration of hypocenters accelerated after a pathway for fluids was formed by fracturing of the wall rock during the initial stage of seismic activity. A prominent feature of the seismograms is a reflected/scattered phase observed at stations around the volcano. We regard the phase as S-to-S scattered waves and estimated the location of the scatterers using a back-projection method. The scatterers are inferred to be located about 5 km northwest of the Moriyoshi-zan volcano, at an approximate depth of 13 km. The Moriyoshi-zan area is one of the source areas of deep low-frequency earthquakes that have been interpreted as events generated by the migration of geofluids. The depth of the scatterers is close to the upper depth limit of low-frequency earthquakes. Thus, we interpret the observed scatterers to be a reservoir of geofluid that came from the uppermost mantle accompanying contemporaneous low-frequency earthquakes.

  11. Neogene tectonics and modern geodynamics and seismicity of Pannonia north-eastern remote area (Ukrainian Transcarpathian yield)

    NASA Astrophysics Data System (ADS)

    Lozynak, Petro; Nazarevych, Andriy; Nazarevych, Lesya

    2010-05-01

    Pannonia north-eastern remote area (Ukrainian Transcarpathian yield) joins to East (Ukrainian) Carpathians and their geodynamic mode is interdependent from the alpine stage until now. Due to the detailed study in the last few years of structures of surface of basement and sedimentary layers of the Transcarpathian yield of postalpine ages (neogene - from early Miocene to Sarmatian and farther) (see Lozynak at al., 2002-2007) we have the possibility to trace the Neogene's tectonics of the region and its connection with modern geodynamics and seismicity of Ukrainian Transcarpathians and adjoining territories of Slovakia, Hungary and Romania. These data indicate that active orogenic processes (dominance of compression caused by a plate-tectonic processes) in this region to beginning of early miocene made off and began the process of formation of the Transcarpathian yield in his modern view (due to an output on the first plan of the plum-tectonic processes caused by Pannonian asthenolite?) (see Nazarevych A. and Nazarevych L., 2000-2007). The process of formation (origin) of yield (and the proper accumulation of sedimentary layers) began in his east part (in the area of border with Romania (Siget - Solotvyno)) at the beginning of early Miocene (about 23 million years ago), continue in north-western direction (in the rear of modern Carpathians) to the border with Slovakia at first as a narrow (10-15 km) bar (roughly during 2-4 million years) and then broadened (during next 2-3 million years) in north-eastern - south-west direction on all modern territory of the Transcarpathian yield. In future (in Sarmatian epoch, approximately from 12-14 to 10-11 million years ago) east part of yield (so-called Solotvyno depression) transgress to the mode of compression and raising with ending of intensive sedimentation, and in western part (so-called Tchop-Mukatcheve depression) the process of sagging was farther displaced westward and at present he is concentrated (by geodesic and

  12. Active Fault Characterization in the Urban Area of Vienna

    NASA Astrophysics Data System (ADS)

    Decker, Kurt; Grupe, Sabine; Hintersberger, Esther

    2016-04-01

    The identification of active faults that lie beneath a city is of key importance for seismic hazard assessment. Fault mapping and characterization in built-up areas with strong anthropogenic overprint is, however, a challenging task. Our study of Quaternary faults in the city of Vienna starts from the re-assessment of a borehole database of the municipality containing several tens of thousands of shallow boreholes. Data provide tight constraints on the geometry of Quaternary deposits and highlight several locations with fault-delimited Middle to Late Pleistocene terrace sediments of the Danube River. Additional information is obtained from geological descriptions of historical outcrops which partly date back to about 1900. The latter were found to be particularly valuable by providing unprejudiced descriptions of Quaternary faults, sometimes with stunning detail. The along-strike continuations of some of the identified faults are further imaged by industrial 2D/3D seismic acquired outside the city limits. The interpretation and the assessment of faults identified within the city benefit from a very well constrained tectonic model of the active Vienna Basin fault system which derived from data obtained outside the city limits. This data suggests that the urban faults are part of a system of normal faults compensating fault-normal extension at a releasing bend of the sinistral Vienna Basin Transfer Fault. Slip rates estimated for the faults in the city are in the range of several hundredths of millimetres per year and match the slip rates of normal faults that were trenched outside the city. The lengths/areas of individual faults estimated from maps and seismic reach up to almost 700 km² suggesting that all of the identified faults are capable of producing earthquakes with magnitudes M>6, some with magnitudes up to M~6.7.

  13. Stable and unstable phases of elevated seismic activity at the persistently restless Telica Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Roman, Diana C.; Geirsson, Halldor; LaFemina, Peter; McNutt, Stephen R.; Muñoz, Angelica; Tenorio, Virginia

    2015-01-01

    Telica Volcano, Nicaragua, is a persistently restless volcano with daily seismicity rates that can vary by orders of magnitude without apparent connection to eruptive activity. Low-frequency (LF) events are dominant and peaks in seismicity rate show little correlation with eruptive episodes, presenting a challenge for seismic monitoring and eruption forecasting. A short period seismic station (TELN) has been operated on Telica's summit since 1993, and in 2010 the installation of a six-station broadband seismic and eleven-station continuous GPS network (the TESAND network) was completed to document in detail the seismic characteristics of a persistently restless volcano. Between our study period of November 2009 and May 2013, over 400,000 events were detected at the TESAND summit station (TBTN), with daily event rates ranging from 5 to 1400. We present spectral analyses and classifications of ~ 200,000 events recorded by the TESAND network between April 2010 and March 2013, and earthquake locations for a sub-set of events between July 2010 and February 2012. In 2011 Telica erupted in a series of phreatic vulcanian explosions. Six months before the 2011 eruption, we observe a sudden decrease in LF events concurrent with a swarm of high-frequency (HF) events, followed by a decline in overall event rates, which reached a minimum at the eruption onset. We observe repeated periods of high and low seismicity rates and suggest these changes in seismicity represent repeated transitions between open-system and closed-system degassing. We suggest that these short- and long-term transitions between open to closed-system degassing form part of a long-term pattern of stable vs. unstable phases at Telica. Stable phases are characterised by steady high-rate seismicity and represent stable open-system degassing, whereas unstable phases are characterised by highly variable seismicity rates and represent repeated transitions from open to closed-system degassing, where the system is

  14. Inferences on active faults at the Southern Alps-Liguria basin junction from accurate analysis of low energy seismicity

    NASA Astrophysics Data System (ADS)

    Turino, Chiara; Scafidi, Davide; Eva, Elena; Solarino, Stefano

    2009-10-01

    Seismotectonic studies concern themselves with understanding the distribution of earthquakes in space, time, size and style. Therefore, the better these parameters are known, the most correct the association of any seismic event with the faulting structure that caused it will result. The use of accurate location methods is especially required when dealing with very complex areas, where several faulting systems or relatively small seismogenic structures exist. In fact, even though routinely determined epicentres are capable of revealing the rough picture of the seismicity, they are not suitable for studies of the fine structure of the causative fault, as their location uncertainties are often larger than the source dimension itself. In this work the probabilistic approach of the "Non Linear Localization" has been used to compute precise locations for earthquakes occurred in the last twenty years nearby the Saorge-Taggia line, a complex fault system situated in Western Liguria, close to the border between Italy and France. Together with the Breil-Sospel-Monaco and the Peille-Laghet faults, this line is responsible for the seismic activity of the area. The seismotectonic study is completed through a local tomographic study and the analysis of the focal mechanisms computed for an enlarged area. The results show that the seismicity associated with this fault system is confined within the first 10 km depth. Many clusters of seismic events are identified along the Saorge-Taggia line. The existence of a not previously mapped branch perpendicular to the Saorge-Taggia line is also recognized. Although its position may suggest it to be the continuation of the Breil-Sospel-Monaco fault system towards NE, our finding would rather suggest no association with the fault. The overall results confirm the complexity of the area; in particular the hypothesis that the Saorge-Taggia system may represent the eastward limit of a subalpine crustal block comprised within the Nice Arc, the

  15. Reflection seismic imaging of a hydraulically conductive fracture zone in a high noise area, Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Juhlin, C.; Stephens, M. B.; Cosma, C.

    2007-05-01

    High resolution reflection seismic methods have proven to be useful tools for locating fracture zones in crystalline rock. Siting of potential high-level nuclear waste repositories is a particularly important application of these methods. By using small explosive sources (15-75 grams), high resolution images of the sub-surface have been obtained in the depth range 100 m to 2 km in Sweden, Canada and elsewhere. Although ambient noise conditions in areas such as the Fennoscandian and Canadian shields are generally low, industrial noise can be high in some areas, particularly at potential sites suitable for repositories, since these are often close to existing infrastructure. In addition, the presence of this infrastructure limits the choice of sources available to the geophysicist. Forsmark, located about 140 km north of Stockholm, is one such potential site where reflection seismics have been carried out. Existing infrastructure includes nuclear reactors for power generation and a low- level waste repository. In the vicinity of the reactors, it was not possible to use an explosive source due to permitting restrictions. Instead, a VIBSIST system consisting of a tractor mounted hydraulic hammer was used in the vicinity of the reactors. By repeatedly hitting the pavement, without breaking it, at predefined sweeps and then stacking the signals, shot records comparable to explosive data could be generated. These shot records were then processed using standard methods to produce stacked sections along 3 profiles within the reactor area. Clear reflections are seen in the uppermost 600 m along 3 of these profiles. Correlation of crossing profiles shows that the strongest reflection (B8) is generated by a gently east-southeast dipping interface. Prior to construction of the reactors, several boreholes were drilled to investigate the bedrock in the area. One of these boreholes was located close to where two of the profiles cross. Projection of the B8 reflection into the

  16. Urban Reflection Seismics: A High-resolution Shear-wave Survey in the Trondheim harbour area, Norway

    NASA Astrophysics Data System (ADS)

    Krawczyk, Charlotte; Polom, Ulrich; L'Heureux, Jean-Sebastien; Hansen, Louise; Lecomte, Isabelle; Longva, Oddva

    2010-05-01

    A shallow reflection shear-wave seismic survey was carried out in mid summer 2008 in the harbour area of Trondheim, Norway, that suffers from prominent landslide events in the last decades. The harbour has been built on man-made land fillings at the coast of the Trondheim Fjord in several expansions implicated in some submarine landslides, which are reported since about 100 years. Whereas high-resolution marine seismic methods mapped the fjord area in detail in the range of decimeters, the seismic investigation below the infilled and paved harbour area was a difficult challenge. Therefore, SH-polarized shear-wave reflection seismics was applied experimentally, and the field configuration was especially adapted for the application on paved surfaces with underlying soft soil of estimated more than 150 m thickness. A land streamer system of 120 channels (geophone interval of 1 m) was used in combination with LIAG's newly developed shear-wave vibrator buggy of 30 kN peak force. This mini truck is designed for full environment-friendly urban use and enables fast and sensitive operation within a seismic survey area. The sweep parameters were configured to 25-100 Hz range, 10 s duration, using 14 s recording time sampled by 1 ms interval. Shear wave frequencies above the used frequency range, which can also be generated by the seismic source, were avoided consciously to prevent disturbing air wave reflections during operation. For an advantageous solution for the seismic imaging of the subsoil down to the bedrock a grid of 4.2 profile-km was gathered. The data recorded experimentally in the initial seismic survey stage achieved finally a highly resolved image of the structure of the sediment body with ca. 1 m vertical resolution, clear detection of the bedrock, and probably deeper structures. The profiles were processed up to FD time migration, and indicate that slip planes, turbidity masses and other features relevant for geohazards are present within the top of the

  17. Urban Shear-wave Reflection Seismics: A High-resolution Survey in the Landslide-affected Trondheim Harbour Area, Norway

    NASA Astrophysics Data System (ADS)

    Krawczyk, C. M.; Polom, U.; Hansen, L.; L'Heureux, J.; Longva, O.; Lecomte, I.

    2009-12-01

    A shallow reflection shear-wave seismic survey was carried out in mid summer 2008 in the harbour area of Trondheim, Norway, that suffers from prominent landslide events in the last decades. The harbour has been built on man-made land fillings at the coast of the Trondheim Fjord in several expansions implicated in some submarine landslides. Whereas high-resolution marine seismic methods mapped the fjord area in detail, common seismic investigation of the infilled, paved harbour area was a difficult challenge. Therefore, SH-polarized shear-wave reflection seismics was applied experimentally, and the field configuration was especially adapted for the application on paved surfaces with underlying soft soil of more than 100 m thickness. A land streamer system of 120 channels (geophone interval of 1 m) was used in combination with LIAG's newly developed shear-wave vibrator buggy of 30 kN peak force. This mini truck is full environment-friendly for urban use and enables fast operation within a seismic survey area. The sweep parameters were configured to 25-100 Hz range, 10 s duration, using 14 s recording time sampled by 1 ms interval. Shear wave frequencies above the used frequency range, which can also be generated by the seismic source, were avoided consciously to prevent disturbing air wave reflections during operation. For an advantageous solution for the seismic imaging of the subsoil down to the bedrock ca. 4 km of 2.5-D profiles were gathered. The data recorded experimentally in the initial seismic survey stage achieved finally a highly resolved image of the structure of the sediment body with 1 m vertical resolution, clear detection of the bedrock, and probably deeper structures. These were processed up to FD time migration, and indicate that slip planes are present within the top of the bedrock. Due to the clear and continuous reflection events, also the shear-wave velocity could be calculated at least down to the bedrock to indicate the dynamic stiffness of the

  18. Determining the depositional pattern by resistivity-seismic inversion for the aquifer system of Maira area, Pakistan.

    PubMed

    Akhter, Gulraiz; Farid, Asim; Ahmad, Zulfiqar

    2012-01-01

    Velocity and density measured in a well are crucial for synthetic seismic generation which is, in turn, a key to interpreting real seismic amplitude in terms of lithology, porosity and fluid content. Investigations made in the water wells usually consist of spontaneous potential, resistivity long and short normal, point resistivity and gamma ray logs. The sonic logs are not available because these are usually run in the wells drilled for hydrocarbons. To generate the synthetic seismograms, sonic and density logs are required, which are useful to precisely mark the lithology contacts and formation tops. An attempt has been made to interpret the subsurface soil of the aquifer system by means of resistivity to seismic inversion. For this purpose, resistivity logs and surface resistivity sounding were used and the resistivity logs were converted to sonic logs whereas surface resistivity sounding data transformed into seismic curves. The converted sonic logs and the surface seismic curves were then used to generate synthetic seismograms. With the utilization of these synthetic seismograms, pseudo-seismic sections have been developed. Subsurface lithologies encountered in wells exhibit different velocities and densities. The reflection patterns were marked by using amplitude standout, character and coherence. These pseudo-seismic sections were later tied to well synthetics and lithologs. In this way, a lithology section was created for the alluvial fill. The cross-section suggested that the eastern portion of the studied area mainly consisted of sandy fill and the western portion constituted clayey part. This can be attributed to the depositional environment by the Indus and the Kabul Rivers.

  19. Seismic activity near the Moriyoshi-zan volcano in Akita Prefecture, northeastern Japan: implications for geofluid migration and a midcrustal geofluid reservoir

    NASA Astrophysics Data System (ADS)

    Kosuga, Masahiro

    2014-12-01

    The 2011 off the Pacific coast of Tohoku (Tohoku-oki) earthquake caused increased seismicity in many inland areas in Japan. A seismic cluster north of the Moriyoshi-zan volcano in Akita prefecture, Tohoku District, is of interest in light of the contribution of geofluids to seismic activity. We observed a seismic cluster characterized by the migration of seismicity and reflected/scattered phases. We relocated hypocenters of the cluster using data from temporal observations and the hypoDD location technique, which significantly increased the hypocentral accuracy. We interpreted a complex spatiotemporal variation of seismicity in the cluster as the migration of pore fluid pressure from multiple pressure sources. The hydraulic diffusivity of the cluster was in the range of 0.01 to 0.7 m2/s and increased with time, implying that the migration of hypocenters accelerated after a pathway for fluids was formed by fracturing of the wall rock during the initial stage of seismic activity. A prominent feature of the seismograms is a reflected/scattered phase observed at stations around the volcano. We regard the phase as S-to- S scattered waves and estimated the location of the scatterers using a back-projection method. The scatterers are inferred to be located about 5 km northwest of the Moriyoshi-zan volcano, at an approximate depth of 13 km. The Moriyoshi-zan area is one of the source areas of deep low-frequency earthquakes that have been interpreted as events generated by the migration of geofluids. The depth of the scatterers is close to the upper limit of the depth at which low-frequency earthquakes occur. Thus, we interpret the observed scatterers to be a reservoir of geofluid that came from the uppermost mantle accompanying contemporaneous low-frequency earthquakes.

  20. Coal-mining seismicity and ground-shaking hazard: A case study in the Trail Mountain area, Emery County, Utah

    USGS Publications Warehouse

    Arabasz, W.J.; Nava, S.J.; McCarter, M.K.; Pankow, K.L.; Pechmann, J.C.; Ake, J.; McGarr, A.

    2005-01-01

    We describe a multipart study to quantify the potential ground-shaking hazard to Joes Valley Dam, a 58-m-high earthfill dam, posed by mining-induced seismicity (MIS) from future underground coal mining, which could approach as close as ???1 km to the dam. To characterize future MIS close to the dam, we studied MIS located ???3-7 km from the dam at the Trail Mountain coal mine. A 12-station local seismic network (11 stations above ground, one below, combining eight triaxial accelerometers and varied velocity sensors) was operated in the Trail Mountain area from late 2000 through mid-2001 for the dual purpose of (1) continuously monitoring and locating MIS associated with longwall mining at a depth of 0.5-0.6 km and (2) recording high-quality data to develop ground-motion prediction equations for the shallow MIS. (Ground-motion attenuation relationships and moment-tensor results are reported in companion articles.) Utilizing a data set of 1913 earthquakes (M ??? 2.2), we describe space-time-magnitude distributions of the observed MIS and source-mechanism information. The MIS was highly correlated with mining activity both in space and time. Most of the better-located events have depths constrained within ??0.6 km of mine level. For the preponderance (98%) of the 1913 located events, only dilatational P-wave first motions were observed, consistent with other evidence for implosive or collapse-type mechanisms associated with coal mining in this region. We assess a probable maximum magnitude of M 3.9 (84th percentile of a cumulative distribution) for potential MIS close to Joes Valley Dam based on both the worldwide and regional record of coal-mining-related MIS and the local geology and future mining scenarios.

  1. Assessment of seismic loading on structures based on airborne LiDAR data from the Kalochori urban area (N. Greece)

    NASA Astrophysics Data System (ADS)

    Rovithis, Emmanouil; Kirtas, Emmanouil; Marini, Eleftheria; Bliziotis, Dimitris; Maltezos, Evangelos; Pitilakis, Dimitris; Makra, Konstantia; Savvaidis, Alexandros

    2016-08-01

    Airborne LiDAR monitoring integrated with field data is employed to assess the fundamental period and the seismic loading of structures composing an urban area under prescribed earthquake scenarios. Α piecewise work-flow is adopted by combining geometrical data of the building stock derived from a LiDAR-based 3D city model, structural data from in-situ inspections on representative city blocks and results of soil response analyses. The procedure is implemented in the residential area of Kalochori, (west of Thessaloniki in Northern Greece). Special attention is paid to the in-situ inspection of the building stock in order to discriminate recordings between actual buildings and man-made constructions that do not conform to seismic design codes and to acquire additional building stock data on structural materials, typologies and number of stories which is not feasible by the LiDAR process. The processed LiDAR and field data are employed to compute the fundamental period of each building by means of code-defined formulas. Knowledge of soil conditions in the Kalochoti area allows for soil response analyses to obtain free-field at ground surface under earthquake scenarios with varying return period. Upon combining the computed vibrational characteristics of the structures with the free-field response spectra, the seismic loading imposed on the structures of the urban area under investigation is derived for each one of the prescribed seismic motions. Results are presented in GIS environment in the form of spatially distributed spectral accelerations with direct implications in seismic vulnerability studies of an urban area.

  2. Correlation Between Radon Outgassing and Seismic Activity Along the Hayward Fault Near Berkeley, California

    NASA Astrophysics Data System (ADS)

    Holtmann-Rice, D.; Cuff, K.

    2003-12-01

    Results from previous studies indicate that radon concentration values are significantly higher over selected sections of the Hayward fault than adjacent areas. This phenomenon is believed to be attributed to the presence of abundant fractures in rock associated with the fault, which act as pathways for radon as it migrates from depth towards the earth?s surface. In an attempt to determine whether or not a relationship exists between seismicity along the fault, the production of microfractures, and emanation of radon, a radon outgassing monitoring study was conducted along an active section of the Hayward fault in Berkeley, California. The study was carried out by using an alphaMETER 611, which is a device capable of accurately measuring radon concentrations every 15 minutes. The alphaMETER was placed at the bottom of a sealed one meter deep well, in close proximity to a section of the Hayward fault located along the northwestern face of the Berkeley Hills. Once per week for several months data collected by the alphaMETER was downloaded into a laptop computer. Data from the alphaMETER was then compared with seismic data recorded by local seismometers to see if any correlation existed. A general correlation between variation in radon concentration and the occurrence of small earthquakes was found. Significant peaks in radon concentration were observed within an approximately one week period before the occurrence of small earthquakes. Concentration values then decreased dramatically just prior to and during periods when the earthquakes occurred. Such correlation is very similar to that recently observed in association with a magnitude five earthquake along the Anatolian Fault, reported by geoscientists working in Turkey using similar instrumentation (Inan, 2003, personal communication). The most plausible explanation for the observed correlation is as follows: 1) prior to a given earthquake, stress build up within a particular fault region leads to the formation of

  3. Predicting earthquakes by analyzing accelerating precursory seismic activity

    USGS Publications Warehouse

    Varnes, D.J.

    1989-01-01

    During 11 sequences of earthquakes that in retrospect can be classed as foreshocks, the accelerating rate at which seismic moment is released follows, at least in part, a simple equation. This equation (1) is {Mathematical expression},where {Mathematical expression} is the cumulative sum until time, t, of the square roots of seismic moments of individual foreshocks computed from reported magnitudes;C and n are constants; and tfis a limiting time at which the rate of seismic moment accumulation becomes infinite. The possible time of a major foreshock or main shock, tf,is found by the best fit of equation (1), or its integral, to step-like plots of {Mathematical expression} versus time using successive estimates of tfin linearized regressions until the maximum coefficient of determination, r2,is obtained. Analyzed examples include sequences preceding earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China 2/4/75; Oaxaca, Mexico, 11/29/78; Petatlan, Mexico, 3/14/79; and Central Chile, 3/3/85. In 29 estimates of main-shock time, made as the sequences developed, the errors in 20 were less than one-half and in 9 less than one tenth the time remaining between the time of the last data used and the main shock. Some precursory sequences, or parts of them, yield no solution. Two sequences appear to include in their first parts the aftershocks of a previous event; plots using the integral of equation (1) show that the sequences are easily separable into aftershock and foreshock segments. Synthetic seismic sequences of shocks at equal time intervals were constructed to follow equation (1), using four values of n. In each series the resulting distributions of magnitudes closely follow the linear Gutenberg-Richter relation log N=a-bM, and the product n times b for each series is the same constant. In various forms and for decades, equation (1) has been used successfully to predict failure times of stressed metals and ceramics, landslides in soil and rock slopes, and volcanic

  4. Facility Focus: Student Activity Areas.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses the design of student activity facilities that are showpieces containing both business and entertainment elements. Four examples are highlighted including a performing arts center, a college gym, a student services facility, and a student union. (GR)

  5. Active seismic and microseismic reflection imaging of the Precordilleran crust, fore-arc of the North-Chilean subduction zone (Central Andes)

    NASA Astrophysics Data System (ADS)

    Wenske, Ina; Hellwig, Olaf; Schmelzbach, Cedric; Buske, Stefan; Kummerow, Jörn; Wigger, Peter; Shapiro, Serge A.

    2013-04-01

    (Kirchhoff and Coherency Migration) is to provide improved images of the upper and middle crust, thereby, resolving the shallow and perhaps steeply dipping segments of the major fault systems, which were not detected by the original processing. The re-processed and migrated depth sections reveal improved images of the upper and middle crust (< 20 km depth) containing significantly more details compared to the previous results. Some interesting structures were resolved but no unambiguous reflections from steeply dipping fault segments have been clearly identified yet. With the motivation to obtain complementary structural images of the upper crust, we processed reflection information extracted from passive seismic waveform data recorded around the area, where the ANCORP profile crosses the West Fissure Fault System (WFFS; around 21°S, 69°W). Even though the passive seismic data provide a limited illumination of the subsurface, the resultant microseismic-reflection images exhibit a dominant frequency of several Hz, which provides a resolution capability that is only moderately inferior to the one of the active-seismic images. The combined interpretation of the active-seismic and passive-seismic reflection images as well as the distribution of the seismicity allows deepening our understanding of the tectonic structures and related processes of the North-Chilean fore-arc.

  6. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  7. Tank Focus Area pretreatment activities

    SciTech Connect

    McGinnis, C.P.; Welch, T.D.; Manke, K.L.

    1997-03-01

    Plans call for the high-level wastes to be retrieved from the tanks and immobilized in a stable waste form suitable for long-term isolation. Chemistry and chemical engineering operations are required to retrieve the wastes, to condition the wastes for subsequent steps, and to reduce the costs of the waste management enterprise. Pretreatment includes those processes between retrieval and immobilization, and includes preparation of suitable feed material for immobilization and separations to partition the waste into streams that yield lower life-cycle costs. Some of the technologies being developed by the Tank Focus Area (TFA) to process these wastes are described. These technologies fall roughly into three areas: (1) solid/liquid separation (SLS), (2) sludge pretreatment, and (3) supernate pretreatment.

  8. Recent Seismic and Geodetic Activity at Multiple Volcanoes in the Ecuadorean Andes

    NASA Astrophysics Data System (ADS)

    Hernandez, S.; Ruiz, M. C.; McCausland, W. A.; Prejean, S. G.; Mothes, P. A.; Bell, A. F.; Hidalgo, S.; Barrington, C.; Yepez, M.; Aguaiza, S.; Plain, M.

    2015-12-01

    The state of volcanic activity often fluctuates between periods of repose and unrest. The transition time between a period of repose and unrest, or vice versa for an open system, can occur within a matter of hours or days. Because of this short time scale, real-time seismic and geodetic (e.g. tiltmeter, GPS) monitoring networks are crucial for characterizing the state of activity of a volcano. In the Ecuadorean Andes, 5 volcanoes demonstrate long-term (Tungurahua, Reventador, and Guagua Pichincha) or recently reactivated (Cotopaxi, Chiles-Cerro Negro) seismic and geodetic activity. The Instituto Geofisico regularly characterizes volcano seismicity into long period, very long period, volcano-tectonic, and tremor events. Significant recent changes at these volcanoes include: rigorous reactivation of glacier-capped Cotopaxi, drumbeat seismicity absent a dome extrusion at Tungurahua, and regularly reoccurring (~7 day recurrence interval), shallow seismic swarms at Guagua Pichincha. These volcanoes locate along both the Western and Eastern Cordillera of the Ecuadorean Andes and, where data are available, manifest important variations in chemical composition, daily gas flux, and surficial deformation. We summarize the long-term geophysical parameters measured at each volcano and place recent changes in each parameter in a larger magmatic and hydrothermal context. All of the studied volcanoes present significant societal hazards to local and regional communities.

  9. Variations of terrestrial geomagnetic activity correlated to M6+ global seismic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2013-04-01

    From the surface of the Sun, as a result of a solar flare, are expelled a coronal mass (CME or Coronal Mass Ejection) that can be observed from the Earth through a coronagraph in white light. This ejected material can be compared to an electrically charged cloud (plasma) mainly composed of electrons, protons and other small quantities of heavier elements such as helium, oxygen and iron that run radially from the Sun along the lines of the solar magnetic field and pushing into interplanetary space. Sometimes the CME able to reach the Earth causing major disruptions of its magnetosphere: mashed in the region illuminated by the Sun and expanding in the region not illuminated. This interaction creates extensive disruption of the Earth's geomagnetic field that can be detected by a radio receiver tuned to the ELF band (Extreme Low Frequency 0-30 Hz). The Radio Emissions Project (scientific research project founded in February 2009 by Gabriele Cataldi and Daniele Cataldi), analyzing the change in the Earth's geomagnetic field through an induction magnetometer tuned between 0.001 and 5 Hz (bandwidth in which possible to observe the geomagnetic pulsations) was able to detect the existence of a close relationship between this geomagnetic perturbations and the global seismic activity M6+. During the arrival of the CME on Earth, in the Earth's geomagnetic field are generated sudden and intensive emissions that have a bandwidth including between 0 and 15 Hz, an average duration of 2-8 hours, that preceding of 0-12 hours M6+ earthquakes. Between 1 January 2012 and 31 December 2012, all M6+ earthquakes recorded on a global scale were preceded by this type of signals which, due to their characteristics, have been called "Seismic Geomagnetic Precursors" (S.G.P.). The main feature of Seismic Geomagnetic Precursors is represented by the close relationship that they have with the solar activity. In fact, because the S.G.P. are geomagnetic emissions, their temporal modulation depends

  10. Some possible correlations between electro magnetic emission and seismic activity during West Bohemia 2008 earthquake swarm

    NASA Astrophysics Data System (ADS)

    Kolář, Petr; R寎ek, Bohuslav; Jedlička, Petr; Horálek, Josef; Boušková, Alena; Hruška, František; Baše, Jiří; Chum, Jaroslav

    2010-05-01

    There are long lasting speculations about electro-magnetic phenomena (hereafter EME) connected with seismic activity. In the present contribution we study such relation in West Bohemia region (hereafter W.B.) during 2008 earthquake swarm. Seismic activity in W.B. region is the most important seismic phenomenon in Czech Republic. It is characterized by occurrence of seismic swarms (it was most recently confirmed by 2008 swarm, the strongest one for the last 3 decades. High activity lasted approximately from October 10 to November 5, more than 20.000 events (Ml > -0.5), about 100 events with Ml > 2.0, the strongest event with Ml=3.7). In addition to ongoing standard seismic measurement performed by WEBNET seismic network, we recorded experimentally also electro-magnetic emission (detected by an antenna and digitized, we observed in range cca 0.1-10 Hz with sampling 25 Hz, continuous registration practically in the epicentrum of the swarm). Analysis of the data showed, that in the region there is no direct link between EME signal and seismic events neither for individual events nor statistically. However statistical analysis indicates that it could be some increase of EME activity in time 60 to 30 minutes before an event on periods 17-14 minutes, some gap in EME activity approximately 2 hours after the event and a maximum 4 hours after the events (only events with Ml > 1.8 were considered in the analysis). We practically excluded possibility that the effect could be caused by particular timing of prevent(s) and/or after event(s) - i.e. there is no correlation between observed extremes in EME signal and swarm energy flux or standard seismic signal. Also global decrease of EME activity with the decay of the swarm activity was observed. However due to incomplete EME data and short time of observation these results must be understand rather as indication of possible correlation rather than reliable relation. Further EME observations in the region are intended.

  11. Moment tensor inversion of recent local moderate sized Van Earthquakes: seismicity and active tectonics of the Van region : Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Suvarikli, M.; Ogutcu, Z.; Kekovali, K.; Ocal, M. F.; Gunes, Y.; Pinar, A.

    2013-12-01

    The study area of the present research, the Van Region is located at the norththern end of the collision zone between the Anatolia and Arabian plates. Therefore, the southeast border of the Anatolian plate collides with the Arabian plate along the Bitlis Suture Zone. This zone is formed by collision of Arabian and in large scale Eurasian plates at mid-Miocen age. This type of thrust generation as a result of compressional regime extends east-west. The largest recorded earthquakes have all taken place along Southern Turkey (e.g. Lice, 1971; Varto, 1966; Caldiran, 1976). On the 23th of October 2011, an earthquake shook the Van Lake, Eastern Turkey, following a seismic sequence of more than three months in an unprecedented episode for this region characterized by null or low seismicity. The October 23, 2011 Van-Ercis Earthquake (Mw=7.1) was the most devastating resulting in loss of life and destruction. In order to study the aftershocks' activity of this main event, we installed and kept a seismic network of 10 broad-band (BB) stations in the area for an interval of nearly fifteen months. We characterized the seismogenic structure of the zone by calculating a minimum 1-D local velocity model and obtaining precise hypocentre locations. We also calculated fault plane solutions for more than 200 moderate sized earthquakes based on first motion polarities and commonly Moment Tensor Inversion Methods. The seismogenic zone would be localized at aproximately 10 km depth. Generally, the distribution of the important moderate earthquakes and the aftershock distribution shows that the E-W and NE-SW oriented fault segments cause the earthquake activities. Aftershock events are located along the eastern border of Lake Van and mainly between 5 and 10 km depth and disposed in two alignments: a ~E-W-trending alignment that matches with the trace of the Van Trust fault Zone and a NE-trending which could correspond to an structure not previously seen. Selected focal mechanisms show a

  12. Seismic activity response as observed in mantled howlers (Alouatta palliata), Cuero y Salado Wildlife Refuge, Honduras.

    PubMed

    Snarr, Kymberley Anne

    2005-10-01

    This report documents the response of wild mantled howlers (Alouatta palliata) to coseismic activity (seismic activity at the time of an earthquake). During field work on the north coast of Honduras, data were collected on a habituated troop of mantled howlers as they responded to coseismic activity. The seismic event occurred on 13 February 2001 at 0822 hours local time with a magnitude of Richter scale 6.6, focus depth of approximately 15 km at a distance of 341 km from the epicentre to the field site, Cuero y Salado. At the field site, based upon Jeffreys and Bullen (1988), body waves, noted as P and S waves, arrived at 60 and 87 s, respectively, with surface waves arriving approximately 103 s post-origin time of the seismic event. While there are three reports on non-human primate response to coseismic activity in the literature, they report on captive non-human primates. This is the first documented response on a non-captive troop. In addition, this report compares the intensity measure encountered by a wild troop of howlers and one captive group of orangutans as set out by the Modified Mercalli Intensity scale. The Modified Mercalli measure of intensity is one of two standard measures of seismic activity and rates what a person sees and feels at their location (Wood and Neumann 1931; Richter 1958). Thus, arboreal nonhuman primates are found to respond to coseismic activity ranging from Level IV to Level VI as based upon the modified Mercalli intensity scale.

  13. Realistic modeling of seismic input for megacities and large urban areas

    NASA Astrophysics Data System (ADS)

    Panza, G. F.; Unesco/Iugs/Igcp Project 414 Team

    2003-04-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  14. Revision of the geological context of the Port-au-Prince, Haiti, metropolitan area: implications for seismic microzonation

    NASA Astrophysics Data System (ADS)

    Terrier, M.; Bialkowski, A.; Nachbaur, A.; Prépetit, C.; Joseph, Y. F.

    2014-02-01

    A geological study has been conducted in the framework of the microzonation of Port-au-Prince, Haiti. It reveals the deposit of Miocene and Pliocene formations in a marine environment and the impact on these deposits of the Enriquillo-Plantain Garden N80° E fault system and of N110° E faults. The tectonic and morphological analysis indicates motion during the Quaternary along several mapped reverse left-lateral N110° E faults affecting the capital. Assessing ground-movement hazards represents an integral component of seismic microzonation. The geological results have provided essential groundwork for this assessment. Seismic microzonation aims to take seismic risk more fully into account in the city's urbanization and development policies. To this end, assumptions are made as to risks induced by surface rupture and ground movement from active faults.

  15. Seismic surveys negatively affect humpback whale singing activity off northern Angola.

    PubMed

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard

    2014-01-01

    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations.

  16. Seismic Surveys Negatively Affect Humpback Whale Singing Activity off Northern Angola

    PubMed Central

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard

    2014-01-01

    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations. PMID:24618836

  17. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from

  18. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  19. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip; Chouet, Bernard; Pitt, Andrew

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10-3 to 7.9 × 10-3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10-4 to 3.4 × 10-3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day-1, the reservoir could supply the emission of CO2 for ˜25-1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  20. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    USGS Publications Warehouse

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  1. Tomographic Image of a Seismically Active Volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Chouet, B. A.; Pitt, A. M.

    2015-12-01

    High-resolution tomographic P wave, S wave, and VP /VS velocity structure models are derived for Mammoth Mountain, California using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (˜50 km3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is primarily due to the presence of CO2 distributed in oblate-spheroid pores with mean aspect ratio α ˜8 x 10-4 (crack-like pores) and gas volume fraction φ ˜4 x 10-4. The pore density parameter κ = 3φ / (4πα) = na3 = 0.12, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to range up to ˜1.6 x 1010 kg if the pores exclusively contain CO2, although he presence of an aqueous phase may lower this estimate by up to one order of magnitude. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 5 x 105 kg day-1, the reservoir could supply the emission of CO2 for ˜8 to ˜90 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  2. High-resolution marine seismic reflection data from the San Francisco Bay area

    USGS Publications Warehouse

    Childs, Jonathan R.; Hart, Patrick; Bruns, Terry R.; Marlow, Michael S.; Sliter, Ray

    2000-01-01

    Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. Surveys were conducted oversouth San Francisco Bay in the vicinity of the San Bruno shoal (roughly between the San Francisco and Oakland airports), over the offshore extension of the San Andreas fault system west of the Golden Gate, over the Hayward fault to Rodgers Creek fault step-over in San Pablo Bay, and over the Kirby Hills fault where it crosses the western Sacramento Delta. Reconnaissance profiles were acquired elsewhere throughout the San Francisco and San Pablo Bays. These data were acquired by the U.S. Geological Survey, Western Coastal and Marine Geology Team, under the auspices of the Central California/San Francisco Bay Earthquake Hazards Project. Analysis and interpretation of some of these profiles has been published by Marlow and others (1996, 1999). Further analysis and interpretation of these data are available in a USGS. Professional Paper Crustal Structure of the Coastal and Marine San Francisco Bay Region, T. Parsons, editor, http://geopubs.wr.usgs.gov/prof-paper/pp1658/ [link added 2012 mfd].

  3. Seismic stratigraphic characteristics of upper Louisiana continental slope: an area east of Green Canyon

    USGS Publications Warehouse

    Bouma, Arnold H.; Feeley, Mary H.; Kindinger, Jack G.; Stelting, Charles E.; Hilde, Thomas W.C.

    1981-01-01

    A high-resolution seismic reflection survey was conducted in a small area of the upper Louisiana Continental Slope known as Green Canyon Area. This area includes tracts 427, 428, 471, 472, 515, and 516, that will be offered for sale in March 1982 as part of Lease Sale 67. The sea floor of this region is, slightly hummocky and is underlain by salt diapirs that are mantled by early Tertiary shale. Most of the shale is overlain by younger Tertiary and Quaternary deposits, although locally some of the shale protrudes the sea floor. Because of proximity to older Mississippi River sources, the sediments are thick. The sediment cover shows an abundance of geologic phenomena such as horsts, grabens, growth faults, normal faults, and consolidation faults, zones with distinct and indistinct parallel reflections, semi-transparent zones, distorted zones, and angular unconformities. The major feature of this region is a N-S linear zone of uplifted and intruded sedimentary deposits formed due to diapiric intrusion. Small scale graben development over the crest of the structure can be attributed to extension and collapse. Large scale undulations of reflections well off the flanks of the uplifted structure suggest sediment creep and slumping. Dipping of parallel reflections show block faulting and tilting. Air gun (5 and 40 cubic inch) records reveal at least five major sequences that show masked onlap and slumping in their lower parts grading into more distinct parallel reflections in their upper parts. Such sequences can be related to local uplift and sea level changes. Minisparker records of this area show similar sequences but on a smaller scale. The distinct parallel reflections often onlap the diapir flanks. The highly reflective parts of these sequences may represent turbidite-type deposition, possibly at times of lower sea level. The acoustically more transparent parts of each sequence may represent deposits containing primarily hemipelagic and pelagic sediment. A complex

  4. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the

  5. Differences in the Upper Mantle Structure between 'Hot' and 'Cold' Areas in North America based on USArray Seismic Data along California - Virginia Profile

    NASA Astrophysics Data System (ADS)

    Dec, M.; Sroda, P.; Tesauro, M.; Kaban, M. K.; Perchuc, E.

    2013-12-01

    Nowadays, United States is an area extensively studied by seismic research due to the fact that the EarthScope USArray project provides an unique opportunity to verify previous seismological models and improve our understanding of the upper mantle structure. The data from this experiment are fundamental to study the upper mantle structure because they allow us to present much more detailed analysis. In this study we use the data recorded by the Transportable Array of the USArray and data from the ISC bulletin. We refer also to data from longitudinal Early Rise project while analysing New Madrid Seismic Zone. We use the travel time data from the earthquakes recorded at a distance up to 3500 km in order to image the upper mantle down to about 600 km depth. We present P- and S-wave velocity models for the tectonically stable central part of US and for the active western part. The 1D models are constructed based on the forward modelling of traveltimes from the events located along the California - Virginia profile, for e.g. in California, Colorado or Virginia. This provides a possibility to update the previous MP-1 model (Malinowski et al., 2010). The models were corrected for the crustal effect using the crustal model of Tesauro et al. (2013). All the models have been verified by synthetic seismograms calculated using the reflectivity method. The models show significant differences in the first-arrivals observed at the 800-1800 km epicentral distance range. In the Western, tectonically active region, the 300-km discontinuity is observed. It is interpreted based on the refracted phases with the apparent velocity of 8.9-9.0 km/s and clearly observed reflections. In this area, a low-velocity zone at the bottom of the upper mantle significantly deepens the 410-km discontinuity. The stable North American Craton is characterized by blurred arrivals from the 300-km discontinuity. These 1D models of the upper mantle structure in North America served as a starting point for

  6. An Idea for an Active Seismic Experiment on Mars in 2008

    NASA Technical Reports Server (NTRS)

    Lognonne, Ph.; Banerdt, B.; Giardini, D.; Costard, F.

    2001-01-01

    The detection of liquid water is of prime interest and should have deep implications in the understanding of the Martian hydrological cycle and also in exobiology. In the frame of the 2007 joint CNES-NASA mission to Mars, a set of 4 NETLANDERS developed by an European consortium is expected to be launched in June 2007. We propose to use a second spacecraft going or landing to Mars to release near one of the Netlander a series of artificial metallic meteorites, in order to perform an active seismic experiment providing a seismic profile of the crust and subsurface.

  7. Robust Satellite Techniques for monitoring earth emitted radiation in the Japanese seismic area by using MTSAT observations in the TIR spectral range

    NASA Astrophysics Data System (ADS)

    Genzano, Nicola; Filizzola, Carolina; Hattori, Katsumi; Lisi, Mariano; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    Since eighties, the fluctuations of Earth's thermally emitted radiation, measured by satellite sensors operating in the thermal infrared (TIR) spectral range, have been associated with the complex process of preparation for major earthquakes. But, like other claimed earthquake precursors (seismological, physical, chemical, biological, etc.) they have been for long-time considered with some caution by scientific community. The lack of a rigorous definition of anomalous TIR signal fluctuations and the scarce attention paid to the possibility that other causes (e.g. meteorological) different from seismic activity could be responsible for the observed TIR variations were the main causes of such skepticism. Compared with previously proposed approaches the general change detection approach, named Robust Satellite Techniques (RST), showed good ability to discriminate anomalous TIR signals possibly associated to seismic activity, from the normal variability of TIR signal due to other causes. Thanks to its full exportability on different satellite packages, since 2001 RST has been implemented on TIR images acquired by polar (e.g. NOAA-AVHRR, EOS -MODIS) and geostationary (e.g. MSG-SEVIRI, NOAA-GOES/W, GMS-5/VISSR) satellite sensors, in order to verify the presence (or absence) of TIR anomalies in presence (absence) of earthquakes (with M>4) in different seismogenic areas around the world (e.g. Italy, Greece, Turkey, India, Taiwan, etc.). In this paper, the RST data analysis approach has been implemented on TIR satellite records collected over Japan by the geostationary satellite sensor MTSAT (Multifunctional Transport SATellites) and RETIRA (Robust Estimator of TIR Anomalies) index was used to identify Significant Sequences of TIR Anomalies (SSTAs) in a possible space-time relations with seismic events. Achieved results will be discussed in the perspective of a multi-parametric approach for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  8. Structural and Lithologic Characteristics of the Wenchuan Earthquake Fault Zone and its Relationship with Seismic Activity

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, H.; Pei, J.; Li, T.; Huang, Y.; Zhao, Z.

    2010-12-01

    The Wenchuan earthquake (Ms 8.0) struck the Longmen Shan area, the eastern margin of the Tibetan Plateau in Sichuan, China.It produced a large co-seismic surface rupture zone along the Yingxiu-Beichuan and Guanxian-Anxian fault zones. Our research focuses on the central fault of the Longmuanshan fault belt: the Yingxiu-Beichuan fault zone. Detailed studies were done on the coseismic surface rupture in Bajiaomiao village, Hongkou town. Combining with analyses of the cores from the No.1 Well of the Wenchuan Earthquake Fault Scientific Drilling (WFSD-1) Project, the composition features and structures of the Longmenshan fault belt are discussed. Our research indicates that the Yingxiu-Beichuan fault zone is composed of many small sub-faults (damage zone), which consist of fault breccia, cataclasite and/or fault gouge, and small amounts pseudotachylite in some faults. The thickness of the gouge in the fault zone ranges from several millimeters to 25 centimeters, which is consistent with the fault characteristics recorded in the cores of WFSD-1. Gouge is the product of the frictional effect during the earthquake, representing the principal slip zone (PSZ). The width of the Yingxiu-Beichuan fault zone is about 120 m viewed from outcrops in Bajiaomiao village. More than 80 small sub-faults that contain gouge are distributed in this area. Only several millimeters to approximately 2 centimeters gouge can be formed in one earthquake, from the results of the Taiwan Chelungpu-fault Drilling Project (TCDP) and Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, so we can infer that each layer of gouge in Yingxiu-Beichuan fault zone might be produced by at least 1 to 13 large earthquakes. The total thickness of the gouge in this area is about 150 cm, indicating at least 183 earthquake events, and suggesting that strong earthquakes repeatedly occurred along the Yingxiu-Beichuan fault zone. Each earthquake does not completely slip along the principal slip zone (PSZ) of

  9. Emergency preparedness activities during an ongoing seismic swarm: the experience of the 2011-2012 Pollino (Southern Italy) sequence

    NASA Astrophysics Data System (ADS)

    Masi, A.; Mucciarelli, M.; Chiauzzi, L.; De Costanzo, G.; Loperte, G.

    2012-04-01

    Facing natural disasters effects can be a very difficult task lacking suitable activities and tools to preventively prepare the involved community (people, authorities, professionals, …) to the expected events. Therefore, a suite of preventive actions should be carried out to mitigate natural risks, in particular working to reduce the territorial vulnerability with respect to the specific natural hazard at hand, and to increase people response capacity. In fact, building social capacity helps to increase the risk perception and the people capacity to adapt to and cope with natural hazards. Since October 2011 a seismic swarm is affecting the Pollino mountain range, Southern Italy. At present the sequence is still ongoing, with more than 500 events with M>1, at least 40 well perceived by the population and a maximum magnitude at 3.6. The area mainly affected by the seismic sequence includes 12 villages, with a total population of about 50.000 inhabitants and, according to the current seismic hazard map it has high seismicity level. Such area was hit by a magnitude Ml=5.7 event in 1998 that produced macroseismic intensity not higher that VII-VIII degree of MCS scale and caused one dead, some injured and widespread damage in at least six municipalities. During the sequence, the National Department of Civil Protection (DPC) and the Civil Protection of Basilicata Region decided to put in action some measures aimed at verifying and enhancing emergency preparedness. These actions have been carried out with a constant and fruitful collaboration among the main stakeholders involved (scientific community, local and national governmental agencies, civil protection volunteers, etc) trough the following main activities: 1. collaboration between scientific community and the local and national offices of Civil Protection especially in the relationship with local authorities (e.g. mayors, which are civil protection authorities in their municipality); 2. interaction between DPC

  10. Seismic evidence for active underplating below the megathrust earthquake zone in Japan.

    PubMed

    Kimura, Hisanori; Takeda, Tetsuya; Obara, Kazushige; Kasahara, Keiji

    2010-07-01

    Determining the structure of subduction zones is important for understanding mechanisms for the generation of interplate phenomena such as megathrust earthquakes. The peeling off of the uppermost part of a subducting slab and accretion to the bottom of an overlying plate (underplating) at deep regions has been inferred from exhumed metamorphic rocks and deep seismic imaging, but direct seismic evidence of this process is lacking. By comparing seismic reflection profiles with microearthquake distributions in central Japan, we show that repeating microearthquakes occur along the bottom interface of the layer peeling off from the subducting Philippine Sea plate. This region coincides with the location of slow-slip events that may serve as signals for monitoring active underplating.

  11. Seismic and satellite observations of calving activity at major glacier fronts in Greenland

    NASA Astrophysics Data System (ADS)

    Danesi, Stefania; Salimbeni, Simone; Urbini, Stefano; Pondrelli, Silvia; Margheriti, Lucia

    2016-04-01

    The interaction between oceans and large outlet glaciers in polar regions contributes to the budget of the global water cycle. We have observed the dynamic of sizeable outlet glaciers in Greenland by the analysis of seismic data collected by the regional seismic network Greenland Ice Sheet Monitoring Network (GLISN) trying also to find out correspondence in the glacier tongue evolution derived by the observation of satellite images. By studying the long-period seismic signals at stations located at the mouth of large fjords (e.g. ILULI, NUUG, KULLO), we identify major calving events through the detection of the ground flexure in response to seiche waves generated by iceberg detachments. 
For the time spanning the period between 2010-2014, we fill out calving-event catalogues which can be useful for the estimation of spatial and temporal variations in volume of ice loss at major active fronts in Greenland.

  12. A Predictive Model of Daily Seismic Activity Induced by Mining, Developed with Data Mining Methods

    NASA Astrophysics Data System (ADS)

    Jakubowski, Jacek

    2014-12-01

    The article presents the development and evaluation of a predictive classification model of daily seismic energy emissions induced by longwall mining in sector XVI of the Piast coal mine in Poland. The model uses data on tremor energy, basic characteristics of the longwall face and mined output in this sector over the period from July 1987 to March 2011. The predicted binary variable is the occurrence of a daily sum of tremor seismic energies in a longwall that is greater than or equal to the threshold value of 105 J. Three data mining analytical methods were applied: logistic regression,neural networks, and stochastic gradient boosted trees. The boosted trees model was chosen as the best for the purposes of the prediction. The validation sample results showed its good predictive capability, taking the complex nature of the phenomenon into account. This may indicate the applied model's suitability for a sequential, short-term prediction of mining induced seismic activity.

  13. Seismic-reflection evidence that the hayward fault extends into the lower crust of the San Francisco Bay Area, California

    USGS Publications Warehouse

    Parsons, T.

    1998-01-01

    This article presents deep seismic-reflection data from an experiment across San Francisco Peninsula in 1995 using large (125 to 500 kg) explosive sources. Shot gathers show a mostly nonreflective upper crust in both the Franciscan and Salinian terranes (juxtaposed across the San Andreas fault), an onset of weak lower-crustal reflectivity beginning at about 6-sec two-way travel time (TWTT) and bright southwest-dipping reflections between 11 and 13 sec TWTT. Previous studies have shown that the Moho in this area is no deeper than 25 km (~8 to 9 sec TWTT). Three-dimensional reflection travel-time modeling of the 11 to 13 sec events from the shot gathers indicates that the bright events may be explained by reflectors 15 to 20 km into the upper mantle, northeast of the San Andreas fault. However, upper mantle reflections from these depths were not observed on marine-reflection profiles collected in San Francisco Bay, nor were they reported from a refraction profile on San Francisco Peninsula. The most consistent interpretation of these events from 2D raytracing and 3D travel-time modeling is that they are out-of-plane reflections from a high-angle (dipping ~70??to the southwest) impedance contrast in the lower crust that corresponds with the surface trace of the Hayward fault. These results suggest that the Hayward fault truncates the horizontal detachment fault suggested to be active beneath San Francisco Bay.

  14. Seismic activity before and after the eruption of Kuchinoerabujima in 2015

    NASA Astrophysics Data System (ADS)

    Chiba, K.

    2015-12-01

    Shindake, on Kuchinoerabujima, in the Ryukyu Islands, south of Kyusyu, Japan, erupted at 09:59 JST on 29 May 2015. This eruption is considered to have been a phreato-magmatic eruption, according to the Coordinating Committee for Prediction of Volcanic Eruption in Japan. As characteristic seismic activities before and after the eruption, an A-type event (Mw 2.3) occurred in the northwestern part of Shindake on 23 May, and numerous volcanic events occurred in and around Shindake just after the eruption. The frequency-magnitude distribution (b-value) of earthquakes is commonly high in volcanic areas. It is also known that high b-values in volcanic areas are primarily responsible for material heterogeneity, low shear strength, and high thermal gradients. These facts suggest that the b-value distribution can be used as a tool to locate active magma chambers. It is thus important to determine the distribution of hypocenters precisely and to investigate the b-value distribution on Kuchinoerabujima. We used a data set of the Japan Meteorological Agency and the National Research Institute for Earth Science and Disaster Prevention, and a half-space with Vp = 2.5 km/s as a velocity structure. For the determination of hypocenters, we used the hypomh (Hirata and Matsu'ura 1987) and hypoDD (Waldhauser and Ellsworth 2000) algorithms. This revealed that many estimated hypocenters were distributed in and around the vent at a depth of ~5 km under Shindake before and after the eruption. A volume of high b (>1.2) was locally observed in the eastern part at depths of 1.0-2.5 km below Shindake before the eruption and another was widely observed at depths of 2.0-4.0 km after the eruption. By comparing these findings with other observation results, we may be able to obtain a clear image of the active magma chamber.

  15. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    SciTech Connect

    Mills, H.H. )

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots of this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.

  16. Elevated Seismic Activity Beneath the Slumbering Morne aux Diables Volcano, Northern Dominica and the Monitoring Role of the Seismic Research Centre

    NASA Astrophysics Data System (ADS)

    Watts, R. B.; Robertson, R. E.; Abraham, W.; Cole, P.; de Roche, T.; Edwards, S.; Higgins, M.; Johnson, M.; Joseph, E. P.; Latchman, J.; Lynch, L.; Nath, N.; Ramsingh, C.; Stewart, R. C.

    2012-12-01

    Since June 2009, periods of elevated seismic activity have been experienced around the flanks of Morne Aux Diables Volcano in northern Dominica. This long-dormant volcano is a complex of 7 andesitic lava domes with a central depression where a cold soufrière is evident. Prior to this activity, seismicity was very quiet except for a short period in 2000 and an intense short-lived swarm in April 2003. The most recent earthquake activity has been regularly felt by residents in villages on all flanks of the complex. In Dec 09/Jan10, scientists from the Seismic Research Centre (SRC), based in Trinidad & Tobago, in collaboration with staff of the Office of Disaster Management (ODM) and Dominica Public Seismic Network (DPSN) improved the monitoring capacity around this volcano from 1 to 7 seismic stations. Earthquakes are determined to be volcano-tectonic in nature and located at shallow depths (<4 km) beneath the central depression. Additionally, in Jan/Feb 10 geothermal sampling was undertaken and 2 permanent GPS sites were deployed. Public information leaflets prepared by SRC scientists using a "Question & Answer" format have been distributed to concerned citizens whilst many public meetings were carried out by ODM staff. Field investigations indicate that the previous Late Pleistocene activity of Morne Aux Diables switched from Pelèan dome growth and gravitational collapse to more explosive pumice-falls and associated ignimbrites, both styles forming extensive pyroclastic fans around the central complex. The town of Portsmouth is located on one of these fans ~5 km southwest of the central depression. Sporadic, short bursts of seismic activity continue at the time of writing.

  17. New insights on the deep geodynamic processes within Vrancea active seismic zone as inferred from non-tidal gravity changes

    NASA Astrophysics Data System (ADS)

    Besutiu, L.

    2012-04-01

    Vrancea experiment Located in the bending zone of East Carpathians, just at the junction of three major lithospheric compartments, the so-called Vrancea zone exhibits unusual intermediate-depth seismicity within full intra-continental environment. The dominant idea is that the upper mantle seismicity is due to a slab relict hanging below the Vrancea crust. However, several aspects, among which the issues of its connection with the crust, are under debate. The presence of the intermediate-depth earthquakes with vertical-extension mechanism advocate for an active attachment of the oceanic lithosphere relict sinking into the upper mantle, but some seismic tomography images seem to point out a completely detached high velocity body. However, the low resolution makes the results questionable. A gravity experiment has been conducted in order to infer the lithosphere dynamics within the Vrancea seismic region from the space-time change of the gravity field in the area. Systematic high accuracy gravity observations have been performed within a dedicated gravity network consisting of 13 epoch-stations regularly spread over the study area and a geo-traverse crossing the epicentre zone. Instruments and methodology Using a Scintrex CG-5 relative meter, absolute gravity values have been transferred on each pillar from the both second order Romanian national gravity reference network and the Central Europe UNIGRACE network. Gravity values on the base stations located along the geo-traverse have been referred to one of the end base-stations, located outside the active geodynamic area in a stable environment. All gravity observations were corrected for tide and drift. Due to the short distance between the stations, corrections for atmospheric pressure change have not been considered. Main results As the second order Romanian national gravity network provides absolute gravity for the 1980's epoch, and the UNIGRACE network offers absolute gravity for 2000's epoch, pairs of absolute

  18. Limestones as a paleobathymeter for reconstructing past seismic activities: Muroto-misaki, Shikoku, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Iryu, Y.; Maemoku, H.; Yamada, T.; Maeda, Y.

    2009-03-01

    Muroto-misaki (Cape Muroto) is located at the southern tip of the eastern half of Shikoku, southwestern Japan and is ~ 100 km north of the Nankai Trough where the Philippine Sea Plate is being subducted beneath the Eurasian Plate. Therefore, the Muroto-misaki area has been seismically uplifted. Sedimentologic analyses were conducted on Holocene limestones that occur along the coast from Muroto-misaki to Meoto-iwa, located ~ 13 km north of the cape. The limestones are limited to less than 9.2 m in elevation. The limestones are up to 4.4 m in mean diameter, up to 0.5 m in thickness, and consist mainly of fossilized sessile organisms, including annelids, corals, bryozoans, encrusting foraminifers, barnacles, nongeniculate coralline algae, and, to a lesser extent, molluscs and peyssonneliacean algae. Acicular and equant cements are minor components. Acicular cements are found in semi-closed spaces between coralline algal crusts and their substrates. The modal composition of limestones was determined by a point-counting technique. Based on the biotic composition, the Holocene limestones can be classified into six types (Types I to VI). A comparison of the vertical distribution of these rock types with that of modern sessile organisms indicates that the top of Type I limestone, which is characterized by the occurrence of hermatypic corals, corresponds approximately to the mean low water springs when the limestones formed. A difference in the highest occurrence of Type I limestone between two sites may represent the variation in the total amount of uplift over the last 1000 to 1500 years, which resulted in an apparent northward decline of paleo-mean low water springs at a rate of ~ 10 cm/km. Therefore, the Holocene limestones are a good paleobathymeter to reconstruct past seismic activities in this area. This study shows that warm temperate carbonate deposits are as excellent recorders of geologic events, such as the timing and scale of repeated coseismic uplifts and

  19. Seismic characterization of the j-reflector near the meizoseismal area of the 1886 Charleston earthquake for lithologic constraint

    NASA Astrophysics Data System (ADS)

    Cunningham, Craig

    Investigations into the relationship between geologic structure and seismicity in and around the meizoseismal area of the 1886 Charleston earthquake have been ongoing since the 1970s. Seismic reflection profiles collected in this area display a prominent, laterally continuous, high amplitude, low frequency, two cycle reflection at ~0.7-1.2 s TWT, termed the "J" reflector, which has been correlated with Lower to Middle Jurassic tholeiitic basalt flows encountered in the Clubhouse Crossroads wells. The "J" reflector was also extended offshore onto the continental shelf. Recent reevaluation of sub Coastal Plain wells within the South Georgia Rift (SGR) Basin, including wells around the meizoseismal area of the 1886 Charleston earthquake, has shown most do not encounter basalt rising suspicions as to the true lithology of the "J"-reflector. Moreover, this same reflector has been interpreted to be the unconformity at the base of the Cretaceous-age Coastal Plain sediments. In order to define the regional extent of the Clubhouse Crossroads basalt, seismic inversion and attribute analysis were performed on two recently acquired reflection profiles, SC02_1 and SC02_5. Beginning in December 2010 through February 2011, seven 2D reflection profiles: SC02_1 - SC02_7 (total length 240 km) were acquired to the immediate west and northwest of the Charleston meizoseismal zone and legacy seismic data as part of DOE Award DE-FE0001965: Geologic Characterization of the South Georgia Rift Basin for Source Proximal C02 Storage project. The first profile, SC02_1, passes Norris Lightsey #1 and Rizer #1, two wells that never encountered basalt at the base of coastal plain. SC02_5, passes Dorchester 211, a well that bottomed into basalt at the base of the coastal plain. Variations in seismic attributes provides evidence for a western termination of the clubhouse crossroads basalt flow on SC02_1 and key support for visible amplitude variations at the contact between coastal plain

  20. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  1. The Sasquatch Hydrothermal Field: Linkages Between Seismic Activity, Hydrothermal Flow, and Geology

    NASA Astrophysics Data System (ADS)

    Glickson, D. A.; Kelley, D. S.; Delaney, J. R.

    2006-12-01

    The Sasquatch Hydrothermal Field is the most northern known vent field along the central Endeavour Segment of the Juan de Fuca Ridge, located 6 km north of the Main Endeavour Field (MEF) near 47° 59.8'N, 129° 4.0'W. It was discovered in 2000, after two large earthquake swarms in June 1999 and January 2000 caused increased venting temperatures in the MEF and significant changes in volatile composition along the entire axis [Johnson et al., 2000; Lilley et al., 2003; Proskurowski et al., 2004]. From 2004-2006, Sasquatch and the surrounding axial valley were comprehensively mapped with SM2000 multibeam sonar system and Imagenex scanning sonar at a resolution of 1-5 m. These data were combined with visual imagery from Alvin and ROV dives to define the eruptive, hydrothermal, and tectonic characteristics of the field and distal areas. Based on multibeam sonar results, bathymetric relief of the segment near Sasquatch is subdued. The broad axial valley is split by a central high that rises 30-40 m above the surrounding seafloor. Simple pattern analysis of the valley shows two fundamentally different regions, distinguished by low and high local variance. Areas of low variance correspond to a collapse/drainback landscape characterized by ropy sheet flow, basalt pillars, and bathtub rings capped by intact and drained lobate flows. Areas of high variance generally correspond to three types of ridge structures: 1) faulted basalt ridges composed of truncated pillow basalt, rare massive flows, and widespread pillow talus; 2) constructional basalt ridges composed of intact pillow flow fronts; and 3) extinct sulfide ridges covered by varying amounts of sulfide talus and oxidized hydrothermal sediment. Sasquatch is located in a depression among truncated pillow ridges, and is comprised of ~10, 1-6 m high, fragile sulfide chimneys that vent fluids up to 289°C. The active field extends only ~25 x 25 m, although a linear, N-S trending ridge of nearly continuous extinct sulfide

  2. Flow Dynamics and Stability of the NE Greenland Ice Stream from Active Seismics and Radar

    NASA Astrophysics Data System (ADS)

    Riverman, K. L.; Alley, R. B.; Anandakrishnan, S.; Christianson, K. A.; Peters, L. E.; Muto, A.

    2015-12-01

    We find that dilatant till facilitates rapid ice flow in central Greenland, and regions of dryer till limit the expansion of ice flow. The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining 8.4% of the ice sheet's area. Fast ice flow initiates near the ice sheet summit in a region of high geothermal heat flow and extends some 700km downstream to three outlet glaciers along the NE Coast. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. In this study, we present the results of the first-ever ground-based geophysical survey of the initiation zone of NEGIS. Based on radar and preliminary seismic data, Christianson et al. (2014, EPSL) propose a flow mechanism for the ice stream based on topographically driven hydropotential lows which generate 'sticky' regions of the bed under the ice stream margins. We further test this hypothesis using a 40km reflection seismic survey across both ice stream margins. We find that regions of 'sticky' bed as observed by the radar survey are coincident with regions of the bed with seismic returns indicating drier subglacial sediments. These findings are further supported by five amplitude-verses-offset seismic surveys indicating dilatant till within the ice stream and consolidated sediments within its margins.

  3. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshore-onshore seismological network and swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.

    2015-12-01

    Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.

  4. Seismically active structural lineaments in south-central Alaska as seen on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Gedney, L. (Principal Investigator); Vanwormer, J. D.

    1973-01-01

    The author has identified the following significant results. A mosaic of south-central Alaska composed of 19 ERTS-1 images, when compared with the seismicity pattern of the area, reveals that the larger earthquakes tend to fall on lineaments which are easily recognizable on the imagery. In most cases, these lineaments have not been mapped as faults. One particular lineament, which was the scene of three earthquakes of magnitude 4 or greater during 1972, passes very close to Anchorage.

  5. Fjord-valley fill stratigraphy from onshore high-resolution shear-wave seismics, Trondheim harbour area, central Norway

    NASA Astrophysics Data System (ADS)

    Hansen, L.; Polom, U.; L'Heureux, J.; Sauvin, G.; Lecomte, I.; Krawczyk, C. M.; Longva, O.

    2009-12-01

    To obtain information on the stratigraphic variability within the underlying fjord-valley fill, a shallow, shear-wave reflection seismic survey was successfully carried out on land in the Trondheim harbor area, central Norway. Since the last deglaciation, the region has been subjected to a fall of relative sea level of totally 175 m due to glacioisostatic rebound. The relative sea-level fall was accompanied by river erosion of emerging (glacio) marine deposits, several, large landslides, and delta progradation into the fjord. The infilled harbour area is located on the submerged part of a delta plain, and land reclamation is still going on. Historic and older submarine landslides are known to have taken place along the shoreline and an improved understanding of the ground conditions is therefore valuable for engineering purposes. In addition, the unique, S-wave seismic record gives insight into the overall architecture and long-term development of a fjord-valley filling influenced by relative sea level fall accompanied by occasional major mass-wasting events. Shear-wave reflection seismics was applied using a land streamer of 120 channels combined with a newly developed shear-wave vibrator from LIAG. Overall, 4.2 profile-km were acquired in a 2.5-D grid along paved roads and parking lots during night to minimize environmental noise. The investigations achieved a highly resolved image of the fjord-valley fill and clear bedrock detection. Vertical resolution is within a few meters over the entire profile whereas horizontal resolution decreases with depth. The entire fjord-valley fill is up to 160 m thick and five main stratigraphic units have been identified including bedrock. The fjord-valley fill is interpreted as consisting of glaciomarine deposits overlain by marine fjord sediments grading upwards into deltaic deposits. The change from continuous to more discontinuous or irregular reflection patterns reflects a progressive influence of delta-derived processes and

  6. Local slope, hillslope length and upslope unstable area as 1st order controls on co-seismic landslide hazard.

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Densmore, A. L.; Petley, D. N.; Bellugi, D. G.; Li, G.

    2015-12-01

    Many communities in mountainous areas have limited access to and/or understanding of co-seismic landslide hazard maps. Furthermore these maps rarely provide the information that a community seeks: Where is safest? How big could the landslide be? Geomorphic intuition suggests that: 1) on the ridges one is less likely to be hit by a landslide than elsewhere in the landscape; 2) hazard increases with the amount of upslope unstable area; 3) longer slopes contain more candidate landslides and are also capable of producing larger landslides thus they constitute a more severe hazard. These observations could help communities in siting infrastructure or making earthquake plans but have not, to our knowledge, been tested against past landslide inventories. Co-seismic landslide models make no attempt to predict landslide size and focus on initiation, ignoring the runout which is critical in the slope length control on hazard. Here we test our intuitive hypotheses using an inventory of co-seismic landslides from the 2008 Wenchuan earthquake. The inventory is mapped from high-resolution remote imagery using an automated algorithm and manual delineation and does not distinguish between source and runout zones. Discretizing the study area into 30 m cells we define landslide hazard as the probability that a cell is within a mapped landslide polygon (p(ls)). We find that p(ls) increases rapidly with increasing slope and upslope area. Locations with low local slope (<10˚) or upslope area (<900 m2/m) have p(ls) less than one third of the areal average. The joint p(ls) conditional on local slope and upslope area identifies long steep slopes as particularly hazardous and ridges (where slope and upslope area are both low) as particularly low hazard. Examining the slope lengths associated with each landslide in the inventory we find that hillslope length sets an upper limit on landslide size but that its influence on the detailed size distribution is more difficult to untangle. Finally

  7. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  8. Seismic time-frequency analysis of the recent 2015 eruptive activity of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D. M.; Nava Pichardo, F. A.; Reyes Dávila, G. A.; Arámbula-Mendoza, R.; Martínez Fierros, A.; Ramírez Vázquez, A.; González Amezcua, M.

    2015-12-01

    Volcán de Colima is an andesitic stratovolcano located in western Mexico. It is considered the most active volcano in Mexico, with activity characterized mainly by intermittent effusive and explosive episodes. On July 10th-12th 2015, Volcán de Colima underwent its most intense eruptive phase since its Plinian eruption in 1913. A partial collapse of the dome and of the crater wall generated several pyroclastic flows, the largest of which reached almost 10 km to the south of the volcano. Lava flows along with incandescent rockfalls descended through various flanks of the volcanic edifice. Ashfall affected people up to 40 km from the volcano's summit. Inhabitants from the small villages closest to the volcano were evacuated and authorities sealed off a 12 km area. We present an overview of the seismic activity that preceded and accompanied this eruptive phase, with data from the closest broadband and short period seismic stations of the Volcán de Colima monitoring network. We focus on the search of temporal information within the spectral content of the seismic signals. We first employ common time-frequency representations such as Fourier and wavelet transforms, but we also apply more recent techniques proposed for the analysis of non-stationary signals, such as empirical mode decomposition and the synchrosqueezing transform. We present and discuss the performances of these various methods characterizing and quantifying spectral changes which could be used to forecast future eruptive events and to evaluate the course of volcanic processes during ongoing eruptions.

  9. Seismicity and eruptive activity at Fuego Volcano, Guatemala: February 1975 -January 1977

    USGS Publications Warehouse

    Yuan, A.T.E.; McNutt, S.R.; Harlow, D.H.

    1984-01-01

    We examine seismic and eruptive activity at Fuego Volcano (14??29???N, 90?? 53???W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ??? 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes. Over 4000 A-type events were recorded January 3-7, 1977 (cumulative seismic energy ??? 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ?? 0.2 to 2.1 ?? 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions. During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ?? 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement. ?? 1984.

  10. Seismic activity in the transitional segment of Southern Andes after Maule 2010 megathrust earthquake

    NASA Astrophysics Data System (ADS)

    González, Diego; Lupi, Matteo; Bataille, Klaus

    2016-04-01

    It has been shown that after large magnitude earthquakes the region of volcanic arc affected by the megathrust slip is marked by an increase of volcanic activity in the following decades. The Mw = 8.8 Maule 2010 earthquake induced a rupture zone about 500 km long spanning from 33.5°S to 38.5°S. GPS and InSar data show that several volcanic edifices in the Southern Andes underwent a rapid subsidence (from days to months) after the Maule earthquake. To identify the post seismic deformation taking place in the volcanic arc after the Maule earthquake we deployed 20 seismic stations from November 2013 to March 2015 from 35°S to 39°S. We recorded ˜ 600 seismic events larger than Mw = 2.0, concentrated along the slab and beneath the volcanic chain. No events were detected at depths greater than 60 km beneath the volcanic arc. After a preliminary localization, the crustal events were relocated using an improved 1D velocity model. For the largest seismic events we inverted for moment tensor solutions. The moment tensor solution suggest a dominant N-NNE dextral strike-slip local stress field regime. This is in agreement with the direction of ancient geological structures inferred in the basement that were suggested to be reactivated by supra-lithostatic fluid pressures.

  11. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    SciTech Connect

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicity in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.

  12. Delineating Potential Quick-clay Areas Using High-resolution Seismic Methods: Towards a 3D Model of an Area Prone to Slide in SW Sweden

    NASA Astrophysics Data System (ADS)

    Salas Romero, S.; Malehmir, A.; Snowball, I.

    2015-12-01

    Quick clay can liquefy under increased stress and is responsible for major landslides in Sweden, Norway and Canada, but despite extensive investigations delineating quick clay remains a challenge. As part of a large multidisciplinary project, this study focuses on an area prone to quick-clay landslides in SW Sweden. P- and S-wave seismic, electrical resistivity tomography, and RMT (radio-magnetotelluric) data obtained in 2011 (Malehmir et al. 2013) suggested the presence of a coarse-grained layer of variable thickness sandwiched between clays, with quick clay above. The coarse-grained layer was assumed to accelerate the formation of quick clay, influencing its thickness. Additional geophysical data (reflection and refraction seismic, and RMT) and studies of three boreholes drilled in 2013, with the aim to intersect the coarse-grained layer, extended the area covered in 2011. Here we report on four seismic profiles (total length 3.5 km) acquired in 2013, combined with side-scan and single channel reflection seismic data along a river, which was believed to be important in the context of quick-clay landslides. Wireless (50-1C-10 Hz and 24-3C-broadband) and cabled sensors (323-28 Hz), 4-10 m apart, were used for the data acquisition of the longest profile (nearly 2 km long). Dynamite, accelerated weight-drop and sledgehammer were used as seismic sources. Simultaneous data acquisition for two parallel profiles, about 300 m apart, provides additional information. Preliminary results delineate the bedrock and its undulation near and in the river. We believe that overlying reflections are caused by the coarse-grained materials, whose lateral extension is considerably larger than previously thought. This may imply a wider area containing quick clay and hence at risk of slope failure. The new data and previous results are combined to construct a high-resolution 3D subsurface model that focuses on the coarse-grained layer and potential quick-clay areas. Malehmir A, Bastani M

  13. Occurrence of anomalous seismic activity preceding large to great earthquakes in northeast India region with special reference to 6 August 1988

    NASA Astrophysics Data System (ADS)

    Singh, H. N.; Shanker, D.; Singh, V. P.

    2005-02-01

    Seismicity database from 1860 to 1985 of northeast India region bounded by the area 20°-32°N and 82°-100°E have been analyzed for the identification of precursory swarm/anomalous seismic activity preceding large to great earthquakes with M ≥ 7.5. It is observed that with the exception of three earthquakes (1908, 1912 and 1918), the large earthquakes of 1897, 1946, 1947, 1950 and 1951/1952 were preceded by well-developed epoch of swarm/anomalous seismic activity in space and time well before their occurrence. The seismicity is observed to fluctuate in the order of low-high-low ranging from 0-0.5, 01-33 to 0-0.7 events/year prior to these mainshocks during the epochs of normal/background, swarm/anomalous and gap/quiescence, respectively. The duration of precursory gap is observed to vary from 11 to 17 years for mainshocks of M 7.5-8.0, and from 23 to 27 years for M 8.7 and this period is dependent on the magnitude of the mainshocks. Using the values of magnitude of mainshock ( Mm), average magnitude of swarm ( Mp) and the precursory time gap ( Tp), the following predictive equations are established for the region: M=1.37M-1.40 M=3log⁡T-3.27 All the major earthquakes with mb ≥ 6.1 occurred during 1963-1988 have been investigated for their association with anomalous seismicity/precursory swarms using the events with cutoff magnitude mb ≥ 4.5. Eleven such events have occurred in the region during the period except one earthquake of 29 May 1976. All the remaining 10 earthquakes were associated in some forms of anomalous seismicity epochs. Well-defined patterns of anomalous seismicity are observed prior to 1964-1965, 12 August 1976 and 30 December 1984 ( mb 5.6). All these mainshocks are preceded by seismicity patterns in the order of low-high-low similar to that observed prior to the mainshocks from 1897 to 1962. The anomalous seismicity epoch is delineated with extremely high annual earthquake frequency, which was preceded and followed by extremely low

  14. Studies of the Correlation Between Ionospheric Anomalies and Seismic Activities in the Indian Subcontinent

    SciTech Connect

    Sasmal, S.; Chakrabarti, S. K.; Chakrabarti, S.

    2010-10-20

    The VLF (Very Low Frequency) signals are long thought to give away important information about the Lithosphere-Ionosphere coupling. It is recently established that the ionosphere may be perturbed due to seismic activities. The effects of this perturbation can be detected through the VLF wave amplitude. There are several methods to find this correlations and these methods can be used for the prediction of these seismic events. In this paper, first we present a brief history of the use of VLF propagation method for the study of seismo-ionospheric correlations. Then we present different methods proposed by us to find out the seismo-ionospheric correlations. At the Indian Centre for Space Physics, Kolkata we have been monitoring the VTX station at Vijayanarayanam from 2002. In the initial stage, we received 17 kHz signal and latter we received 18.2 kHz signal. In this paper, first we present the results for the 17 kHz signal during Sumatra earthquake in 2004 obtained from the terminator time analysis method. Then we present much detailed and statistical analysis using some new methods and present the results for 18.2 kHz signal. In order to establish the correlation between the ionospheric activities and the earthquakes, we need to understand what are the reference signals throughout the year. We present the result of the sunrise and sunset terminators for the 18.2 kHz signal as a function of the day of the year for a period of four years, viz, 2005 to 2008 when the solar activity was very low. In this case, the signal would primarily be affected by the Sun due to normal sunrise and sunset effects. Any deviation from this standardized calibration curve would point to influences by terrestrial (such as earthquakes) and extra-terrestrial (such as solar activities and other high energy phenomena). We present examples of deviations which occur in a period of sixteen months and show that the correlations with seismic events is significant and typically the highest deviation

  15. Fault activation after vigorous eruption: the December 8, 2015 seismic swarm at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Alparone, Salvatore; Bonforte, Alessandro; Guglielmino, Francesco; Maiolino, Vincenza; Puglisi, Giuseppe; Ursino, Andrea

    2016-04-01

    From December 2, 2015, volcanic activity suddenly occurred on Mt. Etna with very violent fire fountaining at central crater, known also as "Voragine". This activity continued with other intense episodes at the same crater during the three following days and involving also, in turn, all the other three summit craters. This sudden eruption produced a rapid deflation of the volcano and was followed, from December 8, by a seismic swarm, with almost eighty earthquakes during this day, located on the uppermost segment of the Pernicana-Provenzana fault system (PFS). This seismicity was characterized by shallow foci (from few hundred meters until 1.5 km below the sea level) and mainshock with 3.6 magnitude. In order to investigate and measure the dynamics controlling and accompanying the PFS activation, a dataset composed of C-Band Sentinel-1A data has been used for SAR Interferometry (InSAR) analysis. Some interferograms have been generated from ascending and descending orbits in order to analyze both short- and long-term deformation. The availability of GPS data allowed comparing and integrating them with InSAR for ground truth and modeling aims. The surface kinematics and modeling obtained by DInSAR and GPS data and integration have been compared to the distribution of the seismicity and related focal mechanisms in order to define the fault geometry and motion. Moreover, essential constraints have been achieved about the PFS dynamic and its relationship with the intense volcanic activity occurred.

  16. First seismic shear wave velocity profile of the lunar crust as extracted from the Apollo 17 active seismic data by wavefield gradient analysis

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Schmelzbach, Cedric; Robertsson, Johan O. A.; Greenhalgh, Stewart A.; Nakamura, Yosio; Khan, Amir

    2016-04-01

    We present a new seismic velocity model of the shallow lunar crust, including, for the first time, shear wave velocity information. So far, the shear wave velocity structure of the lunar near-surface was effectively unconstrained due to the complexity of lunar seismograms. Intense scattering and low attenuation in the lunar crust lead to characteristic long-duration reverberations on the seismograms. The reverberations obscure later arriving shear waves and mode conversions, rendering them impossible to identify and analyze. Additionally, only vertical component data were recorded during the Apollo active seismic experiments, which further compromises the identification of shear waves. We applied a novel processing and analysis technique to the data of the Apollo 17 lunar seismic profiling experiment (LSPE), which involved recording seismic energy generated by several explosive packages on a small areal array of four vertical component geophones. Our approach is based on the analysis of the spatial gradients of the seismic wavefield and yields key parameters such as apparent phase velocity and rotational ground motion as a function of time (depth), which cannot be obtained through conventional seismic data analysis. These new observables significantly enhance the data for interpretation of the recorded seismic wavefield and allow, for example, for the identification of S wave arrivals based on their lower apparent phase velocities and distinct higher amount of generated rotational motion relative to compressional (P-) waves. Using our methodology, we successfully identified pure-mode and mode-converted refracted shear wave arrivals in the complex LSPE data and derived a P- and S-wave velocity model of the shallow lunar crust at the Apollo 17 landing site. The extracted elastic-parameter model supports the current understanding of the lunar near-surface structure, suggesting a thin layer of low-velocity lunar regolith overlying a heavily fractured crust of basaltic

  17. Seismic structure and origin of active intraplate volcanoes in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Duan, Yonghong; Zhao, Dapeng; Zhang, Xiankang; Xia, Shaohong; Liu, Zhi; Wang, Fuyun; Li, Li

    2009-05-01

    Three-dimensional P-wave velocity structure beneath the Changbai and other intraplate volcanic areas in Northeast Asia is determined by inverting 1378 high-quality P-wave arrival times from 186 teleseismic events recorded by 61 broadband seismic stations. Low-velocity (low-V) anomalies are revealed beneath the Changbai, Longgan, Xianjindao volcanoes. High-velocity (high-V) anomalies are found in the mantle transition zone, where deep-focus earthquakes under Hunchun occur at depths of 500-600 km. The high-V anomaly reflects the deep subduction of the Pacific slab under NE Asia which may have contributed to the formation of the Changbai, Longgang, Xianjindao and Jingpohu intraplate volcanoes. A low-V anomaly is also revealed in the mantle transition zone, which may have a close relationship with the occurrence of deep earthquakes under the Hunchun area. Our results support the Big Mantle Wedge (BMW) model by Zhao et al. [Zhao, D., Lei, J., Tang, Y., 2004. Origin of the Changbai volcano in northeast China: evidence from seismic tomography, Chin. Sci. Bull. 49, 1401-1408; Zhao, D., Maruyama, S., Omori, S., 2007. Mantle dynamics of western Pacific and East Asia: insight from seismic tomography and mineral physics. Gondwana Res. 11, 120-131.] who proposed that the intraplate volcanoes in NE Asia are caused by the back-arc magmatism associated with the deep dehydration process of the subducting slab and convective circulation process in the BMW above the stagnant Pacific slab.

  18. Patterns of criticality in the recent seismic activity in the vicinity of Athens, Greece

    NASA Astrophysics Data System (ADS)

    Dologlou, Elizabeth

    2016-04-01

    New data from the Mw 5.4 earthquake on 17 November 2014 in the vicinity of Athens and its seismic electric signal (SES) precursor confirm patterns of criticality in the pre-seismic region during the last preparatory phase. In detail, the stress drop of the main shock and the lead time of the associated SES are interconnected through a power law with an exponent a = 0.327 falling in the range of critical exponents for fracture. We note that this exponent is derived from a large amount of data and successfully passes the z-score statistical test. This fact supports the hypothesis that upon the emission of the SES the pre-focal area enters a critical stage where nonlinear dynamic processes dominate.

  19. A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area

    USGS Publications Warehouse

    Jibson, Randall W.; Harp, Edwin L.; Michael, John A.

    1998-01-01

    The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24,000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10-m grid spacing in the ARC/INFO GIS platform. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.

  20. Geophysical characterization of areas prone to quick-clay landslides using radio-magnetotelluric and seismic methods

    NASA Astrophysics Data System (ADS)

    Wang, Shunguo; Malehmir, Alireza; Bastani, Mehrdad

    2016-05-01

    Landslides attributed to quick clays have not only considerable influences on surface geomorphology, they have caused delays in transportation systems, environmental problems and human fatalities, especially in Scandinavia and North America. If the subsurface distributions of quick clays are known, potential damages can be mitigated and the triggers of landslides can better be studied and understood. For this purpose, new radio-magnetotelluric (RMT) and seismic data were acquired in an area near the Göta River in southwest Sweden that contains quick clays and associated landslides. High-resolution data along 4 new lines, in total 3.8 km long, were acquired and merged with earlier acquired data from the site. Velocity and resistivity models derived from first breaks and RMT data were used to delineate subsurface geology, in particular the bedrock surface and coarse-grained materials that overlay the bedrock. The latter often are found underlying quick clays at the site. Comparably high-resistivity and sometimes high-velocity regions within marine clays are attributed to a combination of leached salt from marine clays or potential quick clays and coarse-grained materials. The resistivity and tomographic velocity models suggest a much larger role of the coarse-grained materials at the site than previously thought, but they also suggest two different scenarios for triggering quick-clay landslides at the site. These scenarios are related to the erosion of the riverbank, increased pore-pressure and surface topography when close to the river and human activity when away from the river and where bowl-shaped bedrock surrounds the sediments.

  1. Toward A Unified Seismic Bulletin For The European-mediterranean Area : Epsi Project

    NASA Astrophysics Data System (ADS)

    Piedfroid, O.; Epsi Team

    The goal is to develop means and tools that will allow producing of European- Mediterranean seismic bulletin that will serve as a reference for the scientific com- munity. In order to become a useful support for seismic hazard assessment, such a bulletin will be required to present standard and reliable information. EMSC gathers via e-mail manually picked seismic phase arrival times with or without associated locations from almost all the institutes of the European- Mediterranean region in a database ; then bulletins are automatically merged by a unique software. Events are then submitted to an automatic analysis of the location parameters, and, for dubious events, to a manual reprocessing. First studies have shown that, first : the use of local velocity models and the increase of the azimutal coverage for most of the relocated events, then the interactive analysis of each event allow a huge improvement in terms of quality and quantity of the final seismic bulletin. The next step is to define an accurate magnitude estimation for the whole region of interest. Experience shows that the differences in the magnitudes reported by several institutes for a given event may vary up to 1.5 units. Based on enhanced local mag- nitude computation or on the derivation of the seismic moment, three methods are currently being applied on a reference dataset. Scientifical and technical criteria have 1 been defined in order to select the most reliable method. It is then proposed to develop new velocity models for border regions from the analysis of the residuals of calibrated events. Thus a model for France-Italy border have been defined and models for Italy-Slovenia, Italy-Switzerland and France-Spain borders are currently being developed. Another important objective of the project is the installation of autoDRM systems in several institutes in order to improve data exchange. Data and more information can be found at : http://www.emsc- csem.org/Html/EPSI_home.html Keywords

  2. Seismic studies along the western shelf of Spitsbergen and the adjacent area of West Spitsbergen Fold and Thrust Belt (Isfjorden).

    NASA Astrophysics Data System (ADS)

    Blinova, M.; Mjelde, R.; Faleide, Y. I.

    2009-04-01

    Spitsbergen is the largest island of the Svalbard archipelago that is located in the north-western corner of the Barents Sea. The island has a long history of sedimentation, structural deformation, vertical and horizontal movements. Geological studies of Spitsbergen and surrounding areas play a key role in the understanding of the geotectonic evolution of the Arctic region. The area along the western coast of Spitsbergen is part of the mainly sheared western Barents Sea-Svalbard continental margin. This part of the margin is unique in the sense that the margin tectonics partly can be studied on exposed, virtually vegetation free, terrains located along the westernmost part of Spitsbergen. Interpretation of multi-channel seismic reflection data acquired along the western shelf of Spitsbergen allowed identification of the main geological features of the area, including the Hornsund Fault Zone, and the Forlandsundet and Bellsund grabens. The Bellsund Graben represents the southward continuation of the Forlandsundet Graben initiated during the transpressional regime related to the evolution of the West Spitsbergen Fold and Thrust Belt. The final phase of graben formation took place during oblique extension from early Oligocene until final breakup and opening of the northern Norwegian-Greenland Sea (and the Fram Strait Gateway linking the NE Atlantic and Arctic) in Miocene time. The grabens are cut by strike-slip faults outside Isfjorden and Van Mijenfjorden, related to transfer faults evolving during breakup and opening of the Norwegian-Greenland Sea. The presence of flower-structure faults along the western major fault of the Bellsund Graben reflects transpressional and transtensional regimes during graben formation. The lowermost reflector that underlies Bellsund Graben has been interpreted as a detachment surface formed during Late Eocene?-Oligocene extension as reactivation of a thrust plane, which developed during formation of the West Spitsbergen Fold and Thrust

  3. Indications for different types of brittle failure due to active coal mining using waveform similarities of induced seismic events

    NASA Astrophysics Data System (ADS)

    Wehling-Benatelli, S.; Becker, D.; Bischoff, M.; Friederich, W.; Meier, T.

    2013-10-01

    Longwall mining activity in the Ruhr coal mining district leads to mining-induced seismicity. For detailed studies the seismicity of a single longwall panel beneath the town of Hamm-Herringen in the eastern Ruhr area was monitored between June 2006 and July 2007 with a dense temporary network of 15 seismic stations. More than 7000 seismic events with magnitudes between -1.7 ≤ ML ≤ 2.0 were detected and localized in this period. Most of the events occurred in the vicinity of the moving longwall face. In order to find possible differences in the brittle failure types of these events an association of the events to distinct clusters is performed based on their waveform characteristics. This task is carried out using a new clustering algorithm utilizing a network similarity matrix which is created by combining all available 3-component single station similarity matrices. The resultant network matrix is then sorted with respect to the similarity of its rows leading to a sorted matrix immediately indicating the clustering of the event catalogue. Finally, clusters of similar events are extracted by visual inspection. This approach results in the identification of several large clusters which are distinct with respect to their spatial and temporal characteristics as well as their frequency magnitude distributions. Comparable clusters are also found with a conventional single linkage approach, however, the new routine seems to be able to associate more events to specific clusters without merging the clusters. The nine largest observed clusters can be tentatively divided into three different groups that indicate different types of brittle failure. The first group consists of the two largest clusters which constitute more than half of all recorded events. Results of a relative relocation using cross-correlation data suggest that these events are confined to the extent of the mined out longwall and cluster close to the edges of the active longwall at the depth of active

  4. Precursory Seismic Activity Surrounding the High-Slip Patches of the 2011 Mw9.0 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Sato, T.; Hiratsuka, S.; Mori, J. J.

    2013-12-01

    The 11 March 2011 Tohoku-Oki earthquake (Mw9.0) occurred on the megathrust along the western margin of the Pacific Ocean where the Pacific plate is being subducted beneath the island of Honshu, Japan. The slip near the Japan Trench was estimated to be enormous; it averaged about 40 m over the upper 100 km of the megathrust and peaked at 60-80 m close to the trench (Lay et al., 2011; Ozawa et al., 2012; Iinuma et al., 2012). Nearly a thousand years are required to accumulate such a large slip for the convergence rate of 8-9 cm/yr along this plate boundary zone. Two days before the Tohoku-Oki earthquake, foreshock activity (largest event M7.3) occurred north of the main-shock epicenter. The epicentral area of the foreshock activity is similar to a M7.0 earthquake in 1981 (Shao et al., 2011). The question arises, why did the 1981 event not trigger a great earthquake? A time difference of 30 years is negligible in comparison with the long time required for the slip deficit of more than 40 m. In order to address this question, we investigated the seismic activity prior to the Tohoku-Oki earthquake using the earthquake catalogue compiled by the Japan Meteorological Agency (JMA) since 1923. For the purpose of the present study, we independently determined the slip distribution of the Tohoku-Oki earthquake, using the coseismic displacements derived from the GEONET GPS stations on land (Ozawa et al., 2011) and those from the offshore GPS stations and ocean-bottom water pressure gauges (Sato et al., 2011; Iinuma et al., 2012). The slip distribution is characterized by two high-slip ( 20m) patches separated by a zone of relatively low slip. The peak of the northern high-slip patch is located near the trench while the peak of the southern high-slip patches are situated about 40 km southeast of the main-shock epicenter, about 70 km away from the trench. Combined with the analyses of main-shock rupture process by Ide et al. (2011) and Shao et al. (2011), it is estimated that the

  5. Indications for different types of brittle failure due to active coal mining using waveform similarities of induced seismic events

    NASA Astrophysics Data System (ADS)

    Wehling-Benatelli, S.; Becker, D.; Bischoff, M.; Friederich, W.; Meier, T.

    2013-05-01

    Longwall mining activity in the Ruhr-coal mining district leads to mining-induced seismicity. For detailed studies seismicity of a single longwall panel beneath the town of Hamm-Herringen in the eastern Ruhr area was monitored between June 2006 and July 2007 with a dense temporary array of 15 seismic stations. More than 7000 seismic events with magnitudes between -1.7 ≤ ML ≤ 2.0 were detected and localized in this period. Most of the events occurred in the vicinity of the moving longwall face. In order to find possible differences in the brittle failure types of these events an association of the events to distinct clusters based on their waveform characteristics is performed. This task is carried out using a new clustering algorithm utilizing a network similarity matrix which is created by combining all available 3-component single station similarity matrices. The resultant network matrix is then sorted with respect to the similarity of its rows leading to a sorted matrix immediately indicating the clustering of the event catalogue. Finally, clusters of similar events are extracted by visual inspection. This approach results in the identification of several large clusters which are distinct with respect to their spatial and temporal characteristics as well as their frequency magnitude distributions. Comparable clusters are also found with a conventional single linkage approach, however, the new routine seems to be able to associate more events to specific clusters without merging the clusters. The nine largest observed clusters can be tentatively divided into three different groups that indicate different types of brittle failure. The first group consists of the two largest clusters which constitute more than half of all recorded events. Results of a relative relocation using cross correlation data suggest that these events are confined to the extent of the mined out longwall and cluster close to the edges of the active longwall at the depth of active

  6. Exploring a long-lasting volcanic eruption by means of in-soil radon measurements and seismic activity

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Neri, Marco; Di Grazia, Giuseppe; Langer, Horst; Spampinato, Salvatore

    2016-04-01

    We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike-forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (<2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.

  7. From high quality seismic data acquisition in remote volcanic area to fast data distribution to scientific community: The UnderVolc project on Piton de la Fournaise volcano

    NASA Astrophysics Data System (ADS)

    Brenguier, Florent; Kowalski, Philippe; Pequegnat, Catherine; Lauret, Frédéric; Cougoulat, Glenn; Boissier, Patrice; Catherine, Philippe

    2010-05-01

    Piton de la Fournaise basaltic volcano (La Réunion island, France) is one of the most active volcano in the world with an average of one eruption every year. This volcano is thus an ideal case study for research projects focusing on studying magmatic, seismic and deformation processes occurring in volcanic areas. The UNDERVOLC (UNDERstanding VOLCanic Processes) research project main goal is to provide high quality 3-component broadband continuous seismic data to an amount of about 30 volcano-seismologists from different international research teams (including Japan and New-Zealand). This data acquisition system is moreover dedicated to the monitoring of Piton de la Fournaise volcano by providing real-time seismic data to the Piton de la Fournaise volcanological Observatory/IPGP. The network consists of 21 fully autonomous stations composed of CMG40-T seismometers associated to high dynamic digitizers and linked to wireless digital radio stations. The seismic signal is sent by UDP protocol to the observatory through a network of wireless LAN over large distances (~10 km) and possibly through the internet to the Observatory. The acquisition system at the observatory is composed of: 1-An Earthworm system (USGS - ISTI - CERI) with a Q330 to Earthworm data acquisition module (6 permanent stations from the observatory) 2-An Apollo server system (Nanometrics) for 15 stations (for which seismometers and digitizers belong to the French national pool of portable seismic instruments Sismob, INSU-CNRS) In both case, requests are sent back to the stations in case of loss of udp packets. This system allows us producing miniseed files every hour. Since September 2009, the full dataset has less then 1 % of gaps. In order to provide a fast data access to the scientific community, we synchronize our dataset every night with the SISMOB datacenter located in France (LGIT, Grenoble). After a quality check, seed data volumes are produced and distributed by standard NETDC requests from

  8. Tapping polyrhythms in music activates language areas.

    PubMed

    Vuust, Peter; Wallentin, Mikkel; Mouridsen, Kim; Ostergaard, Leif; Roepstorff, Andreas

    2011-05-01

    Music is experienced and understood on the basis of foreground/background relationships and tension created between actual music and the underlying meter. Polyrhythms create tension between a counter meter and the main meter. Previously, we have shown that Brodmann area 47 (BA47), a brain area associated with processing of language, is activated bilaterally when musicians tap the main meter in a polymetric context emphasizing a counter meter, suggesting that processing of metric elements in music relies on brain areas also involved in language processing. In that study, the tension was created entirely by changes in the stimulus while participants were tapping the main meter. Here we find left-hemispheric BA47 activation in response to a self-produced counter meter on top of a main meter provided by an ecological music excerpt. This data indicates that the activation is linked to polyrhythmic tension, regardless of whether it arises from the stimulus or the task.

  9. Seismic attribute extraction based on HHT and its application in a marine carbonate area

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Ping; Geng, Jian-Hua; Zhong, Guang-Fa; Guo, Tong-Lou; Pu, Yong; Ding, Kong-Yun; Ma, Ji-Qiang

    2011-06-01

    The Hilbert-Huang transform (HHT) is a new analysis method suitable for nonlinear and non-stationary signals. It is very appropriate to seismic signals because they show both non-stationary and nonlinear characteristics. We first introduce the realization of HHT empirical mode decomposition (EMD) and then comparatively analyze three instantaneous frequency algorithms based on intrinsic mode functions (IMF) resulting from EMD, of which one uses the average instantaneous frequency of two sample intervals having higher resolution which can determine that the signal frequency components change with time. The method is used with 3-D poststack migrated seismic data of marine carbonate strata in southern China to effectively extract the three instantaneous attributes. The instantaneous phase attributes of the second intrinsic mode functions (IMF2) better describe the reef facies of the platform margin and the IMF2 instantaneous frequency attribute has better zoning. Combining analysis of the three IMF2 instantaneous seismic attributes and drilling data can identify the distribution of sedimentary facies well.

  10. Reactivating of a mature oil field in the Finca-Yopales area, Venezuela, Using 3-D seismic

    SciTech Connect

    Sanchez, M.; Betancourt, H.

    1996-08-01

    The area of Finca-Yopales is located in the Eastern Venezuelan Basin in the Anzoategui State where Corpoven has the Trico and Yopales Norte fields. Based on the interpretation of 134 km{sup 2} of 3-D seismic and the geologic interpretation from 145 wells in the area, we define a better geological and structural model. We were also able to map 6 seismic reflectors corresponding to the units A8, F7, L4U and SI from the Oficina Formation, U2 top of Merecure Formation and the top of the Cretaceous, in order to generate a fault plane for all the area which was converted to depth with a lineal relationship which was obtained from wells available. From this interpretation we obtain the structural levels B4, J2, M1 and U2 which are references for the area, those being regional and trangressive events. The main feature of the structure is a high at the southeast of the area and three fault systems of Cretaceous, Miocene and post-Miocene age. This area has been exploited for a long time, having more than 93% of the inactive drilled wells. The total production up to April, 1995 is 59.14 MMbls; the Trico field is the most prolific, with more than 95% of the production. The sands L`s, U`s, O`s and S`s are the most prospective. This paper present the evaluation of the area and the analysis of the reservoir where we increased the computed reserves.

  11. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  12. Peculiarities of ULF electromagnetic disturbances before strong earthquakes in seismic active zone of Kamchatka peninsula

    NASA Astrophysics Data System (ADS)

    Kopytenko, Y. A.; Ismagilov, V. S.; Schekotov, A.; Molchanov, O.; Chebrov, V.; Raspopov, O. M.

    2006-12-01

    Regular observations of ULF electromagnetic disturbances and acoustic emissions at st. Karymshino in seismic active zone of Kamchatka peninsula were carried out during 2001-2003 years. Five seismic active periods with strong earthquakes (M>5) were displayed during this period. These EQs occurred at the Pacific at 20-60 km depth at 100-140 km distances to the East from the st. Karymshino. Analysis of normalized dynamic power spectra of data of high-sensitive (0.2 pT/sqrt(Hz)) three-component induction magnetometer achieved a significant disorder of daily variation and increasing of the magnetic disturbance intensities (from 0.2 to ~1 pT) in the whole investigated frequency range (0.2-5 Hz). The anomaly intensity increasing was observed during the 12-18 hours before main seismic shocks. Maximum of the increasing occurred during 4-6 hours before the EQs. An increasing of acoustic emissions (F=30 Hz) was observed during the same period. A sharp decreasing of the magnetic disturbance intensities was observed 2-4 hours before the EQs. We suppose that physical processes in a hearth of forthcoming EQ lead to an irreversible avalanche-like formation of cracks and stimulation of the acoustic and ULF electromagnetic disturbances.

  13. Stress-strain sensor for monitoring seismic precursors and fault activities in the sand

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Sun, Wei; Zeng, Zuoxun

    2016-04-01

    In this paper, a sensor to monitor stress-strain signals in a granular medium is used to detect seismic precursory information. Compared with the widely used sensors of borehole stress in the rock, the sensor has more convenient operation, higher output sensitivity, compactness and farther propagation effect. The stress and strain changes before Pu'er Ms6.4 earthquake in China are recorded by Beijing and Xinmin stations, and its corresponding fault activities are analyzed. Study indicates anomalous amplitude of strain signal reaches 10 times higher than that of ordinary background, and compressive oscillation and extensional oscillation occurred constantly before the earthquake. The method and results presented in the paper provide a new way for investigating seismic precursors for shallow-source earthquakes.

  14. Probabilistic seismic hazard study based on active fault and finite element geodynamic models

    NASA Astrophysics Data System (ADS)

    Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco

    2016-04-01

    We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and

  15. Vernal Point and Seismic Activity in Tibet Mountains and Andes Mountains

    NASA Astrophysics Data System (ADS)

    Chavez-Sumarriva, Israel; Chavez-Campos, Teodosio; Chavez S, Nadia

    2014-05-01

    The gravitational influence of the sun and moon on the equatorial bulges of the mantle of the rotating earth causes the precession of the earth. The retrograde motion of the vernal point through the zodiacal band is 26,000 years and passes through each constellation in an average of 2000 years (Milankovitch subcycle). The vernal point retrogrades one precessional degree approximately in 72 years (Gleissberg-cycle), and approximately enters into the Aquarius constellation (declination 11.5° S) on March 20, 1940. On earth this entry was verify through: a) stability of the magnetic equator in the south central zone of Peru and in the north zone of Bolivia (11.5º South latitude) since 1940 b) the greater intensity of equatorial electrojet (EEJ) in Peru and Bolivia since 1940. Besides, there was a long history of studies of coupling between earthquake-ionosphere. In IUGG (Italy-2007), Cusco was proposed as a prime meridian that was based on: (1) the new prime meridian (72º W == 0º) was parallel to the Andes and its projection the meridian (108° E == 180º) intersects the Tibetan plate (Asia). (2) On earth these two areas present the greatest thickness of the crust with an average depth of 70 kilometers. The aim was to synchronize the earth sciences phenomena (e.g. geology, geophysics, etc.). The coordinate system had the vernal point from meridian (72º W== 0º) and March 20, 1940. The retrograde movement of the vernal point was the first precessional degree (2012 = 1940 + 72). The west coast of South America (parallel to meridian 72º W== 0º) was a segment of the circum-pacific seismic belt where more than two thirds of major earthquakes in the world happened. During the first precessional degree (1940 +72 ==2012) seismic activity were: (a) near the new prime meridian (72° W == 0°) occurs in: (a1) Haiti (18.4° N, 72.5° W), January 12, 2010 with magnitude of 7.0 Mw. (a2) Chile (36.28° S, 73.23° W), February 27, 2010 with Magnitude of 8.8 Mw. (a3) Chile (35

  16. Crustal root beneath the Rif Cordillera as imaged from both active seismic data and teleseismic receiver functions.

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi; Gil, Alba; Gallart, Josep; Carbonell, Ramon; Harnafi, Mimoun; Levander, Alan

    2015-04-01

    The Rif cordillera forms, together with the Betic ranges, one of the tightest orogenic arcs on Earth. This continental boundary zone is dominated now by the slow convergence between Nubia and Eurasia, but with clear evidences of extensional tectonics. One of the missing elements to constrain the complex geodynamics of the Gibraltar Arc System is the knowledge of the crustal architecture beneath northern Morocco. In the last decade a major effort has been done in this sense, from active and passive seismics. We compile here the recent results available from the Rif domains. Two 330 km long wide angle DSS profiles were recorded end of 2011 across the Rif in NS and EW transects within the Rifsis project, complemented by onshore recordings of the Gassis-WestMed marine profiles. At the same period, BB seismic arrays were deployed in the area within Topo-Iberia and Picasso projects, allowing receiver function analyses of crustal depths. The ray-tracing modeling of the Rifsis profiles reveal a large Moho step and an area of crustal thickening both in EW and NS directions, grossly coincident with the Bouguer gravity anomalies. The deployment logistics allowed that all the stations recorded all the shots, thus providing useful offline data. We will use here all available in-line and offline data to provide a map of the crustal thickness in northern Morocco. We combined two approaches: i) a hyperbolic time reduction applied to the seismic data, resulting in low-fold stacks in which the reflections from the Moho should appear as subhorizontal lines; ii) the arrival times of the observed PmP phases allow, assuming a mean crustal velocity, to assign a midpoint crustal thickness to each lecture. Although some uncertainties may be inherent to those approaches, a large crustal root, reaching more than 50 km, is well documented in the central part of the Rif Cordillera, close to the zone where the Alboran slab may still be attached to the lithosphere. We also compared these results

  17. 4D Time-Lapse Seismic Analysis of Active Gas Seepage Systems on the Vestnesa Ridge, Offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Bunz, S.; Hurter, S.; Plaza-Faverola, A. A.; Mienert, J.

    2014-12-01

    Active gas venting occurs on the Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. The crest of the Vestnesa Ridge at water depth between 1200-1300 m is pierced with fluid-flow features. Seafloor pockmarks vary in size up to 1 km in diameter with significant morphological features consisting of small ridges, diapiric structures and small pits. Detailed hydro-acoustic surveying shows that gas mostly emanates from the small-scale pits, where also hydrates have been recovered by sediment sampling. High-resolution P-Cable 3D seismic data acquired in 2012 show vertical focused fluid flow features beneath the seafloor pockmarks. These co-called chimneys extend down to the free-gas zone underneath a bottom-simulating reflection (BSR). Here, they link up with small fault systems that might provide pathways to the deeper subsurface. The chimney features show a high variability in their acoustic characteristics with alternating blanked or masked zones and high-amplitude anomalies scattered through the whole vertical extent of the chimneys. The amplitude anomalies indicate high-impedance contrasts due to the likely presence of gas or a high-velocity material like gas hydrates or carbonates. In most cases, the high-amplitude anomalies line up along specific vertical pathways that connect nicely with the small-scale pits at the surface where gas bubbles seep from the seafloor. We re-acquired the 3D seismic survey in 2013 for time-lapse seismic studies in order to better understand the origin of the amplitude anomalies and in order to track potentially migrating gas fronts up along the chimney structure. The time-lapse seismic analysis indicates several areas, where gas migration may have led to changes in acoustic properties of the subsurface. These areas are located along chimney structures and the BSR. This work provides a basis for better

  18. Active fault mapping in Karonga-Malawi after the December 19, 2009 Ms 6.2 seismic event

    NASA Astrophysics Data System (ADS)

    Macheyeki, A. S.; Mdala, H.; Chapola, L. S.; Manhiça, V. J.; Chisambi, J.; Feitio, P.; Ayele, A.; Barongo, J.; Ferdinand, R. W.; Ogubazghi, G.; Goitom, B.; Hlatywayo, J. D.; Kianji, G. K.; Marobhe, I.; Mulowezi, A.; Mutamina, D.; Mwano, J. M.; Shumba, B.; Tumwikirize, I.

    2015-02-01

    The East African Rift System (EARS) has natural hazards - earthquakes, volcanic eruptions, and landslides along the faulted margins, and in response to ground shaking. Strong damaging earthquakes have been occurring in the region along the EARS throughout historical time, example being the 7.4 (Ms) of December 1910. The most recent damaging earthquake is the Karonga earthquake in Malawi, which occurred on 19th December, 2009 with a magnitude of 6.2 (Ms). The earthquake claimed four lives and destroyed over 5000 houses. In its effort to improve seismic hazard assessment in the region, Eastern and Southern Africa Seismological Working Group (ESARSWG) under the sponsorship of the International Program on Physical Sciences (IPPS) carried out a study on active fault mapping in the region. The fieldwork employed geological and geophysical techniques. The geophysical techniques employed are ground magnetic, seismic refraction and resistivity surveys but are reported elsewhere. This article gives findings from geological techniques. The geological techniques aimed primarily at mapping of active faults in the area in order to delineate presence or absence of fault segments. Results show that the Karonga fault (the Karonga fault here referred to as the fault that ruptured to the surface following the 6th-19th December 2009 earthquake events in the Karonga area) is about 9 km long and dominated by dip slip faulting with dextral and insignificant sinistral components and it is made up of 3-4 segments of length 2-3 km. The segments are characterized by both left and right steps. Although field mapping show only 9 km of surface rupture, maximum vertical offset of about 43 cm imply that the surface rupture was in little excess of 14 km that corresponds with Mw = 6.4. We recommend the use or integration of multidisciplinary techniques in order to better understand the fault history, mechanism and other behavior of the fault/s for better urban planning in the area.

  19. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  20. Historical seismicity

    USGS Publications Warehouse

    Dengler, L.

    1992-01-01

    The North Coast region of California in the vicinity of Cape Mendocino is one of the state's most seismically active areas, accounting for 25 percent of seismic energy release in California during the last 50 years. the region is located in a geologically dynamic are surrounding the Mendocino triple junction where three of the Earth's tectonic plates join together ( see preceding article by Sam Clarke). In the historic past the North Coast has been affected by earthquakes occurring on the San Andreas fault system to the south, the Mendocino fault to the southwest, and intraplate earthquakes within both the Gorda and North American plates. More than sixty of these earthquakes have caused damage since the mid-1800's. Recent studies indicate that California's North Coast is also at risk with respect to very large earthquakes (magnitude >8) originating along the Cascadia subduction zone. Although the subduction zone has not generated great earthquakes in historic time, paleoseismic evidence suggests that such earthquakes have been generated by the subduction zone in the recent prehistoric past. 

  1. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - I: model and the case of Tenerife Island

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Del Pezzo, Edoardo; García-Yeguas, Araceli; Ibáñez, Jesús M.

    2013-12-01

    The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography. We present new information derived from intrinsic quality factor inverse maps (Qi-1), scattering quality factor inverse maps (Qs-1) and total quality factor inverse maps (Qt-1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi-1 and to Qs-1, are estimated from the inversion of the energy envelopes for any source-receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create `2-D probabilistic maps' representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6-12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study

  2. Seismic intrusion detector system

    DOEpatents

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  3. High-resolution seismic stratigraphy of the late Neogene of the central sector of the Colombian Pacific continental shelf: A seismic expression of an active continental margin

    NASA Astrophysics Data System (ADS)

    Martínez, Jaime Orlando; López Ramos, Eduardo

    2011-02-01

    The sedimentary prism of the central Pacific continental shelf of Colombia was affected by regional folding and faulting, and probably later mud diapirism, from the Late Miocene to the Holocene. Interpretation of high-resolution seismic lines (2 s/dt) revealed that the prism consists of 13 high-resolution seismic units, that can be separated into 5 seismic groups. Deposition of the prism and the associated stacking pattern, are probably the response to variable uplift and subsidence in a fore-arc basin that underwent important tectonic events by the end of the Miocene. Throughout the Pliocene, the continental shelf sedimentation was affected by the growing of a dome structure probable due to mud diapirism. This fact caused peripheral faults both normal and reverse that controlled the distribution of some of the seismic units. During the Late Pleistocene (Wisconsin stage?) a eustatic sea level fall caused the shoreline to advance about 50 km westward of its present position. Because of this eustatic sea level change, a strong fluvial dissection took place and is interpreted as the probable extension of the San Juan River to the south of the present day river mouth. Within this framework it is believed that the Malaga and Buenaventura Bays were the passageways of branches of the old drainage system of the San Juan River. The inner branch circulated through the present Buenaventura Bay and runs southward leaving the mark of an apparent valley identified in the seismic information in the eastern sector of the study area. This old fluvial valley and its filling material located in the present day inner continental shelf front of Buenaventura are postulated as important targets to find placer minerals such as gold and platinum.

  4. Seismic Imaging of the San Jacinto Fault Zone Area From Seismogenic Depth to the Surface

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.

    2015-12-01

    I review multi-scale multi-signal seismological results on structural properties within and around the San Jacinto Fault Zone (SJFZ). The results are based on data of the regional southern California and ANZA networks, additional near-fault seismometers and linear arrays with instrument spacing 25-50 m that cross the SJFZ at several locations, and a spatially-dense rectangular array with 1108 vertical-component sensors separated by 10-30 m centered on the fault. The studies utilize earthquake data to derive Vp and Vs velocity models with horizontal resolution of 1-2 km over the depth section 2-15 km, ambient noise with frequencies up to 1 Hz to image with similar horizontal resolution the depth section 0.5-7 km, and high-frequency seismic noise from the linear and rectangular arrays for high-resolution imaging of the top 0.5 km. Pronounced damage regions with low seismic velocities and anomalous Vp/Vs ratios are observed around the SJFZ, as well as the San Andreas and Elsinore faults. The damage zones follow generally a flower-shape with depth. The section of the SJFZ from Cajon pass to the San Jacinto basin has a faster SW side, while the section farther to the SE has an opposite velocity contrast with faster NE side. The damage zones and velocity contrasts produce at various locations fault zone trapped and head waves that are utilized to obtain high-resolution information on inner fault zone components (bimaterial interfaces, trapping structures). Analyses of high-frequency noise recorded by the fault zone arrays reveal complex shallow material with very low seismic velocities and strong lateral and vertical variations.

  5. Earth's magnetic field anomalies that precede the M6+ global seismic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2014-05-01

    In this work has been analyzed the Earth's magnetic field variations and the M6+ global seismic activity to verify if M6+ earthquakes are preceded by a change of the Earth's magnetic field. The data of Earth's magnetic field used to conduct the study of correlation are provided by the induction magnetometer of Radio Emissions Project's station (Lat: 41°41'4.27"N, Long: 12°38'33,60"E, Albano Laziale, Rome, Italy), equipped with a ELF receiver prototype (with a vertically aligned coil antenna) capable to detect the variations of the intensity of the Earth's magnetic field on Z magnetic component. The M6+ global seismic activity data are provided in real-time by USGS, INGV and CSEM. The sample of data used to conduct the study refers to the period between 1 January 2012 and 31 December 2012. The Earth's magnetic field variations data set has been marked with the times (time markers) of M6+ earthquakes occurred on a global scale and has been verified the existence of disturbances of the Earth's geomagnetic field in the time interval that preceded the M6+ global seismic activity. The correlation study showed that all M6+ earthquakes recorded on 2012 were preceded by an increase of the Earth's magnetic field, detected in the Z magnetic component. The authors measured the time lag elapsed between the maximum increment of the Earth's magnetic field recorded before an earthquake M6+ and the date and time at which this occurred, and has been verified that the minimum time lag recorded between the Earth's magnetic field increase and the earthquake M6+ has been 1 minute (9 October 2012, Balleny Islands, M6,4); while, the maximum time lag recorded has been 3600 minutes (26 June 2012, China, M6,3). The average time lag has been 629.47 minutes. In addition, the average time lag is deflected in relation to the magnitude increase. Key words: Seismic Geomagnetic Precursor (SGP), Interplanetary Seismic Precursor (ISP), Earth's magnetic field variations, earthquakes, prevision.

  6. Seismic Survey Report for Central Nevada Test Area, Subsurface, Correction Action Unit 443, Revision 1

    SciTech Connect

    2008-12-19

    The seismic survey was successful in imaging the water table and underlying structures at the site. The configuration of the water table reflector confirms the general southeast horizontal flow direction in the alluvial aquifer. Offsets in the water table reflector, both at known faults that reach the surface and at subsurface faults not previously recognized, indicate that both extension and blast-related faults are barriers to lateral groundwater flow. The results from this study have been used to optimally locate two new wells designed to monitor head levels and possible contaminant migration in the alluvial aquifer at CTNA.

  7. Physico-chemical evolution of groundwater in tectonically active areas. Application to the Leana hot spring (Murcia Region, SE Spain)

    NASA Astrophysics Data System (ADS)

    Martínez, M.; Hornero, J.; Trujillo, C.

    2016-09-01

    Seismic events can affect the physico-chemical characteristics of groundwater. These anomalies are of a pre-seismic, co-seismic and post-seismic nature and correspond to pulse variations, sudden increases and decreases without return to initial values and upward or downward changes in trend. Continuous and in situ conductivity and temperature monitoring and periodic water sampling at a hot spring associated with neotectonic activity are of great interest for establishing predictive methods. This method is limited to the seismic activity affecting the fracturing system with which the hot spring is associated. The Region of Murcia and surroundings (southeast Spain) was selected as the study area for exploring the nature of these influences on groundwater. A hot spring in the Leana spa (Murcia) was equipped and monitored during the period 2006-2008, allowing for the in situ determination of conductivity and temperature as well as of major and minor constituents at the laboratory. Due to its proximity and related with fault network, we suggest that 86 % of earthquakes located between 0 and 10 km may affect in situ parameters of groundwater, and 75 % may affect laboratory determinations. This percentage drops in more distant zones. Of all earthquakes that seem to influence groundwater, 55 % of the in situ parameter anomalies and 53 % of laboratory were of a pre-seismic nature.

  8. Solar-terrestrial effect controls seismic activity to a large extent (Invited)

    NASA Astrophysics Data System (ADS)

    Duma, G.

    2010-12-01

    Several observational results and corresponding publications in the 20 century indicate that earthquakes in many regions happen systematically in dependence on the time of day and on the season as well. In the recent decade, studies on this topic have also been intensively performed at the Central Institute for Meteorology and Geodynamics (ZAMG), Vienna. Any natural effect on Earth which systematically appears at certain hours of the day or at a special season can solely be caused by a solar or lunar influence. And actually, statistic results on seismic activity reveal a correlation with the solar cycles. Examples of this seismic performance are shown. To gain more clarity about these effects, the three-hour magnetic index Kp, which characterizes the magnetic field disturbances, mainly caused by the solar particle radiation, the solar wind, was correlated with the seismic energy released by earthquakes over decades. Kp is determined from magnetic records of 13 observatories worldwide and continuously published by ISGI, France. It is demonstrated that a highly significant correlation between the geomagnetic index Kp and the annual seismic energy release in regions at latitudes between 35 and 60° N exists. Three regions of continental size were investigated, using the USGS (PDE) earthquake catalogue data. In the period 1974-2009 the Kp cycle periods range between 9 and 12 years, somewhat different to the sunspot number cycles of 11 years. Seismicity follows the Kp cycles with high coincidence. A detailed analysis of this correlation for N-America reveals, that the sum of released energy by earthquakes per year changes by a factor up to 100 with Kp. It is shown that during years of high Kp there happen e.g. 1 event M7, 4 events M6 and 30 events M5 per year, instead of only 10 events M5 in years with lowest Kp. Almost the same relation appears in other regions of continental size, with the same significance. The seismicity in S-America clearly follows the Kp cycles

  9. Geomorphology, active duplexing, and earthquakes within the Central Himalayan seismic gap

    NASA Astrophysics Data System (ADS)

    Morell, K. D.; Sandiford, M.; Rajendran, C. C.; Rajendran, K.

    2013-12-01

    The ~500 km long 'Central Himalayan seismic gap' of northwest India, is the largest section of the Himalaya that has not experienced a very large earthquake (Mw > 7.0) in the past 200-500 years. The slip deficit associated with this seismic quiescence has led many to suggest that the region is overdue for a great earthquake (Mw >8), an event which could be potentially devastating given the region's high population (>10 million). Despite the recognition that the region is under considerable seismic risk, the geometry of active fault structures that could potentially fail during large earthquakes remains poorly defined. This has arisen, to a certain extent, because moderate earthquakes, such as the Mw 6.3 1999 event near the city of Chamoli and the Mw 7.0 1991 earthquake near Uttarkashi (responsible for ~1000 deaths), have not produced obvious surface ruptures and do not appear to coincide with surficially mapped faults. We present new geomorphic and river longitudinal profile data that define a prominent ~400 km long distinctive geomorphic transition at the base of the high Himalaya in the seismic gap, defined as a sharp dividing line north of which there are significant increases in normalized river steepness (ksn), hillslope angles, and local relief. We interpret the morphologic changes across the geomorphic boundary to be produced due to a northward increase in rock uplift rate, given that the boundary cross-cuts mapped structures and lithologic contacts, yet coincides exactly with: 1) the axial trace of the geophysically-imaged ramp-flat transition in the Main Himalayan Thrust, 2) significant northward increases in instrumentally-recorded seismicity, and 3) an order of magnitude change in published Ar-Ar bedrock cooling ages. The available datasets suggest that such an increase in rock uplift rate is best explained by a ~400 km long by ~50 km wide active duplex along the Main Himalayan Thrust ramp, with the leading edge of the duplex giving rise to the

  10. Thickness and geometry of Cenozoic deposits in California Wash area, Nevada, based on gravity and seismic-reflection data

    USGS Publications Warehouse

    Langenheim, V.E.; Miller, J.J.; Page, W.R.; Grow, J.A.

    2001-01-01

    Gravity and seismic-reflection data provide insights into the subsurface stratigraphy and structure of the California Wash area of southern Nevada. This area is part of the Lower Colorado flow system and stratigraphic and structural data are important inputs into developing the hydrogeologic framework. These data indicate that the basin beneath California Wash reaches depths of 2-3 km. The eastern margin of the basin coincides with a system of young (Quaternary and late Tertiary) faults, although both seismic and gravity data indicate that the major basin-bounding fault is 2-3 km west of the mapped young faults. Dry Lake Valley, the adjacent valley to the west, is characterized by thinner basin fill. The basin configuration beneath both California Wash and Dry Lake Valleys based on the inversion of gravity data is unconstrained because of the lack of gravity stations north of 36030?. Broad aeromagnetic anomalies beneath pre-Cenozoic basement in the Muddy Mountains and Arrow Canyon Range reflect Precambrian basement at depths of ~ 5 km. These rocks are probably barriers to ground-water flow,except where fractured.

  11. Motif Discovery on Seismic Amplitude Time Series: The Case Study of Mt Etna 2011 Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Aliotta, Marco; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Pulvirenti, Alfredo; Spampinato, Letizia

    2013-04-01

    Algorithms searching for similar patterns are widely used in seismology both when the waveforms of the events of interest are known and when there is no a priori-knowledge. Such methods usually make use of the cross-correlation coefficient as a measure of similarity; if there is no a-priori knowledge, they behave as brute-force searching algorithms. The disadvantage of these methods, preventing or limiting their application to very large datasets, is computational complexity. The Mueen-Keogh (MK) algorithm overcomes this limitation by means of two optimization techniques—the early abandoning concept and space indexing. Here, we apply the MK algorithm to amplitude time series retrieved from seismic signals recorded during episodic eruptive activity of Mt Etna in 2011. By adequately tuning the input to the MK algorithm we found eight motif groups characterized by distinct seismic amplitude trends, each related to a different phenomenon. In particular, we observed that earthquakes are accompanied by sharp increases and decreases in seismic amplitude whereas lava fountains are accompanied by slower changes. These results demonstrate that the MK algorithm, because of its particular features, may have wide applicability in seismology.

  12. A new seismic discriminant for earthquakes and explosions

    NASA Astrophysics Data System (ADS)

    Woods, Bradley B.; Helmberger, Donald V.

    With the spread of nuclear weapons technology, more regions of the world need to be monitored in order to verify nuclear nonproliferation and limited test-ban treaties. Seismic monitoring is the primary means to remotely sense contained underground explosions “Bolt, 1976; Dahlman and Israelson, 1977”. Both underground explosions and earthquakes generate seismic energy, which propagates through the Earth as elastic waves. The crux of the verification problem is to differentiate between the seismic signatures of explosions and earthquakes. Such identification is most difficult in countries with seismically active areas, where bombs might be detonated to blend in with the region's natural seismicity.

  13. Characterising volcanic activity of Piton de la Fournaise volcano by the spatial distribution of seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Sens-Schoenfelder, C.; Pomponi, E.

    2013-12-01

    We apply Passive Image Interferometry to investigate the seismic noise recorded from October 2009 until December 2011 by 21 stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. The analyzed period contains three eruptions in 2009 and January 2010, two eruptions plus one dyke intrusion in late 2010, and a seismic crises in 2011. Seismic noise of vertical and horizontal components is cross-correlated to measure velocity changes as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface deformation we can identify patterns of the velocity changes that appear characteristic for the type of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in the volcano.

  14. Physical modeling of the formation and evolution of seismically active fault zones

    USGS Publications Warehouse

    Ponomarev, A.V.; Zavyalov, A.D.; Smirnov, V.B.; Lockner, D.A.

    1997-01-01

    Acoustic emission (AE) in rocks is studied as a model of natural seismicity. A special technique for rock loading has been used to help study the processes that control the development of AE during brittle deformation. This technique allows us to extend to hours fault growth which would normally occur very rapidly. In this way, the period of most intense interaction of acoustic events can be studied in detail. Characteristics of the acoustic regime (AR) include the Gutenberg-Richter b-value, spatial distribution of hypocenters with characteristic fractal (correlation) dimension d, Hurst exponent H, and crack concentration parameter Pc. The fractal structure of AR changes with the onset of the drop in differential stress during sample deformation. The change results from the active interaction of microcracks. This transition of the spatial distribution of AE hypocenters is accompanied by a corresponding change in the temporal correlation of events and in the distribution of event amplitudes as signified by a decrease of b-value. The characteristic structure that develops in the low-energy background AE is similar to the sequence of the strongest microfracture events. When the AR fractal structure develops, the variations of d and b are synchronous and d = 3b. This relation which occurs once the fractal structure is formed only holds for average values of d and b. Time variations of d and b are anticorrelated. The degree of temporal correlation of AR has time variations that are similar to d and b variations. The observed variations in laboratory AE experiments are compared with natural seismicity parameters. The close correspondence between laboratory-scale observations and naturally occurring seismicity suggests a possible new approach for understanding the evolution of complex seismicity patterns in nature. ?? 1997 Elsevier Science B.V. All rights reserved.

  15. Influence of seismic processes and volcanic activity on the formation of disastrous floods

    NASA Astrophysics Data System (ADS)

    Trifonov, Dmitriy

    2014-05-01

    models of hydraulic systems, but ultimately due to difference of pressures in their respective segments and areas of the transport network. At the exit of the groundwater on the surface such change in pressure is connected both with the state of the actual water flow in underground cavities, or violations of the structure (topology) of 3D-network. As one of the major and sudden reasons of change of pressure in the underground system can serve seismic processes, including volcanic eruptions (as magmatic and ash). During these processes enormous underground space can be freed from the dense rock. This leads to rapid changes in pressure and that, in principle, a new topology of 3D network and water flows in it. It is important that such dynamic processes occur over huge distances in underground basins of thousands of kilometers [3], of course, with a certain time delay. In the result of the analysis of large-scale flooding in Russia in 2001-2002, as well as the catastrophic floods in Western Europe, in the Amur region of Russia and in the state of Colorado USA in 2013, a correlation between seismic and volcanic activities and floods, expressed by specific numerical correlation coefficients, has been revealed. For example, knowing the date, location and magnitude of an earthquake, we can identify potentially dangerous territories in the aspect of the probability of occurrence of floods, because the stresses in the crust, spreading from the hypocenter of earthquakes, and their subsequent relaxation are one of the most important factors of floods. Mechanisms of distribution of these stresses are well-studied today [2] unlike their influence on the groundwater. The defined boundaries of potentially dangerous sites are broad enough; with regard to the direction of distribution of stress, it is about the sectors in 40 degrees (from the line of the movement of the crustal plate) in the direction from the boundaries of lithospheric plates. Distribution of this impact occurs, as a

  16. Seismic response of torsionally coupled building with passive and semi-active stiffness dampers

    NASA Astrophysics Data System (ADS)

    Mevada, Snehal V.; Jangid, R. S.

    2015-03-01

    The seismic response of single-storey, one-way asymmetric building with passive and semi-active variable stiffness dampers is investigated. The governing equations of motion are derived based on the mathematical model of asymmetric building. The seismic response of the system is obtained by numerically solving the equations of motion using state-space method under different system parameters. The switching and resetting control laws are considered for the semi-active devices. The important parameters considered are eccentricity ratio of superstructure, uncoupled lateral time period and ratio of uncoupled torsional to lateral frequency. The effects of these parameters are investigated on peak lateral, torsional and edge displacements and accelerations as well as on damper control forces. The comparative performance is investigated for asymmetric building installed with passive stiffness and semi-active stiffness dampers. It is shown that the semi-active stiffness dampers reduce the earthquake-induced displacements and accelerations significantly as compared to passive stiffness dampers. Also, the effects of torsional coupling on effectiveness of passive dampers in reducing displacements and accelerations are found to be more significant to the variation of eccentricity as compared to semi-active stiffness dampers.

  17. An updated active structure database of Taiwan for seismic hazard assessments

    NASA Astrophysics Data System (ADS)

    Shyu, J. B. H.; Chuang, Y. R.; Chen, Y. L.; Lee, Y.; Cheng, T. C. T.

    2014-12-01

    In order to build a complete seismogenic source model to assess future seismic hazards in Taiwan, we have constructed an updated active structure database for the island. We reviewed existing active structure databases, and obtained new information for structures that have not been thoroughly analyzed before. For example, the Central Geological Survey of Taiwan has published a comprehensive database of active faults in Taiwan, including all of the historically ruptured faults. Many other active structures, such as blind faults or folds that can be identified from geomorphic or structural analysis, have also been mapped and reported in several previous investigations. We have combined information from these existing databases to build an updated and digitized three-dimensional active structure map for Taiwan. Furthermore, for detailed information of individual structure such as long-term slip rates and potential recurrence intervals, we have collected the data from existing publications, as well as calculated from results of our own field surveys and investigations. We hope this updated database would become a significant constraint for the calculations of seismic hazard assessments in Taiwan, and would provide important information for engineers and hazard mitigation agencies.

  18. Integration of Seismic Sequence Analysis and High Resolution Sequence Stratigraphy for Delineating the Sedimentation Characteristics and Modeling of Baltim Area, Off-Shore Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Nasr El-Deen Badawy, A. M. E. S.; Abu El-Ata, A. S. A.; El-Gendy, N. H.

    2014-12-01

    The current study is aiming to discuss the Messinian Prospectivity of the concerned area, which is located in the offshore Nile Delta, about 25 Km from the Mediterranean Sea shoreline. An integrated exploration approach applied, using a variety of the 2D/3D seismic data, subsurface borehole geologic and log data of the selected wells distributed in the study area, as well as the geophysical and biostratigraphic data. The well data comprise well markers, and electric logs, where the geological data represented by litho-stratigraphic information, as well as ditch samples analysis of the studied interval. The geophysical data include check shots, VSP, velocity cubes and 3D seismic lines. Biostratigraphic data include biozones, benthonic to planktonic ratios, nannofossils and foraminiferal data. Seismic interpretation and seismic stratigraphic analysis, in the form of seismic sequence analysis, seismic facies analysis, seismic unit analysis and geologic confirmation have been done by the aid of Petrel and Kingdom computer softwares. The seismic lines were interpreted for defining the different parasequences and picking the various smaller sequences for mapping, after picking each sequence from the seismic correlation, it is facilitated the mapping of every sequence laterally. In addition, the interpretation of structures and isopach of every sequence has been carried out, and the seismic attributes for every sequence were possible, to extract the sands present in each sequence, and to study the extensions of these sands that act as a reservoir. The integration of all results was taken as a base to produce the various models for the study area. The first one was the depositional environmental model, which showed that, the area varies from intertidal-littoral southward at Nidoco wells to inner-middle neritic at Baltim East wells then to outer neritic, and changes to bathyal and then to abyssal at the extreme north. The geologic model for the area was constructed

  19. Active faulting and neotectonics in the Baelo Claudia area, Campo de Gibraltar (southern Spain)

    NASA Astrophysics Data System (ADS)

    Grützner, Christoph; Reicherter, Klaus; Hübscher, Christian; Silva, Pablo G.

    2012-07-01

    The Strait of Gibraltar area is part of the western Eurasian-African convergence zone characterized by a complex pattern of deformation, including thrusting and folding and active normal faulting. Generally, the area is of low-seismicity; only some minor earthquakes have been recorded in the last hundred years. Archaeoseismological data evidences earthquake destruction occurring twice during Roman times. A better neotectonic framework and knowledge on the paleostress evolution of the Strait of Gibraltar area is necessary to find the local sources for those events and to establish an understanding of the recent deformation. Paleoseismic evidence for one moderate earthquake event around 6000-5000 BP along the normal Carrizales Fault is described in this paper. Off-shore high-resolution seismic investigations, structural and paleostress data, high-resolution GPR and geoelectrical resistivity measurements, outcrop investigations and trenching studies are discussed. The data reveal that active faulting takes place along N-S trending normal faults. Hence, N-S directed normal faults in the area are claimed as local candidates for moderate earthquake activity. Return periods of moderate earthquakes in the order of at least 2000-2500 years in the study area may have to be taken into account. Structural data, such a paleostress data and joints are presented and a deformation history for the Strait of Gibraltar area in southern Spain is developed in this study.

  20. Decoupling of deformation in the Upper Rhine Graben sediments. Seismic reflection and diffraction on 3-component Vertical Seismic Profiling (Soultz-sous-Forêts area)

    NASA Astrophysics Data System (ADS)

    Place, Joachim; Diraison, Marc; Naville, Charles; Géraud, Yves; Schaming, Marc; Dezayes, Chrystel

    2010-07-01

    A contribution to the definition of the structural pattern of the Soultz-sous-Forêts EGS (Enhanced Geothermal System) is presented here. After reprocessing, the PHN84J seismic reflection profile highlights the tilted blocks of the Merkwiller-Péchelbronn oilfield. In the Soultz-sous-Forêts horst, complex fault patterns are observed: the Hermerswiller normal fault flattens at depth and is rooted in decollements occurring in Triassic salt or clay series, while other steep normal faults affect underlying sedimentary formations and basement. Some methods for the exploitation of a seismic diffraction recorded by multi-component Vertical Seismic Profiling (VSP) are also illustrated to locate the diffractor without specific data processing. Polarisation and travel time analysis of a diffraction event recorded in the GPK1 borehole are analysed, and its exploitation combined with seismic reflection helps defining a tilted block geometry.

  1. Deformation across the seismic cycle in tectonically active regions: Imaging, modeling, and interpretations

    NASA Astrophysics Data System (ADS)

    Barnhart, William Douglas

    Images of surface displacements in response to tectonic forces can provide independent, spatially dense observations that assist in understanding sub-surface processes. When considered independently or augmented with more traditional observations of active tectonics such as seismicity and ground mapping, these measurements provide constraints on spatially and temporally variable fault behavior across the seismic cycle. Models of fault behavior inferred from these observations in turn allow us to address topics in geologic hazards assessment, the long- and short-term character of strain in deforming regions, and the interactions between faults throughout the crust. In this dissertation, I use remotely sensed observations of ground displacements from interferometric synthetic aperture radar (InSAR) to approach several problems related to earthquake and aseismic fault slip. I establish image processing and inverse methods for better detailing subsurface fault slip and apply these to the 2010-2011 Canterbury, New Zealand sequence. Then, I focus on the active tectonics of the Zagros Mountains in southern Iran. There, I show through orogen-wide InSAR time series analysis that active strain is accommodated across the width of the mountain belt. I also use a combination of InSAR, local seismicity, and structural modeling to demonstrate that strain is vertically partitioned within the Zagros fold-and-thrust belt, with earthquakes controlling deformation in the underlying basement while the overlying sedimentary section shortens in transient, earthquake-triggered aseismic slip events. In certain examples, these aseismic slip events directly contribute to the growth of fault-bend folds. I use these inferences to explore a previously noted discrepancy between observed shortening and that which is expected from known earthquakes. I show that the earthquakes and short-term aseismic slip cannot account for this discrepancy, and that additional deformation mechanisms must be

  2. Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Nakano, M.; Maeda, T.; Yepes, H.; Palacios, P.; Ruiz, M. C.; Arrais, S.; Vaca, M.; Molina, I.; Yamashina, T.

    2009-12-01

    We systematically used two approaches to analyze broadband seismic signals observed at active volcanoes: one is waveform inversion of very-long-period (VLP) signals in the frequency domain assuming possible source mechanisms; the other is a source location method of long-period (LP) and tremor using their amplitudes. The deterministic approach of the waveform inversion is useful to constrain the source mechanism and location, but is basically only applicable to VLP signals with periods longer than a few seconds. The source location method uses seismic amplitudes corrected for site amplifications and assumes isotropic radiation of S waves. This assumption of isotropic radiation is apparently inconsistent with the hypothesis of crack geometry at the LP source. Using the source location method, we estimated the best-fit source location of a VLP/LP event at Cotopaxi using a frequency band of 7-12 Hz and Q = 60. This location was close to the best-fit source location determined by waveform inversion of the VLP/LP event using a VLP band of 5-12.5 s. The waveform inversion indicated that a crack mechanism better explained the VLP signals than an isotropic mechanism. These results indicated that isotropic radiation is not inherent to the source and only appears at high frequencies. We also obtained a best-fit location of an explosion event at Tungurahua when using a frequency band of 5-10 Hz and Q = 60. This frequency band and Q value also yielded reasonable locations for the sources of tremor signals associated with lahars and pyroclastic flows at Tungurahua. The isotropic radiation assumption may be valid in a high frequency range in which the path effect caused by the scattering of seismic waves results in an isotropic radiation pattern of S waves. The source location method may be categorized as a stochastic approach based on the nature of scattering waves. We further applied the waveform inversion to VLP signals observed at only two stations during a volcanic crisis

  3. Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: Lessons from the Mw 9.0, 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Satriano, Claudio; Dionicio, Viviana; Miyake, Hiroe; Uchida, Naoki; Vilotte, Jean-Pierre; Bernard, Pascal

    2014-10-01

    The 2011 Tohoku megathrust earthquake ruptured a vast region of the northeast Japan Trench subduction zone in a way that had not been enough anticipated by earthquake and tsunami risk scenarios. We analyzed the Tohoku rupture combining high-frequency back-projection analysis with low frequency kinematic inversion of the co-seismic slip. Results support the to-day well-accepted broadband characteristics of this earthquake. Most of the seismic moment is released during the first 100 s, with large co-seismic slip (up to 55 m) offshore Miyagi in a compact region on the landward side of the trench. Coherent high-frequency radiation areas and relatively low co-seismic slip are a distinctive signature of the slab-mantle interface. The broadband characteristics of the Tohoku rupture are interpreted, integrating the seismic activity and structure information on the NE Japan forearc region, as a signature of along-dip segmentation and segment interactions, that result from thermal structure, plate geometry, material composition and fracture heterogeneities along the plate boundary interface. Deep mantle corner flow and low dehydration rates along the cold subduction slab interface lead to an extended seismogenic slab-mantle interface, with strong bi-material contrast controlling larger propagation distance in the downdip preferred rupture direction. Off Miyagi, plate bending below the mantle wedge, ∼142.3°E at ∼25 km depth, is associated with the eastern limit of the deep M7-8-class thrust-earthquakes, and of the strongest coherent high-frequency generation areas. The region of the slab-crust interface between the mantle wedge limit, ∼142.7°E at ∼20 km depth, and a trenchward plate bending, ∼143.2°E at ∼15 km, acted as an effective barrier resisting for many centuries to stress-loading gradient induced by deep stable sliding and large earthquakes along the slab-mantle interface. The 2011 Tohoku earthquake, whose hypocenter is located on the east side of the

  4. The Influence of Seismic Amplification and Distanced Surcharge on the Active Thrust on Earth-Reinforced Walls

    SciTech Connect

    Biondi, Giovani; Grassi, Francesco; Maugeri, Michele

    2008-07-08

    The paper describes a closed form pseudo-static solution for the estimation of the active earth-pressure coefficient for an earth-reinforced wall assuming a non-uniform profile of the seismic coefficients along the wall height and a distanced uniformly-distributed surcharge on the backfill surface. The static and seismic hydraulic conditions of the backfill are also accounted for. A parametric analysis is carried out and the obtained results are discussed.

  5. Seismicity in Northern Germany

    NASA Astrophysics Data System (ADS)

    Bischoff, Monika; Gestermann, Nicolai; Plenefisch, Thomas; Bönnemann, Christian

    2013-04-01

    Northern Germany is a region of low tectonic activity, where only few and low-magnitude earthquakes occur. The driving tectonic processes are not well-understood up to now. In addition, seismic events during the last decade concentrated at the borders of the natural gas fields. The source depths of these events are shallow and in the depth range of the gas reservoirs. Based on these observations a causal relationship between seismicity near gas fields and the gas production is likely. The strongest of these earthquake had a magnitude of 4.5 and occurred near Rotenburg in 2004. Also smaller seismic events were considerably felt by the public and stimulated the discussion on the underlying processes. The latest seismic event occurred near Langwedel on 22nd November 2012 and had a magnitude of 2.8. Understanding the causes of the seismicity in Northern Germany is crucial for a thorough evaluation. Therefore the Seismological Service of Lower Saxony (NED) was established at the State Office for Mining, Energy and Geology (LBEG) of Lower Saxony in January 2013. Its main task is the monitoring and evaluation of the seismicity in Lower Saxony and adjacent areas. Scientific and technical questions are addressed in close cooperation with the Seismological Central Observatory (SZO) at the Federal Institute for Geosciences and Natural Resources (BGR). The seismological situation of Northern Germany will be presented. Possible causes of seismicity are introduced. Rare seismic events at greater depths are distributed over the whole region and probably are purely tectonic whereas events in the vicinity of natural gas fields are probably related to gas production. Improving the detection threshold of seismic events in Northern Germany is necessary for providing a better statistical basis for further analyses answering these questions. As a first step the existing seismic network will be densified over the next few years. The first borehole station was installed near Rethem by BGR

  6. Evidence of a possible NNE-trending fault zone in the Summerville, South Carolina, area from shallow seismic reflection surveys

    SciTech Connect

    Marple, R.T.; Talwani, P. . Geology Dept.)

    1994-03-01

    Five high-resolution seismic-reflection surveys trending approximately WNW-ESE and totaling about 31 km were acquired in the Summerville, South Carolina, area. The surveys trend across the postulated Woodstock fault zone. These newly acquired data together with earlier data revealed the existence of an [approximately]50-km-long feature associated with gentle warping of the shallow sediments that lies along a recently described zone of river anomalies (ZRA). The first ([approximately]5.9-km-long) seismic reflection profile located about 14 km NNE of Summerville revealed that the J reflector (basalt) at about 670 m depth is offset about 30--40 m with the west side up. The overlying sediments displayed upwarping rather than brittle offset. A second ([approximately]6.7-km-long) survey located along interstate Highway 26 revealed as much as 30--40 m of upwarping of the sediments above about 450 m depth. A third ([approximately]7.3-km-long) profile acquired through the town of Summerville revealed four, [approximately]200--300 m wide, nearly vertical zones in which the reflectors are noncoherent. Away from these zones the reflectors are relatively flat and are slightly higher on the west side of each zone. The fourth (3-km-long) survey was located about 5 km SW of Middleton Gardens and indicated minor faulting at about 500 m depth. The fifth ([approximately]6.4-km-long) seismic survey acquired just north of Ravenel revealed an [approximately]0.5-km-wide zone in which the reflectors in the top 350 m displayed as much as 20 m of upwarping. On all the surveys, except for the first, the basalt was at too great a depth to be resolved.

  7. Shallow seismogenic zone detected from an offshore-onshore temporary seismic network in the Esmeraldas area (northern Ecuador)

    NASA Astrophysics Data System (ADS)

    Pontoise, B.; Monfret, T.

    2004-02-01

    For a given site, many factors control the seismic risk. Earthquake magnitude, hypocentral distance, rupture mechanism, site effects and site vulnerability are among the most important. This article deals with one of these factors: the depth of the seismogenic zone, in the northern Ecuadorian subduction system, beneath a highly vulnerable site, the city of Esmeraldas and its industrial complex, the Ecuadorian oil refinery and shipping terminal. To address this problem, we analyzed data from a three weeks passive seismological experiment, conducted in the spring of 1998, using 13 Ocean Bottom Seismometers and 10 portable land-stations. A preliminary interpretation of wide-angle data obtained in the fall of 2000, in the Manta area, 100 km South of the study area, unambiguously indicates the presence of a velocity inversion in the Ecuadorian margin velocity structure. This velocity inversion is characterized by a shadow-zone of ˜1 s on the record-sections, and is interpreted as the result of a velocity contrast between the upper plate structure and the sedimentary and basaltic layer II of the subducted oceanic Nazca plate. One-dimensional velocity models are deduced from these wide-angle data and are used for earthquake location in the Esmeraldas area. This highly improved the hypocentral parameter determinations. The updip limit of the seismogenic zone is found at a depth of ˜12 km, 35 km eastward of the trench, and the depth of the seismogenic zone below the Esmeraldas city is found at ˜20 km. This shallow depth of the seismogenic zone dramatically increases the seismic hazard of the area.

  8. Analysis of the seismicity activity of the volcano Ceboruco, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ayala, N. A.; Nunez-Cornu, F. J.; Escudero, C. R.; Zamora-Camacho, A.; Gomez, A.

    2014-12-01

    The Ceboruco is a stratovolcano is located in the state of Nayarit,Mexico (104 ° 30'31 .25 "W, 21 ° 7'28 .35" N, 2280msnm). This is an volcano active, as part of the Trans-Mexican Volcanic Belt, Nelson (1986) reports that it has had activity during the last 1000 years has averaged eruptions every 125 years or so, having last erupted in 1870, currently has fumarolic activity. In the past 20 years there has been an increase in the population and socio-economic activities around the volcano (Suárez Plascencia, 2013); which reason the Ceboruco study has become a necessity in several ways. Recent investigations of seismicity (Rodríguez Uribe et al., 2013) have classified the earthquakes in four families Ceboruco considering the waveform and spectral features. We present analysis included 57 days of seismicity from March to October 2012, in the period we located 97 events with arrivals of P and S waves clear, registered in at least three seasons, three components of the temporal network Ceboruco volcano.

  9. A seismic source zone model for the seismic hazard assessment of Slovakia

    NASA Astrophysics Data System (ADS)

    Hók, Jozef; Kysel, Robert; Kováč, Michal; Moczo, Peter; Kristek, Jozef; Kristeková, Miriam; Šujan, Martin

    2016-06-01

    We present a new seismic source zone model for the seismic hazard assessment of Slovakia based on a new seismotectonic model of the territory of Slovakia and adjacent areas. The seismotectonic model has been developed using a new Slovak earthquake catalogue (SLOVEC 2011), successive division of the large-scale geological structures into tectonic regions, seismogeological domains and seismogenic structures. The main criteria for definitions of regions, domains and structures are the age of the last tectonic consolidation of geological structures, thickness of lithosphere, thickness of crust, geothermal conditions, current tectonic regime and seismic activity. The seismic source zones are presented on a 1:1,000,000 scale map.

  10. A one year long continuous record of seismic activity and surface motion at the tongue of Rhonegletscher (Valais, Switzerland)

    NASA Astrophysics Data System (ADS)

    Dalban Canassy, Pierre; Röösli, Claudia; Walter, Fabian; Gabbi, Jeannette

    2014-05-01

    A critical gap in our current understanding of glaciers is how high sub-glacial water pressure controls the coupling of the glacier to its bed. Processes at the base of a glacier are inherently difficult to investigate due to their remoteness. Investigation of the sub-glacial environment with passive seismic methods is an innovative, rapidly growing interdisciplinary and promising endeavor. In combination with observations of surface motion and basal water pressure, this method is ideally suited to localize and quantify frictional and fracture processes which occur during periods of rapidly changing sub-glacial water pressure with consequent stress redistribution at the contact interface between ice and bed. Here we present the results of the first one-year-long glacier seismic monitoring performed on an Alpine glacier to our knowledge. Together with records of surface motion and hydrological measurements, we examine whether seasonal changes can be captured by seismic recording. Experiments were carried out from June 2012 to July 2013 on Rhonegletscher (Valais, Switzerland), by means of 3 three-components seismometers settled close to the tongue in 2 meters boreholes. An additional array of eleven sensors installed at the ice surface was also maintained during September 2012, in order to achieve more accurate icequakes locations. A high seismic emission is observed on Rhonegletscher, with icequakes located close to the surface or in the vicinity of the bedrock. The temporal distribution of seismic activity is shown to nicely reflect the seasonal evolution of the glacier hydrology, with a dramatic seismic release in early spring. During summer, released seismic activity is generally driven by diurnal ice/snow melting cycle. In winter, snow-cover conditions are associated with a reduced seismic release, with nevertheless some unexpected activity possibly related to snow-pack metamorphism. Based on icequake locations derived from data recorded in September, we discuss

  11. The Seismic Broad Band Western Mediterranean (wm) Network and the Obs Fomar Pool: Current state and Obs activities.

    NASA Astrophysics Data System (ADS)

    Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto

    2016-04-01

    The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of

  12. Preliminary Results from the iMUSH Active Source Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Kiser, Eric; Palomeras, Imma; Zelt, Colin; Schmandt, Brandon; Hansen, Steve; Harder, Steven; Creagar, Kenneth; Vidale, John; Abers, Geoffrey

    2015-04-01

    iMUSH (imaging Magma Under Saint Helens) is a US NSF sponsored multi-disciplinary investigation of Mount Saint Helens (MSH), currently the most active volcano in the Cascades arc in the northwestern United States. The project consists of active and passive seismic experiments, extensive magnetotelluric sounding, and geological/geochemical studies involving scientists at 7 institutions in the U.S. and Europe. The long-term goal of the seismic project is to combine analysis of the active source data with that of data from the 70 element broadband seismograph operating from summer 2014 until 2016. Combining seismic and MT analyses with other data, we hope to image the MSH volcanic plumbing system from the surface to the subducting Juan de Fuca slab. Here we describe preliminary results of the iMUSH active source seismic experiment, conducted in July and August 2014. The active source experiment consisted of twenty-three 454 or 908 kg weight shots recorded by ~3500 seismographs deployed at ~6,000 locations. Of these instruments, ~900 Nodal Seismic instruments were deployed continuously for two weeks in an areal array within 10 km of the MSH summit. 2,500 PASSCAL Texan instruments were deployed twice for five days in 3 areal arrays and 2 dense orthogonal linear arrays that extended from MSH to distances > 80 km. Overall the data quality from the shots is excellent. The seismograph arrays also recorded dozens of micro-earthquakes beneath the MSH summit and along the MSH seismic zone, and numerous other local and regional earthquakes. In addition, at least one low frequency event beneath MSH was recorded during the experiment. At this point we have begun various types of analysis of the data set: We have determined an average 1D Vp structure from stacking short-term/long-term average ratios, we have determined the 2-D Vp structure from ray-trace inversions along the two orthogonal profiles (in the NW-SE and NE-SW directions), and we have made low-fold CMP stacks of the

  13. Movement of the Earth pole and the seismic activity in 2001-2012

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksey; Zabbarova, Regina; Lapaeva, Valentina; Nefedyev, Yuri

    2014-05-01

    The relationship between the parameters which characterize the movement of the Earth pole and seismic activity are considered. The correlation of the considered parameters is studied. The discussions about the relationship of poles movement and irregularity in speed of Earth rotation with seismic activity were actively performed in 60- 70th years of last century. Mainly, the influence of seismicity on pole movement was considered in this works. In particular, the question about excitation of a pole by earthquakes chandler's fluctuations was studied. An interest in the similar researches continues till now. The chandler's movements investigations and their relation with rotation of the Earth and seismicity were proceeded. The correlation between appearance of earthquakes and abnormal evasion of time and latitude for the observatories located near an epicenter was also discussed. What changes in position of the Earth pole do occur as a result of the strongest earthquakes? To answer on this question it is necessary to study variations of "an average pole", where the basic periodic components in movement of a pole having amplitude 0.1"-0.3" are accepted. To perform the analysis of the pole co-ordinates (X and Y) the International service of the Earth rotation for 1995-2012 have been considered. Linear Orlov-Saharov transformation has been applied to an exception of the periodic movement. On the basis of this positions changes of an average pole (aperiodicity displacement and long periodical variations of an axis of rotation in a Earth body) have been calculated with an interval of 0.1 years. Was found the changes of position of an average pole of the Earth was preceded the most considerable seismic events of the beginning of 21 century. As a whole, the increase of seismic activity has begun after 2002 only. For example, there were 2 strong earthquakes with magnitude 7 and more (Salvador, India) in 2001 , 2 earthquakes (Tajikistan, Taiwan) occurred in 2002, and 5

  14. The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults

    NASA Astrophysics Data System (ADS)

    Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; Bernard, P.; Sokos, E.; Makropoulos, K.

    2015-09-01

    The Corinth Rift in Central Greece has been studied extensively during the past decades, as it is one of the most seismically active regions in Europe. It is characterized by normal faulting and extension rates between 6 and 15 mm yr-1 in an approximately N10E° direction. On 2013 May 21, an earthquake swarm was initiated with a series of small events 4 km southeast of Aigion city. In the next days, the seismic activity became more intense, with outbursts of several stronger events of magnitude between 3.3 and 3.7. The seismicity migrated towards the east during June, followed by a sudden activation of the western part of the swarm on July 15th. More than 1500 events have been detected and manually analysed during the period between 2013 May 21 and August 31, using over 15 local stations in epicentral distances up to 30 km and a local velocity model determined by an error minimization method. Waveform similarity-based analysis was performed, revealing several distinct multiplets within the earthquake swarm. High-resolution relocation was applied using the double-difference algorithm HypoDD, incorporating both catalogue and cross-correlation differential traveltime data, which managed to separate the initial seismic cloud into several smaller, densely concentrated spatial clusters of strongly correlated events. Focal mechanism solutions for over 170 events were determined using P-wave first motion polarities, while regional waveform modelling was applied for the calculation of moment tensors for the 18 largest events of the sequence. Selected events belonging to common spatial groups were considered for the calculation of composite mechanisms to characterize different parts of the swarm. The solutions are mainly in agreement with the regional NNE-SSW extension, representing typical normal faulting on 30-50° north-dipping planes, while a few exhibit slip in an NNE-SSW direction, on a roughly subhorizontal plane. Moment magnitudes were calculated by spectral analysis

  15. An Evaluation of Seismic Reflection Studies in the Yucca Mountain Area, Nevada Test Site

    USGS Publications Warehouse

    McGovern, Thomas F.; Introduction by Pankratz, L. W.; Ackermann, H.D.

    1983-01-01

    As part of a total geophysical evaluation of Yucca Mountain for use as a Nuclear Waste Repository the seismic reflection technique has been applied. This study has been conducted to analyze the historical and technical efforts which have been used by three geophysical contractors employing a wide variety of techniques ranging from the most simple to very elaborate 3-D surveys. In each case elaborate noise studies were conducted, and based upon their evaluation parameters were chosen for multifold CDP recording. In every case, the signal-to-noise ratio was such that no reflections were discernable. Since the reflections cannot be separated from the noise even using very elaborate noise suppression techniques and up to 384 fold multiplicity it is apparent that in this volcanic terrain reflection surveys, can not work.

  16. Investigations On Historic Centers In Seismic Areas: Guidelines For The Diagnosis

    SciTech Connect

    Binda, Luigia; Cardani, Giuliana; Modena, Claudio; Valluzzi, Maria Rosa; Saisi, Antonella

    2008-07-08

    After the earthquake that hit central Italy in 1979, many small historic centers were restored. A subsequent seismic event occurred in 1997 in Umbria-Marche regions revealed that some techniques used in the previous interventions were not successful due to low durability of new materials and/or incompatibility between the new and the existing materials and structures. An extensive investigation on four small typical historic centers in Umbria was carried out. The objectives of the research were: (i) to define a methodology for the vulnerability analysis of historic buildings at the level of the historic centre, (ii) to collect information on the effectiveness of the repair techniques both traditional and new, (iii) to set up Databases storing the information useful to prepare rescue plans, (iv) to use the collected knowledge for the implementation of reliable models for the vulnerability analysis, (v) to prepare guidelines for investigation and vulnerability analysis.

  17. Field Report on the iMUSH Active Source Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Levander, A.; Schmandt, B.; Palomeras, I.; Harder, S. H.; Creager, K. C.; Vidale, J. E.; Malone, S. D.

    2014-12-01

    In the second half of July we completed the iMUSH active source seismic experiment, one component of the Imaging Magma Under Saint Helens project. A team of ~75 volunteers deployed 3500 seismographs to ~5920 locations on and around Mount St. Helens over the course of 3 weeks. This instrument deployment was accompanied by 23 shots distributed around the volcano. Instrumentation consisted of ~2550 Reftek 125A (Texan) seismographs with 4.5 Hz geophones, and 920 Nodal Seismic recorders with 10 Hz geophones. The shots were also recorded by the permanent stations of the Pacific Northwest Seismograph Network and 70 iMUSH broadband seismographs. Fifteen of the shots, 424 kg each, formed two rings around Mount Saint Helens at 15 km and 30 km radius from the summit. Eight of the shots, 828 kg each, were fired at distances of 50 to 80 km from MSH on NW-SE and NE-SW azimuths. The deployment geometry consisted of two lines oriented NW/SE and NE/SW, and three arrays. The offset of the lines ranged from 150 km to 190 km with an average spacing of 200 m. The first array was centered on the volcano with a radius of 30 km, and required both driving and hiking to deploy. Arrays two and three were set out with, and centered on, the NW/SE line. These arrays had a distance range from MSH of 30-75 km and an azimuth range of about 100 degrees. In addition to this large-scale deployment, we set out 7 beamforming arrays approximately collocated with iMUSH broadband seismographs, and above clusters of seismicity in the region. The aperture of these arrays was about 1 km with an instrument spacing of 100 m. The final deployment ended only days before the AGU abstract deadline, so we have not yet examined all of the data. However, the preliminary indications are that signal to noise is excellent: The shots, several of which registered on PNSN as ML>2.1, carried across the entire array, and were recorded as far away as Seattle and Corvallis on permanent stations. The array also recorded a

  18. The Mw4.8 Norris Geyser Basin Earthquake of 30 March, 2014 and its Relationship to Crustal Deformation and Seismic Activity of the Yellowstone Volcanic System

    NASA Astrophysics Data System (ADS)

    Farrell, J.; Shelly, D. R.; Smith, R. B.; Puskas, C. M.; Chang, W. L.

    2014-12-01

    The largest earthquake to be recorded in Yellowstone in over 30 years, a magnitude 4.8 earthquake, occurred on March 30, 2014 near the Norris Geyser Basin on the NW side of the 0.64 Ma Yellowstone caldera. The earthquake was felt throughout Yellowstone and the surrounding region. We analyze this unusual event using data from the Yellowstone Seismic and Geodetic networks in the context of active volcanic-tectonic processes of the Yellowstone volcanic system and its relationship to regional swarm seismicity and crustal deformation. Moment tensor analysis of the March 30 earthquake revealed a strike-slip, double-couple source mechanism with no isotropic contribution. This earthquake was part of a larger sequence of earthquake swarm activity in the Norris Geyser Basin area that began in September 2013 and continued into June 2014. During that period, 50-60% of the total seismicity recorded in Yellowstone, including nearly all of the swarm seismicity (earthquakes clustered in time and space), occurred in the Norris Geyser Basin area. In addition, GPS derived deformation data revealed unusually high uplift rates at ~15 cm/yr in the Norris area prior to the MW4.8 event, while a dramatic reversal to subsidence at rates of ~20 cm/yr occurred after the event. Regionally, the much larger Yellowstone caldera had experienced subsidence since January 2010 at rates of ~1.5 cm/yr prior to the MW4.8 event. After March 30, 2014 the caldera reversed to regional uplift at rates of ~10 cm/yr, similar to accelerated uplift rates observed in mid-2004.

  19. Recent upper mantle structure beneath Siberia and surrounding areas according to a seismic tomography and numerical thermogravitational convection modeling data

    NASA Astrophysics Data System (ADS)

    Bushenkova, N.; Chervov, V.; Koulakov, I.

    2012-04-01

    We investigate the interaction between the recent lithosphere structure and dynamics of the upper mantle beneath a big segment of Asia. This study is based on the results of seismic tomography using travel times from the ISC catalog (1964-2007) and numerical thermogravitational modeling. The model contains thick lithosphere blocks of the Siberian Craton, the Tarim plate, and remnant parts of the Mongol-Tuva microcontinent. These blocks are alternated with weaker younger lithosphere corresponding to the West-Siberian plate, orogenic belts in southern Siberia and the Arctic shelves to the north. In the tomography part, we have updated a previously published model by Koulakov and Bushenkova (2010) based on a larger dataset including reflected PP and teleseismic P travel times from global catalogues. The lithosphere thickness has been estimated based on seismic anomalies at 250 km depth according to a technique described in (Bushenkova et al., 2008). These estimates were used to define the lithosphere thickness which is then implemented for setting the boundary conditions in numerical modeling and for joint interpretation of the final results. When computing the mantle dynamics, we consider the viscosity which is depends from temperature and pressure. Calculations are performed in the spherical coordinates. To minimize the boundary effects and to take into account the effect of the outside features, we considerably enlarged the calculation area by including the Russian, North- and South China Cratons and the Indian Plate. The modeling results demonstrate formation of steady ascending flows caused by overheating under the cratons (the average temperature of the upper mantle under a craton increases to ~100°) and descending flows on their periphery. The ascending flows spread along the bottom of the cratonic lithosphere and propagate towards its edges which cause smaller-scale convection cells nearly the borders of the cratons. The computed temperature distribution is

  20. Broadband seismology and small regional seismic networks

    USGS Publications Warehouse

    Herrmann, Robert B.

    1995-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Missouri. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  1. Seismic structure beneath the Gulf of Aqaba and adjacent areas based on the tomographic inversion of regional earthquake data

    NASA Astrophysics Data System (ADS)

    El Khrepy, Sami; Koulakov, Ivan; Al-Arifi, Nassir; Petrunin, Alexey G.

    2016-06-01

    We present the first 3-D model of seismic P and S velocities in the crust and uppermost mantle beneath the Gulf of Aqaba and surrounding areas based on the results of passive travel time tomography. The tomographic inversion was performed based on travel time data from ˜ 9000 regional earthquakes provided by the Egyptian National Seismological Network (ENSN), and this was complemented with data from the International Seismological Centre (ISC). The resulting P and S velocity patterns were generally consistent with each other at all depths. Beneath the northern part of the Red Sea, we observed a strong high-velocity anomaly with abrupt limits that coincide with the coastal lines. This finding may indicate the oceanic nature of the crust in the Red Sea, and it does not support the concept of gradual stretching of the continental crust. According to our results, in the middle and lower crust, the seismic anomalies beneath the Gulf of Aqaba seem to delineate a sinistral shift (˜ 100 km) in the opposite flanks of the fault zone, which is consistent with other estimates of the left-lateral displacement in the southern part of the Dead Sea Transform fault. However, no displacement structures were visible in the uppermost lithospheric mantle.

  2. Seismic hazard assessment in Central Asia using smoothed seismicity approaches

    NASA Astrophysics Data System (ADS)

    Ullah, Shahid; Bindi, Dino; Zuccolo, Elisa; Mikhailova, Natalia; Danciu, Laurentiu; Parolai, Stefano

    2014-05-01

    Central Asia has a long history of large to moderate frequent seismicity and is therefore considered one of the most seismically active regions with a high hazard level in the world. In the hazard map produced at global scale by GSHAP project in 1999( Giardini, 1999), Central Asia is characterized by peak ground accelerations with return period of 475 years as high as 4.8 m/s2. Therefore Central Asia was selected as a target area for EMCA project (Earthquake Model Central Asia), a regional project of GEM (Global Earthquake Model) for this area. In the framework of EMCA, a new generation of seismic hazard maps are foreseen in terms of macro-seismic intensity, in turn to be used to obtain seismic risk maps for the region. Therefore Intensity Prediction Equation (IPE) had been developed for the region based on the distribution of intensity data for different earthquakes occurred in Central Asia since the end of 19th century (Bindi et al. 2011). The same observed intensity distribution had been used to assess the seismic hazard following the site approach (Bindi et al. 2012). In this study, we present the probabilistic seismic hazard assessment of Central Asia in terms of MSK-64 based on two kernel estimation methods. We consider the smoothed seismicity approaches of Frankel (1995), modified for considering the adaptive kernel proposed by Stock and Smith (2002), and of Woo (1996), modified for considering a grid of sites and estimating a separate bandwidth for each site. The activity rate maps are shown from Frankel approach showing the effects of fixed and adaptive kernel. The hazard is estimated for rock site condition based on 10% probability of exceedance in 50 years. Maximum intensity of about 9 is observed in the Hindukush region.

  3. Improving active seismic isolation in aLIGO using a ground rotation sensor

    NASA Astrophysics Data System (ADS)

    Venkateswara, Krishna; Hagedorn, Charles; Ross, Michael; Gundlach, Jens

    2016-03-01

    The active seismic isolation in Advanced LIGO achieves a factor of 10 -104 isolation from ground displacement in the frequency range from 0.1-10 Hz enabling stable low noise interferometer operation. It uses seismometers on the ground and the optics platform in feedback loops to reduce the transmission of ground motion to the platform. However, due to the inability of a seismometer to distinguish between horizontal acceleration and rotation (coupling through gravity), wind-induced tilt limits the performance of the active isolation in the 10-500 mHz frequency range, thereby reducing the duty-cycle of the detectors. We describe a ground rotation sensor, consisting of a low frequency beam-balance and an autocollimator readout with better than 0.4 nrad/rt(Hz) sensitivity above 10 mHz, which can be used to subtract tilt-noise from a horizontal seismometer, thus improving the active seismic isolation system. This work was supported by NSF Grant: 1306613.

  4. seismicity and seismotectonics of Libya

    NASA Astrophysics Data System (ADS)

    Ben Suleman, abdunnur

    2015-04-01

    Libya, located at the central Mediterranean margin of the African shield, underwent many episodes of orogenic activity that shaped its geological setting. The present day deformation of Libya is the result of the Eurasia-Africa continental collision. The tectonic evolution of Libya has yielded a complex crustal structure that is composed of a series of basins and uplifts. This study aims to explain in detail the seismicity and seismotectonics of Libya using new data recorded by the recently established Libyan National Seismograph Network (LNSN) incorporating other available geophysical and geological information. Detailed investigations of the Libyan seismicity indicates that Libya has experienced earthquakes of varying magnitudes The seismic activity of Libya shows dominant trends of Seismicity with most of the seismic activity concentrated along the northern coastal areas. Four major clusters of Seismicity were quit noticeable. Fault plane solution was estimated for 20 earthquakes recorded by the Libyan National Seismograph Network in northwestern and northeastern Libya. Results of fault plane solution suggest that normal faulting was dominant in the westernmost part of Libya; strike slip faulting was dominant in northern-central part of Libya. The northern-eastern part of the country suggests that dip-dip faulting were more prevalent.

  5. Combined Active and Passive Seismic Methods To Characterize Strongmotion Sites in Washington and Oregon, United States

    NASA Astrophysics Data System (ADS)

    Pileggi, D.; Cakir, R.; Lunedei, E.; Albarello, D.; Walsh, T. J.

    2011-12-01

    Knowledge of the shear-wave velocity profile at strongmotion station sites is important for calibrating accelerograms in terms of local site effects. Surface-wave seismic prospecting methods (both in active and passive configurations) provide an effective tool for an inexpensive and deep penetrating seismic characterization of subsoil. We used a combination of active (Multi-channel Analysis of Surface Waves, MASW) and passive (Extended Spectral AutoCorrelation, ESAC) array techniques along with the single-station ambient vibration measurements (Horizontal-to-Vertical Spectral Ratios - HVSR) to characterize strong-motion sites in Washington and Oregon. The MASW analysis was used to better constrain the shallowest part of the Vs profile, while effective dispersion curve provided by ESAC and HVSR data allow us to extend the survey downwards (up to hundred meters of depth). The combined use of these data in the frame of global-search inversion algorithms (Genetic Algorithms) allows us to manage the extreme non-linearity of the inverse problem and mitigate problems associated with the non-uniqueness of the solution. A strict synergy between geologic surveys, boreholes (when the latter was available) and seismic surveys allows a further reduction of relevant uncertainties. Preliminary results show that; i) this combined methodology is a practical, inexpensive, and fast way to characterize multiple strong motion sites; ii) local geology and/or borehole information was combined to better constrain the inversion and to reduce the uncertainty in velocity profiles; and, iii) this combined methodology gives additional information of shear-wave velocities at greater depths.

  6. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity and stress-induced permeability changes

    NASA Astrophysics Data System (ADS)

    Madonia, Paolo; Cusano, Paola; Diliberto, Iole Serena; Cangemi, Marianna

    2016-04-01

    Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009 - May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai-Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July-August 2011. We interpreted the seismic-related anomalies as "crustal fluid transients", i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.

  7. Deep Structure of the Fold-and-Thrust Belt in the Tenpoku Area, Northern Hokkaido Island, Japan, Revealed by Reprocessing of Seismic Reflection Data From the 1990 MITI Geophysical Explorations.

    NASA Astrophysics Data System (ADS)

    Yokokura, T.; Miyazaki, T.; Kano, N.

    2005-12-01

    The Tenpoku area, the northern part of Hokkaido island, Japan, is believed to have hydrocarbon potential in the thick Cretaceous-Tertiary sediments. Ministry of International Trade and Industry (MITI, present Ministry of Economy, Trade and Industry) and some private companies have conducted many geological and geophysical explorations and test drillings in this area. These surveys have revealed that some anticlines (e.g. Horonobe and Toyotomi anticlines) and faults (e.g. Ohmagari and Horonobe faults) exist in the mountainous area and that a large sedimentary basin extends from the west of the mountainous area to the Japan Sea. The area shows a fold-and-thrust belt structure of west vergence. There is an active Sarobetsu flexural zone in the eastern end of the sedimentary basin. The flexural zone is believed to have become active since the middle Pliocene. In this way, overall geological structure down to around 5km in depth is well known, while there is few information about the deeper part. Japan National Oil Corporation (present Japan Oil, Gas and Metals National Corporation (JOGMEC)) conducted seismic reflection surveys in this area in 1990 on consignment from MITI. Part of the seismic reflection data was acquired by using dynamite and has long two-way traveltime of 18sec. As the seismic data may provide us deeper information on this fold-and-thrust belt, we tried to reprocess the data with permission by JOGMEC. As a result, we found that two low-angle east-dipping thrusts extend to around 10km in depth, which are related to the Ohmagari fault and Sarobetsu flexural zone. Beneath these thrusts, some other east-dipping thrusts also exist which may be related to micro-earthquake activity of this area.

  8. The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions

    USGS Publications Warehouse

    Keefer, D.K.

    1994-01-01

    This paper describes a general method for determining the amount of earthquake-induced landsliding that occurs in a seismically active region over time; this determination can be used as a quantitative measure of the long-term hazard from seismically triggered landslides as well as a measure of the importance of this process to regional slope-erosion rates and landscape evolution. The method uses data from historical earthquakes to relate total volume of landslide material dislodged by an earthquake to the magnitude, M, and seismic moment, M0, of the earthquake. From worldwide data, a linear-regression relation between landslide volume, V, and M0 is determined as: V = M0/1018.9(?? 0.13), where V is measured in m3 and M0 is in dyn-cm. To determine the amount of earthquake-generated landsliding over time, this relation is combined with data on seismic-moment release for a particular region, which may be derived from either earthquake-history or fault-slip data. The form of the M0-V relation allows the rate of production of earthquake-induced landslides over time to be determined from total rate of seismic-moment release without regard to the distribution of individual events, thus simplifying and generalizing the determination. Application of the method to twelve seismically active regions, with areas ranging from 13,275 to 2,308,000 km2, shows that erosion rates from earthquake-induced landslides vary significantly from region to region. Of the regions studied, the highest rates were determined for the island of Hawaii, New Zealand, western New Guinea, and the San Francisco Bay region of California. Significantly lower rates were determined for Iran, Tibet, the Sierra Nevada-Great Basin region of California, and central Japan (for the time period from 715 AD to the present). Intermediate rates were determined for Peru, southern California, onshore California, Turkey, and central Japan (for the time period from 1586 AD to the present). To determine the relative, long

  9. Shallow sediment and upper crustal structure beneath the Salton Sea as imaged by active source marine seismic refraction in conjunction with the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Kell, A. M.; Sahakian, V. J.; Harding, A. J.; Kent, G.; Driscoll, N. W.

    2012-12-01

    In the spring of 2011 we expanded a campaign of marine seismic reflection efforts in the Salton Sea in conjunction with the Salton Seismic Imaging Project (SSIP) to collect active-source marine refraction data using Ocean Bottom Seismometers (OBSs) and a marine airgun. The Salton Trough presents an opportunity to study rifting processes similar to those seen in the Gulf of California, as well as the seismic hazards associated with the southern terminus of the San Andreas Fault (SAF). An areal array, comprised of 78 OBS deployments, was focused in the southern part of the sea but also included a line parallel to the San Andreas Fault (SAF) , line 1, extending then length of the sea, and a line perpendicular to the SAF, crossing the northern basin, line 7. These lines are collinear with high-resolution reflection profiles and existing chirp profiles. The OBS array was concentrated in the southern Salton Sea to investigate the pull-apart deformation reported by Brothers et al. (2009). Using the methods of Van Avendonk (2004) we seek to constrain upper crustal velocities in this region by travel-time tomography. Beginning with P-wave arrival times we trace the ray paths through the model space and invert for seismic velocities. By iterating from the forward picking to the inversion, we reduce the chi-squared error to produce a 2D depth profile of the seismic velocities while maintaining a stable model. Line 1 uses 38 OBSs and 470 shots from a 210 cu. in. airgun to model the upper 4 km beneath the Salton Sea. Velocities vary from 1.5 km/s in the upper 1 km to an apparent 4 km deep basement velocity of 5.5 km/s. Velocity variations with depth agree with major boundaries in the co-linear seismic reflection profiles and the divergence toward the south/fault structure is also captured in these early models. Preliminary results for line 7 show similarly varying velocities - 1.5 to 3 km/s in the upper 2 kilometers of the crust, to slightly over 4 km/s at 4 km depth. Further

  10. Crustal structure in the Falcón Basin area, northwestern Venezuela, from seismic and gravimetric evidence

    NASA Astrophysics Data System (ADS)

    Bezada, Maximiliano J.; Schmitz, Michael; Jácome, María Inés; Rodríguez, Josmat; Audemard, Franck; Izarra, Carlos; The Bolivar Active Seismic Working Group

    2008-05-01

    The Falcón Basin in northwestern Venezuela has a complex geological history driven by the interactions between the South American and Caribbean plates. Igneous intrusive bodies that outcrop along the axis of the basin have been associated with crustal thinning, and gravity modeling has shown evidence for a significantly thinned crust beneath the basin. In this study, crustal scale seismic refraction/wide-angle reflection data derived from onshore/offshore active seismic experiments are interpreted and forward-modeled to generate a P-wave velocity model for a ˜450 km long profile. The final model shows thinning of the crust beneath the Falcón Basin where depth to Moho decreases to 27 km from a value of 40 km about 100 km to the south. A deeper reflected phase on the offshore section is interpreted to be derived from the downgoing Caribbean slab. Velocity values were converted to density and the resulting gravimetric response was shown to be consistent with the regional gravity anomaly. The crustal thinning proposed here supports a rift origin for the Falcón Basin.

  11. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  12. Possibilities for Observations of Electromagnetic Perturbations Related to Seismic Activity with Swarm Satellites

    NASA Astrophysics Data System (ADS)

    De Santis, A.; Mandea, M.; Balasis, G.

    2014-12-01

    It has been suggested that intense seismic activity might generate upward electromagnetic (EM) perturbations that can be detected by ground-based and low altitude spaceborne measurements. For instance, DEMETER satellite (2004-2010) very low frequency (VLF) wave observations pointed out a statistically significant decrease of the measured ionospheric wave intensity a few hours before large shallow earthquakes (EQs). This result would confirm the existence of a lithosphere-atmosphere-ionosphere coupling before the occurrence of an impending significant EQ. Swarm offers a great opportunity to study EM perturbations possibly related to seismic activity because it is a multi-satellite low Earth orbit (LEO) mission with a unique space-time configuration able to measure both electric and magnetic fields at various altitudes in the topside ionosphere. Here, we are analyzing, using various signal processing techniques, Swarm measurements shortly before and after large shallow EQs (magnitude above 7 and depth < 40 km) that occurred in the first year of the mission and report on the initial results of our analysis.

  13. Seismic protection of frame structures via semi-active control: modeling and implementation issues

    NASA Astrophysics Data System (ADS)

    Gattulli, Vincenzo; Lepidi, Marco; Potenza, Francesco

    2009-12-01

    Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached. Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.

  14. Quantification of depositional changes and paleo-seismic activities from laminated sediments using outcrop data

    NASA Astrophysics Data System (ADS)

    Weidlich, O.; Bernecker, M.

    2004-04-01

    Measurements of laminations from marine and limnic sediments are commonly a time-consuming procedure. However, the resulting quantitative proxies are of importance for the interpretation of both, climate changes and paleo-seismic activities. Digital image analysis accelerates the generation and interpretation of large data sets from laminated sediments based on contrasting grey values of dark and light laminae. Statistical transformation and correlation of the grey value signals reflect high frequency cycles due to changing mean laminae thicknesses, and thus provide data monitoring climate change. Perturbations (e.g., slumping structures, seismites, and tsunamites) of the commonly continuous laminae record seismic activities and obtain proxies for paleo-earthquake frequency. Using outcrop data from (i) the Pleistocene Lisan Formation of Jordan (Dead Sea Basin) and (ii) the Carboniferous-Permian Copacabana Formation of Bolivia (Lake Titicaca), we present a two-step approach to gain high-resolution time series based on field data for both purposes from unconsolidated and lithified outcrops. Step 1 concerns the construction of a continuous digital phototransect and step 2 covers the creation of a grey density curve based on digital photos along a line transect using image analysis. The applied automated image analysis technique provides a continuous digital record of the studied sections and, therefore, serves as useful tool for the evaluation of further proxy data. Analysing the obtained grey signal of the light and dark laminae of varves using phototransects, we discuss the potential and limitations of the proposed technique.

  15. Nationwide Assessment of Seismic Hazard for Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, N. S.; Varazanashvili, O.; Mumladze, T.

    2014-12-01

    The work presents a framework for assessment of seismic hazards on national level for the Georgia. Based on a historical review of the compilation of seismic hazard zoning maps for the Georgia became evident that there were gaps in seismic hazard assessment and the present normative seismic hazard map needed a careful recalculation. The methodology for the probabilistic assessment of seismic hazard used here includes the following steps: produce comprehensive catalogue of historical earthquakes (up to 1900) and the period of instrumental observations with uniform scale of magnitudes; produce models of seismic source zones (SSZ) and their parameterization; develop appropriate ground motion prediction equation (GMPE) models; develop seismic hazard curves for spectral amplitudes at each period and maps in digital format. Firstly, the new seismic catalog of Georgia was created, with 1700 eqs from ancient times on 2012, Mw³4.0. Secondly, were allocated seismic source zones (SSZ). The identification of area SSZ was obtained on the bases of structural geology, parameters of seismicity and seismotectonics. In constructing the SSZ, the slope of the appropriate active fault plane, the width of the dynamic influence of the fault, power of seismoactive layer are taken into account. Finally each SSZ was defined with the parameters: the geometry, the percentage of focal mechanism, predominant azimuth and dip angle values, activity rates, maximum magnitude, hypocenter depth distribution, lower and upper seismogenic depth values. Thirdly, seismic hazard maps were calculated based on modern approach of selecting and ranking global and regional ground motion prediction equation for region. Finally, probabilistic seismic hazard assessment in terms of ground acceleration were calculated for the territory of Georgia. On the basis of obtained area seismic sources probabilistic seismic hazard maps were calculated showing peak ground acceleration (PGA) and spectral accelerations (SA) at

  16. The large earthquake of 8 August 1303 in Crete: seismic scenario and tsunami in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Guidoboni, Emanuela; Comastri, Alberto

    By conducting a historical review of this large seismic event in the Mediterranean, it has been possible to identify both the epicentral area and the area in which its effects were principally felt. Ever since the nineteenth century, the seismological tradition has offered a variety of partial interpretations of the earthquake, depending on whether the main sources used were Arabic, Greek or Latin texts. Our systematic research has involved the analysis not only of Arab, Byzantine and Italian chronicle sources, but also and in particular of a large number of never previously used official and public authority documents, preserved in Venice in the State Archive, in the Marciana National Library and in the Library of the Museo Civico Correr. As a result, it has been possible to establish not only chronological parameters for the earthquake (they were previously uncertain) but also its overall effects (epicentral area in Crete, Imax XI MCS). Sources containing information in 41 affected localities and areas were identified. The earthquake also gave rise to a large tsunami, which scholars have seen as having certain interesting elements in common with that of 21 July 365, whose epicentre was also in Crete. As regards methodology, this research made it clear that knowledge of large historical earthquakes in the Mediterranean is dependent upon developing specialised research and going beyond the territorial limits of current national catalogues.

  17. Selecting ground-motion models developed for induced seismicity in geothermal areas

    NASA Astrophysics Data System (ADS)

    Edwards, Benjamin; Douglas, John

    2013-11-01

    We present a case study of the ranking and weighting of ground-motion prediction equations (GMPEs) for seismic hazard assessment of enhanced geothermal systems (EGSs). The study region is Cooper Basin (Australia), where a hot-fractured-rock project was established in 2002. We test the applicability of 36 GMPEs based on stochastic simulations previously proposed for use at EGSs. Each GMPE has a set of corresponding model parameters describing stress drop, regional and local (near-surface) attenuation. To select suitable GMPEs for Cooper Basin from the full set, we applied two methods. In the first, seismograms recorded on the local monitoring network were spectrally analysed to determine characteristic stress and attenuation parameters. In a second approach, residual analysis using the log-likelihood (LLH) method was used to directly compare recorded and predicted short-period response spectral accelerations. The resulting ranking was consistent with the models selected based on spectral analysis, with the advantage that a transparent weighting approach was available using the LLH method. Region-specific estimates of variability were computed, with significantly lower values observed compared to previous studies of small earthquakes. This was consistent with the limited range of stress drops and attenuation observed from the spectral analysis.

  18. Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins

    DOE PAGES

    Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.; Das, Sarah; King, Matt A.; Stevens, Laura; Lizarralde, Dan

    2015-06-25

    We analyzed geophone and GPS measurements collected within the ablation zone of the western Greenland Ice Sheet during a ~35 day period of the 2011 melt season to study changes in ice deformation before, during, and after a supraglacial lake drainage event. During rapid lake drainage, ice flow speeds increased to ~400% of winter values, and icequake activity peaked. At times >7 days after drainage, this seismicity developed variability over both diurnal and longer periods (~10 days), while coincident ice speeds fell to ~150% of winter values and showed nightly peaks in spatial variability. Approximately 95% of all detected seismicitymore » in the lake basin and its immediate vicinity was triggered by fracture propagation within near-surface ice (<330 m deep) that generated Rayleigh waves. Icequakes occurring before and during drainage frequently were collocated with the down flow (west) end of the primary hydrofracture through which the lake drained but shifted farther west and outside the lake basin after the drainage. We interpret these results to reveal vertical hydrofracture opening and local uplift during the drainage, followed by enhanced seismicity and ice flow on the downstream side of the lake basin. This region collocates with interferometric synthetic aperture radar-measured speedup in previous years and could reflect the migration path of the meltwater supplied to the bed by the lake. The diurnal seismic signal can be associated with nightly reductions in surface melt input that increase effective basal pressure and traction, thereby promoting elevated strain in the surficial ice.« less

  19. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  20. Geologic interpretation of seismic data relocation Route 1, cut, Stations 34-52, Copper Mine Road area and northern portion of Ballard Estate in Topsfield, Mass.

    USGS Publications Warehouse

    May, James E.; Linehan, Rev. Daniel

    1950-01-01

    Relocation of the Newburyport Turnpike, Route 1, in Topsfield, Mass., will require a long relatively deep cut between stations 34 and 52. In order to obtain preliminary information on the depths to bedrock and on the nature of the subsurface materials at this site, reconnaissance seismic work was performed in October 1949. Because this reconnaissance work indicated that bedrock might be relatively near the surface over an extensive area where cuttings were to be made, a more detailed seismic study of the area was made in November 1949. The results of both the reconnaissance and detailed seismic work are included in this report. The work was done as part of a cooperative program of the Massachusetts Department of Public Works and the U.S. Geological Survey.

  1. A seismotectonic model for the 300-kilometer-long eastern Tennessee seismic zone

    USGS Publications Warehouse

    Powell, C.A.; Bollinger, G.A.; Chapman, M.C.; Sibol, M.S.; Johnston, A.C.; Wheeler, R.L.

    1994-01-01

    Ten years of monitoring microearthquakes with a regional seismic network has revealed the presence of a well-defined, linear zone of seismic activity in eastern Tennessee. This zone produced the second highest release of seismic strain energy in the United States east of the Rocky Mountains during the last decade, when normalized by crustal area. The data indicate that seismicity produced by regional, intraplate stresses is now concentrating near the boundary between relatively strong and weak basement crustal blocks.

  2. Results of a shallow seismic-refraction survey in the Little Valley area near Hemet, Riverside County, California

    USGS Publications Warehouse

    Duell, L.F., Jr.

    1995-01-01

    Little Valley, a small locally named valley southeast of the city of Hemet in Riverside County, California, is being evaluated for development of a constructed wetland and infiltration area as part of a water-resources management program in the area. The valley is a granitic basin filled with unconsolidated material. In August 1993 and June and July 1994, the U.S. Geological Survey conducted a seismic-refraction survey consisting of four lines northwest of the valley, eight lines in the valley, and six lines northeast of the valley. Two interpretations were made for the lines: a two-layer model yielded an estimate of the minimum depths to bedrock and a three-layer model yielded the most likely depths to bedrock. Results of the interpretation of the three-layer model indicate that the unsaturated unconsolidated surface layer ranges in thickness from 12 to 83 feet in the valley and 24 to 131 feet northeast of the valley. The mean compressional velocity for this layer was about 1,660 feet per second. A saturated middle layer was detected in some parts of the study area, but not in others--probably because of insufficient thickness in some places; however, in order to determine the "most likely" depths to bedrock, it was assumed that the layer was present throughout the valley. Depths to this layer were verified on three seismic lines using the water level from the only well in the valley. Data for additional verification were not available for wells near Little Valley. The bedrock slope from most of Little Valley is down toward the northeast. Bedrock profiles show that the bedrock surface is very uneven in the study area. The interpreted most likely depth to bedrock in the valley ranged from land surface (exposed) to a depth of 176 feet below land surface, and northeast of the valley it ranged from 118 to 331 feet below land surface. Bedrock depths were verified using lithologic logs from test holes drilled previously in the area. On the basis of a measured mean

  3. [Correlation between the microbiological (S. aureus) and seismic activities with regard to the sun-earth interactions and neutron flux generation].

    PubMed

    Shestopalov, I P; Rogozhin, Iu A

    2005-01-01

    The study searched for interactions between the solar activity, seismic energy of the Earth and microbiological processes in the period from 1969 to 1997. Microbiological processes were found dependent on as the solar, so intraterrestrial (e.g. seismic) activity. The 11-year seismic on biological cycles on Earth display a positive inter-correlation and a negative one with the solar activity (sun-spots cycles). There is also correlation between the Earth's seismic energy and neutron fluxes generated at the times of earthquakes on our planet, and microbiological parameters.

  4. 1516 meters inside the earth - observations of seismic activity in the Dead Sea basin using borehole seismometer

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Malin, P.; Shalev, E.; Ben-Avraham, Z.; Sagy, A.; Shalev, E.; Bariudin, V.

    2013-12-01

    Seismological measurements, conducted at great depths of several hundred of meters or even a few km, can provide useful information that one cannot get while conducting the measurements on the surface. We take advantage of Masada Deep borehole, an abandoned oil well, for the installation of a seismometer at a large depth of 1516 m. Seismological observations since 1983, using permanent and portable stations, revealed earthquake activity along the Dead Sea fault and its proximity, which is in good agreement with geological observations of young faulting age (> 30 KY). The operation of such station will enrich the seismological database with high quality data. The study has a few goals: 1) improving the detection capabilities of small earthquakes in the Dead Sea basin; 2) improving characterization of seismic activity in the Dead Sea basin; 3) better identification of seismic activity on the Dead Sea fault and observe earthquake nucleation and rupture processes in the near field; 4) extending the Gutenberg-Richter of frequency-magnitude relationship of earthquakes into smaller magnitudes below the threshold of the Israel Seismic Network catalog. The borehole seismometer was installed in Dec. 2012. We present seismic observations of small events conducted at a depth of 1516 m, many of them were not recorded by the Israel Seismic Network.

  5. Seismic Activity in Northern Izu-Bonin arc by Ocean Bottom Seismograph Observations

    NASA Astrophysics Data System (ADS)

    Obana, K.; Kamiya, S.; Kodaira, S.; Suetsugu, D.; Takahashi, N.; Sakaguchi, H.

    2006-12-01

    The Izu-Bonin Island arc is an oceanic island arc, where the Pacific plate subducts beneath the Philippine Sea plate. Suyehiro et al. (1996) found a thick andesitic middle crust with velocity of 6 km/s in northern Izu arc. Recent active seismic experiments in the Izu-Bonin arc show significant variations of the thickness of the middle crust along the volcanic front (Kodaira et al, 2005). The thickness of the middle crust shows an inverse correlation with the average P-wave crustal velocity and the SiO2 composition of the Quaternary volcanoes along the arc. Crustal evolution in the oceanic island arc is a process including magma evolution in the mantle wedge. To understand the nature of the crustal evolution in the oceanic island arc, we have to clarify structures in the mantle wedge along the arc in addition to the oceanic island arc crust. We conducted seismicity observations by a temporal ocean bottom seismograph (OBS) network in northern Izu-Bonin arc between Tori-shima and Hachijo-jima (30° to 34°N) to investigate structures of the oceanic island arc crust and the mantle wedge in northern Izu-Bonin arc by seismic tomography. The OBS network consists of 40 pop-up type OBSs with a three-component short-period seismometer. The OBSs were deployed in April 2006 and retrieved in July after about 80-day observations. The OBS data were processed with seismic data recorded at island stations on Hachijo-jima and Aoga-shima. These island stations are operated by National Research Institute for Earth Science and Disaster Prevention. From the preliminary results of the hypocenters, many earthquakes were located along the subducting Pacific plate. Along the volcanic front, shallow earthquake clusters were observed around Tori-shima and Sumisu-Jima islands. Another shallow earthquake cluster was observed near a seamount of echelon chains in the back-arc region of the Izu-Bonin arc. Earthquakes in the fore-arc region show strong attenuation at OBSs in the back-arc region

  6. Precise Monitoring of Non-volcanic Low-frequency Tremors using Vertical Seismic Array: The case of Tokai Area, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Takeda, N.; Imanishi, K.; Koizumi, N.

    2010-12-01

    Non-volcanic low frequency tremor (LFTs) and short-term slow slip events have been found in various subduction zones and the strike-slip San Andreas Fault during the last decade. Previous studies suggest that these slow events occur within the quasi-stable frictional regime downdip of the shallower seismogenic-locked zone. Therefore, a detailed real-time monitoring of these phenomena is one of the useful ways for forecasting the next great earthquakes. In 2007, Geological Survey of Japan, AIST has started an integrated borehole observation in southwest Japan for forecasting the anticipated Tokai, Tonankai and Nankai megathrust earthquakes. Each observatory has three boreholes with different depths (about 30 m, 200 m and 600 m), in which we installed high-sensitivity seismometers at the bottom of every borehole. On the basis of a semblance analysis using this vertical seismic array data, we developed a monitoring system of the LFTs and showed a dramatic improvement of the LFTs detection (Takeda et al., 2009). This study focuses on the analysis of LFTs in Tokai area using vertical seismic array data. The major LFTs episode in the area last for days to week and occur repeatedly every six months. We have one observatory above the middle of the Tokai LFTs zone, where we started the vertical array observation in June 2008. We calculated a semblance for a range of values in apparent velocity space using one-minute long moving windows. It is easy to discriminate seismic signals associated with the LFTs from cultural noise by both the sign and value of the best apparent velocity for that particular window. We calculated total duration of the LFTs activity for each hour by counting the time that the semblance value of the best apparent velocity exceeds a specific threshold. The two year’s time-duration plot suggests that our semblance method detected about ten times in duration than that by the envelope correlation method (ECM). During each major episode, the time

  7. Pattern recognition method applied to the forecast of strong earthquakes in South American seismic prone areas

    SciTech Connect

    Benavidez, A.

    1986-01-01

    The pattern recognition method is applied to the Andean seismic region that extends from southern latitudes 2 to 27 in the South American continent, to set a criterion for the prediction of the potential sites of strong earthquakes epicenters in the zone. It is assumed that two hypothesis hold. First, the strong earthquake epicenters typically cluster around the intersection of morphostructural lineaments. Second, the rules of recognition obtained for neighboring zones which exhibit distinctive neotectonic evolution, state of stress, spatial earthquake distribution and geological development, may be different in spite of the fact that the morphostructural zoning does not reflect a separation between them. Hence, the region is divided into two broad-scale tectonic segments located above slabs of similar scale in the Nazca plate in which subduction takes place almost subhorizontally (dipping at an angle of about 10) between latitudes 2S and 15S, and at a steeper angle (of approximately 30) within latitudes 15S to 27S. The morphostructural zoning is carried out for both zones with the determination of the lineaments and the corresponding disjunctive knots which are defined as the objects of recognition when applying the pattern recognition method. The Cora-3 algorithm is used as the computational procedure for the search of the rule of recognition of dangerous and non-dangerous sites for each zone. The set criteria contain in each case several characteristic features that represent the topography, geology and tectonics of each region. Also, it is shown that they have a physical meaning that mostly reflects the style of tectonic deformation in the related regions.

  8. High-resolution seismic reflection survey results in the eastern coastal area of Boso Peninsula, Central Japan

    NASA Astrophysics Data System (ADS)

    Furuyama, S.; Sato, T.

    2015-12-01

    GSJ has conducted the coastal project since 2008 in order to equip seamless geoinformations of land and sea. This project has approached the eastern coastal area in Boso Peninsula, eastern part of the Kanto region, Japan. In the waters off the Boso Peninsula, the Philippine Sea plate subducts under the Honshu arc. Therefore, the subsurface structure in this area is important for understanding of tectonics of Kanto region, Japan. In this study, we obtained seismic sections of ca. 1100 km in total length with a boomer and multi-channel streamer (24 channel with 3.125 m spacing) and report the geological significance of the subsurface structure in the area. We mainly research the Kujukuri area, eastern part of Boso peninsula. The broad shelf characterizes this area and that width is ca. 50 km. A clear unconformity can be distinguished separating two strata and we define them as the Kujukuri A Unit and the Kujukuri B Unit, in ascending order. The planner stratification characterizes the Kujukuri A Unit and this unit buries many channels. Distinct stratification deformed by synclines and anticlines develops in the Kujukuri B Unit. The amounts of displacement of them are over 50 msec (TWT) and it exceeds 100 msec in some locations. Additionally, a lot of faults develop in the Kujukuri B Unit near land and the vertical amounts of displacement of faults exceed 100 msec. These structures in the Kujukuri B Unit might have an effect on tectonics of the Kanto region. The understanding of geology in the Kujukuri area contributes to the tectonics of Japan.

  9. Seismicity of the Adriatic microplate

    USGS Publications Warehouse

    Console, R.; Di, Giovambattista R.; Favali, P.; Presgrave, B.W.; Smriglio, G.

    1993-01-01

    The Adriatic microplate was previously considered to be a unique block, tectonically active only along its margins. The seismic sequences that took place in the basin from 1986 to 1990 give new information about the geodynamics of this area. Three subsets of well recorded events were relocated by the joint hypocentre determination technique. On the whole, this seismic activity was concentrated in a belt crossing the southern Adriatic sea around latitude 42??, in connection with regional E-W fault systems. Some features of this seismicity, similar to those observed in other well known active margins of the Adriatic plate, support a model of a southern Adriatic lithospheric block, detached from the Northern one. Other geophysical information provides evidence of a transitional zone at the same latitude. ?? 1993.

  10. Tectonic history and thrust-fold deformation style of seismically active structures near Coalinga

    SciTech Connect

    Namson, J.S. ); Davis, T.L.; Lagoe, M.B.

    1990-01-01

    The stratigraphy of the Coalinga region can be divided into tectostratigraphic facies whose boundaries delineate two major tectonic events - one in the mid-Cenozoic (38-17 Ma) and one in the late Cenozoic (less than 3 Ma). The succession of these tectostratigraphic facies, and an integration of geology, subsurface well data, a seismic-reflection profile, and earthquake seismicity on a retrodeformable cross section, yield a model for the tectonic evolution of the Coalinga region. This model suggests that the structural style of both deformational events is characteristic of fold and thrust belts. The model also indicates that the causative fault of the May 2 earthquake is a ramped thrust. The results of this study, in combination with regional geologic relations, suggest that the Coalinga region is part of an active fold and thrust belt which borders the west and south sides of the San Joaquin Valley. The potential for future earthquakes due to movement of other blind thrust faults within this belt should be evaluated.

  11. Active Strike-Slip Faulting in the Inner Continental Borderland, Southern California: Results From New High-Resolution Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Conrad, J. E.; Ryan, H. F.; Sliter, R. W.

    2008-12-01

    The inner Continental Borderland offshore of southern California accommodates about 7 mm/yr of slip between the North American and Pacific plates. Nearly half of this total has previously been thought to be taken up on the Palos Verdes (PV) and Coronado Bank (CB) fault zones, which have been modeled as a single, continuous fault zone in recent seismic hazard assessments for southern California. Although these faults lie roughly on strike with each other, a connection between these faults has not been clearly demonstrated. Newly acquired high-resolution seismic reflection data indicate that the PV fault terminates southwest of Lasuen Knoll in a horsetail splay that becomes progressively buried to the south. The lack of a connection between the PV and CB fault zones implies that a significant amount of slip must be taken up elsewhere in the inner Continental Borderland. Two other significant offshore faults, the San Diego Trough (SDT) and San Pedro Basin (SPB) fault zones, lie about 10-15 km southwest of and sub parallel to the trace of the PV and CB faults. The SDT fault zone extends from south of the Mexican border near Punta Santo Tomas for about 150 km northward to near Crespi Knoll. The SPB fault zone extends northward from off Santa Catalina Island to near Point Dume. The new seismic reflection data reveal a previously unmapped but apparently active fault zone along strike and in the area between the known strands of the SDT and the SPB fault zones. This newly recognized fault links the SDT and SPB faults, forming a continuous, active fault zone that extends about 250 km along the inner Continental Borderland. Although there are no slip rate data available for this fault zone, its overall length, continuity, and active character suggest that a significant portion of the plate motion that occurs offshore is accommodated along the SDT-SPB fault zone, which may pose a more significant seismic hazard than previously recognized.

  12. Cable-Stayed Cantilever Structures As An Expat Of Unique Application In The Construction Of A Building Located In Seismic Area - An Author's Project Of Multifunctional Building In Lisbon, Portugal

    NASA Astrophysics Data System (ADS)

    Grębowski, K.; Werdon, M.

    2015-12-01

    The article presents numerical simulations for the modelling of seismic impact on the structure of unique cantilever cablestayed structure with the application of two methods. The Response Spectrum method, in which a spectrum of the structure's responses to an earthquake's impact is generated, and the Accelerogram method, in which we generate dynamic load in the form of a diagram of the connection between acceleration and time for the actual readings during a real earthquake. Both methods have been presented for the El Centro earthquake spectrum. This unique application of a cantilever cablestayed structure in public buildings will allow to assess the safety of this kind of load-bearing system in areas of increased risk of seismic activity. Cantilever cablestayed structures have so far never been designed or analyzed on seismically active areas. Based on numerical simulation we determined the effect of stiffness of load-bearing lines on the increase of stresses and displacements at cable stays joint with the end of the cantilever part of a building.

  13. Preliminary results of systematic sampling of gas manifestations in geodynamically active areas of Greece

    NASA Astrophysics Data System (ADS)

    Daskalopoulou, Kyriaki; D'Alessandro, Walter; Calabrese, Sergio; Kyriakopoulos, Konstantinos

    2016-04-01

    Greece is located on a convergent plate boundary comprising the subduction of the African Plate beneath the Eurasian, while the Arabian plate approaches the Eurasian in a northwestward motion. It is considered to be one of the most tectonically active regions of Earth with a complex geodynamic setting, deriving from a long and complicated geological history. Due to this specific geological background, conditions for the formation of many thermal springs are favoured. In the past years, almost all the already known sites of degassing (fumaroles, soil gases, mofettes, gas bubbling in cold and thermal waters) located in the Hellenic area were sampled at least one time. Collected samples were analysed for their chemical (He, Ne, Ar, O2, N2, H2, H2S, CO, CH4 and CO2) and isotopic composition (He, C and N). Some of these sites have been selected for systematic sampling. Four of them have records longer than 10 years with tens of samplings also considering some literature data. Two of the sites are located in active volcanic areas (Santorini and Nisyros) while the other two are close to actively spreading graben structures with intense seismic activity (Gulf of Korinth and Sperchios basin). Results allowed to define long term background values and also some interesting variation related to seismic or volcanic activity.

  14. Seismicity at Jalisco-Nayarit Border, Mexico

    NASA Astrophysics Data System (ADS)

    Rutz, M.; Nunez-Cornu, F.; Camarena, M.; Trejo, E.; Reyes-Davila, G.; Suarez-Plasencia, C.

    2003-12-01

    Since 2002 a regional seismic network from Jalisco Civil Defense and University of Guadalalajara is monitoring seismicity at the northwest border of Jalisco block. With the installation of a seismic station on Ceboruco Volcano, by Nayarit Civil Defense, coverage of the network extends to east. Ceboruco Volcano is located on the Tepic-Zacoalco graben, the east border of Jalisco block, this allow us to begin to monitoring this area. The zone of Bahia de Banderas, between the north coast of Jalisco and south coast of Nayarit, probably on a tectonic triple point, is a region of high seismic potential. Activ tectonic structures and clusters in the zone of El Tuito and the Dam Cajon de Pe¤as have been identified. The seismicity in the north area of the bay is low, meanwhile in the south, where the bay is deeper, the seismicity level is higher with an East-West tendency. At the east, the Amatlan de Ca¤as-Ameca zone presents continue activity, here have been possible to locate events with local magnitude between 2 and 4. Tectonovolcanic events registred at Ceboruco station presents waveform with scattering. The seismic distribution of the coast of Jalisco shows parallel alignments to the trench throughout al the coast. Other perpendicular alignments to the coastline show active morphologic structures within the Jalisco block related to the subduction of the Rivera plate under the Jalisco block.

  15. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Eisses, A.; Kell, A. M.; Kent, G.; Driscoll, N. W.; Karlin, R. E.; Baskin, R. L.; Louie, J. N.; Smith, K. D.; Pullammanappallil, S.

    2011-12-01

    Preliminary slip rates measured across the East Pyramid Lake fault, or the Lake Range fault, help provide new estimates of extension across the Pyramid Lake basin. Multiple stratigraphic horizons spanning 48 ka were tracked throughout the lake, with layer offsets measured across all significant faults in the basin. A chronstratigraphic framework acquired from four sediment cores allows slip rates of the Lake Range and other faults to be calculated accurately. This region of the northern Walker Lake, strategically placed between the right-lateral strike-slip faults of Honey and Eagle Lakes to the north, and the normal fault bounded basins to the southwest (e.g., Tahoe, Carson), is critical in understanding the underlying structural complexity that is not only necessary for geothermal exploration, but also earthquake hazard assessment due to the proximity of the Reno-Sparks metropolitan area. In addition, our seismic CHIRP imaging with submeter resolution allows the construction of the first fault map of Pyramid Lake. The Lake Range fault can be obviously traced west of Anahoe Island extending north along the east end of the lake in numerous CHIRP lines. Initial drafts of the fault map reveal active transtension through a series of numerous, small, northwest striking, oblique-slip faults in the north end of the lake. A previously field mapped northwest striking fault near Sutcliff can be extended into the west end of Pyramid Lake. This fault map, along with the calculated slip rate of the Lake Range, and potentially multiple other faults, gives a clearer picture into understanding the geothermal potential, tectonic regime and earthquake hazards in the Pyramid Lake basin and the northern Walker Lane. These new results have also been merged with seismicity maps, along with focal mechanisms for the larger events to begin to extend our fault map in depth.

  16. Combined analysis of passive and active seismic measurements using additional geologic data for the determination of shallow subsurface structures

    NASA Astrophysics Data System (ADS)

    Horstmann, Tobias; Brüstle, Andrea; Spies, Thomas; Schlittenhardt, Jörg; Schmidt, Bernd

    2016-04-01

    A detailed knowledge of subsurface structure is essential for geotechnical projects and local seismic hazard analyses. Passive seismic methods like microtremor measurements are widely used in geotechnical practice, but limitations and developments are still in focus of scientific discussion. The presentation outlines microtremor measurements in the context of microzonation in the scale of districts or small communities. H/V measurements are used to identify zones with similar underground properties. Subsequently a shear wave velocity (Vs) depth profile for each zone is determined by array measurements at selected sites. To reduce possible uncertainties in dispersion curve analyses of passive array measurements and ambiguities within the inversion process, we conducted an additional active seismic experiment and included available geological information. The presented work is realized in the framework of the research project MAGS2 ("Microseismic Activity of Geothermal Systems") and deals with the determination of seismic hazard analysis at sites near deep geothermal power plants in Germany. The measurements were conducted in the Upper Rhine Graben (URG) and the Bavarian molasses, where geothermal power plants are in operation. The results of the H/V- and array-measurements in the region of Landau (URG) are presented and compared to known geological-tectonic structures. The H/V measurements show several zones with similar H/V-curves which indicate homogenous underground properties. Additionally to the passive seismic measurements an active refraction experiment was performed and evaluated using the MASW method („Multichannel Analysis of Surface Waves") to strengthen the determination of shear-wave-velocity depth profile. The dispersion curves for Rayleigh-waves of the active experiment support the Rayleigh-dispersion curves from passive measurements and therefore provide a valuable supplement. Furthermore, the Rayleigh-wave ellipticity was calculated to reduce

  17. Global distribution of carbon dioxide discharges, and major zones of seismicity

    USGS Publications Warehouse

    Barnes, Ivan; Irwin, William P.; White, Donald E.

    1978-01-01

    Carbon dioxide discharges of the circum-Pacific belt are in a seismically active zone and in part stem from contact metamorphism. Carbon dioxide discharges in Europe and Asia Minor, also in an area of high seismic activity, are in part from regional metamorphism and are in areas of very high heat flow.

  18. Recent seismic activity at Cephalonia (Greece): a study through candidate electromagnetic precursors in terms of non-linear dynamics

    NASA Astrophysics Data System (ADS)

    Potirakis, Stelios M.; Contoyiannis, Yiannis; Melis, Nikolaos S.; Kopanas, John; Antonopoulos, George; Balasis, Georgios; Kontoes, Charalampos; Nomicos, Constantinos; Eftaxias, Konstantinos

    2016-08-01

    The preparation process of two recent earthquakes (EQs) that occurred in Cephalonia (Kefalonia), Greece, ((38.22° N, 20.53° E), 26 January 2014, Mw = 6.0, depth ˜ 20 km) and ((38.25° N, 20.39° E), 3 February 2014, Mw = 5.9, depth ˜ 10 km), respectively, is studied in terms of the critical dynamics revealed in observables of the involved non-linear processes. Specifically, we show, by means of the method of critical fluctuations (MCF), that signatures of critical, as well as tricritical, dynamics were embedded in the fracture-induced electromagnetic emissions (EMEs) recorded by two stations in locations near the epicentres of these two EQs. It is worth noting that both the MHz EMEs recorded by the telemetric stations on the island of Cephalonia and the neighbouring island of Zante (Zakynthos) reached a simultaneously critical condition a few days before the occurrence of each earthquake. The critical characteristics embedded in the EME signals were further verified using the natural time (NT) method. Moreover, we show, in terms of the NT method, that the foreshock seismic activity also presented critical characteristics before each event. Importantly, the revealed critical process seems to be focused on the area corresponding to the western Cephalonia zone, following the seismotectonic and hazard zoning of the Ionian Islands area near Cephalonia.

  19. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  20. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-06-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  1. Active rifting processes in the central Salton Trough, California, constrained by the Salton Seismic Imaging Project (SSIP)

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G.; Harding, A. J.

    2012-12-01

    Seismic refraction and reflection travel times from the Salton Seismic Imaging Project (SSIP) are being used to constrain crustal structure during active continental rifting in the central Salton Trough, California. SSIP, funded by NSF and USGS, acquired seismic data in and across the Salton Trough in 2011 to investigate rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of refraction and low-fold reflection data were acquired onshore, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. Based on prior studies of the central Salton Trough, North American lithosphere appears to have been rifted completely apart and replaced by entirely new crust added by magmatism from below and sedimentation from above. Ongoing active rifting of this new crust is manifested by shallow (<10km depth) seismicity in the oblique Brawley Seismic Zone (BSZ; connecting the Imperial and San Andreas faults), the small Salton Buttes volcanoes (aligned perpendicular to the direction of plate motion), and very high heat flow. Analyses of the onshore-offshore seismic line that extends along the axis of the valley, parallel to the direction of plate motion, constrain crustal structure in the valley. Crystalline basement (~5 km/s) generally occurs at ~4 km depth, but is at 2-3 km depth in a localized region beneath the Salton Buttes and Salton Sea geothermal field. This crystalline rock is interpreted to be late Pliocene to Quaternary sediment metamorphosed by high heat flow. The shallower basement under the volcanic and geothermal field is due to more intense metamorphism and hydrothermal alteration in this region. The seismic velocity of basement is slower in the BSZ than to the south and north, which may be due to seismicity-related fracturing. The basement velocity beneath the Salton Buttes and geothermal

  2. Exhumed analogues of seismically active carbonate-bearing thrusts: fault architecture and deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Tesei, T.; Collettini, C.; Viti, C.; Barchi, M. R.

    2012-12-01

    In May 2012 a M = 5.9 earthquake followed by a long aftershock sequence struck the Northern Italy. The sequence occurred at 4-10 km depth within the active front of Northern Apennines Prism and the major events nucleate within, or propagate through, a thick sequence of carbonates. In an inner sector of the Northern Apennines, ancient carbonate-bearing thrusts exposed at the surface, represent exhumed analogues of structures generating seismicity in the active front. Here we document fault architecture and deformation mechanisms of three regional carbonate bearing thrusts with displacement of several kilometers and exhumation in the range of 1-4 km. Fault zone structure and deformation mechanisms are controlled by the lithology of the faulted rocks. In layered limestones and marly-limestones the fault zone is up to 200 m thick and is characterized by intense pressure solution. In massive limestones the deformation generally occurs along thin and sharp slip planes that are in contact with fault portions affected by either cataclasis or pressure solution. SEM and TEM observations show that pressure solution surfaces, made of smectite lamellae, with time tend to form an interconnected network affected by frictional sliding. Sharp slipping planes along massive limestones show localization along Y shear planes that separate an extremely comminuted cataclasites from an almost undeformed protolith. The comparison of the three shear zones depicts a fault zone structure extremely heterogeneous as the result of protolith lithology, geometrical complexities and the presence of inherited structures. We observe the competition between brittle (cataclasis, distributed frictional sliding along phyllosilicates and extremely localized slip within carbonates) and pressure solution processes, that suggest a multi-mode of slip behaviour. Extreme localization along carbonate-bearing Y shear planes is our favorite fault zone feature representing past seismic ruptures along the studied

  3. Experimental investigation on seismic response control of adjacent buildings using semi-active MR dampers

    NASA Astrophysics Data System (ADS)

    Ni, Yi-Qing; Liu, H. J.; Ko, Jan Ming

    2002-06-01

    This paper reports an experimental study on semi-active seismic response control of adjacent building structures using magneto-rheological (MR) dampers. A 1:15 scaled adjacent structural system consisting of a 12-story building model and an 8-story building model was tested on shaking table with MR damper passive and semi-active control. An MR damper with large stroke is specifically designed for this study. After experimentally identifying dynamic characteristics of the individual MR damper and the uncontrolled structural models, the two building models are interconnected with the MR damper at different floors and semi-active control is implemented using the dSPACE DS1005 real-time control system. The structures are excited on their base by a shaking table imposing sweep sine excitation and El Centro earthquake excitation. A stochastic optimal control strategy proposed by the authors is applied through the dSPACE system and its MATLAB environment to accomplish real-time semi-active control from the measurement of displacement and velocity responses at each floor. This control strategy results in a dissipative energy control with its feedback control force being a nonlinear generalized damping force. The structural response under semi-active control is compared with that by using the MR damper as a passive device without voltage input. Different MR damper installation locations are addressed in the experimental study to search for maximum response mitigation capability.

  4. Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado

    SciTech Connect

    Joe Hachey

    2007-09-30

    The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose

  5. Aftershock distribution and heterogeneous structure in and around the source area of the 2014 northern Nagano Prefecture earthquake (Mw 6.2) , central Japan, revealed by dense seismic array observation

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Hirata, N.; Iwasaki, T.; Sakai, S.; Obara, K.; Ishiyama, T.; Sato, H.

    2015-12-01

    A shallow earthquake (Mw 6.2) occurred on November 22 in the northern Nagano Prefecture, central Japan. Aftershock area is located near the Kamishiro fault, which is a part of the Itoigawa-Shizuoka Tectonic Line (ISTL). ISTL is one of the major tectonic boundaries in Japan. Precise aftershock distribution and heterogeneous structure in and around the source region of this earthquake is important to constrain the process of earthquake occurrence. We conducted a high-density seismic array observation in and around source area to investigate aftershock distribution and crustal structure. One hundred sixty-three seismic stations, approximately 1 km apart, were deployed during the period from December 3, 2014 to December 21, 2014. Each seismograph consisted of a 4.5 Hz 3-component seismometer and a digital data recorder (GSX-3). Furthermore, the seismic data at 40 permanent stations were incorporated in our analysis. During the seismic array observation, the Japan Meteorological Agency located 977 earthquakes in a latitude range of 35.5°-37.1°N and a longitude range of 136.7°-139.0°E, from which we selected 500 local events distributed uniformly in the study area. To investigate the aftershock distribution and the crustal structure, the double-difference tomography method [Zhang and Thurber, 2003] was applied to the P- and S-wave arrival time data obtained from 500 local earthquakes. The relocated aftershock distribution shows a concentration on a plane dipping eastward in the vicinity of the mainshock hypocenter. The large slip region (asperity) estimated from InSAR analysis [GSI, 2014] corresponds to the low-activity region of the aftershocks. The depth section of Vp structure shows that the high Vp zone corresponds to the large slip region. These results suggest that structural heterogeneities in and around the fault plane may have controlled the rupture process of the 2014 northern Nagano Prefecture earthquake.

  6. Crustal structure across the Three Gorges area of the Yangtze platform, central China, from seismic refraction/wide-angle reflection data

    USGS Publications Warehouse

    Zhang, Z.; Bai, Z.; Mooney, W.; Wang, C.; Chen, X.; Wang, E.; Teng, J.; Okaya, N.

    2009-01-01

    We present active-source seismic data recorded along a 300??km-long profile across the Three Gorges area of the western Yangtze platform, central China. From west to east, the profile crosses the Zigui basin, Huangling dome and Jianghan basin. The derived crustal P-wave velocity structure changes significantly across the Tongchenghe fault that lies at the transition from the Huangling dome to the Jianghan basin. West of the Tongchenghe fault, beneath the Zigui basin and the Huangling dome, we observe a ~ 42??km thick crust of relatively low average velocity (6.3-6.4??km/s). In contrast, east of the Tongchenghe fault, beneath the Jianghan basin, the crust is only 30??km thick and has a high average velocity (6.6-6.7??km/s). A west-east variation in crustal composition along the Tongchenghe fault is also inferred. West of the fault, P-wave velocities suggest a felsic composition with an intermediate layer at the base of the crust, whilst, east of the fault, felsic, intermediate, and mafic crustal layers are apparent. Our results suggest that the crust beneath the Jianghan basin has been thinned by rifting, accompanied by intrusion of the lower crust by mafic dikes and sills. The west-to-east division of the crust in the Three Gorges area coincides with first-order geophysical contrasts in gravity, topography, crustal and lithospheric thickness. ?? 2009 Elsevier B.V.

  7. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  8. Approaching a more Complete Picture of Rockfall Activity: Seismic and LiDAR Detection, Loaction and Volume Estimates

    NASA Astrophysics Data System (ADS)

    Dietze, Michael; Mohadjer, Solmaz; Turowski, Jens; Ehlers, Todd; Hovius, Niels

    2016-04-01

    Rockfall activity in steep alpine landscapes is often difficult to survey due to its infrequent nature. Classic approaches are limited by temporal and spatial resolution. In contrast, seismic monitoring provides access to catchment-wide analysis of activity patterns in rockfall-dominated environments. The deglaciated U-shaped Lauterbrunnen Valley in the Bernese Oberland, Switzerland, is a perfect example of such landscapes. It was instrumented with up to six broadband seismometers and repeatedly surveyed by terrestrial LiDAR to provide independent validation data. During August-October 2014 and April-June 2015 more than 23 (LiDAR) to hundred (seismic) events were detected. Their volumes range from < 0.01 to 5.80 cubic metres as detected by LiDAR. The evolution of individual events (i.e., precursor activity, detachment, falling phase, impact, talus cone activity) can be quantified in terms of location and duration. For events that consist of single detachments rather than a series of releases, volume scaling relationships are possible. Seismic monitoring approaches are well-suited for studying not only the rockfall process but also for understanding the geomorphic framework and boundary conditions that control such processes in a comprehensive way. Taken together, the combined LiDAR and seismic monitoring approach provides high fidelity spatial and temporal resolution of individual events.

  9. Millennial coastal uplift rates and the seismic cycle in the 2011 Mw 9.0 Tohoku-oki earthquake area, Japan

    NASA Astrophysics Data System (ADS)

    Mechernich, Silke; Meghraoui, Mustapha; Cetin, Esra; Toda, Shinji; Okumura, Koji

    2013-04-01

    The Mw 9.0 Tohoku-oki earthquake and the record of major historical seismic events including the AD 869 Jogan earthquake on the Japan trench illustrate the active tectonic capability on the subduction zone. The recent coastal deformation is revealed by the 2011 coseismic subsidence (up to 1.2 m) and postseismic uplift (up to 20 cm within 1.5 years) obtained from leveling and GPS measurements. 100 years before the earthquake, subsidence at a rate of ~1 mm/a was documented. The correlation between these short-term geodetic results and long-term geologic data is decisive for understanding of the tectonic process and the related earthquake cycle on the subducting Pacific slab. Thus, we study the millennial vertical deformation along the coastline of northern Honshu Island (38.2°N to 41.2°N) in the frame of the PALET project (ANR-JST Flash program). The exposure of emerged marine terraces, wave-cut platforms and notches allow us to determine the deformation rate during the Late Pleistocene and Holocene. Coastline terraces of marine isotope stages MIS5e (124 ka) to MIS19 (~780 ka) indicate uplift rates of 0.2-0.4 mm/a and 0.1-0.2 mm/a in the northern and southern study area, respectively. Numerous younger notches and wave-cut platforms are identified at several height levels between 1 and 10 m above sea level. Two radiocarbon samples of wood remnants yielded an age of ~2.8 cal ka BP for a 3.2 m high terrace in the north (40.7°N), and a shell fragments on a notch in resistant conglomerates (39.7°N) revealed an age of 47.1 ± 2.2 cal ka BP. After correction for sea level change, both data points yield uplift rates of ~1 mm/a, which denotes clear acceleration in uplift during the Late Quaternary. An elastic dislocation model of the co-, post- and interseismic slip distribution shows how the successive coastal subsidence during M9-class earthquakes is concealed by the long-term uplift due to deep creeping deformation. The distribution of lower uplift rates in the

  10. Periods of the Earth's seismicity activation and their relationship to variations in the Earth's rotation velocity

    NASA Astrophysics Data System (ADS)

    Sasorova, Elena; Levin, Boris

    2015-04-01

    It is known that Earth's seismic activity (SA) demonstrates distinct roughness (nonuniformity) in time. Periods of intensification of the SA followed by periods of its decaying. For strong earthquakes these periods are continued several decades. It was also noted that there is a pronounced periodic amplification and attenuation of the SA with a period of about 30 years, which is manifested mainly in two latitudinal belts 50°N-30°N and 0°-30°S [Levin, Sasorova, 2014, 2015]. This work deals with the hypothesis that it is the properties of rotating non-uniform rate of the planet may be the cause of the periodicity of manifestations SA. The objective of this work is the searching of the spatial-temporal interconnection between the Earth rotation irregularity and the observed cyclic increasing and decreasing of the Earth's SA. This requires preparation a long series of observations of seismic events with representative data sets (EQ selected from 1895 up to date with a magnitude M> = 7.5, based on the catalog NEIC). Two sources of data on the angular velocity of the Earth's rotation of (length of day, LOD) were adapted: the world-known database IERS (Annual Report, International Earth Rotation Service) and the data, which were presented in the work (McCarthy, D.D., and Babcock A.K., 1986). The first one contains daily observations from 1962 to 2013, the second one was identified semi-annual observations from 1720 to 1984. It was prepared concatenated data set (CLOD) for the period from 1720 to 2013. Characteristic periods in the time series CLOD: 62, 32, and 23 years have been isolated by the use of spectral analysis. Next, it were used a band-pass filters for the four frequency bands from 124 to 45 years, from 37 do 25 years, from 25 to 19 years, and in the range of less than 19 years. In the frequency bands 37-25 years and 25-19 years marked clear periodic oscillations close to a sine wave. The amplitude of the oscillations with the 1720 to 1790 gradually

  11. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    SciTech Connect

    Peter Swanson; Collin Stewart; Wendell Koontz

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  12. Deep Seismic Imaging of an Active Foreland Basin: Implications for Flexural Models

    NASA Astrophysics Data System (ADS)

    White, N.

    2003-12-01

    The South Falkland basin is a partially filled, active, foreland basin located at the southern edge of the Falkland Plateau. It was formed by flexure of the South American plate as a result of loading by the northern edge of the Scotia plate. Flexure probably started in the Paleogene and continues to the present day. The entire region is submarine and the detailed structure of this basin is clearly imaged on shallow reflection data. Admittance analysis of free-air gravity and bathymetry together with gravity and basement profile modelling suggest that the elastic thickness is 10--20 km. Recently, we have acquired and processed a deep seismic reflection profile which crosses the foreland basin and the zone of active collision. This line was shot to 18 seconds two-way travel time using a 5600 cubic inch airgun array and a 6 km streamer. These new data have yielded spectacular images of the active foreland basin and of the adjacent plateaux. The most striking features are a clearly imaged Moho and a set of highly reflective normal faults which penetrate to about 20 km depth. We can show that these normal faults were active during the process of plate flexure. Their existence, depth of penetration and reflectivity raise important questions about the applicability of elastic models to foreland basin formation. Here we explore alternative models which can account for these new observations without requiring the existence of large elastic stresses.

  13. Time-dependent seismic tomography of the Coso geothermal area, 1996-2004

    SciTech Connect

    Julian, B.R.; G.R. Foulger; K. Richards-Dinger; F. Monastero

    2006-04-01

    Local-earthquake tomographic images were calculated for each of the years 1996 - 2004 using arrival times from the U.S. Navy’s permanent seismometer network at the Coso geothermal area, California. The results show irregular strengthening with time of the wave-speed ratio VP/VS at shallow depths. These changes result predominately from progressive relative increase in VS with respect to VP, and could result from processes associated with geothermal operations such as decrease in fluid pressure and the drying of argillaceous minerals such as illite.

  14. Seismic activities of earthquake clusters and small repeating earthquakes in Japan before and after the 2011 off the Pacific coast of Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Igarashi, T.

    2011-12-01

    The 2011 off the Pacific coast of Tohoku earthquake (M9.0) had a great effect on seismic activities over vast areas. In this study, we investigated spatio-temporal changes of seismic activities of earthquake clusters and small repeating earthquakes before and after the main shock. We have already reported many small repeating earthquakes occur at the upper boundary of the subducting plates in Japan. From these sequences, we can estimate the space-time characteristics of the inter-plate slip. In the 21st century, the resultant slip-rates correspond to relative plate motion in the Ryukyu-arc. In contrast, the shallow part and the southern part of the northeastern Japan arc indicated slip deficits. There were few after-slips following the 2005 off Miyagi earthquake (M7.2), which located near the hypocenter of the 2011 main shock. On the other hand, slip deficits of the southern shallow part were slightly decreased by after-slips following the 2003 and 2008 M7 class earthquakes. We also identified quasi-static slips associated with foreshocks off Miyagi that started from February 2011. After the main shock, we detect many small repeating earthquakes in the aftershocks. The distributions suggest after-slips near the trench of the southeastern part as well as in the deep part of the source region estimated by GPS data analysis. However, some of them are burst-type repeating sequences which occurred only after the main shock. Many continual-type repeating sequences are distributed in the southern part of the source region, and it is difficult to estimate slip-rates in the northern part at present. This uneven distribution may have been caused because observed seismograms are distorted by the multiplicity of the waves to come from various locations, the seismic velocity changes at the propagation path or site, or changes of physical properties at the plate interface. Furthermore, we automatically extracted earthquake clusters by using the unified JMA hypocenter catalogue

  15. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    NASA Astrophysics Data System (ADS)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  16. Investigating possible influence of solar activity on some reported seismic-induced ionospheric precursors via VLF wave propagation in Earth-ionosphere waveguide

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Sasmal, Sudipta; Ray, Suman

    2016-07-01

    The diurnal propagation characteristic of VLF radio signal have been widely used to study pre-seismic ionospheric anomalies, some of which are often reported to be associated with the event. On the other hand, Solar particle events and geomagnetic activity also drive changes in the magnetosphere, which modify ionospheric parameters through the Earth's magnetic field. There are also effects originating from planetary and tidal waves, thermospheric tides and stratospheric warming. Distinguishing or separating seismically induced ionospheric fluctuations from those of other origin remain vital and challenging. In this work, we investigated the influence of solar and geomagnetic origin on some reported 'seismic ionospheric precursors' before a few major earthquakes. We also investigated anomalies in VLF day-length signal during period of low solar and geomagnetic activity (in relation to seismic activity), to understand the occurrence of VLF anomaly that are unrelated to seismicity and solar activity.

  17. Evaluation of the Seismic Hazard in Venezuela with a revised seismic catalog that seeks for harmonization along the country borders

    NASA Astrophysics Data System (ADS)

    Rendon, H.; Alvarado, L.; Paolini, M.; Olbrich, F.; González, J.; Ascanio, W.

    2013-05-01

    Probabilistic Seismic Hazard Assessment is a complex endeavor that relies on the quality of the information that comes from different sources: the seismic catalog, active faults parameters, strain rates, etc. Having this in mind, during the last several months, the FUNVISIS seismic hazard group has been working on a review and update of the local data base that form the basis for a reliable PSHA calculation. In particular, the seismic catalog, which provides the necessary information that allows the evaluation of the critical b-value, which controls how seismic occurrence distributes with magnitude, has received particular attention. The seismic catalog is the result of the effort of several generations of researchers along the years; therefore, the catalog necessarily suffers from the lack of consistency, homogeneity and completeness for all ranges of magnitude over any seismic study area. Merging the FUNVISIS instrumental catalog with the ones obtained from international agencies, we present the work that we have been doing to produce a consistent seismic catalog that covers Venezuela entirely, with seismic events starting from 1910 until 2012, and report the magnitude of completeness for the different periods. Also, we present preliminary results on the Seismic Hazard evaluation that takes into account such instrumental catalog, the historical catalog, updated known fault geometries and its correspondent parameters, and the new seismic sources that have been defined accordingly. Within the spirit of the Global Earthquake Model (GEM), all these efforts look for possible bridges with neighboring countries to establish consistent hazard maps across the borders.

  18. Ground penetrating radar and active seismic investigation of stratigraphically verified pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Gase, A.; Bradford, J. H.; Brand, B. D.

    2015-12-01

    We conducted ground-penetrating radar (GPR) and active seismic surveys in July and August, 2015 parallel to outcrops of the pyroclastic density current deposits of the May 18th, 1980 eruption of Mount St. Helens (MSH), Washington. The primary objective of this study is to compare geophysical properties that influence electromagnetic and elastic wave velocities with stratigraphic parameters in the un-saturated zone. The deposits of interest are composed of pumice, volcanic ash, and lava blocks comprising a wide range of intrinsic porosities and grain sizes from sand to boulders. Single-offset GPR surveys for reflection data were performed with a Sensors and Software pulseEKKO Pro 100 GPR using 50 MHz, 100 MHz, and 200 MHz antennae. GPR data processing includes time-zero correction, dewow filter, migration, elevation correction. Multi-offset acquisition with 100 MHz antennae and offsets ranging from 1 m to 16 m are used for reflection tomography to create 2 D electromagnetic wave velocity models. Seismic surveys are performed with 72 geophones spaced at two meters using a sledge hammer source with shot points at each receiver point. We couple p- wave refraction tomography with Rayleigh wave inversion to compute Vp/Vs ratios. The two geophysical datasets are then compared with stratigraphic information to illustrate the influence of lithological parameters (e.g. stratification, grain-size distribution, porosity, and sorting) on geophysical properties of unsaturated pyroclastic deposits. Future work will include joint petrophysical inversion of the multiple datasets to estimate porosity and water content in the unsaturated zone.

  19. Dissolution of bedded rock salt: A seismic profile across the active eastern margin of the Hutchinson Salt Member, central Kansas

    USGS Publications Warehouse

    Anderson, N.L.; Hopkins, J.; Martinez, A.; Knapp, R.W.; Macfarlane, P.A.; Watney, W.L.; Black, R.

    1994-01-01

    Since late Tertiary, bedded rock salt of the Permian Hutchinson Salt Member has been dissolved more-or-less continuously along its active eastern margin in central Kansas as a result of sustained contact with unconfined, undersaturated groundwater. The associated westward migration of the eastern margin has resulted in surface subsidence and the contemporaneous sedimentation of predominantly valley-filling Quarternary alluvium. In places, these alluvium deposits extend more than 25 km to the east of the present-day edge of the main body of contiguous rock salt. The margin could have receded this distance during the past several million years. From an environmental perspective, the continued leaching of the Hutchinson Salt is a major concern. This predominantly natural dissolution occurs in a broad zone across the central part of the State and adversely affects groundwater and surface-water quality as nonpoint source pollution. Significant surface subsidence occurs as well. Most of these subsidence features have formed gradually; others developed in a more catastrophic manner. The latter in particular pose real threats to roadways, railways, and buried oil and gas pipelines. In an effort to further clarify the process of natural salt dissolution in central Kansas and with the long-term goal of mitigating the adverse environmental affects of such leaching, the Kansas Geological Survey acquired a 4-km seismic profile across the eastern margin of the Hutchinson Salt in the Punkin Center area of central Kansas. The interpretation of these seismic data (and supporting surficial and borehole geologic control) is consistent with several hypotheses regarding the process and mechanisms of dissolution. More specifically these data support the theses that: 1. (1) Dissolution along the active eastern margin of the Hutchinson Salt Member was initiated during late Tertiary. Leaching has resulted in the steady westward migration of the eastern margin, surface subsidence, and the

  20. Active Faults and Seismic Sources of the Middle East Region: Earthquake Model of the Middle East (EMME) Project

    NASA Astrophysics Data System (ADS)

    Gulen, L.; EMME WP2 Team*

    2011-12-01

    The Earthquake Model of the Middle East (EMME) Project is a regional project of the GEM (Global Earthquake Model) project (http://www.emme-gem.org/). The EMME project covers Turkey, Georgia, Armenia, Azerbaijan, Syria, Lebanon, Jordan, Iran, Pakistan, and Afghanistan. Both EMME and SHARE projects overlap and Turkey becomes a bridge connecting the two projects. The Middle East region is tectonically and seismically very active part of the Alpine-Himalayan orogenic belt. Many major earthquakes have occurred in this region over the years causing casualties in the millions. The EMME project consists of three main modules: hazard, risk, and socio-economic modules. The EMME project uses PSHA approach for earthquake hazard and the existing source models have been revised or modified by the incorporation of newly acquired data. The most distinguishing aspect of the EMME project from the previous ones is its dynamic character. This very important characteristic is accomplished by the design of a flexible and scalable database that permits continuous update, refinement, and analysis. An up-to-date earthquake catalog of the Middle East region has been prepared and declustered by the WP1 team. EMME WP2 team has prepared a digital active fault map of the Middle East region in ArcGIS format. We have constructed a database of fault parameters for active faults that are capable of generating earthquakes above a threshold magnitude of Mw≥5.5. The EMME project database includes information on the geometry and rates of movement of faults in a "Fault Section Database", which contains 36 entries for each fault section. The "Fault Section" concept has a physical significance, in that if one or more fault parameters change, a new fault section is defined along a fault zone. So far 6,991 Fault Sections have been defined and 83,402 km of faults are fully parameterized in the Middle East region. A separate "Paleo-Sites Database" includes information on the timing and amounts of fault